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Aprendizagem de tarefas conjuntas para melhorar a super-resolução de imagens

aéreas

RESUMO

Redes de aprendizado profundo tornaram-se uma abordagem muito popular para resolver

vários problemas de visão computacional. Entre eles, a super resolução (SR) é uma tarefa

particularmente desafiadora, devido à sua natureza mal-posta, uma vez que uma imagem

super resolvida pode ser originada de várias imagens de baixa resolução (LR), e a difi-

culdade em sintetizar informações coerentes em maior resolução, possivelmente levando

a artefatos visuais ou texturas inconsistentes. Isso é facilmente verificado no contexto

de sensoriamento remoto, onde as técnicas de restauração de imagens enfrentam dificul-

dades na replicação de superfícies terrestres do mundo real, tendo no entanto um grande

potencial para gerar dados de alta resolução (HR) a partir de imagens LR. Embora existam

vários métodos SR na literatura, poucos deles focam na qualidade perceptual das imagens

SR, falhando em recuperar informações detalhadas inerentes às imagens aéreas. Uma das

principais razões para isso é a dificuldade em definir uma imagem "boa"na perspectiva

da máquina, fato não alcançável para métricas comuns de pixel como PSNR e SSIM.

Neste contexto, este trabalho propõe um procedimento de treinamento conjunto de ponta

a ponta para gerar imagens SR perceptualmente melhores: usando um módulo SR base-

ado em Redes Generativas Adversariais (GAN) e um módulo de segmentação semântica,

é possível induzir o gerador a produzir estruturas e informações texturais mais coerentes

usando uma função objetiva de segmentação capaz de capturar detalhes de textura em

dados sintetizados, fato corroborado por resultados experimentais.

Palavras-chave: aprendizado profundo, super resolução, segmentação semântica, tarefas

conjuntas, imagem aérea, qualidade perceptual.



ABSTRACT

Deep learning networks have become a very popular approach for solving multiple com-

puter vision problems. Amongst them, super resolution (SR) is a particularly challenging

task because of its ill-posed nature, since one super resolved image could be originated

from multiple low resolution (LR) counterparts, and the difficulty in synthesizing coher-

ent information at increased resolution, possibly leading to visual artifacts or inconsistent

textures. This is readily verified in the context of remote sensing, where image restora-

tion techniques face difficulties in replicating real-world land surfaces, having though a

great potential for generating high-resolution (HR) data from LR images. While there

are multiple SR methods in the literature, few of them focus on the perceptual quality

of SR images, failing to recover detailed information inherent in aerial imagery. One of

the main reasons for that is the difficulty in defining a “good-looking” image in the per-

spective of the machine, a fact not achievable for common pixel-wise metrics like PSNR

and SSIM. In this context, this work proposes an end-to-end joint training procedure to

generate better perpetually-wise SR images: by using a SR module based on Generative

Adversarial Network (GAN) and a semantic segmentation module, it is possible to in-

duce the generator network to produce more coherent structures and textural information

by using a segmentation loss capable of capturing texture details on synthesized data, a

fact corroborated by experimental results.

Keywords: Deep learning. super resolution. semantic segmentation. joint tasks. aerial

imagery. perceptual quality.
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1 INTRODUCTION

1.1 Motivation

Image super-resolution (SR) is an image restoration process that aims to recover

high-resolution (HR) images from low-resolution (LR) samples as accurately as possible.

It is a challenging problem in the computer vision (CV) field because of the difficulty in

mapping the LR to the HR space, especially because of the ill-posed nature of this prob-

lem, since one low-resolution input could represent multiple high-resolution counterparts

(YANG; HUANG, 2017).

Multiple classic algorithms tackle the SR problem (FREEMAN; JONES; PASZ-

TOR, 2002; GLASNER; BAGON; IRANI, 2009; FARSIU et al., 2004), but in recent

years we verified a hasty growth of machine learning (ML) methods that accomplish

immense achievements when compared to other methodologies that do not employ ML

techniques. This is mostly due to the development of deep neural networks, which are

mathematical structures that simulate the human brain and can extract multiple features

from data.

