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An implementation of the LHAR-CJ model with
functional coefficients

Leonardo Gabriel da Paza,∗, Eduardo Hortaa

aUniversidade Federal do Rio Grande do Sul, Department of Statistics, 9500 Bento
Gonçalves Av., 43–111, Porto Alegre, RS, Brazil 91509-900.

Abstract

This article aims to compare the forecast performance of the LHAR-CJ model,

proposed in Corsi and Renò (2012) and a LHAR-CJ model with functional co-

efficients for a Vale return series. This new model, instead of estimating fixed

coefficients for each variable in the autoregressive model, estimates a functional

coefficient that is state dependent, where the state is represented by the lagged

realized volatility. In other words, the coefficients are functions of the states

of the response variable. We found out that, for this data, the functional co-

efficients model has a better forecast performance with the right smoothness

parameter.

Keywords: realized volatility, volatility forecasting, continuous volatility,

functional coefficients, leverage effect, jumps

1. Introduction

The relevance of the financial market has increased over the years, but its

relevance comes with its complexity. Many articles and new models has been

published trying to supply the demand from the market, exploring new ap-

proaches and estimation methods to improve the forecasting performance of

models in general.
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The HAR-RV (Heterogeneous Auto-Regressive with Realized Volatility) model,

published in Corsi (2009), was designed specifically to have a better forecast

performance than the previous models. The HAR-RV model uses the realized

volality incorporating intraday returns to calculate, estimate, and predict the

variability of the data. Originally, this model estimated the coefficients with the

sum of the intraday squared returns. However, a new approach to calculate the

volatility continuously was presented in Corsi and Renò (2012).

This new approach, the LHAR-CJ (Leverage Heterogeneous Auto-Regressive

with Continuous volatility and Jumps) model, not just estimates de volatility

continuously, but also incorporates leverage effect and jumps to the model. It

allowed a better forecast performance than the usual HAR-RV model for the

tested data (see Corsi and Renò (2012) for more details). However, even with

that improvement, some research professionals started to publish new approachs

to these models.

One example is the model proposed by Chen et al. (2017), that incorpo-

rates time-dependent functional coefficients in the original HAR-RV model. In

this article, it is also possible to see a forecast performance improvement using

the functional coefficients. In view of the positive forecasting impact brought

by incorporating functional coefficients in HAR-RV type models, we decided to

apply them in the LHAR-CJ model. However, in our approach the functional

relationship is state-dependent rather than time-dependent.

In the next section, we explain the theoretical background used to implement

the new model (basically an overview of the LHAR-CJ model and functional

coefficients). Following, we describe how we actually implemented the model

and what kind of computational resources and functions we used. In the same

section, we analyze the results and compare the new model with the previous

one. Section 4 concludes.
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2. Theoretical Review

In this section, we explain the theoretical background to implement the

model.

2.1. The LHAR-CJ Model

We herein shortly present the LHAR-CJ model, following Corsi and Renò

(2012) closely. The reader is referred to this text for details.

Before presenting the model, we need to define some expressions. To cal-

culate the variables, such as the continuous volatility and the jumps, we need

to apply some transformations to the data (prices and returns). The two-scale

realized volatility estimator is given by

TSRV =

(∑n−K
j=1 (Xj+K −Xj)2 −

∑n−1
j=1 (Xj+1 −Xj)2

)
K
(
1− n−K+1

nK

) , (2.1)

where Xj is the intraday logarithmic price with j = 1, ...n, where n is the num-

ber of prices each day. K is the length in ticks of the subsampling interval (we

used K = 10 following the bibliography).

To calculate the continuous volatility and the jumps, we also need the thresh-

old bipower variation estimator introduced in Corsi et al. (2010) and given by

TBPVt =π

2
M

M − 2

M−2∑
j=0
|∆t,jX| · |∆t,j+1X|

×I{(∆t,jX)2≤ϑj−1}I{(∆t,j+1X)2≤ϑj}, (2.2)

where ∆t,jX is the jth intraday return of day t, with j = 1, ...,M . I(·) in an

indicator function and ϑj is a threshold function (see Corsi and Renò (2012)).
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Given these estimators, we can define the continuous volatility element as

Ĉt = TBPVt, the jump effect as Ĵt = max(TSRVt −TBPVt, 0) and the sum of

both estimators as V̂t = TBPVt + TSRVt. Now, consider rt as the daily return

open-to-close. We can define the leverage effect as r−t = min(rt, 0).

