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Resumo

Seja g uma algebra de Lie simples de tipo G2 ou Fjy. Nesta tese calculamos o
posto combinatério da parte positiva da versao multiparametro do pequeno grupo

quantico de Lusztig u; (g).

Abstract

Let g be a simple Lie algebra of type G, or Fj. In this thesis we calculate the
combinatorial rank of the positive part of the multiparameter version of the small

Lusztig quantum group u; (g).
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Chapter 1
Introduction

Let H be a character Hopf algebra. We notice that by a corollary of the Heyneman-
Radford Theorem |8, Proposition 2.4.2| every nonzero bi-ideal of a character Hopf
algebra has a nonzero skew-primitive element. We also have that skew-primitive
elements generate a Hopf ideal and, unlike the classical case of universal enveloping
algebras, in the quantum case a Hopf ideal is not necessarily generated by its skew-
primitives. In this sense, the concept of a combinatorial rank is introduced in Section
2.7 “measuring” how distant an specific Hopf ideal is from being generated by its
skew primitive elements.

We consider J a Hopf ideal of H and we construct the sequence 0 = Jy C J; C

Jy C ... C J; € ... C J of Hopf ideals. The construction of this sequence is given

as follows:

e We define J; as the Hopf ideal generated by skew-primitive elements of J.If
J1 # J, then Jil # (0 is a Hopf ideal and has a skew-primitive element.

e We define 22 as the ideal generated by skew-primitive elements of %?, where

J1
Jo = W_l(%) with 7 : G(X) — %ﬁf)

o If J5 # J then define j—; as the ideal generated by skew-primitive elements of

%20, where J3 = ﬁfl(j—z) with 7 : G(X) — %f)

e Following this process until the sequence stabilizes, that is, J, = J for some

K.

If J = ker g, where ¢ : G(X) — H, the length  of this sequence is called the
combinatorial rank of H.

The definition of combinatorial rank was proposed by V. Kharchenko and A.
Alvarez in [14], where they proved that x(u] (g)) = [logyn| + 1 in the case that
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g is a simple Lie algebra of type A,. Later, V. Kharchenko and M. L. Diaz Sosa
showed similar results for the Frobenius-Lusztig kernel of type B,,, C, and D,, (see
[15] and [16]). They proved that x(u] (g)) = [logy(n —1)] + 2 for the cases B, and
Cn, and k(u; (g)) = |logy(2n — 3)] + 1 for the case D,,. However, Ardizzoni [6] also
investigated conditions under which some particular graded braided bialgebras have
finite combinatorial rank. We still have, trivially, that x(U; (g)) = 1, for any simple
Lie algebra g.

The quantum groups U;(g) and wu/(g), where g is a simple Lie algebra, are
important examples of quantum algebras. The cases where g is a Lie algebra of
types A,, B,, C, and D, were extensively studied. We also have a good amount
of results on G5. However there are few studies specifically on Fj. In this thesis
we calculate the combinatorial rank of the algebra uj(g), where g is a simple Lie
algebra of types G5 and F}, continuing the investigation for "small" quantum groups
uy (9).

In the first chapter we introduce the general notation, definitions and basic results
necessary for this work. In the second chapter we list existing results about u/} (Gs)
and we proved that x(u}(G2)) = 3, describing the complete chain of Hopf ideals
Ji, 1 € {1,2,3}. Finally, in the third chapter we go deeper into the case that g is a
simple Lie algebra of type F; and we develop results to prove that the combinatorial

rank of u; (Fy) equals 4.



Chapter 2
Preliminaries

Let k be an algebraically closed field of characteristic zero. In this chapter we
will state definitions and basic results used in this work. These results are already

known and can be found in the references [4], [13]| and [17].

2.1 Character Hopf algebras

In this section we will define character Hopf algebras and present some properties.

Definition 2.1.1. A Hopf algebra H is a character Hopf algebra if the group G of all
group-like elements is commutative and H is generated over k[G] by skew-primitive

semi-invariants a;, ¢ € I:
A(al) :a2®1+gl®al7 g_laigzxi(g)aiu g9,9; € G7

where x?, i € I, are characters of the group G.

Definition 2.1.2. A variable z is called a quantum variable if a group-like element

g: € G and a character y* € G* are associated with z.

Let z; be the quantum variable associated with a;. For each word w in X =
{z;]i € I} we denote by g, an element of G that appears from u by replacing each
x; with g;. Similarly we denote by x* a character that appears from u by replacing
each z; with x*. Now we define a bilinear skew-commutator on homogeneous linear

combinations of words using the formula

[, v] = uv — x*(gy)vu, (2.1)



where we use the notation x“(¢,) = puw = p(u,v). These brackets satisfy the

following Jacobi and skew-differential identities

[u - v, w] = pywlu, w] - v+ u-[v,w], (2.2)

[u, v - w| = [u,v] - W+ Pyupv - [u, w). (2.3)

([, v, w) = [u, [v, W] + poy [, w], v] + (Pow — Puw) [, w] - v (2.4)
[[u, o], w] = [u, [v, W] + puwfu, W], v] + pun(PowPuww — 1o - [u, w] (2.5)

If p,, is a primitive t-th root of the unit then we also have the restricted identities
[u, '] = [... [[u, v],v], ..., ], (2.6)

[ u) = [v,[v,...[v,u].. ] (2.7)

The group G acts on the free algebra k(X) by g 'ug = x“(g9)u, where v is an
arbitrary monomial in X. The skew group algebra G(X) has the natural Hopf

algebra structure

Az)=2,014+¢ @z, 1€l Alg=9g®g.

2.2 Hard hyper-letters

Let H be a character Hopf algebra. In particular, we can consider H = G(X),
where X = {z;|i € I}, or H to be the image of G(X) by an homomorphism of Hopf
algebras.

Let us fix a Hopf algebra homomorphism
£:GX) > H, () =a;, &(9)=9g, i€l geG.

Definition 2.2.1. A constitution of a word v in G U X is a family of non-negative
integers {m,,x € X} such that v has m, occurrences of z. Certainly almost all m,

in the constitution are zero.

Let us fix an arbitrary complete order < on the set X, and let I't be the free

additive (commutative) monoid generated by X. The monoid I't is a completely



ordered monoid with respect to the following order:

MAZy, + Moy, + .o+ My, > Mz, +myxy, + ...+ mix;, (2.8)
if the first from the left nonzero number in (m; — m), my — mb, ..., my — mj) is
positive, where x;, > x;, > ... > z;, in X. We associate a formal degree D(u) =

Y owex Ma® € I'M to a word w in G U X, where {m,|x € X'} is the constitution of u.
Respectively, if f = > a;u; € G(X), 0 # «; € k then

D(f) = max;{D(u;)}. (2.9)

On the set of all words in X we fix the lexicographical order with the priority from
the left to the right, where a proper beginning of a word is considered to be greater
than the word itself.

Definition 2.2.2. A non-empty word u is called a standard word (or Lyndon word,
or Lyndon-Shirshov word) if vw > wv for each decomposition u = vw with non-

empty v, w.

Definition 2.2.3. A non-associative word is a word where brackets [, ] are somehow

arranged to show how multiplication applies.

If [u] denotes a non-associative word, then by u we denote an associative word
obtained from [u] by removing the brackets. Of course, [u] is not uniquely defined

by u in general.

Definition 2.2.4. The set of standard non-associative words is the biggest set SL

that contains all variables z; and satisfies the following properties:

L. If [u] = [[v],[w]] € SL then [v], [w] € SL, and v > w are standard.

2. If [u] = [[[v1], [va]], [w]] € SL then vy < w.

Theorem 2.2.5. (Shirshov’s Theorem) [23, Lemma 2| Every standard word u has
only one alignment of brackets such that the defined non-associative word [u] is

standard.

In order to find this alignment we use the following procedure: the factors v, w
of the non-associative decomposition [u] = [[v], [w]] are standard words such that

u = vw and v has the minimal length.
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Definition 2.2.6. An hyper-letter is a polynomial that equals a non-associative
standard word where the brackets mean (2.1). An hyper-word is a word in hyper-

letters.

The hyper-letters were first invented and named super-letters by Kharchenko.
However, not to make confusion with the same terminology used for super Lie alge-
bras, Angiono renamed them hyper-letters.

By Shirshov’s Theorem, every standard word u defines only one hyper-letter that
will be denoted by [u]. The order on the hyper-letters is defined in the natural way:
[u] > [v] & u>w.

Since quantum Borel algebras U} (g) and u] (g), which will be defined in 2.5.1
and 2.5.3, are homogeneous in each variable, in what follows we suppose that H
is a I'"-graded character Hopf algebra, that is, H is homogeneous in each of the

generators a;.

Definition 2.2.7. An hyper-letter [u] is called hard in H if its value in H is not a
linear combination of hyper-words of the same degree (2.9) in hyper-letters smaller
than [u).

Proposition 2.2.8. [11, Corollary 2| An hyper-letter [u] is hard in H if and only
iof the value in H of the standard word u is not a linear combination of values of

smaller words of the same degree (2.9).

Proposition 2.2.9. [12, Lemma 4.8] Let B be a set of hyper-letters containing

X1y ..o Ty If each pair [u], [v] € B, u > v satisfies one of the following conditions
1) [[ul, [v]] is not a standard non-associative word;

2) the hyper-letter [[u],[v]] is not hard in H;

3) [[u], [UH € B;

then the set B includes all hard in H hyper-letters.

Definition 2.2.10. We say that the height of a hard in H hyper-letter [u] equals
h = h([u]) if h is the smallest number such that

1. puy is a primitive ¢-th root of 1 and either h =t or h = tI”, where [ = char(k),
2. the value of [u]" in H is a linear combination of hyper-words of the same degree

(2.9) in hyper-letters smaller than [u].

11



If there exists no such number then the height equals infinity.

Lemma 2.2.11. [12, Lemma 4.9| If T € H is an homogeneous skew-primitive

element then

T = afu)" + Z%‘Wz‘, a#0, (2.10)

where [u| is a hard hyper-letter, W; are basis words in hyper-letters smaller than [u].
Here if py, is not a root of unity then h = 1; if pyu, ts a primitive t—th root of unity

then h =1, or h =1, or h = tl*, where [ is the characteristic.

Definition 2.2.12. An element u is said to be skew-central if for every homogeneous
v we have uv = avu, @ = «a(v) € k. Certainly it is equivalent to a system of n

equalities ux; = a;zu, 1 <i<n, a; € k.

Example 2.2.13. For example, all group-like elements in G(X) are skew-central

since z;9; = pijg;T;, where ¢,5 € {1,2,--- ,n}.

2.3 PBW-generators

In this section we will define PBW-basis.

Definition 2.3.1. Let S be an algebra over k and A be a subalgebra of S with
a fixed basis {a;|j € J}. A linearly ordered subset W C S is said to be a set of
PBW-generators of S over A if there exists a function h : W — Z* U oo, called the
height function, such that the set of all products

niy . no ng
a;witwy? L owg”, (2.11)

where j € J, wy <wy < ... <wp € W, 0 <n; < h(w;), 1 <i<kisa basis of S.
The value h(w) is referred to as the height of w in W. If A =k is the ground field,
then we shall call W simply as a set of PBW-generators of S.

Definition 2.3.2. Let I be a set of PBW-generators of S over a subalgebra A.
Suppose that the set of all words in W as a free monoid has its own order < (that
is, a < b implies cad < cbd for all words a,b,c,d € W). The leading word of s € S
is the maximal word m = w'w3? ... w,;* that appears in the decomposition of s in
the basis (2.11). The leading term of s is the sum am of all terms o;a;m, «o; € k,
that appear in the decomposition of s in the basis (2.11), where m is the leading

word of s.

Theorem 2.3.3. [11, Theorem 2| The values of all hard in H hyper-letters with the
height function definided in 2.2.10 form a set of PBW-generators for H over k|G].
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2.4 Convex order

Let (V,c) be a braided vector space of diagonal type, with dimV = 6. In
other words, there is a basis (z;)e,, lo = {1,2,...,0}, and a braiding matrix

P= (pij)i,je]le such that
C(l’i ® l'j) = DpijT; Q T;.

Let AP be the generalized root system associated to p and AR = {f, -+, Bn}
the subset of positive roots. Let «;, ¢ € Iy, be the simple roots. We denote z,, =

T, 1 € To.

Definition 2.4.1. Consider a root system AP with a fixed total order <. We say
that the order is

e conver if for any «, f € A? such that o < f and oo+ 8 € AR we have

a<a+f<p;

o subconvez if for any a, f € AP such that o < § and a+ 5 € A} we have

a<a+f;

e strongly convex if for each ordered subset a; < -+ < ap € Aﬂ with o =
> a; € AR we have

o < o< .
Theorem 2.4.2. [4, Theorem 2.11] Given an order on A%, the following statements
are equivalent:

(1) the order is associated with a reduced expression of the longest element,
(2) the order is strongly convex,

(3) the order is conved.

Each simple root «; is associated to the quantum variable x;, i € {1,---,0}.
Moreover, each positive root j3; is associated to a PBW-generator of the Hopf alge-
bra, see |4, Theorem 3.9].

Definition 2.4.3. We say that a PBW-basis is conver basis if the order of the

associated roots is convex.
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We notice that a quantum algebra may have more than one convex set of PBW-
generators, even if we fix the order of the simple roots. However, if we suppose that
the elements are hyper-letters, we have only one possible convex basis, as stated in
the next proposition.

Remark 2.4.4. Notice that by [4, Lemma 4.5] a PBW-basis of hyper-letters being
convex implies that, for all [u], [v] ([u] > [v]) in the basis, we have [[u],[v]] is
a linear combination of super-words [w] = [wq]---[wg], where [u] > [w;] > [v],
i=1,---,k € N, [w;] belongs to the PBW-basis and [w] has the same degree of
[[u], [v]]

Proposition 2.4.5. Let B be a convex set of PBW-generators formed by hyper-
letters. Then B is constituted by the hard hyper-letters.

Proof. Let B be a convex PBW-basis of hyper-letters. By Remark 2.4.4 and Defini-
tion 2.2.7, for every pair [u], [v] € B, such that [u] > [v], we have that [[u],[v]] € B
or [[u],[v]] is not hard. Then it satisfies conditions 2 or 3 of Proposition 2.2.9.
Therefore B is constituted by hard hyper-letters. O

2.5 Quantum algebras

In this section we define the algebras U, (g) and u; (g), where g is a simple Lie

algebra.

Definition 2.5.1. Let C = ||a;;|| be a generalized Cartan matrix symmetrizable by
D = diag(dy, . ..,d,), d;a;; = d;a;;. Denote by g a Kac-Moody algebra defined by
C (see [9]). Suppose that the quantification parameters p;; = p(z;,x;) = x'(g;) are
related by

pi =q%, pypi=q", 1<ij<n. (2.12)
The multiparameter quantization U;(g) of the Borel subalgebra g* is a character

Hopf algebra generated by z1,...,2,,91,...,9, and defined by Serre relations with
the skew brackets (2.1) in place of the Lie operation:

[ (s, xg], 5], ., 2] =0, 1 <i##j<n, (2.13)

where x; appears 1 — a;; times.

Remark 2.5.2. By [10, Theorem 6.1] the left side of each of these relations is skew-
primitive in G(X). So the ideal generated by these elements is a Hopf ideal.
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Definition 2.5.3. If the multiplicative order ¢ of ¢ is finite, then we define u} (g) as
G(X)/A, where A is the biggest Hopf ideal in G(X)®, which is the set (an ideal) of
noncommutative polynomials without free and linear terms. From [14, Lemma 2.2]
this is a I'-homogeneous ideal. Certainly A contains all skew-primitive elements of
G(X)@ (each one of them generates a Hopf ideal). Hence, by [10, Theorem 6.1],
relations (2.13) are still valid in u] (g).

Notice that the subalgebra A generated by x1, ..., z, over kin U; (g) is a Nichols
algebra of Cartan type if ¢ is not a root of 1, see [2]. In the same way, if ¢* =1 for
an integer ¢, the same thing is valid for A C v/ (g). This is particularly useful since
in [3] there are many results for the Nichols algebra A. However, if ¢ is a root of 1,

then the subalgebra generated by zq,...,x, in U;(g) is not a Nichols algebra.

2.6 Differential calculus

In this section we list important results for calculating the height of the PBW-
generators of u} (Gy) and u/ (F}) in the chapters 3 and 4.

Definition 2.6.1. The subalgebra A generated by x1,...,z, over k in U (g) (re-
spectively, u;(g)) has a differential calculus defined by

Oi(x;) =87, 9i(uv) = By(w)v + p(u, 2;)ud;(v). (2.14)

Lemma 2.6.2. ([18, Lemma 2.10]) Let u € k(X) be an homogeneous in each x;

element. If py, s a t-th primitive root of 1, then

Oi(u') = p(u, )" [u, [u, -+, [u, 0i(w)] - -] (2.15)

Lemma 2.6.3. (Milinski-Schneider criterion, see [21]) If a polynomial f € k(X)
with no one free terms is such that 0;(f) = 0 in u; (g) for every x; € X, then f =0

in ug (g).

2.7 Combinatorial rank

We notice that by [13, Proposition 1.7] each ideal generated by skew-primitive
elements is a Hopf ideal, but a Hopf ideal is not always generated by its skew-
primitive elements. However, the skew-primitive relations play an important role in

the construction of character Hopf algebras due to the following result.
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Theorem 2.7.1. [19, Corollary 5.3| Every nonzero bi-ideal of a character Hopf

algebra has a nonzero skew-primitive element.

