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Resumo. Neste trabalho apresentamos métodos para calcular o tempo médio de primeira visita de particulas
quanticas agindo em grafos finitos. As expressoes obtidas sao dadas em termos de inversas generalizadas
associadas com dinamicas completamente positivas que preservam traco, os chamados canais quanticos. O
contexto considerado aqui pertence a area de informagao e computacao quéantica, e os teoremas provados neste
trabalho estendem resultados recentes no assunto, no sentido de que a suposicao de irreducibilidade pode ser
substituida por uma hipétese estritamente mais fraca, aumentando a aplicabilidade dos resultados para uma
classe maior de exemplos incluindo, por exemplo, passeios quanticos unitarios.

Palavras-chave: mecanica quantica; passeios quanticos; tempos médios de primeira visita; canais quanticos

Abstract. In this work we present methods for calculating the mean hitting time of first visit for quantum
particles acting on finite graphs. The expressions obtained are given in terms of generalized inverses associated
with trace-preserving, completely positive dynamics, the so-called quantum channels. The setting considered
here belongs to the realm of quantum information and computation, and the theorems proved in the work
extend recent results on the subject in that the technical assumption of irreducibility can be replaced by a
strictly weaker one, allowing the applicability of the results to a larger class of examples, such as unitary
quantum walks.

Keywords: quantum mechanics; quantum walks; mean time of first visit; quantum channels
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Introduction

The purpose of this thesis is to discuss basic statistics of quantum versions of random walks on graphs. The
main question we will address is motivated by the following setting, coming from the classical theory of Markov
chains: given a graph and transition probabilities between its vertices, what is the mean time for a walker to
reach vertex j for the first time, given that it has started at vertex ¢? Formally, the mean hitting time is given
by

By(Ty) =Y tR(T; =1)

where Tj is the random variable given by the time of first visit to vertex j, and P;(T; = t) is the probability
that T; = ¢, given that the walk begins at position i.

From the theory of Markov chains we know that, alternatively, the mean hitting time can be calculated
without resorting to its definition directly. A well-known method is via the fundamental matrix associated with
a finite ergodic Markov chain with stochastic matrix P,

Z=(I-P+Q)!
where 2 = lim,,_,~, P", and for which the following equation is valid:

T

Ei(Ty) = (0.0.1)

Above, m = (m;) denotes the unique fixed probability associated with the walk. This is the mean hitting time
formula (MHTF), and is one of several expressions relating Z with statistical quantities of the walk [I [§].

In the context of quantum information and computation, the problem of finding quantum versions of the
MHTF has been studied in [23] in the context of open quantum walks on finite graphs, and later in [24] where
quantum Markov chains are considered. Shortly after, a version of the MHTF was proved for positive maps
[25]. We remark that in all such works we have the important assumption that the walks are irreducible, which
can be seen as a kind of “connectivity” of the walk. As we will be considering particles with internal degrees of
freedom, one should work with a careful, precise definition regarding the accessibility of the vertices.

We also remark that [23] and [25] present formulae in terms of a so-called fundamental matrix Z, whereas
[24] also discusses expressions in terms of generalized inverses of the dynamics, following [20] (we remark that
Z is a generalized inverse as well).

The results of this thesis concern the problem of obtaining mean hitting time expressions for more general
quantum dynamics, namely, we consider a strictly larger set of operators, given by quantum channels, which are
trace-preserving, completely positive maps acting on some finite-dimensional Hilbert space [31]. In addition, we
will discuss how one is able to replace the assumption of irreducibility. This latter point is of crucial importance
if one wishes to consider hitting time expressions in terms of generalized inverses for certain dynamics, such as
unitary quantum walks: as conjugation operators, these are usually reducible. Nevertheless, their dynamics is
quite nontrivial and, as we will see, we are able to find hitting time expressions in such cases as well. The key
to such development is to make considerations on the spectra of certain generating functions associated with
the walk.

In Chapter 1 we review basic definition regarding generalized inverses, Markov chains, discrete-time quantum
walks and quantum Markov chains. Then we explain how to associate any quantum channel with a quantum
Markov chain, so that one can make use of previous results regarding hitting times. Then, after a discussion of



a more specific generalized inverse (the so-called group inverse), we will be in position to establish new results,
by replacing the assumption of irreducibility with a strictly weaker assumption.

In Chapter 2, we discuss hitting times for continuous-time quantum walks. There, we are able to draw
similarities and differences with respect to the discrete-time case, and we take the opportunity to present
several examples. During the preparation of this work, the author has made use of the software Maple to make
conjectures, verify calculations and present examples we believe are instructive to the reader.



Chapter 1

Discrete-time QMCs

1.1 Generalized inverses

Here we define two kinds of generalized inverses. The first one, which we will call g-inverse, has the property of
solving equations involving matrices. The second one, the Drazin inverse, has other interesting properties and,
in some cases, it is also a g-inverse. These facts will be explained more carefully in this section. The content
presented here, along with a more comprehensive treatment on this subject, can be found in [4] and [12].

Let us denote matrices by uppercase letters A, B, C, and so on, over a field F which can stand for the real
numbers or the complex numbers. If the matrices have m rows and n columns, we say that it is an m X n
matrix. The set of m x n matrices over F will be denoted by F™*™. We write F™ for the space of column vectors
with entries in F. In a multiplication of matrices where their dimensions are not specified, it is always assumed
that they are such that the operation is well defined.

Definition 1.1. A g-inverse of a matriz A € F™*™ is any matriz A~ such that
AATA = A

What we refer to as a g-inverse here is called a (1)-inverse in the literature cited above. The reason for this
is because condition AA~ A = A satisfied by A~ given in Definition is conventionally numbered as equation
(1) among a set of four equations called Penrose equations or Penrose conditions. Different combinations
of these conditions define different kinds of generalized inverses. For example, inverses that satisfy conditions i,
j and k are called (4, j, k)-inverses. We will not be concerned with those in this work, so we drop the notation
with prefixed numbers and adopt instead the term ’g-inverse’ used by Hunter [20].

We can see from Definition that if a matrix A is invertible, then A~ = A~! is the only g-inverse of A.

A possible motivation for defining a g-inverse can be given by the following application to linear systems.
Let A€ F™*"™ and x € F” and b € F™, and consider the system

Ax=Db

which we are trying to solve for x. We know that if A is non-singular, we can solve it and obtain the unique
solution x = A~ 'b. In the more general case where A is singular or non square, we might ask whether there is
an X € F™*™ guch that whenever Ax = b has a solution, it follows that x = Xb is a solution. If the answer is
yes, then we consider equations Ae; = a;, for i = 1,2,...,m where e; € F” are the standard basis vectors for
F™ and a; € F™ is the i-th column of A. These equations make clear that for i = 1,...,m, the system Ax = a;
has a solution. Then, as we are supposing, there exists for each one of these, respectively, a solution of the form
x = Xa;. So substituting this x into Ax = a;, we have that AXa; = a;, which implies, because a; = Ae;, that
AX Ae; = Ae; for each e;. Thus we have AXA = A.
On the other hand, suppose we have a matrix X such that AXA = A. If Ax = b has a solution, then

b=Ax = AXAx = AXb

from which we see that Xb is a solution.
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In conclusion, we have that if X is a g-inverse of A, then it has the property of solving linear systems
Ax = b. And it is a fact that for any given matrix, it always has a g-inverse, as explained below.

Let A be any m X n matrix and suppose it has rank r. We can always perform a Gauss-Jordan elimination
to transform the matrix into its reduced row-echelon form. In this form, the matrix will have the following
properties:

1. each of the first r rows contain at least one non-zero element, and the remaining rows consist only of zero
elements.

2. the first non-zero element in each row is 1, and it is strictly to the right of the first non-zero element of
the row above.

3. each first non-zero element of a row is the only non-zero element of its column.

To illustrate, here is an example of a matrix in reduced row-echelon form:

1 a 0 0 b
0 01 00
00 01 ¢
00 0 0 O

The steps taken to reduce a m x n matrix to this form are elementary row operations, each of which can be
achieved by multiplying the matrix on the left by an invertible m x m matrix E;. So reducing our matrix A in k
steps is equivalent to multiplying it on the left successively by k invertible matrices F1, ..., F, or equivalently,
multiply it on the left by FxFyx_1---FE; = E, an invertible matrix. In other words, given a matrix A, there
always exists an invertible matrix E such that E'A is in reduced row-echelon form.

Now given a matrix of rank r in reduced row-echelon form, we can perform a permutation on its columns
to achieve a matrix of the form

Ri= {IT K} (L1.1)

0O O

where I,. is the r x r identity, the O’s denote zero matrices, and K is any matrix, observing that the O’s and
K must be of suitable dimensions.

By noting that a permutation on the columns of a m X n matrix can be effected by multiplying it on the
right by some n X n permutation matrix P, which is always invertible, we can do this to our reduced matrix
FEA and obtain

I K i I K| o1 mippetd
EAP—{O O} — A=F {O O}P =FE "RP™". (1.1.2)
Now consider the n x m matrix
I. O
s=15 9]

where L is any (n —r) X (m — r) matrix. We have that

el o] [o 0115 G
fo O[5 o [s o]

so S satisfy the definition of a generalized inverse for R.
Finally, to obtain a generalized inverse for our m X n matrix A, we simply define X := PSFE, and then we

have
AXA = (E'RP™Y)(PSE)(E"*RP™')=E'RSRP™' =E'RP™!' = A.

This discussion shows that there exists a g-inverse for any given matrix, and it also sketches a procedure for
its construction.

We will mainly be interested in matricial equations of the form AX B = C where A, B, C' are given and we
want to solve for X. For that purpose, we will use the results presented below.
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Theorem 1.2. A necessary and sufficient condition for the equation AXB = C to be consistent is that
AA-CB™B = C, where A~ and B~ are any g-inverses for A and B, respectively. In this case, the gen-
eral solution is given by

X=A"CB +H—-AAHBB™,
where H is an arbitrary matriz.

Proof. Let A~ and B~ be generalized inverses for A and B, respectively. If AX B = C has a solution Xy, then

AA=CB~B = AA~AX,BB~B = AX,B = C.

Conversely, if AA-CB~B = C, then X given by Xqg = A~CB™ is a solution to AXB =C.
Now suppose that the equation is consistent. Then as we have seen, Xg = A~CB™ is a solution, and it is
easy to check that for arbitrary H,

A“CB~ +H— A"AHBB~ (1.1.3)

is also a solution to the equation: just multiply it on the left by A and on the right by B, and it gives us
AACBB™ + AHB — AATAHBB B = AACBB™ + AHB — AHB = AACB™ B = C, where the last
equality is due to the consistency condition.

Finally, if X, is any solution to AX B = C, then by choosing H = X, in we obtain

A CB™ + Xo — A_AX()BB_ =A"CB™ + Xo — A CB™ = Xo,

therefore every possible solution is of the given form, and this completes the proof.

O

In the case where in the equation AX B = C' either A or B are equal to the identity of the suitable dimension,
we can apply Theorem to this simpler case, and note that the only generalized inverse of the identity matrix
is itself. This observation gives us the following:

Corollary 1.3. A necessary and sufficient condition for the equation AX = C to be consistent is that AA~C =
C, where A~ is any g-inverse of A, in which case the general solution is given by

X=A"C+(I-A" AU,

where U is an arbitrary matriz.
A necessary and sufficient condition for the equation X B = C' to be consistent is that CB~ B = C', where
B~ is any g-inverse of B, in which case the general solution is given by

X=CB 4+V(I-BB7),
where V' is an arbitrary matrix.

We note that in general the g-inverse of a given matrix is not unique. The next theorem ([20], Section 3)
characterizes all the g-inverses of a given matrix.

Theorem 1.4. If A~ is any g-inverse of A, then all g-inverses of A can be characterized as members of the
following equivalent sets:

{A"AA~ + H—- A" AHAA™ | H arbitrary } (1.1.4)
{ATAA= + (I - A" AU+ V(I — AA7) | U,V arbitrary } (1.1.5)
{A=+W — A“AWAA™ | W arbitrary } (1.1.6)
{A=+ (I - A"A)F + G — AA™) | F,G arbitrary } (1.1.7)
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Proof. We apply Theorem to solve AXA = A for X by choosing B = C = A. The solution immediately
gives us the set 1) To see the inclusion (1.1.4) C (|1.1.5), we simply choose U = %HAA_ + %H and

V= %A‘AH + %H for an element of the set (|1.1.5)) so we get

1 1 1 1
ATAAT 4+ (I— A" A) <2HAA— - 2H) - (QA‘AH - 2H) (I—-AA7)
CAAA 2 H —2lA-AmAa- +177>4A\——21ﬁ%ﬁ+ Lo —5%4{
B 2 2 2 2
=A"AA” + H- A" AHAA™,

which is an element of (T.1.4). To show the reverse inclusion, choose H = (I — A~ A)U + V(I — AA™) for an
element of the set (1.1.4) and we get

ATAA™ + (I - A" AU+ V(I — AA™) — A A(d—A A)U + V(I —AA)AA~

—A"AA™ + (I - A~ AU + V(I — AA™),

which is an element of (1.1.5). The terms above cancel out because A~ A(I—A~A) =0and (I—AA7)AA~ =0.
We have therefore the equivalence of the first 2 sets.
To obtain the inclusion (1.1.6)C (1.1.4)), choose H = W + A~ for an element of (|1.1.6) and we obtain

ATAA™+ (W + A7) — ATA(W + A7)AA™
=ATAAT W+ A” — ATAWAA™ — A" AATAA
SAAA + W+ A — A"AWAA™ — A-AA
=A" +W — ATAWAA™,

which is an element of (1.1.6)). To show the reverse inclusion, we choose W = H + A~ AA~ for an element of

(1.1.6) to obtain any given element of ((1.1.4)).
We have so far that the first three sets are all equivalent. The equivalence between (1.1.6) an (1.1.7)) is

shown in the same manner as the equivalence of the first two sets, completing the proof.

O

The next generalized inverse, unlike the previous definition, is only defined for square matrices. First, we
define the index of a matrix.

Definition 1.5. Given a matriz A € F"*", the least nonnegative integer k such that Ran(AF) = Ran(A**1) s
the index of A, denoted by Ind(A) = k.

Observation: we consider A° to be the identity matrix for any matrix A. So, for example, nonsingular
matrices are precisely those with index zero.

Definition 1.6. If A € F"*" with Ind(A) = k, and if AP € F"*" is a matriz such that
1. APAAP = AP
2. APA = AAP
9 Ak+1LAD — pk

then AP is called the Drazin inverse of A.

It can be shown that the Drazin inverse of an n X n matrix always exists and is unique [p. 123, [12]].

We note that the Drazin inverse is not a g-inverse (Def. in general. The next theorem [Theorem 7.2.4,
[12]] specifies when that happens.

Theorem 1.7. Let A € F"*". Then AAP A= A if, and only if Ind(A) < 1.

A Drazin inverse which is also a g-inverse receives a special name:
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Definition 1.8. Let A € F"*" with Ind(A) < 1. Then the Drazin inverse of A is denoted by A% and called
the group inverse of A.

We could have alternatively defined the group inverse, given a square matrix A as the unique matrix A%,
when it exists, satisfying the three following conditions:

AP AA* = A% AT A = AA*, AATA = A.

The group inverse of a given square matrix exists, by Theorem [I.7] precisely when its index is not greater
than 1.

This inverse will be essential for the study of formulas for reducible open quantum walks and quantum
Markov chains, as we will see later.

1.2 Classical Markov Chains

In this section we review some concepts of Markov chains, in particular mean hitting times, and how
generalized inverses can be applied to obtain these quantities from the transition probabilities of the chain.
This goes in parallel to what will be presented in the next sections, where we use generalized inverses to
calculate related quantities in the quantum setting.

