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ABSTRACT

In isolated sites where there is not a connection with the main electric grid, the use of
diesel generating set as electric energy source is considerable, because of its reliability
and its climate independence. With the intensification of environmental concern, the use
of renewables energy sources has increase. However, these islanded microgrids with
high penetration of renewables need to be well sized to allow the load fulfillment with
high level of reliability. That is why a suitable optimization algorithm need to be used to
obtain the optimal microgrid size for each project. Therefore, this work presents the use
of a deterministic gradient-based optimization algorithm to solve the microgrid optimal
sizing, which is not often used for this type of problem. The aim of the optimization is to
obtain the microgrid design with the lowest net present cost (NPC), that respect a defined
maximum shedding fraction (SF). One possible way to obtain the values of NPC and SF
for each microgrid configuration and components sizes is to simulate a whole year of
its operation, by means of a microgrid simulator. The calculation of the gradients used
in the optimization algorithm is done with a Automatic Differentiation package which
has a high accuracy and computational performance. The convergence and computation
time results are compared with the ones from Particle Swarm Optimization (PSO), a
metaheuristic optimization algorithm that is commonly used to solve the optimal microgrid
sizing problem.

Keywords: Microgrids, optimal sizing, gradient-based optimization, automatic differ-
entiation (AD), particle swarm optimization (PSO).



RESUMO

Em locais isolados onde não há conexão com a rede elétrica de distribuição, o uso do
gerador a diesel como fonte de energia elétrica é considerável, devido à sua confiabilidade
e independência climática. Com a intensificação da preocupação ambiental, o uso de
fontes de energia renováveis tem aumentado. Entretanto, estas micro redes isoladas com
alta penetração de energia renovável precisam ser bem dimensionadas para permitir o
atendimento da carga com alto nível de confiabilidade. É por isso que um algoritmo de
otimização adequado precisa ser usado para obter o tamanho ideal da microrrede para
cada projeto. Portanto, este trabalho apresenta o uso de um algoritmo de otimização deter-
minístico baseado em gradiente para resolver o dimensionamento ótimo da microrrede,
que não é frequentemente utilizado para este tipo de problema. O objetivo da otimização
é obter o projeto da microrrede com o menor custo líquido atual (NPC), que respeite
um valor máximo de não atendimento da carga (SF - do inglês shedding fraction). Uma
maneira possível de obter os valores de NPC e SF para cada configuração de microrrede
e especificação de componentes é simular um ano inteiro de sua operação, por meio de
um simulador de microrrede. O cálculo dos gradientes usados no algoritmo de otimiza-
ção é feito com um pacote de Diferenciação Automática que tem uma alta precisão e
desempenho computacional. Os resultados da convergência e do tempo de computação são
comparados com os resultados do algoritmo de otimização de Enxame de Partículas (PSO -
do inglês Particle Swarm Optimization), um algoritmo de otimização meta-heurístico que é
comumente utilizado para resolver o problema de dimensionamento ótimo da microrrede.

Palavras-chave: microrredes, dimensionamento ótimo, algoritmos de otimização com
gradiente, diferenciação automática (AD), enxame de partícula (PSO).
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1 INTRODUCTION

Power systems from all over the world are experiencing changes in their configurations.
This is mainly caused by the upgrowth climate change awareness by power system actors,
including the population. The Brazilian electricity mix is predominantly composed by
renewable sources, with a participation of 84.8% (EPE, 2021). This means that the majority
load consumption, the part connected to the brazilian National Grid System (SIN, from
portuguese Sistema Interligado Nacional), is supplied by renewables sources. Moreover,
with the Norm 482/2012 (from portuguese Resolução Normativa 482/2012), followed by
its revision Norm 687/15 (from portuguese Resolução Normativa 687/15), which facilitates
the installation and the compensation of the residual energy produce by prosumers, the
number of distributed photovoltaic systems increased, representing 92.7% of the micro
and mini generation (EPE, 2021).

Nevertheless the increase of centralized or distributed renewable power plants, more
than 90% of Brazilian islanded systems’ electricity is generated by diesel generating
sets (gensets or GS, for short) (EPE, 2022), a very pollutant energy source. Therefore,
there is a visible divergence between the composition of the Brazilian electricity mix and
the Brazilian isolated systems mix. Natural gas and renewable plants were retained in
recent auctions, thus, a reduction to 61% of participation is expected in 2023. However,
greenhouse gases emissions from diesel gensets will still represent almost 80% of Brazilian
islanded systems total emissions (EPE, 2022), indicating that a more expressive reduction
is necessary to reduce its environmental impacts.

This is not only a reality of Brazilian islanded systems scenary. Due to the high
costs, high price variation and high pollutant emissions of diesel, microgrids with high
penetration of renewable energy sources have shown to be a viable option for the electric
power supply in remote regions. Suman; Guerrero; Roy (2021) examined the optimal
sizing of hybrid islanded microgrids for rural areas, showing that it is possible to have
a high penetration of renewable energy in this kind of network. Another application of
a islanded microgrid was presented in (Zhao et al., 2014), where a optimal sizing was
performed and used as a base to implement a real microgrid in Dongfushan Island in China.

For microgrids with high renewable penetration work properly, i.e., meeting the demand
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with high reliability, it is necessary to perform their planning in a thorough and detailed
way. According to (Gamarra; Guerrero, 2015) the planning steps include selection of
energy generation and storage technologies, their sizing, allocation in the microgrid, energy
resource operation planning, sensitivity analysis, and pricing strategies.

This work focuses in the sizing and energy resource operation planning steps, which are
generally formulated as optimization problems to obtain the best results. The optimization
algorithms commonly used to solve these problems are the metaheuristic ones, because of
the nonlinearities and discontinuities of the problems. In some studies, a linearization of the
models are performed to use exact optimization methods. Each of them have advantages
and disadvantages, which will be clarified in Chapter 2.

In this work the steps of sizing and operation will be attached in a unique optimization
problem. The algorithm chosen to perform the optimization is a gradient-based one, due
to its fast convergence characteristic. This approach is not usually applied to islanded
microgrid sizing, because it needs a continuous and differentiable mathematical formulation
of the problem to converge. However, using the Automatic Differentiation (AD) technique
its possible to obtain the gradients even if the models are not perfectly smooth. Therefore, a
convergence and timing analysis are performed to assess if the compromise between these
two is suitable to use this optimization approach to obtain optimal microgrid components
sizes.

1.1 Objectives

The main objective of this work is to develop and implement a methodology to apply a
gradient-based optimization algorithm to the islanded microgrid optimal sizing problem.
That is possible with the development of a microgrid simulator (MG Simulator) and the use
of an Automatic Differentiation (AD) package. This main objective can be decomposed
into the following ones:

• develop a microgrid simulator, capable of receive the climate and technical microgrid
data as input, and give as output the power production and balance at each time
instant, the yearly or lifetime energetic and economic indicators;

• create a framework to interface the MG Simulator, a gradient-based optimization
algorithm, and a Automatic Differentiation package;

• analyze the convergence and computation time of the proposed methodology.

1.2 Outline

This work is organized in 5 chapters. The Chapter 1 presents the Introduction of the
subject studied, addressing the motivation and objectives of this research.
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Chapter 2 presents the theoretical foundation of the concepts used in the development
of the methodology. The base of Automatic Differentiation, the optimization algorithms
used in this work, the energetic modeling of the microgrid components and its form of
dispatch, and the indicators used are explained. In this chapter, the state of the art is also
addressed and discussed.

The proposed methodology to design an optimal islanded microgrid is described in
Chapter 3. The development of the MG simulator is fully explained. The coupling method
between the MG simulator, AD package and gradient-based optimization algorithm is
established, as well as the coupling between the MG simulator and the Particle Swarm
Optimization algorithm. It will also be explained how the convergence is analyzed to
compare the two algorithms.

In Chapter 4, the methodology is applied to four case studies and all the parameters
values and tools used are listed. The results for each microgrid configuration are also
presented and discussed.

Chapter 5 summaries the conclusions of the presented work and suggests advances that
could be done to this research.
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2 BACKGROUND

This chapter presents the concepts from the literature that were used in the development
of this work.

2.1 Automatic differentiation

Automatic Differentiation (AD), also known as algorithmic differentiation, is a form
to evaluate derivatives. It is primarily based on the chain rule (Baydin et al., 2018;
Gebremedhin; Walther, 2020), i.e., a formula to evaluate the derivatives of composed
functions as in (1). The methods can also be extended to evaluate higher orders of
derivatives, gradients and jacobian matrices.

dy

dx
=

dy

du
· du
dx

(1)

where

y = f(u)

u = g(x)

In theory, AD should evaluate the derivatives of any function that can be written
as a program code (Gilbert; Le Vey; Masse, 1991). This include functions that can’t
be represented by explicit mathematical formulas, composed of programming control
flow functions, e.g., if-then-else,while-do,for-do, that calls another subroutines, that have
iterative and recursive process, and any other structure of computer programming (Gilbert;
Le Vey; Masse, 1991). The capacity of AD to works in all of this cases depends of the AD
program implementation.

The working principle of AD programs is to transform the function code, decomposing
it as a combination of elementary operations (binary arithmetic operations, unary sign
switch, and functions as exponential, logarithm, and trigonometric functions) for which the
derivatives are known (Baydin et al., 2018). For functions without programming control
flow functions, it is possible to represent the combination of the elementary operations as a
code list and a computational graph (Gilbert; Le Vey; Masse, 1991).

The computational graph is a direct acyclic graph, where the vertices represent the
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input, intermediate and output variables and the edges describe the dependency relationship
between the vertices (Gebremedhin; Walther, 2020). The elementary operations can
be annotated in the vertices and in the edges the local partial derivatives, i.e., partial
derivative of the target vertex with respect to the source vertex, can be showed as weights
(Gebremedhin; Walther, 2020). The interested readers can found more concepts of graphs
in (Godsil; Royle, 2001).

A function f : ℜn → ℜm can be decomposed into n+m+ l values vi, where l is the
number of elementary operations needed. The elementary operations are represented by an
elemental function φ. Thus, each value vi ∈ ℜ, i > 0, is obtained with

vi = φi(vj)j≺i, φi : ℜni → ℜ, (2)

where ni is the numbers of arguments vj , j < i, required to evaluate φi (Gebremedhin;
Walther, 2020). Therefore, a general evaluation procedure for a function f : ℜn → ℜm,
using the notation of (Griewank; Walther, 2008), is

1. vi−n = xi, i = 1, . . . , n, i.e., the attribution of values for the n input variables;

2. vi = φi(vj)j≺i, i = 1, . . . , l, i.e., the calculation of the l intermediate variables;

3. ym−i = vl−i, i = m − 1, . . . , 0, i.e., the attribution of values for the m output
variables.

There are two basic modes that an AD program can use to calculate the derivatives:
forward mode and backward mode. Some AD programs implement a hybrid of these two
to take advantage of each one. The function

y = f(x1, x2) = ln(x1) + x1 · x2 − sin(x2) (3)

is used as an example to explain the basic modes (Baydin et al., 2018). Figure 1 shows the
computational graph of (3) with the elemental functions annotated in the vertices, and the
decomposition as a code list is presented in Table 1 with the function value calculation for
the point x = [2, 5]T .

2.1.1 Forward mode

The forward mode consists of computing the partial derivatives v̇i at the same time as
the function value vi. Using the definition of elemental functions (2) and the chain rule (1),
we have

φ̇i : ℜ2ni → ℜ, v̇i = ∇φi(ui)v̇i ≡ φ̇i(ui, u̇i),

that can also be written as

v̇i =
∑
j≺i

∂φi(ui)

∂vj
· v̇j, (4)
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Figure 1 – Computational graph of Eq. (3).
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Source: adapted from (Baydin et al., 2018).

Table 1 – Step-by-step calculation of Eq. (3) as a code list.

Forward Primal Trace

General x = [2, 5]T

v−1 = x1 2

v0 = x2 5

v1 = φ1(v−1) = ln(v−1) ln(2)

v2 = φ2(v−1, v0) = v−1 · v0 2 · 5
v3 = φ3(v0) = sin(v0) sin(5)

v4 = φ4(v1, v2) = v1 + v2 0.693 + 10

v5 = φ5(v3, v4) = v4 − v3 10.693 + 0.959

y = v5 11.652

Source: adapted from (Baydin et al., 2018).

where ui = (vj)j≺i and u̇i = (v̇j)j≺i (Gebremedhin; Walther, 2020).

Considering a function f : ℜn → ℜ, for each i iteration of the forward process, the
input variable, x = [x1, . . . , xn]

T , is the i-th vector of the canonical base of ℜn, i.e.,
x = ei = [0, . . . , 0, 1, 0, . . . , 0]T and the partial derivative ∂f

∂xi
is obtained. Thus, the

gradient ∇f = [ ∂f
∂x1

, ∂f
∂x2

, . . . , ∂f
∂xn

]T is obtained with n iterations of the forward process
(Gilbert; Le Vey; Masse, 1991; Baydin et al., 2018).

This process can be extended for a function f : ℜn → ℜm, for which a Jacobian
matrix is computed. Because of the forward mode characteristic, all partial derivatives
with respect to a same input variable are evaluated in the same iteration. In that manner,
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the number of iterations continues to be n, because one column of the matrix

Jf (x) =



∂y1
∂x1

∂y1
∂x2

· · · ∂y1
∂xn

∂y2
∂x1

∂y2
∂x2

· · · ∂y2
∂xn...

... . . . ...
∂ym
∂x1

∂ym
∂x2

· · · ∂ym
∂xn


(5)

is obtained for each iteration. This leads to a general preference to use the forward mode
for f : ℜn → ℜm where n ≫ m (Baydin et al., 2018). Some implementations of forward
mode are more efficient for functions where n > m but n is not much greater than m, e.g.,
ForwardDiff.jl compared to ReverseDiff.jl (Revels; Pearson, 2016).