Let H be a character Hopf algebra and J a hopf ideal of H. We construct the
sequence 0 = Jo C J; € Jo € ... € J; € ... C J of Hopf ideals in the following
way. We define J; as the Hopf ideal generated by skew-primitive elements of J. If
J1 # J, then Jil # (0 is a Hopf ideal and has a skew-primitive element. We define j—f
as the ideal generated by skew-primitive elements of Jil’ where Jy = Wfl(j—f) with
T G(X) — % If Jo # J then define “;—; as the ideal generated by skew-primitive
elements of Jiz Following this process, this sequence of Hopf ideals stabilizes if

J.. = J for some k.

Lemma 2.7.2. [13, Lemma 1.24]

i=1

Definition 2.7.3. If G is an abelian set of group-like elements, X is a set of skew-
primitive elements and a combinatorial representation of H by means of generators
and relations ¢ : G(X) — H is given with J = ker ¢. We say that the combinatorial
rank of H is the lenght k of the above sequence, or infinite if the sequence does not

stabilizes.

Consider the projections v, : G(X) — wu}(g) and ¥, : G(X) — U/f(g) the
extensions of x; — a;. We know that kert; = A is the biggest Hopf ideal in
G(X)® and ker v, is generated by the Serre relations (2.13). In order to calculate
the combinatorial rank x(u] (g)) we should consider J = A. However, we have that
ker i), C ker¢); = A and the defining relations for U (g) are skew-primitive. We also
have from Proposition 3.3.1 and Theorem 4.3.2 that the only homogeneous skew-
primitive elements in U; (g) are z1,- -+ ,x, and xi”, -+, x™ in the considered cases,
where h; is the height of x;. This implies that the only skew-primitive elements
in G(X) belong to the ideal generated by these elements and the Serre relations.
This way, instead of the morphism ¢, : G(X) — u} (g) we may use the induced one
¢ : Uf(g) — uf(g). In the next chapters we consider J = ker ¢ a Hopf ideal of

U/ (9).
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Chapter 3

Combinatorial rank of the quantum

groups of type Go

3.1 Quantum groups of type G,

In this section we are going to explicit a set of PBW-generators for U (G2) (re-
spectively, uf (Gy), if ¢* = 1 for t > 3).
Let us first remember that the algebra U;(Gz) is defined by two generators 1, xo

and two relations
H$1, $2], xz] =0, [$17 [xb [Ila [xlu xzm] =0, (3-1)

where the brackets mean the skew commutator (2.1). Relations (2.12) take up the
form p3, = paa, p1apa1 = Py, and p1; = ¢. In what follows we shall suppose that
¢®> # 1 and ¢® # 1. We notice that we do not follow exactly the notation in [22].
Minor adaptations were made in order to directly use results from [1] and [7].

In the following theorems we present the PBW-bases of U (G>) and u; (Gs).

Theorem 3.1.1. [22, Theorem 3.4] If q is not a root of 1, then the values in U} (Gs)

17



of the elements

[A] = 21,

[B] = [z1, [#1, [#1, 22]]],

[C] = [z1, [21, 22]], (3.2)
[D] = [[#1, [z1, z2]], [21, z2]],

[E] = [z1, 23],

[F] = xs.

form a set of PBW-generators for U; (G») over k[G], and each element has infinite
height. If we suppose that x1 > x5, then A>B >C >D > FE > F.

Remark 3.1.2. If ¢ is aroot of 1 then the elements [u] from list (3.2) also have infinite
height in U} (G2). Indeed, if [u] has a finite height then the value of [u]" in U (Gy) is
a linear combination of words in hard hyper-letters that are smaller than [u]. But no
element from the list (3.2) can be written as this linear combination. For example,
if [u] = [A] = @1, [u]" = 2} has degree (h,0) and all the other smaller elements of list
have a degree (M, N), where M € {0,1,2,3} and N € {1,2}. Therefore [u]" = 0,

which is a contradiction.

We note that U, (G2) and u; (G2) have the same PBW-generators but its ele-
ments have different heights. The following results are used to find the height of the

elements in u; (Gy).

Theorem 3.1.3. [22, Theorem 3.6 If ¢ has finite multiplicative ordert, t > 3, then
the values in u; (Gy) of the elements from list (3.2) form a set of PBW-generators
for ui(G2) over k[G]. The height h of [u] € {[A],[C],[E]} equals t. For [u] €
{[B], D], [F]} we have h =t if 3 is not a divisor of t and h = £ otherwise. In all
cases [u)" = 0 in uf (Gy).

We notice that the basis obtained in the previous results is not just a PBW-
basis, but the unique PBW-basis constituted by the hard hyper-letters (see [11]).
It is also a convex basis [4]. In addition we observe that, altough the second result
is proved for t > 4 and t # 6 in the listed reference, it actually can be obtained
for every t > 3 using a different proof, as in [3]. However, the cases where ¢t = 2
or t = 3 do not generate the same algebra. In fact, using the Milinski-Schneider
criterion [21], if t = 2, then we have [B] = [C] = [D] = 0. In this case the generated

algebra with PBW-generators {1, [x1, 23], 22} is isomorphic to Ay so [14] provides
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k = 2. Similarly, if ¢t = 3, [B] = [C] = [D] = [E] = 0 and the only remaining PBW-

h1 ho

generators are x; and xo. In this case Kk = 1 as 27" and z5* are skew-primitive.

3.2 The coproduct formula of quantum groups of
type G

In this section we present the explicit coproduct formula for the elements [u]™
where [u] is a PBW-generator of ] (G3) and h, is the height of [u].

The following results are already known.

Proposition 3.2.1. [20, Theorem 4.2| The coproduct formula of elements from list
(3.2) are:

e Alr)) =21 ®1+ g1 @11

e A([B]) = [B]® 1+ gi112 ® Bl + (1 — ¢ *)¢®r19112 @ [C] + (1 — ¢*)(1 —
)30 @ [El+ (1= ¢ %) (1 — ¢ ) (1 — ¢ ")rige ® 22

e A([C)) =[] @1+ 112 @ [Cl+ (1 — ¢ ) (1 + ¢)r1912 ® [E] + (1 — ¢*)(1 —
q ?)rige @ a

o A([D]) = [DI®@1+4g11122® [D]+ (1 —¢?)¢*[Clgr12® [E]+ (1 — ¢ *)*¢*[Clw1 9o ®
xz+(1—q NG = —pa[Blga@x2+ (1 =) (1—q*) (1= ¢ " )p21algor ®
24+ (1= 21— ¢ )Prig122 @ 2o E] + (1 — ¢7°) (1 — ¢ 2)Px191122 ® 2%,

o A([E]) =[E]@ 1+ g2 @ [E] + (1 — ¢ %)z192 ® 22
o A(r3) =22 @1+ g2 @ T

Proposition 3.2.2. |8, Proposition 4.3| Let k be an algebraically closed field of
characteristic zero and q € k such that ¢ = 1, with t > 3. Suppose that 3 is not a
divisor of t. Then we have the following statement in G{X):

o A(z}) =2{®1+4g] @}
ttfl
e A([B]') = [B]'®@1+g}'¢s®[B]'+3(1—q~ 1)1921 xlgftg§®[0} +3(1—q72)"(1—
(t 1)
g V)nVadtglgh @ (Bl 4 (1 — ¢ ) (1 — ¢ ) (1 — g Vipy * allgh @ ab
t(t—1)
e A([C]") =[CT@14¢gs®[C) +2(1—¢ )p21 tglgh QB +(1—¢7?) " (1—

_ 1
g 2)ph Vatgh @ o
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t(t—1)

A(D)) = [D)f ® 14 ¢i'¢5" @ [D]' + 3(1 — ¢ )ipy® [Cllgigh ® [E]' — (1 —
t )

0 ) py T [Bligh@ah+3(1—q %) (1—¢ )iphy Vat g g3 @B +3(1—¢ ) (1—

q

3t(t—1

_ _ _ t(t—1
21— g Vipy T adtglgd @ TIEN + 3(1 — ¢ (1 — )P VO] gl @
2+ (1= g 32 (1 = ¢ 2)H (1 — ¢ ) Padtgd @ a2

z1)

A(E]") = [E]' @ 1+ gig5 @ [E]' + (1 = q7°)'py® 2195 ® a5

Alzt)) =2t @1+ gt @ 2}

In the case that 3 divides t we have:

Az]) =2f @14 gf ® 2]
¢ 1 ¢ t(tg?)) t %
+(1=g)5(1—g )5 (1—q " )5py° algi@a;

t(t—1)

A(CT) =0T ®1+g¢'g, @01 = (1=a7) (1 =¢7")'pn” 21gigs ®[E) +3(1~

t(t+1)

)5 (=g spm® [Bliglos ® [Dﬁ +(1- )( —q )iVt gh @b +
t

ol

A([B]%) = [B)i®@1+4!gi ®[B]

)5 (1—q 2 )3(1—q*)3pm[3] 95’® S43(1-g ) F(1—g ¥ -

t(t—1) t(t—1)

q
2 2t 2t N o\ 2t _
g )5py’ [Blsalgy @ +3(1—¢2)5(1—q 251 —q " )5py° oigighe
- t
3

t(t—2) 2t

A([D]s) = [D]§®1+g}g§ [D]s +(1—q)5 (1—¢2)5(1—q")spy,® algy
2t t(t .t t
Ty +2(1—q” )31921 [B]3g; @ x3

t —t D) t L
A([E]") = [E]'®1+491g5@[E] +3(1—q~ )5(1 a )3 (1—g )3 py° [D]egs

t(t—1)

234+3(1—¢)5 (1—¢2)7 (1—¢ 1)31921[3]5923 ®5L‘23+(1—q‘)p21 T gy ®Th

t t t
A(e]) =23 ®1+g5 @z

Altough the above proposition can be found in [8], a very similar version of it

was first presented in [1, Section 4].

3.3

The combinatorial rank of quantum groups of

type G

In this section, we prove the necessary results to determine k(U (G2)).

Proposition 3.3.1. The skew-primitive homogeneous elements of U (G2) of total

degree greater than or equal to one are x1, x>, xfl“ and x§2, where h; is the height of

Z;.
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Proof. From Lemma 2.2.11, if v € Uf(Gs) is an homogeneous skew-primitive ele-
ment, then v = aful” + >~ ;W; where [u] is an element from list (3.2) and W; are
basis words smaller than [u] with the same degree as [u]". If p,, is not a root of the
unit we have h = 1. If p,, is a primitive ¢-th root of unit, then h =1 or h = t¢.

If [u] = x; or [u] = 3, then clearly there are no other basis words W; of degree
(h,0) or (0,h), so v = [u]". If [u] = [E], then [u]" has degree (h,h) which can not
be obtained by basis words [E]"[F]® that have degree r(1,1) + s(0,1) unless s = 0.
Thus v = [E]". If [u] = [D], simmilarly the degree (3h,2h) can not be obtained
as 7(3,2) + s(1,1) + 1(0,1) with s # 0 or [ # 0. The same occurs for [u] = [C]
and [u] = [B]. This provides that the possible skew-primitive elements are [u]". If
h =1, then the only skew-primitive PBW-generators are x; and x5, what is proved
by Proposition 3.2.1. If h = t, then Proposition 3.2.2 shows that again only 2" and

2} are skew-primitive. O

Proposition 3.3.2. The elements [u]" are skew central in U} (Gy), where [u] belongs
to the list (3.2) and h is the height of [u].

h h h

Proof. First we notice that z;[u]" = afulhz;, for i = 1,2 implies that v[u]" = a[u]"v,
for every homogeneous v € U (Gs). If [u] € {[A],[C],[E]} then necessarily p., = g,
SO Duy is a t-th primitive root of the unit and h, = ¢t > 4. In the case that [u] €
{[B], D], [F]} we have p,, = ¢* providing h, = 2ift =6, h, = 3ift =9 and h, >4
otherwise.

Using that the provided basis is convex [4, Lemma 4.5] we know that the skew-
commutator of two PBW-generators [u], [v], with [u] > [v], is a linear combination
of intermediate basis elements with the same degree as [[u], [v H Consequently we
have [[B.[CT) = [[C11D]) = [ID].[E]] = 0. [[ALID] = ai[CP. [1B).[D]] =
calCP. (1B 1E]) = P [B11F] = D] = as#C], (), [ 1] = aglBP? and
[[D], [F]] = a7[E]® with a; € k for every i. In fact, this has been explicited in [8,
Lemma 4.1] where all coefficients «; have been calculated.

If [u] = [A] = x; then clearly z 2" = 2"z,. As we have [z, [z, [21, [21, 22]]]] = 0,
using (2.7) with h > 4 we obtain [z, 2] = [z1, [71, ... [x1, 23] .. .]] = 0. Thus 2lzy =
plyrex® and x; = [A] is skew-central. For [u] = [F] = xo, similarly z.2? = 2hx,
and [[z1, 7], 75] associated with (2.6) guarantee that [z, 28] = 0 for h > 2 and
212y = plyrhas.

In the case that [u] = [E] = [z1, 5] we have [[E], 2] = 0 so from equation
(2.7) we obtain [[E]", 23] = 0, then [E]"z, = pi,ph,z5[E]". On the other hand
[[[=1, [E]], [E]], [E]] = [[[C],[E]],[E]] = [[D],[E]] = 0 therefore h > 4 and (2.6)

21



provide [z1, [E]"] = 0 and z[E)" = plyply[E)" 2.
For [u] = [C] we notice that [[z1,[C]],

agE]?. From formula (2.3) we obtain [[C],

(€L (BYDY] = (DY and [[C), [DF] = 050

thus h > 4, (2.6) and (2.7) provide z,[C]" = pl,pI[C] "z, and [C] zy = phphy,x,[C)".

Now we suppose [u] = [D]. In this case we have
([, [DI], [D]] = en[[CT%, [D]] =0,

(D), [[D], 22]] = as[[D], [EJ*] = 0

so from formulas (2.6) and (2.7) we obtain x,[D])" = pp?t[D]"z; and [D])'z, =
pihpAhay[ D) for h > 2.
Finally, if [u] = [B] then [x1,[B]] = 0 ensures [z, [B]"] = 0 for h > 2 and

x1[B]" = p3ph, [ B]"z,. For the variable z,, using formula (2.3) we have

[(B], [[B], 2]] = [[B], aa[D] + a5 [ E][C1]
= au[[B], [D]] + a5 [B], [E][C]

= (CYQO(4 + 065069)[0]3.

In the case h = 2, from [8, Lemma 4.1] we have

~ phP(a—1)(¢* - 1)
Qg = )
qg+1

s =pg(@® —q—1), as=pd(d*—1)

and using that [[B], [E][C]] = ’%‘Zi_l)[@]?’ we may explicitly calculate

Pq*(q—1)(¢° — 1)
qg+1

B = ooy + asag =

and see that it is zero as h = 2 if and only if ¢® = 1. If h > 3 we have 8 # 0, however,
[[B],[C]*] = 0 and consequently [[B], [[B], [[B],22]]] = 0. Therefore [[B]", 5] =0
for h > 2 and [B]"xy = p3hph,2,[B]". O
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We consider ¢ : Uf(G2) — uf(G2) the natural projection and we have the

following result.

Proposition 3.3.3. The set J = ker ¢ is generated by the elements [u)", where [u]
is an element from list (3.2) and h is the height of [u].

Proof. The fact that the kernel J contains the elements [u]" follows immediately
from Theorem 3.1.3 as it shows that [u]" = 0 in u/(g). Now we consider v =
[F B2 [D]"[C]™ [ B]"[A]" belonging to kero C US(G2). If n; < h; for every
i €{1,2,...,6} with h; the height of the corresponding element, then v is a basis
element of u}(G>) and therefore ¢(v) # 0, which is a contradiction. So we may
assume that there is a n; > h; for a fixed 7, and then v is a multiple of the respective

hi and belongs to the ideal generated by this element. Now let v =

element [u]
av1 + agve € ker . If (vy) = 0 then ¢(vg) = 0 and both vy, vy are multiples of
elements of the form [u]". Thus v belongs to the ideal generated by these elements.
If p(v1) and ¢(vy) are both not zero with v; # awv, then ¢(v) is a sum of linearly
independent basis elements of u (G), so ¢(v) # 0. Inductively we have the same
result for v = vy + ... + ayvy € ker . Thus we obtain that J is generated by the
elements [u]". O

As a conclusion of the previous results, the Hopf ideal J is generated by linearly
independent skew-central elements [u]", with [u] € {[A], [B], [C], [D], [E], [F]}. Now

we calculate the combinatorial rank of u; (Gy).

Theorem 3.3.4. The combinatorial rank r(uf (Gs)) is 3.

Proof. Consider J = ker¢ the Hopf ideal of U, ((G2). First we address the case
where 3 is not a divisor of ¢, with ¢ = 1, and in this case the height of all PBW-
generators from list (3.2) is h = t. As J C G(X)®@, from Proposition 3.3.1, the
only skew-primitive elements in J are [A]" = z} and [F]' = a%. We define .J; as the
Hopf ideal of J generated by x} and z%. Since these elements are skew-central, we

t

may consider J; as a right (or left) ideal. Now we prove that [u]' is not in J; for

[u] € {[B],[C], D], [E]}. Suppose that
[u]’ = a1y @] + agyash.

We may write y1,12 € U, (G2) in the PBW-basis and then skew-commute x{ and
xh, writing [u]’ as a linear combination of basis elements of U (Gsz). So, on both
sides of the equality we have linear combinations of basis elements, however, on the

right side we have necessarily x! or xl, on every term. This provides that [u]’ is not
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one of the elements on the right side, so we have a contradiction. Thus [u]" ¢ Ji,
unless [u] =z or [u] = xs.