For notation, we will use in this section uppercase letters A, M, P,... to denote matrices, and lowercase
boldface letters e, f,g,... to denote column-vectors. We consider a prime in 7/, u/,... to denote w7, u”, the
transposed matrix of the column-vectors 7, u, which are row-vectors.

Let {X,}, n = 0,1,2,...,m be a discrete time Markov Chain with finite state space S = {1,2,...,m}
and transition probability matrix P = [p;;], where p;; := P{X,41 = j | X,, = i} Vn € N, is the transition
probability from state ¢ to state j. Suppose P is irreducible, that is, for each pair of ¢ and j, thereis a t € N
such that P{X, 1+ = j | X, =i} > 0. Next, we write P;( - ) := P( - | X, = ) for the conditional probability
and E; the expected value relative to this probability.

Define
T; = inf{n>1:X, =j},
mij = EZT]
The quantity m;; is called mean hitting time to go from i to j. In case i = j, we call m;; mean first return
time, or recurrence time, to site i.

Since P is irreducible and finite, we know that m;; < oo for all 4,5 (Lemma 1.13, [26]). Note that we can
condition the expectation on the first step to obtain:

ET; =Y Ei(T;|X; = k)Pi(X; = k)
kes

Z E;(Tj| X1 = k)pir
keS\{j}
+ Ei(T5| X1 = j)pi;
= Z (1 + Ex(T5))pir + pij
keS\{j}
=1+ puEiT). (1.2.1)
k
oy

We can define the matrices M = [m;;], Mg = [0;;m;;], where J;; is the Kronecker delta, and E = [1] is the
matrix which has every entry equal to 1. Equation ([1.2.1]) can be rewritten as

mi; =1+ Zpik (M — Simir)
kes
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which can be expressed in terms of the matrices defined above as M = E + P(M — M) or, equivalently,
(I—-P)M =FE — PM,. (1.2.2)

We see that this is almost an equation of the form AX = C, with an unknown matrix X, which could be
solved using a generalized inverse for the singular matrix I — P, except for the fact that the right-hand side also
contains unknown terms of M. However, it is a fact of the Theory of Markov Chains that if P is irreducible and
finite, then there is a unique vector " = (71, ..., my,) such that «'P = 7’ with m; > 0 for all ¢ and >, m; = 1.
So we can multiply equation on the left by en’ to obtain

0=ee —en'My; <= FE=1IIM,,
where € = (1,...,1) and IT = ex’. Observe that for square matrices A and D, where D is diagonal, we have
(AD)y = (DA)y = DAy = A4D.
Therefore taking the diagonal of E = IIM; we obtain
I=T,M; <<= M= (g ",
which is the known Kac’s Lemma [22].
Example 1.9. Consider
P= (1 b ’ 1 . b) ’
where 0 < a,b < 1, so that the chain is irreducible. Equation becomes

( a(mi —ma1)  a(miz — mag) ) _ (1 —(1—a)ymy; 1—ama ) '

—b(mi1 —ma1) —b(mia — ma2) 1—bmy (1 —b)mao

Solving this system for the m;; we obtain.

atb 1/a
_ b
M‘(l/b )

Example 1.10. Consider the transition probability matriz

We can solve (I — P)YM = E — PMy for M to obtain

© oo Ut O
=~ W W
— W W
Sy O 00 ©

To use the theory of generalized inverses to solve problems such as these, we use the next key result, due to
Hunter [20], for obtaining a g-inverse of I — P.

Theorem 1.11. Let P be the transition probability matrix of a finite irreducible Markov Chain with stationary
probabilty vector ww’. Let t and uw be any vectors such that 7't # 0 and u'e # 0. Then:

(a) I — P + tu' is nonsingular.
(b) [I — P+ tu]~! is a g-inverse of I — P.
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Proof. Define A = adj(I — P), the adjugate matrix (A.0.1) of I — P. By the properties of the adjugate matrix,
we have that (I — P) = (I — P)A =det(I — P)I =0, since I — P is singular. This is equivalent to

AP = A= PA.

The first equality above implies that each line of A is a multiple of 7’. The second equality above implies that
each column of A is a multiple of e. Both combined imply that A = ken’, where k is a scalar.

The scalar is k is not zero: By irreducibility, we know that the eigenvalues Aq,...,\,, of P are such that
only A\ =1, so (I — P) has eigenvalues 1 — Ay,...,1 — A, such that only 1 — A; = 0. From we know
that we then have Tr(adj(/ — P)) = [[;_,(1 — A;) # 0. On the other hand, Tr(adj(I — P)) = Tr(ken') = k.
Therefore, k # 0.

The matrix I — P + tu/ is nonsingular: By Lemma (A.1]), we have
det(I — P+ tu') = det( — P) + u' At = v/ (ken')e = k(u'e)(n't) # 0.

This concludes item (a). For (b), observe that (I — P+ tu/)(I — P + tu/)~! = I. Multiplying this equation on
the left by «’ and using /(I — P) = 0’ we obtain

7t/ (I -P+tu) =7 —= J{I-P+tu)'= ﬂ_ﬂ-—

so (I —P)I—P+tu)*=1—1% and therefore

7't
(I-P)YI—-P+tu) ' (I-P)=1-P,
proving item (b).
U

We are now able to solve equation (1.2.2)) in terms of a g-inverse of I — P, and the solution is given by the
theorem below, also due to Hunter [20].

Theorem 1.12. Let G be a g-inverse of I — P, where P is irreducible and finite. Then
M = [GIl — E(GI)4 + I — G + EG4] D, (1.2.3)

where D = My = (II;) L.

We refer to equation (|1.2.3]) for mean hitting times of a Markov chain in terms of a generalized inverse G as
Hunter’s Mean Hitting Time Formula, or just Hunter’s Formula, for short. In the next section we will define
Quantum Markov Chains and present an analogous result to Theorem [1.12]in that context.

1.3 Discrete-time QMCs

The goal of this section is to define Quantum Markov Chains and its particular case of Open Quantum
Walks. We start by fixing some notations and definitions for linear operators on a Hilbert space H over the
complex numbers C. We denote by B(H) the space of continuous linear operators on H, also called bounded
operators. For a p € B(H), we write its Hilbert adjoint as p*. We say that p € B(#) is positive semidefinite
(or positive, for short), denoted by p > 0, when (v|pv) > 0 for all v € H, where (-|-) is the inner product of H.
If (v]pv) > 0 for all v # 0, we say p is positive definite (or strictly positive), denoted by p > 0. We denote by
T, (H) the set of trace-class operators on H [30]. The norm of the space of trace-class operators is denoted by
|[-|l; defined as [|p[|; := Tr (|p|), where |p| = /p*p. By definition, our states, or densities, will be operators
p € Z1(H) such that

loll, =1, and p>0.

10
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Next, let us consider linear maps ® : Z;(H) — Z;(H). By definition, a linear map ® on Z;(H) is trace-
preserving (TP) when Tr (®(p)) = Tr(p), for all p € Z;(H). If the map ® preserves the positive semidefinite
property of the operators p on H, that is, if ®(p) > 0 whenever p > 0, then we say ® is a positive map. When
the extended map ® ® Id to the space Z; (H) ® B(C™) is positive, then by definition ® is m-positive. A linear
map is said to be completely positive (CP) when it is m-positive for all m € N, see 7], B1] for more on these
matters.

Now take V' to be a countable set of vertices and consider a Hilbert space formed by a direct sum of the
form H = @, bs, where each b; is a separable Hilbert space. For an operator A on H with hjL C Ker A and
Ran A C bh;, we write A as A = A;; ®|i)(j|, where A;; is seen as an operator from bh; to h;. So if a vector z € H
belongs to a certain b;, we can denote it by  ® |I). When we apply A on z, we will have either Az = 0, if | # 7,
or Az = (Ai; ® i) (j]))(z ® |j)) = Aijxz ® |i), for [ = j. This is consistent with the notation used in [3] where
h; = b for all i, and H = h ® CV. In this case, we fix an orthonormal basis {|i)};cy for CV" and the |i){j| are
operators on CV in the sense that for vectors |¢), ) € CV, we can define

|6) (] :CV — CY
jw) = ((W]w))]9)-

After these considerations, we may follow S. Gudder [I7] and define a Quantum Markov Chain (QMC)
as the operator @ : Z; (H) — Z1(H) that maps p =}, ;cy pij @ [§)(j] to

p) =D | D @ispss) | @i,

ieV \jev

with the required property that each ®;; : Z1(h;) — Zi(h;) be a completely positive map, and also that the
topological duals ®7; satisfy

> ®5;(1dy,) = Idy,,

i€V
a condition which is equivalent to preservation of trace by the map ®. Because of the complete positivity of
the ®;;, they have a Kraus representation [2, [7] of the form

®i(p) =Y LpL*, peTi(hy), (1.3.1)
L

where we sum over a countable number of operators L : h; — b;.
In the special case for which the ®;; are given simply by
®i5(p) = BijpBj;, p € Li(by),
then the QMC reduces to what we call an Open Quantum Walk (OQW), following S. Attal et al. [3], and
the map ® is given by

O(p) = Y MypMj;, M;=DBi;@li)(jl, pecLi(H).
i,jEV

It can be shown in this case that the preservation of trace is equivalent to

> Bj;Bi; =1dy,, Vj.
2%

We can think of our system as a simulation of Markov chain on a graph with a set of n vertices, or sites
V', but the particle performing the walk also has an internal state represented by a linear operator on a Hilbert
space of dimension k. We say that the system has k internal degrees of freedom, or that k is the dimension
of the state space. QMCs and OQWs can be defined in more general complex Hilbert spaces where we do not
have necessarily finitely many vertices and degrees of freedom. However, our focus will be on finite systems,

11
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so we will soon particularize the concepts to the finite case where the Hilbert spaces will be reduced to finite
complex vector spaces C™ and spaces of complex matrices.

As we see in the definition of QMCs, its range depends only on the block-diagonal terms of p, i.e., only
terms of the form p;; appear in the image under ®. Hence we are only interested in elements p € Z;(H) of the
form p =),y pi ® |4)(i], where we drop the notation p;; and write it just as p;. For physical considerations,
we focus only on elements of Z; () which are densities.

Figure 1.1: Schematic illustration of QMCs. The walk is realized on a graph with a set of vertices denoted by
i,7,k,1,... and each operator ®;; is a completely positive map describing a transformation in the internal degree
of freedom of the particle during the transition from vertex j to vertex i. For simplicity of illustration some
edges are not labeled. In the particular case that all maps are conjugations, i.e., for every i, j, ®;; = B;; - Bj;
for certain matrices B;; the QMC is called an open quantum walk (OQW).

As we are restricted to the case where V has finite size n and the dimension of each b; is k, we can consider
without loss of generality that each h; = CF. In this case, the p; will be operators on CF, which are k x k
matrices. The space of complex k x k matrices is denoted by My (C), or only M}, for short. We write the set of
densities on n vertices and k internal degrees of freedom as

P1

P2 -
Dnr:=¢p=1|.| : pp€eM(C), p;>0,i=1,...,n, ZTr(pj):l ,

. j=1

Pn

where p = >""" | p; ® |i)(i] is expressed as a block-column matrix, with n elements of Mj,(C) as blocks.

We can take advantage of this matrix representation for p by noting that

n n

O(p) = Dij(ps) | @ li) (il
i=1 \j=1
so we can express the action of ® on p matricially as
Q1 o Dy p1 22:1 P1;5(p5)
B(p) = ‘1’221 (I):Qn . p:2 _ 21 (:I>2j(Pj) (1.32)
<I>.n1 e ‘I’;m P.n > ‘i’m‘(pj)

Here the p; are matrices, but the ®;; are operators on matrices, so the operations involved in the equation
above are not usual matrix multiplication. Nevertheless, by looking at the proper matrix representations of the
®;; we will see shortly that, in practice, one can always perform block matrix multiplications that lead to the

12
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numerical results of interest. Finally, it is worth recalling that in the finite case, where we are taking each ®;;
as a completely positive operator on My (C), we have a result [7] stating that the expression (1.3.1) will involve
only finitely many operators, and it becomes

®ij(pm) = > _ LpmL*,  pm € Mi(C), (1.3.3)
L

where now we sum over a finite collection of matrices L € My (C).

1.4 Probability notions: basic statistics and hitting times

We consider the formalism of monitoring [I5], under which we inspect whether the particle is found at a
chosen vertex. In other words, we perform a measurement of the position. If the particle is detected, then the
experiment is over. If not, then the particle is known to be in the subspace associated with the complement of

the inspected vertex, and the process continues. Within this formalism, the following probabilistic notions for
a QMC are defined:

pr(p — j) = probability of reaching vertex j in r steps when starting at state p.
7(p — j) = probability of reaching vertex j for the first time in r steps when starting at state p.
m(p — j) = probability of ever reaching vertex j starting at state p.

T(p — j) = expected time of first visit to vertex j when starting at state p.

If we define for each vertex j a projector PP; that acts on densities by the relation

R(ZM@MM)m@»m

and if we let Q; := I — P; be its complement, then the probabilistic notions above, associated with a QMC @,
can be expressed as

pr(p = §) = Tr (P;9"p)
m(p—j) = Tr (P;®(Q;®)'p)
m(p—4)=>_ m(p—j)

r>1

) 00, ifr(p—j)<1
— =
o= {zgmm@%ﬁ,ﬁw@%ﬁzl

We call the (p — j) hitting probabilities and the 7(p — j) mean hitting times. When we refer to the
mean hitting time of starting at a vertex i to reach a different vertex j, we also call it the mean time of first
visit.

In order to calculate mean hitting times and hitting probabilities, we will use generating functions defined
as

Gij(2) = Z P;®(Q;@)" P2 = P, d(1 — 2Qi®) " 'P;, 2€C, |z < 1.

m>1

Such objects have been considered in [I5], also see [25] and references therein. With this we define

limgr1 Gyi(x), i # 3 . d
Hy o= et (@) ' #]. o Ky =1im —Gyj(2).
17 1=7 Tl dzx

13



CHAPTER 1. DISCRETE-TIME QMCS
1.4. PROBABILITY NOTIONS: BASIC STATISTICS AND HITTING TIMES

The matrix of operators H = [H;;] and K = [K;] are called, respectively, the hitting probability and mean
hitting time operators, and we have that

7T(pj — Z) = Tr(Hijpj),
T(p; = 1) = Te(Kijp)),

where the index j on p; denotes that it is a density concentrated at site 7, i.e., a density of the form p = p;®|j) (j|.
To make more explicit the fact that p; is concentrated at site j, we can also sometimes write 7(p; ® |j) — |7))
to denote that same quantity.

A state Y, p; ® |i)(i| is said to be faithful if p; > 0 for all i. We define a finite positive map ® to be
irreducible when it has a unique faithful state. Equivalently, a positive map ® on Z;(H) is defined to be
irreducible when the only orthogonal projections P such that ®(PZy(H)P) C PZ;(H)P are P =0or P = I.
As we are in finite dimension, our map ® being positive and trace-preserving implies that we always has an
invariant state, so the theorem presented below, due to R. Carbone and Y. Pautrat [I0, 11, provides us the
following useful implications (the statement below extracted from [Theorem 1.1, [I6]]):

Theorem 1.13. Let ® be a CP map on I, (H).
(a) If ® is irreducible and has an invariant state, then it is unique and faithful.

(b) If ® admits a unique invariant state and such state is faithful, then ® is irreducible.

An irreducible and finite QMC is said to be aperiodic if 1 is its only eigenvalue with unit modulus. A finite
QMC is by definition ergodic if it is irreducible and aperiodic. It is a well-known result that the iterates of an
ergodic QMC acting on any initial density will converge to its invariant state [I1]. We remark that in [TI] the
term ergodic refers to a slightly distinct notion than the one employed here.