For the example function (3), applying the equation (4) to the elemental functions
(first column of Table 1) results in the partial derivatives presented in Table 2. Here, each
row of Table 2 is executed at the same time. The partial derivatives v̇i are also annotated
as weights in the computational graph presented in Fig. 2, where the direction of the
calculation is also shown.

Table 2 – Step-by-step calculation of Eq. (3) gradient with forward automatic differentia-
tion.

Forward Tangent (Derivative) Trace

General ẋ = [1, 0]T ẋ = [0, 1]T

v̇−1 = ẋ1 1 0

v̇0 = ẋ2 0 1

v̇1 =
∂φ1

∂v−1
· v̇−1 =

v̇−1

v−1

1
2

0
2

v̇2 =
∂φ2

∂v−1
· v̇−1 +

∂φ2

∂v0
· v̇0 = v0 · v̇−1 + v−1 · v̇0 5 · 1 + 2 · 0 5 · 0 + 2 · 1

v̇3 =
∂φ3

∂v0
· v̇0 = cos(v0) · v̇0 cos(5) · 0 cos(5) · 1

v̇4 =
∂φ4

∂v1
· v̇1 + ∂φ4

∂v2
· v̇2 = v̇1 + v̇2 0.5 + 5 0 + 2

v̇5 =
∂φ5

∂v4
· v̇4 − ∂φ5

∂v3
· v̇3 = v̇4 − v̇3 5.5− 0 2− 0.284

ẏ = v̇5
∂y
∂x1

= 5.5 ∂y
∂x2

= 1.716

Source: adapted from (Baydin et al., 2018).

2.1.2 Reverse mode

The reverse mode is a two-phase process. In the first phase the function value is
evaluated, through the evaluation of the intermediate variables, as in the forward mode
(Baydin et al., 2018). The difference is that the partial derivatives can be only evaluated
after the complete execution of this first phase. That happens because the partial derivatives
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Figure 2 – Computational graph of Eq. (3) with the partial derivatives from forward AD
annotated.
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are computed backwards, using adjoint functions v̄i, from the output variables yj to the
input variables xi (Gebremedhin; Walther, 2020).

The adjoint functions can be seen as a sensitivity of a considered output yj with respect
to changes in vi, i.e., v̄i =

∂yj
∂vi

(Baydin et al., 2018). Using the concept of elemental
functions, the formula of adjoint functions can be expressed as

ūi+= v̄i · ∇φi(ui) (6)

for each elemental function φi : ℜni → ℜ, where ūi ≡ (v̄j)j≺i ∈ ℜni and += repre-
sents a updating addition operator that assigns the result ūi of the operation v̄i · ∇φi(ui)

back into its left operand, e.g, for a second operation of ūi, the Equation (6) will be
ūi = ūi + v̄i · ∇φi(ui) (Gebremedhin; Walther, 2020).

As opposed to forward mode, the reverse mode can evaluate the gradient ∇f for a
function f : ℜn → ℜ with only one iteration of the reverse process. The process is
initialized with v̄l = ȳ = ∂y

∂y
= 1 and the partial derivatives x̄1 =

∂y
∂x1

, x̄2 =
∂y
∂x2

, . . . , x̄n =
∂y
∂xn

, are obtained at the end of the iteration. For a function f : ℜn → ℜm, each iteration
will calculate one row of the Jacobian matrix (5), requiring m iterations to obtain the full
Jacobian. Thus, the reverse mode of AD is usually preferred when m ≪ n. This advantage
comes with a increased storage cost, proportional with the l intermediate variables, because
all the values vi need to be stored for the subsequent use. (Baydin et al., 2018)

Using the reverse mode of AD to solve the gradient for the example function (3) results
in the steps presented in Table 3. Following the two-phase process, first all the rows of
the forward primal trace are executed. In the second phase, the rows of reverse adjoint

(derivative) trace are executed from the last one to the first one. In this example it is
possible to observe the evaluation of the full gradient ∇f(x1, x2) in only one iteration of
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the reverse mode. Figure 3 presents the computational graph with the adjoints annotated as
weights in the edges.

Table 3 – Step-by-step calculation of Eq. (3) gradient with reverse automatic differentiation.

Reverse Adjoint (Derivative) Trace

General ȳ = 1

x̄1 = v̄−1 5.5

x̄2 = v̄0 1.716

v̄b−1 = v̄a−1 + v̄1 · ∂φ1

∂v−1
= v̄a−1 +

v̄1
v−1

5.5

v̄b0 = v̄a0 + v̄2 · ∂φ2

∂v0
= v̄a0 + v̄2 · v−1 1.716

v̄a−1 = v̄2 · ∂φ2

∂v−1
= v̄2 · v0 5

v̄a0 = v̄3 · ∂φ3

∂v0
= v̄3 · cos(v0) −0.284

v̄2 = v̄4 · ∂φ4

∂v2
= v̄4 · 1 1

v̄1 = v̄4 · ∂φ4

∂v1
= v̄4 · 1 1

v̄3 = v̄5 · ∂φ5

∂v3
= v̄5 · (−1) −1

v̄4 = v̄5 · ∂φ5

∂v4
= v̄5 · 1 1

v̄5 = ȳ 1

Source: adapted from (Baydin et al., 2018).

2.2 Optimization algorithms

Optimization is a mathematical study area whose aim is to obtain a minimal or maximal
value for a model. The optimization problems can be classified as discrete, continuous, lin-
ear, nonlinear, unconstrained, constrained, deterministic and stochastic (Nocedal; Wright,
2006). The mathematical formulation of constrained optimization problems can be written
as (Luenberger; Ye, 2016)

min f(x) (7a)

s.t. hi(x) = 0, i = 1, 2, . . . ,m1 (7b)

gj(x) ≤ 0, j = 1, 2, . . . ,m2 (7c)

x ∈ Ω

where x ∈ ℜn is the vector of n optimization variables, f(x) is the nonlinear objective
function, hi(x) are the m1 equality constraints, gj(x) are the m2 inequality constraints,
and Ω is the feasible set, i.e., the set of points x that satisfy the constraints.

The optimization problem addressed in this work is a constrained Nonlinear Program-
ming (NLP). Thus the objective function f(x) is nonlinear and the constraints, hi and gj ,
can be linear or nonlinear.
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Figure 3 – Computational graph of Eq. (3) with the partial derivatives from reverse AD
annotated.
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The literature presents many algorithms to solve NLP problems. Two different ap-
proaches are presented in this section: a deterministic gradient-based algorithm and a
metaheuristic algorithm.

2.2.1 Sequential Quadratic Programming

Sequential Quadratic Programming (SQP) is not a unique algorithm, but a framework
to solve constrained NLP problems, i.e., the optimization algorithms need to follow the
same basic principle to be considered a SQP method. It is one of the most effective methods
to solve this kind of problem, specially with significant nonlinearities in the constraints
(Nocedal; Wright, 2006).

The basic principle of SQP algorithms is to obtain the step direction by solving
quadratic subproblems (QP), hence the name. The objective function of the NLP problem
(7) is approximated by a quadratic function and the constraints are linearized. The quadratic
subproblem is solved using adequate algorithms 1 , and each SQP implementation can use
a different one.

For each iteration k, the NLP problem is rewritten as a QP one of the form

min
p

fk +∇fT
k p+

1

2
pT∇2

xxLkp (8a)

s.t. ∇hi(xk)
Tp+ hi(xk) = 0, i = 1, 2, . . . ,m1 (8b)

∇gj(xk)
Tp+ gj(xk) ≤ 0, j = 1, 2, . . . ,m2 (8c)

where p is the QP optimization variable and the step used for SQP and ∇2
xxLk is the

Hessian matrix of Lagrangian function (Nocedal; Wright, 2006). The basic SQP algorithm
described in Algorithm 1 is a adaptation of (Nocedal; Wright, 2006, Algorithm 18.1).

1Some QP algorithms are presented in (Nocedal; Wright, 2006, Chapter 16).



25

Algorithm 1: Local SQP Algorithm for solving the optimization problem given
by (7).

Choose an initial pair (x0, λ0);
Set k := 0;
repeat

Evaluate fk, ∇fk, ∇2
xxLk, ∇hi(xk)

T , hi(xk), ∇gj(xk)
T , and gj(xk);

Solve (8) to obtain pk and λk+1;
xk+1 := xk + pk;
k := k + 1

until a convergence test is satisfied;

The SQP algorithm used in this work was first developed and implemented by (Kraft,
1988). In this implementation, the hessian matrix ∇2

xxLk is evaluated using an approxima-
tion similar to the ones used in quasi-newton methods for unconstrained optimization. The
update of this matrix is described in (Kraft, 1988, §2.2.4).

Another specificity of this implementation is that three approaches are proposed to
solve the QP subproblems: Primal, Primal/dual, and Dual methods. The Primal/dual
method transform the QP problem in a linear least-squares formulation (LSEI). Another
work of the same author (Kraft, 1994) implemented this approach in Fortran and named it
as SLSQP, because the optimization is solved by sequential linear least-squares problems.

The SLSQP algorithm became popular with the SciPy project (Virtanen et al., 2020),
in which the original code was ported to Python. There are also another packages that use
this algorithm, e.g., NLopt in which the code was converted to C (Johnson, 2007–2020).

2.2.2 Particle Swarm Optimization

The Particle Swarm Optimization (PSO) is a population-based metaheuristic optimiza-
tion algorithm. Its working principle simulates the movement behaviour of flocks of birds
or schools of fish (Kennedy; Eberhart, 1995). It can also be understood as particles moving
in the space, trying to find the best position.

The value of the positions is quantified by the fitness function, that is unique related
to the objective function or can also contain the constraints. The position update for each
particle at each iteration is determined by its velocity, which is a weighting of it current
inertia, an individual intelligence component, and a social intelligence component. The
individual intelligence component consists of the position which generates the best fitness
value of the particle so far, known as personal best pi, and for the social component the
position with the best fitness value among all the particles, known as global best g. Figure
4 shows a example of the position updating.

There are different versions of the PSO, but always following these basic principles.
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Figure 4 – Position update of a particle using PSO.
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The PSO algorithm presented in this work was adapted from (Javed et al., 2020) and
(Clerc; Kennedy, 2002), and it is established for a minimization problem and the equations
governing the iterative process are indicated below.

In this section, all the variables named as r are a random value between 0 and 1
following a uniform distribution. The iterative process will occur during k iterations,
that represents the time, for a population size of np particles, and each particle being
composed of n variables, i.e., the n decision variables from the optimization problem.
Also, i represents the ith particle of the population and j the jth variable of each particle.

Considering the problem as a bounded one, the population is initialized inside the
feasible search space, using

x
(0)
i,j = xmin

j + r · (xmax
j − xmin

j ), (9)

and the initial velocity for all particles and variables are zero.
The velocity is updated as

v
(k+1)
i,j = ϕw · v(k)i,j + ϕ1 · r1 ·

(
p
(k)
i,j − x

(k)
i,j

)
+ ϕ2 · r2 ·

(
g
(k)
j − x

(k)
i,j

)
, (10)

where ϕw is the inertia weight, and ϕ1 and ϕ2 are established constants, and it is assured if
its value is inside the velocity range using

v
(k+1)
i,j =


v
(k+1)
i,j , vmin

j ≤ v
(k+1)
i,j ≤ vmax

j

vmin
j , v

(k+1)
i,j < vmin

j

vmax
j , v

(k+1)
i,j > vmax

j .

(11)

Finally, the new particle position is calculated by

x
(k+1)
i = x

(k)
i + v

(k+1)
i , (12)
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and it is verified it its value is between the bounds with

x
(k+1)
i,j =


x
(k+1)
i,j , xmin

j ≤ x
(k+1)
i,j ≤ xmax

j

xmin
j , x

(k+1)
i,j < xmin

j

xmax
j , x

(k+1)
i,j > xmax

j .

(13)

The procedure of the PSO iterative process is presented in the Algorithm 2, where f(·)
is the fitness function.

Algorithm 2: Basic Particle Swarm Optimization algorithm for minimization
problem.

Initialize population randomly choosing x
(0)
i using Eq. (9) and set all v(0)

i to zero;
Calculate the fitness function f for each x

(0)
i ;

Set local optima p
(0)
i := x

(0)
i ;

Define global optima as g(0) = argmin(f(p
(0)
1 ), . . . , f(p

(0)
np ));

Set k = 0;
repeat

for i = 1 to population size np do
for j = 1 to variable dimension n do

Update particle velocity using Eq. (10) ;
Let particle velocity inside bounds using Eq. (11) ;

Update particle position using Eq. (12) ;
Let th particle position inside bounds using Eq. (13) ;
Calculate the fitness value for each x

(k+1)
i ;

if f(x(k+1)
i ) < f(p

(k)
i ) then

Update the personal best for the ith particle p
(k+1)
i = x

(k+1)
i

Update the global best g(k+1) = argmin(f(p
(k+1)
1 ), . . . , f(p

(k+1)
np ))

k = k + 1;

until k = kmax − 1;

The PSO algorithm does not have a direct way to handle the constraints. Therefore,
there are some techniques to do it and the one presented here is the penalty. The constraints
are added in the fitness function multiplied by a high value constant. In (Nielsen, 2003)
the penalty function with nk constraints has the form

f(x) = f(x) · (1 +
nk∑
k=1

pk), (14)

where pk is evaluated as

pk = max

[
0,

(ck,l − ck)

abs(ck,l)
,
(ck − ck,u)

abs(ck,u)

]
, (15)

where ck,l is the lower bound and ck,u is the upper bound on performance criterion ck.
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2.2.3 Optimization algorithms’ performance indicators

In order to compare different optimization algorithms, performance indicators need to
be used to compare the algorithms statistically. The first step is to obtain a representative
sample of solutions for the studied search space for each algorithm and there are different
fashions for different algorithm types. Deterministic algorithms are run for distinct initial
points and metaheuristic ones can be run for the same initial population, because they are
based on stochastic characteristics that produces different results for the same initial point.

The most basic statistics that can be used as performance indicators are the sample
minimum, sample maximum, mean and median values. Others statistics related to the error
and dispersion of the sample values can also be used.

