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Resumo

Seja g uma álgebra de Lie simples de tipo G2 ou F4. Nesta tese calculamos o

posto combinatório da parte positiva da versão multiparâmetro do pequeno grupo

quântico de Lusztig u+q (g).

Abstract

Let g be a simple Lie algebra of type G2 or F4. In this thesis we calculate the

combinatorial rank of the positive part of the multiparameter version of the small

Lusztig quantum group u+q (g).
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Chapter 1

Introduction

LetH be a character Hopf algebra. We notice that by a corollary of the Heyneman-

Radford Theorem [8, Proposition 2.4.2] every nonzero bi-ideal of a character Hopf

algebra has a nonzero skew-primitive element. We also have that skew-primitive

elements generate a Hopf ideal and, unlike the classical case of universal enveloping

algebras, in the quantum case a Hopf ideal is not necessarily generated by its skew-

primitives. In this sense, the concept of a combinatorial rank is introduced in Section

2.7 �measuring� how distant an speci�c Hopf ideal is from being generated by its

skew primitive elements.

We consider J a Hopf ideal of H and we construct the sequence 0 = J0 ( J1 (
J2 ( . . . ( Ji ( . . . ( J of Hopf ideals. The construction of this sequence is given

as follows:

� We de�ne J1 as the Hopf ideal generated by skew-primitive elements of J .If

J1 6= J , then J
J1
6= 0 is a Hopf ideal and has a skew-primitive element.

� We de�ne J2
J1

as the ideal generated by skew-primitive elements of G〈X〉
J1

, where

J2 = π−1(J2
J1

) with π : G〈X〉 → G〈X〉
J1

.

� If J2 6= J then de�ne J3
J2

as the ideal generated by skew-primitive elements of
G〈X〉
J2

, where J3 = π−1(J3
J2

) with π : G〈X〉 → G〈X〉
J2

.

� Following this process until the sequence stabilizes, that is, Jκ = J for some

κ.

If J = kerϕ, where ϕ : G〈X〉 → H, the length κ of this sequence is called the

combinatorial rank of H.

The de�nition of combinatorial rank was proposed by V. Kharchenko and A.

Alvarez in [14], where they proved that κ(u+q (g)) = blog2 nc + 1 in the case that
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g is a simple Lie algebra of type An. Later, V. Kharchenko and M. L. Díaz Sosa

showed similar results for the Frobenius-Lusztig kernel of type Bn, Cn and Dn (see

[15] and [16]). They proved that κ(u+q (g)) = blog2(n− 1)c+ 2 for the cases Bn and

Cn, and κ(u+q (g)) = blog2(2n− 3)c+ 1 for the case Dn. However, Ardizzoni [6] also

investigated conditions under which some particular graded braided bialgebras have

�nite combinatorial rank. We still have, trivially, that κ(U+
q (g)) = 1, for any simple

Lie algebra g.

The quantum groups U+
q (g) and u+q (g), where g is a simple Lie algebra, are

important examples of quantum algebras. The cases where g is a Lie algebra of

types An, Bn, Cn and Dn were extensively studied. We also have a good amount

of results on G2. However there are few studies speci�cally on F4. In this thesis

we calculate the combinatorial rank of the algebra u+q (g), where g is a simple Lie

algebra of types G2 and F4, continuing the investigation for "small" quantum groups

u+q (g).

In the �rst chapter we introduce the general notation, de�nitions and basic results

necessary for this work. In the second chapter we list existing results about u+q (G2)

and we proved that κ(u+q (G2)) = 3, describing the complete chain of Hopf ideals

Ji, i ∈ {1, 2, 3}. Finally, in the third chapter we go deeper into the case that g is a

simple Lie algebra of type F4 and we develop results to prove that the combinatorial

rank of u+q (F4) equals 4.
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Chapter 2

Preliminaries

Let k be an algebraically closed �eld of characteristic zero. In this chapter we

will state de�nitions and basic results used in this work. These results are already

known and can be found in the references [4], [13] and [17].

2.1 Character Hopf algebras

In this section we will de�ne character Hopf algebras and present some properties.

De�nition 2.1.1. A Hopf algebra H is a character Hopf algebra if the group G of all

group-like elements is commutative and H is generated over k[G] by skew-primitive

semi-invariants ai, i ∈ I:

∆(ai) = ai ⊗ 1 + gi ⊗ ai, g−1aig = χi(g)ai, g, gi ∈ G,

where χi, i ∈ I, are characters of the group G.

De�nition 2.1.2. A variable x is called a quantum variable if a group-like element

gx ∈ G and a character χx ∈ G∗ are associated with x.

Let xi be the quantum variable associated with ai. For each word u in X =

{xi|i ∈ I} we denote by gu an element of G that appears from u by replacing each

xi with gi. Similarly we denote by χu a character that appears from u by replacing

each xi with χ
i. Now we de�ne a bilinear skew-commutator on homogeneous linear

combinations of words using the formula

[u, v] = uv − χu(gv)vu, (2.1)
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where we use the notation χu(gv) = puv = p(u, v). These brackets satisfy the

following Jacobi and skew-di�erential identities

[u · v, w] = pvw[u,w] · v + u · [v, w], (2.2)

[u, v · w] = [u, v] · w + puvv · [u,w]. (2.3)

[[u, v], w] = [u, [v, w]] + p−1wv[[u,w], v] + (pvw − p−1wv)[u,w] · v (2.4)

[[u, v], w] = [u, [v, w]] + pvw[[u,w], v] + puv(pvwpwv − 1)v · [u,w] (2.5)

If pvv is a primitive t-th root of the unit then we also have the restricted identities

[u, vt] = [. . . [[u, v], v], . . . , v], (2.6)

[vt, u] = [v, [v, . . . [v, u] . . .]]. (2.7)

The group G acts on the free algebra k〈X〉 by g−1ug = χu(g)u, where u is an

arbitrary monomial in X. The skew group algebra G〈X〉 has the natural Hopf

algebra structure

∆(xi) = xi ⊗ 1 + gi ⊗ xi, i ∈ I, ∆(g) = g ⊗ g.

2.2 Hard hyper-letters

Let H be a character Hopf algebra. In particular, we can consider H = G〈X〉,
where X = {xi|i ∈ I}, or H to be the image of G〈X〉 by an homomorphism of Hopf

algebras.

Let us �x a Hopf algebra homomorphism

ξ : G〈X〉 → H, ξ(xi) = ai, ξ(g) = g, i ∈ I, g ∈ G.

De�nition 2.2.1. A constitution of a word u in G ∪X is a family of non-negative

integers {mx, x ∈ X} such that u has mx occurrences of x. Certainly almost all mx

in the constitution are zero.

Let us �x an arbitrary complete order < on the set X, and let Γ+ be the free

additive (commutative) monoid generated by X. The monoid Γ+ is a completely
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ordered monoid with respect to the following order:

m1xi1 +m2xi2 + . . .+mkxik > m′1xi1 +m′2xi2 + . . .+m′kxik (2.8)

if the �rst from the left nonzero number in (m1 − m′1,m2 − m′2, . . . ,mk − m′k) is

positive, where xi1 > xi2 > . . . > xik in X. We associate a formal degree D(u) =∑
x∈X mxx ∈ Γ+ to a word u in G ∪X, where {mx|x ∈ X} is the constitution of u.

Respectively, if f =
∑
αiui ∈ G〈X〉, 0 6= αi ∈ k then

D(f) = maxi{D(ui)}. (2.9)

On the set of all words in X we �x the lexicographical order with the priority from

the left to the right, where a proper beginning of a word is considered to be greater

than the word itself.

De�nition 2.2.2. A non-empty word u is called a standard word (or Lyndon word,

or Lyndon-Shirshov word) if vw > wv for each decomposition u = vw with non-

empty v, w.

De�nition 2.2.3. A non-associative word is a word where brackets [, ] are somehow

arranged to show how multiplication applies.

If [u] denotes a non-associative word, then by u we denote an associative word

obtained from [u] by removing the brackets. Of course, [u] is not uniquely de�ned

by u in general.

De�nition 2.2.4. The set of standard non-associative words is the biggest set SL

that contains all variables xi and satis�es the following properties:

1. If [u] =
[
[v], [w]

]
∈ SL then [v], [w] ∈ SL, and v > w are standard.

2. If [u] =
[[

[v1], [v2]
]
, [w]

]
∈ SL then v2 ≤ w.

Theorem 2.2.5. (Shirshov's Theorem) [23, Lemma 2] Every standard word u has

only one alignment of brackets such that the de�ned non-associative word [u] is

standard.

In order to �nd this alignment we use the following procedure: the factors v, w

of the non-associative decomposition [u] =
[
[v], [w]

]
are standard words such that

u = vw and v has the minimal length.
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De�nition 2.2.6. An hyper-letter is a polynomial that equals a non-associative

standard word where the brackets mean (2.1). An hyper-word is a word in hyper-

letters.

The hyper-letters were �rst invented and named super-letters by Kharchenko.

However, not to make confusion with the same terminology used for super Lie alge-

bras, Angiono renamed them hyper-letters.

By Shirshov's Theorem, every standard word u de�nes only one hyper-letter that

will be denoted by [u]. The order on the hyper-letters is de�ned in the natural way:

[u] > [v]⇔ u > v.

Since quantum Borel algebras U+
q (g) and u+q (g), which will be de�ned in 2.5.1

and 2.5.3, are homogeneous in each variable, in what follows we suppose that H

is a Γ+-graded character Hopf algebra, that is, H is homogeneous in each of the

generators ai.

De�nition 2.2.7. An hyper-letter [u] is called hard in H if its value in H is not a

linear combination of hyper-words of the same degree (2.9) in hyper-letters smaller

than [u].

Proposition 2.2.8. [11, Corollary 2] An hyper-letter [u] is hard in H if and only

if the value in H of the standard word u is not a linear combination of values of

smaller words of the same degree (2.9).

Proposition 2.2.9. [12, Lemma 4.8] Let B be a set of hyper-letters containing

x1, . . . , xn. If each pair [u], [v] ∈ B, u > v satis�es one of the following conditions

1)
[
[u], [v]

]
is not a standard non-associative word;

2) the hyper-letter
[
[u], [v]

]
is not hard in H;

3)
[
[u], [v]

]
∈ B;

then the set B includes all hard in H hyper-letters.

De�nition 2.2.10. We say that the height of a hard in H hyper-letter [u] equals

h = h([u]) if h is the smallest number such that

1. puu is a primitive t-th root of 1 and either h = t or h = tlr, where l = char(k),

2. the value of [u]h in H is a linear combination of hyper-words of the same degree

(2.9) in hyper-letters smaller than [u].
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If there exists no such number then the height equals in�nity.

Lemma 2.2.11. [12, Lemma 4.9] If T ∈ H is an homogeneous skew-primitive

element then

T = α[u]h +
∑

αiWi, α 6= 0, (2.10)

where [u] is a hard hyper-letter, Wi are basis words in hyper-letters smaller than [u].

Here if puu is not a root of unity then h = 1; if puu is a primitive t−th root of unity

then h = 1, or h = t, or h = tlk, where l is the characteristic.

De�nition 2.2.12. An element u is said to be skew-central if for every homogeneous

v we have uv = αvu, α = α(v) ∈ k. Certainly it is equivalent to a system of n

equalities uxi = αixiu, 1 ≤ i ≤ n, αi ∈ k.

Example 2.2.13. For example, all group-like elements in G〈X〉 are skew-central

since xigj = pijgjxi, where i, j ∈ {1, 2, · · · , n}.

2.3 PBW-generators

In this section we will de�ne PBW-basis.

De�nition 2.3.1. Let S be an algebra over k and A be a subalgebra of S with

a �xed basis {aj|j ∈ J}. A linearly ordered subset W ⊆ S is said to be a set of

PBW-generators of S over A if there exists a function h : W → Z+ ∪∞, called the

height function, such that the set of all products

ajw
n1
1 w

n2
2 . . . wnkk , (2.11)

where j ∈ J , w1 < w2 < . . . < wk ∈ W , 0 ≤ ni < h(wi), 1 ≤ i ≤ k is a basis of S.

The value h(w) is referred to as the height of w in W . If A = k is the ground �eld,

then we shall call W simply as a set of PBW-generators of S.

De�nition 2.3.2. Let W be a set of PBW-generators of S over a subalgebra A.

Suppose that the set of all words in W as a free monoid has its own order ≺ (that

is, a ≺ b implies cad ≺ cbd for all words a, b, c, d ∈ W ). The leading word of s ∈ S
is the maximal word m = wn1

1 w
n2
2 . . . wnkk that appears in the decomposition of s in

the basis (2.11). The leading term of s is the sum am of all terms αiaim, αi ∈ k,

that appear in the decomposition of s in the basis (2.11), where m is the leading

word of s.

Theorem 2.3.3. [11, Theorem 2] The values of all hard in H hyper-letters with the

height function de�nided in 2.2.10 form a set of PBW-generators for H over k[G].
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2.4 Convex order

Let (V, c) be a braided vector space of diagonal type, with dimV = θ. In

other words, there is a basis (xi)i∈Iθ , Iθ = {1, 2, . . . , θ}, and a braiding matrix

p = (pij)i,j∈Iθ such that

c(xi ⊗ xj) = pijxj ⊗ xi.

Let ∆p be the generalized root system associated to p and ∆p

+ = {β1, · · · , βM}
the subset of positive roots. Let αi, i ∈ Iθ, be the simple roots. We denote xαi =

xi, i ∈ Iθ.

De�nition 2.4.1. Consider a root system ∆p

+ with a �xed total order <. We say

that the order is

� convex if for any α, β ∈ ∆p

+ such that α < β and α + β ∈ ∆p

+ we have

α < α + β < β;

� subconvex if for any α, β ∈ ∆p

+ such that α < β and α + β ∈ ∆p

+ we have

α < α + β;

� strongly convex if for each ordered subset α1 ≤ · · · ≤ αk ∈ ∆p

+ with α :=∑
αi ∈ ∆p

+ we have

α1 < α < αk.

Theorem 2.4.2. [4, Theorem 2.11] Given an order on ∆p

+, the following statements

are equivalent:

(1) the order is associated with a reduced expression of the longest element,

(2) the order is strongly convex,

(3) the order is convex.

Each simple root αi is associated to the quantum variable xi, i ∈ {1, · · · , θ}.
Moreover, each positive root βj is associated to a PBW-generator of the Hopf alge-

bra, see [4, Theorem 3.9].

De�nition 2.4.3. We say that a PBW-basis is convex basis if the order of the

associated roots is convex.
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We notice that a quantum algebra may have more than one convex set of PBW-

generators, even if we �x the order of the simple roots. However, if we suppose that

the elements are hyper-letters, we have only one possible convex basis, as stated in

the next proposition.

Remark 2.4.4. Notice that by [4, Lemma 4.5] a PBW-basis of hyper-letters being

convex implies that, for all [u], [v] ([u] > [v]) in the basis, we have
[
[u], [v]

]
is

a linear combination of super-words [w] = [w1] · · · [wk], where [u] > [wi] > [v],

i = 1, · · · , k ∈ N, [wi] belongs to the PBW-basis and [w] has the same degree of[
[u], [v]

]
.

Proposition 2.4.5. Let B be a convex set of PBW-generators formed by hyper-

letters. Then B is constituted by the hard hyper-letters.

Proof. Let B be a convex PBW-basis of hyper-letters. By Remark 2.4.4 and De�ni-

tion 2.2.7, for every pair [u], [v] ∈ B, such that [u] > [v], we have that
[
[u], [v]

]
∈ B

or
[
[u], [v]

]
is not hard. Then it satis�es conditions 2 or 3 of Proposition 2.2.9.

Therefore B is constituted by hard hyper-letters.

2.5 Quantum algebras

In this section we de�ne the algebras U+
q (g) and u+q (g), where g is a simple Lie

algebra.

De�nition 2.5.1. Let C = ||aij|| be a generalized Cartan matrix symmetrizable by

D = diag(d1, . . . , dn), diaij = djaji. Denote by g a Kac-Moody algebra de�ned by

C (see [9]). Suppose that the quanti�cation parameters pij = p(xi, xj) = χi(gj) are

related by

pii = qdi , pijpji = qdiaij , 1 ≤ i, j ≤ n. (2.12)

The multiparameter quantization U+
q (g) of the Borel subalgebra g+ is a character

Hopf algebra generated by x1, . . . , xn, g1, . . . , gn and de�ned by Serre relations with

the skew brackets (2.1) in place of the Lie operation:

[[. . . [[xi, xj], xj], . . .], xj] = 0, 1 ≤ i 6= j ≤ n, (2.13)

where xj appears 1− aji times.

Remark 2.5.2. By [10, Theorem 6.1] the left side of each of these relations is skew-

primitive in G〈X〉. So the ideal generated by these elements is a Hopf ideal.
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De�nition 2.5.3. If the multiplicative order t of q is �nite, then we de�ne u+q (g) as

G〈X〉/Λ, where Λ is the biggest Hopf ideal in G〈X〉(2), which is the set (an ideal) of

noncommutative polynomials without free and linear terms. From [14, Lemma 2.2]

this is a Γ+-homogeneous ideal. Certainly Λ contains all skew-primitive elements of

G〈X〉(2) (each one of them generates a Hopf ideal). Hence, by [10, Theorem 6.1],

relations (2.13) are still valid in u+q (g).

Notice that the subalgebra A generated by x1, . . . , xn over k in U+
q (g) is a Nichols

algebra of Cartan type if q is not a root of 1, see [2]. In the same way, if qt = 1 for

an integer t, the same thing is valid for A ⊆ u+q (g). This is particularly useful since

in [3] there are many results for the Nichols algebra A. However, if q is a root of 1,

then the subalgebra generated by x1, . . . , xn in U+
q (g) is not a Nichols algebra.

2.6 Di�erential calculus

In this section we list important results for calculating the height of the PBW-

generators of u+q (G2) and u
+
q (F4) in the chapters 3 and 4.

De�nition 2.6.1. The subalgebra A generated by x1, ..., xn over k in U+
q (g) (re-

spectively, u+q (g)) has a di�erential calculus de�ned by

∂i(xj) = δji , ∂i(uv) = ∂i(u)v + p(u, xi)u∂i(v). (2.14)

Lemma 2.6.2. ([18, Lemma 2.10]) Let u ∈ k〈X〉 be an homogeneous in each xi

element. If puu is a t-th primitive root of 1, then

∂i(u
t) = p(u, xi)

t−1 [u, [u, · · · , [u︸ ︷︷ ︸
t−1

, ∂i(u)] · · · ]]. (2.15)

Lemma 2.6.3. (Milinski-Schneider criterion, see [21]) If a polynomial f ∈ k〈X〉
with no one free terms is such that ∂i(f) = 0 in u+q (g) for every xi ∈ X, then f = 0

in u+q (g).

2.7 Combinatorial rank

We notice that by [13, Proposition 1.7] each ideal generated by skew-primitive

elements is a Hopf ideal, but a Hopf ideal is not always generated by its skew-

primitive elements. However, the skew-primitive relations play an important role in

the construction of character Hopf algebras due to the following result.
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Theorem 2.7.1. [19, Corollary 5.3] Every nonzero bi-ideal of a character Hopf

algebra has a nonzero skew-primitive element.

Let H be a character Hopf algebra and J a hopf ideal of H. We construct the

sequence 0 = J0 ( J1 ( J2 ( . . . ( Ji ( . . . ( J of Hopf ideals in the following

way. We de�ne J1 as the Hopf ideal generated by skew-primitive elements of J . If

J1 6= J , then J
J1
6= 0 is a Hopf ideal and has a skew-primitive element. We de�ne J2

J1

as the ideal generated by skew-primitive elements of J
J1
, where J2 = π−1(J2

J1
) with

π : G〈X〉 → G〈X〉
J1

. If J2 6= J then de�ne J3
J2

as the ideal generated by skew-primitive

elements of J
J2
. Following this process, this sequence of Hopf ideals stabilizes if

Jκ = J for some κ.

Lemma 2.7.2. [13, Lemma 1.24]

∞⋃
i=1

Ji = J.

De�nition 2.7.3. If G is an abelian set of group-like elements, X is a set of skew-

primitive elements and a combinatorial representation of H by means of generators

and relations ϕ : G〈X〉 → H is given with J = kerϕ. We say that the combinatorial

rank of H is the lenght κ of the above sequence, or in�nite if the sequence does not

stabilizes.

Consider the projections ψ1 : G〈X〉 → u+q (g) and ψ2 : G〈X〉 → U+
q (g) the

extensions of xi 7→ ai. We know that kerψ1 = Λ is the biggest Hopf ideal in

G〈X〉(2) and kerψ2 is generated by the Serre relations (2.13). In order to calculate

the combinatorial rank κ(u+q (g)) we should consider J = Λ. However, we have that

kerψ2 ⊆ kerψ1 = Λ and the de�ning relations for U+
q (g) are skew-primitive. We also

have from Proposition 3.3.1 and Theorem 4.3.2 that the only homogeneous skew-

primitive elements in U+
q (g) are x1, · · · , xn and xh11 , · · · , xhnn in the considered cases,

where hi is the height of xi. This implies that the only skew-primitive elements

in G〈X〉 belong to the ideal generated by these elements and the Serre relations.

This way, instead of the morphism ψ1 : G〈X〉 → u+q (g) we may use the induced one

ϕ : U+
q (g) → u+q (g). In the next chapters we consider J = kerϕ a Hopf ideal of

U+
q (g).
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Chapter 3

Combinatorial rank of the quantum

groups of type G2

3.1 Quantum groups of type G2

In this section we are going to explicit a set of PBW-generators for U+
q (G2) (re-

spectively, u+q (G2), if q
t = 1 for t > 3).

Let us �rst remember that the algebra U+
q (G2) is de�ned by two generators x1, x2

and two relations

[[x1, x2], x2] = 0, [x1, [x1, [x1, [x1, x2]]]] = 0, (3.1)

where the brackets mean the skew commutator (2.1). Relations (2.12) take up the

form p311 = p22, p12p21 = p−122 , and p11 = q. In what follows we shall suppose that

q2 6= 1 and q3 6= 1. We notice that we do not follow exactly the notation in [22].

Minor adaptations were made in order to directly use results from [1] and [7].

In the following theorems we present the PBW-bases of U+
q (G2) and u

+
q (G2).