Deep Learning (DL), a branch of machine learning that learns the hierarchical

representation of data, displays superior handling of unstructured data that translates into

a complex yet efficient robust algorithm modeling (SCHMIDHUBER, 2015; ROHITH;

KUMAR, 2020). The capacity of extracting high and low-level abstractions allows deep

learning methods to be extended in a range of fields, such as medicine (RONNEBERGER;

FISCHER; BROX, 2015; LI et al., 2018) and remote sensing (ZHANG; LIU; WANG,

2018; FANG et al., 2018). The latter domain, which is remarkably complex because of

intrinsic properties of spatial data, will be discussed in this work.

The wide usage of satellite imagery in multiple fields, such as agriculture, city

planning, military applications, and environmental monitoring suggests a great demand

for satellite products, which oftentimes have low resolution due to limitations of the imag-

ing equipment or communication bandwidth. In particular, generating high-resolution

data – either in temporal or spatial domains – can be helpful in several applications. Mod-

ern remote sensors on satellites can provide very good spatial resolution (< 1m). However,

their launch costs are astronomically high: the WorldView-4 satellite shown in Fig.1.1, for

example, is a commercial earth observation satellite launched in November 2016, which

had an estimated cost of $ 835 million dollars (SMITH, 2012). This redeems images that
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Figure 1.1 – Satellite World-View 4. Photo: Digital Globe.

are usually under very restrictive licenses or are financially prohibitive.

Unmanned aerial vehicle (UAV) based solutions, mostly capable of delivering

high-resolution (HR) imagery at a low temporal range, could be an “affordable” alter-

native to satellite products, but can only cover relatively small areas due to limited UAV

autonomy. Therefore, low-resolution (LR) satellite imagery is still used in applications

where higher resolution data is more helpful (DAI et al., 2016). In this context, enhance-

ment of LR data is a useful way of achieving better quality in imagery where visual quality

is essential (DAI et al., 2016; THORNTON; ATKINSON; HOLLAND, 2006; XU; LIN;

MENG, 2017; REETH et al., 2012).

Enhancing low-resolution satellite data is a particularly challenging problem for

multiple reasons (SHERMEYER; ETTEN, 2019; ETTEN, 2019): objects invariant to ro-

tation and orientation, small spatial extents of some objects and their clusters, training

example frequency, and massive raw data. Such problems reduce the image restoration

capability by encumbering the replication of high-frequency data that are very distin-

guishable to the human eye.

Despite the good results achieved by DL algorithms, the replication of specific

textures or the generation of undesired artifacts are still challenges (ZHAO et al., 2019).

One cause is the difference between human and machine perception: metrics for measur-

ing the reconstruction quality are based on machine perception; thus improvements in SR

images are not equally perceived between humans and machines. This is noticeably veri-

fied in Figure 1.2, where the image on the right displays the highest Peak Signal-to-Noise

Ratio (PSNR), which is a well-known quality assessment metric but is clearly worse (vi-

sually) than the image in the center. There are multiple propositions of score functions

(GOODFELLOW et al., 2014; WANG et al., 2018c; RABBI et al., 2020) that aim to
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(a) Original HR image (b) PSNR:29.9049 (c) PSNR:29.9197
Figure 1.2 – PSNR comparison of (a) an original HR image, (b) a slightly modified

high-resolution image and (c) a filtered high-resolution image using bicubic interpolation.
Although having similar PSRN values, their perceptual quality are very different

“humanize" comparisons between the original and reconstructed images, but defining an

“ideal" perception score index similar to a human-based opinion score is still a research

challenge.

Super-resolution methodologies that focus on generating perceptually better im-

ages mostly focus on tailoring objective functions that influence optimization of the ML

model (VASU; MADAM; RAJAGOPALAN, 2018). One of the most famous examples

is the perceptual loss proposed by Johnson, Alahi e Fei-Fei (2016), which calculates the

differences of intermediates features of a VGG-19 model (SIMONYAN; ZISSERMAN,

2014) when using the ground truth and reconstructed images as inputs. Tailoring such

functions and combining them with natural pixel-to-pixel objective functions, such as

mean squared error (MSE), have proven to create state-of-the-art (SOTA) strategies in the

super-resolution domain (VASU; MADAM; RAJAGOPALAN, 2018).