From Proposition 3.2.2, we see that [B]*, [C]" and [E]" are skew-primitive elements
in Jil Thus they belong to Jo and J; C J;. As [D]* is not skew-primitive in Jil’ it
remains to notice that it is not in Js. Suppose that

[DI" = aqwn[Al" + aoye[B]' + azys[C) + auya | E]" + asys[F]'

Again we write y; in the PBW-basis and appropriately skew-commute each term [u]’,

obtaining the inconsistency of writing the basis element [D]" as a linear combination

of other basis elements. Again using Proposition 3.2.2 we see that [D]" is skew-
primitive in JiQ, so it belongs to J3. As J3 contains all the elements that generate J,

we have that J; = J and k = 3.

For the case that 3 divides ¢, analogously Proposition 3.2.2 and the fact that [u]"
is skew-central guarantees that Jy is generated by [A]" and [F]3, J is generated by
Ji, [B]%, [D]s and [E]* and Js is generated by J, and [C]’. So, again k = 3. O

As a final remark, we notice that, similarly to [15, Theorem 6.1, the result
k(ug (G2)) = 3 provides immediately the same combinatorial rank for the negative
quantum Borel subalgebra u_ (G2). As a consequence, using the triangular decom-

position we also obtain x(u,(G2)) = 3.
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Chapter 4

Combinatorial rank of the quantum

groups of type F}y

In this chapter we denote by (3, the coefficient 1 — ¢=", where n is a natural

number.

4.1 Quantum groups of type F}

In this section we are going to explicit a set of PBW-generators for U (Fy) (and
Let us first remember that the algebra U, (F)) is defined by four generators

1, To, T3, 4 and relations

[z1, [21, 22]]] = 0, [[z1, 22], 2] = 0,

(w2, [w2, 23]]] = 0, [[[w2, 23], x3], w3] = 0, (4.1)
(23, [w3, 24]]] = 0, [[23, w4], 24] = 0,
(21, w3] = 21, 24] = [w2, 24] = 0,

where the brackets mean the skew commutator (2.1). Relations (2.12) take up

I and

the form piy = pay = P35 = Pl = ¢% P21 = ¢ = DasPs2, PsaPaz = ¢
P13P31 = PraPa1 = PaaPsz = 1. In what follows we shall suppose that ¢ # 1.

In the following theorem we present a PBW-basis of U (F}).
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Theorem 4.1.1. The values in U (Fy) of the elements

s

[A] = 21,

[B] = [951,$2],

[C] = |21, 12, 23]

[D] = [z, [[z2, zs], z3]],

[E] = [[z1, [[w2, z3], z5]], 2]

[F] = [z1, [, [25, 24]]].

[G] = [z1, [[z2, [23, 24]], 73],

[H] = [[z1, [[x2, [w3, 2a]], 23], [[21, [[72, [23, 24]], 23], 22]]
] = [[z1, [[z2, [z3, m4]], 73], 22]

[J] = [[z1, [[22, [73, 24]], 23], [2, 73]

(K] = [z1, [[22, [23, 24]], 23, 24]],

[L] = [[z1, [[z2, [x5, 24]], [25, 24]], 2],
[M] = [[z1, [[x2, [23, z4]], [23, 4], [22, 23],

[N] = [[z1, [[2, [x5, 24]], [25, 24]], [[22, 23], 5]],
O] = [[[z1, [[x2, [25, 24]], [23, 4], [[22, 23], 23], 2],
[P] = 2,

Q] = [12, 73]

[R] = [[z2, x3], 3],

[S] = [@2, w3, z4]],

[T] = [[z2, [23, 24]], 23]

[U] = [[w2, [x3, z4]], [25, 24]]

V] = s,
(W] = [x3, 74],

[X] = a4,

(4.2)

form a convex set of PBW-generators for U (Fy) over k[G], and each element has

infinite height. If we suppose that x1 > x9 > x3 > x4, then A> B> ... >W > X.

Proof. This statement follows from the fact that U, (Fy) is a bosonization of a

Nichols algebra generated by z1, x9, x3, 4 and the results from [3, Section 4B]|.
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Now we have to see that all heights are infinite. Consider [u] an element from
list (4.2). With a simple calculation we obtain that p([u],[u]) = ¢ for [u] €
{[C], [F1, (G, (1), [7], (M1, @1, [S), [T1, V], WL [XT} and p([u], [u]) = ¢* for [u] €
{[A],[B], D], [E], [H], [K], [L], [N],[O], [P], [R],[U]}. If ¢ is not a root of 1, then
p(u,u) is not a primitive t-th root of 1 for any ¢. From Definition 2.2.10 we have
that h([u]) is infinite. If ¢ is a root of unity we also obtain that h([u]) is infinite, in
the same way of Remark 3.1.2. n

We notice that the PBW-basis obtained in the previous results is a convex basis.
From Proposition 2.4.5 it is also the unique PBW-basis constituted by the hard
hyper-letters.

Now we prove results to calculate the height of the elements in the list (4.2) in
u (Fy) when ¢ is a root of 1. In order to simplify calculations, in the Appendix we

list all the commutators between the basis elements.

Proposition 4.1.2. The derivatives of the elements from the list (4.2) are given in

the following table:
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O Oy O3 | 04
[A] 1 0 0 0
[B] Baxs 0 0 0
[C] Ba[Q)] 0 0 0
[D] Bo[R] 0 0 10
[E] 53 [R]xa — B1B2ps2 [QP 0 0 0
[F] B[] 0 0 10
G] Bo[T] 0 0 10
[H] a[T][I] + 6[0] + v[R][L] + wa2[N]+
AQP[R] + p[S][] + plQI[M] + 7[Rz K] 0 0 10
[] — 1 Bap32[S1[Q] + 53T 0 0 0
[J] 5132[T[Q] — B1Baps2[S][R] 0 0 0
[K] 52Ul 0 0 10
[L] B3|U)xo — B1Bapsapaz[ST? 0 0 0
[M ] 55 [U} [Q] - 5221742]743 [T] [S] 0 0 0
[V] BUNR] — Bipazpas[T) 0 0 10
O] 55’ [U][R]zo — 53]942]943 [T] Tg + 521332]?42294361 [T]1S]1Q]—
51531732 U] [Q] 5152]932]942Q[ ] [R] 0 0 0
[P] 0 1 0 0
Q] 0 Baxs 0 0
[R] 0 1 Box 0 0
[5] 0 Ba[W] 0 10
[T 0 B1Pe[W]zs | 0 0
Ul 0 BiB[WP | 0 | 0
V] 0 0 1 0
(W] 0 0 Bizy | O
[X] 0 0 0 1

0= 52]9212?2420512?342741(14‘61)_1
gt —1), w = b1 PapiP3oPs3apaPang (1 — g1

Here o = [33q,

(14+¢7'—4?), v = B1Bapaipazpizq(q—

q2), A = =B BaprapiapaPiaPisqt, 1=

—ﬁ§p31p§2p34q3, P = ﬁ152p31p§2p41p42p43q2(1—q+q’1) and T = 51531912]?321741]7222923614-

Proof. Since [A] = x4, [P] =z, [V] = 23 and [X] = x4, from the definition,

O([A]) = 1, 9,([A]) = 0 for i = {2,3,4};
95([P]) = 1, 9([P]) = 0 for i = {1,3,4};
A([V]) = 1, 0,([V]) = 0 for i = {1,2,4);
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o4 ([X]) =1, 0;([X]) =0 for i = {1,2,3}.
For [B] = [x1, 23] = x129 — p1awazy, we have
81([3]) :al($1$2) - p1281($2$1)

=01 (x1)22 + p112101 (z2) — P12(O1(22)T1 + Po1220: (1))

=Ty — P12Pa1T2 = BaTo

and 0;([B]) = 0 for i = {2,3,4}.

For [Q] = [z, x3] = 223 — Pazx3xo, We have

32([@]) 252(272953) - p2332($39€2)
=02(22) T3 + P22w202(13) — P23(02(x3) T2 + P327302(22))

=T'3 — Pa3P32T3 = Pas

and 0;([Q]) = 0 for i = {1,3,4}.

For (W] = [x3, x4] = 2324 — psaz4xs, we have

33([W]) 233($3$4) —p3483(:r4x3)
=03(23) T4 + P332303(04) — P34(03(4) T3 + Pazr403(23))

=Ty — P3aPa3Ts = (174

and 0;([W1]) =0 for i = {1,2,4}.
Now for [R] = [[z2, 3], 3] = [[Q], z3] = [Q]zs — p2spsszs[Q)], we have

82([3]) 232([Q])$3 + P22D32 [Q]az(ifza) - p23p33(82(933)[Q] + p3293332([Q]))
25233;%, - 52]9231?32]933%% = 515295%

and 0;([R]) = 0 for i = {1, 3,4}.
For [S] = (22, [23, 24]] = [22, [W]] = 22[W] — pasp2a[W]za, we have

0([S]) =8u(2)[W] + pagado([W]) — Daspaa(Ba([W])a + psopas[W]0a(x2))
=[W| — paspaapsopas|W| = o[ W]

and 0;([S]) = 0 for i = {1, 3,4}.
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Again, for [T] = [[S], xg] = [S]l‘g — p23p33p43$3[5], we have

82([TD 282([5])903 + p22p32p42[5]02(x3) - p23p33p43(32($3)[5] +p32:70332([5]))
=Ba2[Wlxs — Bapaspsapsspasts[W] = B152[W]ws

and for ¢ = {1,3,4} we have 0;([T]) = 0.
For [U] = [[S], [W]] = [S][W] — pasp24q[W][S], we have

% ([U]) =02([S])[W] + paapaapaz[S102([W]) — pasp2aq(Oo([W])[S] + psapaa[W102([S]))
=03 [W]2 - 52]923]?24]?32174261[”/]2 = 5152[W]2

and 0;([U]) = 0 for i = {1, 3,4}.
For [C] = [21, [x2, z3]] = [21,[Q]] = #:1(Q] — p12p13[Q]z1, we have

1 ([C]) =01(21)[Q] + pr12101([Q]) — Pr2p13(01([Q]) 21 + P21p31[Q]01 (1))
:[Q] - p12p13p21p31[Q] = [y [Q]

and for ¢ = {2, 3,4} we have 0;(|C]) = 0.
Now for [D] = [z1, [R]] = 21[R] — p12p3|R]z1, we have

O1([E]) =01 (x1)[R] + p112101([R]) — propis (01 ([R]) w1 + parp5y [R]O1 (1))
=[R] — p1apispapi [R] = Ba[ R]

and for i = {2, 3,4} we have 9;([D]) = 0.
For [E] = [[D], 2] = [D]zs — p1ophq*x2[D], we have

O1([E]) =01([D])w2 + prupa1ps, [D]01 (22) — prapsaq”(91(22)[D] + par20: ([D]))
:52[R]$2 - 62p12p21p§2q2:c2 [R] = 53 [R]xz - 5152?32[@]2

and 0;([EF]) = 0 for i = {2,3,4}.
Again, for [F] = [9517 [S” = 21[S] — pr2p13pra[S]z1, we have

O ([F]) =01(z1)[S] + p1x101([S]) — pr12p13p1a(O1([S]) w1 + parps1par [S]01 (1))
=[5] — pr2p13p1ap2aipa1par[S] = Ba[S]

and 0;([F]) = 0 for i = {2,3,4}.
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For [G] = [1, [T]] = 21[T] — p1apisp1a[T)z1, we have

1 ([G]) =01(21)[T] + pr12101 ([T]) — p12pispra (01 ([T)) 1 + p2rp3pa [T)01 (21))
=[T) — propisprapap3,pai[T) = Ba[T)

and 0;([G]) = 0 for i = {2,3,4}.
Now for [I] = [[G], 23] = [Glza — p12D3ypa2¢?x2|G], we have

al([[D Zal([G])I2 +p11p21p§1p41 [G]31($2) - p12p§2p42q2(31 (%)[G] +p21x281([G]))
=[o[ T2y — Bopropn Do [T]pang® = —P1Papse[ SNQ] + B3 [T

and 0;([1]) = 0 for i = {2, 3,4}.
For [H] = [[G], [1]] = [G][I] = p12p3opa2q*[I][G], we have

O1([H]) =0 ([GDII] + prupa1p3pa G101 ([1]) — prapiapazd® (01 (1) [G] + praps p3ipa [1101([G]))
=Bo[T)[I] + pr1pa1p3ipar (81 Bepa2[G[S1[Q] + B3[G] [T x)—
—P12P39Pa2q” (— 1 Baps2 SI[QIG) + B3 [T)2[G] + Baprivyypipar [1][T1)

Using the appendix formulae, we have

Ov([H]) =B3q[T[1] + Baparpaapiipsapsn(1+ @) (1 + ¢ = ¢*)[O]+
+ 51 oparpapisq(q — ¢~ — 1)[R][L] + 515205, P3opsapaipazg’ (1 — ¢~ — ¢~ 2)aa[N]—
— 531 Bop12piapa Paalisd [QIPR] — B3psipiapsaq’[S][J]+
+B1 B2p31050pa1Pa2pa3q” (1 — ¢ + ¢ ) [QI[M] + BiB3p1opsopapiapisq [R]ws [ K]

and 0;([H]) = 0 for i = {2,3,4}.
Now for [J] = [[G]a [QH = [G]Q] - P12P13P32P12Pa3G° [Q[G], we have

31([J]) 281([0])[62] +p11p21p§1p41[G]31([Q]) - p12p13p32p42p43q2(81([Q])[G] +p21P31[Q]31([G]))
=0 [T] [Q] - 52]312]913p21p31p32p42p43q2[Q] [T] = 15 [T} [Q] — B1P2p32 [S] [R]

and 0;([J]) =0 for i = {2, 3,4}.
For [K] = [xb [UH = 11[U] = p12pispiy[Ulz1, we have

91 ([K]) =01 (1) [U] + p112101([U]) — p12pispis (01 ([U))x1 + parp3ipi: [U)01 (1))
=[U] — propisptapaipipii [U] = Bo[U]
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and 0;([K]) = 0 for i = {2, 3,4}.
Again, for [L] = [[K], 2] = [K]zs — p1opiepiq®ae[ K], we have

O1([L]) =01 ([K])z2 4 pripa1ps vt [K]01 (22) — prapiapiag” (01(22) [K] + parx201 ([K]))
=B5[U) s — BaprapaiP3epiad’ra[U] = B3[Ulwa — B1BapsapaalS]?

and 0;([L]) = 0 for i = {2,3,4}.
For [M] = [[KL [QH = [K] [Q] - p12p13p32p4212pz213q2 [Q] [K], we have

01 ([M]) =01 ([K])[Q] + pripa1ps p3 [K]101([Q]) — praprapsapiopisd® (01 ([Q]) K] + paipsi [Q)01 ([K]))
:52[(] ] [Q] - B2p12p13p21p31p32p22pi3q2 [Q] [U ] = 53 [U ] [Q] - 53]0421743 [T} [S}

and for i = {2, 3,4}, we have 0;([M]) =
Now, for [N] = [[K], [RH [K][R] — p1opispiapisd’ [ R K], we have

O1([N]) =01 ([K])[R] + prp21p3ip31 (K101 ([R]) — propispiapisa® (O ([R]) K] + paip3, [R]01 ([K]))
=BolU][R] — Baprapispa a1 p1aPssq” [RI[U] = B3{U][R] — B3paopas(T)

and for i = {2, 3,4}, we have 0;([N]) = 0.
FinaHY7 for [O] = [[N]7 x?} - [N]xQ - p12p§2p4212q4x2 [N]J we have

A1 ([0]) =0 ([N])2 +p11p21p31p41[ 101 (2) —p12p§2p22q4(81($2)[]\f] + pa12201([N]))

_522[[]][ |z — 5220421?43 [T] T2 — P12p21p§2p4212q4(522372w] [R] — 5§p42p43372[T]2)
—ﬁg [U][ ]372 - 531942]043 [T]sz + 5:23])32]942]?43Q[T] [S] [Q] - 51531732[[]] [Q]z—
—5 62p32p42Q[S]2 [R]

and for i = {2, 3,4}, we have 0;([O]) = 0. O

Lemma 4.1.3. Let [u] be an element from list (4.2). We have

([, [[u], - [[ul, 0:([u])], -~ ]] =0, (4.3)

for U= 14f [u] € {[A],[B], [D], [E], [K], [L], [N],[O], [P}, [R], [U], [V], [W], [X]} and
b= 24f [u] € {[C], [F], [G], [H], U], [J], IM], [Q], [S], [T}, with i € {1,2,3,4}.

Proof. Here we use the list in the Appendix and formulas (2.2) and (2.3). From now

on we consider a,b,c,--- ,x,y, 2z belonging to the field k.
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First if [u] = [A] = 21 we have [[A],8;([A])]

= [z1,1] = 0 and if [u] = [B], we
have [[ ,0:([B ])] Ba[B, x2) = 0. In the case [u] =

[C], then

[[C],0:([C])] = B=[[C], [Q]] = Ba(ax2[D] + b[E]),

[[C1, [IC], an([CN)]] =¢[[C], %] [D] + da [[C], [D]] + e[[C], [E]] = 0.

we have [[D], 04((D])] = 5[], [R]] = 0.

[—
)

=
I

[F], we have

[[F), 0u([F])] = B2 [[F, [S]] = aw2[K] + bIL],

[[F), [[F]. 01([F])]] = e[[F], 2] [K] + da [[F], [K]] + d[[F], [L]] = 0.
For [u] = [G],

(G, 01([G])] = Bo[IG], [T]] = a[N] + b[R][K],

(@), [[6], an([GN]] = e[l6), [N1] + d[[G], [R]] [K] + e[R][[G], [K]] = 0.