Theorem 3.1.1. [22, Theorem 3.4] If q is not a root of 1, then the values in U+
q (G2)

17



of the elements

[A] = x1,

[B] = [x1, [x1, [x1, x2]]],

[C] = [x1, [x1, x2]], (3.2)

[D] = [[x1, [x1, x2]], [x1, x2]],

[E] = [x1, x2],

[F ] = x2.

form a set of PBW-generators for U+
q (G2) over k[G], and each element has in�nite

height. If we suppose that x1 > x2, then A > B > C > D > E > F .

Remark 3.1.2. If q is a root of 1 then the elements [u] from list (3.2) also have in�nite

height in U+
q (G2). Indeed, if [u] has a �nite height then the value of [u]h in U+

q (G2) is

a linear combination of words in hard hyper-letters that are smaller than [u]. But no

element from the list (3.2) can be written as this linear combination. For example,

if [u] = [A] = x1, [u]h = xh1 has degree (h, 0) and all the other smaller elements of list

have a degree (M,N), where M ∈ {0, 1, 2, 3} and N ∈ {1, 2}. Therefore [u]h = 0,

which is a contradiction.

We note that U+
q (G2) and u+q (G2) have the same PBW-generators but its ele-

ments have di�erent heights. The following results are used to �nd the height of the

elements in u+q (G2).

Theorem 3.1.3. [22, Theorem 3.6] If q has �nite multiplicative order t, t > 3, then

the values in u+q (G2) of the elements from list (3.2) form a set of PBW-generators

for u+q (G2) over k[G]. The height h of [u] ∈ {[A], [C], [E]} equals t. For [u] ∈
{[B], [D], [F ]} we have h = t if 3 is not a divisor of t and h = t

3
otherwise. In all

cases [u]h = 0 in u+q (G2).

We notice that the basis obtained in the previous results is not just a PBW-

basis, but the unique PBW-basis constituted by the hard hyper-letters (see [11]).

It is also a convex basis [4]. In addition we observe that, altough the second result

is proved for t > 4 and t 6= 6 in the listed reference, it actually can be obtained

for every t > 3 using a di�erent proof, as in [3]. However, the cases where t = 2

or t = 3 do not generate the same algebra. In fact, using the Milinski-Schneider

criterion [21], if t = 2, then we have [B] = [C] = [D] = 0. In this case the generated

algebra with PBW-generators {x1, [x1, x2], x2} is isomorphic to A2 so [14] provides

18



κ = 2. Similarly, if t = 3, [B] = [C] = [D] = [E] = 0 and the only remaining PBW-

generators are x1 and x2. In this case κ = 1 as xh11 and xh22 are skew-primitive.

3.2 The coproduct formula of quantum groups of

type G2

In this section we present the explicit coproduct formula for the elements [u]hu

where [u] is a PBW-generator of u+q (G2) and hu is the height of [u].

The following results are already known.

Proposition 3.2.1. [20, Theorem 4.2] The coproduct formula of elements from list

(3.2) are:

� ∆(x1) = x1 ⊗ 1 + g1 ⊗ x1

� ∆([B]) = [B] ⊗ 1 + g1112 ⊗ [B] + (1 − q−3)q2x1g112 ⊗ [C] + (1 − q−3)(1 −
q−2)q2x21g12 ⊗ [E] + (1− q−3)(1− q−2)(1− q−1)x31g2 ⊗ x2

� ∆([C]) = [C] ⊗ 1 + g112 ⊗ [C] + (1 − q−2)(1 + q)x1g12 ⊗ [E] + (1 − q−3)(1 −
q−2)x21g2 ⊗ x2

� ∆([D]) = [D]⊗1+g11122⊗ [D]+(1−q−3)q2[C]g12⊗ [E]+(1−q−3)2q2[C]x1g2⊗
x2 +(1− q−3)(q3− q2− q)p21[B]g2⊗x2 +(1− q−3)2(1− q−2)(1− q−1)p21x31g22⊗
x22 + (1− q−3)2(1− q−2)q2x21g122 ⊗ x2[E] + (1− q−3)(1− q−2)q2x1g1122 ⊗ x212

� ∆([E]) = [E]⊗ 1 + g12 ⊗ [E] + (1− q−3)x1g2 ⊗ x2

� ∆(x2) = x2 ⊗ 1 + g2 ⊗ x2

Proposition 3.2.2. [8, Proposition 4.3] Let k be an algebraically closed �eld of

characteristic zero and q ∈ k such that qt = 1, with t > 3. Suppose that 3 is not a

divisor of t. Then we have the following statement in G〈X〉:

� ∆(xt1) = xt1 ⊗ 1 + gt1 ⊗ xt1

� ∆([B]t) = [B]t⊗1+g3t1 g
t
2⊗[B]t+3(1−q−1)tp

t(t−1)
2

21 xt1g
2t
1 g

t
2⊗[C]t+3(1−q−2)t(1−

q−1)tp
t(t−1)
21 x2t1 g

t
1g
t
2 ⊗ [E]t + (1− q−3)t(1− q−2)t(1− q−1)tp

3t(t−1)
2

21 x3t1 g
t
2 ⊗ xt2

� ∆([C]t) = [C]t⊗1+g2t1 g
t
2⊗ [C]t+2(1−q−2)tp

t(t−1)
2

21 xt1g
t
1g
t
2⊗ [E]t+(1−q−3)t(1−

q−2)tp
t(t−1)
21 x2t1 g

t
2 ⊗ xt2
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� ∆([D]t) = [D]t ⊗ 1 + g3t1 g
2t
2 ⊗ [D]t + 3(1 − q−1)tp

t(t−1)
2

21 [C]tgt1g
t
2 ⊗ [E]t − (1 −

q−3)tp
t(3t−1)

2
21 [B]tgt2⊗xt2+3(1−q−2)t(1−q−1)tpt(t−1)21 xt1g

2t
1 g

2t
2 ⊗[E]2t+3(1−q−3)t(1−

q−2)t(1− q−1)tp
3t(t−1)

2
21 x2t1 g

t
1g

2t
2 ⊗ xt2[E]t + 3(1− q−3)t(1− q−1)tpt(t−1)21 [C]txt1g

t
2 ⊗

xt2 + (1− q−3)2t(1− q−2)t(1− q−1)tpt(3t−2)21 x3t1 g
2t
2 ⊗ x2t2

� ∆([E]t) = [E]t ⊗ 1 + gt1g
t
2 ⊗ [E]t + (1− q−3)tp

t(t−1)
2

21 xt1g
t
2 ⊗ xt2

� ∆(xt2) = xt2 ⊗ 1 + gt2 ⊗ xt2

In the case that 3 divides t we have:

� ∆(xt1) = xt1 ⊗ 1 + gt1 ⊗ xt1

� ∆([B]
t
3 ) = [B]

t
3⊗1+gt1g

t
3
2 ⊗[B]

t
3 +(1−q−3) t3 (1−q−2) t3 (1−q−1) t3p

t(t−3)
6

21 xt1g
t
3
2 ⊗x

t
3
2

� ∆([C]t) = [C]t⊗1+g2t1 g
t
2⊗ [C]t−(1−q−2)t(1−q−1)tp

t(t−1)
2

21 xt1g
t
1g
t
2⊗ [E]t+3(1−

q−2)
−t
3 (1− q−1) t3p

t(t+1)
6

21 [B]
t
3 gt1g

2t
3
2 ⊗ [D]

t
3 + (1− q−3)t(1− q−2)tpt(t−1)21 x2t1 g

t
2⊗xt2 +

3(1− q−3) t3 (1− q−2) t3 (1− q−1) t3p
t2

3
21 [B]

2t
3 g

t
3
2 ⊗ x

t
3
2 + 3(1− q−3) 2t

3 (1− q−2) 2t
3 (1−

q−1)
2t
3 p

t(t−1)
2

21 [B]
t
3xt1g

2t
3
2 ⊗ x

2t
3
2 + 3(1− q−3) t3 (1− q−2) 2t

3 (1− q−1) 2t
3 p

t(t−1)
3

21 xt1g
t
1g
t
2 ⊗

x
t
3
2 [D]

t
3

� ∆([D]
t
3 ) = [D]

t
3⊗1+gt1g

2t
3
2 ⊗[D]

t
3 +(1−q−3) 2t

3 (1−q−2) t3 (1−q−1) t3p
t(t−2)

3
21 xt1g

2t
3
2 ⊗

x
2t
3
2 + 2(1− q−3) t3p

t(t−1)
6

21 [B]
t
3 g

t
3
2 ⊗ x

t
3
2

� ∆([E]t) = [E]t⊗1+gt1g
t
2⊗[E]t+3(1−q−3) t3 (1−q−2)−t

3 (1−q−1)−t
3 p

t(t+1)
6

21 [D]
t
3 g

t
3
2 ⊗

x
t
3
2 +3(1−q−3) 2t

3 (1−q−2)−t
3 (1−q−1)−t

3 p
t2

3
21 [B]

t
3 g

2t
3
2 ⊗x

2t
3
2 +(1−q−3)tp

t(t−1)
2

21 xt1g
t
2⊗xt2

� ∆(x
t
3
2 ) = x

t
3
2 ⊗ 1 + g

t
3
2 ⊗ x

t
3
2

Altough the above proposition can be found in [8], a very similar version of it

was �rst presented in [1, Section 4].

3.3 The combinatorial rank of quantum groups of

type G2

In this section, we prove the necessary results to determine κ(U+
q (G2)).

Proposition 3.3.1. The skew-primitive homogeneous elements of U+
q (G2) of total

degree greater than or equal to one are x1, x2, x
h1
1 and xh22 , where hi is the height of

xi.
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Proof. From Lemma 2.2.11, if v ∈ U+
q (G2) is an homogeneous skew-primitive ele-

ment, then v = α[u]h +
∑
αiWi where [u] is an element from list (3.2) and Wi are

basis words smaller than [u] with the same degree as [u]h. If puu is not a root of the

unit we have h = 1. If puu is a primitive t-th root of unit, then h = 1 or h = t.

If [u] = x1 or [u] = x2, then clearly there are no other basis words Wi of degree

(h, 0) or (0, h), so v = [u]h. If [u] = [E], then [u]h has degree (h, h) which can not

be obtained by basis words [E]r[F ]s that have degree r(1, 1) + s(0, 1) unless s = 0.

Thus v = [E]h. If [u] = [D], simmilarly the degree (3h, 2h) can not be obtained

as r(3, 2) + s(1, 1) + l(0, 1) with s 6= 0 or l 6= 0. The same occurs for [u] = [C]

and [u] = [B]. This provides that the possible skew-primitive elements are [u]h. If

h = 1, then the only skew-primitive PBW-generators are x1 and x2, what is proved

by Proposition 3.2.1. If h = t, then Proposition 3.2.2 shows that again only xh1 and

xh2 are skew-primitive.

Proposition 3.3.2. The elements [u]h are skew central in U+
q (G2), where [u] belongs

to the list (3.2) and h is the height of [u].

Proof. First we notice that xi[u]h = α[u]hxi, for i = 1, 2 implies that v[u]h = α[u]hv,

for every homogeneous v ∈ U+
q (G2). If [u] ∈ {[A], [C], [E]} then necessarily puu = q,

so puu is a t-th primitive root of the unit and hu = t ≥ 4. In the case that [u] ∈
{[B], [D], [F ]} we have puu = q3 providing hu = 2 if t = 6, hu = 3 if t = 9 and hu ≥ 4

otherwise.

Using that the provided basis is convex [4, Lemma 4.5] we know that the skew-

commutator of two PBW-generators [u], [v], with [u] > [v], is a linear combination

of intermediate basis elements with the same degree as
[
[u], [v]

]
. Consequently we

have
[
[B], [C]

]
=
[
[C], [D]

]
=
[
[D], [E]

]
= 0,

[
[A], [D]

]
= α1[C]2,

[
[B], [D]

]
=

α2[C]3,
[
[B], [E]

]
= α3[C]2,

[
[B], [F ]

]
= α4[D] + α5[E][C],

[
[C], [F ]

]
= α6[E]2 and[

[D], [F ]
]

= α7[E]3 with αi ∈ k for every i. In fact, this has been explicited in [8,

Lemma 4.1] where all coe�cients αi have been calculated.

If [u] = [A] = x1 then clearly x1x
h
1 = xh1x1. As we have [x1, [x1, [x1, [x1, x2]]]] = 0,

using (2.7) with h ≥ 4 we obtain [xh1 , x2] = [x1, [x1, . . . [x1, x2] . . .]] = 0. Thus xh1x2 =

ph12x2x
h
1 and x1 = [A] is skew-central. For [u] = [F ] = x2, similarly x2x

h
2 = xh2x2

and [[x1, x2], x2] associated with (2.6) guarantee that [x1, x
h
2 ] = 0 for h ≥ 2 and

x1x
h
2 = ph12x

h
2x1.

In the case that [u] = [E] = [x1, x2] we have
[
[E], x2

]
= 0 so from equation

(2.7) we obtain
[
[E]h, x2

]
= 0, then [E]hx2 = ph12p

h
22x2[E]h. On the other hand[[[

x1, [E]
]
, [E]

]
, [E]

]
=
[[

[C], [E]
]
, [E]

]
=
[
[D], [E]

]
= 0 therefore h ≥ 4 and (2.6)
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provide
[
x1, [E]h

]
= 0 and x1[E]h = ph11p

h
12[E]hx1.

For [u] = [C] we notice that
[[
x1, [C]

]
, [C]

]
=
[
[B], [C]

]
= 0 and

[
[C], x2

]
=

α6[E]2. From formula (2.3) we obtain
[
[C], [E]2

]
= p12q

2(1 + q)[E][D] = α8[E][D],[
[C], [E][D]

]
= [D]2 and

[
[C], [D]2

]
= 0 so

[
[C],

[
[C],

[
[C],

[
[C], x2

]]]]
= α6

[
[C],

[
[C],

[
[C], [E]2

]]]
= α6α8

[
[C],

[
[C], [E][D]

]]
= α6α8

[
[C], [D]2

]
= 0

thus h ≥ 4, (2.6) and (2.7) provide x1[C]h = ph12p
2h
11 [C]hx1 and [C]hx2 = p2h12p

h
22x2[C]h.

Now we suppose [u] = [D]. In this case we have

[[
x1, [D]

]
, [D]

]
= α1

[
[C]2, [D]

]
= 0,

[
[D],

[
[D], x2

]]
= α7[[D], [E]3] = 0

so from formulas (2.6) and (2.7) we obtain x1[D]h = p3h11p
2h
12 [D]hx1 and [D]hx2 =

p3h12p
2h
22x2[D]h for h ≥ 2.

Finally, if [u] = [B] then
[
x1, [B]

]
= 0 ensures

[
x1, [B]h

]
= 0 for h ≥ 2 and

x1[B]h = p3h11p
h
12[B]hx1. For the variable x2, using formula (2.3) we have

[
[B],

[
[B], x2

]]
=
[
[B], α4[D] + α5[E][C]

]
= α4

[
[B], [D]

]
+ α5

[
[B], [E][C]

]
= (α2α4 + α5α9)[C]3.

In the case h = 2, from [8, Lemma 4.1] we have

α2 =
p212q

3(q − 1)(q3 − 1)

q + 1
, α4 = p12q(q

2 − q − 1), α5 = p212q
2(q3 − 1)

and using that
[
[B], [E][C]

]
= p12q(q3−1)

q+1
[C]3 we may explicitly calculate

β = α2α4 + α5α9 =
p312q

3(q − 1)(q6 − 1)

q + 1

and see that it is zero as h = 2 if and only if q6 = 1. If h ≥ 3 we have β 6= 0, however,[
[B], [C]3

]
= 0 and consequently

[
[B],

[
[B],

[
[B], x2

]]]
= 0. Therefore

[
[B]h, x2

]
= 0

for h ≥ 2 and [B]hx2 = p3h12p
h
22x2[B]h.
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We consider ϕ : U+
q (G2) → u+q (G2) the natural projection and we have the

following result.

Proposition 3.3.3. The set J = kerϕ is generated by the elements [u]h, where [u]

is an element from list (3.2) and h is the height of [u].

Proof. The fact that the kernel J contains the elements [u]h follows immediately

from Theorem 3.1.3 as it shows that [u]h = 0 in u+q (g). Now we consider v =

[F ]n1 [E]n2 [D]n3 [C]n4 [B]n5 [A]n6 belonging to kerϕ ⊆ U+
q (G2). If ni < hi for every

i ∈ {1, 2, . . . , 6} with hi the height of the corresponding element, then v is a basis

element of u+q (G2) and therefore ϕ(v) 6= 0, which is a contradiction. So we may

assume that there is a ni ≥ hi for a �xed i, and then v is a multiple of the respective

element [u]hi and belongs to the ideal generated by this element. Now let v =

α1v1 + α2v2 ∈ kerϕ. If ϕ(v1) = 0 then ϕ(v2) = 0 and both v1, v2 are multiples of

elements of the form [u]hi . Thus v belongs to the ideal generated by these elements.

If ϕ(v1) and ϕ(v2) are both not zero with v1 6= αv2 then ϕ(v) is a sum of linearly

independent basis elements of u+q (G2), so ϕ(v) 6= 0. Inductively we have the same

result for v = α1v1 + . . .+ αtvt ∈ kerϕ. Thus we obtain that J is generated by the

elements [u]h.

As a conclusion of the previous results, the Hopf ideal J is generated by linearly

independent skew-central elements [u]h, with [u] ∈ {[A], [B], [C], [D], [E], [F ]}. Now
we calculate the combinatorial rank of u+q (G2).

Theorem 3.3.4. The combinatorial rank κ(u+q (G2)) is 3.

Proof. Consider J = kerϕ the Hopf ideal of U+
q (G2). First we address the case

where 3 is not a divisor of t, with qt = 1, and in this case the height of all PBW-

generators from list (3.2) is h = t. As J ⊆ G〈X〉(2), from Proposition 3.3.1, the

only skew-primitive elements in J are [A]t = xt1 and [F ]t = xt2. We de�ne J1 as the

Hopf ideal of J generated by xt1 and xt2. Since these elements are skew-central, we

may consider J1 as a right (or left) ideal. Now we prove that [u]t is not in J1 for

[u] ∈ {[B], [C], [D], [E]}. Suppose that

[u]t = α1y1x
t
1 + α2y2x

t
2.

We may write y1, y2 ∈ U+
q (G2) in the PBW-basis and then skew-commute xt1 and

xt2, writing [u]t as a linear combination of basis elements of U+
q (G2). So, on both

sides of the equality we have linear combinations of basis elements, however, on the

right side we have necessarily xt1 or x
t
2 on every term. This provides that [u]t is not
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one of the elements on the right side, so we have a contradiction. Thus [u]t /∈ J1,
unless [u] = x1 or [u] = x2.

From Proposition 3.2.2, we see that [B]t, [C]t and [E]t are skew-primitive elements

in J
J1
. Thus they belong to J2 and J1 ( J2. As [D]t is not skew-primitive in J

J1
, it

remains to notice that it is not in J2. Suppose that

[D]t = α1y1[A]t + α2y2[B]t + α3y3[C]t + α4y4[E]t + α5y5[F ]t.

Again we write yi in the PBW-basis and appropriately skew-commute each term [u]t,

obtaining the inconsistency of writing the basis element [D]t as a linear combination

of other basis elements. Again using Proposition 3.2.2 we see that [D]t is skew-

primitive in J
J2
, so it belongs to J3. As J3 contains all the elements that generate J ,

we have that J3 = J and κ = 3.

For the case that 3 divides t, analogously Proposition 3.2.2 and the fact that [u]h

is skew-central guarantees that J1 is generated by [A]t and [F ]
t
3 , J2 is generated by

J1, [B]
t
3 , [D]

t
3 and [E]t and J3 is generated by J2 and [C]t. So, again κ = 3.

As a �nal remark, we notice that, similarly to [15, Theorem 6.1], the result

κ(u+q (G2)) = 3 provides immediately the same combinatorial rank for the negative

quantum Borel subalgebra u−q (G2). As a consequence, using the triangular decom-

position we also obtain κ(uq(G2)) = 3.
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Chapter 4

Combinatorial rank of the quantum

groups of type F4

In this chapter we denote by βn the coe�cient 1 − q−n, where n is a natural

number.

4.1 Quantum groups of type F4

In this section we are going to explicit a set of PBW-generators for U+
q (F4) (and

u+q (F4)).

Let us �rst remember that the algebra U+
q (F4) is de�ned by four generators

x1, x2, x3, x4 and relations

[x1, [x1, x2]]] = 0, [[x1, x2], x2] = 0,

[x2, [x2, x3]]] = 0, [[[x2, x3], x3], x3] = 0, (4.1)

[x3, [x3, x4]]] = 0, [[x3, x4], x4] = 0,

[x1, x3] = [x1, x4] = [x2, x4] = 0,

where the brackets mean the skew commutator (2.1). Relations (2.12) take up

the form p11 = p22 = p233 = p244 = q2, p12p21 = q−2 = p23p32, p34p43 = q−1 and

p13p31 = p14p41 = p24p42 = 1. In what follows we shall suppose that q2 6= 1.

In the following theorem we present a PBW-basis of U+
q (F4).
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Theorem 4.1.1. The values in U+
q (F4) of the elements

[A] = x1,

[B] = [x1, x2],

[C] = [x1, [x2, x3]],

[D] = [x1, [[x2, x3], x3]],

[E] = [[x1, [[x2, x3], x3]], x2],

[F ] = [x1, [x2, [x3, x4]]].

[G] = [x1, [[x2, [x3, x4]], x3]],

[H] = [[x1, [[x2, [x3, x4]], x3]], [[x1, [[x2, [x3, x4]], x3]], x2]],

[I] = [[x1, [[x2, [x3, x4]], x3]], x2],

[J ] = [[x1, [[x2, [x3, x4]], x3]], [x2, x3]],

[K] = [x1, [[x2, [x3, x4]], [x3, x4]],

[L] = [[x1, [[x2, [x3, x4]], [x3, x4]], x2],

[M ] = [[x1, [[x2, [x3, x4]], [x3, x4]], [x2, x3]],

[N ] = [[x1, [[x2, [x3, x4]], [x3, x4]], [[x2, x3], x3]],

[O] = [[[x1, [[x2, [x3, x4]], [x3, x4]], [[x2, x3], x3]], x2],

[P ] = x2,

[Q] = [x2, x3],

[R] = [[x2, x3], x3],

[S] = [x2, [x3, x4]],

[T ] = [[x2, [x3, x4]], x3],

[U ] = [[x2, [x3, x4]], [x3, x4]],

[V ] = x3,

[W ] = [x3, x4],

[X] = x4,

(4.2)

form a convex set of PBW-generators for U+
q (F4) over k[G], and each element has

in�nite height. If we suppose that x1 > x2 > x3 > x4, then A > B > . . . > W > X.