In their work, Javed et al. (2020) propose the utilization of five statistical parameters
to assess the convergence performance and accuracy of optimization algorithms. These
indicators are applied to each algorithm sample and are: standard deviation (SD), mean
absolute error (MAE), relative error (RLE), root mean square error (RMSE), and mean
efficiency of optimization algorithm, given by Equations (16), (17), (18), (20) and (21),
respectively. In these equations obest is the best objective function value, which is the
sample minimum for minimization problems or the sample maximum for maximization
problems, ok is the objective function value for the kth algorithm execution, K is the
number of algorithm executions, and ō is the mean of the objective function values. In this
work, Eq. (18) was modified to represent the mean relative error (MRE), presented in Eq.
(19).

SD =

√√√√ 1

K − 1

K∑
k=1

(ok − ō)2 (16)

MAE =

∑K
k=1(ok − obest)

K
(17)

RLE =

∑K
k=1(ok − obest)

obest
(18)

MRE =

∑K
k=1(ok − obest)

K · obest
(19)

RMSE =

√√√√ 1

K

K∑
k=1

(ok − obest)2 (20)

ηmean(%) = 100 ·

∑K
k=1

(
obest
ok

)
K

(21)

When comparing optimization algorithms, it is also important to evaluate the com-
putational performance, because resources are still limited even with the evolution of
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computers. Two computational resources that need to be compared between algorithms
are computational time and memory allocation. To reduce the noise and error of time and
memory estimation, multiple executions of algorithms are required, always in the same
machine. There are some packages already implemented to benchmark time and memory
of programs and algorithms running them multiple times , as BenchmarkTools.jl in Julia
language (Chen; Revels, 2016).

2.3 Microgrid modeling

2.3.1 Photovoltaic systems

The PV production for each time instant (PPV (t)), in kW, is evaluated by

PPV (t) = fPV · P rtd
PV · IT (t)

IS
, (22)

where fPV is the PV derating factor, P rtd
PV is the rated power of the PV array, in kW, IT (t)

is the global solar radiation (beam plus diffuse) incident on the surface of the PV array for
the time t, in kW/m2, and IS is the standard amount of radiation used to rate de capacity of
the PV array, whose value is 1 kW/m2. The PV production PPV (t) can also be evaluated as

PPV (t) = P rtd
PV · P 1k

PV (t) , (23)

where P 1k
PV (t) is the output of a 1 kW PV panel, already including temperature and system

loss, for the time t.
For the photovoltaic model, the number of replacements N rep

PV depends on its lifetime
ℓPV and also the project lifetime ℓproj , and is calculated by

N rep
PV =

⌈
ℓproj
ℓPV

⌉
− 1. (24)

With the number of replacements, it’s possible to calculate the PV’s remaining life as

ℓremPV = ℓPV − (ℓproj − ℓPV ·N rep
PV ) . (25)

2.3.2 Wind turbines

Usually the wind turbines’ hubs are not installed at the same height of the anemometer.
Thus it is necessary to adjust the wind speed to the hub height Uhub, that can be calculated
for each time instant t using the logarithmic law

Uhub(t) = Uanem(t)
ln(zhub/z0)

ln(zanem/z0)
(26)

or the exponential law

Uhub(t) = Uanem(t)

(
zhub
zanem

)αWT

, (27)
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where Uanem(t) is the wind speed measured at the anemometer height at time t, zhub is the
hub height, zanem is the anemometer height, z0 is the surface roughness length, and αWT

is the power law exponent.

The wind turbine power output for each wind speed is determined using power curves
from manufacturers or approximations of these curves. In this work, it is used a quadratic
approximation given by

PWT (t) =


P rtd
WT ·

(
Uhub(t)−Ucut−in

Urtd−Ucut−in

)2

, Ucut−in ≤ Uhub(t) < Urtd

P rtd
WT , Urtd ≤ Uhub(t) ≤ Ucut−out

0, otherwise,

(28)

where P rtd
WT is the rated wind turbine power, Urtd is the rated wind speed, Ucut−in is the

cut-in wind speed, i.e., the wind speed at which the turbine starts to work, and Ucut−out is
the cut-out wind speed, i.e., the wind speed at which the turbine stops to work.

The number of replacements and remaining life for the wind turbine model are similar
to the ones of the photovoltaic model, and are given by

N rep
WT = ⌈ℓproj

ℓWT

⌉ − 1 (29)

and

ℓremWT = ℓWT − (ℓproj − ℓWT ·N rep
WT ) (30)

respectively, where lWT is the wind turbines lifetime.

2.3.3 Battery energy storage systems

At each time step, the battery energy EBT is updated according to

EBT (t+ 1) = EBT (t)− (PBT (t) + αBT |PBT (t)|)∆t, (31)

where PBT (t) is the battery power in generator convention, i.e. the battery is charging
when PBT (t) < 0 and discharging when PBT (t) > 0 and αBT is the linear loss factor.

The charging and discharging power bounds depend on the rate limits and the energy
limits of the battery as a result of the discrete time modeling. The superior bound implied
by the energy is

P e,max
BT (t) =

EBT (t)− Emin
BT

(1 + αBT )∆t
(32)

where Emin
BT is the minimum available energy, and the inferior bound is

P e,min
BT (t) = −Emax

BT − EBT (t)

(1− αBT )∆t
, (33)

where Emax
BT is the maximum available energy.
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The considered limits are the most restrictive of the two types, rate and energy limits.
Therefore, the discharge limit is

P discharge
BT (t) = min (Pmax

BT , P e,max
BT (t)) (34)

and the charge limit is

P charge
BT (t) = max

(
Pmin
BT , P e,min

BT (t)
)
, (35)

where Pmax
BT and Pmin

BT are respectively the discharge and charge power limits, which
depend on the battery type chosen.

The maximum available energy Emax
BT is equal to the rated energy Ertd

BT and the mini-
mum available energy Emin

BT is equal to zero, because it is considered a change of scale to
work only with the energy actually available from the battery, and not having to use the
state of energy (SOE) concepts.

The battery lifetime depends on the time, ℓyearsBT , of use and also in the energy that
cycles through it. The throughput lifetime is

ℓthrptBT =
2 · Ertd

BT ·Ncycles

Qthrpt
BT

, (36)

where Ncycles is the maximum number of complete cycles, i.e. number of the charge and
discharge, and Qthrpt

BT is the total energy that cycles through the battery yearly, calculated
by

Qthrpt
BT =

T∑
t=1

|PBT (t)| ·∆t. (37)

The battery lifetime is the most restrictive of the two types, thus it’s calculated as

ℓBT = min
(
ℓthrptBT , ℓyearsBT

)
. (38)

Hence, the BT number of replacements N rep
BT is

N rep
BT =

⌈
ℓproj
ℓBT

⌉
− 1 (39)

and the remaining life is

ℓremBT = ℓBT − (ℓproj − ℓBT ·N rep
BT ) . (40)

2.3.4 Diesel generating set

The GS fuel consumption FGS(t) in liters at each time instant is evaluated by

FGS(t) =
(
F0 · P rtd

GS + F1 · PGS(t)
)
·∆t (41)

where the F0 is the fuel curve intercept coefficient in l/h/kW , F1 is the fuel curve slope
in l/h/kW , P rtd

GS is the rated power of the generator in kW and PGS(t) is the GS electrical
output in kW for the time t.
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The total fuel consumption in one year is

F tot,year
GS =

T∑
t=1

FGS(t) . (42)

If the GS is on, the model considers that it works during all the timestep ∆t at the
power PGS(t). This is expressed mathematically as

hGS(t) =

0, PGS(t) = 0

∆t, 0 < PGS(t) ≤ P rtd
GS

(43)

The GS total operation hours in one year is

htot,year
GS =

T∑
t=1

hGS(t) (44)

and during all the project lifetime is

htot,proj
GS = htot,year

GS · ℓproj. (45)

However, the GS operation hours expressed in (43) adds a discontinuity in the micro-
grid operation model, interfering in the gradient-based algorithms convergence. Thus, a
relaxation is implemented as

hrlx
GS(t) =


∆t

ε

PGS(t)

P rtd
GS

, PGS(t) ≤ εP rtd
GS

∆t, εP rtd
GS < PGS(t) ≤ P rtd

GS

(46)

where ε is the relaxation factor, and the total operation hours in one year can be calculated
by replacing hGS(t) with hrlx

GS(t) in (44).
The Fig. 5 shows the curves for the GS operations hours models expressed in (43) and

(46).

Figure 5 – Diesel generating set consumption hours.
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Source: the author.

The GS number of replacements during the project is

N rep
GS =

⌈
htot,proj
GS

ℓGS

⌉
− 1 (47)
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where ℓGS is the GS lifetime in hours of operation, and the remaining life in operation
hours is

ℓremGS = ℓGS −
(
htot,proj
GS − ℓGS ·N rep

GS

)
. (48)

2.3.5 Power balance

In the microgrid model used in this work, the losses due to the network are not
considered. Thus, the system is seen as a one single node, in which all the power production
is entering and all load consumption is exiting.

For a microgrid containing PV, WT, BT and GS, the net power is calculated as

Pnet(t) = PPV (t) + PWT (t) + PBT (t) + PGS(t)− Pload(t) , (49)

where Pload is the load demand.
The power balance is assured with the use of two slack variables, Pcurt that represents

the amount of renewables power that is in excess, i.e. the curtailed renewables power, and
Pshed represents the unmet load, i.e. the shedding load. The balance is then obtained as

Pnet(t)− Pcurt(t)− Pshed(t) = 0. (50)

Due to the nondispatchable characteristic of the renewables sources, PV and WT in
this study, another intermediate parameter is established as

P net
load(t) = Pload(t)− PPV (t)− PWT (t) . (51)

A positive value of this power indicates the production of the renewable sources was not
sufficient to supply all the load, meaning that others powers sources need to be used, and a
negative value means that there is a surplus of renewables production. The use of P net

load(t)

when a battery composes the microgrid is presented in the next section.

2.4 Dispatch strategies

The microgrids are usually composed of more than one energy source, as a form to
improve the reliability of the grid. Therefore a power dispatch strategy needs to be set
in order to define the sources that will operate to supply the load. The most common
implemented strategies are the rule-based and optimal dispatch, as presented in §2.6.
As the name suggests, the rule-based strategy is characterized by a fixed rule to decide
which source will supply the load. In the optimal strategy, at each time of operation, a
optimization problem is solved to determine the source that will operate. Usually the
optimization problem aims to minimize the costs.

In a isolated microgrid whose purpose is to increase the use of renewable sources, using
the diesel genset only as a backup, a rule-based strategy may be adopted. A reasonable
priority order could be:
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1. Nondispatchable renewable sources, e.g., photovoltaic, wind power and run-of-river
hydro power

2. Dispatchable renewable sources, e.g., biomass and hydro power with reservoir

3. Batteries

4. Diesel generating set

2.4.1 Battery-charging strategies

Considering a microgrid configuration composed of nondispatchables sources, batteries
and a diesel genset, two main deterministc strategies are implemented to determine how
the batteries will be charged.

The first one is the load-following strategy, in which the batteries are charged only by
the nondispatchables sources, when these produce energy in excess (Lambert; Gilman;
Lilienthal, 2006). In this case, the diesel genset will never produce energy to charge the
batteries, even though it is operating to supply the load. Figure 6 shows the fluxogram for
the battery-charging load-following strategy.

Figure 6 – Load-following dispatch fluxogram.
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In the cycle-charging strategy, whenever the rule-based strategy determine the operation
of the diesel genset to supply the load, it will also produce more energy to charge the
batteries, respecting its operation constraints (Lambert; Gilman; Lilienthal, 2006). The
battery-charging process with cycle-charging strategy is shown in Fig. 7.
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Figure 7 – Cycle-charging dispatch fluxogram.
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2.5 Indicators

2.5.1 Energetic indicators

There are some energetic indicators that are used to characterize the microgrids. This
section presents two of them, and the first presented is the renewable fraction (RF) which
is definied as

RF (%) = 100 ·

T∑
t=1

Pren(t) ·∆t

Eserv

(52)

where Pren is the sum of the power produced by renewable sources at for time t and Eserv

is the load energy served in one year.
The other is the shedding fraction (SF), that represents the fraction of demand not

supplied and it is calculated by

SF (%) = 100 ·

T∑
t=1

Pshed(t)

T∑
t=1

Pload(t)

(53)

where Pshed(t) is the power not supplied at each time t.

2.5.2 Economic indicators

In the economic model, the costs are analyzed in the beginning of the project. Hence,
the investment, operation and maintenance (OM) and replacement costs and the salvage
value are brought to the present considering the project discount rate d.
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In the following equations, c ∈ C = {PV,WT,BT,GS}, and

ϕ(c) =



P rtd
PV , c = PV

P rtd
WT , c = WT

Ertd
BT , c = BT

P rtd
GS , c = GS

(54)

The discount factors fdi are calculated for each year i of project according to

fdi =
1

(1 + d)i
, i ∈ {1, 2, . . . , ℓproj}. (55)

We can define the summation of these factors as

σfd =

ℓproj∑
y=1

fdy. (56)

If the number of replacements of the components is different of zero, it is necessary to
calculate the years when the replacements happen. The sets that contains these years for
each component are defined as

Yc = {y · ℓc | y ∈ {1, 2, . . . , N rep
c }} , (57)

and with this set defined, the replacement factors f rep
c,i for each component are calculated

using

f rep
c,i =

1

(1 + d)i
, i ∈ Yc. (58)

With the factors calculated in (55) and (58), it is possible to evaluated the present costs
for each component and the total net present cost (NPC) for the microgrid project.