In the case [u] = [H], we have

(], 0u([H])] =a[[H], [T]}[1] + b[T][[H], [1]] + c[[H], [O]] + d[[H], [R]}[L]+
+e[R][[H], [L]] + f[[H], z2] [N] + gz [[H], [N]] + h[[H], [Q]][QI[ K]+
+[Q[[H], [QN)[K] + j[QP[[H], [K]] + Kk[[H], [S]] [J] + I[J][[H], [S]]+
+m([[H], [QI] [M] + n[Q][[H], [M]] + o[ [H], [R]}x2[K] + p[R][[H], x2] [K]+
+q[Rlz[[H], [K]]
=r[NJ[I]? + s[M][J][1] + Q][ K][J][I] + w[R][K][I}* + v[L][J]* + was | K][J]

where 1 = —B7 Bopropisp1ap3spaupsad® (1 + ¢2), s = Bifsp1ap1sprapsapiag (1 + ¢°),

t =0, u = B850 13p1aP3sPasd® (1 + ¢2), v = B1B3p1ap1apsaps1psapia®(1 + ¢%),
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w = B3p2ap1ap31P5epasq (1 + ¢?), so they are all zero if ¢* = 0, and

[(H], [[H], on([HD]] = [[H], IN]ITT*] + s[[H], [M][J)[1] + o [[H], [L][J]"]+
+t[[H], [QU K] + = [QI[[H], [K][][1]] + w[[H], [R]}[K][1]*+
+y[RI[[H], [K][I]*] +w([H], 2] [K][J)* + 22 [[H], [K][J]*].

As = [[H], (1] = [[A], 7] = [[#), (K] = [[#], (1] = [[H].[M]] = [[H],[N]] =0,

we have

[[H2], [[H], 0u((H])]] =t[[H]. [QI[K]][I] + u[[H], [R] [K][1]* + w[[H], z2] [K][J]*
= — B1B3paptsp1apsapaopasq’ (B + Boq + Prg + Bod®) NN K] ] I]+
+ 5183 P oD sp1aDssPaopisd’ (B1 + Baq) [T [K[1]7+
+ 81831} p1ap31 P5ap3apazg ™ (Br + B2q) 1T [K][J]°.

Commuting the terms so that they are elements of the base, that is, in the form
[K][J]?[1]?, we have [[H], [[H],@l([H])H =0.
If [u] = [I], we have

(11, 0:([D)] =a[lZ], [S1][Q] + bS] (1], Q1] + ¢[1], [T]] w2 + d[T][[1], 2]
=ex2(0] + fIQ*[L] + g[R]a»[L],

(2], [[2], 00 ([1))]] =e[1], z2[O]] + f[1], [QI}QIIL] + RIQI[[1], [QI}[L] + g[[1], [R]]w2[L]+
IR [[1], 22 [L]
= — BL03D1aD 5D32D22Da30 02 [ ] [QI[L] — 57 B3 piapispsapiopasq  |Q)wal J][ L]+
+ 51 B3 PP piapa [Q)[ ] [L].

Placing the elements in the form [Q]z[L][J] we have [[I], [[I],0:([1])]] = 0.

In the case [u] = [J], we have

171, 00([ID)] =a[[J], [11][Q) + b[TT[[J], [@D)] + ¢[[], [ST][R] + d[S][[J], [R]]
=e[Q[N] + f[R][QI[M] + g[R]z2[N] + h[R][O],



For [u] = [L], we have

[[L], 0u([L])] = a[[L], [U]]w2 + BIU][[L], w2] + c[[L], [SI}[S] + d[S][[L], [S]} =0,

and for [u] = [M],

In the case [u] = [O], we have

[[0],0:([0)] =a[[O], U] [R :r:2+bU][[O] [R]z2] + c[[O], [T*] 22 + d[TT*[[O], 2] +
+e[[O], [T7][S] FITY[0], 1811Q1] + ¢[[O], [UN[Q)? + rlU][[0], [Q] +
+i[[0], [S)?] [RJ [SJ (0], [R]] = 0.
Since 9;([u]) = 0 for [u] € {[A} B ] (CL, DL, [E]L [FI, (G, [H] (1, [, (K] (L], [M], [N, [O1
i€ {2 3,4}, we have [[u], 9;([u])] =

If [u] = [P] = o, Wehave[P] )]—[ 1] =0.
For [u] = Q). we have Q). a2<[@m ~ B[1Q) 23] = AR and

Q1 [[Q], 22(1Q)]] = B=[[Q), [R]] = 0.

[R], we have [[R],0:([R])] = B18:[[R], 23] = 0, since [[R], z3] = 0.

[S], we have

or [u]
H=

[[S1, {151, 2a([SD]] = B2[[S], [[S], W] = B2 [[S]. [U]] = 0.

In the case [u] = [T, we have
(7], 0:([T))] = a[[T], [W]] s + bW][[T], 23] = ca3[U].

Since [[T], 23] = [[T7], [U]] = 0, we obtain [[T], [[T],8:([T])]] = 0.
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If [u] = [U], we have [[U],05([U])] = B1Bo[[U], [W]?] = 0.

Since 0;([u]) = 0 for [u] € {[P],[Q],[R],[S],[T],[U]}, i € {1,3,4}, we have
[[u], 0:([u))] = 0.
For [u] = [V] = a3, we have [[V],05([V])] = [z3,1] = 0 and if [u] = [W], we have

(W), 35((W])] = 81 [W], 2] = 0.
Since 9;([u]) = 0 for [u] € {[V], [W]}, i € {1,2,4}, we have [[u],@,([u])} =0.

Finally, if [u] = [X] = 24, we have [[X],0,([X])] = [24,1] = 0 and [[X], 0;([X])] =
0 for i € {1,2,3}. O

Theorem 4.1.4. If g has finite multiplicative order t, t > 3, then the values in
uf (Fy) of the elements from list (4.2) form a set of PBW-generators for uf(Fy)
over K[G]. The height h of [u] € {[C], [F], [G], [1], [J], [M], [@], [S], [T1, [V], W], [XT}
equals t. For [u] € {[A], [B], [D], [E], [H], [K], [L], [N], [O], [P, [R], [U]} we have h =

tiftis odd and h =L if t is even. In all cases [u]" = 0 in u (Fy).

Proof. This statement is true due to the fact that the hyper-letters of the list (4.2)
are hard hyper-letters in u; (F}y). From Theorem 2.3.3 we have that the elements
from list (4.2) form a set of PBW-generators for .} (Fy) over k[G].

Now we prove their heights.

We notice that, if p(u,u) is a h,-th primitive root of 1 and

~
hy—1

then from Lemma 2.6.2 we have 9;([u]™) = 0 in u} (F}).

For [u] € {(C], [F), [G), (1], 1], (M, [QL, [S), (7], [V}, (W]}, we have p(u,u) = g.
As ¢ is a primitive t-th root of 1 then h, = t. From Lemmas 2.6.2 and 4.1.3, we
have 0;([u]’) = 0 in uS(F,) for i = 1,2,3,4 and ¢t > 3. We apply the Milinski-
Schneider criterion (Lemma 2.6.3) and we obtain [u]' = 0. So h([u]) = t for [u] €
{[C].[F], 1G], 1], [J], [M], (@], [S], [T, [V], W], [X]}-

In the case [u] € {[4],[B], D], [E],[H], [K],[L],[N],[O],[P],[R],[U]} we have
p(u,u) = ¢®. Again ¢ is a primitive ¢-th root of 1 then h, = t if ¢ is odd and
h, = £ if ¢t is even. From Lemmas 2.6.2 and 4.1.3, we have §;([u"]) = 0 in
u(‘;(F4) for + = 1,2,3,4 and t > 3. We notice that, as explained in the proof
of the previous Lemma, altought [[H],8;([H])] is not zero in general, it annuls
itself in the specific case ¢* = 1 as all the coefficients have the term 1 + ¢°.
By Milinski-Schneider criterion, we have [u]"™ = 0. Then the height of [u] €
{141, [B],(D), (E), [H], [K], (L], [N, [0}, [P}, [R], [U) [X]} s  or . s
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4.2 The coproduct formula

From now on we suppose that z; is an element from the set {x1, zo, 23, x4}. Simi-
larly g; belongs to the set {g1, g2, g3, 94} and for simplicity we denote the group-like

element g;, gi; - - - 9, DY Giris...in-
In the next lemmas we explicit some formulas that are useful to prove Theorem
4.2.5.

Lemma 4.2.1. Let u,v be homogeneous elements in U (Fy). If [u,w] = 0 then

[, [v, w]] = [[u, v], w].

Proof. From [u,w] = 0 we have uw = py,,wu and

[u, [v, w]] = ulv, W] — puvPuw(v, wlu
= UVW — Py UWV — Py Prurs VWU + Py Prro P WUU
= UVW — PyuwPuuw WUV — puvpuwp;livuw + PuvPuwPowWOU
= (U0 — PuVU)W — PrawPowt (U — Pyuyvtt)

= Hu7 U]v w]’

L]
Lemma 4.2.2. Let x;; = [z, ;] and gi; = gig;, with 4,5 € {1,2,3,4}. We have
that A(I'U) = :Eij ® 1 —I— gij ® xij + (1 — pz]p]z)l‘zg] ® ZE]'.

Proof. As A(z;) =x; ® 14 g; ® x; and A is linear and multiplicative we have

Alziy) =Awiz; — pijrja:) = Ax:) Az;) — pi Alr;) Alz;)
=(r; @149 Rx)(x;@1+¢; @) —pij(z; @1+ g; @ z;)(x; ® 1+ g; @ x;)
=22, @1+ 2,9, @) + giv; @ 13 + 935 @ 1,75—
—Dij %% @ 1 — pijx;gi @ T — PijgiTi @ Tj — Pijgij @ L5
=23 @ 1+ gi5 @ x5 + :9; @ Tj — PijPji%ig; @ Tj + Pij %G @ Ti — PijT;9i © T;
=2 @ 1+ gij @ x5 + (1 — pijpji)ig; @ ;.
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Lemma 4.2.3. The coproduct of the element [[x;, x|, x)| is given by the formula

A([[zi, x4, zx]) =[[75, 25], 78] @ 1+ gijr @ [, 75], 78]
+(1 — pikPriDikPk; ) Tii Gk @ Ti + (1 — DisDji)DjkTing; @ T+
+(1 — pipji) (1 — Pirbri)Tigjn @ xjxk + (1 — pijDji)DikPriTigje @ Tjk.

Proof. Using that A is linear and multiplicative and from the previous lemma we

have

A([[zi, zj), ]) =Alziar — pwpintrry) = Alwi) Alwr) — pipirA(wr) Alzy;)
=25 @1+ g5 @ wij + (1 = pigpi) 2ig; ® ) (25 @ 1+ g @ ) =
—pikPjr(Tr @ 1+ gr @ xp) (i ® 1+ gij ® @5 + (1 — pypji) w195 @ x5)
=205 @ 1+ gijrr @ x5 + (1 — pispji)Tigixr @ xj + gk @ T+
+9ij9r @ Ty + (1 — Pijpji)Tigigr @ TjTk — PikPikTrTij @ 1 — PikDikThGij & Tij—
—pirPjk(1 — DijDji)Trigj @ Tj — PikDjkGrTi; @ Tk — DikPikIrbij © TrpTij—
—pirPik (1 — DijPji) grTigs @ T
=(24j) — PikPjuTrTij) @ 1+ giji @ (24T — DikPjkTrTij) + (1 — DikPriPikPhj)Tij Gk & Tit
+(1 = pijpji) (Pjetitn — Pirpitati)g; @ x5 + (1 — pigpji)Tigin @ (T2 — PikDriDjkTrT;)
=[lzi, 5], 2] @ 14 gz @ [[w3, 5], 2]+
+(
+(

1 — pikPriPjxPrj)Tijgx © T + (1 — pijpji)pirting; © T+
1 —pijpii) (1 — pikpri)Tigje @ Tz + (1 — pijpii)PikPriTigik & Tk

O

Lemma 4.2.4. The coproduct of the element [[z;, [x;, xk]], x1] is given by the formula

A([[ws, [z, 2]l m]) = [[m3, [2, 2]l 2] @ 1+ gija @ ([, [, 2], 2]+
+ (1 = papuapjpipripie) [, [T, 1]t @ 21+ pjupr(1 — pijpjiParPri) Tagie @ Tjp+
+ pigpupri(1 = pixPrj)Tjigin @ Tar, + (1 — pijpjiDinDri) Tigim @ [[25, 21, 1]+
+ pra(1 = pjrprg) ([[26, 5], m1] + pij(1 — pixpra) vz + pigpa (1 — PirPri)Tj2i) gr @ Tt
+ pjlpkl(l - pilpli)(l - pijpjipikpki)xigjkl K T + pij<1 - pjkpkj)l’jgikz X [[3317 -iﬁk], iUz]
+ pijpilpkl<1 - pjkpkj)(l - pjlplj>37jgikl @ 1T+
+ (1 = pjwprj) (Tij + 0ij (1 — pirPri) i) grr @ Tpat
+ pri (L — papupjipi ) (1 — pixpis) (2ij + Pij (1 — DikDri)T52:) Gy @ 21
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Proof. First we notice that

A(lwi, [z, ze]]) = Alzi) Awjn) — pijpin () A(w:)
= (2 @ 1+ g; @) (i © 1+ gjp @ Ty, + (1 — pjrpay) 259 © 1)
— pijPir(Tjk ® 1+ gji ® T + (1 — pjprs) 295 @ x3) (2 @ 1+ g; @ ;)
= 25 @ 14 291 @ Tjp + (1 — pjrDij) i gk @ Tp, + gijp, @ T+
+ gijie @ Tk + (1 — PjkDij) GiTigk ® iy — PijPikTikTi @ 1 — PiiPirgjn®i @ Tjn—
— DijDik(1 — DD )T 9kT; @ Tk — PijPikTinGi ® &5 — DijDikGijk @ Tjpli—
— piDik(1 — DD )T Gike @ i
= [wi, [z, 2]] ® 1 + giji @ w4, [xg, 2e]] + (1 — pijpjipinpri)Tigjr ® T+
+ pij (1 = pjeDrs) 2 Gik @ ik + (1 — pjnp; ) (@ij + pij (1 — pirbri) T2 g © T
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Now we have

A{[wi, [z, zi]l, mi]) = Al[w, [25, 2] A1) — papjipA(@) Allzs, [25, 1]])
= ([zi, [7g, 22]] @ 1+ gijie @ [, [25, 2k]] + (1 — DijpjiPikPri)TiGjk @ Tjpt+
+ pij (1 — pjkPi;) T Gik @ ik + (1 — pinbi; ) (@ij + pij (1 — pirDri)xj2:) g @ )
(@14 g @) — pupjipr (21 ® 1+ g ® x7)
([, [z, 2]] @ 1+ gijie @ (4, [25, 21)] + (1 — PijpjiPikPri)TiGjk & Tjn+
+ i (1 — pjkDi;)Tigir @ i + (1 — pjeprj)(@ij + pij (1 — pirbri)2:) g ® )
=[x, [zj, zel]o @ 1+ gijrar @ (24, [z, 2p]] + (1 — pijpjiDinPri) i1k @ Tjp+
+ pij (1 = pjePr;)T21Gik @ Tir + (1 — pjrprj ) (@ijzr + pij (1 — DikPrs)Tj2:20) g @ g+
+ [, [, 2] g @ 21 + Gijia @ [z, (25, 2]z + (1 — pijpjiDiePri) T @ Tjkxi+
+ 0i; (1 = pjeDr;)Tigir @ iy + (1 — pjeprj) (@ij + Pij (1 — Dirbri)22:) Gy @ 207 —
— paPipr (L@, (25, 2]] @ 14 219550 @ [24, [, 23] + (1 = PijPjiPikPri) Ti%i Gk & T+
+ pij (1 — pjkPi;) 212 Gik @ Ti, + (1 — pjrprj ) (@ixi; + pij (1 — pikbrs) T122:) g @ T+
+ gz, [z, k)] @ 21 + Gijr @ x4, (25, 2] + (1 — DijDjiDikPri) ik @ 21T+
+ pi (1 = pjkbis) 912 Gire @ T1xi + (1 — pjepr;) 91(xi; + 0ij (1 — DikPri)Tj2:) g @ 1))
= [[xi, [z5, x]]s ©1) @ 1+ gijrr @ [[xi, [z, xx]], 2] + (1 — pupupapiiprapie) (@i, [T, Tx] i
+ (1 = pijpjipikDri) PaPrITiZ1 — DaPjPuiTiTi)Gjk @ T i+
+ pij (1 — pjxprs) (PapriTjTr — papaPriit;)Gix @ Tip+
+ (1 - pjkpkj)(pklﬂfijlﬁl - Pupjlpkl?ﬂzl'z’j)gk &K+
+ Pij (1 — pjprs) (1 = DirDri) (PR 0521 — PaPjPrT1Ti0:)gr @ T+
+ (1 — pijpjiPikPri)TiGjm @ (TkT1 — PuPuPjPRTIT 1)+
+ pij (1 — DjkPr;) TGt @ (TikTi — DaDjPriPL 1T )+
+ (1 - pjkpkj)xz‘jgkl ® (fim - pilpjlpkzpliplszwk)+
+ pij (1 — pjepis) (1 — DikPri)TiTiGr @ (Trxi — PaPjPriPliPi; Liy)-
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AS Ty = [Ty, Ty] = Tyy — Pun®o®y, for all u, v, we have

A({[wi, [z, zill, mi]) = ([ [25, 2al], 2] © 1+ gigua @ [[w3, [, 2], w]+
+ (1 — pupupjipiipripix) [, [, 2] |91 @ 21 + pjipri (1 — pijpjiDiePri)Tugin @ Tjk+
+ pijpapri (1 — pixpPrs)Tigir @ Tar + (1 — pigpjiDirPri)Tigim @ [[25, 21], 2]+
+ P (1 — pjrpr) ([, 5], 1] + pij (1 — pixpri)xjzi + pijpia(1 — PikPri)Tj%i) gr @ T+
+ pipri(1 — papii) (1 — DijDjiDikPri)TiGjr @ 1%k + Dij (1 — Djrbrj )T 9irt & [[T4, Tx], 2]
+ piipuPr (1 — piepi; ) (1 — pjpij )% G @ T2+
+ (1 = pjeprs) (@ij + pij(1 — PirPri)T5 i) grt @ Tra+
+ pri(1 = papupipi;) (1 — pieprs) (i + pig(1 — PirDri)T%:) G @ 1T

]

Now, using the previous lemmas, we are able to present the coproducts of the
PBW-generators, which we are going to use to obtain the combinatorial rank of the

considered quantum algebra.