Proof. This statement follows from the fact that U+
q (F4) is a bosonization of a

Nichols algebra generated by x1, x2, x3, x4 and the results from [3, Section 4B].
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Now we have to see that all heights are in�nite. Consider [u] an element from

list (4.2). With a simple calculation we obtain that p([u], [u]) = q for [u] ∈
{[C], [F ], [G], [I], [J ], [M ], [Q], [S], [T ], [V ], [W ], [X]} and p([u], [u]) = q2 for [u] ∈
{[A], [B], [D], [E], [H], [K], [L], [N ], [O], [P ], [R], [U ]}. If q is not a root of 1, then

p(u, u) is not a primitive t-th root of 1 for any t. From De�nition 2.2.10 we have

that h([u]) is in�nite. If q is a root of unity we also obtain that h([u]) is in�nite, in

the same way of Remark 3.1.2.

We notice that the PBW-basis obtained in the previous results is a convex basis.

From Proposition 2.4.5 it is also the unique PBW-basis constituted by the hard

hyper-letters.

Now we prove results to calculate the height of the elements in the list (4.2) in

u+q (F4) when q is a root of 1. In order to simplify calculations, in the Appendix we

list all the commutators between the basis elements.

Proposition 4.1.2. The derivatives of the elements from the list (4.2) are given in

the following table:
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∂1 ∂2 ∂3 ∂4

[A] 1 0 0 0

[B] β2x2 0 0 0

[C] β2[Q] 0 0 0

[D] β2[R] 0 0 0

[E] β2
2 [R]x2 − β1β2p32[Q]2 0 0 0

[F ] β2[S] 0 0 0

[G] β2[T ] 0 0 0

[H] α[T ][I] + θ[O] + γ[R][L] + ωx2[N ]+

λ[Q]2[R] + µ[S][J ] + ρ[Q][M ] + τ [R]x2[K] 0 0 0

[I] −β1β2p32[S][Q] + β2
2 [T ]x2 0 0 0

[J ] β1β2[T ][Q]− β1β2p32[S][R] 0 0 0

[K] β2[U ] 0 0 0

[L] β2
2 [U ]x2 − β1β2p32p42[S]2 0 0 0

[M ] β2
2 [U ][Q]− β2

2p42p43[T ][S] 0 0 0

[N ] β2
2 [U ][R]− β2

2p42p43[T ]2 0 0 0

[O] β3
2 [U ][R]x2 − β3

2p42p43[T ]2x2 + β3
2p32p42p43q[T ][S][Q]−

β1β
2
2p32[U ][Q]2 − β1β2

2p
3
32p42q[S]2[R] 0 0 0

[P ] 0 1 0 0

[Q] 0 β2x3 0 0

[R] 0 β1β2x
2
3 0 0

[S] 0 β2[W ] 0 0

[T ] 0 β1β2[W ]x3 0 0

[U ] 0 β1β2[W ]2 0 0

[V ] 0 0 1 0

[W ] 0 0 β1x4 0

[X] 0 0 0 1

Here α = β2
2q, θ = β2p21p24p

2
31p34p41(1+q)−1(1+q−1−q2), γ = β1β2p41p42p

3
43q(q−

q−1−1), ω = β1β2p
2
31p

4
32p34p41p42q

4(1−q−1−q−2), λ = −β2
1β2p12p

3
32p41p

3
42p

3
43q

4, µ =

−β2
2p31p

2
32p34q

3, ρ = β1β2p31p
2
32p41p42p43q

2(1−q+q−1) and τ = β1β
2
2p12p

2
32p41p

3
42p

3
43q

4.

Proof. Since [A] = x1, [P ] = x2, [V ] = x3 and [X] = x4, from the de�nition,

∂1([A]) = 1, ∂i([A]) = 0 for i = {2, 3, 4};

∂2([P ]) = 1, ∂i([P ]) = 0 for i = {1, 3, 4};

∂3([V ]) = 1, ∂i([V ]) = 0 for i = {1, 2, 4};
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∂4([X]) = 1, ∂i([X]) = 0 for i = {1, 2, 3}.

For [B] = [x1, x2] = x1x2 − p12x2x1, we have

∂1([B]) =∂1(x1x2)− p12∂1(x2x1)

=∂1(x1)x2 + p11x1∂1(x2)− p12(∂1(x2)x1 + p21x2∂1(x1))

=x2 − p12p21x2 = β2x2

and ∂i([B]) = 0 for i = {2, 3, 4}.
For [Q] = [x2, x3] = x2x3 − p23x3x2, we have

∂2([Q]) =∂2(x2x3)− p23∂2(x3x2)

=∂2(x2)x3 + p22x2∂2(x3)− p23(∂2(x3)x2 + p32x3∂2(x2))

=x3 − p23p32x3 = β2x3

and ∂i([Q]) = 0 for i = {1, 3, 4}.
For [W ] = [x3, x4] = x3x4 − p34x4x3, we have

∂3([W ]) =∂3(x3x4)− p34∂3(x4x3)

=∂3(x3)x4 + p33x3∂3(x4)− p34(∂3(x4)x3 + p43x4∂3(x3))

=x4 − p34p43x4 = β1x4

and ∂i([W ]) = 0 for i = {1, 2, 4}.
Now for [R] = [[x2, x3], x3] =

[
[Q], x3

]
= [Q]x3 − p23p33x3[Q], we have

∂2([R]) =∂2([Q])x3 + p22p32[Q]∂2(x3)− p23p33(∂2(x3)[Q] + p32x3∂2([Q]))

=β2x
2
3 − β2p23p32p33x23 = β1β2x

2
3

and ∂i([R]) = 0 for i = {1, 3, 4}.
For [S] = [x2, [x3, x4]] =

[
x2, [W ]

]
= x2[W ]− p23p24[W ]x2, we have

∂2([S]) =∂2(x2)[W ] + p22x2∂2([W ])− p23p24(∂2([W ])x2 + p32p42[W ]∂2(x2))

=[W ]− p23p24p32p42[W ] = β2[W ]

and ∂i([S]) = 0 for i = {1, 3, 4}.
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Again, for [T ] =
[
[S], x3

]
= [S]x3 − p23p33p43x3[S], we have

∂2([T ]) =∂2([S])x3 + p22p32p42[S]∂2(x3)− p23p33p43(∂2(x3)[S] + p32x3∂2([S]))

=β2[W ]x3 − β2p23p32p33p43x3[W ] = β1β2[W ]x3

and for i = {1, 3, 4} we have ∂i([T ]) = 0.

For [U ] =
[
[S], [W ]

]
= [S][W ]− p23p24q[W ][S], we have

∂2([U ]) =∂2([S])[W ] + p22p32p42[S]∂2([W ])− p23p24q(∂2([W ])[S] + p32p42[W ]∂2([S]))

=β2[W ]2 − β2p23p24p32p42q[W ]2 = β1β2[W ]2

and ∂i([U ]) = 0 for i = {1, 3, 4}.
For [C] = [x1, [x2, x3]] =

[
x1, [Q]

]
= x1[Q]− p12p13[Q]x1, we have

∂1([C]) =∂1(x1)[Q] + p11x1∂1([Q])− p12p13(∂1([Q])x1 + p21p31[Q]∂1(x1))

=[Q]− p12p13p21p31[Q] = β2[Q]

and for i = {2, 3, 4} we have ∂i([C]) = 0.

Now for [D] =
[
x1, [R]

]
= x1[R]− p12p213[R]x1, we have

∂1([E]) =∂1(x1)[R] + p11x1∂1([R])− p12p213(∂1([R])x1 + p21p
2
31[R]∂1(x1))

=[R]− p12p213p21p231[R] = β2[R]

and for i = {2, 3, 4} we have ∂i([D]) = 0.

For [E] =
[
[D], x2

]
= [D]x2 − p12p232q2x2[D], we have

∂1([E]) =∂1([D])x2 + p11p21p
2
31[D]∂1(x2)− p12p232q2(∂1(x2)[D] + p21x2∂1([D]))

=β2[R]x2 − β2p12p21p232q2x2[R] = β2
2 [R]x2 − β1β2p32[Q]2

and ∂i([E]) = 0 for i = {2, 3, 4}.
Again, for [F ] =

[
x1, [S]

]
= x1[S]− p12p13p14[S]x1, we have

∂1([F ]) =∂1(x1)[S] + p11x1∂1([S])− p12p13p14(∂1([S])x1 + p21p31p41[S]∂1(x1))

=[S]− p12p13p14p21p31p41[S] = β2[S]

and ∂i([F ]) = 0 for i = {2, 3, 4}.
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For [G] =
[
x1, [T ]

]
= x1[T ]− p12p213p14[T ]x1, we have

∂1([G]) =∂1(x1)[T ] + p11x1∂1([T ])− p12p213p14(∂1([T ])x1 + p21p
2
31p41[T ]∂1(x1))

=[T ]− p12p213p14p21p231p41[T ] = β2[T ]

and ∂i([G]) = 0 for i = {2, 3, 4}.
Now for [I] =

[
[G], x2

]
= [G]x2 − p12p232p42q2x2[G], we have

∂1([I]) =∂1([G])x2 + p11p21p
2
31p41[G]∂1(x2)− p12p232p42q2(∂1(x2)[G] + p21x2∂1([G]))

=β2[T ]x2 − β2p12p21p232x2[T ]p42q
2 = −β1β2p32[S][Q] + β2

2 [T ]x2

and ∂i([I]) = 0 for i = {2, 3, 4}.
For [H] =

[
[G], [I]

]
= [G][I]− p12p232p42q2[I][G], we have

∂1([H]) =∂1([G])[I] + p11p21p
2
31p41[G]∂1([I])− p12p232p42q2(∂1([I])[G] + p11p

2
21p

2
31p41[I]∂1([G]))

=β2[T ][I] + p11p21p
2
31p41(β1β2p32[G][S][Q] + β2

2 [G][T ]x2)−

−p12p232p42q2(−β1β2p32[S][Q][G] + β2
2 [T ]x2[G] + β2p11p

2
21p

2
31p41[I][T ])

Using the appendix formulae, we have

∂1([H]) =β2
2q[T ][I] + β2p21p24p

2
31p34p41(1 + q)−1(1 + q−1 − q2)[O]+

+β1β2p41p42p
3
43q(q − q−1 − 1)[R][L] + β1β2p

2
31p

4
32p34p41p42q

4(1− q−1 − q−2)x2[N ]−

− β2
1β2p12p

3
32p41p

3
42p

3
43q

4[Q]2[R]− β2
2p31p

2
32p34q

3[S][J ]+

+β1β2p31p
2
32p41p42p43q

2(1− q + q−1)[Q][M ] + β1β
2
2p12p

2
32p41p

3
42p

3
43q

4[R]x2[K]

and ∂i([H]) = 0 for i = {2, 3, 4}.
Now for [J ] =

[
[G], [Q]

]
= [G][Q]− p12p13p32p42p43q2[Q][G], we have

∂1([J ]) =∂1([G])[Q] + p11p21p
2
31p41[G]∂1([Q])− p12p13p32p42p43q2(∂1([Q])[G] + p21p31[Q]∂1([G]))

=β2[T ][Q]− β2p12p13p21p31p32p42p43q2[Q][T ] = β1β2[T ][Q]− β1β2p32[S][R]

and ∂i([J ]) = 0 for i = {2, 3, 4}.
For [K] =

[
x1, [U ]

]
= x1[U ]− p12p213p214[U ]x1, we have

∂1([K]) =∂1(x1)[U ] + p11x1∂1([U ])− p12p213p214(∂1([U ])x1 + p21p
2
31p

2
41[U ]∂1(x1))

=[U ]− p12p213p214p21p231p241[U ] = β2[U ]
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and ∂i([K]) = 0 for i = {2, 3, 4}.
Again, for [L] =

[
[K], x2

]
= [K]x2 − p12p232p242q2x2[K], we have

∂1([L]) =∂1([K])x2 + p11p21p
2
31p

2
41[K]∂1(x2)− p12p232p242q2(∂1(x2)[K] + p21x2∂1([K]))

=β2[U ]x2 − β2p12p21p232p242q2x2[U ] = β2
2 [U ]x2 − β1β2p32p42[S]2

and ∂i([L]) = 0 for i = {2, 3, 4}.
For [M ] =

[
[K], [Q]

]
= [K][Q]− p12p13p32p242p243q2[Q][K], we have

∂1([M ]) =∂1([K])[Q] + p11p21p
2
31p

2
41[K]∂1([Q])− p12p13p32p242p243q2(∂1([Q])[K] + p21p31[Q]∂1([K]))

=β2[U ][Q]− β2p12p13p21p31p32p242p243q2[Q][U ] = β2
2 [U ][Q]− β2

2p42p43[T ][S]

and for i = {2, 3, 4}, we have ∂i([M ]) = 0.

Now, for [N ] =
[
[K], [R]

]
= [K][R]− p12p213p242p443q2[R][K], we have

∂1([N ]) =∂1([K])[R] + p11p21p
2
31p

2
41[K]∂1([R])− p12p213p242p443q2(∂1([R])[K] + p21p

2
31[R]∂1([K]))

=β2[U ][R]− β2p12p213p21p231p242p443q2[R][U ] = β2
2 [U ][R]− β2

2p42p43[T ]2

and for i = {2, 3, 4}, we have ∂i([N ]) = 0.

Finally, for [O] =
[
[N ], x2

]
= [N ]x2 − p12p432p242q4x2[N ], we have

∂1([O]) =∂1([N ])x2 + p11p
2
21p

4
31p

2
41[N ]∂1(x2)− p12p432p242q4(∂1(x2)[N ] + p21x2∂1([N ]))

=β2
2 [U ][R]x2 − β2

2p42p43[T ]2x2 − p12p21p432p242q4(β2
2x2[U ][R]− β2

2p42p43x2[T ]2)

=β3
2 [U ][R]x2 − β3

2p42p43[T ]2x2 + β3
2p32p42p43q[T ][S][Q]− β1β2

2p32[U ][Q]2−

−β1β2
2p

3
32p42q[S]2[R]

and for i = {2, 3, 4}, we have ∂i([O]) = 0.

Lemma 4.1.3. Let [u] be an element from list (4.2). We have

[
[u],
[
[u], · · ·

[
[u]︸ ︷︷ ︸

l

, ∂i([u])
]
, · · ·

]]
= 0, (4.3)

for l = 1 if [u] ∈ {[A], [B], [D], [E], [K], [L], [N ], [O], [P ], [R], [U ], [V ], [W ], [X]} and

l = 2 if [u] ∈ {[C], [F ], [G], [H], [I], [J ], [M ], [Q], [S], [T ]}, with i ∈ {1, 2, 3, 4}.

Proof. Here we use the list in the Appendix and formulas (2.2) and (2.3). From now

on we consider a, b, c, · · · , x, y, z belonging to the �eld k.
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First if [u] = [A] = x1 we have
[
[A], ∂1([A])

]
= [x1, 1] = 0 and if [u] = [B], we

have
[
[B], ∂1([B])

]
= β2[B, x2] = 0. In the case [u] = [C], then

[
[C], ∂1([C])

]
= β2

[
[C], [Q]

]
= β2(ax2[D] + b[E]),

[
[C],

[
[C], ∂1([C])

]]
=c
[
[C], x2

]
[D] + dx2

[
[C], [D]

]
+ e
[
[C], [E]

]
= 0.

If [u] = [D], we have
[
[D], ∂1([D])

]
= β2

[
[D], [R]

]
= 0.

For [u] = [E],

[
[E], ∂1([E])

]
= a
[
[E], [R]

]
x2 + b[R]

[
[E], x2

]
+ c
[
[E], [Q]

]
[Q] + d[Q]

[
[E], [Q]

]
] = 0.

If [u] = [F ], we have

[
[F ], ∂1([F ])

]
= β2

[
[F ], [S]

]
= ax2[K] + b[L],

[
[F ],

[
[F ], ∂1([F ])

]]
= c
[
[F ], x2

]
[K] + dx2

[
[F ], [K]

]
+ d
[
[F ], [L]

]
= 0.

For [u] = [G],

[
[G], ∂1([G])

]
= β2

[
[G], [T ]

]
= a[N ] + b[R][K],

[
[G],

[
[G], ∂1([G])

]]
= c
[
[G], [N ]

]
+ d
[
[G], [R]

]
[K] + e[R]

[
[G], [K]

]
= 0.

In the case [u] = [H], we have

[
[H], ∂1([H])

]
=a
[
[H], [T ]

]
[I] + b[T ]

[
[H], [I]

]
+ c
[
[H], [O]

]
+ d
[
[H], [R]

]
[L]+

+e[R]
[
[H], [L]

]
+ f
[
[H], x2

]
[N ] + gx2

[
[H], [N ]

]
+ h
[
[H], [Q]

]
[Q][K]+

+i[Q]
[
[H], [Q]

]
[K] + j[Q]2

[
[H], [K]

]
+ k
[
[H], [S]

]
[J ] + l[J ]

[
[H], [S]

]
+

+m
[
[H], [Q]

]
[M ] + n[Q]

[
[H], [M ]

]
+ o
[
[H], [R]

]
x2[K] + p[R]

[
[H], x2

]
[K]+

+q[R]x2
[
[H], [K]

]
=r[N ][I]2 + s[M ][J ][I] + t[Q][K][J ][I] + u[R][K][I]2 + v[L][J ]2 + wx2[K][J ]2

where r = −β2
1β2p12p

2
13p14p

2
23p

2
24p34q

3(1 + q2), s = β1β
2
2p12p13p14p

2
24p

2
34q

2(1 + q2),

t = 0, u = β2
1β

2
2p

2
12p

4
13p14p

2
23p

3
43q

6(1 + q2), v = β1β
2
2p12p14p

2
24p31p

4
32p

4
34q

6(1 + q2),
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w = β3
2p

2
12p14p31p

6
32p

4
34q

10(1 + q2), so they are all zero if q4 = 0, and

[
[H],

[
[H], ∂1([H])

]]
=r
[
[H], [N ][I]2

]
+ s
[
[H], [M ][J ][I]

]
+ v
[
[H], [L][J ]2

]
+

+t
[
[H], [Q]

]
[K][J ][I] + x[Q]

[
[H], [K][J ][I]

]
+ u
[
[H], [R]

]
[K][I]2+

+y[R]
[
[H], [K][I]2

]
+ w

[
[H], x2

]
[K][J ]2 + zx2

[
[H], [K][J ]2

]
.

As =
[
[H], [I]

]
=
[
[H], [J ]

]
=
[
[H], [K]

]
=
[
[H], [L]

]
=
[
[H], [M ]

]
=
[
[H], [N ]

]
= 0,

we have

[
[H],

[
[H], ∂1([H])

]]
=t
[
[H], [Q]

]
[K][J ][I] + u

[
[H], [R]

]
[K][I]2 + w

[
[H], x2

]
[K][J ]2

=− β1β3
2p

3
12p

3
13p14p32p42p43q

6(β1 + β2q + β1q + β2q
2)[J ][I][K][J ][I]+

+β1β
3
2p

3
12p

5
13p14p

2
23p42p

4
43q

9(β1 + β2q)[J ]2[K][I]2+

+β1β
3
2p

3
12p14p31p

8
32p

4
34p42q

10(β1 + β2q)[I]2[K][J ]2.

Commuting the terms so that they are elements of the base, that is, in the form

[K][J ]2[I]2, we have
[
[H],

[
[H], ∂1([H])

]]
= 0.

If [u] = [I], we have

[
[I], ∂1([I])

]
=a
[
[I], [S]

]
[Q] + b[S]

[
[I], [Q]

]
+ c
[
[I], [T ]

]
x2 + d[T ]

[
[I], x2

]
=ex2[O] + f [Q]2[L] + g[R]x2[L],

[
[I],
[
[I], ∂1([I])

]]
=e
[
[I], x2[O]

]
+ f
[
[I], [Q]

]
[Q][L] + h[Q]

[
[I], [Q]

]
[L] + g

[
[I], [R]

]
x2[L]+

+i[R]
[
[I], x2[L]

]
=− β2

1β
2
2p

3
12p

2
13p

3
32p

3
42p

3
43q

8x2[J ][Q][L]− β2
1β

2
2p

4
12p

3
13p

3
32p

4
42p

4
43q

10[Q]x2[J ][L]+

+β1β
3
2p

2
12p

3
13p

3
42p

4
43q

7[Q][J ]x2[L].

Placing the elements in the form [Q]x2[L][J ] we have
[
[I],
[
[I], ∂1([I])

]]
= 0.

In the case [u] = [J ], we have

[
[J ], ∂1([J ])

]
=a
[
[J ], [T ]

]
[Q] + b[T ]

[
[J ], [Q])

]
+ c
[
[J ], [S]

]
[R] + d[S]

[
[J ], [R]

]
=e[Q]2[N ] + f [R][Q][M ] + g[R]x2[N ] + h[R][O],

as
[
[J ], [M ]

]
=
[
[J ], [N ]

]
=
[
[J ], [O]

]
=
[
[J ], x2

]
=
[
[J ], [Q]

]
=
[
[J ], [R]

]
= 0, we

have
[
[J ],

[
[J ], ∂1([J ])

]]
= 0.

If [u] = [K], then
[
[K], ∂1([K])

]
= β2

[
[K], [U ]

]
= 0.
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For [u] = [L], we have

[
[L], ∂1([L])

]
= a
[
[L], [U ]

]
x2 + b[U ]

[
[L], x2

]
+ c
[
[L], [S]

]
[S] + d[S]

[
[L], [S]

]
= 0,

and for [u] = [M ],

[
[M ], ∂1([M ])

]
=a
[
[M ], [U ]

]
[Q] + b[U ]

[
[M ], [Q]

]
+ c
[
[M ], [T ]

]
[S] + d[T ]

[
[M ], [S]

]
=e[U ][O] + f [U ]x2[N ] + g[S]2[N ].

Since
[
[M ], [N ]

]
=
[
[M ], [O]

]
=
[
[M ], x2

]
=
[
[M ], [S]

]
=
[
[M ], [U ]

]
= 0, we obtain[

[M ],
[
[M ], ∂1([M ])

]]
= 0.

If [u] = [N ], we have

[
[N ], ∂1([N ])

]
=a
[
[N ], [U ]

]
[R] + b[U ]

[
[N ], [R]

]
+ c
[
[N ], [T ]

]
[T ] + d[T ]

[
[N ], [T ]

]
= 0.