The following theorem is a result presented in [6] which is analogous to the classical Kac’s Lemma [22],
and connects the invariant states of an OQW to its associated mean hitting times. It employs the notion of a
semifinite OQW, which means that the internal degrees of freedom are finite, but the set of vertices could be
possibly countably infinite.

Theorem 1.14. [6] Let ® be a semifinite irreducible OQW with invariant state

= Zm ® |8)(i.

2%

Then for any i,j € V and p € S(h;), the sequence (t§-k)/kz)k, where t§.k) = inf{n > t;kil) | x = j}, converges
with respect to P; , both almost surely and in the L'-sense to

1

E =
TI‘TFZ"

(t:)

where t; denotes the mean first return time to site j, and E; , is the expected value conditional to a initial state

concentrated at a site j with density p.

In order to write concrete calculations for QMCs, let My, ,(C) be the space of m x n complex matrices. We
define the vec function for any A € M,, »(C) as the map vec : M,, ,(C) — C™" given by

a1
a12
a1 a12 . A1n
a21 a2z ... Q2p A1n
A= . . e ovec(A) =1 . |. (1.4.1)
ml An2 ... amn Qm1
_amn_
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Note that this function takes the rows of a matrix and stacks them vertically in a column vector. For a density
p=> 1 pi®li)i|, p; € My(C), we establish the correspondence

2 1) vec (p1)
2
p=|:| = lp=1|:|= ; eC",
Pn ) vec (pn)
where we define each |p;) 1= vec (p;) € C¥*. Given two matrices A = laij] € My, (C) and B € M, 4(C), we
define their Kronecker product [I8], denoted by A ® B, as the matrix
anB - a1pnB
A@B:=la Bl =| .. 1| € Muppng(C).
amlB ce amnB

We state without proof a few properties of the Kronecker product: for all A, A’ € M,, ,(C), B, B’ € M, ,(C),
C € M, s(C) and o € C, we have

(ad)® B=A® (aB)
(A® B) = AT ® BT

(A® B) = A* ® B*
(A®B)®@C=A® (B®C)
(A+A)®B=A®B+ A" ®B
A (B+B)=A®B+A®B

where AT is the notation for A transposed. It is a property of the vec function that for A, X, B € M (C), we
have vec (AX B) = A® BT vec (X), where ® is the Kronecker product [I8]. So, if we apply the vec function to
equation (1.3.3)), then we have

vec (;(pm)) = vec <Z LpL*> ZL@Lvec (pm) ZL®L|pm
L

This motivates us to define

((I)131 = ZL ®Z € Mk2 ((C),

so we can write more simply
vee (®ij(pm)) = [Pijllom)-

Finally, if we define the matrix

(@] -+ [P1n]
[®] := : " € M2 (C),
|—(I)n11 e [(I)nn—‘

then we can express equation (1.3.2) as

[@11] -+ [®1a] lp1) > iz [®illps)

[@21] - [ @2 ]| |lp2) > =1 [®251lps)
ol = | - ahaib

[@n1] - [Pnn] lpn) Z?:l [©n511p5)

except now we have regular multiplication of matrices and vectors. However it is important to emphasize that
these matrices are partitioned in n? blocks of dimension k x k, and the vectors are partitioned in n blocks of
dimensions k x 1.
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Consider the class of finite ergodic QMCs. It is a fact that the iterates [®]™ of the matrix of one such QMC
converges to |m)(er| when m goes to infinity [24], where

vec (Ix) ler,)

vec (Ik) |61k> 2 2
|el,?> = . = . eC™, ler,) == vec (I) € c*,

vec (Ix) ler,)

where |7) is the vector form of the limit density m of the QMC, I}, € My(C) is the identity matrix, and
(z| == |z)*. We also write |ery) only as |e;) for simplicity. We call Q := |m)(esr| the limit map associated with
the ergodic QMC ®.

The vec function also establishes a unitary equivalence between the Hilbert spaces My (C) and C** with
their inner products ( - | - )az, and (- |- )2 [25] by the fact that

(B| Ay, =Tr(B*A) = ZBiiinj = vec(B)* vec(A) = (vec(B) | vec(A))cn2, A, B € My,
(]
With this we have that for p; € My
Tr(pi) = <61k‘pi>’
and for p =3~ p; @ [§)(il,
Tr(p) = > Tr(p:) = > _(enlpi) = (erplp)-

Now that we have established these probability notions and how to do calculations involving QMCs using
matrices, we proceed to show a few results concerning generalized inverses for I — ®, where ® is a QMC, and a
quantum version of Hunter’s Formula for irreducible QMCs. The following theorem [Proposition 6.3, [24]] gives
us a g-inverse for I — [®]. For completeness, we present its proof.

Theorem 1.15. Let ® be an irreducible QMC on a finite graph with stationary density w. Let [t),|u) € C**
be such that (er|t) # 0 and (u|m) # 0. Then I — ® + |t)(u| is invertible and its inverse is a g-inverse of I — ®

Proof. We denote the adjugate matrix of B by adj(B), as defined in (A.0.1). And let us define A := adj({ — ®).
By Lemma [A.1] we have that det(X +|c)(r|) = det(X)~+ (r|adj(X)|c), for any vectors |c),|r). Then, because
I — @ is singular,

det(I — @ + [t)(u]) = (ulAJt). (1.4.2)

We also have by a property of the adjugate that A(I — ®) = (I — ®)A = 0, so A®P = A and PA = A.
Because @ has only 1 fixed point, the first equation tells us that every row of A is a fixed row-vector of ®, and
the second equation tells us that every column of A is a fixed column-vector of ®. We conclude A = ¢|r)(u| for
some c € C.

Because ® has only 1 fixed point, we have that I — ® has only 1 eigenvalue equal to zero, say A\; = 0,

therefore, by (A.0.3), we have that

Tr(adj(I — @) = [[ N #0,
i#1

so we can conclude ¢ # 0. Therefore det(I — ®) = c(u|m){er|t) =# 0.
Now note that

(I—®+ |ty u) "I —®+|t)u]) =1, (1.4.3)

and if we multiply it on the right by |7) then (I — ®)|7) = 0 and we will have

(I = @+ [t)ul) T ) (ulm) = |m) = (I = @+ [t){u]) 7'[t) =

(ulm)’
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Replace this in equation (1.4.3]) and we get

(I-®+t)u) T -®)=1— @%l.

Finally, we multiply it on the left by I — ® and use again the fact that (I — ®)|x) = 0, so we obtain
(I—®)I—®+t)(u)) '(I—-P)=1-2,

proving that (I — ® + [¢)(u|)~! is a g-inverse for I — ®.
O

From this follows the next two results, proven in [24], which provides a characterization for any possible
g-inverse of I — ®:

Corollary 1.16. Let ® be an irreducible QMC on a finite graph with stationary density w. Let |t) ,|u) € Cnk?
be such that (er|t) # 0 and (u|r) # 0. Then any g-inverse of I — ® can be written as:

G=(I—d+|t) )" +|m) (f] +9) (er]

where |f),|g) are arbitrary vectors.

Remark 1.17. In the next theorem, we use the notation (A)g to denote the block-diagonal version of a matriz
A € My;2(C). The blocks will be of size n, which is the number of sites of the QMC' considered. The notation
(- )a will be used throughout this work in theorems and examples.

Theorem 1.18. (Hunter’s formula for irreducible QMCs [24]) Let ® be an ergodic QMC on a finite
graph with n > 2 wvertices and k > 2 internal degrees of freedom, and let m be its stationary density and
Q its limit map. Let K = (K;;) denote the matriz of mean hitting time operators to vertices i = 1,...,n,
D = K; = diag(Ki1,...,Knn), G any g-inverse of I — ®, and let E denote the block matriz for which each
block equals the identity of order k*. (a) Then the mean hitting time for the walk to reach verter i, beginning
at vertex j with initial density p; is given by

7(p; ®15) = |1)) = Tr(Kijp;) = Tr ([D(QG —(QG)E+T—G+ GdE)L.ij). (1.4.4)

(b) By setting G = (I — ® + |u){er|)~* + |f){er|, with |f) arbitrary, and |u) such that (u|r) # 0, then we
have that for every vertex i and initial density p; on vertex j,

(o3 @ 1) > 1i) = Te(Kijpy) = Tr ([DU = G + GuB)]  p; )
1.5 Applying Hunter’s formula to any irreducible quantum channel

Here we consider quantum channels and we will be interested in the mean hitting time of reaching a certain
subspace. By associating a QMC to such channel, we will obtain a formula for the mean hitting times of the
channel using Hunter’s Mean Hitting Time Formula for discrete time QMCs.

A finite-dimensional quantum channel is a linear, completely positive, trace-preserving map 7' : M,,(C) —
M,,(C) on the space of order n complex matrices. Consider the space ., in which the matrices of M,,(C) act,
which in this case is simply C". For V' C J#, subspace, let P € M,(C) be the orthogonal projection onto V'
and Q = I,, — P. We define the operators P and Q on M,,(C) by PX = PXP and QX = QXQ, respectively,
for X € M,,(C). These operators are also orthogonal projections, but they act on M, (C).

For instance, we can take ¥ to be any pure state (i.e., a unit vector on C), so that V' is the 1-dimensional
subspace spanned by %, which implies that P = [¢)(¢)].
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If we take ¢ € S, as an initial state, and V as the arrival subspace, we are interested in obtaining 7(¢ — V),
the expected time of first visit to subspace V given that we start in the state ¢. We denote by m,.(¢ — V') the
probability of reaching subspace V', starting at ¢, in exactly r steps, given by

(¢ = V) = Te(PT(QT)" ' py),

where py = |¢)(¢| is the pure state density matrix associated with the state ¢. If the probability of ever reaching
V starting from ¢, 7(¢p = V) =" o, m.(¢ = V), is 1, then we have the mean hitting time given by

(o= V)= _rr(¢—V)=> rTr(PT(QT) " py). (1.5.1)

We could as well substitute P = I — Q in the expression above, since both operators will give the same trace.
In case (¢ — V) < 1, then 7(¢p = V) = 0.

Now we form a new map A = Apy dependent on both the quantum channel 7" and the arrival subspace V/,
given by a 2 X 2 matrix of operators (in the same way as in |1.3.2)):

A:[ﬁ; ﬁ;ﬂ:{”&@f U&?ﬂ (15.2)

where each A;; is an operator on M, (C) defined on the right hand side. Another way of stating this is by
defining the map

Xi A Xi| _ [An(Xy) +Ap(Xa)| _ [T - Q)T (X1 + X2)

Xo Xo Ao1(X1) + A2 (X2) QT (X1 + X2) ’
where X, Xo € M,,(C). Note that

(I - QT (X1 +X2)]) _
" <[ QT+ X) D = Tr((I - QT (X + X»)) + T(QT(X1 + X2))

= Tr(T(X; + X3)) = Tr(X; + X3) = Tr (Eﬂ) : (1.5.3)

hence we see that A preserves trace.
We can think of the sites on which A acts as being states relative to the arrival subspace V in the first
component, and the states in the orthogonal complement V' in the second component.

Let us consider an initial state ¢ € V1 orthogonal to the final subspace. What is the mean hitting time of
reaching site 1 given that we start with density py = |¢)(¢| concentrated in site 27 In the notation of QMCs
that we are using, this quantity is 7(py ® |2) — |1)). Before proceeding, let P1, Py be the projectors such that

Xi| _ | Xa X |0
P ) = [o] )[R
and let Q; = I — P;, i = 1,2, acting on this space of the form C? ® M, (C) (the subindexes distinguish them

from the previous projectors P and Q defined on M,,(C)). By the definition of mean hitting time for QMCs, we
have

T(ps ©[2) = (1)) := Y r Te(PLA(Q1A) " p)
= i 7 Tr(Py APy (PoAPy) ™ 1Py p)

r>1

= > rTr(Aiahgy o) = D r I~ QT(QL)py)

r>1 r>1

= rTr(PT(QT)" 'py), (1.5.4)

r>1

and this shows, by comparing with (1.5.1) that 7(pgs ® |2) — |1)) = 7(¢ — V), which is the mean hitting time
for the quantum channel, provided the condition 7(¢ — V) = 1.

We summarize this in the following;:
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Lemma 1.19. Let T : M,(C) — M,(C) be a quantum channel, V. C C™ a subspace, and let |¢) be a state
in V+ and po = |0)(¢|. Let P be the orthogonal projector onto V and Q = I — P, and define the operator
Q:=Q-Q. Let A=Ay be defined as in . We have

a) A is a positive, trace-preserving map.
b) If T is irreducible, then A is irreducible, and if 7 is the stationary state of T, then
(I-Q)m
Qnm

18 the stationary state of A.

¢) The mean hitting time for T to reach subspace V starting from a state ¢ € V* is the same as the mean
hitting time for A starting at site |2) with initial density py to reach state |1).

Proof. Ttem a) follows from ((1.5.3) that A is trace preserving. Item c) follows from (1.5.4]). To prove item b),

consider a general density
f1
p2|’
and suppose it is stationary for A. Then we have
{(I —QT (- @)T} M _ M
QT Qr P2 p2
I -Q)T(p1 + pz)] _ {m}
QT'(p1 + p2) P2’
If we add the two equations above, we obtain T'(p1 + p2) = p1 + p2, hence p; + p2 = B for some scalar 3.

Taking the trace, we have 1 = Tr(ps + p2) = S Tr(7w) = 8. So p1 + p2 = 7. Because (I — Q)T (p1 + p2) = p1, we
deduce (I — Q)Tw = (I — Q)w = py. Similarly, from QT'(p1 + p2) = p2 we see that Qm = po.

=

The operator A can be seen as a positive map on Z;(V @ V1), and as we have just seen, the only fixed

density of A will be
P _ (I —Q)r
P2 Qn ’

where 7 is the fixed density of T'. To see that this state is faithful, consider, for 0 £ v € V:
(vlprv) = (v|(I = Q)mv) = (v|Tv) — (Qu|TQv) = (v|mv) >0,
and also for 0 # u € V*:
(u]pau) = (u|Qru) = (Qu|rQu) = (u|7Tu) > 0.

The strictly greater than zero inequalities follow because 7 is a faithful state, since T is irreducible. Hence, the
only invariant state for A is faithful, and it follows from Theorem that A is irreducible.

O

Now we can then apply Theorem to the QMC A = A7y to obtain the the mean hitting time for the
quantum channel T'. This can be stated as follows:

Theorem 1.20. Let T be an irreducible completely positive quantum channel on M, (C) with, V C 4, a
and ¢ € V*. Let A be the T,V -dependent QMC' associated with the channel, with stationary density ™ and
limit map Q. Let K = (K;;) denote the matriz of mean hitting time operators of A for vertices i = 1,2,
D = K, = diag(K11, Ka2), let G be any g-inverse of I — A and E be the block matriz where each block is the
identity of order n?. (a) The mean hitting time for the state ¢ to reach subspace V starting from ¢, under the
action of T, is given by

(¢ = V) =Tr ([D(QG — (QG)4E + I — G+ GaE))],,ps)-
(b) By setting G = (I — A+ |u){er|)~' +|f){er| with arbitrary |f), and |u) such that (u|r) # 0, then we have
(¢ = V) =Tr ([D(I - G+ GiE)],,ps)- (1.5.5)
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1.5.1 Example

Let us apply the results above to a specific example. Consider the quantum channel T' acting on M (C) given
by T(X) = AXA* + BXB*, where A and B are 2 X 2 matrices given by

111 1 111 0
=G5l o) 2= A )
It is easy to check that A* A+ B*B = I, so the map is trace preserving and unital (i.e., it is identity-preserving).