The present investment cost for each component is

Cinv,tot
c = Cinv

c · ϕ(c). (59)

The OM present costs are evaluated by the following set of equations

COM,tot
PV = COM

PV · P rtd
PV · σfd (60a)

COM,tot
WT = COM

WT · P rtd
WT · σfd (60b)

COM,tot
BT = COM

BT · Ertd
BT · σfd (60c)

COM,tot
GS = COM

GS · P rtd
GS · htot,year

GS · σfd + Cfuel,tot
GS (60d)

where the total fuel cost is

Cfuel,tot
GS = Cfuel

GS · F tot,year
GS · σfd . (61)
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The present replacement cost is

Crep,tot
c = Crep

c · ϕ(c) ·
∑
y∈Yc

f rep
c,y . (62)

If the components have a remaining life different of zero, a salvage value needs to be
calculated. The proportional unitary salvage value is

Sc = Crep
c · ℓ

rem
c

ℓc
(63)

and the total salvage value is

Stot
c = Sc · ϕ(c) · fdℓproj . (64)

The total component present cost is

Ctot
c = Cinv,tot

c + COM,tot
c + Crep,tot

c − Stot
c . (65)

Finally, the microgrid NPC is calculated by the summation

NPC =
∑
c∈C

Ctot
c . (66)

Another economic indicator that can be used is the levelized cost of energy (COE)
given by

COE =
NPC

Eproj
serv

· (σfd)
−1. (67)

where the Eproj
serv is the total energy served during the project lifetime.
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2.6 Literature review

A genetic algorithm was implemented by (Zhao et al., 2014) to obtain the optimal
sizing of a islanded microgrid. The results were used to developed a real microgrid on
Dongfushan Island, China. The energy resources considered in the optimization were the
photovoltaic system (PV), wind turbines (WT), battery storage (BS), and a diesel generating
set (GS). A particularity of the system is a seawater desalination system (SWDS), modeled
as a controllable load allowing better use of the nondispatchable renewable energy sources.
The problem was posed as a continuous multicriteria optimization, minimizing a objective
function composed of the normalized and weighted cost of energy (COE), renewables
fraction (RF) and diesel genset greenhouse gases emission. Seven weight sets were tested
to obtain the best values for different criteria priorities, where the resulted RF ranged
between 55.26% to 61.20%. As the rated power and capacity of commercial components
are discrete, the actual chosen solution differ from the ones found with GA. This and
the uncertainties of climate data lead to an actual lower RF during the period between
August 2011 to December 2011. Therefore, a stochastic analysis of the uncertainties or the
consideration of different scenarios is important to a well designed microgrid.

The Distributed Energy Resources Customer Adoption Model (DER-CAM) program,
developed by Lawrence Berkeley National Laboratory/USA, determines the optimal tech-
nology portfolio, the optimal technology placement, and the associated optimal dispatch
developed. An extension of the matemathical formulation of DER-CAM was made in
(Mashayekh et al., 2017). In this work the optimization objective is to minimize the costs
associate with a multi-energy microgrid, i.e. electrical and thermal energies, considering
the power flow equations. Some components capacities are modeled as continuous vari-
ables, e.g. photovoltaic (PV), and others as discrete variables, e.g. micro-turbines (MT).
Since the MILP formulation leads to a high variables number, and it is dependent with the
number of nodes and points in demand and climate hourly data, a typical year of operation
is modeled with 3 representative days for each month (864 different hourly values) and a
network with 5 nodes.

In (Bukar; Tan; Lau, 2019) work, the Grasshopper Optimization Algorithm (GOA), a
metaheuristic optimization algorithm, was used to design a optimal islanded microgrid. The
microgrid configuration is composed of a photovoltaic system (PV), wind turbines (WT),
a battery storage system (BESS) and a diesel generating set (GS), which is important to
provide a reliable autonomous system. A rule-based with cycle-charging dispatch strategy
is used, where the dispatch priority is: renewable sources, battery, and diesel genset. It is
used three representative daily demand profiles, one for each regional season, e.g., cold,
hot, and rainy. Thus, the yearly demand is only represented by 72 different values, a small
sample considering that the year could have 8760 different values. The hourly climate
data used were obtained from measurements for a specific year. The objective function
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is the cost of energy (COE), and the deficiency of power supply probability (DPSP) and
renewable energy fraction (RF) are constraints, and the variables were modeled as integer
values. For the optimal sizing, the demand was supplied with the following distribution:
44% by the PV, 14% by the WT, 26% by the BSS and 16% by the GS supply.

A performance comparison of four metaheuristic algorithms for optimization of is-
landed microgrids was presented in (Javed et al., 2020). It used statistical indicators,
standard deviation (SD), mean absolute error (MAE), relative error (RLE), root mean
square error (RMSE) and mean efficiency (ηmean), (given by Equations (16), (17), (18),
(20) and (21)) to evaluate the exploration and exploitation of each algorithm. The case
studies were performed for a microgrid composed of photovoltaic system (PV), wind
turbines (WT), battery (BT) and pumped hydro storage (PHS). The objective function to
be minimized is the net present cost (NPC) and the constraint is the loss of power supply
probability (LPSP), related to the system reliability. The demand data is hourly for a year,
containing seasonal variation, and the solar and wind data are hourly from measurements.
The firefly algorithm (FA) and particle swar optimization (PSO) presented the best results.
FA presented the lowest RLE and PSO was capable of found the lower value for the
objective function. In terms of mean efficiency, both have the same value of 96.20%.

A hybrid metaheuristic optimization algorithm, PSO-GWO, was proposed by (Suman;
Guerrero; Roy, 2021) to solve the islanded microgrid optimal sizing problem. The al-
gorithm was composed of elements from Particle Swarm Optimization (PSO) and Grey
Wolf Optimizer (GWO), and its performance was compared with five others metaheuristic
algorithms. The electric sources considered are photovoltaic system, wind turbines, a bio-
generator, batteries, and a diesel genset. It was used a single demand curve, representing
the hourly variations in a day, and hourly climate data for a year. Two criteria are con-
sidered as objective functions, the COE and the DPSP, that were aggregated into a single
objective by linear scalarisation. The renewable factor (RF) was used as a constraint and it
was handled by not allowing infeasible solutions in the population. The same performance
indicators proposed by (Javed et al., 2020) were used for the algorithms comparison, and
the proposed algorithm presented the best mean efficiency ηmean for the majority of case
studies, reaching values of 97.54% and 97.84%.

2.6.1 Observations and considerations about the presented studies

As could be observed, the most used algorithm for microgrid optimal sizing problem
is the metaheuristic ones. Linearizations are also applied in the models in order to use
existent solvers for MILP. Among the presented studies, the one by (Mashayekh et al.,
2017) was the only one that implemented a multi-node approach, enabling the use of power
flow equations and the optimal placement. However, the MILP formulation makes the
dispatch problem anticipative, because all future renewables production is already know in
the time of the actual dispatch decision.
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Table 4 shows the electrical resources used by each work and the ones implemented in
this study, where:

• Reference A - (Zhao et al., 2014)

• Reference B - (Mashayekh et al., 2017)

• Reference C - (Bukar; Tan; Lau, 2019)

• Reference D - (Javed et al., 2020)

• Reference E - (Suman; Guerrero; Roy, 2021)

• Reference * - This study

Table 4 – Comparison of electric resources used.

Electric resource A B C D E *

Electric grid ×
Photovoltaic system × × × × × ×
Wind turbine × × × × ×
Battery × × × × × ×
Pumped hydro storage ×
Bio generator ×
Diesel genset × × × ×
CHP-enabled ICE ×

Gradient-based algorithms are also deterministic as the MILP ones, i.e. the same
result is obtained for the same initial conditions. They use the gradients of objective and
constraints functions to determine the direction of the next step. According to (Nielsen,
2003; Hemker et al., 2008) gradient-based algorithms are not suitable for simulation-based
optimization problems, because it usually fails in the presence of discontinuities or non
differentiable functions. Besides, if an analytical function for the gradient is not available,
it has to be obtained numerically. The finite difference is frequently used as the numerical
method, but the approximation errors and extra function evaluations in each iteration make
this a low quality approach (Nielsen, 2003).

The Automatic Differentiation (AD) reduces the approximation errors and the computa-
tion time needed for function evaluations. Moreover, after an extensive research, there are
no studies showing real evidence that gradient-based algorithms do not work for islanded
microgrid optimal sizing problems. Therefore, this work presents the empirical analysis
of the convergence of this approach, as well as the implication of a relaxation to reduce
discontinuities.
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3 METHODOLOGY

This chapter describes the proposed methodology to design an optimal islanded micro-
grid. First, the MG simulator architecture is presented, with the considerations made in
its development. Afterward, the proposed optimization algorithm is introduced, detailing
the coupling between the MG Simulator, AD package and gradient-based optimization
algorithm. Finally, it is presented the procedure to compare the results obtained with the
proposed methodology and the ones obtained with PSO algorithm.

3.1 Microgrid simulator

The most used simulator software to design microgrids is the commercial software
HOMER. However, its proprietary characteristic does not allow significant modifications
in the power sources and storage models, much less an interaction with other optimization
algorithms and packages. Therefore, a Microgrid Simulator was developed following some
major characteristics present in HOMER.

The MG Simulator architecture is presented in Fig. 8, which will be used to explain
its implementation. The first step of the MG Simulator is to provide the necessary data
to perform the energetic simulation, which are represented by items Input Data and
Sizing Data in Fig. 8. Although the Sizing Data are also Input Data, they are represented
separately because of their future use in optimization, where they will be decision variables.

The Input Data consists of:

• load demand curve;

• climate data: incident global solar radiation, wind speed;

• photovoltaic data: derating factor, lifetime;

• wind turbine data: rated, cut-in and cut-out speeds, hub height, wind speed measure-
ment height, roughness length, lifetime;

• battery data: initial energy, minimum energy level, maximum charge and discharge
power, linear loss factor, maximum number of cycles, lifetime;
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• diesel generating set data: minimum load ratio, fuel curve intercept coefficient, fuel
curve slope, lifetime;

• costs for each component: installation, operation and maintenance, fuel and replace-
ment costs, and salvage unitary value;

• project specification: lifetime, discount rate, simulation time step.

The Sizing Data consists of:

• the photovoltaic rated power;

• the wind turbine rated power;

• the battery rated energy capacity;

• the diesel generating set rated power.

Figure 8 – Microgrid Simulator architecture.
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After the inclusion of the data, the next step of the MG simulator, is to create the
components, Create Components in Fig. 8. To facilitate the calculations, these components
are programmed as new variables types, that are named as Photovoltaic, WindPower,
Battery, DieselGenerator, Project and Microgrid. The Microgrid type is composed by the
others ones, including all the components information needed for the functions Operation,
Aggregation and Economics. It is not obligatory to have all the power sources or storage,
thus, this is the step in which the microgrid configuration is chosen.
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The simulation of microgrid operation actually happens in the step Operation. The
production of the nondispatchable power sources are computed for a typical year, and the
dispatch of the diesel gensets or batteries is decided for each time step accordingly with
the dispatch strategy implemented, represented by Dispatch in Fig. 8. The outputs from
this step are the operation results for each time instant, namelly:

• net load after dispatch;

• load shedding power;

• diesel generating set power;

• battery energy and power;

• battery minimum and maximum power limits for charge and discharge, and;

• renewables curtailment power.

Using the results from Operation, the Aggregation computes the totals, maximums and
other energetic indicators. They are:

• the load energy served in one year;

• the maximum load shedding power;

• the maximum consecutive duration of load shedding;

• the load shedding energy in one year;

• the shedding fraction for the typical year;

• the number of diesel generating set operation hours in one year;

• the diesel generating set’s fuel consumption in one year;

• the number of completed battery cycles in one year;

• the maximum renewables curtailment power, and;

• the renewables rate for the typical year.

The last step, Economics in Fig. 8, is the computation of the economics indicators
and total costs. Using the components lifetime information, it is verified the necessity
of components replacements during the project lifetime. Then it is obtained the present
investment, replacement, operation and maintenance and total costs, and salvage value, for
each component. These costs are also computed for the whole microgrid configuration, as
well as the levelized cost of energy.
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The results from Operation, Aggregation and Economics, are the MG simulator out-
puts. They can be used to graphical creation and analysis, comparison between different
microgrid configuration, sensitivity analysis, or as input for optimization algorithms, as in
this study.

A validation of the developed microgrid simulator is presented in Appendix A.

3.2 Optimization algorithm

The main idea of the proposed methodology is to use a gradient-based algorithm
to solve a simulation based optimization problem, specifically the optimal design of an
islanded microgrid considering its operation. To do so, three elements are required:

1. a microgrid simulator;

2. a gradient-based optimization algorithm, and;

3. a package to evaluate the gradients.

As mentioned before, the development of a MG Simulator was performed to allow the
interface with different packages and optimization algorithms, which is a common practice
when designing optimal microgrids. In this work, the major differences from other studies
are in the 2nd and 3rd elements.

As presented in §2.6, usually this type of problem uses metaheuristic optimization
algorithms instead of gradient-based ones. The expectation of using a gradient-based
algorithm is to improve the optimization process in respect to the convergence, constraints
handling and processing time.

In the 3rd element, an Automatic Differentiation package is used, which is an efficient
way to evaluate the gradients. Thus, no significant losses of the performance improvement
are expected.

Recalling, the microgrid optimal sizing problem is generic described as a nonlinear
constrained optimization problem of the form

min f (x)

s.t. h (x) = 0

g (x) ≤ 0

x ∈ Ω

where x is the vector of optimization variables, f (x) is the objective function, h (x) is
the vector of equality constraints and g (x) is the vector of inequality constraints.

The first step is to initialize the MG Simulator furnishing the Input Data, that are fixed
parameter during the optimization. After, it is provided to the optimization algorithm the
optimization parameters, e.g., if it is a minimization or maximization problem, the stopping
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criteria, which are the decision variables and its bounds, and which are the objective and
constraints functions. These functions can be any output from Aggregation or Economics

MG Simulator steps. The decision variables are from the Sizing Data, and they are chosen
accordingly with the microgrid configuration being optimized.