In the case [u] = [O], we have

[
[O], ∂1([O])

]
=a
[
[O], [U ]

]
[R]x2 + b[U ]

[
[O], [R]x2

]
+ c
[
[O], [T ]2

]
x2 + d[T ]2

[
[O], x2

]
+

+e
[
[O], [T ]

]
[S][Q] + f [T ]

[
[O], [S][Q]

]
+ g
[
[O], [U ]

]
[Q]2 + h[U ]

[
[O], [Q]2

]
+

+i
[
[O], [S]2

]
[R] + j[S]2

[
[O], [R]

]
= 0.

Since ∂i([u]) = 0 for [u] ∈ {[A], [B], [C], [D], [E], [F ], [G], [H], [I], [J ], [K], [L], [M ], [N ], [O]},
i ∈ {2, 3, 4}, we have

[
[u], ∂i([u])

]
= 0.

If [u] = [P ] = x2, we have
[
[P ], ∂2([P ])

]
= [x2, 1] = 0.

For [u] = [Q], we have
[
[Q], ∂2([Q])

]
= β2

[
[Q], x3

]
= β2[R] and

[
[Q],

[
[Q], ∂2([Q])

]]
= β2

[
[Q], [R]

]
= 0.

For [u] = [R], we have
[
[R], ∂2([R])

]
= β1β2

[
[R], x23

]
= 0, since

[
[R], x3

]
= 0.

If [u] = [S], we have

[
[S],

[
[S], ∂2([S])

]]
= β2

[
[S],

[
[S], [W ]

]]
= β2

[
[S], [U ]

]
= 0.

In the case [u] = [T ], we have

[
[T ], ∂2([T ])

]
= a
[
[T ], [W ]

]
x3 + b[W ]

[
[T ], x3

]
= cx23[U ].

Since
[
[T ], x3

]
=
[
[T ], [U ]

]
= 0, we obtain

[
[T ],

[
[T ], ∂2([T ])

]]
= 0.
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If [u] = [U ], we have
[
[U ], ∂2([U ])

]
= β1β2

[
[U ], [W ]2

]
= 0.

Since ∂i([u]) = 0 for [u] ∈ {[P ], [Q], [R], [S], [T ], [U ]}, i ∈ {1, 3, 4}, we have[
[u], ∂i([u])

]
= 0.

For [u] = [V ] = x3, we have
[
[V ], ∂3([V ])

]
= [x3, 1] = 0 and if [u] = [W ], we have[

[W ], ∂3([W ])
]

= β1
[
[W ], x4

]
= 0.

Since ∂i([u]) = 0 for [u] ∈ {[V ], [W ]}, i ∈ {1, 2, 4}, we have
[
[u], ∂i([u])

]
= 0.

Finally, if [u] = [X] = x4, we have
[
[X], ∂4([X])

]
= [x4, 1] = 0 and

[
[X], ∂i([X])

]
=

0 for i ∈ {1, 2, 3}.

Theorem 4.1.4. If q has �nite multiplicative order t, t > 3, then the values in

u+q (F4) of the elements from list (4.2) form a set of PBW-generators for u+q (F4)

over k[G]. The height h of [u] ∈ {[C], [F ], [G], [I], [J ], [M ], [Q], [S], [T ], [V ], [W ], [X]}
equals t. For [u] ∈ {[A], [B], [D], [E], [H], [K], [L], [N ], [O], [P ], [R], [U ]} we have h =

t if t is odd and h = t
2
if t is even. In all cases [u]h = 0 in u+q (F4).

Proof. This statement is true due to the fact that the hyper-letters of the list (4.2)

are hard hyper-letters in u+q (F4). From Theorem 2.3.3 we have that the elements

from list (4.2) form a set of PBW-generators for u+q (F4) over k[G].

Now we prove their heights.

We notice that, if p(u, u) is a hu-th primitive root of 1 and

[
[u],
[
[u], · · ·

[
[u]︸ ︷︷ ︸

hu−1

, ∂i([u])
]
, · · ·

]]
= 0

then from Lemma 2.6.2 we have ∂i([u]hu) = 0 in u+q (F4).

For [u] ∈ {[C], [F ], [G], [I], [J ], [M ], [Q], [S], [T ], [V ], [W ]}, we have p(u, u) = q.

As q is a primitive t-th root of 1 then hu = t. From Lemmas 2.6.2 and 4.1.3, we

have ∂i([u]t) = 0 in u+q (F4) for i = 1, 2, 3, 4 and t ≥ 3. We apply the Milinski-

Schneider criterion (Lemma 2.6.3) and we obtain [u]t = 0. So h([u]) = t for [u] ∈
{[C], [F ], [G], [I], [J ], [M ], [Q], [S], [T ], [V ], [W ], [X]}.

In the case [u] ∈ {[A], [B], [D], [E], [H], [K], [L], [N ], [O], [P ], [R], [U ]} we have

p(u, u) = q2. Again q is a primitive t-th root of 1 then hu = t if t is odd and

hu = t
2
if t is even. From Lemmas 2.6.2 and 4.1.3, we have ∂i([u

hu ]) = 0 in

u+q (F4) for i = 1, 2, 3, 4 and t ≥ 3. We notice that, as explained in the proof

of the previous Lemma, altought
[
[H], ∂1([H])

]
is not zero in general, it annuls

itself in the speci�c case q4 = 1 as all the coe�cients have the term 1 + q2.

By Milinski-Schneider criterion, we have [u]hu = 0. Then the height of [u] ∈
{[A], [B], [D], [E], [H], [K], [L], [N ], [O], [P ], [R], [U ], [X]} is t or t

2
.
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4.2 The coproduct formula

From now on we suppose that xi is an element from the set {x1, x2, x3, x4}. Simi-

larly gi belongs to the set {g1, g2, g3, g4} and for simplicity we denote the group-like

element gi1gi2 . . . gin by gi1i2...in .

In the next lemmas we explicit some formulas that are useful to prove Theorem

4.2.5.

Lemma 4.2.1. Let u, v be homogeneous elements in U+
q (F4). If [u,w] = 0 then

[u, [v, w]] = [[u, v], w].

Proof. From [u,w] = 0 we have uw = puwwu and

[u, [v, w]] = u[v, w]− puvpuw[v, w]u

= uvw − pvwuwv − puvpuwvwu+ puvpuwpvwwvu

= uvw − puwpvwwuv − puvpuwp−1uwvuw + puvpuwpvwwvu

= (uv − puvvu)w − puwpvww(uv − puvvu)

= [[u, v], w].

Lemma 4.2.2. Let xij = [xi, xj] and gij = gigj, with i, j ∈ {1, 2, 3, 4}. We have

that ∆(xij) = xij ⊗ 1 + gij ⊗ xij + (1− pijpji)xigj ⊗ xj.

Proof. As ∆(xi) = xi ⊗ 1 + gi ⊗ xi and ∆ is linear and multiplicative we have

∆(xij) =∆(xixj − pijxjxi) = ∆(xi)∆(xj)− pij∆(xj)∆(xi)

=(xi ⊗ 1 + gi ⊗ xi)(xj ⊗ 1 + gj ⊗ xj)− pij(xj ⊗ 1 + gj ⊗ xj)(xi ⊗ 1 + gi ⊗ xi)

=xixj ⊗ 1 + xigj ⊗ xj + gixj ⊗ xi + gij ⊗ xixj−

−pijxjxi ⊗ 1− pijxjgi ⊗ xi − pijgjxi ⊗ xj − pijgij ⊗ xjxi
=xij ⊗ 1 + gij ⊗ xij + xigj ⊗ xj − pijpjixigj ⊗ xj + pijxjgi ⊗ xi − pijxjgi ⊗ xi
=xij ⊗ 1 + gij ⊗ xij + (1− pijpji)xigj ⊗ xj.
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Lemma 4.2.3. The coproduct of the element [[xi, xj], xk] is given by the formula

∆([[xi, xj], xk]) =[[xi, xj], xk]⊗ 1 + gijk ⊗ [[xi, xj], xk]

+(1− pikpkipjkpkj)xijgk ⊗ xk + (1− pijpji)pjkxikgj ⊗ xj+

+(1− pijpji)(1− pikpki)xigjk ⊗ xjxk + (1− pijpji)pikpkixigjk ⊗ xjk.

Proof. Using that ∆ is linear and multiplicative and from the previous lemma we

have

∆([[xi, xj], xk]) =∆(xijxk − pikpjkxkxij) = ∆(xij)∆(xk)− pikpjk∆(xk)∆(xij)

=(xij ⊗ 1 + gij ⊗ xij + (1− pijpji)xigj ⊗ xj)(xk ⊗ 1 + gk ⊗ xk)−

−pikpjk(xk ⊗ 1 + gk ⊗ xk)(xij ⊗ 1 + gij ⊗ xij + (1− pijpji)xigj ⊗ xj)

=xijxk ⊗ 1 + gijxk ⊗ xij + (1− pijpji)xigjxk ⊗ xj + xijgk ⊗ xk+

+gijgk ⊗ xijxk + (1− pijpji)xigjgk ⊗ xjxk − pikpjkxkxij ⊗ 1− pikpjkxkgij ⊗ xij−

−pikpjk(1− pijpji)xkxigj ⊗ xj − pikpjkgkxij ⊗ xk − pikpjkgkgij ⊗ xkxij−

−pikpjk(1− pijpji)gkxigj ⊗ xkxj
=(xijxk − pikpjkxkxij)⊗ 1 + gijk ⊗ (xijxk − pikpjkxkxij) + (1− pikpkipjkpkj)xijgk ⊗ xk+

+(1− pijpji)(pjkxixk − pikpjkxkxi)gj ⊗ xj + (1− pijpji)xigjk ⊗ (xjxk − pikpkipjkxkxj)

=[[xi, xj], xk]⊗ 1 + gijk ⊗ [[xi, xj], xk]+

+(1− pikpkipjkpkj)xijgk ⊗ xk + (1− pijpji)pjkxikgj ⊗ xj+

+(1− pijpji)(1− pikpki)xigjk ⊗ xjxk + (1− pijpji)pikpkixigjk ⊗ xjk.

Lemma 4.2.4. The coproduct of the element [[xi, [xj, xk]], xl] is given by the formula

∆([[xi, [xj, xk]], xl]) = [[xi, [xj, xk]], xl]⊗ 1 + gijkl ⊗ [[xi, [xj, xk]], xl]+

+ (1− pilplipjlpljpklplk)[xi, [xj, xk]]gl ⊗ xl + pjlpkl(1− pijpjipikpki)xilgjk ⊗ xjk+

+ pijpilpkl(1− pjkpkj)xjlgik ⊗ xik + (1− pijpjipikpki)xigjkl ⊗ [[xj, xk], xl]+

+ pkl(1− pjkpkj)([[xi, xj], xl] + pij(1− pikpki)xjxil + pijpil(1− pikpki)xjlxi)gk ⊗ xk+

+ pjlpkl(1− pilpli)(1− pijpjipikpki)xigjkl ⊗ xlxjk + pij(1− pjkpkj)xjgikl ⊗ [[xi, xk], xl]+

+ pijpilpkl(1− pjkpkj)(1− pjlplj)xjgikl ⊗ xlxik+

+ (1− pjkpkj)(xij + pij(1− pikpki)xjxi)gkl ⊗ xkl+

+ pkl(1− pilplipjlplj)(1− pjkpkj)(xij + pij(1− pikpki)xjxi)gkl ⊗ xlxk.
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Proof. First we notice that

∆([xi, [xj, xk]]) = ∆(xi)∆(xjk)− pijpik∆(xjk)∆(xi)

= (xi ⊗ 1 + gi ⊗ xi)(xjk ⊗ 1 + gjk ⊗ xjk + (1− pjkpkj)xjgk ⊗ xk)

− pijpik(xjk ⊗ 1 + gjk ⊗ xjk + (1− pjkpkj)xjgk ⊗ xk)(xi ⊗ 1 + gi ⊗ xi)

= xixjk ⊗ 1 + xigjk ⊗ xjk + (1− pjkpkj)xixjgk ⊗ xk + gixjk ⊗ xi+

+ gijk ⊗ xixjk + (1− pjkpkj)gixjgk ⊗ xixk − pijpikxjkxi ⊗ 1− pijpikgjkxi ⊗ xjk−

− pijpik(1− pjkpkj)xjgkxi ⊗ xk − pijpikxjkgi ⊗ xi − pijpikgijk ⊗ xjkxi−

− pijpik(1− pjkpkj)xjgik ⊗ xkxi
= [xi, [xj, xk]]⊗ 1 + gijk ⊗ [xi, [xj, xk]] + (1− pijpjipikpki)xigjk ⊗ xjk+

+ pij(1− pjkpkj)xjgik ⊗ xik + (1− pjkpkj)(xij + pij(1− pikpki)xjxi)gk ⊗ xk.
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Now we have

∆([[xi, [xj, xk]], xl]) = ∆([xi, [xj, xk]])∆(xl)− pilpjlpkl∆(xl)∆([xi, [xj, xk]])

= ([xi, [xj, xk]]⊗ 1 + gijk ⊗ [xi, [xj, xk]] + (1− pijpjipikpki)xigjk ⊗ xjk+

+ pij(1− pjkpkj)xjgik ⊗ xik + (1− pjkpkj)(xij + pij(1− pikpki)xjxi)gk ⊗ xk)

(xl ⊗ 1 + gl ⊗ xl)− pilpjlpkl(xl ⊗ 1 + gl ⊗ xl)

([xi, [xj, xk]]⊗ 1 + gijk ⊗ [xi, [xj, xk]] + (1− pijpjipikpki)xigjk ⊗ xjk+

+ pij(1− pjkpkj)xjgik ⊗ xik + (1− pjkpkj)(xij + pij(1− pikpki)xjxi)gk ⊗ xk)

= [xi, [xj, xk]]xl ⊗ 1 + gijkxl ⊗ [xi, [xj, xk]] + (1− pijpjipikpki)xixlgjk ⊗ xjk+

+ pij(1− pjkpkj)xjxlgik ⊗ xik + (1− pjkpkj)(xijxl + pij(1− pikpki)xjxixl)gk ⊗ xk+

+ [xi, [xj, xk]]gl ⊗ xl + gijkl ⊗ [xi, [xj, xk]]xl + (1− pijpjipikpki)xigjkl ⊗ xjkxl+

+ pij(1− pjkpkj)xjgikl ⊗ xikxl + (1− pjkpkj)(xij + pij(1− pikpki)xjxi)gkl ⊗ xkxl−

− pilpjlpkl(xl[xi, [xj, xk]]⊗ 1 + xlgijk ⊗ [xi, [xj, xk]] + (1− pijpjipikpki)xlxigjk ⊗ xjk+

+ pij(1− pjkpkj)xlxjgik ⊗ xik + (1− pjkpkj)(xlxij + pij(1− pikpki)xlxjxi)gk ⊗ xk+

+ gl[xi, [xj, xk]]⊗ xl + gijkl ⊗ xl[xi, [xj, xk]] + (1− pijpjipikpki)glxigjk ⊗ xlxjk+

+ pij(1− pjkpkj)glxjgik ⊗ xlxik + (1− pjkpkj)gl(xij + pij(1− pikpki)xjxi)gk ⊗ xlxk)

= [[xi, [xj, xk]], xl]⊗ 1 + gijkl ⊗ [[xi, [xj, xk]], xl] + (1− pilplipjlpljpklplk)[xi, [xj, xk]]gl ⊗ xl+

+ (1− pijpjipikpki)(pjlpklxixl − pilpjlpklxlxi)gjk ⊗ xjk+

+ pij(1− pjkpkj)(pilpklxjxl − pilpjlpklxlxj)gik ⊗ xik+

+ (1− pjkpkj)(pklxijxl − pilpjlpklxlxij)gk ⊗ xk+

+ pij(1− pjkpkj)(1− pikpki)(pklxjxixl − pilpjlpklxlxjxi)gk ⊗ xk+

+ (1− pijpjipikpki)xigjkl ⊗ (xjkxl − pilplipjlpklxlxjk)+

+ pij(1− pjkpkj)xjgikl ⊗ (xikxl − pilpjlpklpljxlxik)+

+ (1− pjkpkj)xijgkl ⊗ (xkxl − pilpjlpklplipljxlxk)+

+ pij(1− pjkpkj)(1− pikpki)xjxigkl ⊗ (xkxl − pilpjlpklplipljxlxk).
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As xuv = [xu, xv] = xuxv − puvxvxu, for all u, v, we have

∆([[xi, [xj, xk]], xl]) = [[xi, [xj, xk]], xl]⊗ 1 + gijkl ⊗ [[xi, [xj, xk]], xl]+

+ (1− pilplipjlpljpklplk)[xi, [xj, xk]]gl ⊗ xl + pjlpkl(1− pijpjipikpki)xilgjk ⊗ xjk+

+ pijpilpkl(1− pjkpkj)xjlgik ⊗ xik + (1− pijpjipikpki)xigjkl ⊗ [[xj, xk], xl]+

+ pkl(1− pjkpkj)([[xi, xj], xl] + pij(1− pikpki)xjxil + pijpil(1− pikpki)xjlxi)gk ⊗ xk+

+ pjlpkl(1− pilpli)(1− pijpjipikpki)xigjkl ⊗ xlxjk + pij(1− pjkpkj)xjgikl ⊗ [[xi, xk], xl]+

+ pijpilpkl(1− pjkpkj)(1− pjlplj)xjgikl ⊗ xlxik+

+ (1− pjkpkj)(xij + pij(1− pikpki)xjxi)gkl ⊗ xkl+

+ pkl(1− pilplipjlplj)(1− pjkpkj)(xij + pij(1− pikpki)xjxi)gkl ⊗ xlxk.

Now, using the previous lemmas, we are able to present the coproducts of the

PBW-generators, which we are going to use to obtain the combinatorial rank of the

considered quantum algebra.

Theorem 4.2.5. The explicit coproduct formulas for the PBW-generators of list

(4.2) are:

� ∆([A]) = ∆(x1) = x1 ⊗ 1 + g1 ⊗ x1

� ∆([B]) = [B]⊗ 1 + g12 ⊗ [B] + β2x1g2 ⊗ x2

� ∆([C]) = [C]⊗ 1 + g123 ⊗ [C] + β2[B]g3 ⊗ x3 + β2x1g23 ⊗ [Q]

� ∆([D]) = [D]⊗1+g1233⊗[D]+β2x1g233⊗[R]+β1β2[B]g33⊗x23+β2p33[C]g3⊗x3

� ∆([E]) = [E]⊗1+g12233⊗ [E]+β2[D]g2⊗x2+β2p
2
32q[B]g233⊗ [R]+β2

2x1g2233⊗
[R]x2 − β1β2p32x1g2233 ⊗ [Q]2 + β1β

2
2 [B]g233 ⊗ x23x2 − β1β2p32(1 + q)[B]g233 ⊗

x3[Q] + β2
2q[C]g23 ⊗ x3x2 − β2p32q[C]g23 ⊗ [Q]

� ∆([F ]) = [F ]⊗ 1 + g1234⊗ [F ] + β2x1g234⊗ [S] + β2[B]g34⊗ [W ] + β1[C]g4⊗ x4

� ∆([G]) = [G]⊗ 1 + g12334 ⊗ [G] + β2x1g2334 ⊗ [T ] + β1[F ]g3 ⊗ x3 + β2
1 [C]g34 ⊗

x4x3 + β1p43q[C]g34 ⊗ [W ] + β1p43[D]g4 ⊗ x4 + β1β2[B]g334 ⊗ [W ]x3

� ∆([H]) = [H]⊗1+g11222333344⊗[H]+β1β2[G]2g2⊗x2+β1β2p42p43q[G][E]g4⊗x4−
β1β2p32q[G][F ]g23⊗[Q]+p232p42q

2(β2
2 [G][B]+β2

1p31p32(2q+β1)[F ][C])g2334⊗[T ]+

β1β2p31p
2
32p42p43q

3[F ][E]g34⊗[W ]−β1p32p42p43q2(β2[G][C]+β2
1p31p32[F ][D])g234⊗
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[S]+β3
1p12p