In this context, it is noticeable that a task-oriented network could act as an ob-

jective function, providing semantic guidance to the SR module. Such semantics inputs

would be able to capture further details about local texture, thus inspiring the SR net-

work conditioning to produce sharper images with realistic textures. In this work, we

use an additional loss function related to semantic segmentation as a task-oriented objec-

tive function. Our hypothesis is that segmentation results of a super-resolved image can

condition the SR module to generate class-aware textures, thus improving the perceptual

scores of reconstructed data.
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1.2 Main goals

The generation of high-resolution imagery from low-resolution sensors has a di-

rect impact on multiple applications where the usage of HR data is essential. But most

of the existing SR methods are still far away from reconstructing realistic textures, since

failure in reconstructing textures, especially the information-rich regions, leads to blurry,

overly smooth and unnatural appearance of synthesized images (VASU; MADAM; RA-

JAGOPALAN, 2018). The main goal of this thesis is to develop a deep SR approach that

can effectively produce realistic images, particularly in textured regions. For that purpose,

the following specific goals were defined:

• introduction of task-tailored functions based on semantic segmentation for training

a super-resolution approach;

• study and evaluation of different baseline approaches for super-resolution and se-

mantic segmentation;

• comparison of the proposed strategy with state-of-the-art (SOTA) super-resolution

approaches using perceptual quality assessment metrics.

1.3 Contributions

This work proposes a super-resolution methodology capable of generating high-

detailed images with better perceptual quality indices than existing approaches. The main

contribution of this work is the introduction of a task-driven joint learning strategy that

uses a segmentation module as a component of the loss function, backed by a Genera-

tive Adversarial Network (GAN) module responsible for the super-resolution itself. The

proposed method yielded better perceptual metrics for two baseline GAN-based mod-

ules: ESRGAN (WANG et al., 2018c), a classic model for super-resolving images using

Generative Adversarial Nets, and the SAGAN (ZHANG et al., 2019), a pioneer work to

propose an ensemble of GAN and attention networks for the SR task. Regarding the se-

mantic segmentation modules, we also explored two methods: the widely known UNet

(RONNEBERGER; FISCHER; BROX, 2015) and the state-of-the-art HRNet (WANG;

CHEN; HOI, 2020). Even though we specifically observed great improvements for only

four combinations of SR-Segmentation modules, this technique is generic and applicable

to any combination of super resolution and segmentation networks.
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1.4 Text outline

The document is organized as follows. Chapter 2 describes an overview of Sin-

gle Image Super Resolution, the main subject of this thesis, by summarizing the problem

formulation and providing recent improvements on the super resolution topic. It also

provides additional information about other topics related to this thesis, such as atten-

tion networks, semantic segmentation, joint learning and perceptual quality. Chapter 3

describes the proposed method whilst describing the tools employed in the experiments,

such as data sets, training procedure, and evaluation policies. Chapter 4 provides the ex-

perimental results of multiple runs aggregating different data sets, SR and segmentation

networks by showing reconstruction and segmentation metrics of super-resolved images.

This chapter also discusses the generalization capacity of the proposed method over dif-

ferent data sources, and finally assembles a comparison between multiple state-of-the-art

SR procedures. Chapter 5 recapitulates the research objectives, results and contributions,

while providing future work expansions over the original proposition. Finally, Appen-

dices A, B and C contains image outputs of experiments described on Chapter 4.
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2 BACKGROUND AND RELATED WORK

This chapter presents the background and related work about Single Image Super

Resolution (SISR), semantic segmentation, proposals of joint-learning techniques and an

overview of perceptual quality on image restoration processes.

2.1 Background

This section describes major concepts used in this work, with details about the

mathematical background behind major subjects, such as Image Super Resolution, Se-

mantic Segmentation and Perceptual Quality.

2.1.1 Single Image Super Resolution

Image Super Resolution is the process of generating high-resolution images from

lower resolution inputs. The SR task has been studied for decades (IRANI; PELEG,

1991). Sampling methods such as bicubic and Lanczos (DUCHON, 1979) interpolations

are some of the first methods to super-resolve images, producing quite often blurry results

with aliasing artifacts.