Following, we define the aggregated effects of continuous volatility, jumps

and leverage, which are defined by an integer number h of days as follows

log V̂ (h)
t = 1

h

h∑
j=1

log V̂t−j+1, log Ĉ(h)
t = 1

h

h∑
j=1

log Ĉt−j+1,

r
(h)
t = 1

h

h∑
j=1

rt−j+1, Ĵ
(h)
t =

h∑
j=1

Ĵt−j+1,

Pay attention to the fact that the logarithmics on the right sides of the equa-

tions are just a symbolic representation.

Then, defining d = 1, w = 5 andm = 22, the one-step LHAR-CJ considering

daily, weekly and monthly periods consists in the following equation

log Vt+1 = c+ β(d) logC(d)
t + β(w) logC(w)

t + β(m) logC(m)
t

+ α(d) log(1 + J
(d)
t ) + α(w) log(1 + J

(w)
t )

+ α(m) log(1 + J
(m)
t ) + γ(d)−r

(d)−
t + γ(w)−r

(w)−
t

+ γ(m)−r
(m)−
t + εt+1 (2.3)

2.2. Functional Coefficients

Basically, models with functional coefficients estimate not only a number for

each coefficient in the regression, but a function. In the time series scenario,

that function may be time-dependent or space-dependent. If time-dependent,

each coefficient will have the form of βj(t), and you can see an example of that in

Chen et al. (2017). If space-dependent, each coefficient has the form of βj(Xt),

where Xt is the state of a time series in the time t. In our case, the time series
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used as reference is the Vt, in other words, our coefficients will have the form of

βj(V̂t).

3. Methodology

The data used in this paper is the financial returns of Vale, from 2009 to

2017. The returns were obtained from the intraday prices, calculated from

open-to-close. The prices data were treated using the Economática method.

Figure 1: Graphic of the returns open-to-close of Vale

Beggining the analysis, we estimated all Vt, Ct, Jt and r−t components and

fitted the LHAR-CJ model with and without functional coefficients. At this
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stage, we used all data available (1793 days and intraday returns calculated

every minute). The numeric parameter to estimate the functional coefficient

model was the lagged Vt (one-step), and the smoothness parameter chosen was

h = 3. In Figures 2–4 below, we have the graphics, where the black curve rep-

resents the estimated functional coefficient and the red straight line represents

the coefficients from the standard LHAR-CJ model.

Figure 2: Graphic of β1 and β2

Figure 3: Graphic of β3 and β4
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Figure 4: Graphic of β5, β6, β7, β8 and β9.
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As we can see, there is a big difference between the constant value and the

functional coefficients, and that difference is reflected on the forecast results

following next.

To do the forecast analysis, we generated a one-step forecast based on a ex-

panding window going from the interval of days 1, ..., 1272 to the interval of days

1, ..., 1769. In other words, we estimated the model with the pre-set interval of

days, then forecasted the next day. This was done for both LHAR-CJ models,

with and without functional coefficients.

In the functional coefficients model, we set a grid for the smoothness param-

eter (h), going from 0.6 to 1.4 by 0.2, and then, realizing that the MSE (Mean

Squared Error) was decreasing as the h increased, we expanded the grid, with

a new part going from 3 to 15 by one. This grid may be refined in future work.

On the table below, we can se the MSE in all cases described above.

Table 1: Table of MSE

LHAR-CJFC

h

LHAR-CJ 0.6 0.8 1.0 1.2

MSE 0.1288502

0.1654552 0.1424039 0.1339300 0.1284922

h

1.4 3 4 5

0.1253136 0.1215540 0.1215564 0.1215987

h

6 7 8 9

0.1216328 0.1216573 0.1216748 0.1216875

h

10 11 12 13

0.1216969 0.1217041 0.1217097 0.1217141
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h

14 15

0.1217177 0.1217205

As we can see, with h = 3 we obtain the minimum MSE for the values of

h tested, and its MSE is also less than the MSE of the model with constant

coefficients.

Therefore, using the MSE criteria, we could obtain a better forecast perfor-

mance with the model with functional coefficients for the presented data.

4. Conclusion

The aim of the study was to show that we can get a better forescast per-

formance using functional coefficients and explore the volatility models area.

Given that, we may say that the we achieved our goals, and the study may be

useful to start other research projects about functional coefficients and volatility

models.
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