2
32p41p

3
42p

4
43q

4[E][D]g44⊗x24+β1β2
2q[G][F ]g23⊗x3x2+β1β2

2p43q
2([G][C]+

β1p31p32q[F ][D])g234 ⊗ [W ]x2 + β1β
2
2p43q[G][D]g24 ⊗ x4x2 −

−β2
1β

2
2p

2
31p

4
32p41p

2
42q

3[B]x1g22333344⊗[T ]2+β3
2q[G]x1g22334⊗[T ]x2−β2

1β2p32q([G][C]+

p31p32q[F ][D])g234⊗x4[Q]−β1β2
2p32q[G]x1g22334⊗[S][Q]−β1β2p32p42p43q2(β2[G][B]+

β2
1p31p32q[F ][C])g2334⊗x3[S]+β2q[G]g122334⊗[I]−β1β2p32q(β2[G][B]+β1p31p32q(1+

q + β1)[F ][C])g2334 ⊗ [W ][Q]− β2p31p232p34q3[F ]g1223334 ⊗ [J ] +

+β1p12p
2
32p41p

3
42p

3
43q

4[E]g123344⊗[K]+β1p
2
32p41p

3
42p

3
43q

2(β1p31p32[C]2+β2
2q

2[D][B]+

β2p12q
2[E]x1)g23344⊗ [U ]+β1β2p

2
32p41p

2
42p43q

2(β2[D][B]−β2
1p31p32q[C]2)g23344⊗

x4[T ]+β1β
2
2p31p

3
32p34q

3[F ]x1g223334⊗[S][R]−β3
2p31p

2
32p34q

4[F ]x1g223334⊗[T ][Q]−
β1β

2
2p31p

2
32p41p

2
42p

2
43q

2[C]x1g2233344 ⊗ [T ][S] + β2
1p31p

3
32p34q

2[F ]2g233 ⊗ [R]−
− β2

1β2p31p
2
32p34q

2[F ]2g233 ⊗ x3[Q] + β3
1β2p31p32p34q[F ]2g233 ⊗ x23x2 +

+β2
1β2p12p

2
32p41p

3
42p

3
43q

5[E][C]g344⊗x4[W ] +β1p41p42p
3
43q(β2q− 1)[D]g1223344⊗

[L]+β2
1β

2
2q([G][C]+p31p32q[F ][D])g234⊗x4x3x2+β3

1β2p41p
3
42p

2
43[D]2g244⊗x24x2+

β1β2q(β
2
2 [G][B] + 2β2

1p31p32q[F ][C])g2334⊗ [W ]x3x2 +β1β2q[F ]g1223334⊗x3[I] +

β1β2p41p42p
3
43q

2(β2q−1)[C]g12233344⊗x3[L]+β1β
2
2p12p

2
32p41p

3
42p

3
43q

5[C]g12233344⊗
x3x2[K]+β2

1p43q[C]g12233344⊗[W ][I]+β1β2p12p
2
32p41p

3
42p

3
43q

4[D]g1223344⊗x2[K]+

β1β2p43q[D]g1223344 ⊗ x4[I] + β1p31p
2
32p41p42p43q

2(1 − β2q)[C]g12233344 ⊗ [M ] −
β1β2p12p

3
32p41p

3
42p

3
43q

5[C]g12233344⊗ [Q][K]− β2
1p31p

2
32p34q

2[C]g12233344⊗ x4[J ] +

β2
1β2q[C]g12233344 ⊗ x4x3[I] + β2

1β2p41p42p
3
43q(β2q − 1)[B]g122333344 ⊗ x23[L] +

β2
1β

2
2p12p

2
32p41p

3
42p

3
43q

4[B]g122333344 ⊗ x23x2[K] + β1β
2
2q[B]g122333344 ⊗ [W ]x3[I] +

β1β2p31p
2
32p41p42p43q

2(1− β2q)[B]g122333344 ⊗ x3[M ]−
− β1β2

2p12p
3
32p41p

3
42p

3
43q

5[B]g122333344 ⊗ x3[Q][K] − β2
2p31p

2
32p34q

3[B]g122333344 ⊗
[W ][J ] +β1β

3
2p31q[F ]x1g223334⊗x3[T ]x2−β2

1β
2
2p31p32q[F ]x1g223334⊗x3[S][Q] +

β1β
3
2p31p41p43q

2[C]x1g2233344⊗[W ][T ]x2+β
2
1β

3
2p31p41p42p

3
43q

3[C]x1g2233344⊗x3[U ]x2−
β2
1β

2
2p31p32p41p43q

2[C]x1g2233344⊗[W ][S][Q]+β1β
3
2p41p43q[D]x1g223344⊗x4[T ]x2+

β2
1β

2
2p41p42p

3
43q

2[D]x1g223344 ⊗ [U ]x2 − β2
1β

2
2p32p41p43q[D]x1g223344 ⊗ x4[S][Q]−

β2
1β

2
2p31p

2
32p34p41q

3[C]x1g2233344⊗x4[T ][Q]−β2
1β

2
2p31p

2
32p41p42p43q

3[C]x1g2233344⊗
[U ][Q] + β2

1β
3
2p31p41q[C]x1g2233344 ⊗ x4x3[T ]x2 − β3

1β
2
2p31p32p41q[C]x1g2233344 ⊗

x4x3[S][Q]+β1β
4
2p

2
31p41q[B]x1g22333344⊗[W ]x3[T ]x2+β

3
1β

3
2p

2
31p41p42p

3
43q

2[B]x1g22333344⊗
x23[U ]x2−β2

1β
3
2p

2
31p41q[B]x1g22333344⊗[W ]x3[S][Q]−β1β3

2p
2
31p

2
32p41p

2
42p

2
43q

2[B]x1g22333344⊗
x3[T ][S]−β2

1β
3
2p

2
31p

2
32p41p42p43q

3[B]x1g22333344⊗x3[U ][Q]−β1β3
2p

2
31p

2
32p34p41q

3[B]x1g22333344⊗
[W ][T ][Q]+β1β

3
2p

2
31p

3
32p34p41q

3[B]x1g22333344⊗[W ][S][R]+β1β
3
2p21p

2
31p41x

2
1g222333344⊗

[T ]2x2−β1β3
2p21p

2
31p32p41qx

2
1g222333344⊗[T ][S][Q]+β2

1β
2
2p21p

2
31p

3
32p34p41q

2x21g222333344⊗
[S]2[R]+β2

1β2p31p
3
32p34q

3[F ][C]g2334⊗x4[R]+β3
1β

2
2p31p32p34q

2[F ][C]g2334⊗x4x23x2−
β2
1β

2
2p31p

2
32p34q

3[F ][C]g2334⊗x4x3[Q]+β2
1β

3
2p31p32p34q

2[F ][B]g23334⊗ [W ]x23x2−
β1β

3
2p31p

2
32p34q

3[F ][B]g23334⊗[W ]x3[Q]+β1β
2
2p31p

3
32p34q

3[F ][B]g23334⊗[W ][R]+

42



β2
1β

2
2p41p42p

3
43q

3[D][C]g2344⊗x4[W ]x2+β1β2p32p41p
2
42p

3
43q

2(β1p31p32[C]2+β2[D][B])g23344⊗
[W ][S] + β3

1β2p41p42p
3
43q

2(p31p32q(1 + β1β2q)[C]2 + β2[D][B])g23344 ⊗ [W ]2x2 +

β1p32p41p42p43(β
2
1p31p32(β1 + β2 + β3)[C]2 − β3

2q[D][B])g23344 ⊗ x4[W ][Q] +

+β2
1β2p32p41p

2
42p

2
43q

2(β1p31p32[C]2−β2[D][B])g23344⊗x4x3[S]+β2
1β2p41p42p43q(β

2
2 [D][B]+

β2
1p31p32(2q+β1+β2q

2)[C]2)g23344⊗x4[W ]x3x2+β
2
1β

3
2p31p32p41p42p43q

3[C][B]g233344⊗
[W ]2x3x2−β2

1β
2
2p31p

2
32p41p42p43q

3[C][B]g233344⊗[W ]2[Q]+β2
1β

2
2p31p32p41p

2
42p

3
43q

2[C]x1g2233344⊗
x3[S]2 + β3

1β
2
2p41p42p

2
43q[D][C]g2344 ⊗ x24x3x2 + β2

1β2p32p41p
2
42p

3
43q[D]x1g223344 ⊗

[S]2−β3
1β2p32p41p42p

2
43q[D][C]g2344⊗x24[Q]+β2

1β2p12p
2
32p41p

3
42p

3
43q

4[B][E]g3344⊗
[W ]2−β2

1β
3
2p31p

2
32p34p41p42q

3[C][B]g233344⊗x4[W ]x3[Q]+β2
1β

2
2p31p

3
32p34p41p42q

3[C][B]g233344⊗
x4[W ][R]+β3

1β
3
2p31p32p34p41p42q

2[C][B]g233344⊗x4[W ]x23x2++β3
1β

3
2p

2
31p

2
32p34p41p42q[B]2g2333344⊗

[W ]2x23x2+β
2
1β

2
2p

2
31p

4
32p34p41p42q

2[B]2g2333344⊗[W ]2[R]−β2
1p31p

2
32p34q

3[C]g12233344⊗
x3[J ]+β4

1p31p
3
32p41p42q[C]2g23344⊗x24[R]+β5

1β2p31p32p41p42[C]2g13344⊗x24x23x2−
β4
1β2p31p

2
32p41p42q[C]2g23344⊗x24x3[Q]+β3

1β2p31p
3
32p34p41q

3[C]x1g2233344⊗x4[S][R]+

β3
1β

2
2p

2
31p32p41p

2
42p

3
43q[B]x1g22333344⊗x23[S]2+β2

1β
2
2p

2
31p

4
32p34p41p42q

4[B]x1g22333344⊗
[U ][R] + β2p

2
31p

4
32p34p41p42q

3(β1q
2 − 1)(1 + q)−1[B]g122333344 ⊗ [N ] +

+ β1β2p12p
4
32p41p

3
42p

3
43q

5[B]g122333344 ⊗ [R][K] + β2p21p24p
2
31p34p41(1 + q)−1(1−

q2 + q−1)x1g1222333344⊗ [O]+β1β2p
2
31p

4
32p34p41p42q

4(1− q−1− q−2)x1g1222333344⊗
x2[N ]+β1β2p41p42p

3
43(−1−q+q2)x1g1222333344⊗[R][L]+β1β

2
2p12p

2
32p41p

3
42p

3
43q

4x1g1222333344⊗
[R]x2[K]+β2

2qx1g1222333344⊗[T ][I]+β1β2p31p
2
32p41p42p43q

2(1−q+q−1)x1g1222333344⊗
[Q][M ]− β2

1β2p12p
3
32p41p

3
42p

3
43q

4x1g1222333344 ⊗ [Q]2[K]−
− β2

2p31p
2
32p34q

3x1g1222333344 ⊗ [S][J ]

� ∆([I]) = [I] ⊗ 1 + g122334 ⊗ [I] + β2[G]g2 ⊗ x2 + β2p
2
32p42q[B]g2334 ⊗ [T ] +

β1p42p43[E]g4⊗x4−β1p32[F ]g23⊗[Q]+β1β2[F ]g23⊗x3x2−β1p32p42p43q[C]g234⊗
[S] + β1β2p43q[C]g234⊗ [W ]x2 + β1β2p43[D]g24⊗ x4x2− β2

1p32[C]g234⊗ x4[Q] +

β2
1β2[C]g234⊗x4x3x2+β1β

2
2 [B]g2334⊗[W ]x3x2−β1β2p32p42p43q[B]g2334⊗x3[S]−

β1β2p32[B]g2334 ⊗ [W ][Q] + β2
2x1g22334 ⊗ [T ]x2 − β1β2p32x1g22334 ⊗ [S][Q]

� ∆([J ]) = [J ] ⊗ 1 + g1223334 ⊗ [J ] + β1[I]g3 ⊗ x3 + β1p32p42p43[C]g2334 ⊗ [T ] +

β1β2x1g223334⊗[T ][Q]−β1β2p32x1g223334⊗[S][R]+β2
1 [F ]g233⊗x3[Q]−β1p32[F ]g233⊗

[R]+β2
1p43q[C]g2334⊗ [W ][Q]−β2

1p42p
2
43(1+ q)[C]g2334⊗x3[S]+β2

1p43[D]g234⊗
x4[Q]− β1p42p243[D]g234 ⊗ [S] + β3

1 [C]g2334 ⊗ x4x3[Q]− β2
1p32[C]g2334 ⊗ x4[R] +

β2
1p42p43[E]g34 ⊗ x4x3 + β2

1β2[B]g23334 ⊗ [W ]x3[Q] + β1β2p32p42p43[B]g23334 ⊗
x3[T ]− β2

1β2p42p
2
43[B]g23334 ⊗ x23[S]− β1β2p32[B]g23334 ⊗ [W ][R]

� ∆([K]) = [K] ⊗ 1 + g123434 ⊗ [K] + β2x1g23344 ⊗ [U ] + β2q[F ]g34 ⊗ [W ] +

β1β2[B]g3344⊗[W ]2+β2
1p43[D]g44⊗x24+β1(1+q)[G]g4⊗x4+β1β2q[C]g344⊗x4[W ]

43



� ∆([L]) = [L] ⊗ 1 + g1223344 ⊗ [L] + β2[K]g2 ⊗ x2 + β2p
2
32p

2
42q[B]g23344 ⊗ [U ] +

β2
1p

2
42p43[E]g44⊗x24+β2

2q[G]g24⊗x4x2+β2
2q[F ]g234⊗ [W ]x2−β2p32p42q[F ]g234⊗

[S] + β2
1β2p43[D]g244⊗ x24x2 + β1β

2
2q[C]g2344⊗ x4[W ]x2− β1β2p32p42q[C]g2344⊗

x4[S]+β2p42q[I]g4⊗x4−β2
2p32p42q[B]g223344⊗[W ][S]+β1β

2
2 [B]g23344⊗[W ]2x2+

β2
2x1g223344 ⊗ [U ]x2 − β1β2p32p42x1g223344 ⊗ [S]2

� ∆([M ]) = [M ]⊗1+g12233344⊗[M ]+β2[K]g23⊗[Q]+β2[L]g3⊗x3+β2p32p242p243q[C]g23344⊗
[U ] − β2p42p43[I]g34 ⊗ [W ] + β2p42p43q[J ]g4 ⊗ x4 + β2

2x1g2233344 ⊗ [U ][Q] −
β2
2p42p43x1g2233344 ⊗ [T ][S] + β2

2p32p
2
42p

2
43q[B]g233344 ⊗ x3[U ] + β2

2q[F ]g2334 ⊗
[W ][Q]−β2p32p42q[F ]g2334⊗ [T ]−β1β2p42p43[F ]g2334⊗x3[S]+β1β

2
2 [B]g233344⊗

[W ]2[Q] − β2
2p32p42q[B]g233344 ⊗ [W ][T ] − β1β

2
2p42p43[B]g233344 ⊗ [W ]x3[S] +

β2
1β2p43[D]g2344 ⊗ x24[Q] − β1β2p42p

2
43[D]g2344 ⊗ x4[S] + β2

2q[G]g234 ⊗ x4[Q] −
β2p42p43[G]g234⊗ [S] + β2

1β2p
2
42p43[E]g344⊗ x24x3− β1β2p242p243[E]g344⊗ x4[W ] +

β2
2p42q[I]g34⊗x4x3+β1β

2
2q[C]g23344⊗x4[W ][Q]−β1β2p42p243q[C]g23344⊗[W ][S]−

β1β2p32p42q[C]g23344 ⊗ x4[T ]− β2
1β2p42p43[C]g23344 ⊗ x4x3[S]

� ∆([N ]) = [N ]⊗1+g122333344⊗[N ]+β2[K]g233⊗[R]+β1β2[L]g33⊗x23+β2q[M ]g3⊗
x3+β2p

2
42p

4
43q[D]g23344⊗[U ]−β2p42p243q(1+q)[J ]g34⊗[W ]+β1β2p

2
42p

4
43q[E]g3344⊗

[W ]2+β2
2x1g22333344⊗[U ][R]−β2

2p42p43x1g22333344⊗[T ]2+β2
2q[F ]g23334⊗[W ][R]−

β2
2p42p43q[F ]g23334⊗x3[T ]+β1β

2
2 [B]g2333344⊗[W ]2[R]+β1β

2
2p

2
42p

4
43q[B]g2333344⊗

x23[U ]−β3
2p42p43q[B]g2333344⊗Wx3T+β2

1β2p43[D]g23344⊗x24[R]−β2
2p42p

2
43q[D]g23344⊗

x4[T ] + β2
2q[G]g2334 ⊗ x4[R]− β2p42p43(1 + q)[G]g2334 ⊗ [T ] + β1β

2
2q[C]g233344 ⊗

x4[W ][R]+β2
2p

2
42p

4
43q

2[C]g233344⊗x3[U ]−β2
2p42p

2
43q

2[C]g233344⊗[W ][T ]−β1β2
2p42p43q[C]g233344⊗

x4x3[T ]−β2
2qp42p43[I]g334⊗ [W ]x3 +β2

2p42p43q
2[J ]g34⊗x4x3 +β1β

2
2p42q[I]g334⊗

x4x
2
3 + β3

1β2p
2
42p43[E]g3344 ⊗ x24x23 − β1β2

2p
2
42p

2
43q[E]g3344 ⊗ x4[W ]x3

� ∆([O]) = [O] ⊗ 1 + g1222333344 ⊗ [O] + β2[N ]g2 ⊗ x2 + β2p
2
32q[L]g233 ⊗ [R] +

β2p
2
32p

4
42p

4
43q

2[E]g23344⊗[U ]+β2
2p

4
32p

2
42q

2[B]g22333344⊗[U ][R]−β2
2p

4
32p

3
42p43q

2[B]g22333344⊗
[T ]2 − β2p

2
32p

2
42p43q(1 + q)[I]g2334 ⊗ [T ] + β2

1β2p
2
32p

2
42p43q[E]g23344 ⊗ x24[R] −

β2
2p

2
32p

3
42p

2
43q

2[E]g23344⊗x4[T ]+β2
2p

2
32p42q

2[I]g2334⊗x4[R]−β2p32q[M ]g23⊗[Q]−
β1β2p32[K]g2233⊗[Q]2+β2p32p

2
42p

2
43q(1+q)[J ]g234⊗[S]−β1β2p32p342p443q[D]g223344⊗

[S]2+β2
2 [K]g2233⊗[R]x2+β

2
2q[M ]g23⊗x3x2+β1β2

2 [L]g233⊗x23x2−β2
2p32q[L]g233⊗

x3[Q]+β2
2p

2
42p

4
43q[D]g223344⊗[U ]x2−β2

2p42p
2
43q(1+q)[J ]g234⊗[W ]x2+β1β

2
2p

2
42p

4
43q[E]g23344⊗

[W ]2x2 − β2
2p32p

3
42p

4
43q

2[E]g23344 ⊗ [W ][S]− β2
2p

2
32p

2
42p

2
43q

2[C]g2233344 ⊗ [U ][Q]−
β1β

2
2p32x1g222333344⊗[U ][Q]2−β2

2p
2
32p42q

2[F ]g223334⊗[S][R]−β1β2
2p

3
32p42qx1g222333344⊗

[S]2[R]−β3
2p42p43x1g222333344⊗[T ]2x2+β

2
2p32p42p43q[I]g2334⊗[W ][Q]−β1β2

2p32q[F ]g223334⊗
[W ][Q]2−β2

1β
2
2p32[B]g22333344⊗[W ]2[Q]2+β2

2p
2
32p42q

2[F ]g223334⊗[T ][Q]+β2
2p32p

2
42p

2
43q

2[I]g2334⊗
x3[S]−β1β2

2p32p
3
42p

4
43q

2[C]g2233344⊗x3[S]2−β2
1β

2
2p32p

3
42p

4
43q[B]g22333344⊗x23[S]2−
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β2
2p32p42p43q

2[J ]g234⊗x4[Q]−β1β2
2p32q[G]g22334⊗x4[Q]2−β3

1β2p32p43[D]g223344⊗
x24[Q]2 − β2

2p42p43(1 + q)[G]g22334 ⊗ [T ]x2 + β2
2p32p42p43q[G]g22334 ⊗ [S][Q] +

β2
2p

2
32p

3
42p

3
43q

2[C]g2233344⊗[T ][S]+β3
2x1g222333344⊗[U ][R]x2+β

3
2p32p42p43qx1g222333344⊗

[T ][S][Q]+β3
2q[F ]g223334⊗[W ][R]x2−β3

2p42p43q[F ]g223334⊗x3[T ]x2+β1β
2
2p32p42p43q[F ]g223334⊗

x3[S][Q] + β1β
3
2 [B]g2233344 ⊗ [W ]2[R]x2 − β3

2p
3
32p42q

2[B]g22333344 ⊗ [W ][S][R] +

β3
2p

2
42p

4
43q

2[C]g2233344⊗x3[U ]x2+β1β
3
2p

2
42p

4
43q[B]g22333344⊗x23[U ]x2+β

3
2p

2
32p

3
42p

3
43q

2[B]g22333344⊗
x3[T ][S]− β3

2p
2
32p

2
42p

2
43q

2[B]g22333344⊗ x3[U ][Q]− β3
2p42p43q[I]g2334⊗ [W ]x3x2−

β4
2p42p43q[B]g22333344⊗[W ]x3[T ]x2+β

3
2p

2
32p42q

2[B]g22333344⊗[W ][T ][Q]+β1β
3
2p32p42p43q[B]g22333344⊗

[W ]x3[S][Q]− β3
2p42p

2
43q

2[C]g2233344 ⊗ [W ][T ]x2 + β1β
2
2p32p42p

2
43q

2[C]g2233344 ⊗
[W ][S][Q]+β2

1β
2
2p43[D]g223344⊗x24[R]x2−β3

2p42p
2
43q[D]g223344⊗x4[T ]x2+β1β

2
2p32p42p

2
43q[D]g223344⊗

x4[S][Q]+β3
2q[G]g22334⊗x4[R]x2+β1β

3
2q[C]g2233344⊗x4[W ][R]x2−β1β2

2p
3
32p42q

2[C]g2233344⊗
x4[S][R]−β2

1β
2
2p32q[C]g2233344⊗x4[W ][Q]2−β1β3

2p42p43q[C]g2233344⊗x4x3[T ]x2+

β1β
2
2p

2
32p42q

2[C]g2233344 ⊗ x4[T ][Q] + β2
1β

2
2p32p42p43q[C]g2233344 ⊗ x4x3[S][Q] +

β3
2p42p43q

2[J ]g234 ⊗ x4x3x2 + β1β
3
2p42q[I]g2334 ⊗ x4x

2
3x2 − β3

2p32p42q
2[I]g2334 ⊗

x4x3[Q] + β3
1β

2
2p

2
42p43[E]g23344 ⊗ x24x23x2 − β2

1β
2
2p32p

2
42p43q[E]g23344 ⊗ x24x3[Q]−

β1β
3
2p

2
42p

2
43q[E]g23344⊗x4[W ]x3x2+β1β

2
2p32p

3
42p

3
43q

2[E]g23344⊗x4x3[S]+β1β
2
2p32p

2
42p

2
43q[E]g23344⊗

x4[W ][Q]

� ∆([P ]) = ∆(x2) = x2 ⊗ 1 + g2 ⊗ x2

� ∆([Q]) = [Q]⊗ 1 + g23 ⊗ [Q] + β2x2g3 ⊗ x3

� ∆([R]) = [R]⊗ 1 + g233 ⊗R + β1β2x2g33 ⊗ x23 + β2p33[Q]g3 ⊗ x3

� ∆([S]) = [S]⊗ 1 + g234 ⊗ [S] + β2x2g34 ⊗ [W ] + β1[Q]g4 ⊗ x4

� ∆([T ]) = [T ] ⊗ 1 + g2334 ⊗ [T ] + β1β2x2g334 ⊗ [W ]x3 + β1p43q[Q]g34 ⊗ [W ] +

β2
1 [Q]g34 ⊗ x4x3 + β1p43[R]g4 ⊗ x4 + β1[S]g3 ⊗ x3

� ∆([U ]) = [U ] ⊗ 1 + g23344 ⊗ [U ] + β1β2x2g3344 ⊗ [W ]2 + β2q[S]g34 ⊗ [W ] +

β2
1p43[R]g44 ⊗ x24 + β1β2q[Q]g344 ⊗ x4[W ] + β1(1 + q)[T ]g4 ⊗ x4

� ∆([V ]) = ∆(x3) = x3 ⊗ 1 + g3 ⊗ x3

� ∆([W ]) = [W ]⊗ 1 + g34 ⊗ [W ] + β1x3g4 ⊗ x4

� ∆([X]) = ∆(x4) = x4 ⊗ 1 + g4 ⊗ x4.

Proof. The coproduct of the generators x1, x2, x3 and x4 are given by de�nition of

the algebra U+
q (F4). Using Lemma 4.2.2 with i = 1 and j = 2 we obtain ∆([B]).