SR methods can be divided in two families: the classical multi-image super-

resolution, where sets of unaligned low-resolution pictures of the same scene impose

linear constraints for building the high-resolution space, and Single Image Super Resolu-

tion (SISR), where the method learns correspondences between low and high-resolution

patches of image pairs. Due to numeric limitations to generate images with great scale

factors in the first approach, SISR became a default approach to reconstruct images from

lower resolution inputs(GLASNER; BAGON; IRANI, 2009).

Popular SISR approaches use exemplar-based learning to exploit differences be-

tween multiple scale representations of the same image (YANG; HUANG; YANG, 2010)

or prior knowledge under the form of large external databases or dictionary-based meth-

ods (TIMOFTE; ROTHE; GOOL, 2016; YANG et al., 2012). External priors extracted

from large collections of image pairs are, however, very expensive and only produce

marginal gains at the SR task (LIANG et al., 2021).

In recent years, the evolution of neural network approaches has shown superiority
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over super-resolution tasks from other domains. This is due to the active exploration of

deep learning (DL) techniques, mainly supported by the development of efficient com-

puting hardware and sophisticated algorithms. The strong capacity of DL methods made

them achieve state-of-the-art performance in multiple SR benchmarks (WANG; CHEN;

HOI, 2020).

Current deep learning methods use feed-forward networks to learn a mapping

function G between a pair of high-resolution IHR and low-resolution ILR images, defined

by

IHR ≈ G(ILR; θ), (2.1)

where θ are the parameters of G. The LR image is usually generated through a degradation

process that is unknown and can be affected by multiple factors, such as compression

artifacts, anisotropic degradations, sensor noise and speckle noise (WANG; CHEN; HOI,

2020). It is common to apply a unique downsampling operation to obtain a low-resolution

counterpart:

ILR = Deg(IHR; ζ; s), (2.2)

where Deg and ζ are the degradation function and its parameters, respectively, and s is

the scaling factor.

In order to optimize Gθ, it is necessary to define a cost function Lθ to compute the

reconstruction quality of super-resolved images ISR. Such optimization could be viewed

as

min
θ

∑
n

Lθ(I
n
SR, I

n
HR) (2.3)

over the n training pairs. Choosing the Mean Squared Error (MSE), a widely used metric

for quantitatively evaluating the image restoration quality, as a loss function, Equation

(2.3) can be rewritten as

min
θ

∑
n

||Gθ(Deg(InHR))− InHR||2. (2.4)

As most methodologies aim to improve distortion measures, such as Peak Signal-

to-Noise Ratio (PSNR), several SR approaches explore only the MSE loss function (note

that PSNR and MSE are closely related). It brings, however, blur and over-smoothed

textures that are introduced in the regression-to-the-mean problem, usually caused by

conventional MSE-oriented loss functions (WANG et al., 2018b).

In this work, we will focus on a single-sensor spatial super resolution of aerial im-
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agery. This description is necessary to clear out that other types of SR, such as mono/multi-

sensor temporal SR (which is often studied in the remote sensing context), won’t be

adopted in this work.

2.1.2 Generative Adversarial Networks

A major progress in the generation of realistic images was made by Generative

Adversarial Networks (GAN). Proposed by Goodfellow et al. (2014), Generative Adver-

sarial Nets consist of two adversarial models: a generative model Ggan responsible for

capturing the data distribution and a discriminative model Dgan that estimates the proba-

bility of sample being a (original) training sample or a (fake) data produced by Ggan. In

other words, Ggan builds a mapping function from between the input distribution and the

data space (in our case, the IHR space) and Dgan outputs a single scalar representing the

probability of Ggan producing original or fake data.

Both generator and discriminator are optimized simultaneously by minimizing an

objective function

L(Ggan, Dgan) = E[log (Dgan(IHR))] + E[log (1−Dgan(Ggan(ILR)))], (2.5)

where E is the expectancy operator over the training samples. Notice that the “simultane-

ous” optimization of both Ggan and Dgan create a min-max game, where both generator

(in order to fool the discriminator) and Dgan (in order to distinguish real and fake data)

are continuously optimized. When the optimization via backpropagation occurs, the gen-

erator is trained to minimize

Lg(Ggan, Dgan) = log(1−Dgan(Ggan(ILR)), (2.6)

while the discriminator aims to minimize

Ld(Ggan, Dgan) = log(Dgan(IHR)) + log(1−Dgan(Ggan(ILR)). (2.7)

The GAN loss described by Goodfellow et al. (2014) is, in practice, hard to op-

timize, since Equation 2.5 may not provide sufficient gradient for Ggan to learn well.