Figure 9 illustrates the interaction among the three methodology elements. After the
properly initialization described above, the optimization algorithm calls the MG Simulator
and the AD package, and sends them the Sizing Data, here represented by x. The MG
Simulator calculates the objective and the constraints functions for the Sizing values (1b).
The AD package has access to the MG Simulator, and so forth is able to evaluate the
gradients ∇f(x), ∇hi(x) and ∇gi(x). These last two steps can be executed in an arbitrary
order or even in parallel, depending on the implementation of the optimization algorithm.
The optimization algorithm receives all these values and is capable of calculating the step
and obtain the next decision variable vector x. This iterative process continues until the
stopping criteria is satisfied, and then the optimization algorithm returns the optimal point
x⋆, i.e., the optimal microgrid sizing.

3.2.1 Optimization convergence assessment

As mentioned before, the objective and constraints functions need to be smooth for a
gradient-based algorithm work properly. However, the used models implemented in the
MG Simulator introduces discontinuities in the indicators used as these functions.

For this reason, relaxations in the modeling are frequently used to smooth the functions
and improve the correct operation of the gradient-based algorithm. The intensity of this
smoothing establishes a trade-off between the algorithm convergence and model accuracy.
Therefore, the optimization algorithm convergence and the model accuracy need to be
assessed.

Analyzing the microgrid models, the component modeling that seems to interpose
more discontinuity problem is the diesel generating set one. More specifically, due to the
Eq. (43), and that is why a relaxation was proposed in Eq. (46). Therefore, there is an
original microgrid modeling and a relaxed microgrid modeling to be analyzed.

Further, the initial point plays an important role in the convergence of gradient-based
optimization algorithms, especially in non-convex problems because of the existence of
local optimums. Thus, an evaluation for many initial points is also necessary.

The process of convergence assessment for the original modeling and the relaxed
modeling is presented in Fig. 10, where x0 is the initial decision variables vector, x∗ is the
optimal point obtained with the original modeling, x∗

rlx is the optimal point obtained with
the relaxed modeling, f(x∗) is the original modeling’s objective function evaluated at x∗,
frlx(x

∗
rlx) is the relaxed modeling’s objective function evaluated at x∗

rlx, and f(x∗
rlx) is the

original modeling’s objective function evaluated at x∗
rlx.

To evaluate the convergence behavior, N initial points i uniformly distributed in the
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Figure 9 – Fluxogram of the proposed gradient-based+AD algorithm.
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search space, as illustrated in Fig. 10, are tested. For each of these points, the optimization
with the original and relaxed modeling are performed and the results are saved for a
subsequent analysis. The MG Simulator is executed with the original modeling for the
relaxed optimal points x∗

rlx, to obtain the indicators values for the original modeling and
determine the errors associated with the relaxation.

The convergence error for each point i is measured with relative errors. For the
optimizations performed with the original modeling, it is calculated as

δi =
f(x∗

i )− f(x∗)min

f(x∗)min
, (69)

where f(x∗)min is the minimum value between f(x∗
1), . . . , f(x

∗
i ), . . . , f(x

∗
N), and for the
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Figure 10 – Procedure for optimization convergence assessment.
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optimization with the relaxed modeling as

δrlx,i =
frlx(x

∗
rlx,i)− frlx(x

∗
rlx)

min

frlx(x∗
rlx)

min
, (70)

where frlx(x∗
rlx)

min is the minimum value between frlx(x∗
rlx,1), . . . , frlx(x

∗
rlx,i), . . . , frlx(x

∗
rlx,N).

It is not enough a better convergence of the optimization with the relaxed model, i.e.
errors obtained with Eq. (70) lower than the ones obtained with Eq. (69), to prove that the
relaxation improved the microgrid optimization performance. Thus, it is also calculated the
relaxation error associated with the results obtained after the original modeling simulation
with the relaxed optimal values. This error is calculated as

δori→rlx,i =
f(x∗

rlx,i)− fknown(x
∗)min

fknown(x∗)min
, (71)

where fknown(x
∗)min is the minimum value between f(x∗

1), . . . , f(x
∗
i ), . . . , f(x

∗
N) and

f(x∗
rlx,1), . . . , f(x

∗
rlx,i), . . . , f(x

∗
rlx,N).

3.3 Comparison with the Particle Swarm Optimization algorithm

To evaluate the performance of the proposed methodology, it is important to compare
the results with the ones from a well established optimization algorithm. As mentioned
in §2.6, the one of the most used optimization algorithm for the microgrid optimal sizing
problem is the PSO.

In this work, the PSO is implemented as in Algorithm 2, where the fitness value
is calculated with the outputs from the MG Simulator. The fitness function is defined
accordingly with the case study, i.e. it is problem dependent, because it needs to include
the constraints. Thus, it is defined in the next section.

Due to PSO stochastic characteristic, it is necessary to run the optimization many times
and statistically evaluate its convergence. More specifically, the PSO algorithm is run k



48

times. For comparison purposes, the gradient-based+AD algorithm is run for k random
initial values. The performance of each algorithm is evaluated using Eqs. (16), (17), (19),
(20) and (21), and the results are compared for the case studies.
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4 CASE STUDIES

In this section, case studies are established to evaluate the performance of the proposed
methodology in the optimal sizing of a islanded microgrid. The results of the convergence
performance of the proposed gradient-based+AD algorithm are presented, as well as the
PSO results for comparison.

4.1 Microgrid data and considerations

The hourly load and climate data used are from the Ushant Island, located in France.
Although the microgrid optimization is usually performed for representative days of
operation and climate, e.g. averages days from historical data or averages days for different
seasons and load levels, in this work the data is purely the measured ones for year 2016.
This allows a more realistic simulation of the microgrid power dispatch and operation, with
high data diversity. The PV data was obtained with PVGIS-SARAH database (European
Commission Joint Research Centre, 2022), for a 1 kW panel, with a loss of 14%, panel
slope of 40°, and a 0° azimuth.

Figure 11 presents the demand curve used. The peak demand is 1707 kW and occurs
in 27/02/2016 at 22h. The demand is higher in late hours and during the colder months,
November to May, due to the necessity of heating. The photovoltaic production is presented
in Fig. 12, where can be observed a difference in the production capacity between the
summer and winter months. Differently from the photovoltaic power potential, the wind
speed is lower during summer months, as can be seen in Fig. 13, indicating a decrease of
wind power production during this time period. From the photovoltaic and wind speed
behavior, it is expected a complementary production of this energy sources.
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Figure 11 – Demand curve for the Ushant Island.
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Figure 12 – Photovoltaic production of a 1 kW panel for the Ushant Island.
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For the power dispatch, a rule-based strategy was implemented. As microgrids with
dispatchable renewable sources were not studied in this work, the following order applies
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Figure 13 – Wind speed for the Ushant Island.
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for all scenarios:

1. Nondispatchable renewable sources

2. Batteries

3. Diesel generating set

With regard to the battery charging strategy, the load-following, presented in Fig. 6
from §2.4.1, is used. This reduces the diesel genset use, as it will only operate to supply
the load when required.

The technical and economic parameters for the project and each component are pre-
sented in Table 5. As the PV data is already given in kW, with loss and temperature
consideration, it is used the Eq. (23) and no additional loss are considered. The technical
data for the WT are from the wind power ENERCON E-70, which is adapted for sites in
coastal areas with high wind speeds (ENERCON GmbH, 2016) and already used in a case
study for the Ushant Island (Mohammed et al., 2016). The costs are the mean values from
(Lazard, 2020a,b), excepted for the GS, that all parameters are for the medium generator
model from HOMER. The components lifetimes and BT linear loss factor and maximum
cycles are also from (Lazard, 2020a,b).
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Table 5 – Technical and economic parameters.

Parameters Values

Project
Discount rate 5%
Timestep 1 h
Lifetime 25 years

Photovoltaic system

Derating factor 100%
Lifetime 30 years
Investment cost 1400.00 $/kW
O&M cost 14.00 $

kW·year

Wind turbine

Cut-in speed 5 m/s
Cut-out speed 25 m/s
Rated speed 15 m/s
Hub height 85 m
Measurement height 10 m
Power law exponent 0.2
Lifetime 20
Investment cost 1250.00 $/kW
O&M cost 33.25 $

kW·year

Battery

Initial energy 0 kWh
Minimum energy level 0 kWh
Maximum charge power -0.5·Ertd

BT

Maximum discharge power 0.5·Ertd
BT

Linear loss factor 6%
Maximum cycles 5000
Lifetime 10 years
Investment cost 359.50 $/kWh
O&M cost 2.85 $

kW·year

Diesel genset

Minimum load ratio 0
F0 0
F1 0.240
Lifetime 15000 h
Investment cost 400.00 $/kW
O&M cost 0.02 $/(kW·hoper)
Fuel cost 1.00 $/L



53

4.2 Employed tools

The programming language chosen to implement all the methodology of this research
was the Julia language. This allows an appropriate integration between the MG Simulator,
optimization algorithms and automatic differentiation packages. The primarily advantage
of this language is that it is open-source, enabling a more collaborative development of
packages, the language itself, and the research reproduction or continuation. Its just-in-time
(JIT) compilation makes its performance attractive when compared with another scientific
programming languages as Matlab and Python (Bezanson et al., 2012).

The package ForwardDiff.jl was selected between the Automatic Differentiation pack-
ages available for Julia. It is a consolidated one, thus, more tests were performed with
it and less bugs are expected. Further, it has a better performance than the consolidated
back-propagation package ReverseDiff.jl for few input variables (Revels; Pearson, 2016).

The NLopt.jl Julia module was used to perform the gradient-based optimization. It is a
open-source library for nonlinear optimization, in which many algorithms are available,
including gradient-free and gradient-based ones. Among its gradient-based algorithms,
SLSQP is the only one whose supports directly in its formulation equality and inequality
constraints (Johnson, 2007–2020).

The Microgrid Simulator was implemented in Julia following the architecture presented
in §3.1 and the gradient-based+AD algorithm as in §3.2. To compare the results with
the ones from a PSO algorithm, the Metaheuristics.jl package was used (Mejía; Satman;
Monticone, 2022).

The time computation and memory assessment was made with the BenchmarkTools.jl,
which enables to compute the time and memory considering a set number of samples. The
computer used was a notebook with Intel® Core™ i7-9750H CPU and 8,00 GB RAM.

4.3 Case studies definition

The microgrid configuration can be composed of: two nondispatchable renewable
sources, photovoltaic systems (PV) and wind turbines (WT); one non-renewable source,
the diesel generating set (GS); and, one type of storage, the batteries (BT). All four
scenarios have the PV and BT as components to be optimized and two scenarios have
also the WT. All scenarios have the GS component, that has a fixed rated power in two
of them and it is a variable to be optimized in the other two. To evaluate the convergence
behavior of the original modeling and the relaxed one, two cases were tested: one without
GS operation hours relaxation and other with GS operation hours relaxation. The case
studies scenarios are defined as follows:

• Scenario 1: PV + BT + Fixed GS

• Scenario 2: PV + BT + GS
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• Scenario 3: PV + WT + BT + Fixed GS

• Scenario 4: PV + WT + BT + GS

To study the influence of the relaxation factor in the convergence results, the optimiza-
tion was performed with six values for each scenario: 0.01, 0.05, 0.10, 0.25, 0.50 and
0.75.

The parameters used in the PSO were taken from (Javed et al., 2020). They are 100
particles, φ1 and φ2 equal to 2, a constant ϕw with the value of the maximum used by
(Javed et al., 2020), 100 iterations for scenarios 1 and 2, and 50 iterations for scenarios 3
and 4. The fitness function for Scenarios 1 and 3 are equal the objective functions. For
scenarios 2 and 4, the constraint is handled as a penalty function, and the fitness function
is defined as

NPC(·) = NPC(·) + 5 · 107 · pSF , (72)

where pSF is obtained with Eq. (15).
For convergence performance comparison, the PSO algorithm was executed 30 times

and the gradient-based+AD was executed for 30 random initial points. Meanwhile, for the
time computation comparison, the optimization was performed 10 times for each algorithm,
i.e., configuration of 10 samples in the BenchmarkTools.jl.

4.4 Scenario 1: PV + BT + Fixed GS

In this scenario, the optimization variables are the PV rated power P rtd
PV and the BT

rated capacity Ertd
BT . The GS has a fixed rated power P rtd

GS of 1800 kW, a power higher than
the maximum load leading to a zero shedding fraction (SF). Therefore, the optimization
problem is defined as

min NPC
(
P rtd
PV , E

rtd
BT

)
(73a)

s.t. 0 ≤ P rtd
PV ≤ 10000 kW (73b)

0 ≤ Ertd
BT ≤ 10000 kWh. (73c)

The initial points were created with a step of 200 kW for the P rtd
PV and 200 kWh for

the Ertd
BT . This resulted in 2500 initial points, thus 2500 optimization executions with the

gradient-based+AD algorithm.

4.4.1 Without GS relaxation

The relative error δi was computed for NPC optimal value obtained with each of the
2500 initial points. Figure 14 shows the histogram of the relative errors δi. It can be
observed that there is a large occurrence of error between zero and 3%, with a maximum
value of 6.81%. Table 6 also shows the percentiles 0.5, 0.95 and 0.99. These results support
the need of using a relaxation approach to see if the algorithm convergence improves.
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Figure 14 – Histogram of relative errors δi for Scenario 1.

0.0% 2.0% 4.0% 6.0%
Relative error

0

100

200

300

400

500

600
Fr

eq
ue

nc
y

Source: the author.

Table 6 – Minimum, maximum e percentiles 0.5, 0.95 and 0.99, for relative errors δi of
Scenario 1 without GS operation hours relaxation.

Minimum Q(0.5) Q(0.95) Q(0.99) Maximum

0.00% 1.58% 4.53% 5.93% 6.81%

4.4.2 With GS relaxation

Table 7 shows statistical values for the δrlx,i relative errors for the six relaxation factors.
For the two lowest ones, the error decreases compared with the original optimization.
However, the δrlx is still elevated comparing with the others relaxation factors. On the other
hand, for the two highest relaxation factors the δrlx are low, showing that the relaxation
improved the algorithm convergence. Though, the δori→rlx errors, presented in Table 8,
also need to be low. For the relaxation factors 0.50 and 0.75, the δori→rlx are higher in spite
of lower δrlx,i errors, indicating that higher relaxation factors cause the simulation behavior
to diverge from the one of the original model. The best relaxation factor for this scenario
was the ε equal to 0.10, then this value was used for the PSO performance comparison.
The histograms of the relative errors δrlx,i and δori→rlx,i, for all relaxation factors studied,
are presented in §B.1.