Analogously we have the coproduct of [Q] and [W ]. By Lemmas 4.2.1 and 4.2.3 we
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have the coproduct formula for [C] with i = 1, j = 2 and k = 3. In the same way

we obtain the coproduct formula for the PBW-generators [R] and [S]. Applying the

Lemma 4.2.4 for i = 1, j = 2 and k = l = 3 we have the coproduct formula of

[D]. Similarly we obtain the coproduct formula for the PBW-generators of degree 4,

which are [D], [F ] and [T ]. Using Lemmas 4.2.2, 4.2.3 and 4.2.4 and the fact that the

coproduct is multiplicative we obtain the coproduct formula of the PBW-generators

of degree 5, 6, 7, 8, 9, 10 and 11.

Corollary 4.2.6. The only skew-primitive PBW-generators of U+
q (F4) are x1, x2,

x3 and x4.

4.3 Skew-primitive elements

In this section we list all the skew-primitive homogeneous elements of U+
q (F4).

Lemma 4.3.1. The coproduct of the element xni , where n is a natural number and

xi ∈ {x1, x2, x3, x4}, is given by the formula

∆(xni ) =
n∑
k=0

[nk ]pii x
n−k
i gki ⊗ xki ,

where [nk ]pii =
[n]!pii

[k]!pii [n−k]!pii
, [n]!pii = [n]pii [n − 1]pii ...[2]pii [1]pii and [n]pii = 1 + pii +

p2ii...+ pn−1ii .

Proof. We prove by induction on n. If n = 1 then the equality reduces to ∆(xi) =

xi ⊗ 1 + gi ⊗ xi since [10]pii = 1 = [11]pii .

We note that [nk ]pii satisfy two pii-Pascal identities
[
n+1
k

]
pii

=
[
n
k−1
]
pii

+ pkii [
n
k ]pii
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and
[
n+1
k

]
pii

=
[
n
k−1
]
pii
pn−k+1
ii + [nk ]pii , so we have the following equalities

∆(xn+1
i ) = ∆(xi)∆(xni ) = (xi ⊗ 1 + gi ⊗ xi)(

n∑
k=0

[nk ]pii x
n−k
i gki ⊗ xki )

=
n∑
k=0

[nk ]pii x
n−k+1
i gki ⊗ xki +

n∑
k=0

[nk ]pii p
n−k
ii xn−ki gk+1

i ⊗ xk+1
i

= xn+1
i ⊗ 1 + [n1 ]pii x

n
i gi ⊗ xi + ...+

[
n
n−1
]
pii
x2i g

n−1
i ⊗ xn−1i + xig

n
i ⊗ xni +

+ pniix
n
i gi ⊗ xi + [n1 ]pii p

n−1
ii xn−1i g2i ⊗ x2i + ...+

[
n
n−1
]
pii
piixig

n
i ⊗ xni + gn+1

i ⊗ xn+1
i

= xn+1
i ⊗ 1 + ([n1 ]pii + pnii)x

n
i gi ⊗ xi + ([n2 ]pii + [n1 ]pii p

n−1
ii )xn−1i g2i ⊗ x2i + ...+

+ (1 +
[
n
n−1
]
pii
pii)xig

n
i ⊗ xni + gn+1

i ⊗ xn+1
i

=
[
n+1
0

]
pii
xn+1
i ⊗ 1 +

[
n+1
1

]
pii
xni gi ⊗ xi +

[
n+1
2

]
pii
xn−1i g2i ⊗ x2i + ...+

+
[
n+1
n

]
pii
piixig

n
i ⊗ xni +

[
n+1
n+1

]
pii
gn+1
i ⊗ xn+1

i

=
n+1∑
k=0

[
n+1
k

]
pii
xn+1−k
i gki ⊗ xki .

Theorem 4.3.2. If q is not a root of the unit, the only homogeneous skew-primitive

elements of U+
q (F4) are xi for every i in {1, 2, 3, 4}. If qt = 1, the skew-primitive

elements are in the form xi and x
hi
i where hi is the order of pii.

Proof. From Lemma 2.2.11, if v ∈ U+
q (F4) is an homogeneous skew-primitive ele-

ment, then v = α[u]h +
∑
αiWi where [u] is an element from list (4.2) and Wi are

basis words in super-letters smaller than [u] with the same degree as [u]h. If puu is

not a root of the unit we have h = 1. If puu is a primitive t-th root of unit, then

h = 1 or h = t.

If [u] = x1, then clearly there are no other basis words Wi of degree (h, 0, 0, 0)

so v = α[u]h. The same holds for [u] = xi with i ∈ {2, 3, 4}. If [u] = [x1, x2]

then W1 = xs12 [x1, x2]
s2xs31 is a basis word with the same degree as [x1, x2]

h, where

s1 +s2 = h and s2 +s3 = h . However, x1 is greater than [x1, x2], so again v = α[u]h.

If [u] = [x1, [x2, x3]] we have

W1 = xs13 [[x2, x3], x3]
s2 [x2, x3]

s3xs42 [[x1, [[x2, x3], x3]], x2]
s5 [x1, [[x2, x3], x3]]

s6 [x1, [x2, x3]]
s7 [x1, x2]

s8xs91

is a basis word with the same degree as [x1, [x2, x3]]
h. As x1 and [x1, x2] are greater

than [x1, [x2, x3]], we have s8 = s9 = 0, s1 + 2s2 + s3 + 2s5 + 2s6 + s7 = h, s2 + s3 +
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s4 + 2s5 + s6 + s7 = h and s5 + s6 + s7 = h. Since each degree si is a non negative

integer, we obtain v = α[u]h. Analysing the degree of the hard super-letters, it is

easy to see that the same occurs for every [u] in the list (4.2). This provides that

the possible skew-primitive elements are multiples of elements in the form [u]h. If

h = 1, then Corollary 4.2.6 shows that the only skew-primitive PBW-generators are

x1, x2, x3 and x4.

Now we suppose that qt = 1 and h = hu is the multiplicative order of puu.

First we consider the case [u] = xi for every i ∈ {1, 2, 3, 4} and see that from

Lemma 4.3.1 we obtain that xhii are skew-primitive. If phiii = 1 we have [hi]pii = 0,

so
[
hi
0

]
pii

= 1 =
[
hi
hi

]
pii

and
[
hi
k

]
pii

= 0, for all k ∈ {1, 2, 3, ..., hi − 1}. Therefore

∆(xhii ) = xhii ⊗ 1 + ghii ⊗ x
hi
i and xhii is skew-primitive.

If [u] = [x1, x2] = [B], then Theorem 4.2.5 provides ∆([B]) = [B] ⊗ 1 + g12 ⊗
[B] +β2x1g2⊗x2. Using the fact that the subalgebra generated by the elements [u]h

is a normal Hopf subalgebra of U+
q (F4) (see [5, Lemma 4.10]), where [u] belongs to

the list (4.2) and h is the height of [u], we have

∆([B]n) =
∑
ui

u1u2 · · ·un,

where ui ∈ {[B]⊗ 1, g12 ⊗ [B], β2x1g2 ⊗ x2}, for any n ∈ N. Then we obtain

∆([B]n) = [B]n ⊗ 1 + gn12 ⊗ [B]n + axn1g
n
2 ⊗ xn2 +

∑
γygz ⊗ z,

where the degree of y plus the degree of z equals the degree of [B]n. We note that the

only way to have xn2 in the second tensorand is by taking u1 = · · · = un = β2x1g2⊗x2.
So we obtain

(β2x1g2 ⊗ x2)n = βn2 (x1g2)
n ⊗ xn2 = βn2 p

n(n−1)
2

21 xn1g
n
2 ⊗ xn2 .

Therefore a = βn2 p
n(n−1)

2
21 6= 0. In particular [B]h is not skew-primitive.

Using the same idea as above, for case [u] = [C] we obtain

∆([C]n) = [C]n ⊗ 1 + gn123 ⊗ [C]n + βn2 (p31p32)
n(n−1)

2 [B]ngn3 ⊗ xn3 +
∑

γygz ⊗ z,

where the degree of y plus the degree of z equals the degree of [C]n. Therefore [C]h

is not skew-primitive.

In the same way we have that

∆([D]n) = [D]n⊗1+gn1233⊗ [D]n+βn2 p
n(n−1)

2
21 p

n(n−1)
31 xn1g

n
233⊗ [R]n+

∑
γygz⊗z;
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∆([E]n) = [E]n⊗1+gn12233⊗[E]n+βn2 p
n(n−1)

2
21 (p23q)

n(n−1)[D]ngn2⊗xn2+
∑
γygz⊗z;

∆([F ]n) = [F ]n⊗1+gn1234⊗ [F ]n+βn1 (p41p42p43)
n(n−1)

2 [C]ngn4 ⊗xn4 +
∑
γygz⊗z;

∆([G]n) = [G]n⊗1+gn12334⊗[G]n+βn1 (p31p32p34q)
n(n−1)

2 [F ]ngn3⊗xn3 +
∑
γygz⊗z;

∆([H]n) = [H]n⊗1+gn11222333344⊗[H]n+βn1 β
n
2 (p21p24)

n(n−1)
2 (p23q)

n(n−1)[G]2ngn123344⊗
xn2 +

∑
γygz ⊗ z;

∆([I]n) = [I]n ⊗ 1 + gn122334 ⊗ [I]n + βn2 (p21p24)
n(n−1)

2 (p23q)
n(n−1)[G]ngn2 ⊗ xn2 +∑

γygz ⊗ z;

∆([J ]n) = [J ]n ⊗ 1 + gn1223334 ⊗ [J ]n + βn1 (p31p34)
n(n−1)

2 (p32q)
n(n−1)[I]ngn3 ⊗ xn3 +∑

γygz ⊗ z;

∆([K]n) = [K]n ⊗ 1 + gn123344 ⊗ [K]n + βn2 p
n(n−1)

2
21 (p31p41)

n(n−1)xn1g
n
23344 ⊗ [U ]n +∑

γygz ⊗ z;

∆([L]n) = [L]n ⊗ 1 + gn1223344 ⊗ [L]n + βn2 p
n(n−1)

2
21 (p23p24q)

n(n−1)[K]ngn2 ⊗ xn2 +∑
γygz ⊗ z;

∆([M ]n) = [M ]n⊗ 1 + gn12233344⊗ [M ]n + βn2 p
n(n−1)

2
31 (p32p34q)

n(n−1)[L]ngn3 ⊗ xn3 +∑
γygz ⊗ z;

∆([N ]n) = [N ]n ⊗ 1 + gn122333344 ⊗ [N ]n + βn1 β
n
2 p

n(n−1)
31 (p32p34q)

2n(n−1)[L]ng2n3 ⊗
x2n3 +

∑
γygz ⊗ z;

∆([O]n) = [O]n⊗ 1 + gn1222333344⊗ [O]n + βn2 p
n(n−1)

2
21 (p23q)

2n(n−1)p
n(n−1)
24 [N ]ngn2 ⊗

xn2 +
∑
γygz ⊗ z;

∆([Q]n) = [Q]n ⊗ 1 + gn23 ⊗ [Q]n + βn2 p
n(n−1)

2
32 xn2g

n
3 ⊗ xn3 +

∑
γygz ⊗ z;

∆([R]n) = [R]n ⊗ 1 + gn233 ⊗ [R]n + βn1 β
n
2 p

n(n−1)
2

32 xn2g
2n
3 ⊗ x2n3 +

∑
γygz ⊗ z;

∆([S]n) = [S]n ⊗ 1 + gn234 ⊗ [S]n + βn2 (p32p42)
n(n−1)

2 xn2g
n
34 ⊗ [W ]n +

∑
γygz ⊗ z;

∆([T ]n) = [T ]n⊗ 1 + gn2334⊗ [T ]n + βn1 (p32p34q)
n(n−1)

2 [S]ngn3 ⊗ xn3 +
∑
γygz ⊗ z;

∆([U ]n) = [U ]n⊗1+gn23344⊗[U ]n+β2n
1 p

n(n−1)
42 p

n(2n−1)
43 [R]ng2n4 ⊗x2n4 +

∑
γygz⊗z;

∆([W ]n) = [W ]n ⊗ 1 + gn34 ⊗ [W ]n + βn1 p
n(n−1)

2
43 xn3g

n
4 ⊗ xn4 +

∑
γygz ⊗ z,

proving that [u]h is not skew-primitive, where [u] belongs to list (4.2) except x1, x2,

x3 and x4, and where γ ∈ k.
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4.4 The combinatorial rank of the quantum groups

of type F4

In this section we obtain κ(u+q (F4)).

Proposition 4.4.1. The elements [u]h are skew central in U+
q (F4), where [u] is an

element from list (4.2) and h is the height of [u].

Proof. It is enough to prove that [u]hxi = αxi[u]h, for i = {1, 2, 3, 4}, α ∈ k. We

notice that for every element [u] in the PBW-basis puu = q or puu = q2. If t is odd

we have that the height of [u] is h = t and phuu = qt = 1 or phuu = (q2)t = 1. For the

case where t is even, we have that the height h is t for the elements [u] such that

puu = q and when puu = q2 the height of [u] is t
2
. So we also have phuu = qt = 1 or

phuu = (q2)
t
2 = qt = 1. Thus in both cases we may use relations (2.6) and (2.7).

If [u] = [A] = x1 clearly x
h
1x1 = x1x

h
1 . We have [x1, [x1, x2]] =

[
x1, [B]

]
= 0, then

by (2.7) we obtain [xh1 , x2] = [x1, [· · · [x1, x2]] = 0. Thus xh1x2 = ph12x2x
h
1 , for h > 1.

For i = {3, 4}, we have [x1, xi] = 0 then [xh1 , xi] = 0, so xh1xi = ph1ixix
h
1 for h ≥ 1.

Therefore xh1 is skew central.

In the case [u] = [B], we have
[
x1, [B]

]
= 0 then

[
x1, [B]h

]
= 0 and x1[B]h =

ph11p
h
12[B]hx1. We notice that

[
[B], x2

]
= 0,

[
[B],

[
[B], x3

]]
=
[
[B], [C]

]
= 0 and[

[B], x4
]

= 0 so if i = {2, 3, 4} we obtain
[
[B]h, xi

]
= 0 and [B]hxi = ph1ip

h
2ixi[B]h for

h ≥ 2. Thus [B]h is skew central.

For the case [u] = [C] we notice that
[
x1, [C]

]
= 0, then

[
x1, [C]h

]
= 0 and

x1[C]h = ph11p
h
12p

h
13[C]hx1. We also have that

[
[C], x2

]
= 0,

[
[C],

[
[C], x3

]]
=[

[C], [D]
]

= 0 and
[
[C],

[
[C], x4

]]
=
[
[C], [F ]

]
= 0, by (2.7)

[
[C]h, xi

]
= 0 for

i = {2, 3, 4}. So [C]hxi = ph1ip
h
2ip

h
3ixi[C]h for h ≥ 2.

If [u] = [D] we have
[
x1, [D]

]
= 0 then

[
x1, [D]h

]
= 0. In other words x1[D]h =

ph11p
h
12p

2h
13 [D]hx1. For i = {2, 3, 4} we obtain

[
[D]h, xi

]
= 0 because

[
[D],

[
[D], x2

]]
=[

[D], [E]
]

= 0,
[
[D], x3

]
= 0 and

[
[D],

[
[D], x4

]]
= p34(1 + q)

[
[D], [G]

]
= 0. Thus

[D]hxi = ph1ip
h
2ip

2h
3i xi[D]h for h ≥ 2.

In the case [u] = [E] we have
[[
x1, [E]

]
, [E]

]
= α

[
[D][B], [E]

]
+ β

[
[C]2, [E]

]
=

0,
[
[E], x2

]
= 0,

[
[E], x3

]
= 0 and

[
[E],

[
[E], x4

]]
= p24p34(1 + q)

[
[E], [I]

]
= 0,

where α, β ∈ k. By (2.6) and (2.7) we obtain
[
x1, [E]h

]
= 0 and

[
[E]h, xi

]
= 0 if

i = {2, 3, 4}. Therefore x1[E]h = ph12p
2h
12p

2h
13 [E]h and [E]hxi = ph1ip

2h
2i p

2h
3i xi[E]h, for

i = {2, 3, 4} and h ≥ 2.

Now we suppose [u] = [F ]. In this case we have
[
x1, [F ]

]
= 0,

[
[F ], x2

]
= 0,[

[F ],
[
[F ], x3

]]
=
[
[F ], [G]

]
= 0 and

[
[F ], x4

]
= 0, so from formulas (2.6) and (2.7)
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we obtain
[
x1, [F ]h

]
= 0 and

[
[F ]h, xi

]
= 0 for i = {2, 3, 4} and h ≥ 2. Thus

x1[F ]h = ph11p
h
12p

h
13p

h
14[F ]hx1 and [F ]hxi = ph1ip

h
2ip

h
3ip

h
4ixi[F ]h.

In the case [u] = [G] we notice that
[
x1, [G]

]
= 0,

[
[G],

[
[G],

[
[G], x2

]]]
=[

[G],
[
[G], [I]

]]
=
[
[G], [H]

]
= 0,

[
[G], x3

]
= 0 and

[
[G],

[
[G], x4

]]
=
[
[G], [K]

]
= 0,

then by (2.6) and (2.7) we have
[
x1, [G]h

]
= 0 and

[
[G]h, xi

]
= 0 for i = {2, 3, 4}

and h ≥ 3. Therefore x1[G]h = ph11p
h
12p

2h
13p

h
14[G]hx1 and [G]hxi = ph1ip

h
2ip

2h
3i p

h
4ixi[G]h.

Now if [u] = [H] we observe that
[
x1, [H]

]
= α[G]2[B] + β[F ]2[D] + γ[G][F ][C],

where α, β, γ ∈ k are in the appendix list. We obtain

[[
x1, [H]

]
, [H]

]
= α

[
[G]2[B], [H]

]
+ β

[
[F ]2[D], [H]

]
+ γ
[
[G][F ][C], [H]

]
= 0.

We also have
[
[H],

[
[H], x2

]]
= λ

[
[H], [I]2

]
= 0,

[
[H], x3

]
= 0 and

[
[H],

[
[H], x4

]]
=

θ
[
[H], [K][I]

]
= 0, where λ, θ ∈ k. By formulas (2.6) and (2.7) we obtain

[
x1, [H]h

]
=

0 and
[
[H]h, xi

]
= 0 for i = {2, 3, 4} and h ≥ 3. Thus x1[H]h = p2h11p

3h
12p

4h
13p

2h
14 [H]hx1

and [H]hxi = p2h1i p
3h
2i p

4h
3i p

2h
4i xi[H]h.

For [u] = [I] we notice that
[
x1, [I]

]
= α[G][B] + β[F ][C], where α, β ∈ k are

described in the appendix. In this way we have

[[
x1, [I]

]
, [I]
]

= α
[
[G][B], [I]

]
+ β

[
[F ][C], [I]

]
= γ[H][B] + θ[F ]2[E],

where γ, θ ∈ k. So

[[[
x1, [I]

]
, [I]
]
, [I]
]

= γ
[
[H][B], [I]

]
+ θ
[
[F ]2[E], [I]

]
= 0,

since
[
[H], [I]

]
=
[
[B], [I]

]
=
[
[F ], [I]

]
=
[
[E], [I]

]
= 0. We also have

[
[I], x2

]
= 0,[

[I],
[
[I], x3

]]
=
[
[I], [J ]

]
= 0 and

[
[I],
[
[I], x4

]]
= λ

[
[I], [L]

]
= 0. The formulas

(2.6) and (2.7) result that
[
x1, [I]h

]
= 0 and

[
[I]h, xi

]
= 0 for i = {2, 3, 4} and

h ≥ 3. Therefore x1[I]h = ph11p
2h
12p

2h
13p

h
14[H]hx1 and [I]hxi = ph1ip

2h
2i p

2h
3i p

h
4ixi[H]h.

Now we suppose [u] = [J ]. In this case we have
[
x1, [J ]

]
= α[G][C] + β[F ][D],

where α, β ∈ k are in the appendix. So

[[
x1, [J ]

]
, [J ]

]
= α

[
[G][C], [J ]

]
+ β

[
[F ][D], [J ]

]
= γ[H][D] + θ[G]2[E] + λ[I][G][D],

where γ, θ, λ ∈ k. Since
[
[H], [J ]

]
=
[
[D], [J ]

]
=
[
[E], [J ]

]
=
[
[G], [J ]

]
=
[
[I], [J ]

]
=

0 we obtain
[
x1, [J ]h

]
= 0 for h ≥ 3. We also have

[
[J ], x2

]
= 0,

[
[J ], x3

]
= 0

and
[
[J ],

[
[J ], x4

]]
= p24p34q(1 + q)−1

[
[J ], [M ]

]
= 0. Then formula (2.7) implies[

[J ]h, xi
]

= 0 for i = {2, 3, 4} and h ≥ 2.

If [u] = [K] we notice that
[
x1, [K]

]
= 0,

[
[K],

[
[K], x2

]]
=
[
[K], [L]

]
= 0,
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[
[K], x3

]
= 0 and

[
[K], x4

]
= 0. So by formulas (2.6) and (2.7) we have

[
x1, [K]h

]
=

0 and
[
[K]h, xi

]
= 0 for i = {2, 3, 4} and h ≥ 2.

For [u] = [L] we observe that
[
x1, [L]

]
= α[F ]2 + β[K][B], where α, β ∈ k are

listed in the appendix. Then
[[
x1, [L]

]
, [L]

]
= α

[
[F ]2, [L]

]
+β
[
[K][B], [L]

]
= 0 since[

[B], [L]
]

=
[
[F ], [L]

]
=
[
[K], [L]

]
= 0. We also have

[
[L], x2

]
= 0,

[
[L],

[
[L], x3

]]
=[

[L], [M ]
]

= 0 and
[
[L], x4

]
= 0, then (2.6) and (2.7) provide

[
x1, [L]h

]
= 0 and[

[L]h, xi
]

= 0 if i = {2, 3, 4} and h ≥ 2.

Now we suppose [u] = [M ]. In this case we have
[
x1, [M ]

]
= α[K][C] + β[G][F ],

where α, β ∈ k are described in the list of formulas in the appendix. Thus[[
x1, [M ]

]
, [M ]

]
= α

[
[K][C], [M ]

]
+ β

[
[G][F ], [M ]

]
= γ[K]2[E] + θ[K][H] +

λ[L][K][D] + δ[L][G]2,[[[
x1, [M ]

]
, [M ]

]
, [M ]

]
= γ

[
[K]2[E], [M ]

]
+θ
[
[K][H], [M ]

]
+λ
[
[L][K][D], [M ]

]
+

δ
[
[L][G]2, [M ]

]
= 0,

and we obtain
[
x1, [M ]h

]
= 0 for h ≥ 3, and then x1[M ]h = ph11p

2h
12p

3h
13p

2h
14 [M ]hx1.