Theorem 4.2.5. The explicit coproduct formulas for the PBW-generators of list
(4.2) are:

o A(A) =A(m) =m1 ®1+ g1 ® 1

o A([B]) = [B]® 1+ g12® [B] + far19: ® 22

o A([C]) = [Cl @ 1+ g125 ® [C] + B2[Blgs ® w3 + Bow1g23 ® Q)]

o A([D]) = [D]@1+g1233@[D]+ Bo1 9233 @ [R] + 1 2 Bl g3 @23 + Bapsz [Clgs @ 25

o A([E]) = [E]®1+ g12233 R [E]+ B2 D] g2 @ 2+ Bop32q[ Bl goss @ [R] + B3 21 G233 @
[R]zg — B1F2p3271 92233 @ [Q)* + 5155 [Blgass @ w32 — [152ps2(1 + q)[Blgass ®
23(Q] + 83¢[Cgas @ w32 — Bop32q[Clges ® Q)

o A([F]) = [F]®1+ gra3a @ [F] + 219234 ® [S] + B2[Blgas @ [W] + 1[Clgs @ 14

o A([G]) = [G] ® 1 + 912334 @ [G] + Baw1gassa @ [T] + f1[Flgs @ 3 4 F7[Cgas @
T4x3 + (10439[Cgsa @ W] + B1pas[D]gs @ 4 + B182[Blgssa @ [Wws

o A([H]) = [H|®14g11222333344 @[ H |+ 1 B2 |G g2 @2+ 51 Bapaspasq|G] [ E ga®@x 4 —
1820324 |G [ F 9232 Q)+D320420% (53 [G][ B+ 7031032 (2q+51) [F1[C]) 923342 [T+
1 Bop31D3op12Pa30° [ F] [ E] g3 @ [W]—B1psapaspasq® (B2 [Gl[Cl+Bipsipse [ F][D]) g23a®
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[S]+BYp12032pa1 P3P 30 (B[ D) gaa @3+ 61 33q(G [ F 923322+ 61 B3 pasq® ([G][Cl+

B1ps1p32q[F[D)) gass ® (Wl + £153p439(G)[D]g2s @ w420 —

—ﬁ%ﬁ§p§1p§2p41pi2q3 [B]1 922333344 @[ T'] 2—1‘5361[@]%1922334@ (T4 —5%52]932Q([G] [Cl+

310324 [F][D]) 9231 024[ Q] — b1 33324 [G 1 922334 [ S] Q] — 1 Bapsapazpasq® (B [G] [ B]+

Bip310324[F)[C]) 92334 @23 S|4+ 524G 9122334 @ 1] — 1 Bops2q( 52 |G [ Bl+Brpsipszq(1+

q + B1)[F][C])g2sss @ [W][Q] — Bap31p39034G° [Fgr1223331 @ [J] +

+ 51012039041 P35 0 [ B 9123344 @ [ K+ B1p3opar Do pisq® (Bipsips2 [C1P 4856 (D) [ B]+

Bop12¢®[E) 1) 923344 @ [U] 4 b1 Bop3apa1 Piapasq® (B2 D[ B] — Bips1032q[C]?) 923344 ©

24[T)+ 5185031 D300340° [ F)21 9223334 @[S R] — B3 P31 0301344 [ F |21 9223334 @[T Q] —

5153P31p§2p41p?;2p23q2[C]$192233344 ® [T[S] + B%p31p§2p34q2[F]29233 ® [R] —

— B} Bap310390340° [ F ] 9233 @ 23[Q] + 57 Baps1psapsaqF)*gass © w520 +

+ 07 Bap12p30p a1 P3aPi30° [ E[Cg3aa @ 24[W] + Biparpaspizq(Bag — 1)[D]gr223340

[L]+ 53 B34(|G)[Cl+ps1p324 [ F) [ D]) go3a @@a 30453 fapar Piapis [ D] goaa @ wiwa+

$182q(B3(G][B] + 281 p310324[F[C)) ga3sa @ [Wxsws + 152G F 91223334 @ 3[1] +

B1Bopa1pa2pisq® (B2 —1)[Cl 912233304 @ 23| L)+ 183 12039 pa1 DioP350° [ Cl g12233344 @

2322 [ K]+ 81 pa3q[C 912233344 O (W[ ]451 Bopr20350a1 DioPids ¢ [ D] 91223314 @2 [ K |+

1820439 D] g1223344 @ 24[I] + BrpsipiepaiPazpasq® (1 — B2q)[Clgr2233314 @ [M] —

5152]3121?%2194129?12}??136.75 [C] 912233344 @ [Q][ K] — 5%1731]3%21?34612 [Cl 912233344 @ w4[J] +

57 82q[Clgr2033304 @ wa3[I] + B Popa1paspisq(Baq — 1)[Blgrasssasas @ x3[L] +

B B3 p12032Pa1P3oPi5q " [ Blgr22333310 @ 2322 K] + B185q[ Bl 122333314 © [Was[I] +

B1Bap3103opa1Pa2pasq” (1 — Baq) [ B]gra2ssssas ® w3[M] —

- 515319122932174127?1217?13615[3]9122333344 ® x3[QJ[K] — 53193129322934(13 [B]g122333344 @

(W] + 5183p31q[F 1 9223331 @ 23T s — BT B3 0310324 [ F 219203331 ® 2:3]S][Q) +

8163 p31P41P43G° [C) 2192233344 @[ W] [T |22+ 7 B3 p31041 D425 4 [Cl21 92233304 @5 [U] 22—

B3 B3 p310320410430° [C 1 92233344 @ W [S][Q]+ 51 B35 pa1 pasq[ D] 1 923344 @4 [T |0+

5%551941]742]723@2[D]I19223344 ® [U]$2 - ﬁ%ﬁ§p32p41p43q[D]x19223344 & $4[S] [Q] -

5% 522]?31]7%2]9342941 ¢ [Cl2192233344 @24 [T][Q)] —512 53293119%213411742]743 ¢ [Cl2192233344®@

[U1[Q] + Bt B3p31p41q[Clr192233344 © T43[T) 2 — 57 B3031032P41q[C 1 92233344 @

2423 S)[Q1+51 83131 pa14[ B1 92233304 @ [W |3 [T 0o+ 7 83031 Da1paap33q° [ B w1 g2333344 @

Ig[ Jzo— 51 52]031274161[ 171922333314 @ (W3] S][Q] — 51ﬁ2p31p32p41p42p43q [B]71922333344®
z3[T][S]— 51 ng31p32p41p42p43q [B]r1922333344@23[U ][Q]—51ﬁ2p31p32p34p41q3 [B]71922333344®

(WI[T][Q]+ 51@219312932]?341?41(1 [B] 71922333314 Q[ W] [S][ R]+ 5152319212731]74195%9222333344@’

[T 20— 5135 pa1D31 P320414% 7 G222333344 [ T|[S) Q]+ 5 B3 D21051 PiaP34P41 4 4 G222333344®

[ST?[R]+07 B2p310320346° [ F) [C 92334 @4 [ R+ 6 B3 031032034 0% [ F][C 92334 @ 42500 —

5%52229312932]?34613 [F][C]ga334 @ 2473[Q] + B B3 ps1320344° [F'][B]g23334 @ [W]$§$2 -

B1 530310320340 [ F][ Bl 923334 @ [W]23[ Q)+ 1 B3 310320340 [ F][ Bl ga3334 @ [W][R] +
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B3 B3pa1pa2piz ¢’ [ D][Cgasaa@xa[W o+ B1 Bapsapar Plapisa® (B1ps1ps2[C]*+ B2 [ D] [ B]) g23344®
[W1[S] + 53 Baparpaspisa® (psips2q(1 + 5152q)[CT? + B2[D][B])gassas @ [W1Pxs +
Brpsaparpazpas(Bipsips2 (B + B2 + B3)[C* — B3q[D][B])gassas ® x4 [W][Q] +

+ 6 Bap32pa1Piapis @ (B1p3132|CT> — B2 [ D] [ B]) 923344 @43 (1407 Bapar Pazpasq (55 [ D] [ B]+
Bip31032(2q+51+520°) [C)?) 923344 @[ W 339487 B3 D31 032041 P42P430° [C][ Bl 9233344 ®
[W]2$3$2—5% 53]93129:2;2}?41}?42]743613 [C][B]g233344® [W]2 Q] +5% 53193129321741]?12;2]?23612 [C]2192233344®
23[S)? + B3 330410420334 D) [Cl 92310 ® 252322 + B PapsoPa1Piaisd[ D)1 ga2s314 @

[S)? — B} Bapsopar Pa2pisq| D] [C gasas @ 23 [Q] + 57 Bap1203opa1 Piapis ¢ [ B [E] 93344 ®

(W] 2 —5% 53?311?%2]934]?41]7426_[3 [C][B] 9233344 @24 [W 23] Q] ‘1‘5% 5%17311932]?3429412?4%3 [C][B]g233344®
24 [WI[R]+533 B3ps1032034041424° [C[ B] 9233304 Q@4 [W a0+ 03 B3 031 D3oP34p 1112 B]? 92333344 R
[W2a3ao+ 67 55051 0320340410426 [ B]? 92333344 O [W1? [ R]— 57 p310320340° [C 912233344 @

23 J]+ B 310320 41P42G[C1 23344 @ T3 [R] + 7 B2031 032041042 [C]° 13304 @ w0520 —

B1 Bop3103204142G(C)? 923344 @323 [Q1+ 37 ops1 D3p3apa1 ¢° [C 2192033344 @ w4 [ S] [R]+

B 33131 D32041 P39Pi5 4| B 1 922333304 @23 [ S|+ 7 5303, Do P3apa1pazq’ [ B] w1 922333344 ®

[U][R] + Bap310303ap1p420> (5147 — 1)(1 + ¢) 7' [Bl 122333344 © [N] +

+ B1Bap120320110350330° [ B 9122333344 © [R][K] + Boparpaapiipsapan (1 +¢)~H(1 —

¢°+q )T 1g1220333344 © [O] + B1 fap31 PaapsaparPazg (1 — ¢ — %) 0191222333344 @

23| N+ 51 fapaiPazpis(—1—q+G7) 2191222333344 Q[ R] [ L] 451 B3 D12D39 P41 PiaPisq 191222333344 D
[R]2o[ K]+ 3321 91222333344 @ [T | [ 1]+ 1 Bop31 P3ap a1 Pazpasq” (1 —q+q~ 1) 2191220333304

[QI[M] — B} BapropiaparPiapisq* 1191222333304 @ [QI[K] —

— B3P31P39P34G° T1 91222333314 @ [S][J]

o A1) = [I] ® 1+ gi2o334 @ [I] + (2[Glga ® w2 + Bop3ypazq[Blgasss ® [T +
B1pa2pa3[E]91 @24 — B1p3a[F]gaz @ [Q]+ 5182 [ F ga3 @ w372 — B1p32P42Pa3q[C 9234 @
[S]+ B182p439[Clg23a @ [W]za + B182pa3[D]gas ® w425 — B7p32[Clgass @ 24[Q] +
51 62[Cgass @432+ 153 Blgassa @ (Wl szo — b1 Sopsapaspaszq[ Bl gassa @3] S] —
182p32[Bgasss @ [W][Q] + 8321922334 @ [T]x2 — 1823271922334 @ [S][Q)

o A([J]) = [J] ® 1+ gra23334 @ [J] + Bi[l]g3 @ w3 + Bip3apaopas|Clgassa @ [T] +
312219223334 [T][Q] — 1 Bop321 9223334 R[S [ R+ 57 [ F ) 9233 @3 [ Q] — B132 [F] g233®
[R]+ B7p13a]C 92331 ® W][Q] — Bipazpis (1 + @) [Clgasa1 @ w3[S] + B pas[D] 9231 @
24]Q) — B1pa2pis[D]gasa @ [S] + 57 [Clg2ssa @ x43[Q] — Bip32[Clgassa @ x4[R] +
Bipazpas|E)gss ® xax3 + B3 62[Blgassss @ [Wxs[Q] + B162psepazpas[B)gesssa @
23[T] — B3 Bapaopis[Blgassss @ x3[S] — b1 Sops2[Blgasssa @ [W][R]

o A([K]) = [K] ® 1+ gi23a34 ® [K] + Baw1ga3304 @ [U] + Baq[Flgsa @ [W] +
152 B g3344 @[ W+ B3 pas[ D] gaa @+ 51 (14¢) [G] 924 @ 4+ 51 29[ C g3aa @4 [W]
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o A([L]) = [L] ® 1 + gr2o3304 ® [L] + Bo[K]go ® 2 + Bop3yptsa[Blgasaas @ [U] +
Bi03op43[E)gas @ 25+ 539G g4 @ 2422+ B3q[F 9234 @ [W ]y — Bopsapasq[Fgasa @
[S] + 51252]?43[17]9244 ® Iim + 515@[0}92344 & Ty [W]$2 - 5152?32]%2@[0]92344 &
24[S)+ Bopa2q[I]94 @ x4 — B3 320424 Bl 9223344 @ [W][S]4 51 85 [ Bl 923344 @ [W P2+
B3219203344 ® (Ul — b1 Bopsapastygoossas @ [ST?

o A([M]) = [M]®1+ 712233344 @[ M4 52 [ K] gos @[ Q]+ B2 L] g3@x 3+ B20320320734[C 923344 ®
(U] — Bopazpas|I]gss ® (W] + BopazpasqlJ]gs @ x4 + Bi1g2033344 @ [U][Q] —
B3Daopastigazsszas @ [T)[S] + B3psapiapisq[Blyasssas @ x3[U] 4+ B5q[Fgasss ®
[W1[Q] — Baps2pazq[F| 92334 ® [T] — B1Bapazpas[Fgassa @ x3[S] + 5153 [ Bl gasszas ®
(W Q] — B3ps2pazq|Blgasssas @ [W][T] — B1851a2pa3[Blgasszas @ [W]as[S] +
51 B2pas[D]gasaa @ x3[Q] — B1Bopaspis[D]gasas ® x4[S] + 554(Glgass @ 24[Q] —
Bapazpas|Glgass @ [S] 4 B3 Bopiopas|Elgsaa @ xiws — b1 Bopiapis| Elgsi @ x4 W]+
B3142q (1934 @473+ 51659 C 923344 @24 [W][Q] — B1 B2142P354[C 23344 @ [W] [S] —
B1Baps2pazq[Clgassas @ x4[T] — B Papazpas[Clgassaa @ waas[S]

o A([N]) = [N]®149122333344 @[ N+ B2 [ K] g3 @ [R]+ 51 B2 [ L] g33 @5+ f2q[ M ] g3 @
T3+ B2p3oP134[ D] 923344 @ [U] — Papazpisq(14-q) [T gsa O [W ]+ b1 Bop3opisa [ E] 93304 ®
(W] + B3 21922333344 R [U][R] — B3 Da2Pas1 922333344 @ [T 1+ B34 [ F] 923334 R [W] [ R] —
331420439 F) 923334 @ 23 [T| + 185 [ Bl 92333344 @ [W1? [ R] 4 51 53 D234 B 92333344 @
x% (U= B3 pa2043q[ B 92333344 @W 23T 435 Bopas[ D] gassaa @23 [ R] _521742]74361 [D]g23314®
24[T) + B34[Glgassa @ wa[R] — Bopaopas(1 + q)[Glgassa @ [T] + B155¢[Clg2ss304 ®
24 [W[R]+ 5303204307 [C 9233344 @33 [U] — 534203367 [C 9233304 @ [W [T — 1 55 420439 C 9233344 ®
2403(T) — B3qpaopas[1]9334 @ (W3 + B3 p42Da36°[ ]934 © w3 + B185panq[1] 334 ®
2423 + B3 Bopiopas|[E)gssas ® x5x3 — 1530550134 [E) 93344 ® xa[W]zs

e A([O]) = [0] ® 1 + g1292333314 @ [O] + B2[N]ga2 @ 22 + Bopiaq[L]gss @ [R] +
Bap3aPiaPisq” [E] 923314 @ U]+ B3 03003247 [ Bl 922333314 R (U] [R] — B3 139030 pa30% [ Bl 922333344 ®
[T]? — Bop3apiapasq(l + @)[I]gasss @ [T] + 57 Bap3apiopasq[E]gassas ® x3[R] —
521032]942]7439 [Eg23344 @24 [T ]+52p32p42q (1192334 @24 R] — Bapa2q[M] 923 @ Q] —
B1B2ps2| K]g2233R[Q)* +Bop3apionizq(14-¢) [ ] 9234 R[] — B1 fopsapiypiizq[ D] 9223344 ®
[S]? 433 K| 9233 @ [ R]xa+ 5[ M] g23 @339+ 1 55 [ L] 9233 @ 05200 — B3 p3aq L] G233 ®