By the definition given by T', it is a completely positive map, therefore positive. So T" is a quantum channel.
The matrix representation of the channel is given by [T] = A® A+ B® B,

2 1 1 1
1(-1 2 0 1
m_é -1 0 2 1
1 -1 -1 2

We can check that dimker([T] — I4) = 1, so the channel is irreducible since T' is unital. Now we choose two
orthogonal states ¢, € % = C?,

o=l vl

and define the orthogonal projector matrices in Ms(C)

111 1 111 -1
p=wwi=3f 1] e=me-34
With these, the orthogonal projector maps in Mz(C), P = P - P and Q = @Q - @ have matrix representations
[P]=P®Pand [Q =Q®Q:

1 1 -1 -1 1
1 1|{-1 1 1 -1
1| (Q]_Z -1 1 1 -1
1 1 -1 -1 1

[P = 3

— = e
— e
— =

The matrix representation of the mean hitting time operator for T' can be calculated by [K] = [T](I4 —
[Q][T])72, and it gives us

39 —12 —-12 9
1|-72 32 28 -—12
61-72 28 32 -12

177 —72 -T2 39

(K] =

With this, we can calculate 7(¢ — V'), where V = span{¢)} C C2, and py = |¢)(¢|=Q. We have
T(p—=V)=Te(I — Q)Kpy) = 6. (1.5.6)

Now we turn to the use of Hunter’s formula for mean hitting times to obtain the result above. First we
define the QMC A = Ap v via equation (1.5.2), whose matrix representation is

3 6 6 3 3 6 6 3

1 6 —2 5 1 6 —2 5

1 -2 6 5 1 -2 6 5

A= [T [Q)ITT (L-[@T] _ 1|1 -2 -2 7 -1 -2 -2 7
[Q][T] [Q][T] 25 -2 -2 1 5 -2 —2 1

-5 2 2 -1 =5 2 2 -1
-5 2 2 -1 -5 2 2 -1
5 -2 =2 1 5 -2 =2 1
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This QMC is irreducible and its only stationary density is

|7r>:i[1 1111 -1 -1 1]

T

Let Py, IP5 be the projector matrices

_|1s O 100
Pi= {0 0}’ o= {0 Lj’
and Q; = Is — P;, i = 1,2. We can calculate K4 = D, the diagonal of the mean hitting time operator for the
QMC A and obtain

[—51 24 24 -9 0 0 0 O
8 -4 -8 6 0 0 0 O
8 -8 —4 6 0 00 O
D 118 -3 -3 21 0 0 0 O
6| 0 0 0 0 3 00 9
0 0 0 0 -3 00 -9
0 0 0 0 -3 0 0 -9
0 0 0 0 3 00 9]
We choose two arbitrary vectors |u), |f) € C8, say
T

lwy=1f)=[1 0 0 0 0 0 0 0],

so we can define a generalized inverse G for I — A as G = (I — A + |[u){e;|)™! + | f)(er]. In order for G to exist,
we need to check that (u|m) # 0, and in our case (u|m) = 1/4, so the condition is satisfied. Calculating G by
this definition, we obtain

2 2 2 2 =2 2 2 2 5 2 2 5 0 00 0
1 8 -4 3 1 4 -4 3 1 8 -4 3 0 00 0
1 -4 8 3 1 -4 4 3 1 -4 8 3 0 0 0 0
G:11—2—251—2—21 :>Gd:*1_2_250000
411 0 0 -1 5 0 0 -1 0 0 0 0 5 00 -1
-1 0 0 1 -1 4 0 1 0 0 0 0 -1 40 1
-1 0 o0 1 -1 0 4 1 0 0 0 0 -1 04 1
|10 0 -1 1 0 0 3] o 0 0 0 1 0 0 3]
The last ingredient we needed for Theorem [[.20]is the matrix F, which in our case is
[1 0 0 01 0 0 O]
01000100
001 00010
o 0001 0O0O0°1
100 010 0O
01000100
001 00O0T10
000100 0 1]
Finally, by Theorem and with the specific form used for G, we fall under the hypothesis of item (b) of

that theorem, so we can use formula (1.5.5)). It gives us
T(p=>V)=Tr ([D(I -G+ GdE)] 12p¢,)
—51 24 24 -9 1/2

s -4 =8 6| [—1/2
=G ls =8 —4 6| |-1/2
87 —36 -36 21 1/2
-9
3
=T || 5| [=—9+15=6
15
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And that is in fact the same result we obtained above in (1.5.6), as expected.
1.6 Beyond the irreducible case

First, we take a brief detour on randomizations of quantum channels. This discussion will motivate certain
questions which, on their turn, will lead us to hitting time results concerning non-irreducible channels.

1.6.1 A digression: randomizations

Let us recall an interesting result due to Burgarth et al. [9]. We recall the notion of ergodicity used by them,
which is slightly different from the one used in this thesis. Nevertheless, we will consider their result under the
assumption that the channel is irreducible, so that the result below can be immediately employed.

Definition 1.21. A channel M is said to be ergodic (following [J]) if there exists a unique state p. € S(H)
such that Mp, = px.

Theorem 1.22. Let M and M’ two channels, and let M be ergodic. Then for all p € (0,1] the channel
My, = pM+ (1 - pM’

is also ergodic. Moreover, denoting by p. and p. p the fized states of M and M, respectively, then
Pep = Tpps + (1 —mp)0p

for some probability m, € (0,1] and some state o, € S(H).

With this fact in mind, let us examine some examples, having in mind some of the previous results of hitting
times and generalized inverses.

Example 1.23. As an example, consider the matrices

L [0 =i o L oo o L fo o
Ji=—1i 0 0|, Jh=—021|0 0 —i|, Js5=—|0 0 0
V2o 0 o0 V2o i 0 V2 (i 0 o

and the unitary matrixc

1/2  V3/6  6/3
U= |V3/2 -1/6 —2/3
0 2v2/3 —1/3

With these matrices we can define two different quantum channels,

3
[(I)-‘ = Z Ji ® ji7 and ’VM/‘I =U® U.

i=1

With these definitions, we have that M’ is unitary, and we can also verify that ® is irreducible. Now let us
define the randomization

[(Mp] =p[®]+ (1 -p)[M'], pe(0,1].

By what was discussed above, [M,] is an irreducible channel for every p in the prescribed range. Moreover,
we have that

o = O
— o O
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s the unique invariant faithful state of the quantum channel ®, and it happens in this case to be the unique
faithful state of M,, for every p € (0, 1], since being m a multiple of the identity, it is invariant under M’ because
Mr=UrU* =aUU* =n. So Mym=pPrn+ (1 —p)M'r=pr+ (1 —p)m =m.

We choose two orthogonal states,

o)=[0 o 17, [y=[1 0o o,

and consider ¢ as initial state and V = span{v} as the arrival subspace. The calculations of the mean hitting
times will be with respect to these states. We have that the limit matriz for My, is Q = |m)(er,|, with which we
can calculate the fundamental matrix for M, defined by

Zy = (I - [M,]+9)7".

Defining the projectors [P] = P ® P, where P := |¢)(¢| and [Q] = Q ® Q where Q := I — P, we can
calculate the mean hitting time operator K, of the channel M,,

[KH = (Mp] (I - [Q1 [MPD_Qy

and from it obtain

[(EKp)ul = (I = [QD[E, (T = [Q]).

We also calculate

[(Zp)ul = (I = [QND[Z,1(I - [Q]) and [(Zp)2] = (I - [Q])[Z,][Q].
Now we can then apply [Thm. 4.3, [25]] to obtain

70+ V) =T (1)1 ([Eulos) = [Zloe) )

1 /2p*+11p+41
3\ 2p2—-p+8 )
If we take the limit to p — 0, we obtain

41
li —V)=—.
limy (¢ = V) =55

This should be interpreted as the limit of the expected time of first visit to the subspace V' when starting at
¢ of the channel M,, when p goes to zero. Note that when p goes to zero, then M, — M, a unitary channel,
and hence not irreducible.

It can be verified that this result in fact agrees with the one obtained when we calculate T(¢p — V') directly
for the quantum channel M’. We can simply calculate the mean hitting time map

K=MI-QM' )2,
and then use the fact that 7(¢p — V) = Tr(PKpy) and this expression indeed gives 41/24.

However, if we try to take the limit of Z, asp — 0, we will find that the fundamental matriz does not behave
well. For example the first entry of the matriz [Z,] is

1 <3p3 —5p% +19p + 4)
9 (P =2p+4)p )’

which goes to infinity when p goes to zero. In fact in this example all the entries of the fundamental matriz
diverge in the limit p — 0.
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Next, instead of using the fundamental matriz, we can define a QMC A, = Apq,,v dependent on the ran-
domization My, and the arrival subspace V' and find a generalized inverse for this QMC and then use Theorem
[1220, This is a different way of calculating the mean hitting time in our example, and we can subsequently see
how it behaves on the limit when the randomization tends to the unitary case.

So let

(A, = (I-[Q)[Mp] (I-T1Q])[M,]
Al B 177 R 17

Let |u) € C'® be the vector with first component equal to 1 and the remaining equal to zero. We have that
(ulr) =1/3 #0, a condition that will have to be verified next. Also define |f) € C'® as the vector with only the
274 and 18" entries equal to 1, say, and the remaining ones zero.

Now let the g-inverse for I — [A], be

G = (I-[Alp+[u)eszl) ™ + /) esl,

and let G4 be its block diagonal version. Note here that G = G, is dependent on the parameter p because A
depends on p. We have that G, exists for every p > 0 because the randomization M, is irreducible for p > 0,
thus, for these values of p, Ay is irreducible, which is a sufficient condition for the existence of the g-inverse
as defined above. However, in this example, G, does not exist for p = 0. For example, we have that the entry

(2,2) of G=G) is

1 ( Pt 4 49p3 — T4p? — 204p + 336)

27 \ (p® — 2p + 4)(7p> — 18p + 12)p

which goes to infinity as p — 0.

Define

o I
B [Ig IJ,

and let [K| be the matriz of the mean hitting time operator for the QMC A, and let D := [K|4 be the block
diagonal of this matriz. By Theorem item (b), we have

(¢ — V) ="Tr ([D(I — G+ GdE)} 12,04,),
and by a routine calculation, this expression gives
1 /2p2 +11p+41
3 2p2 —p+8 ’

which is the same expression found before using the fundamental matriz of the randomization, and therefore it
will obviously result in the same limit % when p — 0.

However, let us consider the matriz expression in the formula above for 7(¢p — V) and call it the Hunter
Kernel, or H, i.e.,
H = [D(I G+ GdE)]
As it happens with G, H = H,, is also a function of p. A perhaps remarkable fact is that, although limy,_,o Gy
does not exist, the limit Hy := lim,_,o H,, exists.
If we now use this limit to calculate (¢ — V'), we obtain

41

TT((H0)12P¢) = 2%

as expected. We can verify that the matriz A := I — [A] has index 1, therefore by [Thm. 7.6.1, [12]], we can
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calculate the Drazin Inverse of A via the limit

AP = 1im (A" + 217 AL

z—0

for every integer | > Ind(A) = 1. In particular, we can calculate it by taking l = 1 and obtain

AP = 1lim (A? + 21) A

z—0

Because the index of A is 1, [Thm. 7.2.4, [12]] tells us that AP is a g-inverse of A =1 — [A],. Therefore we
can use AP in place of G to calculate Hunter’s kernel:

H:=D(I - AP — (AP)4E).

Despite AP being different from G, we have that H = H. The Hunter kernels using these two different
generalized inverses are the same.

As happened with G, AP does not have a limit at p — 0. In fact, the entry (1,1) of AP is

p?+Tp+4
9p (p* —2p+4)’

which diverges when p goes to zero.

Instead of working with the limit p — 0, we could set directly p = 0 and consider Ay, the QMC obtained
from the unitary quantum channel M'. This QMC is not irreducible anymore, but the index of I — [Ag] is 1,
so there is a group inverse B for I — [Ag] that we can calculate algebraically.

If we now apply Hunter’s formula and calculate

Tr ([D(I ~B+ BdE)] 12p¢>,

we obtain the expected result 41/24.

Example 1.24. Consider the matrices

B 351 0 Vs [0 1] s [0 i _Vs[1oo
Al* 14|:0 1:|7 A22|:1 0_7 A32|: :|7 A3|: :|a

with 0 < s < 1, and the unitary matriz

Let the quantum channels [®] and [M'] be defined by

4
(@] =) Ai®4; and [M]=UcT.
=1

Now we define the randomization
[(Mp] =p[®] + (1 -p)[MT], O0<p<L

The channel ® is irreducible and has as only fized state

1010

It is easy to see that this state is also the fized state of M, for all p € (0,1] by direct calculation:
Mpm = por + (1 —pM'm = pr + (1 — p)UnU* = pr+ (1 — p)nUU* = pr+ (1 —p)m = 7. And by

25



CHAPTER 1. DISCRETE-TIME QMCS
1.6. BEYOND THE IRREDUCIBLE CASE

Theorem M, is ergodic for 0 < p <1, so 7 is the only fized point of M.

Let us choose two orthogonal states in € = C2%, ¢ = [1 O]T and ¢ = [0 I]T. We will consider the
mean hitting times with ¢ as initial state and V' = span{¢} as the arrival subspace. We define the projectors
[P] = PP and [Q] = Q®Q where P := [1){(¢)| and Q = I — P. With that, we can define an OQW dependent
on the randomized quantum channel M,, and the arrival subspace V,

] = [ [QDIM,T (2= [QD[M,]
! Q[My] Q[M,].

Consider the vectors from C®
ty=[1 0 0 0 0 0 0 0,
ify=[0 1 000 0 0 1],
ey =[1 0 0 1 10 0 1],

where |u) and |f) are chosen arbitrarily. With these, we can define the matriz

G = (T[] +[6)es) ™ + ) lessl,

noted that (er|t) and (u|w) are not zero and A, is irreducible. These conditions, by Corollary [1.16, guarantee
that the matriz G = G, defined above exists and is a g-inverse for I — [A,]. The matric G = G, will exist for
0 < p <1, however its limit when p — 0 will not exist. For instance, the entry (2,2) of G is

2p% — 3p%s — 4dp + 4p?s? + 3ps + 2
4(p?s2 —p?s+p? —2p+ps+1)ps’

which diverges when p goes to zero.

Now we define the matriz

s Ly
e=[i 1)

and the block diagonal matric D = D, of the mean hitting time operator for [A,]. So we can define the
p-dependent Hunter Kernel

H = [D(I - G+ GyFE)].

By Theorem equation (m), we have that the time to reach subspace V' starting in state ¢ with our
randomization channel M, is

T(Qb — V) =Tr (H12p¢)
4
_ (1.6.1)
—-p+2ps+1
where py = |P)(¢|. We can see by the expression above that the mean hitting time exists and so does its limit
when p — 0. This is consistent with direct calculation for the unitary channel M': if we compute

M1 - [QITMT) ™
2 V3 V3 4
-3 -3 -4 43
-3 -4 -3 43|’
4 43 43 12

then (¢ — V) = Tr (Kupy) = 4. And this is the same when we take the limit p — 0 of .

KUZ
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Despite the limit G, not existing when p goes to zero, we find that the Hunter Kernel has a limit Hy =
lim, 0 Hp, and in this case it is

[ V3 V3 4 2 V3 V3 4 ]

2
-3 -3 -4 -4y/3 -V3 -3 -4 —4V3
-3 -4 -3 —4/3 -3 -4 -3 —4V3
= | O 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0o |’
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
[ 1 —3V3 —3v3 2 L —3v3 —3v3 2 |

and it will give us T(¢p — V) =Tr ((H0)12p¢) = 4.

Now we consider A = I — [A,], and calculate its Drazin inverse AP, which we know by Theorem that
it is also a group inverse, and hence a g-inverse.
We can calculate the Hunter Kernel with it

H=D(I- AP+ (AP)4E),

and although we can verify that AP is different from G calculated previously, we have that H = H, the Hunter
Kernels are equal. So of course we will have the same 7(¢ — V) found in if we use H. And as happened
with G, AP also diverges when p — 0. In fact, the entry (2,2) of AP is the same as that of G, which we have
shown to be divergent.