We also have
[
[M ], x2

]
= 0,

[
[M ],

[
[M ], x3

]]
=
[
[M ], [N ]

]
= 0 and

[
[M ], x4

]
= 0

so formula (2.7) provides
[
[M ]h, xi

]
= 0 for i = {2, 3, 4}. Therefore [M ]hxi =

ph1ip
2h
2i p

3h
3i p

2h
4i xi[M ]h.

If [u] = [N ] we have
[[
x1, [N ]

]
, [N ]

]
= α

[
[K][D], [N ]

]
+ β

[
[G]2, [N ]

]
= 0, where

α, β ∈ k are present in the appendix, so x1[N ]h = ph11p
2h
12p

4h
13p

2h
14 [N ]hx1. Since[

[N ],
[
[N ], x2

]]
=
[
[N ], [O]

]
= 0,

[
[N ], x3

]
= 0 and

[
[N ], x4

]
= 0 we obtain[

[N ]h, xi]
]

= 0 for i = {2, 3, 4}. Thus [N ]hxi = ph1ip
2h
2i p

4h
3i p

2h
4i xi[N ]h for i = {2, 3, 4}

and h ≥ 2.

Now if [u] = [O] we notice that

[
x1, [O]

]
= α[K][E] + β[L][D] + γ[M ][C] + θ[H] + λ[I][G] + δ[N ][B] + ρ[J ][F ],

where α, β, γ, θ, λ, δ, ρ ∈ k are in the appendix. So

[[
x1, [O]

]
, [O]

]
= ε[N ][L][E] + ζ[N ][I]2 + η[L][J ]2 + ϑ[M ][J ][I] + ι[M ]2[E],

where ε, ζ, η, ϑ, ι ∈ k. Since
[
[E], [O]

]
=
[
[I], [O]

]
=
[
[J ], [O]

]
=
[
[L], [O]

]
=[

[M ], [O]
]

=
[
[N ], [O]

]
= 0 we obtain

[[[
x1, [O]

]
, [O]

]
, [O]

]
= 0. By formula

(2.6) we have
[
x1, [O]h

]
= 0 so x1[O]h = ph11p

3h
12p

4h
13p

2h
14 [O]hx1 for h ≥ 3. Although[[

x1, [O]
]
, [O]

]
is not zero in general, in the speci�c case where h = 2 we have q4 = 1

and the coe�cients ε, ζ, η, ϑ, ι equal zero as we have ε = β2
2p

3
12p

6
13p

4
14p

2
23p

2
24q

6(1 + q2),

ζ = β2p
3
12p

6
13p

3
14p

2
23p43q

4(1 − q4), η = −β2
2p

3
12p

3
13p

3
14p

4
32p

2
34q

7(1 + q)(1 + q2), ϑ =
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β2
2p

3
12p

5
13p

3
14q

3(1 + q)(1 + q2), ι = −β1β2p312p513p414p224p234q4(1 + q2). We also have[
[O], x2

]
= 0,

[
[O], x3

]
= 0 and

[
[O], x4

]
= 0 then for i = {2, 3, 4} we obtain[

[O]h, xi
]

= 0. Thus [O]hxi = ph1ip
3h
2i p

4h
3i p

2h
4i xi[O]h.

For [u] = [P ] = x2 we have [[x1, x2], x2] =
[
[B], x2

]
= 0 then by (2.6) [x1, x

h
2 ] = 0,

for h > 1. So x1x
h
2 = ph12x

h
2x1. Clearly xh2x2 = x2x

h
2 . We also have [x2, [x2, x3]] =[

x2, [Q]
]

= 0. By (2.7) we obtain [xh2 , x3] = 0 and xh2x3 = ph23x3x
h
2 for h ≥ 2. Now

[x2, x4] = 0, then [xh2 , x4] = 0 and xh2x4 = ph24x4x
h
2 .

We suppose that [u] = [Q]. In this case we have

[[[
x1, [Q]

]
, [Q]

]
, [Q]

]
=
[[

[C], [Q]
]
, [Q]

]
= α

[
x2[D], [Q]

]
+ β

[
[E], [Q]

]
= 0,

with α, β ∈ k, and
[
x2, [Q]

]
= 0. We obtain that

[
xi, [Q]

]
= 0 then xi[Q]h =

phi2p
h
i3[Q]hxi for i = {1, 2}. If i = {3, 4}, we have

[
[Q]h, xi

]
= 0 since

[
[Q],

[
[Q], x3

]]
=[

[Q], [R]
]

= 0 and
[
[Q],

[
[Q], x4

]]
=
[
[Q], [S]

]
= 0. Therefore [Q]hxi = ph2ip

h
3ixi[Q]h

for i = {3, 4} and h ≥ 2.

In the case [u] = [R] we have
[[
x1, [R]

]
, [R]

]
=
[
[D], [R]

]
= 0,

[[
x2, [R]

]
, [R]

]
=

β1p23q
2
[
[Q]2, [R]

]
= 0,

[
[R], x3

]
= 0 and

[
[R],

[
[R], x4

]]
= p34(1 + q)

[
[R], [T ]

]
=

0. So by formulas (2.6) and (2.7) we obtain xi[R]h = phi2p
2h
i3 [R]hxi and [R]hxj =

ph2jp
2h
3jxj[R]h for i = {1, 2}, j = {3, 4} and h ≥ 2.

If [u] = [S] we notice that

[[[
x1, [S]

]
, [S]

]
, [S]

]
=
[[

[F ], [S]
]
, [S]

]
= α

[
x2[K], [S]

]
+ β

[
[L], [S]

]
= 0,

where α, β ∈ k are described in the list in appendix. We also have
[
x2, [S]

]
= 0,[

[S],
[
[S], x3

]]
=
[
[S], [T ]

]
= 0 and

[
[S], x4

]
= 0. Then by formulas (2.6) and

(2.7) we obtain xi[S]h = phi2p
h
i3p

h
i4[S]hxi and [S]hxj = ph2jp

h
3jp

h
4jxj[S]h for i = {1, 2},

j = {3, 4} and h ≥ 3.

Now we suppose [u] = [T ]. In this case we have

[[[
x1, [T ]

]
, [T ]

]
, [T ]

]
=
[[

[G], [T ]
]
, [T ]

]
= α

[
[N ], [T ]

]
+ β

[
[R][K], [T ]

]
= 0,

where α, β ∈ k are in the appendix. We also have

[[[
x2, [T ]

]
, [T ]

]
, [T ]

]
= γ

[[
[S][Q], [T ]

]
, [T ]

]
= θ
[
[S]2[R], [T ]

]
= 0,

where γ, θ ∈ k,
[
[T ], x3

]
= 0 and

[
[T ],

[
[T ], x4

]]
=
[
[T ], [U ]

]
= 0. So by formulas

(2.6) and (2.7) we obtain xi[T ]h = phi2p
2h
i3 p

h
i4[T ]hxi and [T ]hxj = ph2jp

2h
3j p

h
4jxj[T ]h for

i = {1, 2}, j = {3, 4} and h ≥ 3.
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For [u] = [U ] we notice that [
[[
x1, [U ]

]
, [U ]

]
=
[
[K], [U ]

]
= 0, [

[[
x2, [U ]

]
, [U ]

]
=

α
[
[S]2, [U ]

]
= 0,

[
[U ], x3

]
= 0 and

[
[U ], x4

]
= 0. Then by formulas (2.6) and (2.7) we

have xi[T ]h = phi2p
2h
i3 p

h
i4[T ]hxi and [T ]hxj = ph2jp

2h
3j p

h
4jxj[T ]h for i = {1, 2}, j = {3, 4}

and h ≥ 2.

In the case [u] = [V ] = x3 clearly [x1, x
h
3 ] = 0 since [x1, x3] = 0. Then x1x

h
3 =

ph13x
h
3x1. Now [[[x2, x3], x3], x3] =

[[
[Q], x3

]
, x3
]

=
[
[R], x3

]
= 0, so [x2, x

h
3 ] = 0 and

x2x
h
3 = ph23x

h
3x2 for h ≥ 3. Evidently xh3x3 = x3x

h
3 . Lastly we have [x3, [x3, x4]] =[

x3, [W ]
]

= 0 then [xh3 , x4] = 0 and xh3x4 = ph34x4x
h
3 .

If [u] = [W ] we have
[
x1, [W ]

]
= 0,

[[[
x2, [W ]

]
, [W ]

]
, [W ]

]
=
[[

[S], [W ]
]
, [W ]

]
=[

[U ], [W ]
]

= 0 and
[
x3, [W ]

]
= 0, then by (2.6) we obtain

[
xi, [W ]h

]
= 0, for

i = {1, 2, 3}, so xi[W ]h = phi3p
h
i4[W ]hxi for h ≥ 3. Since

[
[W ], x4

]
= 0 (2.7) provide[

[W ]h, x4
]

= 0, so [W ]hx4 = ph34p
h
44x4[W ]h.

Finally if [u] = [X] = x4, we have that [xi, x4] = 0, for i = {1, 2}, then [xi, x
h
4 ] = 0

and xix
h
4 = phi4x

h
4xi in these cases. We notice that [[x3, x4], x4] =

[
[W ], x4

]
= 0 so

[x3, x
h
4 ] = 0 and x3x

h
4 = ph34x

h
4x3 for h ≥ 2. Obviously xh4x4 = x4x

h
4 .

We remember that ϕ : U+
q (F4)→ u+q (F4). We have the following proposition.

Proposition 4.4.2. The set J = kerϕ is generated by the elements [u]h, where [u]

is an element from list (4.2) and h is the height of [u].

Proof. Theorem 4.1.4 proves that [u]h = 0 in u+q (F4) for [u] in the list (4.2), then

the elements [u]h are contained in J . Now let v = [X]n1 [W ]n2 · · · [B]n23 [A]n24 ∈ J =

kerϕ ⊆ U+
q (F4). If ni < hi for every i = {1, · · · , 24}, where hi is the height of

the corresponding element, then v is a basis element of u+q (F4) and thus ϕ(v) 6= 0,

which is a contradiction. So we assume that ni ≥ hi for some �xed i and then v is

a multiple of the respective element [u]hi and belongs to the ideal generated by this

element. Now we consider v = α1v1 + α2v2 ∈ J = kerϕ, where v1, v2 are such as

v. If ϕ(v1) = 0 so ϕ(v2) = 0, then v1 and v2 are multiples of elements of the form

[u]hi . Therefore v belongs to the ideal generated by these elements. If ϕ(v1) 6= 0 and

ϕ(v2) 6= 0 with v1 6= αv2 then ϕ(v) is a sum of linearly independent basis elements of

u+q (F4), so ϕ(v) 6= 0, which is a contradiction. Inductively we have the same result

for v = α1v1 + · · ·αkvk ∈ kerϕ = J . Thus we obtain that J is generated by the

elements [u]h.

As a conclusion of the previous results, the Hopf ideal J is generated by linearly

independent skew central elements [u]h, with [u] ∈ {[A], [B], [C], · · · [W ], [X]} and
h the height of [u]. In fact, J is not just a Hopf ideal, but a Hopf subalgebra of

U+
q (F4) [5, Lemma 4.10]. Now we calculate the combinatorial rank of u+q (F4).
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Proposition 4.4.3. The combinatorial rank κ(u+q (F4)) ≤ 4.

Proof. Let J = kerϕ be the Hopf ideal of U+
q (F4). We consider qt = 1 and we have

that for t odd the height of PBW-generators from list (4.2) is h = t and for t even

the height is h = t or h = t
2
. From Proposition 4.3.2 we have that the only skew-

primitive elements in J are [A]h1 = xh11 , [P ]h2 = xh22 , [V ]h3 = xh33 and [X]h4 = xh44 .

We conclude that {xh11 , xh22 , xh
3

3 , x
h4
4 } ⊆ J1.

Now we consider [u] belonging to the list (4.2) that has a degree smaller than

22 = 4. We note that the coproduct of these elements are given as follows

∆([u]) = [u]⊗ 1 + g[u] ⊗ [u] +
∑
j

αvjgw ⊗ wj,

where the degree of vj plus the degree of wj equals 2 or 3 for every index j. We

notice that ∆ is multiplicative. Thus

∆([u]h) = [u]h ⊗ 1 + gh[u] ⊗ [u]h +
∑
j

γyjgz ⊗ zj.

Suppose that t is odd. Then all PBW-generators [u] have the same height t.

The fact that the elements [u]t generate a Hopf subalgebra of U+
q (g) implies that

necessarily yj or zj belongs to {xt1, xt2, xt3, xt4}. So all terms from the sum depending

on j are zero in J
J1
. We obtain that the the PBW-generators of degree 2 or 3 belong

to J2, as they are skew-primitive elements in J
J1
. We notice that we are not proving

that the elements with total degree greater than 3 are not in J2, as we can not

guarantee that.

Let us suppose by induction that every [u] with degree smaller than 2n satis�es

that [u]t belongs to Jn. If [v] has degree smaller than 2n+1 by analysing its coproduct

we have
∑

j αyjgy ⊗ zj. Let us call A the degree of yj and B the degree of zj so

A + B < 2n+1 = 2.2n then the degree of A is smaller than 2n or the degree of B

is smaller of 2n. If we write yj and zj in the PBW-basis, using that J is a Hopf

subalgebra, for every j we obtain at least one factor [w]αwt of yj or zj where the

degree of [w] is smaller than 2n. By induction, [w]t ∈ Jn and therefore [v]t belongs

to Jn+1.

Now we suppose that t is even. Then the PBW-generators may have height t

or t
2
and we can not prove the result in general as in the previous case. However,

analysing case by case, it is not di�cult to see that we still have that if the total

55



degree of [u] is smaller than 2n, than [u]h ∈ Jn. Again we use the notation

∆([u]h) = [u]h ⊗ 1 + gh[u] ⊗ [u]h +
∑
j

γyjgz ⊗ zj.

For the elements of degree one we have already proven that they are in J1. If [u] is

a generator of degree 2 and h = t we may have the following possibilities:

yj = [v1]
t, zj = [v2]

t, where v1, v2 have degree 1,

yj = [v1]
t
2 , zj = [v2]

t, where v1, v2 have degree 2 and 1, respectively,

yj = [v1]
t
2 , zj = [v2]

t
2 , where v1, v2 have degree 2.

In the third case, if we had both v1 and v2 with degree 2, we could have a summand

that would not be zero in J
J1
. However, it is easy to see that the only elements

with degree 2 that have h = t are [Q] = [x2, x3] and [W ] = [x3, x4]. However, it

is impossible to obtain the degrees (0, t, t, 0) and (0, 0, t, t) as a sum of the degree

( t
2
, t
2
, 0, 0) of [B]. So all the elements with degree two belong to J2.

Similarly, if [u] is a generator of degree 3 we could have the following cases that

would not be zero in J
J1
:

yj = [v1]
t
2 , zj = [v2]

t
2 , where v1, v2 have degree 3,

yj = [v1]
t
2 , zj = [v2]

t
2 [v3]

t
2 , or vice versa, where v1, v2, v3 have degree 2.

Once again, we can not obtain the degrees of the elements of degree 3 with height

t as a sum of elements of degree 2 or 3 with height t
2
. Proceeding in this same way

for the degrees 4,5,6,7,8,9 and 10 we obtain the wanted result. We notice that the

cases with degree over 8 are even more trivial as we have only one PBW-generator

in each degree.

Finally, as all the elements of the PBW-basis have degree smaller than 12 < 16 =

24, the combinatorial rank of the algebra is not greater than 4.

Theorem 4.4.4. The combinatorial rank κ(u+q (F4)) = 4.

Proof. The Proposition 4.4.3 shows that the combinatorial rank of u+q (F4) is less

than or equal to 4. To prove that it is equal to 4, we show that there is a non zero

element in J4 − J3. First we consider t odd.
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From Theorem 4.3.2 we have that the only skew-primitive elements in J are

[A]h1 = xh11 , [P ]h2 = xh22 , [V ]h3 = xh33 and [X]h4 = xh44 . We de�ne J1 as the Hopf

ideal of J generated by xh11 , xh22 , xh33 and xh44 . Now we prove that [u]h /∈ J1 for [u]

in the list (4.2) except x1, x2, x3 and x4. Since the generators of J are skew central,

we may consider J1 as a right (or left) ideal. Suppose that

[u]h = α1y1x
h1
1 + α2y2x

h2
2 + α3y3x

h3
3 + α4y4x

h4
4 .

We may write y1, y2, y3, y4 ∈ U+
q (F4) in the PBW-basis and then skew-commute xh11 ,

xh22 , xh33 and xh44 , writing [u]h as a linear combination of basis elements of U+
q (F4).

Then, on both sides of the equality we have linear combinations of basis elements,

however, on the right side we have necessarily xhii on every term. This provides

that [u]h is not one of the elements on the right side, so we have a contradiction.

Therefore [u]h /∈ J1, unless [u] = xi for i = {1, 2, 3, 4}.
Using the proof of the Theorem 4.3.2 we have [B]t, [R]t and [W ]t belonging to

J2−J1 due to the fact that the coproduct of these elements has a nonzero coe�cient

for a term αygz ⊗ z, where y and z belong to {xt1, xt2, xt3, xt4}.
Now we consider n ∈ N. Using the formula of ∆([E]), we have that the coproduct

of element [E]n has a term α[B]ngn233 ⊗ [R]n. Let us calculate the coe�cient α.

Analyzing the degree of the elements on the right side of the tensor of each term of

the coproduct of [E], we have that the only possibility to obtain the element [R]n

is to multiply n times the term β2p
2
32q[B]g233 ⊗ [R]. Indeed, when we multiply the

element [R] by x23x2 and x3[Q] we will always have an element starting with x3.

Thus α = βn2 p
n(n−1)

2
21 p

n(n−1)
31 p

n(n+1)
32 qn

2 6= 0 and

∆([E]n) = [E]n⊗1+gn12233⊗[E]n+βn2 p
n(n−1)

2
21 p

n(n−1)
31 p

n(n+1)
32 qn

2

[B]ngn233⊗[R]n+
∑
j

γwjgz⊗zj,

where the degree of wj plus the degree of zj is the degree of [E]n. This is true for

n = t odd, so [E]t /∈ J1, J2, and then [E]t belongs to J3 − J2.
Analogously, we have that

∆([K]n) = [K]n⊗1+gn123344⊗[K]n+βn1 β
n
2 (p31p32p41p42)

n(n−1)[B]ng2n34⊗[W ]2n+
∑
j

γyjgz⊗zj,

where degree of yj plus degree of zj is the degree of [K]n. In particular, [K]t belongs

to J3 − J2 for t odd.
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Finally we have that the coproduct of [H]n has a term of the form λ[E]ngn123344⊗
[K]n. Analysing the elements on the left side of each term of coproduct of [H], we

have that the possibility of having the degree of [E]n would be a combination of

degree of the terms x1, [B], [C], [D] and [E] in this way

(n, 2n, 2n, 0) = a1(1, 0, 0, 0)+a2(1, 1, 0, 0)+a3(1, 1, 1, 0)+a4(1, 1, 2, 0)+a5(1, 2, 2, 0),

where (n, 2n, 2n, 0), (1, 0, 0, 0), (1, 1, 0, 0), (1, 1, 1, 0), (1, 1, 2, 0) and (1, 2, 2, 0) are

the degree of [E]n, x1, [B], [C], [D] and [E], respectively. As ai is a positive integer,

the only way to have this equality is a5 = n, that is, multiplying n times the term

β1p12p
2
32p41p

3
42p

3
43q

4[E]g123344 ⊗ [K]. Then we have

∆([H]n) = [H]n ⊗ 1 + gn11222333344 ⊗ [H]n + λ[E]ngn123344 ⊗ [K]n +
∑
j

γyjgz ⊗ zj,

where λ = βn1 p
n(n+1)

2
12 p

n(n+1)
32 pn

2

41(p42p43)
n(2n+1)q2n(n+1) 6= 0. If n = t is odd we have

that [H]t belongs to J4 − J3.
Analogously, when t is even, we consider s = t

2
, then J1 is generated by xs1, x

s
2,

xt3 and x
t
4. By the proof of Proposition 4.3.2 we have that [B]s, [R]s and [W ]t belong

to J2 − J1, [E]s and [K]s belong to J3 − J2 and [H]t belongs to J4 − J3. Therefore
κ(u+q (F4)) = 4.

We notice that, similarly to [15, Theorem 6.1], the result κ(u+q (F4)) = 4 provides

immediately the same combinatorial rank for the negative quantum Borel subalge-

bra u−q (F4). As a consequence, using the triangular decomposition we also obtain

κ(uq(F4)) = 4.
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Chapter 5

Appendix

In this appendix we list the skew commutators between the basis elements in the

case F4.