23[Q+ 550320134 D] 9223344 @[ U w2 — B3 42p330 (14q) [T 9234 @ [W 2 +51 B3 P13 B gaszas®
[W] Tg — 62p32p42p43q2[E]923344 ® [ H } 52]?32]942])43([ [0]92233344 ® [U] [Q] -
13 P321 9222333304 @ U] [Q]? — B3 1391420 [ F ] 9223334 @S] [ R] — 1 55 Do 42G 1 222333344
[SP?[R]— B3 p42D43%1 9222333344 [T o+ B3 D32pa2pa3q[ 1] 92334 R [W] [ Q] — 1 B3 324 [ F| ga23334®
(W[QF — 57 B3 D32 Bl 922333304 @ (W [QI* + B3 03014267 [F] 9223334 @[T [ Q]+ B3 p3203o1336° [T ga334®

$3[S]—515§P32p22]743q [C 92233314 @3] S ] —515219321742]??;361[3]922333344®$§[5]2—
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B31320420430%[J] 9234 @4 [Q] — 51830324 G 922334 @24 [ Q]* — B} Bapsapas[ D] ga23344®

23|Q)? — Bapaopas(l + q)[Glg2assa @ [Txe + B3p32pa2pazq[Glgzesse @ [S][Q] +

B30320320330% [C) 92233304 R [T'][S] 4831 9222333304 QU | [ R 22+ B3 D32 PasPazq 1 9222333344

[T)[S][Q]+ 534 Fg223334 @ [W[R) 22— B3 Pa2pasq[ F] 9223334 @3 [T | w0+ 1 B3 P32pa2pasq[ F] 9223334 ®
23[S][Q] + B155[Bgazsszaa @ [WI?[Rlwy — B3p30pa2q? [ Bl gazszzzaa @ [W][S][R] +

B3139P130°[C 92233344 Q23U 9+ 1 B3 p2ops30[ Bl 922333344 @3 U w4 B3 o DiaPia ¢ B) 922333314
23[T][S] — B3p3apiapisq’[Blgasssssas @ w3 [U][Q] — B3pazpasqlI]gasss @ [W]xgzy —

B3 a2D43q[ B 922333304 @ [W 3 [T| 2o+ B3 p3opa2q* [ Bl 922333344 @ (W[ T'][ Q451 B3 P32 a2 asq [ B] g2333344®

[W]zs[S][Q] — 523p42p42;3q2[0]92233344 ® [W][Txs + 5153?32]942]?4213(]2 [C]g2233344 ®

[WI[S1[Q]+ 57 B3 pas| D] ga23344 @23 [ R 2 — B3 paspizq| D) 9223304 @24 T )0+ 1 3 D32paopizq[ D] 9223344 ®

24]S][Q]+539[G 922331 @ 4[R2+ 01 33(C 92233344 @4 [W] [ R] 2 — 1 B3 0350420% [C 92233344 ®

24 [S][R]— 57 B3 0324(C] 92233344 @14 [W][Q]? — 1 B3 4243 C g233344 @43 T w0+

B1B30321420% [Cl 2233304 @ 24 [T)[Q] + B B3 032p420439[C 92233344 @ 243[S][Q] +

Bapa2pasq®[J]gasa @ w322 + B185pazq[I]gassa @ 43w — Bipsapang®[I]gasss @

2423[Q] 4 B3 B307apas| E]gssas © 131320 — B7 B3 D32039P439[ E]gassas @ 2323]Q) —

I ﬂ§p42p43q[E]gg3344®x4 [(Wlzsao+51 53]932]?221733612 [Eg23314@x423] 5] +ﬁ16§p32p22pi3q[E]923344®

x4 W][Q)]

o A([P]) =A(x) =22 @14 g2 @ 22

— = %

o A([Q]) = [Q] ® 14 gos ® [Q] + Parags ® 3
o A([R]) = [R] ® 1+ ga33 @ R+ B1 22933 @ x5 + [opss[Q]gs ® x5

o A([S]) = [S]® 1+ gaza @ [S] + Baragzs @ [W] + 51[Q]gs @ 24

A(T]) = [T) @1+ goagza @ [T] + B1S22g334 @ [Wlas + f1pasq[Qlgsa @ [W] +
B7[Q)g3s @ a3 + Pipas[R]gs @ x4 + [1[S]gs @ @3

o A([U]) = [U] @ 1+ goszas ® [U] + B1Sowagszas @ W] + [2q[S]gsa @ [W] +
Btpas[R]gas ® x5 + B152q[Q)g3a4 @ xa[W] 4 S1(1 4 ¢)[T]gs @ 4

e A([V]) =A(x3) =230 1 + g3 ® a3
o A([W]) = [W]® 14 g3s @ [W] + Srr394 ® 4
o A(X]) =Axy) =24 ® 14 g4 ® 24.

Proof. The coproduct of the generators xq, x9, 3 and x4 are given by definition of
the algebra U (F,). Using Lemma 4.2.2 with ¢ = 1 and j = 2 we obtain A([B]).
Analogously we have the coproduct of [Q] and [W]. By Lemmas 4.2.1 and 4.2.3 we
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have the coproduct formula for [C] with ¢ = 1, j = 2 and k = 3. In the same way
we obtain the coproduct formula for the PBW-generators [R] and [S]. Applying the
Lemma 4.2.4 for i = 1, j = 2 and k£ = [ = 3 we have the coproduct formula of
[D]. Similarly we obtain the coproduct formula for the PBW-generators of degree 4,
which are [D], [F] and [T]. Using Lemmas 4.2.2, 4.2.3 and 4.2.4 and the fact that the
coproduct is multiplicative we obtain the coproduct formula of the PBW-generators
of degree 5,6,7,8,9,10 and 11. n

Corollary 4.2.6. The only skew-primitive PBW-generators of U;(F4) are T, Ta,

T3 and x4.

4.3 Skew-primitive elements

In this section we list all the skew-primitive homogeneous elements of U (F}).

n

?, where n 1s a natural number and

Lemma 4.3.1. The coproduct of the element x

x; € {x1, To, T3, 24}, 1s given by the formula

[y _ —
where [k]p“ = Wp_k]!pmw [n]'pu - [n]pu [TL - 1] U[Q]pu[HPu and [n]pu =1 + pii +
Proof. We prove by induction on n. If n = 1 then the equality reduces to A(z;) =
2 ® 14 g; @ x; since [g], =1=[1], .

n—l—l}

We note that ] = satisfy two p;-Pascal identities [ o = [Z*ini + 05 [,
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and [Z“}ph = [ ] D 1y [i],,, - so we have the following equalities

n

At = A)A@)) = (z: @1+ g @)Y [{],, o "o @)
k=0

o nk—Hk E nknkk-l—l k+1
- [ ]pu ®x + pzz Di; 9i ®$Z

k=0
=y @1+ (1], 2l @i+ ..+ [n_l] ngf "@al ™+ 2! @ 2+
+phatg @ w4+ [, Pty T gl @ x4 +LJ n”%®x+fﬂ®ﬂ“

@ 1+ ([, + Pi)ate @ v+ (I3 ]pii+[l]piipn- REAN L

+ (1 + [Z—JW Pi)Tigh @ 2 + gt @ a !
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Theorem 4.3.2. If q is not a root of the unit, the only homogeneous skew-primitive
elements of U} (Fy) are x; for every i in {1,2,3,4}. If ¢* = 1, the skew-primitive

elements are in the form x; and x? where h; is the order of p;;.

Proof. From Lemma 2.2.11, if v € U (F}) is an homogeneous skew-primitive ele-
ment, then v = afu)” + 3" o;W; where [u] is an element from list (4.2) and W; are
basis words in super-letters smaller than [u] with the same degree as [u]". If py, is
not a root of the unit we have h = 1. If p,, is a primitive ¢-th root of unit, then
h=1or h=t.

If [u] = 24, then clearly there are no other basis words W; of degree (h,0,0,0)
so v = afu]®. The same holds for [u] = z; with i € {2,3,4}. If [u] = [z, 7))
then W, = 25! [y, 22]%227 is a basis word with the same degree as [x1, z]", where
s1+5y = h and sy +s3 = h . However, x is greater than [z, 25, so again v = au]".

If [u] = [z1, [z2, x3]] we have

Wi = x5! {[we, x3], 237 (2, w3] P a5 [, [[we, 3], wa]], 2] (w1, [[2, T3], @))% 21, [X2, 3]]°T[21, 2] 27°

is a basis word with the same degree as [x1, [12, 23]]". As z; and [z, 75] are greater
than [xq, [z2, 3]], we have sg = sg = 0, s1 + 259 + 53 + 255 + 256 + S7 = h, so + 53+
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S4 + 285 + s¢ + s7 = h and s5 + s¢ + sy = h. Since each degree s; is a non negative
integer, we obtain v = «afu]". Analysing the degree of the hard super-letters, it is
easy to see that the same occurs for every [u] in the list (4.2). This provides that
the possible skew-primitive elements are multiples of elements in the form [u]". If
h =1, then Corollary 4.2.6 shows that the only skew-primitive PBW-generators are

T1, To, x3 and zy.

Now we suppose that ¢ = 1 and h = h, is the multiplicative order of p,,.
First we consider the case [u] = x; for every i € {1,2,3,4} and see that from
Lemma 4.3.1 we obtain that z/" are skew-primitive. If p! = 1 we have [h;],, = 0,

S [fﬂp =1= [’,ﬂp and UH =0, forall k € {1,2,3,...,h; — 1}. Therefore

Azl =2l @1+ ¢/ @ 2! and x? is skew-primitive.

If [u] = [x1,29] = [B], then Theorem 4.2.5 provides A([B]) = [B] ® 1 4+ g12 ®
[B] + Bo1go @ w5. Using the fact that the subalgebra generated by the elements [u]"
is a normal Hopf subalgebra of U} (F}) (see [5, Lemma 4.10]), where [u] belongs to

the list (4.2) and h is the height of [u], we have
A([B]") =Y uruz -+ up,

where u; € {[B] ® 1, g12 ® [B], fax192 ® x2}, for any n € N. Then we obtain
A([B]") = [BI" @ 1+ g, ® [B]" + aalgs @ w5 + Y 1yg. © 2,

where the degree of y plus the degree of z equals the degree of [B]". We note that the
only way to have x7 in the second tensorand is by taking uy = - - = u,, = $271g2 Q5.

So we obtain

n(n—1)

(Bo1ge @ x2)" = B3 (2192)" @ af = B3pyy 2 xlgh @ b,

n(n—1)

Therefore a = 55y, °

# 0. In particular [B]" is not skew-primitive.

Using the same idea as above, for case [u] = [C] we obtain

n(n—1)

A([CT") = [CT" @ 1+ gi53 @ [C]" + B3 (ps1ps2) 7 [B]"g5 ® 2§ + Z’Yfl/gz ® z,

where the degree of y plus the degree of 2 equals the degree of [C]". Therefore [C]"
is not skew-primitive.

In the same way we have that

n(n—1) .
A([D]n) = [D]n®1+9?233®[D]n+53p21 ? p31( 1)x?9333®[R}n+27y9z®2;
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n(n—1)
A([E]n) = [E]n®1+9?2233®[E]n+53p21 ? (p2SQ)n(n_1)[D]n93®$3+Z YYg.Rz;

n(n—1)

A([F]") = [FI"® 14 glyss @ [F)" + 7 (parpazpas)~ 2 [C]" g @af+ > 7yg. @ 2;

A([G]") = [G]" @ 14919334 @ [G]" + BT (P31P32P34q) e [F]"g3 x5+ 7yg.®2;

n n n n (’I’L n n  n
A([H]") = [H]"®1497 1990333304 R[H] "+ 57 B (p21p2a) ~ 2 (p23Q) DG gllyg54u®
Ty 4 > 7Yg. ® 2;

n(n—1)

A([I]") = [I]n ® 1+ 9199334 ® [1]" + 53(1721}724) 2 (p2SQ)n(n_1)[G]n93 ® xy +
> VYge @ 2

n(n—1)

A([J]") = [J]" @ 1+ glagsszs @ [J]" + BT (p31p3a) ~ 2 (p32Q)n(n_1)[[]ng§ ® g +
> VYge ® 2z

n(n—1)

A(KT") = [K]" @ 1+ giassuq @ [K]" + B5py; °

(p31par)" "Dt gy @ [U]™ +

> VYge ® 2z
n(n—1)
A(IL]™) = [L]" @ 1 + glyog3as @ [L]" + BEpay ® (p2spoaq)" " V[K]"gh ® 2 +
> VYge ® 2z
n(n—1)
A([M]") = [M]" @1+ glop33304 @ [M]" + B5p3; ° (p32p34Q)n(n_l)[L]ng§L ® xy +
> VYGe @ 2

n n n n n Qn, n(n—1 n(n— n 2n
A([N] ) = [N] ® 1+ gi90333304 © [N] + B 52P3£ )(P32p34Q)2 ( 1)[L] 932, ®
23" 4 20 VYg: @ 2;

n(n—1)

A([O]n> = [O]n ® 1+ 91999333344 © [O]n + B3Da1 °
Ty + Y 7Y9. @ 2

n(n— n(n—1 n . n
(P23Q)2( 1)p2z§ )[N] 92

n(n—1)
A(QI") = Q" ® 1+ g3 @ [QI" + B3p32® Thg8 @25 + D 7Yg: @ 2;
n n—1

n(n—1)
A([R]n) = [R]n ® 1+ g333 ® [ ] + BT By 3y 2 33293n ® 5U "+ Z”ngz ® z;

n(n—1)

A([S]?) = [S]" @1+ gysy @ [S]" + By (psopaz) ™ 2 w595, @ W] + > 7yg. ® z;

n(n—1)

A(T]) = [T1" @ 1+ g3334 @ [T]" + B (p32p3aq) 2 [S] g3 @y + Y 7Yg. @ z;

A([U]n) = [U]n®1+933344®[ ] +5%np22n Y p4§2n71)[R]ngzn®$z21n+Z YYg. Kz

n(n—1)

A(W]") = V" @1+ g5, © [W]" + Bipas ®

r3g; @ T + > 7Yg. ® 2,

proving that [u]" is not skew-primitive, where [u] belongs to list (4.2) except x1, s,

xr3 and x4, and where v € k. ]
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4.4 The combinatorial rank of the quantum groups

of type F}

In this section we obtain x(u] (Fy)).

Proposition 4.4.1. The elements [u]" are skew central in U} (Fy), where [u] is an
element from list (4.2) and h is the height of [u].

Proof. Tt is enough to prove that [u]z; = az;[u]”", for i = {1,2,3,4}, a € k. We
notice that for every element [u] in the PBW-basis p,, = q or pu, = ¢*. If t is odd
we have that the height of [u] is h =t and p!', = ¢' =1 or p!', = (¢?)' = 1. For the
case where t is even, we have that the height h is t for the elements [u] such that
Puu = ¢ and when p,,, = ¢* the height of [u] is £. So we also have pl!, = ¢' =1 or
ph = (¢*)2 = ¢' = 1. Thus in both cases we may use relations (2.6) and (2.7).

If [u] = [A] = @ clearly ax; = z12%. We have (21, [21, 22]] = [z, [B]] =0, then
by (2.7) we obtain [}, x5] = [z, [ - - [21, 22)] = 0. Thus zhzy = plywsat, for h > 1.
For i = {3,4}, we have [z, z;] = 0 then [z? 2;] = 0, so zlx; = plzah for h > 1.
Therefore 2! is skew central.

In the case [u] = [B], we have [z1,[B]] = 0 then [z,[B]"] = 0 and = [B] =
pipis[B] "z We notice that [[B],zo] = 0, [[B], [[B],z3]] = [[B],[C
[[B],z4] = 0soif i = {2,3,4} we obtain [[B]", z;] =0 and [B]'z; = plipzl-xl[ ]h for
h > 2. Thus [B]" is skew central.

For the case [u] = [C] we notice that [z1,[C]] = 0, then [z,[C]"] = 0 and
xl[C]h = phplpt[Clhz. We also have that [[C],z5] = 0, [[C],[[C],z3]] =
[[C,[D]] = 0 and [[C], [[C],z4]] = [[C],[F]] = 0, by (2.7) [[C]",z;] = O for
i = {2, 3,4}. So [CT'x; = plyphphiei[C]" for h > 2.

If [u] = [D] we have [z, [D]] = 0 then [z, [D]"] = 0. In other words z;[D]" =
pipiopis (D) ey . For i = {2,3,4} we obtain [[D]", z;] = 0 because [[D], [[D], z2]] =
[[D],[E]] =0, [[D],2z3] =0 and [[D], [[D],z4]] = psa(1 + ¢)[[D], [G]] = 0. Thus
[D]'z; = pi;php3i e D] for h > 2.

In the case [u] = [E] we have [[x1,[E]], [E]] = «[[D][B],[E]] + B[[C]* [E]] =
0, [B2] = 0, [1Bl,zs] = 0 and [[BL, [[Bl, )] = poapsaCd + [IEL 1] = o,
where o, 3 € k. By (2.6) and (2.7) we obtain [z1,[E]"] = 0 and [[E]", z;] = 0 if
i = {2,3,4}. Therefore x,[E])" = plyphpi[E" and [E)'x; = phpshpia,[E), for
i=1{2,3,4} and h > 2.