We finish this example by setting p = 0 on A,, and by calculating (¢ — V) for the unitary channel M’
with the OQW Ag via the Drazin Inverse. Let B=1— [Ag]. We then obtain

(1 V3 -3 -1 -3 —V/3 -3 -1
V31 1 =3 V3 -3 1 =3
V3 o1 1 =3 V3 1 -3 -3
gp_L|0 0 0 4 0 0 0 0
410 0 0 0 4 0 0 0
0 0 0 0 0 4 0 0
0 0 0 0 0 0 4 0
-1 V3 V3 =3 -1 V3 V3 1 ]

We also calculate D for Aoy, and with it we can obtain the Hunter Kernel with H := D(I - BP + (BD)dE),

It turns out that H = Hy, i.c., it is the same as the limit p — 0 of the p-dependent Hunter Kernel we found
previously. So clearly it gives us (¢ — V) = Tr ((H)12p4) = 4.

1.6.2 Another hitting time formula: extending the irreducible case

Our brief look at randomizations of quantum channels in the previous section, together with the examples,
suggest a natural direction regarding hitting time formulae for unitary maps. Briefly, we have the following:
given a randomization of an irreducible channel, we have that generalized inverses for the dynamics always
exist. Then, by taking p — 0 we obtain the correct values for the hitting times. The proper (Hunter) kernel is
obtained and the limit of the trace calculation behaves as expected. On the other hand, the generalized inverses
themselves cannot be obtained via such limit in general, as the examples have clearly shown. Moreover, we have
also seen that by setting p = 0 directly, one obtains the proper hitting times by choosing the group inverse, but
that such inverse is not the limit of g-inverses of randomizations in general.

With all this in consideration, we ask the following natural question: is there a g-inverse that could be
obtained regardless of randomizations, and such that its existence is guaranteed even in the reducible case? We
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will present a positive answer to this, which is in fact given by the group inverse. Let us discuss this in more
general terms, also clarifying how the irreducibility assumption can be replaced by a weaker notion.

We state without proof a result that will be used next.

Theorem 1.25 (Trivial Jordan blocks for peripheral spectrum). Let T : My(C) — M4(C) be a trace-preserving
(or unital) positive linear map. If X is an eigenvalue of T with |\| = 1, then its geometric multiplicity equals its
algebraic multiplicity, i.e., all Jordan blocks for A are one-dimensional.

For a proof, we refer to [Proposition 6.2, [31]].

Theorem 1.26. For every positive, trace preserving map T on a finite dimensional Hilbert space, matriz A%
exists, where A=1—-T.

Proof. By Theorem the matrix [T'] has only one-dimensional Jordan blocks relative to the eigenvalue 1,
so its Jordan decomposition will have the form

[T] =X [I B} X1

where [ is an identity matrix of some dimension and B is a matrix with no eigenvalue equal to 1. It follows
that

A:I—[T]:X[O I_B]Xl = AQZX[O (I_B)Q}Xl.

Because B has no eigenvalues equal to 1, it follows that I — B is nonsmgular, and hence so is (I — B)?. By
Lemmam7 A.5] both A and A? have the same rank as I — B and (I — B)?, so Ind(A) < 1. Therefore, by Theorem
. the group inverse A# exists.

O

Now we state an important lemma, regarding a conditioning on the first step reasoning. The conditioning
reasoning below, in terms of the operator L, has been introduced in [23] in the context of OQWs.

Lemma 1.27. Let ® be a finite ergodic QMC, let K be its Hitting Time operator and D = diag(K11, ..., Kpn),
and define L := K — (K — D)®. Then for p; a density concentrated at site j, for all i, and ¢ € R, it holds that

Tr (Lyy(epy)) = Telep;) = c.
Proof. By a first-step conditioning reasoning, we can define

) (p:
kij(pj | X1 =1):=1+ky (z;(pj))

Tr(Pr5(pj))
Then for i # j,

M=

kij(pi) =Y kij(py | X0 = DB o (X1 =1) =D kijlp; | X1 =1)Tr (B1;(p;))
=1
‘ ®15(p;) (D (
: {1 * (Tr(‘blj(Pj)))] Tr (®(01))

o =Luales) o 25000 Ny (@,
+ ki (Tr(%(pj))> i;(p;)) +Z 1 (Tr %(p]))> Tr (D45(p;))-
l?f’L

1

[
MS

—_

If we rewrite the above without the trace terms, we are left with

k”(p]) =1+ Z kil(q)lj(pj))a
[
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which can be rearranged, and by multiplication of a constant ¢ € R, by linearity of the operators, it becomes

c= k”(pj) - Z kll(q)lj(p]))
[

Defining L := K — (K — D)®, where D = diag(K11, ..., K,,), then by taking the block (i, 7) of the operator L
and applying it on cp;, for a density p;, and taking the trace:

Tr (Lij(cp;)) = Tr [Kij(ep;) — [(K — D)®lij(cp)] = kij(ep;) — Y kij(ep;) = c.
I

O

Finally, we are ready to state our main result. For the following, we consider a QMC ® as defined in (1.5.2)),
a V-dependent QMC induced by a quantum channel T, without assuming 7" irreducible.

Theorem 1.28. Let ® = Ary be a QMC acting on two vertices, let P be the orthogonal projection onto the
first vertez, and let Q = I —P. Suppose that 1 does not belong to the spectrum of Q® and let p denote state in
the second vertex. Let A =1 — ® and let A# denote its group inverse. Then,

Tp— V)= n({pu —A* 4 Asz)} 12p>.

Remark 1.29. In [16], it is proven that if the dynamics is irreducible, then 1 does not belong to the spectrum
of Q®. This basic fact ensures the analyticity of the generating function G(z) = z(I — 2Q®)~! at z = 1 (recall
Sectionfor this notion), and so implies the finiteness of the mean hitting times for any initial state. This
provides a global condition that allows us to write hitting time formulae in terms of a kernel which is well-defined
for the entire space. As it becomes clear in the examples, there are reducible examples which also satisfy this
spectral condition, thus extending the previous results seen in the literature.

Proof. We start with the definition L := K — (K — D)®, where D = K, and rearrange it to obtain
K(I-®)=L-D%. (1.6.2)

Operator L is well-defined, due to the assumption that 1 does not belong to the spectrum of Q®, also see

Remark Now define A := I — ® and solve equation (1.6.2)) for K using the group inverse A% of A, which
we know exists, by Theorem [[.26] We use Proposition which affirms that equation (|1.6.2)) is consistent if

and only if
(L—D®)(I - A*A) =0 <= KA -A*A)=0.

But it is clear that the equation on the right is satisfied by the properties of A%, namely AA# A = A. So, we
have that the solution to (|1.6.2) is given by

K = (L — D®)A* + V(I — AAY), (1.6.3)

where V is an arbitrary matrix.
Note that the i-th row of the matrix I — AA¥ is (e;|(I — AA#), where |e;) is the i-th standard basis vector

of C2¥*. And the row vector (e;|(I — AA#) is a fixed point of ® to the left, because (e;|(I — AA#)(I — ®) =
{e;|(I — AA#)A = (e;|(A — AA# A) = 0, since AA# A = A. However, our matrix for ® has the form

Eﬁ ﬂ , (1.6.4)

where X and Y are k? x k? blocks. So if [(v1] (v2]] is a row vector where each (v;] is row vector of length k2,
we have, supposing it is a fixed point of ® to the right, that

ol fonll = (el onl) |5 ] = [0 X 4l (wr] + alY]
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in conclusion, (v1| = (va|. So every row of I — AA# will have the form [(v| (v|], and I — AA# will have the
same form as in (1.6.4). And it is easy to see that the same will apply to V(I — AA#), for any matrix V.
Because of these facts, if we define

g2 e
=i )

we will have (I — AA#),E = (I — AA#) and (V(I — AA#))dE = V(I — AA%).
We can define B := (V(I — AA#)) , and substitute V(I — AA#) = BE in to get:
K = (L — D®)A* + BE. (1.6.5)
We take the diagonal and obtain
D =Ky=(LA*); — D(®A¥)y+ B = B =D+ D(®A%),; — (LA™),.
Now we define W := L — D(I — AA#) and use it to eliminate L in the equation for B above, so we get:

B =D+ D(®A%); — (WA#)4 + (D(I — AA#)A%)
= D + D(®A#), — (WAH),. (1.6.6)

where one term was canceled because (I — AA#)A# = (I — A* A)A# = A% — A# AA# = 0. Substituting B

from (1.6.6) in (1.6.5), and eliminating L using W, we have
K= (W + D(I — AA#) — D@)A# + DE + D(®A# ) E — (WA#)4E
-D { _PA* 4 B+ (@A#)dE] + WA* — (WA#),4E, (1.6.7)

where again a term has vanished because (I — AA#)A# = 0.
Now consider H := (I — AA*),. We know HE = I — AA# | so

I—AA* =1 — A* + 9A* = HE,
and hence, taking the diagonal we obtain

I—(A%)q+ (94%)=H
—FE — (A#)4FE + (PA*),E = HE = [ — A% 4 ®A*

— — PA* 4 B4 (PA*)E =1 — A% + AT E. (1.6.8)
Subsituting ([1.6.8]) into (1.6.7]), we obtain
K=D [1 — A* 4 AjE] + WA# — (WA#),E. (1.6.9)

It remains to show that the Tr (WA#)lgp) and Tr ([(WA#)dE] up) are zero for any p.
Note that by multiplying (1.6.2)) on the right by any ®-invriant vector |p), we obtain L|p) = D|p), whence

Tr (Kulpr) = Tr ((Lp)1) = ZTT (Lijlpj)) = ZTT(PJ') (1.6.10)

where in the third equality the property of Lemma was used. Also, note that for any vector |p), the new
vector (I — AA#)|p) will be invariant by ®, with

S (1= A4%)lp),) =T (1 - A4%)]o))

= (er2,|(I = AA%)|p) = (ep2, Ip)
= Z<61k2 lpj) = ZTr(pj)- (1.6.11)
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If |p) is a vector concentrated at site m, i.e., if it is of the form
_ | 0
o=[o o 0]

>om (((1 = 44%)]p)),) = Tx (p) (1.6.12)

then equation (|1.6.11]) reduces to

Now we proceed to show that the terms involving W in (|1.6.9)) will have trace zero.

Tr (WA#)10p) = Tr (LA#)1p) = Tr (DI = AAF)A%), p)

[Tr (le m,.p) Ty (KH(I - AA#)lmAﬁT,pﬂ

=2
= [Tr (A?firp) Tr (Kn(l - AA#)lmAﬁrp)} (1.6.13)

where again the property of the operator I was used, and the index r can be either 1 or 2. Note that
(I = AA" )1 AT p = [(I = AAP) )],
where |p) is the vector with A% p concentrated at site m. So, for this choice of |p),
T (Kl — A4#)1, A%, p) = Tr (K [(T - 44%)]5)], )
= ([ - A4%)|o)] )
j
- (Aﬁrp>, (1.6.14)

where in the second equality we used equation ((1.6.10]), and in the last equality we used (1.6.12)). Inserting

back into we get
Tr ((WA#)h-p) = [Tr (Affm_p) Ty (Aﬁrpﬂ _o.

m

It is immediate from the above with r = 2 that Tr ((WA#)lgp) = 0. But also for » = 1 it gives us
Tr (((WA#)dE)12p) _" ((WA#)Hp) = 0.

Therefore, when we calculate Tr (K 12,0) using 1' the terms involving W vanish and the result follows.
O

Consider the general form of a g-inverse for an irreducible QMC ® with invariant state |x),

G=(I—2+t)(ul)™" +|m)(f] + lg)er] (1.6.15)

with (u|m) # 0 and (es|t) # 0. We could not use this method to find the group inverse for an irreducible ®.
But if ® is irreducible, we know that by varying the parameters |f) and |g), and possibly |u) and |t), we can
produce every g-inverse of I — ®, in particular, we can produce the g-inverse. So we can ask, for A := [ — @,
what choices of parameters will give us G' = A#. ‘

Corollary suggests the choice |u) = |e) and |f) = 0 in (1.6.15) in order to get G = A¥#, because with
this choice we could derive the same conclusion of Theorem [[.28] So, with

G=(I—-®+t)er)” " +lg){eil,
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we can try to adjust the other paramenters to obtain the properties AA#* = A# A and A% AA# = A#.
For the first one, the commutative property, we have G(I — ®) = (I — ®)G if and only if

_ e
I=|mer = 1= o5+ (= @)lg)erl,

which will be verified if we choose, for example, |t) = |7) and |g) = ¢ - |«), for some scalar c.
For the other property, we will have G(I — ®)G = G if and only if

|m) e
: =0
<6I|t> + (<€[|g>) |7r><61|
which will be verified if |¢t) = |7) and (e;|g) = —1.
It is easy to see that if we choose |t) = |7) and |g) = —|x), then these conditions will be fulfilled, and we

will have G written as
—1
G=(1-@+mel)  —Imel,

where we can recognize (2 = |r)(e;| and the fundamental matrix Z = (I — ® + Q)_l.

In conclusion, we have that if ® is an irreducible QMC, then the group inverse for A := I — ® is given by
Z — Q, a result analogous to what is known in the classical setting (see for example, Theorem 3.1, [2§]). In
addition, because of Corollary with G = A% we will have that if a walk starts with density p; concentrated
at site j, then the mean hitting time to hit site ¢ will be given by

w(p; ®13) = 1)) = Tr ([DU — A% + ALE] p;).

where E and D are as defined in the statement of that corollary.
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Chapter 2

Continuous-time QMCs

2.1 Continuous-time QMCs

This chapter serves as a complement to the theory discussed in Chapter 1. Here we illustrate how some of
the constructions translate naturally to the context of continuous semigroups, in analogy with what one has in
the classical theory of Markov chains. There is no intention of being comprehensive regarding the collection of
results presented here, as the main reasonings for the theorems are similar to the ones seen in the discrete-time
case.

2.1.1 Review on semigroups

We refer the reader to [3I] for more on this setting. An operator semigroup 7 on a Banach space B is a family
of bounded linear operators (73), t > 0 acting on B, such that

TiTs = Tyys, Vs,t €RT and Ty = I5.

If t — T; is continuous for the operator norm of B, then 7 is said to be uniformly continuous. This class
of semigroups is characterized by the following result:

Theorem 2.1. The following assertions are equivalent for a semigroup T on B:
1. T is uniformly continuous

2.There exists a bounded operator L on B such that

T, = e'*, for allt € RT.

Further, if these conditions are satisfied, then
L=1 1 (Ty — Ip)
T T Bk

The operator £ is called the generator of 7.

Definition 2.2. Let K be a Hilbert space. A Quantum Markov Semigroup (QMS) on the set of trace-class
operators Iy (K) is a semigroup T := (T%), t > 0 of completely positive trace-preserving maps acting on Z;(K).

When lim;_,¢ |73 — Id|| = 0, then 7 has a generator £ = lim;_, (73 — Id) /¢, which is a bounded operator
on Z;(K), called a Lindblad operator.

Regarding generators of completely positive semigroups, we recall the fundamental result due to Gorini,
Kossakowski, Sudarshan and Lindblad [I4] [27]:
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Theorem 2.3. A linear operator L : M, — M, is the generator of a completely positive dynamical semigroup
on M, if, and only if it can be written in the form

N2-1
Lp=—ilH,pl+ 5 > cij ([FipF}] + [Fip, 1),

ij=1
where H = H*, tr(H) =0, tr(F;) =0 e tr(F;'F}) = d; ;.