According to the authors, early in learning, when Ggab is not capable of replication

the original data distribution, Dgan reject samples with high confidence because of the
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clear difference from the training data. In this scenario, the second part of Equation 2.5,

log (1−Dgan(Ggan(ILR))) provides very small gradients, difficulting the training pro-

cedure. Rather than using the latter part of the equation, we train Ggan to maximize

log (Dgan(Ggan(ILR))) because it provides much stronger gradients early in learning.

Therefore, the Equation 2.6 is, in this study, modified to

Lg(Ggan, Dgan) = − log(Dgan(Ggan(ILR)). (2.8)

2.2 Semantic Segmentation

Semantic segmentation is the task of classification and / or clustering correlated

parts of images on a region or pixel level. This is a core (and challenging) computer vision

problem since it requires a full understanding of a scene to correctly infer it: aspects such

as color, texture, luminosity and perspective variation could cause algorithms to miss-

segment even the most “trivial” regions. Multiple applications nourish from describing

an entire scene on a pixel level such as medical diagnosis (OUAHABI; TALEB-AHMED,

2021), autonomous driving (CORDTS et al., 2016) and remote sensing (YUAN; SHI; GU,

2021).

The majority of semantic segmentation tasks assigns one single label to each im-

age pixel (LATEEF; RUICHEK, 2019). Its formulation can be simply stated by finding a

way to assign every pixel from the image I to the label space L = {l1, l2, ..., lNc} with Nc

classes, being sometimes assigned to Nc + 1 classes when treating l0 as a background or

void class. The labeled image IM has, therefore, the same shape of I and has pixel values

from L.

Traditional algorithms are heavily based on Markov Random Fields (GEMAN;

GEMAN, 1984) (indirect probabilistic graph model) that generate a hierarchical approach

of clustering an image by assigning random variables for every pixel in the image. The

application of Markov properties on indirect graphs created, since the 80s, an optimized

approach to finding similarities between pixels in the feature space, but was unable to cap-

ture global impressions of a scene. From clustering algorithms using information from

contour and edges, Ren e Malik (2003) is famous for proposing a superpixel-based ap-

proach to cluster segments based on intra- and inter-region similarity by classical descrip-

tors, such as contour, texture and brightness. It brought lower computational complexity

since it employs the Normalized Cuts (SHI; MALIK, 2000) algorithm, an optimized graph
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partition algorithm solved as a generalized eigenvalue problem.

Despite the popularity of such methods, advances in deep neural networks revolu-

tionized the semantic segmentation task. According to Garcia-Garcia et al. (2017), deep

learning architectures displayed such improvements in terms of accuracy and sometimes

even in efficiency that they easily surpassed non-DL approaches by far, mostly due its the

great capacity of recognizing either low-level features that describe local properties and

high-level structures that capture global object information.

Optimization of semantic segmentation models uses specific loss functions rather

different from the ones used in super resolution tasks. As the choice of objective func-

tion is essential to instigate the learning process of the algorithm, multiple propositions,

sometimes forged to adhere to specific domains, were proposed: common ones are the

Categorical Cross Entropy and its weighed or balanced variations, the Focal Loss (LIN et

al., 2017), seen as an adaptation of the BCE that works well for highly imbalanced class

scenario, and the Dice Loss (MILLETARI; NAVAB; AHMADI, 2016), an adaptation of

the dice coefficient (of F-score). For this work, a multi-class cross entropy is adopted as

a loss function, described by

Lseg =
Nc∑
i=0

−ti log qi, (2.9)

where Nc represents the number of classes, ti is equal to 1 if the analyzed ground-truth

pixel is from class i or 0 otherwise, and qi is the normalized probability of such pixel

being classified as class i. This equation produces, therefore, low values of Lseg when

pixels are correctly predicted with high confidence, since the logarithmic factor will tend

to zero, or very high values for low-confidence correct classification.