Now we suppose [u] = [F]. In this case we have [z, [F]] = 0, [[F],z2] = 0,
[[F], [[F],23]] = [[F].[G]] =0 and [[F],z4] = 0, so from formulas (2.6) and (2.7)
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we obtain [z, [F]"] = 0 and [[F]",2;] = 0 for ¢ = {2,3,4} and h > 2. Thus
21 [F]" = phipiapispia[F) ey and [F]'z; = pypspliple F1".

In the case [u] = [G] we notice that [zy,[G]] = 0, [[G 1G] [1G), 2] ]] =
(G, [[G] 1] = [[G), [H]] = 0, [[G], 23] = 0 and [[G], [[G], z4]] = [[G], [K]] =
then by (2.6) and (2.7) we have [21,[G]"] = 0 and [[G]" a:} = 0 for i = {2,3, 4}
and h > 3. Therefore z,[G]" = pl phyp?iph, |G 2y and [G]"z; = ph.ph.piph.z;[G]".

Now if [u] = [H] we observe that [z, [H]] = «[G]*[B] + B[F]*[D] + ~[G][F][C],
where «, 8,7 € k are in the appendix list. We obtain

[[=, [H]], [H]] = o[[GI*[B], [H]] + B[[FI*[D], [H]] +~[[GI[F[C], [H]] = 0.

We also have [[H], [[H],z2]] = A[[H], [[]*] =0, [[H], 23] = 0 and [[H], [[H],z4]] =
0[[H], [K][I]] = 0, where X, 0 € k. By formulas (2.6) and (2.7) we obtain [z, [H]"] =
0 and [[H]" z;] =0 for i = {2,3,4} and h > 3. Thus z;[H]" = p2phpihpih [ H] 2y
and [H]"w; = pi}p3p3ipii e H]".

For [u] = [I] we notice that [z1,[l]] = a[G][B] + B[F][C], where . 3 € k are

described in the appendix. In this way we have

[[z1, (11}, 11]] = e [[GI[B], [1]] + B[FI[C], 1] = ~[H][B] + 6| F[E],

where 7,6 € k. So

[, (0], 110] 111) =~ [[H0(B), (1] + 0[[FP[E), (1] =0,

since [[H], [1]] = [[B],[I]] = [[F]. ] = [[E],[I]] = 0. We also have [[I], 2] =0,
(1], [[1],25]] = [l1],[J]] = 0 and [[1], [[/], = H A[lZ],[L]] = 0. The formulas
(2.6) and (2.7) result that [z, [/]"] = 0 and [[I]*,2;] = 0 for i = {2,3,4} and
h = 3. Therefore 1 [I]" = pi,pispispis[H]"x1 and [I]"x; = pip3ipsipliei[H]".

Now we suppose [u] = [J]. In this case we have [z1, [J]] = a[G][C] + B[F][D],

where «, 5 € k are in the appendix. So

[z 1], 1) = a[IGIIC), [J]] + B[[F][D), [J]] = y[H][D] + 0[G]*[E] + AlL][G][ D],

where 7,0, € k. Since [[H], [J]] = [[D],[J]] = [[E], 7] = [[G], (7] = [I1], ]
0 we obtain [z1,[J]"] = 0 for b > 3. We also have [[J], xg] =0, [[J] 23] =
and [[J], [[J], z4]] = poapsaq(l + q)7'[[J],[M]] = 0. Then formula (2.7) 1mp11es

[J])", 2;] =0 for i ={2,3,4} and h > 2.
If [u] = [K] we notice that [zq,[K]] = 0, [[K], [[K],22]] = [[K],[L]] = 0,

ol



[[K], 23] = 0 and [[K],z4] = 0. So by formulas (2.6) and (2.7) we have [z, [K]"] =
0 and [[K]" 2;] =0fori={2,3,4} and h > 2.

For [u] = [L] we observe that [zi,[L]] = a[F ] B|K][B], where o, 8 € k are
listed in the appendix. Then [[z1, [L]], [L]] = «[[F]?, [L]] + B[[K][B], [L]] = 0 since
[(B], [L]] = [[F], [L]] = [[K],[L] = 0. We also have [[ Jywa] = [L] [[L],25]] =

[[L],[M]] = 0 and [[L],z4] = 0, then (2.6) and (2.7) provide [ml [L)"] = 0 and
[[L)", 2] =0if i ={2,3,4} and h > 2.
Now we suppose [u] = [M]. In this case we have [y, [M]] = o[K][C] + B[G][F],

where «, § € k are described in the list of formulas in the appendix. Thus

[[z1, [M]], [M]] = «[[K][C],[M]] + B[[G][F], IM]] = ~[K]*|E] + 0[K][H] +
ALNK][D] + d[L][G?,

[, [M]], [M} M]] = 7 [[KP[E], [M]]+0[[K][H], [M]]+A[[L][K][D], [M]]+
S[ILlGr, (M) -

and we obtain [z, [M] } = 0 for h > 3, and then z;[M]" = plp2hp3hph (M) ;.

We also have [[M],z5] = 0, [[M], [[M],x5]] = [[M],[N]] = 0 and [[M],z4] =0

so formula (2.7) provides [[M]" z;] = 0 for i = {2,3,4}. Therefore [M]"z; =
h

P3P [ M]".
If o] = [N] we have [[a1, [V, [N]] = a[(K][D], V] + B[[GP, [N] = 0, where
o, € k are present in the appendix, so x1[N]" = plyp¥pilp[N]"z,. Since

[[N], [[N],2z2]] = [IN],[O]] = 0, [[N],z3] = 0 and [[N],z4] = 0 we obtain
[N]", z]] = 0 for i = {2,3,4}. Thus [N]"z; = php3rpitpiia; [N for i = {2,3,4}
and h > 2.

Now if [u] = [O] we notice that

21, [0]] = o[K][E] + BIL][D] + +[M][C] + 0[H] + A[L]|G] + S[N][B] + p[J][F],
where «a, 5,7,0,\, 6, p € k are in the appendix. So
[[21,[0]], (0] = e[N][L][E] + ¢([N][I]* + n[L][J]* + 9[M][J][1] + «[M]*[E],

where ¢,(,n,9,. € k. Since [[E],[0]] = [[I],[0]] = [[J].[0]] = [[L].[0]] =
[M],[0]] = [IN],[0]] = 0 we obtain [[[z,[0]],[0]],[0]] = 0. By formula
(2.6) we have [z1,[0]"] = 0 so z1[0]" = plyp¥piipi} O] xy for h > 3. Although
[[21,[0]],[0]] is not zero in general, in the specific case where h = 2 we have ¢* = 1

and the coefficients ¢, ¢, 7,9, ¢ equal zero as we have € = B2p3,p8ip14p3303.0%(1+ ¢?),
¢ = Poplobisplapispasd’ (1 — %), 1 = —B3pPapispiapepiag’ (1 + @) (1 + ¢%), 0 =
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B3piapTsphad® (1 + ) (1 + ¢%), ¢+ = —B1Baptapiapiapsapiag* (1 + ¢%). We also have
[[0],z2] = 0, [[O],23] = 0 and [[O],z4] = 0 then for i = {2,3,4} we obtain
[[O]", 2;] = 0. Thus [0]"z; = pp3rps)pile: (O]

For [u] = [P] = x5 we have [[z1, 5], 23] = [[B], x2:| = 0 then by (2.6) [x1, 28] = 0,
for h > 1. So xyzh = phyabx,. Clearly zhzy = xoxf. We also have |2, [x9, 23]] =
[22,[Q]] = 0. By (2.7) we obtain [2%, 3] = 0 and zfxs = plhywsa} for h > 2. Now
(29, 24] = 0, then [28, 24] = 0 and 2hxy = phyxyah.

We suppose that [u] = [@]. In this case we have

[[[21,1Q]], 1Q]].[Q] = [[[C1,[Q)]. Q] = a[x2[D],[Q]] + B[[E], [Q]] =0,

with o, € k, and [1}2, [QH = 0. We obtain that [xi, [QH = 0 then z;[Q]"
phpl[Q)x; for i = {1,2}. Ifi = {3,4}, we have [[Q]", z;] = Osince [[Q], [[Q], z3]]
Q). [RI] = 0 and [[Q), [[Q).:]] = [[Q].[S]] = 0. Therefore [Q]*a; — plplai[Q)"
for i = {3,4} and h > 2.

In the case [u] = [R] we have [[z1,[R]],[R]] = [[D],[R]] =0,
Bupss? [[Q [R]] = 0, [[R),zs] = 0 and [[R], [[Rl, 2] = paa(1 + q)[[R) 7] =
0. So by formulas (2.6) and (2.7) we obtain z;[R]" = plLpZ2[R hy; =
ph;para;[R]" for i = {1,2}, j = {3,4} and h > 2.

If [u] = [S] we notice that

=
S
&
=
(oW

=
8

<
|

[[[1, 191], 191, (1] = [[1F], 18], [S]] = ex[wa[ K, [S1] + B[[L), [S]] =0,

where o, 8 € k are described in the list in appendix. We also have [902, [SH =0,
[[S], [[S],23]] = [[S],[T]] = 0 and [[S],z4] = 0. Then by formulas (2.6) and
(2.7) we obtain z;[S" = plyplsply[S]"x; and [S]"z; = phphpla;[S]" for i = {1,2},
j={3,4} and h > 3.

Now we suppose [u] = [T]. In this case we have

[z, M), (7], (7] = [[[G), [T]], [T]] = e [[N], [T]] + B[[RI[K], [T]] =0,

where «a, 8 € k are in the appendix. We also have

[[[2, [71], (7] [71] = ~[[IS1(@]. [T1], [71] = O[[SP*[R]. [T1] =0,

where 7,6 € k, [[T],z3] = 0 and [[T7], [[T], m” [[T7,[U]] = 0. So by formulas
(2.6) and (2.7) we obtain x;[T)" = php2pl [T)'z; and [T)'z; = pQJpgng]xJ[ 1" for
i={1,2}, j=1{3,4} and h > 3.
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For [u] = [U] we notice that [[[z1,[U]],[U]] = [[K],[U]] =0, [[[z2, [U]],[U]] =
a[[S]%,[U]] =0, [[U],z3] = 0and [[U],z4] = 0. Then by formulas (2.6) and (2.7) we
have ;[T1" = plypipy [T x; and [T]"z; = psz3jp4j$j [T) for i = {1,2}, j = {3,4}
and h > 2.

In the case [u] = [V] = z3 clearly [z, 2%] = 0 since [z, 23] = 0. Then x,28 =
piyzhey. Now [[[z2, 23], 23], 23] = [[[Q), 23], 23] = [[R], 23] =0, so [z2, 2] = 0 and
Toxh = phaalx, for h > 3. Bvidently zfas = xs2f. Lastly we have [z3, [v3,24]] =
(25, [W]] = 0 then [}, z4] = 0 and 2%xy = p},z42%.

If [u] = [W] we have [z, [W]] =0, [[[z2, W]], W]],[W]] = [[[S], W]], W] =
[[U],W]] = 0 and [z3,[W]] = 0, then by (2.6) we obtain [z, [W]"] = 0, for
i ={1,2,3}, so x;[W]" = plyply[W]ha; for h > 3. Since [[W],z4] = 0 (2.7) provide

[W]",24) =0, s0 [W]*zy = plyplyaaW]".

Finally if [u] = [X] = x4, we have that [z;, z4] = 0, for i = {1,2}, then [z;,2}] = 0
and z;zft = plyaltz; in these cases. We notice that [[x3, 4], 2] = [[W],24] = 0 s0
(23, 2] = 0 and w32 = ph,ahas for h > 2. Obviously zxy = x4, O

We remember that ¢ : US(Fy) — u; (Fy). We have the following proposition.

Proposition 4.4.2. The set J = ker o is generated by the elements [u]", where [u]
is an element from list (4.2) and h is the height of [u].

Proof. Theorem 4.1.4 proves that [u]* = 0 in u(F}) for [u] in the list (4.2), then
the elements [u]" are contained in J. Now let v = [X|"[W]"2 ... [B]"[A]"# € J =
kerop C US(Fy). If n; < hy for every @ = {1,---,24}, where h; is the height of
the corresponding element, then v is a basis element of w} (F}) and thus ¢(v) # 0,
which is a contradiction. So we assume that n; > h; for some fixed 7 and then v is
a multiple of the respective element [u]" and belongs to the ideal generated by this
element. Now we consider v = av; + apvy € J = ker ¢, where vy, v, are such as
v. If p(v1) =050 p(vy) = 0, then v; and vy are multiples of elements of the form
[u]". Therefore v belongs to the ideal generated by these elements. If (v;) # 0 and
©(vy) # 0 with vy # avsy then p(v) is a sum of linearly independent basis elements of
u; (Fy), so ¢(v) # 0, which is a contradiction. Inductively we have the same result
for v = ayv; + - v, € kerp = J. Thus we obtain that .J is generated by the

elements [u]". O

As a conclusion of the previous results, the Hopf ideal J is generated by linearly
independent skew central elements [u]", with [u] € {[A], [B],[C],---[W],[X]} and
h the height of [u]. In fact, J is not just a Hopf ideal, but a Hopf subalgebra of

US(Fy) |5, Lemma 4.10]. Now we calculate the combinatorial rank of u; (F}).
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Proposition 4.4.3. The combinatorial rank x(u} (Fy)) < 4.

Proof. Let J = ker ¢ be the Hopf ideal of U} (F}y). We consider ¢" = 1 and we have
that for ¢ odd the height of PBW-generators from list (4.2) is h = ¢ and for ¢ even
the height is h =t or h = % From Proposition 4.3.2 we have that the only skew-
primitive elements in .J are [A]" = 2" [P]’? = b2 [V]’ = 23 and [X]M = 24
We conclude that {z"* zh? 2 zh} C J;.

Now we consider [u] belonging to the list (4.2) that has a degree smaller than

22 = 4. We note that the coproduct of these elements are given as follows

A([u]) = [u] © T+ g ® [u] + > awgu @ w;,

J

where the degree of v; plus the degree of w; equals 2 or 3 for every index j. We

notice that A is multiplicative. Thus

A"y = [u]" @ 1+ gy @ [ + > yy59- ® 2;.

J

Suppose that ¢ is odd. Then all PBW-generators [u| have the same height ¢.
The fact that the elements [u]* generate a Hopf subalgebra of U} (g) implies that
necessarily y; or z; belongs to {4, 2}, %, 2% }. So all terms from the sum depending
on j are zero in Jil We obtain that the the PBW-generators of degree 2 or 3 belong
to Jo, as they are skew-primitive elements in Jil We notice that we are not proving
that the elements with total degree greater than 3 are not in J;, as we can not
guarantee that.

Let us suppose by induction that every [u| with degree smaller than 2" satisfies
that [u]’ belongs to J,. If [v] has degree smaller than 2"*! by analysing its coproduct
we have Zj ay;gy @ z;. Let us call A the degree of y; and B the degree of z; so
A+ B < 271 = 2.2" then the degree of A is smaller than 2" or the degree of B
is smaller of 2". If we write y; and z; in the PBW-basis, using that J is a Hopf
subalgebra, for every j we obtain at least one factor [w]** of y; or z; where the
degree of [w] is smaller than 2". By induction, [w]" € J,, and therefore [v]" belongs
t0 Jpt1-

Now we suppose that ¢ is even. Then the PBW-generators may have height ¢

t

or 5 and we can not prove the result in general as in the previous case. However,

analysing case by case, it is not difficult to see that we still have that if the total
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degree of [u] is smaller than 2" than [u]" € J,. Again we use the notation

A([u") = [u]" @ 1+ gfL] ® [u]" + Zvngz ® 2;.

J

For the elements of degree one we have already proven that they are in J;. If [u] is

a generator of degree 2 and h =t we may have the following possibilities:

y; = [v1]', z; = [va]", where vy, vy have degree 1,

(SIS

y; = [v1]2, zj = [v2)", where vy, v, have degree 2 and 1, respectively,

yj = [vl]%, 2 = [v2]2, where vy, vs have degree 2.

In the third case, if we had both v; and v, with degree 2, we could have a summand

that would not be zero in Jil However, it is easy to see that the only elements

with degree 2 that have h = t are [Q] = [v2, 3] and [W] = [x3,x4]. However, it
is impossible to obtain the degrees (0,¢,¢,0) and (0,0,¢,t) as a sum of the degree
(£,£,0,0) of [B]. So all the elements with degree two belong to J.

Similarly, if [u] is a generator of degree 3 we could have the following cases that

would not be zero in J—Jl
t t
y; = [n1]2, z; = [v2]2, where vy, vy have degree 3,

N+
Wl

Y = [’Ul]%, z; = [vg]2[v3]2, or vice versa, where vy, vo, v3 have degree 2.

Once again, we can not obtain the degrees of the elements of degree 3 with height
t as a sum of elements of degree 2 or 3 with height % Proceeding in this same way
for the degrees 4,5,6,7,8,9 and 10 we obtain the wanted result. We notice that the
cases with degree over 8 are even more trivial as we have only one PBW-generator
in each degree.
Finally, as all the elements of the PBW-basis have degree smaller than 12 < 16 =
24 the combinatorial rank of the algebra is not greater than 4.
O

Theorem 4.4.4. The combinatorial rank r(u (Fy)) = 4.