Remark 2.4. Regarding Lindblad generators, we remark the important useful fact that, given any quantum
channel ® the map ® — I is a valid generator, that is, e!®=1) t >0, is a completely positive semigroup [Lemma
1.1, [31)]]. Motivated by this, in this work we will consider generators of the form

L=\ - 1),

where ® is a quantum channel and X > 0 is the transition rate of the walk.

2.1.2 Continuous-time QMCs

We consider a finite or countable set of vertices V' and then take the composite system
"=, (2.1.1)
icV
where each h; denotes a separable Hilbert space. The label ¢ € V is interpreted as being the position of the
walker and, when the walker is located at the vertex ¢ € V, its internal state is encoded in the space §;, describing

the internal degrees of freedom of the particle when it is sitting at site ¢ € V. Since we will be considering only
examples with h; = bh; for all 7,57 € V, we let h; = b for every i € V.

To define precisely the CTOQW, we recall that the set of density operators on K is denoted
S(K):={peLi(K),p>0,Tr(p) = 1}.

The set of block-diagonal density operators on H is denoted by

D= {pescm : p—zpi®|i><z'|}.

=%
This means that if p € D, then p; € Zy(h;), p; > 0 and ., Tr(p;) = 1.

Definition 2.5. Let V' be a finite or countably infinite set and H be a Hilbert space of the form A
Continuous-Time QMC (CTQMC) is an uniformly continuous QMS on I;(H) with Lindblad operator of the
form

L Il(H) — I1(H)

e 1

—i J,5i" _ = [ gi*g
poo =it + X (sins - {si"sl0}). (21.2)

i,jEV
where [A, B] := AB — BA is the commutator between A and B, {A, B} := AB 4 BA is the anti-commutator
between A and B, H is a bounded operators on H of the form H =3, .\, H; ®|i)(i|, H; is self-adjoint on b;, S}
is a bounded operator on H with ZMGV(SZQ)*SZJ converging in the strong sense. Consistently with our notation,
we write S? = R? @ |j)(i| for bounded operators R? € B(b;, ;).

Sometimes is called Lindblad Master Equation of the semigroup.

2.2 Hunter’s hitting time formula for CTQMCs

A useful identity follows from the fact that (I —®+ [t)(u|) = [t)(u| = I — (I — @+ [t){u|) "1 (I — ®). If we multiply
both sides on the right by |7) and noticing that (I — ®@)|7) = 0, we then have

=@ 4 ) ) ) = 1) = (1= @+ 1) (ul) " e) (] = 'a%'. (2.2.1)
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Similarly, if we multiply both sides of the equation |t)(u|(I — ® + [t)(u)™t =T — (I — ®)(I — ®[t)({u|)~* on the
left by (ey|, seeing that {e;|(I — ®) = 0, we have

erlyul(I— @+ ()™ = (o] = [T — @+ [ty ()~ = 28] (2.22)

Theorem 2.6. Let ® an irreducible QMC acting on a finite graph with n > 2 vertices and internal degree
k> 2, and let T be the semigroup given by

T=eM"Dt >0, A>0.

Let w be its stationary density and Q its limit map. Let K = (k;;) denote the matriz of mean hitting time
operators to vertices i = 1,....,n, D = Kgq = diag(k11, ..., knn), G be any g-inverse of I — ®, and let E denote
the block matriz for which each block equals the identity of order k2. (a) The mean hitting time for the walk to
reach vertex i, beginning at vertex j with initial density p;, is given by

Te(kijp;) = T ([D(QG — (UG)aE +1 = G + GaE)] ;1))
Proof. We begin with the definition L := K — (K — D)® so we can write K as
K(I-®)=L-D%.
By Corollary the above equation for K is consistent if, and only if, the following holds
(L-D®)G(I—-®)=L—-Dd <« (L-Dd)[I—-G(I-d)]=0.
Looking at the term in square brackets, and using the general form of G given by we have
1= GU—@) =T~ (1= @+ [t) (u]) (I~ @)~ ) (/] (1~ @)~ |g) (es] (1 — @)

_ mul B
= ) = [m{fI(I = @)

~ 1) (ks = (i - )

where we have used equation and the fact that (ey|(I — ®) = 0. We thus have that I — G(I — ®) is of the
form |m)(v| for some vector |v). So the consistency condition is equivalent to

(L - D®)|m) (o] = 0

which is satisfied because L — D® = K(I — ®) and (I — ®)|7) = 0.
Therefore the solution, by corollary [I.3] is

K=(L-D®)G+V({I—-(I—-2)G).
The term I — (I — ®)G can be simplified using the expression for general G in m

[—(I-®)G=1—(I-3)(I-3+[t)u])” —(—®)x)(f| — I —P)|g)les]

=l - @y
(= =)o) e
= [h)(er1] (2.2.3)

where we used the fact that (I — ®)|7) = 0 and the identity (2.2.2)), and |h) is some vector. Now we are left
with

K = (L — D®)G + V|h){er]
= (L — D®)G + |b){es].
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Define
B = (|b)(er])a

where (A)4, with A being a square matrix of order nk?, denotes maintaining only the diagonal k? x k? blocks
of the matrix A and making all other blocks equal to the null matrix. With this definition it follows that
BE = |b)(es|. With this, we then have
K =(L-D%)G+ BE. (2.2.4)
Taking the diagonal blocks on the equation for K, we are left with

D =Ky = [(L—D®)Gla+ (|b){e1])a
= (LG)g — (DP®G)q+ B
= (LG)q — D(®G)4 + B,

where we note that for any square matrices of order nk? A and D, where D is block diagonal, it is true that
(AD)g = AgD and (DA); = DAy. We can now solve the above equation for B to obtain

B =D+ D(®G)y — (LG)4. (2.2.5)
Now define
W =L — DQ.
Substituting this in equation to eliminate L, we get

B=D + D(®G)y — D(QG)q — (W)
= D[I + (‘I)G)d — (QG)d} - (WG)d

Now if we substitute the above expression for B in equation [2:2.4] as well substitute L by W + D) in [2:2.4]

then

K = (L - D®)G + BE
= (W + DQ—D®)G + (D[l + (2G)q — (UG)4] — (WG)a)E
= D[QG — ®G + E + (PG)4E — (UG)4E] + WG — (WG)4E (2.2.6)

For a simplification of this formula, we define, in the same manner we have defined B, the matrix H as
H := (|h){er])q, and we have as a consequence that HE = |h){e;|.
By equation we have that

I-G+9dG=HE,
and then, taking the block diagonal of the above, it follows that

I—Gd-i-((I)G)d:HEd:H[:H
— E— GuE+ (8Q)4E = HE = [ — G + 8G.

By rearranging terms we have
E+ (PG)gF — PG =1-G+ G4E,

and all the terms on the left-hand side of the above appear in the square brackets of Therefore substituting
it in [2.2.6] we obtain

K = D[QG — (QG)4E + I — G + G4E] + WG — (WG)4E.
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The theorem is proven if we can show that for an arbitrary density p; concentrated at a site j we have
Tr ([WG - (WG)dE]”pJ) =0. Indeed7

(er (WG)ijlps) = (er [[(L — DQ)Glijlps)
[(LG)ijlpj) — (er [(DQG)iz|p;)

n

(er.|LuGijlps) Z er|kiilmi) (er,|Guijlps)
1 I=1

elk‘Glj|pJ Z elk‘Glj|pJ
=1

Il |
- -
s HM: o
Ead
3

1

Il
=

)

where we used the fact that (er, |ki;|m;) = 1 due to|1.14] and that Tr(L;;p;) = Tr(p;) for all i, j =1,...,n and
all p; € My(C), by Lemma The same calculation for the second term with W gives us

(en|(WG)aE), lpj) = ler, (LG — DQG)aE) . |p;)
= ({en |(LG)aE)ijlpj) — (er (D(QG)aE)ijlp;s)
= (er, (LG)iiEijlpj) — <61k|kii(90)n‘Ez‘j\pg‘>

= (er,|LaGyjlp;) Z erlkii|mi)(er,|Gujlp;)

1 =1

n
(er,1Gslps) = > (en|Gijlos)
=1

3

I I

o =
gk
T

)

where we used the same results as before and the fact that E;; € M;2(C) is the identity matrix. Therefore,
we see that the terms WG — (WG)4FE are irrelevant when we apply it to a density and take the trace. This
completes the proof.

O

An immediate corollary of this Theorem is a shorter and simplified version of the Mean Hitting Time Formula
that can be obtained by selecting the g-inverse in some particular way.

Corollary 2.7. Under the conditions of Theorem by setting G = (I — ® + [t){er|)~ + |g)(er|, where |g)
is an arbitrary vector and |t) is a vector such that (er|t) # 0, then we have that the mean hitting time for the
walk to reach vertex i, beginning at vertex j with initial density p; is given by

Tr (Kzgpg) ="Tr ([D(I -G + GdE)}”p]) .
Proof. By the general form of the generalized inverse for I — @,

G = =@+ [t)(u)™" +[m){fl + lg){exl,

we choose |f) =0 and |u) = |es), so

QG = Q((I = @+ [t)er]) ™" + lg)er]) = |m)(er|(T — @ + [t){er]) ™" + |m)(er|g) ex]-

Note that from we have

(7 — @+ [y u)—t = L S 1~ )t = S
terlt) (edlt)
L (- @+ i = THEL Ty 0 gyt = TG
(er]t) lex]t)
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and substituting this last equation in the expression for QG we have

_|m) (e ey I ler = (L1 1. ) e | =
G = el + (erlg) - m){es] <<m>+< 19}) |7\ es| = BEY,

where 8 = (1/{er|t) + {(er|g)) is some complex number. Therefore,
(QG)4E = BUE = 5Q = QG,

where the second equality follows because all the block columns of € are equal, therefore when we take only
the diagonal terms with ()4 and multiply on the right by E, we restore the terms outside the diagonal that we
deleted. This can be made more precise if we take {|e;)} as the standard basis for C™, so we can express 2 and
FE as

n

V= Z |€i><€j| X |7ri><elk| n
iJTLl and F = Z lei) (ej] @ Iy,
Qg = Z lex) (er] @ [mi)(er, | "

=1
SO

n

QE =) le{erlen)(e;] @ Im)erllie = Y lei(ej] @ |mi)ler,| = .

i,41=1 ij=1

This establishes that the first terms QG — (2G)4E in the expression of Theorem cancel each other
because they are equal, and the proof is complete.

O

2.2.1 Example
We define an OQW on 3 sites and 2 degrees of freedom: let R and L be given by

1 1 1] 10 0
R_ﬁ 0 0- and L_\/i|:]_ _1:|,
and let [R] = R® R and [L] = L® L. Let
[0 [L] I/2
=112 o 12|,
1/2 [R] ©

where I and 0 are respectively the 4 x 4 identity matrix and zero matrix. To this OQW we can associate a
CTOQW by defining a Lindbladian generator £ as

AL A[L] AL/2
L=|M/2 M AI/2
A/2 A[R] —AI

with A > 0 a real constant.

In order to calculate the mean hitting time 7;;(p) to go from a site j to another site ¢ (i # j), starting with
initial density p concentrated at site j, we consider the modified generator L; that turns the state ¢ into an
absorbing state. In this example, we get

0 A[L] /2 AL 0 AI/2 —AI A[L] 0
Li={0 =M AI/2|, Ly= [\/2 0 M/2|, Ly= |[AI/2 M 0
0 AR] -M A/2 0 —AI AI/2 A[R] 0
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by simply substituting the i-th block column of L by zeroes.

Let us calculate in particular the mean hitting time on state 1, given that we start in state 2 with density
p2- The time of occupation in state 2 given that it starts in state 2 with density ps, until it reaches state 1 is
given by:

oo o0
EQ,pz(nQ):/O Pg,pz(xtzmdt:/o Tr [Poe'™ 1 Pop)dt

where n; is the time spent in state j:

oo
n; = / 1Xt=jdt
0

and p is used to denote

The P; are the projectors on site i:
I 00 0 0O 0 0O
P,=(0 0 Of, P,=|0 I 0|, P3=|0 0 O
0 0O 0 0O 0 0 I
In this case, it is easy to see that Pop = p because p is already concentrated at site 2.

Similarly, the time of occupation in state 3 given that the system starts in state 2 with density ps, until it
is absorbed in state 1 is

Es p,(n3) = / Tr [PgetLllP’gp] dt.
0

If we sum these two quantities, we obtain the mean hitting time 712(p):

T12(p) = Ea,p, (n2) + E2 p, (n3) = /0 Tr [(Py + P3)e " Popl dt = /0 Tr [Qie'™ ' Pyp)| dt (2.2.7)

where Q; :=1 — P,.
Doing the computation with
P11

Py = Z;? (2.2.8)

1—pn1

we obtain

9 _ —
m12(p) = # (2.2.9)

Now we proceed to compute this same quantity but using Theorem In order to do this, we first need to
find the diagonal blocks of the mean hitting time operator.

Define
D1i(p;
Tij(pj [ Y1 =1) = A+ 7 (Tr [gz(‘(g')]> 7
3\Pj

which can be interpreted as: the average time to reach a state ¢ starting from j with p;, given that the next
step of the system will be to state [, all this equals 1/X (the time taken to jump out of j) plus the average time
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to reach i given that we start at [ with density p; = ®;;(p;)/ Tt [®1;(p;)]. And let us denote 7;(p;) the time of
first return to site i given that we start at this site with state p; concentrated at it. Then we have

7i(pi) =D 7ij(ps | Yo =1)- Tr [®1;(p;)]

=y
- I Di5(p;) o (D1 (o
- zl: (A + il (Tr [@15(p))] )) Tr [@1500)]
1]

_1 o 250D N o
7 zl: . (“ [%(m)]) o [utes)] (22.10)
I#35

Note that >, Tr [®1;(pj)] = 1 because we have ®;; = 0 for all j.

To calculate the 7;;, recall that we deduced in this example (equation ) that 72 = fooo Tr [QletLl]P’g} dt.
This result can be generalized as

Tii (p5) :/0 Tr [QietLiIP’jp] dt.
With this in hand we thus have
71(Pi5(pj)) = /O Tr [Qje'™ P (p)] dt.

plugging this back into equation 2:2.10] it gives us

7i(pi) = % + Z/wrﬁ [Qje ™ P1®(p)] dt

15 70

1 o v
=3 -|-/O Tr [Qje'™ Q;®(p)] dt.

We wish to find and operator K;; represented by a 4 x 4 matrix such that when you apply it to a state p;
concentrated at site j and take the trace, it returns us the value 7;(p;). For this purpose, we can rearrange the
above expression of 7; as

7i(pj) = Tr Kil?j +/0 Q;etliQ;® Py dt) p:|

where we note that multiplying p on the left by P; leaves it unaltered since p is already concentrated at site j.
Now the integrand, due to its rightmost term being IP;, will have only the j-th block column not null. Also, its
j-th block row will be null due to multiplication on the left by Q;. Consequently, the same will be true to the
integral. A schematic representation of what the matrix inside the paranthesis above will look like, for example
if j=2,1s

©c oo
X X X
oo

where each entry here represents a 4 x 4 block, and only the blocks in the 2-nd column are not necessarily
null. In order to concentrate all the information of the matrices whose only j-th block column is not null, we
introduce the matrices

O - O
O - O
|]
w
Il
- O
- o O
- o O
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If we take our matrix that has only the second block column not null and multiply it on the left by Sy, we
obtain a matrix whose only non zero block will be the block with coordinates (2,2). Additionally, when we
apply this resulting matrix on p, the trace remains unaltered. So we can write

1 e )
(Sj ()\PJ —|—/0 QjetLJQj(I)Pj dt)) p]] :
Wy

Therefore, by looking at the last part of this equation, we define

1 (9]
27

and these are the desired diagonal blocks of the mean hitting time operator we were looking for, i.e., such that
7;(p;) =Tr [ijpj]. The block diagonal of the mean hitting time operator is then

1 oo }
7i(p;) =Tr [(AJP’J» +/O Q,etliQ, oP; dt) p:| = Tr

Kyi 0 0
D=K;=|0 Ky 0
0 0 K

The concrete calculations in this example can be shown to be

20 0 0 2 1 1 1 3 3 3 3
I IR I
Ky = 0 ax 9 , Koo = A 1 , K33 = o (2.2.11)
0 0 & 0 0 0 L o0 00 &% 0
3 _3 ‘3 3 11 12 0 0 0 =
4N 4N 4N A A A A A 4N
Next, we define
ty=[ 00 0 --- 0 0]
and
(=111 .- 1 1].