From the many proposed criteria to evaluate the performance of segmentation

models, popular functions are the pixel accuracy and Intersection over Union (IoU) and

its mean variations for multi-class problems. Pixel accuracy is defined as the ratio of

correctly classified pixels divided by the total number of pixels in a image:

Acc =

∑N
i=0 pii∑N

i=0

∑N
j=0 pij

, (2.10)

where pij denotes the quantity of pixels from the class i classified as j from N analyzed

classes and the background. In other words, pii represents the number of true positives,

while pij and pji (for i ̸= j) can be interpreted as false positives and false negatives,

respectively. The pixel accuracy can also be calculated per-class by modifying Equation
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2.10: the numerator should represent the sum of correctly predicted pixels from class i

and the denominator need to calculate the overall quantity of pixels of the i− th class. Its

mean multi-class variant has a similar formulation, being averaged between the quantity

of classes described in the problem:

mAcc =
1

N + 1

N∑
i=0

pii∑N
j=0 pij

. (2.11)

The Intersection over Union (IoU) or the Jaccard Index computes the ratio between

intersection and union of two sets (ground truth and predicted segmentation), which can

be reinterpreted as the ratio of true positives (intersection) over the sum of true positives,

false positives and false negatives (union). It ranges between 0 and 1, and for the ith

class, the IoU is formulated by

IoU =
pii∑N

j=0 pij +
∑N

j=0 pji − pii
. (2.12)

Mean-IoU (mIoU) is defined as the average IoU over all Nc classes, according

to Equation 2.13. It stands out as the most used segmentation metric for challenges and

researchers due to its representativeness and simplicity (GARCIA-GARCIA et al., 2017).

mIoU =
1

N + 1

N∑
i=0

pii∑N
j=0 pij +

∑N
j=0 pji − pii

. (2.13)

Other common reported metrics to verify segmentation performance are mostly

based in combinations true positive, false positive and false negative values, like the Re-

call, F1 and Dice scores, but their similarity with the already well-known IoU made them

a bit less popular.

2.3 Joint Learning

There is a recent focus on creating image processing pipelines that gather opera-

tions from multiple computer vision tasks, such as super-resolution, semantic segmenta-

tion, object detection and instance segmentation. These tasks were traditionally tackled

in isolation by using a tailored neural network to optimize each problem. However, the

multi-tasking capabilities of the human brain motivated researchers to develop multi-task

learning, aiming to optimize one or many tasks by using a pool of concurrent task-oriented
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models.

This is very noticeable in the super-resolution task, which is often used as a tool

to enhance tasks such as object detection (HARIS; SHAKHNAROVICH; UKITA, 2018b)

and image segmentation (PEREIRA; SANTOS, 2020). Such enhancements are noticeable

in specific applications, such as remote sensing: super-resolving images is proven to be a

powerful proxy to enhance the objection detection task, backed up by the work of Sher-

meyer e Etten (2019) that reports benefits of over 30% in mean Average Precision (mAP)

when super-resolving native 30cm imagery to 15cm.

For a generic multi-task problem, with specific loss functions Li and task-specific

weights wi, the optimization goal L is typically given by

L =
∑
i

wiLi, (2.14)

which is often minimized by using stochastic gradient descent. Whereas the collective

training of multiple models can induce difficulties in optimizing multiple models, the

weight balance is deemed essential to hinder task gradients conflicts or harmonize gradi-

ent magnitudes. Multiple authors propose task balancing approaches by adapting the task

weights wi (SENER; KOLTUN, 2018), the task-specific gradients (CHEN et al., 2018) or

prioritizing tasks dynamically (GUO et al., 2018).

Regarding applications involving spatial imagery, image super-resolution is mostly

used as a proxy to improve other image recognition tasks (MOSTOFA et al., 2020; PANG

et al., 2019; PEREIRA; SANTOS, 2020). This work proposes the opposite: a method-

ology where image SR is improved by another task, namely semantic segmentation. The

segmentation maps could leverage important spatial information that would be used in the

optimization of the super-resolution module, serving as a perceptual evaluator of super-

resolved images by analyzing the texture reconstruction quality face another neural net-

work.