Proof. The Proposition 4.4.3 shows that the combinatorial rank of u; (Fy) is less
than or equal to 4. To prove that it is equal to 4, we show that there is a non zero

element in J, — Js3. First we consider ¢t odd.
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From Theorem 4.3.2 we have that the only skew-primitive elements in J are
[A]n = 2, [P)> = 2b2, [V]" = 23 and [X]" = 2%, We define J; as the Hopf
ideal of J generated by z', zh? z% and 2"*. Now we prove that [u]" ¢ J; for [u]
in the list (4.2) except x1, z9, x5 and x4. Since the generators of J are skew central,

we may consider J; as a right (or left) ideal. Suppose that
[W)" = aryr ]t + ayarh? + asysel® + asyary’

We may write y1, ¥, Y3, Ys € U;(F4) in the PBW-basis and then skew-commute 3:}1”,

ha .h3 hy s h
x5, x3® and xy?, writing [u]

as a linear combination of basis elements of U (Fy).
Then, on both sides of the equality we have linear combinations of basis elements,
however, on the right side we have necessarily x? on every term. This provides
that [u]" is not one of the elements on the right side, so we have a contradiction.
Therefore [u]" ¢ J;, unless [u] = x; for i = {1,2,3,4]}.

Using the proof of the Theorem 4.3.2 we have [B]',[R]" and [W]" belonging to
Jo — Jq due to the fact that the coproduct of these elements has a nonzero coefficient
for a term ayg, ® z, where y and z belong to {«}, a%, 2%, 2} }.

Now we consider n € N. Using the formula of A([E]), we have that the coproduct
of element [E]™ has a term «o[B]"gh; ® [R]". Let us calculate the coefficient a.
Analyzing the degree of the elements on the right side of the tensor of each term of
the coproduct of [E], we have that the only possibility to obtain the element [R]"
is to multiply n times the term SBop3,q[B]gass ® [R]. Indeed, when we multiply the
element [R] by 22z, and x3]Q] we will always have an element starting with ;.

n(n—1)

Thus o = B3p, * pit" Vpis" Vg™ # 0 and

n n n n n 22D (n—1) n(nt1 n? n_n n
A([E]") = [E]"®1+g12033R[E]"+ 5Py ® p31( )p32( i )q [B]" 9333 R] +Z YW;9-Kzj,
J

where the degree of w; plus the degree of z; is the degree of [E]". This is true for
n =t odd, so [E]' ¢ Ji, J2, and then [E]" belongs to J3 — Jo.

Analogously, we have that

A([K]") = [K]n®1+9?23344®[K]”‘1‘5?53(p31p32p41p42)n(n_1) [B]ng??Z@[W]M"FZ VYj9-9%;,

J

where degree of y; plus degree of z; is the degree of [K]". In particular, [K]" belongs
to J3 — Jy for t odd.
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Finally we have that the coproduct of [H]™ has a term of the form A[E]"gl3544 ®
[K]™. Analysing the elements on the left side of each term of coproduct of [H], we
have that the possibility of having the degree of [E]" would be a combination of
degree of the terms x1, [B], [C], [D] and [E] in this way

(n,2n,2n,0) = ai(1,0,0,0)+as(1,1,0,0)+as(1,1,1,0) +as(1,1,2,0) +as(1,2,2,0),

where (n,2n,2n,0), (1,0,0,0), (1,1,0,0), (1,1,1,0), (1,1,2,0) and (1,2,2,0) are
the degree of [E|", x1, [B], [C], [D] and [E], respectively. As a; is a positive integer,
the only way to have this equality is a5 = n, that is, multiplying n times the term

Bip12p2apa1 Paapisq  [E] 9123344 @ [K]. Then we have

A([H]") = [H]" @ 1 + g{1209333344 @ [H]" + A[E]" 955304 @ [K]" + Z Y9z @ zj,

J

n(n+1)

where A = B7p1, 2 prs ) i (propaz)"E D2+ £ 0. If p = ¢ is odd we have
that [H]" belongs to Jy — Js.

Analogously, when t is even, we consider s = %, then J; is generated by z7, 3,
x4 and 2. By the proof of Proposition 4.3.2 we have that [B]*, [R]® and [W]’ belong
to Jo — Ji, [E]* and [K]® belong to J3 — Jo and [H]* belongs to Jy — J3. Therefore
k(ug (Fy)) = 4. O

We notice that, similarly to [15, Theorem 6.1], the result #(u] (F}4)) = 4 provides
immediately the same combinatorial rank for the negative quantum Borel subalge-

bra uq_(F4). As a consequence, using the triangular decomposition we also obtain
k(ug(Fy)) = 4.
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Chapter 5
Appendix

In this appendix we list the skew commutators between the basis elements in the

case Fy.
1. [z1,[B]] =
2. [1,[C]] =
3. [z, [D]] =
4. [331, } = Bop12pi3q*[D][B] — Bip12pisps2q’[CT?
5. [z, [F]] =
6. [x1,[G]] =
7. (21, [H]] = 5182030130340 " (G2 Bl+B10iap13piapiapsad® [F 12 [ D] — 1 Bopiapispiapse ¢ (G F[C]
8. [1,[1]] = Bopraptsp1ad®[G[B] — Biprapraprapseq’ [F(C]
9. [0, [J]] = Bip1aptsp1ad®(G[C] — Biprapraprapsed®[F[ D]
10. [z, [K]] =
11. (x4, [L]] = —Pipraprsprapsepand®[F1? + Baprapisptsa®[ K] (Bl
12. [21, [M]] = Bopraptsptya®[K][C] — Bopraptsprapaopasd’ |Gl [F)
13. [21, [N]] = Baproptapta®[K1[D] = Boprapisprapaspasg®(G)?
14. (21, [O]] = Bafaproptspta@® [ K1 E)+Baptaptspt apsad? [ L) D]—Baptaptspt ipsad® [M][Cl+

P12p73p14paepas(1+ ) (q72 + ¢~ — @) [H] — Bopiopisprap3apiopasd® (14 q)[1][G] +
ﬁgpfgpilgpti [N } [B] + 52]?%229:1)’3]914]932]71212174213@3(1 + Q)[J ] [F ]
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15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

(21, 22] = [B]

[z1,[Q]] = [C]

[z, [R]] = [D]

(21, [S]] = [F]

21, [T]] = [G]

[z, [U]] = [K]

[z1,23) =0

21, [W]] =0

[x1,24] =0

[[B.[C]] =0

[B],[D]] = Bip1spasd*[C]?

(B, [E]] =0

[[B], [F]] =0

(B, [G]] = Bip1sprap2sp24a®[F[C]
[B], [H]] = Bipispiap2spiapsad’ [FT[E]
(B, 1] =0

[[B], 1] = —Bip1sp1apZapasd®[F1E] + Bipropsprapispaag* [1[C]
[[B], [K]] = Bipisprapaspasq®[F]?

[[B], [L]] =0

[[B], [M]] = —Boprapisprap3spasg* 1) [F] + Boprapispiap3spaag [L[C)

[[B], [N]] = pisp1apisp2apasa® (¢ —2q—1) [H|+Boptspispaspssd’ | K| [E] = B3p1opisprapispasa® ][ G-
Bapr2pisprapsspisq’ (14q) [J)[F]+51 B2pr2pisptapasp3aq (L] D]+ Bapiapisptapssp3ag® [M][C]

[[B], [O]] = Bap120}30340330340 (LI [E] — Bapropisprapsspasq® (1]

[[B],l’g] =0
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38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

ol.

02.

33.

54.

99.

56.

57.

28.

29.

60.

[[B,[Q]] = Bap12q®x:[C]

[[B, [R]] = B1B2p12q°x2[ D] + Bapr2prapasd®[Q)[C] + p3sq[E]

[[B],[S]] = Bapr2g®zs[F]

[[B], [T]] = B1B2p126 22| Gl+D3324q [ I]+B1p12013P14023D2462 [S) Gl 4-B1p12pr1spaspasd® Q) [ F)
[[B], [U]] = BiBepra@® 2| K] + p3ap3,q[L] + Bapropispiapaspaaq®[S][F]
[[B],ws] =

(B, W] = [F]

[[B], 4] =

[, [D]] =

(€] [E]] =

[, [F]] =

[[C],[G]] = Bip1ap2apsaq[F][D)

[[C], [H]] = 81 6ap13pisp2spiapiagt (G F][E)

[C), []] = Biprapaspsaq(F[E]

[[C], [T]] = Biprapraprapaapsaq®[1][D] — Biprap1apsspaapsag® (G E]

[[C], [K]] = Bapr3p1ap2sp2apsad®|G)[F]

[[C], [L]] = Bapr2pisprapsag®[1)[F)

[[CL, [M]] = —Baprisplapssp3apiad® (K] [E] + prsprap3spaapsa(l + 2g — ¢*)[H] +

B2p12p13p14p34q(q —q—1)[I][G)+Bap12p3sp1apas@® | J| [ F]+Bopr2pispiapsapiag? (L] [ D]

[[C], [N]] = —Baproptsprapasa®(1 + Q)[J][G] + Baprapisplapespsapiag* [M][ D]
[[C], [O]] = —Bapraptsprapasa® (1 + q)[J][I] + Boprapisptapaspsapiag' [M][E)
[(C), 5] =

[[C], Q)] = Bapr2ps2q®e2[D] — pas| )]

[[C], [R]] = Bapr2pr3a®|Q)[D]

61



61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

79.

76.

77

78.

79.

80.

81.

82.

[[C], [S]] = —posp2ap3aq|I] + Bapr2psopsaq® sG] + Bipraprzq[Q)[F]

[[C], [T] = paspaapsa[ ]+ Brprap1sq(1+ B2q) [Q)Gl+ Bip12prsprapaapsaqlS][ D] +
ﬁ1p12P%3P23P43Q2 [R][F]

[[C], [U]] = p23p3,034a[ M+ 51 Bop12p13¢* Q) K|+ Bopropisprapaspaspsad® [T F 1+
52p12p13p14p24p§4q3 [S][G]
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83. [[D], [U]] = p3.p34a[N]+ Bapr2pisprapaaps, (1 + @) [T)[G] + b1 fapr2pise® [ R [K]
84. [[D], z3] =

85. [[D], [W]] = Baprspaspsaq’esG)

86. [[D], z4] = paa(1 + q)[C]

87. [[E],[F]] =

88. [[E],[G]] =

89. [[E], [H]] =

90. [[E],[I]] =

91. [[E],[J]] =

92. [[E], [K]] = prapa1p3sp3apiag* (1 + q)[H]

93. [[E], [L]] = Boprapsap3aq®[1]?

94. [[E], [M]] = Bapraprapispiapiag* (1 + ) [J][1]

95. [[E], [N]] = Baprsprapispsapsag (1 + q)[J]?

96. [[£],[0]] =

97. [[E],z2] =

98. [[E],[Q]] =

99. [[E],[R]] =

100. [[B], [S]] = Bopr2pisp2apsad’[Q)[I] — Baprop2apiapisq* (1 + q)2]J]

101, [[E], [T]] = —Bapropr3p2apsaa®(Q[J] + Beprapispispaag (R[]

102. [[E], [U]] = —B1Bop12p130340340° |Q)[M] 451 B2p12013p1403305, 05405 [T 1] 451 Bop1203403005340° w2 [N 1+

p23p24p34q [ ] — 52]?1217131914]?242934(1 (1+q)[SI[J ]+,6152p12p13p23p24q [R][L]

103. [[E], 23] =0
104. HEL [WH = —poup3,(1 + q)J + Bapi3pispoapsaq’es[I]

105. [[E], 4] = paapsa(1 + q)[I]
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106.

107.

108.

109.

110.

111.

112.

113.

114.

115.

116.

117.

118.

119.

120.

121.

122.

123.

124.

125.

126.

127.

128.

129.

[F], [J]] = —p13p33Pa3q° [ H] + Biprap1spaepasq® [ 1)[G)
]

|=0

[F], IM]] = Bopr2p1sp1ag®[L][G] — Boprsprapispaa®[K[1]

[F], [N]] = —Boprsprapispaad® (1 + @) [K][J] + Boprapisprapespasa’ [M][G]
[F], O] = Baprzptsprapespasg* [M][1] — Baproprsprapsaq®(1 + q) [L][J]
[Fl,22] =0

= Bop12p32Pa2q’ (G — pas[I]

[F7], [R]] = Bapr2p13pazpasa®[Q)[G] — pas(1 + q)[J]

= —pasp2aq(1+q) " [M]+B1p1op13p1ag[S)[G] + Bipraprspaspisd® | Q) K]

[F], [U]] = Bapr2prsprag®[S][K]

[

[

[

[

[

[

[

[

[

[

[ ]
(7], [R]
[[F],[S]] = Bapropsopazg®cal K] — paspaa[L]
(71, [T}
[ ]
[

[

[

[

[

[

[

[

[
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130. [[G],[N]] =

131. [[G], [O]] = Bepropisprad®[NII] — Boproprsprapiapsaq* [M][ ]
132. [[G],22] =

133. [[G],[Q]] =

134. [[G],[R]] =

135. [[G], S]] = —paapsa(1 + )" [M] + Biprapispsepapizd®[Q) [ K]
136. [[G, [T]] = —paapsa(1 + @)~ [N] + Bipr2pispaeptsq® (R [K]
137. [[G], [U]] = Bapropisprad®(T[K]

138. [[G] }

139. [[G] } B1p1spaspasq*s[K]

140. [ }

141. [[H], [1]] =

142. [ [J]] =

143. [[H],[K]] =

144. [[H],[L]] = B1Bapt p3apiaq* K12

145. [[H], [M]] = B3p1spiapsspiapsad’ (K] [J]1]

146. [[H], [N]] = B3pr1splapsspiapiad® [ K][J)*

147. [[H] O] Ba0Tap130} P240520340° (L[] —B3030ptspl ip2apaad® [M[J) (1] 451 Bawtopit s apBspead® [N
148. [[H], x] = Bip1ap3apag*[1)?

149. [[H] Q] Bap12p13pazpasd’ [ J][1]

150. [[H] ] Bapr2p1spazpazg’[J]°

151. [[H], [S]] = Baprop1ap3ip3ap3ad [LI[J] = Bipropisprap3apiad’ M 1] = B3ptap1apsapseges [ K[ J]+

B @2171219132?14]93261 (Q]IK][{]

152. [[H],[T]] = —B1ip120ispr1ap3sp340340® [N [+ B1p12p1sprap3 p34a[M][ ] — 51 Bopiopispiapsea® [Q][K][J]
5152]?%2]?4113]91419%32923 qﬁ [R] [K ] [I ]
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153. [[H], [UH = Bip1ap1sprapsa g’ (1+q) T M4 B3 p1ypisptap3sraaniag [T K] [1]—
Brp12073D14D33054034G° N[ L]+ 6107507 50140240344 [O) [ K+ 57 Bopi oDt sprapiopsapazg® 2 [N] [ K]+
ﬁ%ﬁ2p‘;’2pil3p14p4gpi3q[ J[L][K ]+ﬁ1ﬁ2p12p13p14p32p42p43q [QI[M][K]— 52]912]913]714]7242932]934@ [SI[K][

154. [[H],z5] =

155. [[H], [W]] = Biaptsprapisp3aa ‘s K1) — Baprap3apiag®[K][J]

156. [[H],24] = Boprap3spiagd®[K](1]

157. [[1],[J]] =

158. [[1],[K]] =

159. [[1],[L]] =

160. [[1],[M]] = Baprap3apiag’[LI[J]

161. [[1], [N]] = Bopraprapispiapaaq* [M][J]

162. [[1],10]] =

163. [[1], 2] =

164. [[1],(Q]] = Boprop3opang* ] J]

165. [[1], [R]] = Bapr2prapazpasg®[Q][ ]

166. [[1],[S]] = —Biprapiapsad®eaM] + Biproprspasg®[Q)[L]

167. [[1],[T]] = —p3sp3ipsaa(l + @)~ [O] — Biprapiopsia® e[ N] — Biproprspasa®(Br —
(1+q)H)[QI[M] + Bip12p3sp3spisq* [RI[L] + Biproprspiapaapsag?[S][J]

168. U] = Boprapisprap3spiag* [TV L] — Biprapraprapsapiag’[S)[M]

169.

7] =

170. } = —poup3a(1 + q) " [M] + Bip13p3spapasq’es[ L]

172.

K] =
L]} =
M]] =

173.

[[7];
[[7];
[[7];
171. [[I],24] = pou[L]
(7]
(7]
(7]

174.
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175.

176.

177.

178.

179.

180.

181.

182.

183.

184.

185.

186.

187.

188.

189.

190.

191.

192.

193.

194.

195.

196.

197.

[[J],[N]} =0
[[7),[0]] =0
[}, 25] =0
[, Q] =0
[[J],[R]] =0
[[7], [S]] = —Bip1203ap340" w2 [N]+Bipi2pisps2a® (1+q) Q] [M]+paspiipisa(1+
9)~'[0]
[J], [T]] = —Bipr2p1sps2q® (1 + ) QIIN] + Bip1apiapaspisg* (1 + q) ' [R][M]
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198.

199.

200.

201.

202.

203.

I
=
N
3
o
3
W N
¢
3
(O]
)
[
i
8
N

204.

205.

206.

I
S0
)
g
T
&
]
=
LS
2
2

207.
208.

209.

211.
212,
213,
214. [[M],[Q]] = —p23[O] + Bop12p3apiaq* 2 N]
215. [[M], [R]] = Bap12p13ps2piopisq Q][]
216. [[M],[S]] =0

]

]

217. |[M], [T]] = Bip1ap13p1ap32p3aq®[S][NV]
218.
219.
220.

[
[
[
[
[
[
[
[
[
[
[
[
210. [[L],z4] =0
[
[
[
[
[
[
[
[
[
[
[

221.
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