These are two arbitrary vectors |t), |u) obeying the constraint that (er|t) # 0 and (u|m) # 0, required by [Prop.
6.3, [24]] in order for
G=(—+]t)(u)™

to exist. We thus have that G will be a generalized inverse for I — ®.
We now have in hands all the inputs necessary to use Theorem [2.6, Using p; in the form as we
calculate the Mean Hitting Time Formula and obtain

2 — p12— p2a1

T ([D(QG — (UG)aB +1 = G+ GaF) | ,p0) = —L2—L21,

showing that we obtain the same result as in [2.2.9]

2.3 Hitting time formula for CTQMCs in terms of the fundamental
matrix

We consider in this section another formula for mean hitting times. The results and definitions given here can
be found in [23].

Let us consider finite QMCs from the following set:
E:={®QMC |®" — Qasr —» o0}

where 2 = |7)(es|, with |7) being the stationary state of of ®, which is assumed to exist. We call the QMCs
belonging to the set £ ergodic. In other words, ® is said to be ergodic if its matrix converges to the limit €.
Note that it is immediate from the definition of €2 that

P0=00=0Q and O2=0.
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So consider the following calculation:

(@-q) = g (D)erarr—or ; (D)er-ar

r—1
r TN (_1y—-p — &7 _
® +Q;o("f>( 1) " — Q.

where in the last equality the Binomial Theorem was applied. Let us denote A := ® — Q. Then,

(T-—AI+A+ A4 A=A =T (d-Q)" =T—-D"+Q.

We can see by letting » — oo, that
(I—A)- <I+ZAT> =1,
r=1

sol —A=1-—®+4Q is invertible and its inverse is given by

(I—<I>+Q)_1:I+i(<1>—Q)T:I+i(<1>"—9).

With this we can now state the following

Definition 2.8. Let ® € £ be a finite QMC. The Matriz Z given by

Z;:I+§:(<I>T—Q):(I—q>+n)*1

r=1
is called the Fundamental Matrix of the QMC .

A few properties follow from the definition of fundamental matrix. Note that
I1I=ZI-2+Q)=Z{IT-9)+2ZQ

and multiplying both sides on the right by €2, we obtain
=0
—
Q=7Z1-0)Q+20% = ZQ.

Similarly, we can deduce that 2 = 2Z. From the previous equation, we then have that
Z(II-d)=1-2ZQ=1-9Q.
In like manner, we have also that (I — ®)Z = I — . We can summarize these properties as follows:
Lemma 2.9. Let ® € € be a finite QMC. Then its fundamental matriz Z satisfies:
a) ZQ=QZ =0
b)) ZU-®)=(I—-D)Z=1-1Q.

Note that € M,;2(C) can be written in blocks as Q = [|m;) (e, \]” If we apply it on a certain density
p = [lpi)], and take the trace, we have

n n

Tr(p) = S Tr (Q0),) = 2 Tr (Qupr) = 3 T (I er, o)) = Tr(p) - Ta(r) = Tr(p),

Jj=1 J,l=1 7l=1

showing us that € preserves the trace. This could also have been seen if €2 is a limit of an ergodic QMC, then
we could simply take the limit:

Q= lm " = Tr(Q)= li}m Tr(®"p) = Tr(p).

rT—00
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Another important property of Z that follows from its definition as a limit is that it is trace preserving, as
a consequence of ® and € being trace preserving: for any density p = >, .\, p; ® |7) (i,

oo

I+ (2" - Q)] p> =Tr(p) + Y _ [ Tr(2"p) — Te(Qp)] = Tr(p). (2.3.1)

r=1

Tr(Zp) = Tr (

Recall the operator L := K — (K — D)® defined in Lemma and define N := K — D, the matrix of the
non-diagonal block terms of the mean hitting time matrix. We have

Lemma 2.10. Let ® € & be a finite, irreducible QMC and let Z denote its fundamental matriz. Let K = (K;j)
be its mean hitting time operator and D = diag(Ki1,...,Kuy), L:= K — (K — D)®, N:= K — D. Then
Nij=(D2)y; — (DZ)ij + |(LZ)ij — (LZ)i|.
Proof. Rearrange the definition L = K — (K — D)® = N + D — N® to obtain
N(I-®)=L-D,
and multiply both sides on the right by Z so we obtain
N(I-®)Z=LZ—-DZ.

Apply the second item of Lemma (I —®)Z =1- 1, so our equation becomes

N(I-Q)=LZ-DZ = N=LZ—DZ+NQ.

Note that the (7, 7)-th block of N is

n n
(NQ)ij =Y Nafuy = > Nulm)(er,,
=1 =1

i.e., it does not depend on j. So we have (NQ);; = (NQ);; for all 4, j. So if we take any diagonal term of N in
the expression obtained above, together with the fact that the diagonal blocks of IV are zero, we have

0=N;y=(LZ)y—(DZ2)iy+(NQyy = (NQ)u=(D2)y— (LZ).
Finally, for i # j, with the observation about the blocks of N, we obtain
Nij = (LZ)ij = (DZ)ij + (NQ)is = (LZ)ij — (DZ)ij + (DZ)ii — (LZ)ii
= (DZ)si — (DZ)i; + |(LZ)i; — (LZ)i].
d

In Theorem [2.6] we considered a particular form of Lindbladian generator giving us a semigroup of the form
T = eM®=D_ X > 0, where ® is an irreducible QMC, and we used generalized inverses of I — ® to calculate
the mean hitting times for that semigroup. We can do something similar using the fundamental matrix of the
QMC . This is expressed in the following result that is presented in [23] in the context of OQWs.

Theorem 2.11. Let ® € £ be a finite irreducible QMC acting on n > 2 sites and k > 2 degrees of freedom,
and let Z be its fundamental matriz. Let T be the semigroup given by

T =MDt >0, X>0.

Let K be the mean hitting time operator matriz, let D = diag(Ki1, ..., Ku,) be its block diagonal and N :=
K — D. Then for every p density concentrated in one site and for all i,57 =1,2,...,n,

Tr(Nijp) = Tr ([(DZ)is — (DZ)i5] p)-
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Proof. We have that for all 4,5 =1,...,n,

LZ l]p ZTr ZlZl]p ZTr (lep)

0 0
Z1ip
Zajp ’ ’
=Tr .J =Te | Z-|p| | =T [p]| | =Tr(p)
Znjp 0 0

where we have used in the second equality the property of the operator L given by Lemma [I.27, and in the

second line we considered a vector that is zero except for the j-th position where it has density p, or in the

tensor product notation, p ® |j)(j|. Then we have used the trace preserving property of Z, equation m
Therefore the trace of (LZ);jp is the same for all ¢, j, and hence by Lemma

Tr (Nyjp) = Tr ([(DZ)”» —(DZ)i; + [(L2)i; — (LZ)iin> _ ({(DZ)“ - (DZ)Z»J},O).

2.3.1 Discussion: link between Theorems [2.6] and [2.11]

We can see that the fundamental matrix Z = (I —®+Q)~! is a particular case of a generalized inverse of [ —®
given by G = (I —®+|t)(u])~! with [t) = |7) and (u| = (e7]. So we can ask how are the two theorems connected.
This can be answered looking at Corollary 2.7, which is stated in the context of QMCs (see also [Thm. 6.1, [24]]).

The fundamental matrix Z is a particular generalized inverse that falls under the conditions specified in
Corollary therefore we must have that the mean hitting time to reach vertex i from j with initial density
p; is as given by that corollary:

Tr (Kijp;) = Tr ([D(I -G+ GdE)]ijpj)
=Tr (Dl]p]) —Tr ((DZ)”pJ) + Tr ((D(ZdE))”pj> (232)

Note that

( ZdE Z Z Dll Zd lm mj — ZDlell

=1 m=1

= KiiZis = (DZ);,
so we can substitute this on equation and rearrange terms to obtain
Tr (szpj) —Tr (prj) =—-"Tr ((DZ)’LJPJ) + Tr ((DZ)”pj)
= Tr (K — D)ijp;) = Tr (Nijp;) = Tr ([(DZ)ii — (DZ)isp;),
which is exactly the formula given by Theorem [2.11

In conclusion, Theorem can be seen as a particular case of Theorem [2.6] even though their proofs
are different in that the former uses special properties of the fundamental matrix whereas the latter uses only
general properties of generalized inverses.

2.3.2 Example

We consider as in the example from Section the matrices R and L,

171 1 110 0
R=Jslo o] me =50 5]

44



CHAPTER 2. CONTINUOUS-TIME QMCS
2.3. HITTING TIME FORMULA FOR CTQMCS IN TERMS OF THE FUNDAMENTAL MATRIX

and the QMC @ in 3 sites and 2 degrees of freedom given by

0 [L] 1/2
o= |I/2 0 1/2|,
1/2 [R] ©

with [R] = R® R and [L] = L ® L. The Lindbladian generator of the one parameter semigroup will be
L=XP®—-1I), A>0. The matrices L; will be £ with its i-th block column substituted by zeroes, for i = 1,2, 3.

We have show in that example that if po is given by

P11
o P12
P2 P21 )

1—pn
then the mean hitting time to visit site 1 given that we start at site 2 with density po is (2.2.9)), that is,

2 —p12 — pa21
7'12(P> = -

Now we proceed to calculate T12(p2) using Theorem It can be shown that the stationary vector of ®
in this example is

m) m)=[3 0 0 3§
|y = [|m2) where |7r2>:[% 0 0 %] ,
) m) =[5 0 0 3"

with which we define the limit matrix Q = |m)(er»|. Then the fundamental matrix is given by
Z=(I-®+Q) ",

and together with the diagonal blocks of the operator K, which we showed in [2.2.11] we can compute the terms
in the formula of Theorem .17l and we obtain in this case

Coo
0o 2 0 0
(DZ)11 — (DZ)12 = A ;
00 2 0
1 103
0 -x —x 3
0
T12(p) = Tr (Nijp) = Tr ([(DZ2)11 — (DZ)12]p)
So0 ] 1o
_ 0 5 © 0 P12 B2
=Tr 0 0 % 0 o =Tr 3&21
0 DY _§ % 1— P11 _Pf)l\Z _ P% + 3(1—[’11)
_ 2 —p12 — p21
A b

and that is the result we expected.
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Chapter 3

Concluding Remarks and Further
Questions

We have seen in Section how we can define a positive trace-preserving map A from a quantum channel
and with it we deduced an analogous to Hunter’s Formula for any irreducible quantum channel.

Then, investigating what happens to irreducible quantum channels in the limit when they become reducible,
in the sense laid out in Subsection via randomizations, we have found that we can use the group inverse
to calculate mean hitting times for some examples of unitary channels, which are reducible. Finally, under the
assumption that 1 ¢ o(Q®) (see Remark [1.29)), we were able to state and prove Theorem which is a new
result that allows us to use generalized inverses to calculate mean hitting times of quantum channels without
the hypothesis of irreducibility. This is the main result of this work.

In this work, we were concerned mainly with mean hitting times, motivated by the classical reference of
Hunter [20]. However, Hunter has also examined the problem of higher moments of hitting times [2I]. One
could ask if it is possible to apply generalized inverses to obtain higher moments of hitting times in the quantum
setting. We have not investigated this question.

In Chapter [2] we have found an analogous to Hunter’s Formula for CTQMCs, presented in Theorem
where we have considered a particular form of Lindbladian generator. Can we find a similar formula for a more
general kind of semigroup generator in that context? This is a question we did investigate, but we did not find
a general answer so far. We believe this is an interesting research direction worth pursuing.
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Appendix

Here we prove some matrix identities that are used in the text. These identities are highlighted with boxes.
Let us start by fixing some notations.

We denote the space of m x n matrices with entries in the field F by F™*"  or equivalently by M,, ,(C). If
m = n, we write M, ,,(C) simply as M, (C) If A is a matrix, then AT denotes its transpose. Given a matrix
A € F™*™ and subsets Sy C {1,2,...,m} and Sy C {1,2,...,n}, we denote by As, s,) the |Si| x |S2| matrix
obtained by deleting from A its rows which are not listed in S; and deleting the columns of A which are not
listed in Sp. Here, |S| denotes the cardinality of the set S. We call As, s,) a submatrix of A. By convention,
A'is a submatrix of itself. In the case of one element subsets, we write simply Ay 151) = A, ), the (4, j)-entry

of A.

Similarly, we denote by A g s,y the (m —[S1|) X (n — |S2|) matrix obtained from A by deleting the rows
listed in S; and the columns listed in Sy. In this way, given a matrix A € M,(F), we define by Ay ;; as the
matrix in M, _1(F) given by A j := A({g}’{j}), i.e., the matrix obtained from A by deleting row ¢ and column
j.

With these notations, given A € M, (F) we define the adjugate matrix of A, denoted by adj A, or A4, as
the n X n matrix with entries given by

(A% gy = (=1)"F det A ;. (A.0.1)
We want to demonstrate the following:

Lemma A.l. For any matriz X € M,(F) and column vectors x,y € F, we have:

det(X + zy7) = det X + ¢y X2

Most of the notations used above are found in [5]. Consider the following:

Fact A.2. Let A€ M,(F), x,y € F™ be column vectors and a € F, with a # 0. Then,

Az _
det [yT 4 = adet(A —a tayT).

Proof. The identity below [Fact 2.16.2,[5]] is an immediate consequence of block matrix multiplication:

[A x} _ [ 1, a_lx} ) (A —atay” Onxl] _ [ I, Onxl}

y' a O1xn 1 O1xn a oyt 1

where the dimensions of the zero blocks and identities are indicated by subscripts. Therefore, the result follows

C
0 B}’ where A
and B are square matrices, have determinant equal to det A - det B (see for example, [equation (5-19), [19]] or
[equation (2.7.6), [B]]).

by the multiplicative property of the determinant, and the fact that matrices of the form {A
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O

We now calculate the determinant of {yT ﬂ in a different way, this time in terms of A4, proceeding

directly by Laplace’s Expansion Theorem [29], or cofactor expansion, given in the next fact.

Fact A.3. Let A€ M,(F), x,y € F™ be column vectors and a € F. Then,
A =z
det {yT a} =adet A —yT A%z

Proof. Denote by Ali] the n x (n — 1) matrix obtained by deleting column i from A and let [[A[i] ] be the
n X n matrix obtained by juxtaposing the column « to the right of A[i]. By computing the cofactor expansion
over the last row of the matrix, we have

det [ﬁ 2] _ i(_l)n—kl-ﬂ’yi det [[A[ﬂ x] +adet A. (A.0.2)

Noticing that [[A[z] m] can also be calculated using the cofactor expansion over the rightmost column, we
obtain:

n

det [[Ali] =] = Z(—l)””xjAb;z‘]

= Z(_l)j+n(_1)i+j(AA)(z‘,j)

=1
z+n A
= Z (A (4,9)»

where we have used definition (A.0.1) in the second equality. So substituting this into equation (A.0.2)), we

have:
A =z
det |:yT (1:|

n
(=D Y (1) (A% gy +adet A
Jj=1

|

@
Il
_

( 1)2n+2z+1 (AA)(i,j)xj +adetA

Il
:MS

1

)

yi(AY) 57y +adet A

=

= —yT A% + adet A.