4.4.3 Comparison with PSO

Table 9 presents the performance indicators for Scenario 1. The gradient-based+AD
found a NPC of $28,333,848.48 for P rtd

PV equal to 4520.05 kW and Ertd
BT equal to 6553.47 kWh,

and the PSO found a NPC equal to $28,319,969.78 for P rtd
PV equal to 4528.96 kW and Ertd

BT
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Table 7 – Minimum, maximum e percentiles 0.5, 0.95 and 0.99, for relative errors δrlx,i of
Scenario 1 with GS operation hours relaxation.

ε Minimum Q(0.5) Q(0.95) Q(0.99) Maximum

0.01 0.00% 0.07% 2.11% 2.45% 2.89%
0.05 0.00% 0.00% 0.04% 0.16% 2.01%
0.10 0.00% 0.00% 0.02% 0.02% 0.03%
0.25 0.00% 0.00% 0.00% 0.00% 0.00%
0.50 0.00% 0.00% 0.01% 0.01% 0.02%
0.75 0.00% 0.00% 0.00% 0.00% 0.00%

Table 8 – Minimum, maximum e percentiles 0.5, 0.95 and 0.99, for relative errors δori→rlx,i

of Scenario 1 with GS operation hours relaxation.

ε Minimum Q(0.5) Q(0.95) Q(0.99) Maximum

0.01 0.00% 0.09% 2.14% 2.47% 2.91%
0.05 0.01% 0.04% 0.08% 0.21% 2.11%
0.10 0.04% 0.06% 0.09% 0.09% 0.10%
0.25 0.21% 0.23% 0.24% 0.24% 0.25%
0.50 1.52% 1.98% 1.99% 2.00% 2.01%
0.75 3.93% 3.95% 3.96% 3.97% 3.99%

equal to 6651.19 kWh. All indicators had best values for the PSO algorithm, because it
presented the best objective function value. The SD shows the dispersion around the mean
value, indicating that the optimal values obtained with the PSO algorithm are closer to
the mean value than the ones obtained with the gradient-based+AD. The performance
indicators MAE, RLE and RMSE, are related with the dispersion around the minimum
optimal value obtained. Comparing these indicators for the NPCGAD

best and NPCPSO
best , the

PSO algorithm give results 5 times nearer the minimum value obtained than the GB+AD.
However, when calculating these indicators with the minimum optimal value obtained
between the two algorithms, i.e., the minimum value obtained with PSO, the difference
in the dispersion is of almost 18 times. Nevertheless, the mean efficiency result of the
proposed algorithm is close to the PSO one, indicating that its performance is almost as
good as the already established PSO algorithm. Moreover, the difference between the
optimal sizes is not so high if it is considered that the components available in the market
have discrete values.

The time results are summarized in Table 10. The proposed algorithm is at least 43
times faster than the PSO. However, using the median values that have less influence from
the outliers, the speed difference is of almost 300 times.
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Table 9 – Scenario 1 performance indicators for gradient-based+AD and PSO algorithms.

Indicator
Gradient-based+AD PSO

NPCGAD
best NPCboth

best NPCPSO
best NPCboth

best

SD ($) 3708.84 - 672.99 -
MAE ($) 5700.28 19578.98 1193.07 1193.07
MRE (%) 0.020 0.069 0.004 0.004
RMSE ($) 6766.84 19915.65 1364.27 1364.27
ηmean(%) 99.990 99.965 99.998 99.998

Table 10 – Time execution for gradient-based+AD and PSO algorithms.

Time Gradient-based+AD PSO

Minimum 486.586 ms 142.469 s
Median 502.087 ms 149.478 s
Mean 844.279 ms 149.286 s
Maximum 3.527 s 153.408 s

4.5 Scenario 2: PV + BT + GS

In addition to variables optimized in Scenario 1, the GS rated power P rtd
GS is also

optimized. In this case, the shedding fraction (SF) is equal to 100% if a constraint is not
added, because the trivial optimal values for the components size, P rtd

PV , Ertd
BT and P rtd

GS ,
are equal to zero. Therefore, a constraint function for the SF is included, resulting in an
optimization problem defined as

min NPC
(
P rtd
PV , E

rtd
BT , P

rtd
GS

)
(74a)

s.t. SF ≤ 0.10% (74b)

0 ≤ P rtd
PV ≤ 10000 kW (74c)

0 ≤ Ertd
BT ≤ 10000 kWh (74d)

0 ≤ P rtd
GS ≤ 2000 kW. (74e)

The initial points were created with a step of 1000 kW for the P rtd
PV , 1000 kWh for the

Ertd
BT and 200 kW for the P rtd

GS . This resulted in 1000 initial points to be tested. In addition to
the characteristics already analyzed for Scenario 1, it is also verified whether the constraint
is satisfied or not. It is necessary because round-off errors allow SLSQP algorithm to
converge even if constraints are slightly disrespected. For this, it was considered that
0.101% is a tolerable value for the maximum shedding fraction.
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4.5.1 Without GS relaxation

For this scenario, 54.4% of the initial points converged to optimal points that did not
respected the constraint. Moreover, the achieved δi relative errors are unacceptable for an
optimization algorithm. The histogram for the remaining values is presented in Fig. 15,
where can be seen a high frequency between 0 and 5% of relative error. Observing Table
11, 50% of the initial points lead to errors up to 4.29%, but for the other half the errors can
reach up to 37.10%, considering the percentile 0.99.

Figure 15 – Histogram of relative errors δi for Scenario 2.
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Table 11 – Minimum, maximum e percentiles 0.5, 0.95 and 0.99, for relative errors δi of
Scenario 2 without GS operation hours relaxation.

Minimum Q(0.5) Q(0.95) Q(0.99) Maximum

0.00% 4.29% 26.92% 37.10% 43.96%

4.5.2 With GS relaxation

The first step was to eliminate the results that did not respected the constraint. This lead
to the rejections rate of 2.9%, 0.4% and 0.2% for the relaxation factors equal to 0.01, 0.05
and 0.10, respectively. There was no rejection for the other relaxation factors. Therefore,
the GS operation hours relaxation helped with the fulfillment of the constraint.

In Table 12, it can be observed that for half of the relaxation factors the maximum error
have a considerable magnitude, but the expected behavior of decreasing for higher ε values
was preserved. Table 13 presents the relative errors after reinserting the optimal values
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in the original model. Differently from Scenario 1, the relaxation factor that presents the
lowest error is ε equal to 0.25, thus it was used for PSO performance comparison.

The histograms of the relative errors δrlx,i and δori→rlx,i, for all relaxation factors
studied, are presented in §B.2.

Table 12 – Minimum, maximum e percentiles 0.5, 0.95 and 0.99, for relative errors δrlx,i
of Scenario 2 with GS operation hours relaxation.

ε Minimum Q(0.5) Q(0.95) Q(0.99) Maximum

0.01 0.00% 0.19% 1.17% 5.41% 30.64%
0.05 0.00% 0.01% 0.92% 1.12% 13.67%
0.10 0.00% 0.00% 0.91% 0.91% 7.62%
0.25 0.00% 0.00% 0.00% 0.00% 0.77%
0.50 0.00% 0.00% 0.01% 0.01% 0.15%
0.75 0.00% 0.00% 0.00% 0.00% 0.00%

Table 13 – Minimum, maximum e percentiles 0.5, 0.95 and 0.99, for relative errors
δori→rlx,i of Scenario 2 with GS operation hours relaxation.

ε Minimum Q(0.5) Q(0.95) Q(0.99) Maximum

0.01 0.00% 0.20% 1.18% 5.43% 30.61%
0.05 0.00% 0.04% 1.00% 1.18% 13.61%
0.10 0.00% 0.05% 1.01% 1.02% 7.59%
0.25 0.00% 0.03% 0.05% 0.05% 1.00%
0.50 0.47% 0.93% 0.94% 0.94% 1.20%
0.75 1.70% 1.81% 1.81% 1.82% 1.85%

4.5.3 Comparison with PSO

The 30 optimal results obtained with the gradient-based+AD satisfied the constraint,
and the best NPC value found was $27,236,455.38 for P rtd

PV equal to 4289.92 kW, Ertd
BT

equal to 6036.31 kWh and P rtd
GS equal to 1439.95 kW. The PSO found a NPC equal to

$27,213,977.84 for P rtd
PV equal to 4386.42 kW, Ertd

BT equal to 6317.49 kWh and P rtd
GS equal to

1439.02 kW. Table 14 presents the performance indicators for Scenario 2. The SD is lower
for the gradient-based+AD, indicating that the range of solutions was less dispersed around
the mean when using this algorithm. The performance indicators MAE, MRE, RMSE and
ηmean, have the same order of magnitude when analyzing the results of NPCGAD

best and
NPCPSO

best columns from Table 14. However, when comparing the results from the columns
NPCboth

best , the PSO presented lower values for the MAE, MRE and ηmean performance
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indicators. That occurred because the minimum value was obtained with the PSO algorithm
and the dispersion from the best individual optimal is closer for both algorithms.

Table 14 – Scenario 2 performance indicators for gradient-based+AD and PSO algorithms.

Indicator
Gradient-based+AD PSO

NPCGAD
best NPCboth

best NPCPSO
best NPCboth

best

SD ($) 2213.30 - 3501.20 -
MAE ($) 4103.63 26581.17 4028.55 4028.55
MRE (%) 0.015 0.098 0.015 0.015
RMSE ($) 4644.90 26670.09 5298.96 5298.96
ηmean(%) 99.992 99.951 99.993 99.993

The processing times are summarized in Table 15. Comparing with Scenario 1, the
addition of one variable almost doubled the computation time. The proposed algorithm is
at least 57 times faster than the PSO, but using the median values the difference is bigger
than 340 times.

Table 15 – Time execution for gradient-based+AD and PSO algorithms.

Time Gradient-based+AD PSO

Minimum 858.372 ms 290.039 s
Median 869.996 ms 297.087 s
Mean 1.394 s 297.163 s
Maximum 5.313 s 303.236 s

4.6 Scenario 3: PV + WT + BT + Fixed GS

In this scenario, the optimization variables are the PV rated power P rtd
PV , WT rated

power P rtd
PV , and the BT rated capacity Ertd

BT . As in Scenario 1, the GS has a fixed rated
power P rtd

GS of 1800 kW. Therefore, the optimization problem does not have a constraint
for SF, and it is defined as

min NPC
(
P rtd
PV , P

rtd
WT , E

rtd
BT

)
(75a)

s.t. 0 ≤ P rtd
PV ≤ 10000 kW (75b)

0 ≤ P rtd
WT ≤ 10000 kW (75c)

0 ≤ Ertd
BT ≤ 10000 kWh. (75d)

The initial points were created with a step of 1000 kW for the P rtd
PV and P rtd

WT , and
1000 kWh for the Ertd

BT , resulting in 1000 initial points.
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4.6.1 Without GS relaxation

The histogram for the δi errors for the optimization without GS operation hours
relaxation is presented in Fig. 16. The histogram form differ from Scenario 1, the other one
without GS Power Rated optimization, with the highest frequency happening around 3%
and not 0%. Table 16 presents some statistical results for these errors. The maximum value
was 12.49%, higher than the one for Scenario 1. However, the percentile 0.99 indicates
that only 10 initial points converged to optimal values with a error higher than 7.41%.

Figure 16 – Histogram of relative errors δi for Scenario 3.
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Table 16 – Minimum, maximum e percentiles 0.5, 0.95 and 0.99, for relative errors δi of
Scenario 3 without GS operation hours relaxation.

Minimum Q(0.5) Q(0.95) Q(0.99) Maximum

0.00% 3.01% 5.81% 7.41% 12.49%

4.6.2 With GS relaxation

For the optimization with MG model with GS operation hours relaxation, the results of
δrlx,i and δrlx→ori,i are presented in Table 17 and 18, respectively. As expected for the δrlx,i
relative errors, its values decrease for higher relaxation factors values. The δrlx,i behavior
was the same of the previous scenarios, higher values for the extreme tested relaxation
factors. As in the Scenario 1, the lowest errors were obtained for a relaxation factor ε equal
to 0.10, and it was used for the comparison performance with PSO. The histograms of the
relative errors δrlx,i and δori→rlx,i, for all relaxation factors studied, are presented in §B.3.
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Table 17 – Minimum, maximum e percentiles 0.5, 0.95 and 0.99, for relative errors δrlx,i
of Scenario 3 with GS operation hours relaxation.

ε Minimum Q(0.5) Q(0.95) Q(0.99) Maximum

0.01 0.00% 0.16% 1.46% 2.38% 4.73%
0.05 0.00% 0.01% 0.17% 0.18% 0.21%
0.10 0.00% 0.00% 0.02% 0.02% 0.07%
0.25 0.00% 0.00% 0.00% 0.00% 0.00%
0.50 0.00% 0.00% 0.00% 0.00% 0.00%
0.75 0.00% 0.00% 0.00% 0.00% 0.00%

Table 18 – Minimum, maximum e percentiles 0.5, 0.95 and 0.99, for relative errors
δori→rlx,i of Scenario 3 with GS operation hours relaxation.