1.
[
x1, [B]

]
= 0

2.
[
x1, [C]

]
= 0

3.
[
x1, [D]

]
= 0

4.
[
x1, [E]

]
= β2p12p

2
13q

2[D][B]− β1p12p13p32q2[C]2

5.
[
x1, [F ]

]
= 0

6.
[
x1, [G]

]
= 0

7.
[
x1, [H]

]
= β1β2p

2
12p

4
13p

2
14q

4[G]2[B]+β2
1p

2
12p13p

2
14p

3
32p34q

6[F ]2[D]−β1β2p212p313p214p32q5[G][F ][C]

8.
[
x1, [I]

]
= β2p12p

2
13p14q

2[G][B]− β1p12p13p14p32q2[F ][C]

9.
[
x1, [J ]

]
= β1p12p

2
13p14q

2[G][C]− β1p12p13p14p32q2[F ][D]

10.
[
x1, [K]

]
= 0

11.
[
x1, [L]

]
= −β1p12p13p14p32p42q2[F ]2 + β2p12p

2
13p

2
14q

2[K][B]

12.
[
x1, [M ]

]
= β2p12p

2
13p

2
14q

2[K][C]− β2p12p213p14p42p43q2[G][F ]

13.
[
x1, [N ]

]
= β2p12p

2
13p

2
14q

2[K][D]− β2p12p213p14p42p43q2[G]2

14.
[
x1, [O]

]
= β2β3p12p

2
13p

2
14q

2[K][E]+β2p
2
12p

2
13p

2
14p

2
32q

3[L][D]−β2p212p313p214p32q3[M ][C]+

p12p
2
13p14p42p43(1 + q)(q−2 + q−1− q)[H]−β2p212p213p14p232p242p43q3(1 + q)[I][G] +

β2p
2
12p

4
13p

2
14q

2[N ][B] + β2p
2
12p

3
13p14p32p

2
42p

2
43q

3(1 + q)[J ][F ]
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15. [x1, x2] = [B]

16.
[
x1, [Q]

]
= [C]

17.
[
x1, [R]

]
= [D]

18.
[
x1, [S]

]
= [F ]

19.
[
x1, [T ]

]
= [G]

20.
[
x1, [U ]

]
= [K]

21. [x1, x3] = 0

22.
[
x1, [W ]

]
= 0

23. [x1, x4] = 0

24.
[
[B], [C]

]
= 0

25.
[
[B], [D]

]
= β1p13p23q

2[C]2

26.
[
[B], [E]

]
= 0

27.
[
[B], [F ]

]
= 0

28.
[
[B], [G]

]
= β1p13p14p23p24q

2[F ][C]

29.
[
[B], [H]

]
= β2

1p13p
2
14p23p

2
24p34q

3[F ]2[E]

30.
[
[B], [I]

]
= 0

31.
[
[B], [J ]

]
= −β1p13p14p223p24q2[F ][E] + β1p12p

2
13p14p

2
23p24q

4[I][C]

32.
[
[B], [K]

]
= β1p13p14p23p24q

2[F ]2

33.
[
[B], [L]

]
= 0

34.
[
[B], [M ]

]
= −β2p12p213p14p223p43q4[I][F ] + β2p12p

2
13p

2
14p

2
23p

2
24q

4[L][C]

35.
[
[B], [N ]

]
= p213p14p

4
23p24p43q

2(q3−2q−1)[H]+β2p
2
13p

2
14p

4
23p

2
24q

3[K][E]−β2
2p12p

2
13p14p

2
23p43q

5[I][G]−
β2p12p

3
13p14p

3
23p

2
43q

5(1+q)[J ][F ]+β1β2p12p
2
13p

2
14p

2
23p

2
24q

4[L][D]+β2p12p
3
13p

2
14p

3
23p

2
24q

5[M ][C]

36.
[
[B], [O]

]
= β2p12p

2
13p

2
14p

2
23p

2
24q

4[L][E]− β2p12p213p14p223p43q4[I]2

37.
[
[B], x2

]
= 0
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38.
[
[B], [Q]

]
= β2p12q

2x2[C]

39.
[
[B], [R]

]
= β1β2p12q

2x2[D] + β2p12p13p23q
3[Q][C] + p223q[E]

40.
[
[B], [S]

]
= β2p12q

2x2[F ]

41.
[
[B], [T ]

]
= β1β2p12q

2x2[G]+p223p24q[I]+β1p12p13p14p23p24q
2[S][G]+β1p12p13p23p43q

3[Q][F ]

42.
[
[B], [U ]

]
= β1β2p12q

2x2[K] + p223p
2
24q[L] + β2p12p13p14p23p24q

3[S][F ]

43.
[
[B], x3

]
= [C]

44.
[
[B], [W ]

]
= [F ]

45.
[
[B], x4

]
= 0

46.
[
[C], [D]

]
= 0

47.
[
[C], [E]

]
= 0

48.
[
[C], [F ]

]
= 0

49.
[
[C], [G]

]
= β1p14p24p34q[F ][D]

50.
[
[C], [H]

]
= β1β2p13p

2
14p23p

2
24p

2
34q

4[G][F ][E]

51.
[
[C], [I]

]
= β1p14p24p34q[F ][E]

52.
[
[C], [J ]

]
= β1p12p13p14p24p34q

2[I][D]− β1p13p14p223p24p34q2[G][E]

53.
[
[C], [K]

]
= β2p13p14p23p24p34q

3[G][F ]

54.
[
[C], [L]

]
= β2p12p13p14p34q

3[I][F ]

55.
[
[C], [M ]

]
= −β2p13p214p223p224p234q2[K][E] + p13p14p

2
23p24p34(1 + 2q − q3)[H] +

β2p12p13p14p34q(q
2−q−1)[I][G]+β2p12p

2
13p14p23q

3[J ][F ]+β2p12p13p
2
14p

2
24p

2
34q

2[L][D]

56.
[
[C], [N ]

]
= −β2p12p213p14p23q2(1 + q)[J ][G] + β2p12p

2
13p

2
14p23p

2
24p

2
34q

4[M ][D]

57.
[
[C], [O]

]
= −β2p12p213p14p23q2(1 + q)[J ][I] + β2p12p

2
13p

2
14p23p

2
24p

2
34q

4[M ][E]

58.
[
[C], x2

]
= 0

59.
[
[C], [Q]

]
= β2p12p32q

2x2[D]− p23[E]

60.
[
[C], [R]

]
= β2p12p13q

2[Q][D]
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61.
[
[C], [S]

]
= −p23p24p34q[I] + β2p12p32p34q

3x2[G] + β1p12p13q[Q][F ]

62.
[
[C], [T ]

]
= p23p24p34[J ]+β1p12p13q(1+β2q)[Q][G]+β1p12p13p14p24p34q[S][D]+

β1p12p
2
13p23p43q

2[R][F ]

63.
[
[C], [U ]

]
= p23p

2
24p

2
34q[M ]+β1β2p12p13q

2[Q][K]+β2p12p
2
13p14p23p24p34q

3[T ][F ]+

β2p12p13p14p24p
2
34q

3[S][G]

64.
[
[C], x3

]
= [D]

65.
[
[C], [W ]

]
= p34q[G] + β1p13p23qx3[F ]

66.
[
[C], x4

]
= [F ]

67.
[
[D], [E]

]
= 0

68.
[
[D], [F ]

]
= 0

69.
[
[D], [G]

]
= 0

70.
[
[D], [H]

]
= β1β2p

2
14p

2
24p

4
34q

4[G]2[E]

71.
[
[D], [I]

]
= β2p14p24p

2
34q

2[G][E]

72.
[
[D], [J ]

]
= 0

73.
[
[D], [K]

]
= β2p14p24p

3
34q

3[G]2

74.
[
[D], [L]

]
= p14p24p

3
34(q

3−2q−1)[H]+β2p
2
14p

2
24p

4
34q

2[K][E]+β2p12p14p
2
32p

3
34q

5(1+

q)[I][G]

75.
[
[D], [M ]

]
= β2p12p13p14p32p

2
34q

4(1 + q)[J ][G]

76.
[
[D], [N ]

]
= 0

77.
[
[D], [O]

]
= β2p12p

2
13p

2
14p

2
24p

4
34q

4[N ][E]− β2p12p13p14p232p234q4(1 + q)[J ]2

78.
[
[D], x2

]
= [E]

79.
[
[D], [Q]

]
= 0

80.
[
[D], [R]

]
= 0

81.
[
[D], [S]

]
= −p24p234(1 + q)[J ] + β2p12p13p32p34q

3[Q][G]

82.
[
[D], [T ]

]
= β2p12p

2
13q

2[R][G]
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83.
[
[D], [U ]

]
= p224p

4
34q[N ] +β2p12p

2
13p14p24p

3
34q

3(1 + q)[T ][G] +β1β2p12p
2
13q

2[R][K]

84.
[
[D], x3

]
= 0

85.
[
[D], [W ]

]
= β2p13p23p34q

3x3[G]

86.
[
[D], x4

]
= p34(1 + q)[G]

87.
[
[E], [F ]

]
= 0

88.
[
[E], [G]

]
= 0

89.
[
[E], [H]

]
= 0

90.
[
[E], [I]

]
= 0

91.
[
[E], [J ]

]
= 0

92.
[
[E], [K]

]
= p14p21p

2
23p

3
24p

3
34q

4(1 + q)[H]

93.
[
[E], [L]

]
= β2p14p

2
24p

3
34q

3[I]2

94.
[
[E], [M ]

]
= β2p13p14p

2
23p

2
24p

2
34q

4(1 + q)[J ][I]

95.
[
[E], [N ]

]
= β2p13p14p

2
23p

2
24p

2
34q

4(1 + q)[J ]2

96.
[
[E], [O]

]
= 0

97.
[
[E], x2

]
= 0

98.
[
[E], [Q]

]
= 0

99.
[
[E], [R]

]
= 0

100.
[
[E], [S]

]
= β2p12p13p24p34q

3[Q][I]− β2p12p24p232p234q4(1 + q)x2[J ]

101.
[
[E], [T ]

]
= −β2p12p13p24p34q2[Q][J ] + β2p12p

2
13p

2
23p24q

4[R][I]

102.
[
[E], [U ]

]
= −β1β2p12p13p224p234q3[Q][M ]+β1β2p12p

2
13p14p

2
23p

3
24p

3
34q

6[T ][I]+β1β2p12p
2
24p

2
32p

4
34q

5x2[N ]+

p223p
4
24p

4
34q

2[O]− β2p12p13p14p324p434q3(1 + q)[S][J ] + β1β2p12p
2
13p

2
23p

2
24q

4[R][L]

103.
[
[E], x3

]
= 0

104.
[
[E], [W ]

]
= −p24p234(1 + q)J + β2p13p

2
23p24p34q

3x3[I]

105.
[
[E], x4

]
= p24p34(1 + q)[I]
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106.
[
[F ], [G]

]
= 0

107.
[
[F ], [H]

]
= 0

108.
[
[F ], [I]

]
= 0

109.
[
[F ], [J ]

]
= −p13p223p43q2[H] + β1p12p13p42p43q

2[I][G]

110.
[
[F ], [K]

]
= 0

111.
[
[F ], [L]

]
= 0

112.
[
[F ], [M ]

]
= β2p12p13p14q

2[L][G]− β2p13p14p223p24q2[K][I]

113.
[
[F ], [N ]

]
= −β2p13p14p223p24q2(1 + q)[K][J ] + β2p12p

2
13p14p23p43q

4[M ][G]

114.
[
[F ], [O]

]
= β2p12p

2
13p14p23p43q

4[M ][I]− β2p12p13p14p32q2(1 + q)[L][J ]

115.
[
[F ], x2

]
= 0

116.
[
[F ], [Q]

]
= β2p12p32p42q

2x2[G]− p23[I]

117.
[
[F ], [R]

]
= β2p12p13p42p43q

2[Q][G]− p23(1 + q)[J ]

118.
[
[F ], [S]

]
= β2p12p32p42q

2x2[K]− p23p24[L]

119.
[
[F ], [T ]

]
= −p23p24q(1+q)−1[M ]+β1p12p13p14q[S][G]+β1p12p13p42p

2
43q

2[Q][K]

120.
[
[F ], [U ]

]
= β2p12p13p14q

2[S][K]

121.
[
[F ], x3

]
= [G]

122.
[
[F ], [W ]

]
= [K]

123.
[
[F ], x4

]
= 0

124.
[
[G], [H]

]
= 0

125.
[
[G], [I]

]
= [H]

126.
[
[G], [J ]

]
= 0

127.
[
[G], [K]

]
= 0

128.
[
[G], [L]

]
= β2p14p24p

2
34q

2[K][I]

129.
[
[G], [M ]

]
= β2p14p24p

2
34q

2[K][J ]
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130.
[
[G], [N ]

]
= 0

131.
[
[G], [O]

]
= β2p12p

2
13p14q

2[N ][I]− β2p12p13p14p232p34q4[M ][J ]

132.
[
[G], x2

]
= [I]

133.
[
[G], [Q]

]
= [J ]

134.
[
[G], [R]

]
= 0

135.
[
[G], [S]

]
= −p24p34(1 + q)−1[M ] + β1p12p13p32p42p43q

2[Q][K]

136.
[
[G], [T ]

]
= −p24p34(1 + q)−1[N ] + β1p12p

2
13p42p

3
43q

2[R][K]

137.
[
[G], [U ]

]
= β2p12p

2
13p14q

2[T ][K]

138.
[
[G], x3

]
= 0

139.
[
[G], [W ]

]
= β1p13p23p43q

2x3[K]

140.
[
[G], x4

]
= [K]

141.
[
[H], [I]

]
= 0

142.
[
[H], [J ]

]
= 0

143.
[
[H], [K]

]
= 0

144.
[
[H], [L]

]
= β1β2p

2
14p

3
24p

4
34q

4[K][I]2

145.
[
[H], [M ]

]
= β2

2p13p
2
14p

2
23p

3
24p

3
34q

6[K][J ][I]

146.
[
[H], [N ]

]
= β2

2p13p
2
14p

2
23p

3
24p

3
34q

6[K][J ]2

147.
[
[H], [O]

]
= β2

2p
2
12p13p

2
14p24p

4
32p

3
34q

9[L][J ]2−β2
2p

2
12p

3
13p

2
14p24p34q

5[M ][J ][I]+β1β2p
2
12p

4
13p

2
14p

2
23p24q

6[N ][I]2

148.
[
[H], x2

]
= β1p12p

2
32p42q

4[I]2

149.
[
[H], [Q]

]
= β2p12p13p42p43q

3[J ][I]

150.
[
[H], [R]

]
= β2p12p13p42p43q

3[J ]2

151.
[
[H], [S]] = β2p12p14p

2
24p

2
32p

3
34q

4[L][J ]−β1p12p13p14p224p234q2[M ][I]−β2
2p

2
12p14p

4
32p

3
34q

8x2[K][J ]+

β1β2p
2
12p

2
13p14p32q

4[Q][K][I]

152.
[
[H], [T ]

]
= −β1p12p213p14p223p224p34q3[N ][I]+β1p12p13p14p

2
24p

2
34q[M ][J ]−β1β2p212p213p14p32q3[Q][K][J ]+

β1β2p
2
12p

4
13p14p

2
23p

3
43q

6[R][K][I]
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153.
[
[H], [U ]

]
= β1p12p13p14p

3
24p

3
34q

2(1+q)−1[M ]2+β2
2p

2
12p

4
13p

3
14p

2
23p

3
24p

2
34q

7[T ][K][I]−
β1p12p

2
13p14p

2
23p

3
24p34q

3[N ][L]+β1p
2
12p

2
13p14p24p34q[O][K]+β2

1β2p
3
12p

2
13p14p

4
32p34p42q

8x2[N ][K]+

β2
1β2p

3
12p

4
13p14p42p

3
43q

6[R][L][K]+β1β
2
2p

3
12p

3
13p14p

2
32p42p43q

8[Q][M ][K]−β2
2p

2
12p

2
13p

3
14p

3
24p32p

5
34q

7[S][K][J ]

154.
[
[H], x3

]
= 0

155.
[
[H], [W ]

]
= β1β2p

2
13p14p

3
23p

2
24q

4x3[K][I]− β2p14p224p334q2[K][J ]

156.
[
[H], x4

]
= β2p14p

2
24p

2
34q

2[K][I]

157.
[
[I], [J ]

]
= 0

158.
[
[I], [K]

]
= 0

159.
[
[I], [L]

]
= 0

160.
[
[I], [M ]

]
= β2p14p

2
24p

2
34q

2[L][J ]

161.
[
[I], [N ]

]
= β2p13p14p

2
23p

2
24p34q

4[M ][J ]

162.
[
[I], [O]

]
= 0

163.
[
[I], x2

]
= 0

164.
[
[I], [Q]

]
= β2p12p

2
32p42q

4x2[J ]

165.
[
[I], [R]

]
= β2p12p13p42p43q

3[Q][J ]

166.
[
[I], [S]

]
= −β1p12p232p34q3x2[M ] + β1p12p13p43q

2[Q][L]

167.
[
[I], [T ]

]
= −p223p224p34q(1 + q)−1[O]− β2

1p12p
2
32p34q

3x2[N ]− β1p12p13p43q2(β1−
(1 + q)−1)[Q][M ] + β1p12p

2
13p

2
23p

3
43q

4[R][L] + β1p12p13p14p24p34q
2[S][J ]

168.
[
[I], [U ]

]
= β2p12p

2
13p14p

2
23p

2
24q

4[T ][L]− β1p12p13p14p224p234q2[S][M ]

169.
[
[I], x3

]
= [J ]

170.
[
[I], [W ]

]
= −p24p34(1 + q)−1[M ] + β1p13p

2
23p24p43q

2x3[L]

171.
[
[I], x4

]
= p24[L]

172.
[
[J ], [K]

]
= 0

173.
[
[J ], [L]

]
= 0

174.
[
[J ], [M ]

]
= 0
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175.
[
[J ], [N ]

]
= 0

176.
[
[J ], [O]

]
= 0

177.
[
[J ], x2

]
= 0

178.
[
[J ], [Q]

]
= 0

179.
[
[J ], [R]

]
= 0

180.
[
[J ], [S]

]
= −β1p12p332p234q4x2[N ]+β1p12p13p32q

3(1+q)−1[Q][M ]+p23p
2
24p

2
34q(1+

q)−1[O]

181.
[
[J ], [T ]

]
= −β1p12p13p32q2(1 + q)−1[Q][N ] + β1p12p

2
13p23p

2
43q

4(1 + q)−1[R][M ]

182.
[
[J ], [U ]

]
= β1p12p

2
13p14p23p

2
24p

2
34q

4[T ][M ]− β1p12p13p14p224p32p434q4[S][N ]

183.
[
[J ], x3

]
= 0

184.
[
[J ], [W ]

]
= −p24p234q(1 + q)−1[N ] + β1p13p

2
23p24q

3(1 + q)−1x3[M ]

185.
[
[J ], x4

]
= p24p34q(1 + q)−1[M ]

186.
[
[K], [L]

]
= 0

187.
[
[K], [M ]

]
= 0

188.
[
[K], [N ]

]
= 0

189.
[
[K], [O]

]
= β2p12p

2
13p

2
42p

4
43q

4[N ][L]− β1p12p13p232p242p243q4[M ]2

190.
[
[K], x2

]
= [L]

191.
[
[K], [Q]

]
= [M ]

192.
[
[K], [R]

]
= [N ]

193.
[
[K], [S]

]
= 0

194.
[
[K], [T ]

]
= 0

195.
[
[K], [U ]] = 0

196.
[
[K], x3

]
= 0

197.
[
[K], [W ]

]
= 0
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198.
[
[K], x4

]
= 0

199.
[
[L], [M ]

]
= 0

200.
[
[L], [N ]

]
= β1p13p

2
23p

2
43q

4[M ]2

201.
[
[L], [O]

]
= 0

202.
[
[L], x2

]
= 0

203.
[
[L], [Q]

]
= β2p12p

2
32p

2
42q

4x2[M ]

204.
[
[L], [R]

]
= p223q[O] + β1β2p12p

2
32p

2
42q

4x2[N ] + β2p12p13p
2
42p

2
43q

3[Q][M ]

205.
[
[L], [S]

]
= 0

206.
[
[L], [T ]

]
= β1p12p13p14q

2[S][M ]

207.
[
[L], [U ]

]
= 0

208.
[
[L], x3

]
= [M ]

209.
[
[L], [W ]

]
= 0

210.
[
[L], x4

]
= 0

211.
[
[M ], [N ]

]
= 0

212.
[
[M ], [O]

]
= 0

213.
[
[M ], x2

]
= 0

214.
[
[M ], [Q]

]
= −p23[O] + β2p12p

3
32p

2
42q

4x2[N ]

215.
[
[M ], [R]

]
= β2p12p13p32p

2
42p

2
43q

4[Q][N ]

216.
[
[M ], [S]

]
= 0

217.
[
[M ], [T ]

]
= β1p12p13p14p32p34q

3[S][N ]

218.
[
[M ], [U ]

]
= 0

219.
[
[M ], x3

]
= [N ]

220.
[
[M ], [W ]

]
= 0

221.
[
[M ], x4

]
= 0
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222.
[
[N ], [O]] = 0

223.
[
[N ], x2

]
= [O]

224.
[
[N ], [Q]

]
= 0

225.
[
[N ], [R]

]
= 0

226.
[
[N ], [S]

]
= 0

227.
[
[N ], [T ]

]
= 0

228.
[
[N ], [U ]

]
= 0

229.
[
[N ], x3

]
= 0

230.
[
[N ], [W ]

]
= 0

231.
[
[N ], x4

]
= 0

232.
[
[O], x2

]
= 0

233.
[
[O], [Q]

]
= 0

234.
[
[O], [R]

]
= 0

235.
[
[O], [S]

]
= 0

236.
[
[O], [T ]

]
= 0

237.
[
[O], [U ]

]
= 0

238.
[
[O], x3

]
= 0

239.
[
[O], [W ]

]
= 0

240.
[
[O], x4

]
= 0

241.
[
x2, [Q]

]
= 0

242.
[
x2, [R]

]
= β1p23q

2[Q]2

243.
[
x2, [S]

]
= 0

244.
[
x2, [T ]

]
= β1p23p24q

2[S][Q]

245.
[
x2, [U ]

]
= β1p23p24q

2[S]2
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246. [x2, x3] = [Q]

247.
[
x2, [W ]

]
= [S]

248. [x2, x4] = 0

249.
[
[Q], [R]

]
= 0

250.
[
[Q], [S]

]
= 0

251.
[
[Q], [T ]] = β1p24p34q[S][R]

252.
[
[Q], [U ]

]
= β2p23p24p34q

3[T ][S]

253.
[
[Q], x3

]
= [R]

254.
[
[Q], [W ]

]
= p34q[T ] + β1p23qx3[S]

255.
[
[Q], x4

]
= [S]

256.
[
[R], [S]

]
= 0

257.
[
[R], [T ]

]
= 0

258.
[
[R], [U ]

]
= β2p24p

3
34q

3[T ]2

259.
[
[R], x3

]
= 0

260.
[
[R], [W ]

]
= β2p23p34q

3x3[T ]

261.
[
[R], x4

]
= p34(1 + q)[T ]

262.
[
[S], [T ]

]
= 0

263.
[
[S], [U ]

]
= 0

264.
[
[S], x3

]
= [T ]

265.
[
[S], [W ]

]
= [U ]

266.
[
[S], x4

]
= 0

267.
[
[T ], [U ]

]
= 0

268.
[
[T ], x3

]
= 0

269.
[
[T ], [W ]

]
= β1p23p43q

2x3[U ]
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270.
[
[T ], x4

]
= [U ]

271.
[
[U ], x3

]
= 0

272.
[
[U ], [W ]

]
= 0

273.
[
[U ], x4

]
= 0

274.
[
x3, [W ]] = 0

275. [x3, x4] = W

276.
[
[W ], x4

]
= 0
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