<
<

I
J‘:M:

O
With these two identities at hand, it now becomes trivial to prove what we wanted.
Proof of Lemma[A.1l Using facts and with scalar a = —1, we have
—det(X 4+ 2y”) = —det X —yT X2
because both sides are equal to det [;g J’J , and the result follows.
O

Another result to be proven is that if a matrix A € M,,(C) has eigenvalues A1, ..., A, of which only \; =0,
then
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Tr(adj A) = ﬁ Y (A.0.3)

1=2

This comes from a relation between the symmetric functions of the eigenvalues of A,

st=Mt+XtAs+ -+ A,

Sg =AM+ MA3+ -+ A1 A,
(A.0.4)

Sp = )\1)\2)\3 tee )\n

and its principal subdeterminants, which are, by definition, the determinants of submatrices of A of the
form As sy, S C {1,2,...,n} obtained by selecting the same set of rows and columns of A. In this case, if
|S| = k, we say that det A(s sy is a k x k principal subdeterminant of A.

To establish relation , we start from the characteristic polynomial of A:

p(\) =det(A—A) = (=1)"\" + o A"+ da, A +ay, (A.0.5)
and obtain the coefficients a; through successive derivation with respect to A:

. p*(0) 1 d*det(A— \I)
n—k — =7

Kk d\k

, 0<k<n-1 (A.0.6)
A=0

On the other hand, if we derive a general determinant, supposing that the entries of a matrix B € M,,(C)
are functions of a variable ¢, say, B = (bij(t))ij we obtain:

ddetB d .
:;: = u (Z sgn(o) Hbi,a(i)>
o =1
d n
= zg: sgn(a)% 11;[1 bi,a(i)

= sen(0) Y (bj.0()) [[ bioe

j=1 i=1
! i#]

- Z ngn(g)(ba‘,o(j))/ H bi,o (i)
j=L| o i=1
i#j

= zn: det(B])

where B; denotes the matrix B, except its 4 row is replaced by its derivative with respect to .
Using the same reasoning as above, by successive derivation we obtain

m n n
dd(iiench = Z ce det(Bil,iz,A..,im)a (AO?)
i1=1 =1

where B;, ;,,...4,, denotes the matrix B with its row ¢; derived each time the index ¢; appears, possibly more
than once.

Now using this formula to calculate the derivatives of det(A — AI) with respect to A, notice first that the
derivative of the j-th row of A — A\l with respect to \ is —e;fp (—1 in the j-th component and zero otherwise).
So if n = 4 for example, we have

ain — A a2 ais a14
0 -1 0 0
(A=AD2=| .
31 az2 ass a34
a41 Q42 a43 Q44 — A
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It is immediate from the cofactor expansion using the second row, that det((A—AI)z) = (—1) det(A—AI)[2 2],
which, except for the minus sign, is one of the (n — 1) x (n — 1) principal subdeterminants of A — AI. If we set
A =0, then we have:

ddet(A — AI)
dA

n
=Y (—Ddet A ;= > (=1)det A s
0 j=1 Sc{1,2,...,n}
card(S)=1

A=

We can see that (A — AI);, 4.

_ir will be the matrix obtained by substituting row j,...,4; of A — Al by
T T
., —€
i1 )

—e i respectively. Note that if there are any repeated indexes, then (A — AI);, 4,.....;, Will have a zero

row, and therefore its determinant will be zero. By cofactor expansion, it is easy to see that det(A—AI);, iy, .0 =
_ k _ o o . . . .

(—1)* det(A /\I)({i1 AN if there are no repeated indexes. Thus we have, by applying relation 1D

with A — AI in place of B, that:

d* det(A — M)
— = Z det(A — ALy in...in

0150050k

> det(A = Ay i

U1 yeeslke
1570
_(_1\k _ — P
=(=1) Z det(A M)({il,_.,ik},{il,...,ik})
i
= (DR Y det(A—AD) g5,
Sc{1,2,...,n}
card(S)=k

where, in the last step, k factorial appears to account for the k! possible permutations of the different indexes

119yl
If we now evaluate the above expression with A = 0, we will obtain
d* det(A — \I)
—— | = (“DFEL Y det(A) 5.9 (A.0.8)
A=0 Sc{1,2,...n}
card(S)=k

So, by comparing relations (A.0.6) and (A.0.8), we can conclude that the coefficients of the characteristic
polynomial p(A\) of A and the principal subdeterminants of A are related by

anp= (D% Y det(A) s =D D det(A)s.s)- (A.0.9)
Sc{1,2,....,n} Sc{1,2,...,n}
card(S)=k card(S)=n—k

But we also know that the polynomial p(\) can be written as
p(A) = (A1 = A2 = AN)(Az = A) - (An = A)
= (=D)"A" + (=) s AT o — s A+ s, (A.0.10)

where the s; are the symmetric functions given by equations (A.0.4). We can compare expressions (A.0.5)) and

(A.0.10) to conclude that A; by a; = (—1)"*s;, for 1 < i < n, or equivalently,
Ap—f = (—1)k8n,k.

Finally, by comparing the above equality with (A.0.9) we conclude that

sk= Y det(d)s,s),
Sc{1,2,...,n}
card(S)=k

or, put in words, the k-th symmetric function of the roots of A — A\, i.e., the eigenvalues of A, is equal to the
sum of all & x k principal subdeterminants of A.
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Now it is easy to reach the aimed result: the trace of the adjugate of A is by definition

Tr(adjA) = Z det A[i,i] = Z det(A)(S,S),
i Sc{1,2,....n
ca?j(S):nf]i

the sum of the (n — 1) x (n — 1) principal subdeterminants of A, which as we have just deduced, is the same as
the symmetric function
Sp—1 = Z )‘i1 ”.)\in—l'
1<i1 < <ip—1<n

If all eigenvalues but A\, are different than zero, then s,_; reduces to

Sn—1 = H Ai
i=2
which proves (A.0.3).

In what follows, we make some considerations about the rank of certain kinds of matrices. The next lemma
[Theorem 2.4.4, [13]] is an elementary fact about matrices.

Lemma A.4. Given a matriz A € F™*™ of rank r, there are nonsingular matrices X € F™*™ and Y € F"*"
such that

where I,. is the r X r identity matriz.

Proof. As we have seen in (1.1.2]), any m x n matrix A can be turned into its reduced row-echelon form by
multiplying it on the left by a nonsingular m x m matrix F, which is equivalent to performing elementary row
operations on A. And then we can multiply A on the right by an n X n permutation matrix P and obtain the
form

I, K
par [ K]
where K is unspecified matrix and the O’s represent zero matrices. Now, in the same way that each elemen-
tary row operation can be obtained by a suitable multiplication on the left by a nonsingular matrix, we can
analogously define elementary column operations, which can also be performed by multiplication on the right
by nonsingular matrices. So if we multiply EAP on the right by a nonsingular n x n matrix F', we can cancel
out the terms of the block K. Then we have

I, O
parr =[5 9.
If we define X! := F and Y~! = PF, the result follows.

With this lemma, we can now prove the following

Lemma A.5. Let M be a block diagonal matrix of the form

M:[A B]’

where A € F"™*™ and B € F"*™. Then the rank of the matrix M is the sum of the ranks of A and B.

51



APPENDIX A. APPENDIX

Proof. Let r and s be the ranks of A and B, respectively. Then, by Lemma there are nonsingular
matrices X,Y € F™*™ and X', Y’ € F™*™ such that

_ I. O v | ds O
A—X[O O}Y’ and B—X{O O}Y’
and thus we have
I, O I, O
Y X{o oY X [0 0 %
o 0% I, O v o X' I, O Y|
O O O O

The matrix in the middle of the right-hand side of the equation above has rank r + s because it is diagonal and
there are exactly » + s 1’s in the diagonal and the remaining terms are zero. As for the matrices multiplying it
on each side, they are nonsingular, with inverses given by

AR LS P 8 A |

Because the rank of a matrix remains unaltered under multiplication by nonsingular matrices, the rank of M
is also 7 + s, and this completes the proof.

O

Remark. The result of Lemma[AF]is stated for a block diagonal matrix with only 2 blocks. It can, however,
be easily extended for a block diagonal matrix with any number of blocks.

In Section we defined the Kronecker product between any two matrices (1.4.2) and we defined the
function vec : My, ,,(C) — C™" by the map (1.4.1). We want to prove

Theorem A.6. Let A € M, ,,(C), X € M, ,(C) and B € M, ,(C). Then

vec (AXB) = A® BT vec (X)

Before we prove this, let us make a few considerations. Denote by ¢;(A) the i-th row of matrix A.
Then for any two matrices A and B,

£p(AB) = 0, (A)B. (A.0.11)
If we take [:El Ty - :cn} to be a 1 x n matrix and B € M,, ,(C), then
i=1

where b;; are the entries of B.
If in a product AB of two matrices, we partition only the one on the left in a particular way, then the
product can be expressed of that partition

Proof of Theorem[A.6] We calculate the k-th row of AX B:

0:(AXB) = (,(A)X B
= (i akhfh(X)> B
h=1

Cn(X)(aknB),

I
NE

>
I

1
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where the first equality follows from (A.0.11]) and the second equality follows by (A.0.12)). We can rewrite this
sum as a product of two block-matrices to obtain

ale
ak2B
(AXB) = [(1(X) £(X) -+ La(X)]

a;mB
Note that the matrix on the left in the product above is vec (X )T and the matrix multiplying on the right is
((A)T ® B. Therefore

0, (AXB) = vec(X)T (41 (A)T @ B),

or equivalently, taking the transpose,

(,(AXB)T = (¢,(A) ® BT) vec (X).

To obtain vec (AX B), we take each row of AX B transposed and stack them vertically in a column vector:
[0, (AXB)T

vec(AXB) = :
| (m(AXB)T

[01(A) ® BTvec(X)
|0 (A) @ BT vec(X)
[¢1(A) ® BT

= : vee(X)
| /m(A) @ BT

= A® BTvec(X).

53



Bibliography

1]

[11]

[12]

[13]
[14]

[15]

[16]

(17]
(18]
19]

D. Aldous, J. Fill. Reversible Markov Chains and Random Walks on Graphs. Accessed 14 October 2022:
http://www.stat.berkeley.edu/~aldous/RWG /book.html

S. Attal. Lectures in quantum noise theory. http://math.univ-1lyonl.fr/homes-www/attal/chapters.
htmll Accessed 14 October 2022.

S. Attal, F. Petruccione, C. Sabot, I. Sinayskiy. Open Quantum Random Walks. J. Stat. Phys. 147:832-852
(2012).

A. Ben-Israel and T. N. E. Greenville, Generalized Inverses: Theory and Applications, Wiley-Interscience,
New York, 1974.

Bernstein, Dennis S., Matrix Mathematics: Theory, Facts and Formulas, 2"? Edition, Princeton University
Press, 2011.

Bardet, 1., Bernard, D., Pautrat, Y.: Passage times, exit times and Dirichlet problems for open quantum
walks. J. Stat. Phys. 167, 173 (2017).

R. Bhatia. Positive Definite Matrices. Princeton University Press (2007).

P. Brémaud. Markov Chains: Gibbs Fields, Monte Carlo Simulation and Queues. Texts in Applied Math-
ematics 31. Springer, 1999.

D. Burgarth, G. Chiribella, V. Giovannetti, P. Perinotti, K. Yuasa. Ergodic and mixing quantum channels
in finite dimensions. New Journ. Phys. 15 (2013) 073045.

R. Carbone, Y. Pautrat. Homogeneous Open Quantum Random Walks on a Lattice. J. Stat. Phys. 160:1125-
1153 (2015).

R. Carbone, Y. Pautrat. Open quantum random walks: reducibility, period. Ergodic Properties. Ann. Henri
Poincaré 17, 99-135 (2016)

S. L. Campbell and C. D. Meyer, Jr. Generalized Inverses of Linear Transformations. Pitman, London,
1979.

H. W. Eves. Elementary Matrix Theory. Dover, 1980.

V. Gorini, A. Kossakowski, E. C. G. Sudarshan. Completely positive dynamical semigroups of N-level
systems. J. Math. Phys. 17, 821 (1976).

F. A. Grinbaum, L. Velazquez, A. H. Werner, R. F. Werner. Recurrence for Discrete Time Unitary Evo-
lutions. Comm. Math. Phys. 320, 543-569 (2013).

F. A. Griinbaum, C. F. Lardizabal and L. Velazquez. Quantum Markov Chains: Recurrence, Schur Func-
tions and Splitting Rules. Ann. Henri Poincaré 21, 189-239 (2020).

S. Gudder. Quantum Markov chains. J. Math. Phys. 49, 072105 (2008).
R. A. Horn, C. R. Johnson. Topics in matrix analysis. Cambridge University Press, 1991.
K. Hoffman, R. Kunze. Linear Algebra. 2nd Ed. Englewood Cliffs: Prentice-Hall, 1971.

54


http://www.stat.berkeley.edu/~aldous/RWG/book.html
http://math.univ-lyon1.fr/homes-www/attal/chapters.html
http://math.univ-lyon1.fr/homes-www/attal/chapters.html

BIBLIOGRAPHY
BIBLIOGRAPHY

[20] J. J. Hunter. Generalized inverses and their application to applied probability problems. Lin. Algebra Appl.
45, 157-198 (1982)

[21] J. J. Hunter. On the moments of Markov renewal processes, Adv. in Appl. Probab. 1:188-210 (1969).
[22] M. Kac. On the notion of recurrence in discrete stochastic processes. Bull. AMS. 53, 1002-1010 (1947).

[23] C. F. Lardizabal. Open quantum random walks and mean hitting time formula. Quantum Inf. Comp.
17(1&2), 79-105 (2017). ArXiv e-prints: ArXiv:1603.06255

[24] C.F. Lardizabal. Mean hitting times of quantum Markov chains in terms of generalized inverses. Quantum
Inf. Process. 18, 257 (2019).

[25] C. F. Lardizabal, L. Veldzquez. Mean hitting time formula for positive maps. Lin. Alg. Appl. 650, 169-189
(2022).

[26] D. A. Levin, Y. Peres, E. L. Wilmer. Markov Chains and Mizing Times, 2°¢ Edition.
[27] G. Lindblad. On the generators of quantum dynamical semigroups. Comm. Math. Phys. 48, 119-130 (1976).

[28] C. D. Meyer. The Role of the Group Generalized Inverse in the Theory of Finite Markov Chains. STAM
Review, 17(3), 443-464 (1975). http://www.jstor.org/stable/2028885

[29] D. Poole. Linear Algebra. A Modern Introduction. Cengage Learning 2005, ISBN 0-534-99845-3, pp. 265-
267.

[30] M. Reed, B. Simon. Methods of modern mathematical physics I, 2nd Ed. Academic Press Inc., New York,
1980.

[31] M. M. Wolf, Quantum Channels & Operations: Guided Tour (unpublished)
[32] M. M. Wolf, J. I. Cirac. Dividing quantum channels. Comm. Math. Phys. 279, 147-168 (2008).

55



	Introduction
	Discrete-time QMCs
	Generalized inverses
	Classical Markov Chains
	Discrete-time QMCs
	Probability notions: basic statistics and hitting times
	Applying Hunter's formula to any irreducible quantum channel
	Example

	Beyond the irreducible case
	A digression: randomizations
	Another hitting time formula: extending the irreducible case


	Continuous-time QMCs
	Continuous-time QMCs
	Review on semigroups
	Continuous-time QMCs

	Hunter's hitting time formula for CTQMCs
	Example

	Hitting time formula for CTQMCs in terms of the fundamental matrix
	Discussion: link between Theorems 2.6 and 2.11
	Example


	Concluding Remarks and Further Questions
	Appendix
	Bibliography