ε Minimum Q(0.5) Q(0.95) Q(0.99) Maximum

0.01 0.00% 0.18% 1.48% 2.43% 4.71%
0.05 0.01% 0.07% 0.19% 0.28% 0.30%
0.10 0.01% 0.05% 0.09% 0.10% 0.15%
0.25 0.21% 0.25% 0.27% 0.27% 0.30%
0.50 1.62% 1.73% 1.76% 1.77% 1.79%
0.75 3.82% 3.89% 3.92% 3.96% 3.98%

4.6.3 Comparison with PSO

Table 19 presents the performance indicators for Scenario 3. The gradient-based+AD
found a NPC of $15,852,508.66 for P rtd

PV equal to 1456.26 kW, P rtd
WT equal to 1847.91 kW

and Ertd
BT equal to 1980.42 kWh, and the PSO found a NPC equal to $15,850,249.73 for

P rtd
PV equal to 1514.87 kW, P rtd

WT equal to 1835.88 kW and Ertd
BT equal to 2188.71 kWh. Just

like in the previous scenarios, the PSO algorithm found the best objective function value
and, as in Scenario 1, all indicators had best values for the PSO. That indicates the results
obtained with the gradient-based+AD algorithm are more disperse around the mean and
the best value than the results obtained with the PSO. However, the difference between the
indicators decreased from 5 and 18 times, achieved in Scenario 1, to approximately 3 times
in this scenario. Moreover, the mean efficiency ηmean result of the proposed algorithm is
still close to the PSO one.

The processing times are summarized in Table 20. The proposed algorithm is at least 13
times faster than the PSO. However, the difference is of almost 50 times, if it is considered
the median time. It is worth remembering that the maximum number of iterations was
reduced from 100 to 50 for this scenario and the next. This caused a lower difference
between the proposed algorithm and PSO, both in terms of convergence performance and



63

Table 19 – Scenario 3 performance indicators for gradient-based+AD and PSO algorithms.

Indicator
Gradient-based+AD PSO

NPCGAD
best NPCboth

best NPCPSO
best NPCboth

best

SD ($) 3896.52 - 1511.82 -
MAE ($) 7096.68 9355.61 3472.79 3472.79
MRE (%) 0.045 0.059 0.022 0.022
RMSE ($) 8064.72 10109.61 3777.52 3777.52
ηmean(%) 99.978 99.971 99.989 99.9890

time computation.

Table 20 – Time execution for gradient-based+AD and PSO algorithms.

Time Gradient-based+AD PSO

Minimum 1.661 s 80.337 s
Median 1.684 s 83.984 s
Mean 2.163 s 83.921 s
Maximum 6.496 s 86.452 s

4.7 Scenario 4: PV + WT + BT + GS

This last scenario optimizes the size of all modeled components, i.e. PV, WT, BT and
GS. As in Scenario 2, it was included a constraint for the shedding fraction (SF), resulting
in an optimization problem defined as

min NPC
(
P rtd
PV , P

rtd
WT , E

rtd
BT , P

rtd
GS

)
(76a)

s.t. SF ≤ 0.10% (76b)

0 ≤ P rtd
PV ≤ 10000 kW (76c)

0 ≤ P rtd
WT ≤ 10000 kW (76d)

0 ≤ Ertd
BT ≤ 10000 kWh (76e)

0 ≤ P rtd
GS ≤ 2000 kW. (76f)

The initial points were created with a step of 1250 kW for the P rtd
PV and P rtd

WT , 1250 kWh
for the Ertd

BT and 500 kW for the P rtd
GS , resulting in 2048 initial points.

4.7.1 Without GS relaxation

For this scenario, 28.2% of the initial points converged to optimal points that did not
respected the constraint, a lower percentage compared to the Scenario 2. However, the
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relative errors are even higher than for Scenario 2, which can be seen in the Fig. 17 and
Table 21. Even for percentile 0.50 the errors reach up to 14.51% and the maximum value
is 179.87%.

Figure 17 – Histogram of relative errors δi for Scenario 4.
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Table 21 – Minimum, maximum e percentiles 0.5, 0.95 and 0.99, for relative errors δi of
Scenario 4 without GS operation hours relaxation.

Minimum Q(0.5) Q(0.95) Q(0.99) Maximum

0.00% 14.51% 122.81% 151.49% 179.87%

4.7.2 With GS relaxation

With GS operation hours relaxation, the percentages of results rejection were 0.6%
and 0.05% for the relaxation factors 0.01 and 0.05, respectively. The relative errors δrlx,i
presented a similar behavior with the others scenarios, apart from the relaxation factor ε
equal to 0.75. This can be observed in Table 22.

The relative errors δori→rlx,i are presented in Table 23. For this scenario there was
not a relaxation factor with the lowest value for all statistical indicators considered. The
relaxation factor equal to 0.25 presented the lowest values for the minimum and percentiles
0.5, 0.95 and 0.99, and the ε equal to 0.50 presented the lowest maximum value. As the
percentile 0.99 represents a major part of the potential errors, the relaxation factor ε equal
to 0.25 was chosen to be used in the PSO comparison.
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The histograms of the relative errors δrlx,i and δori→rlx,i, for all relaxation factors
studied, are presented in §B.4.

Table 22 – Minimum, maximum e percentiles 0.5, 0.95 and 0.99, for relative errors δrlx,i
of Scenario 4 with GS operation hours relaxation.

ε Minimum Q(0.5) Q(0.95) Q(0.99) Maximum

0.01 0.00% 0.12% 0.62% 3.67% 149.95%
0.05 0.00% 0.01% 0.10% 0.15% 142.01%
0.10 0.00% 0.00% 0.01% 0.07% 80.43%
0.25 0.00% 0.00% 0.00% 0.01% 3.80%
0.50 0.00% 0.00% 0.00% 0.00% 0.01%
0.75 0.00% 0.00% 0.00% 0.00% 114.95%

Table 23 – Minimum, maximum e percentiles 0.5, 0.95 and 0.99, for relative errors
δori→rlx,i of Scenario 4 with GS operation hours relaxation.

ε Minimum Q(0.5) Q(0.95) Q(0.99) Maximum

0.01 0.00% 0.13% 0.63% 3.70% 149.87%
0.05 0.00% 0.08% 0.13% 0.20% 141.22%
0.10 0.00% 0.06% 0.11% 0.12% 79.32%
0.25 0.00% 0.06% 0.08% 0.11% 3.06%
0.50 0.63% 0.79% 0.80% 0.80% 0.90%
0.75 1.56% 1.76% 1.80% 1.84% 97.85%

4.7.3 Comparison with PSO

The convergence performance indicators are presented in Table 24. The gradient-
based+AD found a NPC of $14,894,669.36 for P rtd

PV equal to 1226.17 kW, P rtd
WT equal to

1831.37 kW, Ertd
BT equal to 1181.60 kWh and P rtd

GS equal to 1330.54 kW, and the PSO found
a NPC equal to $14,894,193.34 for P rtd

PV equal to 1352.20 kW, P rtd
WT equal to 1807.44 kW,

Ertd
BT equal to 1657.58 kWh and P rtd

GS equal to 1334.89 kW. Again, the PSO found the best
objective function value. Nevertheless, the best indicator values were obtained for the
proposed algorithm. This is due to the closeness of the best objective function values and
less dispersed results for the proposed algorithm. In other words, the PSO found the lower
NPC, but for most of the 30 executions, the values found were further away the optimum
than the ones obtained with the gradient-based+AD algorithm.

The time results are summarized in Table 25. The proposed algorithm is at least
43 times faster than the PSO. However, using the median values the computation time
difference can reach almost 78 times.
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Table 24 – Scenario 4 performance indicators for gradient-based+AD and PSO algorithms.

Indicator
Gradient-based+AD PSO

NPCGAD
best NPCboth

best NPCPSO
best NPCboth

best

SD ($) 4011.89 - 77163.94 -
MAE ($) 5368.21 14575.90 29627.65 29627.65
MRE 0.036 0.098 0.199 0.199
RMSE ($) 6661.56 15100.19 81446.89 81446.89
ηmean(%) 99.982 99.951 99.902 99.902

Table 25 – Time execution for gradient-based+AD and PSO algorithms.

Time Gradient-based+AD PSO

Minimum 2.201 s 171.679 s
Median 2.239 s 174.567 s
Mean 2.815 s 175.773 s
Maximum 6.888 s 182.856 s

4.8 Microgrid’s optimal sizing and operation analysis

The optimal results are presented in Table 26. Recalling, in scenarios 1 and 3 there is an
diesel generating set with a fixed P rtd

GS equal to 1800 kW. It can be observed that the biggest
absolute differences in the optimization variables, obtained with the gradient-based+AD
(GB+AD) and PSO, happened for the P rtd

PV and Ertd
BT . This suggests that a relaxation in the

PV and BT models may be necessary to reduce that difference. As mentioned before, the
differences between the objective values are not so significant when thinking in terms of
components available in the market. This can be also concluded from the observation in
Table 27 of the levelized cost of energy (COE), for which a deviation between the indicator
values is presented only for Scenario 2 and is of 0.4%. Some energetic indicators are
also presented in Table 27. They are the renewable fraction (RF), shedding factor (SF),
maximum load shedding power Pmax

shed and the maximum consecutive duration of load
shedding Tmax

shed .

If Scenarios 1 and 2 (MG with PV, BT and GS) are compared with Scenarios 3 and 4
(MG with PV, WT, BT and GS), the NPC, COE and RF are very different. For the scenarios
with the addition of WT as renewable source, the values of the economic indicators, NPC
and COE, are reduced by almost half, and the value of RF had an absolute increase around
of 25%. Therefore, it is important to choose the resources that are appropriate for the
location’s climate, both in terms of economic and environmental efficacy.
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Table 26 – Comparison of the obtained optimal results.

Scenario Algorithm P ini
PV P ini

WT Eini
BT P ini

GS P opt
PV P opt

WT Eopt
BT P opt

GS NPC

Scenario 1
GB+AD 3531 - 6549 - 4520 - 6553 - $ 28,333,848.48

PSO - - - - 4529 - 6651 - $ 28,319,969.78

Scenario 2
GB+AD 1357 - 7913 1193 4290 - 6036 1440 $ 27,236,455.38

PSO - - - - 4386 - 6317 1439 $ 27,213,977.84

Scenario 3
GB+AD 1773 7228 8423 - 1456 1848 1980 - $ 15,852,508.66

PSO - - - - 1515 1836 2189 - $ 15,850,249.73

Scenario 4
GB+AD 2035 7671 9389 432 1226 1831 1182 1331 $ 14,894,669.36

PSO - - - - 1352 1807 1658 1335 $ 14,894,193.34

Table 27 – Comparison of economic and energetic indicators obtained with the optimal
results.

Scenario Algorithm COE RF SF Pmax
shed Tmax

shed

Scenario 1
GB+AD 0.297 $/kWh 50.00% 0.00% 0 kW 0 h

PSO 0.297 $/kWh 50.19% 0.00% 0 kW 0 h

Scenario 2
GB+AD 0.286 $/kWh 48.09% 0.10% 267 kW 6 h

PSO 0.285 $/kWh 49.04% 0.10% 268 kW 6 h

Scenario 3
GB+AD 0.166 $/kWh 77.57% 0.00% 0 kW 0 h

PSO 0.166 $/kWh 78.12% 0.00% 0 kW 0 h

Scenario 4
GB+AD 0.156 $/kWh 75.07% 0.10% 361 kW 9 h

PSO 0.156 $/kWh 76.41% 0.10% 357 kW 9 h
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The electrical generation mixes for Scenario 2 and 4 are showed in Figures 18 and
19, respectively. The demand supplied by PV and WT sources are represented by their
sum, Renewable in the figures. It is important to remember that the BT is charged only by
renewable sources. Moreover, the load shedding Pshed is also presented to show when the
load was unmet by the system. The hourly simulation results were aggregated for each day
to reduce the data noise and improve the visualization of the mixes of the entire year.

It can be observed in Figure 18 that the GS is responsible for the major part of
demand supply in the colder months, i.e., November to May. During the other months, PV
production increases and the demand is supplied mainly by it and the energy storage in
the BT. There are some days where the demand is not completely met and the duration of
these load shedding can reach until 6 continuous hours (see Table 27).

Figure 18 – Daily electrical generation mix for Scenario 2.
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For Scenario 4, presented in Figure 19, the electrical mix is different from the one
presented for Scenario 2. The generation pattern is similar for all months, with a high
participation of the renewable sources (PV and WT), with the exception of some days that
the climate conditions were not favorable. The consecutive duration of load shedding is 9
hours and absolute value of Pshed is lower between February and April than for Scenario 2,
but higher in late December.

Another difference from the previous scenario is in the battery use. As the PV is the
only renewable source in Scenario 2 and its production is not simultaneous with the peak
demand, the power and capacity of PV and BT, respectively, are almost 3 times greater
than the ones of Scenario 4 results (see Table 26). The addition of WT in Scenario 4
reduces the need of PV and BT, because its production is more uniform over the year.
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Figure 19 – Daily electrical generation mix for Scenario 4.
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In addition of the power presented in Figures 18 and 19, the following figures also
show the hourly renewable curtailment Pcurt and the battery charging for some chosen
days. Figures 20 and 21 present the operation for the week from 21st February to 27th
February. For Scenario 2, it is possible to observe that the PV production is low for most
days, with a power surplus only in a few days. This surplus is entirely used to recharge the
battery, which is discharged as soon as the PV stops to produce to avoid the GS operation.
Also, there is no renewable curtailment and the load shedding occurs only in two days.

Figure 20 – Hourly dispatch for week from 21st February to 27th February for Scenario 2.
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With Scenario 4 simulation results for this same week, the renewable production is
higher, then the renewable curtailment is present. The battery participation is not so
significant because it can store less energy and deliver less power than the one sized in
Scenario 2. Despite these difference, during only one day the load was unmet with the
Scenario 4 configuration.

Figure 21 – Hourly dispatch for week from 21st February to 27th February for Scenario 4.
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The simulation results for a week during summer (11th to 17th September) are also
presented, in Figures 22 and 23, to show the seasonal effects on the microgrid operation.
The first difference is that there are not load shedding in none of the presented scenarios
and the second is that the renewable curtailment is also present in Scenario 2. In Figure 22,
the microgrid operation is presented for Scenario 2. There are four days in which the BT
can supply almost the entire demand from the night beginning to the early morning.

During this week for Scenario 4,the renewable curtailment is more present than during
the winter week (Figure 22). Also, the BT is more requested to supply the load during
peak hours. Even with a high renewable production, the genset still needs to operate. Add
the Pcurt to the optimization problem can reduce its value by reducing its installed power
or augmenting the BT storage capacity. The optimal solution between these two is the one
with lowest cost that respect the constraints, but a higher BT storage capacity can reduce
the use of the GS.



71

Figure 22 – Hourly dispatch for week from 11th September to 17th September for Scenario
2.
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Figure 23 – Hourly dispatch for week from 11th September to 17th September for Scenario
4.
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4.9 Results summary

This section presents the summary of the obtained results. Figure 24 presents the
boxplot of the relative errors δrlx,i and Fig. 25 of δori→rlx,i, for all studied scenarios with
the best relaxation factors ε. In this kind of graph, the base of the box is the first quartile
(Q1) and the top the third quartile (Q3). The orange line is the median, also known as
the second quartile (Q2). The difference between Q1 and Q3 is the interquartile range
(IQR), and it is used to determine the minimum as Q1− 1.5 · IQR and the maximum as
Q3 + 1.5 · IQR, which are the whiskers of the boxplot. Values outside the range between
minimum and maximum are considered outliers and are not shown in the graph.

Both errors, δrlx,i and δori→rlx,i, presents low values, implying that the relaxation re-
duced the discontinuities and allowed a better convergence of the gradient-based algorithm.
Further, having low δori→rlx,i indicates that the relaxation made in the GS operation hours
is a good approximation of the original modeling, for the presented relaxation factors ε.
However, the best relaxation factor ε was not the same for all scenarios, suggesting that a
tuning of this parameter is essential. This is a concern already presented in metaheuristic
algorithms, in which many parameters need to be tuned, e.g., three parameters for PSO
(the inertia weight and the individual and social intelligence constants).

Figure 24 – Boxplot of the relative errors δrlx,i for the 4 scenarios with the best relaxations
factors ε.
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Table 28 presents the median execution time for all studied scenarios. It can be observed
an expressive difference between the times for the gradient-based+AD and the PSO. It is
noteworthy to mention the scenarios 3 and 4 presented lower execution time than scenarios
1 and 2 for PSO, because the number of iterations was reduced from 100 to 50. Following
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Figure 25 – Boxplot of the relative errors δori→rlx,i for the 4 scenarios with the best
relaxations factors ε.
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the time tendency of the first two scenarios, Scenario 4 would present an execution time in
the order of 600 s with 100 iterations.

Table 28 – Comparison of median execution time for all scenarios with gradient-based+AD
and PSO algorithms.

Gradient-based+AD PSO

Scenario 1 502.087 ms 149.478 s
Scenario 2 869.996 ms 297.087 s
Scenario 3 1.684 s 83.984 s
Scenario 4 2.239 s 174.567 s

Considering all the presented results, the proposed methodology is suitable to solve the
islanded microgrid optimal sizing problem. Optimal values are reached for low execution
times, and the results are in the same magnitude order of those obtained with the well
established PSO algorithm. Therefore the gradient-based+AD approach is a better choice
when many scenarios and cases need to be tested. Another application is when the problem
is modeled as a multi-objective optimization problem, and multi-objective algorithms that
evaluate multiple times a single-objective function are used to solve it, i.e., ε-constrained
algorithm.
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5 CONCLUSION

This work proposed a methodology to obtain the optimal components sizing for a
islanded microgrid. The approach consists of the combined use of a Microgrid Simulator, a
gradient-based optimization algorithm and the Automatic Differentiation method to obtain
the gradients.

First, the MG Simulator was developed, comprising various indicators that can be used
as functions for the optimization problem. Further, case studies were carried for an isolated
location, the french Ushant Island. The performance of the proposed method was analyzed
for four different scenarios, using the NPC as objective function and the shedding factor
(SF) as constraint when needed.

For all of them, the optimization with the original modeling presented high errors.
However, the proposed relaxation of the diesel genset operation hours was sufficient to
reduce the model discontinuities and improve the convergence performance. The mean
efficiency of the proposed algorithm has the same order of magnitude than the PSO, one of
the most used metaheuristic algorithms for this kind of problem.

The computation time for the proposed algorithm is much lower than that of PSO,
enabling a faster tuning of the gradient-based+AD algorithm parameter ε than the tuning
of PSO parameters. The proximity of the optimal results attained with the two algorithms
is enough to recommend the use of the gradient-based+AD algorithm, specially when
there are more variables in the optimization problem or many different cases need to be
considered. Further, the simulation time of the microgrid’s operation is very low with the
developed MG Simulator, allowing to quickly perform sensitivity analysis of the optimal
result for various parameters.

The results suggest that it is possible to use gradient-based algorithms to solve the
microgrid sizing problem. However, proper relaxations in the models need to be made to
reduce the discontinuities.
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5.1 Future works

Based on the analysis of the obtained results in this work, the following topics are
proposed for further research and exploration:

• add other electric resources models in the Microgrid Simulator;

• change the modeling approach from single-node to multi-node, including the power
flow equations;

• use the proposed methodology with the ε-constrained algorithm to solve a multi-
objective optimization problem;

• assess the methodology performance with other gradient-based optimization algo-
rithms, e.g. IPOPT;

• implement a hybrid algorithm with gradient-based+AD and a multi-start optimization
algorithm.

5.2 Derivative works

The following works were developed as a result of the presented research:

• Publication – Under Review

(Antunes et al., 2022) Conference article for the IEEE PES ISGT Europe 2022

• Julia Package

(Antunes; Sadou; Haessig, 2021) Microgrids.jl - Microgrid simulation package in
Julia language
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APPENDIX A MICROGRID SIMULATOR VALIDATION

A validation of the developed microgrid simulator was realized. The simulation was
performed for a microgrid composed of PV (4063 kW), BT (6744 kWh) and GS (900 kW).
The load demand and photovoltaic production were the same from the §4.1, Figures 11
and 12, respectively, and the other parameters are presented in Table 29.

Some indicators values obtained with the MG Simulator were compared with the ones
obtained with the HOMER software. They are presented in Table 30 with the deviations,
calculated as

D =
IMG Simulator − IHOMER

IHOMER
. (77)

It can be observed that the highest difference is 9% for the NPC values. The deviations
are probably caused by some modeling differences, as the battery model and the dispatch
strategy, which is optimal in HOMER and not rule-based as in the MG Simulator. However,
the indicators are all in the same order of magnitude, validating the developed simulator.
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Table 29 – Technical and economic parameters used for microgrid simulator validation.

Parameters Values

Project
Discount rate 5%
Timestep 1 h
Lifetime 25 years

Photovoltaic system

Rated power 4063 kW
Derating factor 100%
Lifetime 25 years
Investment cost 1200.00 $/kW
O&M cost 20.00 $

kW·year

Battery

Rated capacity 6744 kWh
Initial energy 6744 kWh
Minimum energy level 0 kWh
Maximum charge power -Ertd

BT

Maximum discharge power Ertd
BT

Linear loss factor 5%
Maximum cycles 3000
Lifetime 15 years
Investment cost 350.00 $/kWh
O&M cost 10.00 $

kW·year

Diesel genset

Power rated 900 kW
Minimum load ratio 0
F0 0
F1 0.240
Lifetime 15000 h
Investment cost 400.00 $/kW
O&M cost 0.02 $/(kW·hoper)
Fuel cost 1.00 $/L
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Table 30 – Comparison of indicators values obtained with the developed microgrid simula-
tor and the HOMER software.

Indicator MG Simulator HOMER Deviation

NPC $ 25,920,253.01 $ 23,879,010.00 9%
COE 0.273 $/kWh 0.263 $/kWh 3%
htot,year
GS 4409 h 4514 h -2%

SF 5.14% 5.07% 2%
RF 50.88% 50.54% 1%
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APPENDIX B RELATIVE ERRORS HISTOGRAMS

B.1 Scenario 1

Figure 26 – Histogram of relative errors δrlx,i for Scenario 1 with relaxation factor ε equal
to 0.01.

0.00% 1.00% 2.00% 3.00%
Relative error

100

101

102

103

Fr
eq

ue
nc

y

Source: the author.



83

Figure 27 – Histogram of relative errors δori→rlx,i for Scenario 1 with relaxation factor ε
equal to 0.01.
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Figure 28 – Histogram of relative errors δrlx,i for Scenario 1 with relaxation factor ε equal
to 0.05.
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Figure 29 – Histogram of relative errors δori→rlx,i for Scenario 1 with relaxation factor ε
equal to 0.05.
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Figure 30 – Histogram of relative errors δrlx,i for Scenario 1 with relaxation factor ε equal
to 0.10.
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Figure 31 – Histogram of relative errors δori→rlx,i for Scenario 1 with relaxation factor ε
equal to 0.10.
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Figure 32 – Histogram of relative errors δrlx,i for Scenario 1 with relaxation factor ε equal
to 0.25.
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Figure 33 – Histogram of relative errors δori→rlx,i for Scenario 1 with relaxation factor ε
equal to 0.25.
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Figure 34 – Histogram of relative errors δrlx,i for Scenario 1 with relaxation factor ε equal
to 0.50.
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Figure 35 – Histogram of relative errors δori→rlx,i for Scenario 1 with relaxation factor ε
equal to 0.50.
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Figure 36 – Histogram of relative errors δrlx,i for Scenario 1 with relaxation factor ε equal
to 0.75.
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Figure 37 – Histogram of relative errors δori→rlx,i for Scenario 1 with relaxation factor ε
equal to 0.75.
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B.2 Scenario 2

Figure 38 – Histogram of relative errors δrlx,i for Scenario 2 with relaxation factor ε equal
to 0.01.
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Source: the author.

Figure 39 – Histogram of relative errors δori→rlx,i for Scenario 2 with relaxation factor ε
equal to 0.01.
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Figure 40 – Histogram of relative errors δrlx,i for Scenario 2 with relaxation factor ε equal
to 0.05.
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Figure 41 – Histogram of relative errors δori→rlx,i for Scenario 2 with relaxation factor ε
equal to 0.05.
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Figure 42 – Histogram of relative errors δrlx,i for Scenario 2 with relaxation factor ε equal
to 0.10.
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Figure 43 – Histogram of relative errors δori→rlx,i for Scenario 2 with relaxation factor ε
equal to 0.10.
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Figure 44 – Histogram of relative errors δrlx,i for Scenario 2 with relaxation factor ε equal
to 0.25.
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Figure 45 – Histogram of relative errors δori→rlx,i for Scenario 2 with relaxation factor ε
equal to 0.25.
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Figure 46 – Histogram of relative errors δrlx,i for Scenario 2 with relaxation factor ε equal
to 0.50.
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Figure 47 – Histogram of relative errors δori→rlx,i for Scenario 2 with relaxation factor ε
equal to 0.50.
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Figure 48 – Histogram of relative errors δrlx,i for Scenario 2 with relaxation factor ε equal
to 0.75.
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Figure 49 – Histogram of relative errors δori→rlx,i for Scenario 2 with relaxation factor ε
equal to 0.75.
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B.3 Scenario 3

Figure 50 – Histogram of relative errors δrlx,i for Scenario 3 with relaxation factor ε equal
to 0.01.
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Figure 51 – Histogram of relative errors δori→rlx,i for Scenario 3 with relaxation factor ε
equal to 0.01.
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Figure 52 – Histogram of relative errors δrlx,i for Scenario 3 with relaxation factor ε equal
to 0.05.
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Figure 53 – Histogram of relative errors δori→rlx,i for Scenario 3 with relaxation factor ε
equal to 0.05.
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Figure 54 – Histogram of relative errors δrlx,i for Scenario 3 with relaxation factor ε equal
to 0.10.
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Figure 55 – Histogram of relative errors δori→rlx,i for Scenario 3 with relaxation factor ε
equal to 0.10.
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Figure 56 – Histogram of relative errors δrlx,i for Scenario 3 with relaxation factor ε equal
to 0.25.
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Figure 57 – Histogram of relative errors δori→rlx,i for Scenario 3 with relaxation factor ε
equal to 0.25.
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Figure 58 – Histogram of relative errors δrlx,i for Scenario 3 with relaxation factor ε equal
to 0.50.
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Figure 59 – Histogram of relative errors δori→rlx,i for Scenario 3 with relaxation factor ε
equal to 0.50.
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Figure 60 – Histogram of relative errors δrlx,i for Scenario 3 with relaxation factor ε equal
to 0.75.
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Figure 61 – Histogram of relative errors δori→rlx,i for Scenario 3 with relaxation factor ε
equal to 0.75.
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B.4 Scenario 4

Figure 62 – Histogram of relative errors δrlx,i for Scenario 4 with relaxation factor ε equal
to 0.01.
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Figure 63 – Histogram of relative errors δori→rlx,i for Scenario 4 with relaxation factor ε
equal to 0.01.
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102

Figure 64 – Histogram of relative errors δrlx,i for Scenario 4 with relaxation factor ε equal
to 0.05.
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Figure 65 – Histogram of relative errors δori→rlx,i for Scenario 4 with relaxation factor ε
equal to 0.05.
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Figure 66 – Histogram of relative errors δrlx,i for Scenario 4 with relaxation factor ε equal
to 0.10.
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Figure 67 – Histogram of relative errors δori→rlx,i for Scenario 4 with relaxation factor ε
equal to 0.10.
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Figure 68 – Histogram of relative errors δrlx,i for Scenario 4 with relaxation factor ε equal
to 0.25.
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Figure 69 – Histogram of relative errors δori→rlx,i for Scenario 4 with relaxation factor ε
equal to 0.25.
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Figure 70 – Histogram of relative errors δrlx,i for Scenario 4 with relaxation factor ε equal
to 0.50.
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Figure 71 – Histogram of relative errors δori→rlx,i for Scenario 4 with relaxation factor ε
equal to 0.50.
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Figure 72 – Histogram of relative errors δrlx,i for Scenario 4 with relaxation factor ε equal
to 0.75.
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Figure 73 – Histogram of relative errors δori→rlx,i for Scenario 4 with relaxation factor ε
equal to 0.75.
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