2.4 Perceptual Quality

Perceptual Quality aims to propose a human-based perception of image quality.

It aims to describe a "viewer experience", which is a difficult task because of the limited

understanding of the Human Visual System. Whereas a subjective assessment of visual

quality is the best indicator of image perceptual quality, they are time-consuming, cum-
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bersome, and impractical (MOORTHY; BOVIK, 2011). Therefore, objective assessment

of image quality became standard in the big data era, where machine learning procedures

are notably used (FANG et al., 2020).

Despite advances in reconstruction quality and speed, many neural networks fail

to reconstruct realistic and visually appealing images. This is mostly due to the optimiza-

tion based on pixel-based distortion scores, such as MSE, which encourages the network

to find an average of multiple plausible solutions, leading to blurry, over smooth and

unnatural aspect in the output, especially in information-rich regions (VASU; MADAM;

RAJAGOPALAN, 2018; WANG et al., 2018b).

Pixel-wise losses do not capture well the perceptual differences between images,

which can be easily verified by offsetting identical images by only one pixel: the high im-

age correlation prior to our eyes does not translate into low per-pixel losses. Hence, we no-

tice an up-rise in studies that bring new ways of improving the perceived quality of recon-

structed images (VASU; MADAM; RAJAGOPALAN, 2018; SAJJADI; SCHOLKOPF;

HIRSCH, 2017), such as the development of tailored objective functions that could cope

with the human perception.

Perceptual loss (JOHNSON; ALAHI; FEI-FEI, 2016) was introduced as an alter-

native to conventional per-pixel losses between SR and HR images. It uses high-level fea-

ture representations of a pre-trained neural network to perceive the difference between im-

ages, thus being able to distinguish semantic differences that are not captured by per-pixel

losses. The perceptual loss function Lper is defined by the squared euclidean distance of

intermediate features ϕj from a pre-trained VGG network (SIMONYAN; ZISSERMAN,

2014) trained on the ImageNet (RUSSAKOVSKY et al., 2014) dataset:

Lper = ||ϕj(ISR)− ϕj(IHR)||22, (2.15)

where Lper is averaged by the dimensions (width, height, and depth) of the feature map ϕj .

Perceptual losses are responsible for breakthrough enhancements in image reconstruction

quality, since intermediate feature maps of the VGG network predicted very well the tex-

ture disparities in low and high feature depths between reconstructed and original images.

This enabled the generation of higher quality images with more coherent textures, as is

the case of EnhanceNet (SAJJADI; SCHOLKOPF; HIRSCH, 2017), which employs the

perceptual loss in the feature space to overcome the high smoothness of conventional SR

methods, as shown in Figure 2.1

Besides the perceptual loss, GANs are well known to generate realistic images in
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Figure 2.1 – Comparison between SOTA Super-Resolution techniques to improve PSNR (left)
and more plausible results produced by EnhanceNet (right) at 4x scale. Source: (SAJJADI;

SCHOLKOPF; HIRSCH, 2017)

SISR. Using the so-called adversarial loss to optimize a model results in restoration of

fine details and common patterns, notably verified in the studies of Sajjadi, Scholkopf e

Hirsch (2017) and Ledig et al. (2016). These works employ, in fact, a combination of

multiple loss functions that searches an equilibrium between distortion and perceptual

quality.

From the literature that evaluates such equilibrium, the work of Blau e Michaeli

(2018) is remarkably important because it formulates the perception-distortion tradeoff

and proves that there is a region in the perception-distortion plane (displayed in Figure

2.2) that cannot be attained regardless of the chosen algorithm. Therefore, an optimal

model, which would be close to the boundary of the unattainable perception versus dis-

tortion region, can only improve either perceptual quality or distortion at the expense of

the other. This explains the difficulty of creating networks that perform very well in both

perceptive and pixel-wise metrics.

2.5 Restoration metrics

For applications where images are viewed by human beings, user studies are the

the ultimate way to evaluate the performance of a model. For example, multiple persons

can be requested to rank synthetic images and the original high-quality image according to

their visual quality, and a comparison between random image pairs from different methods

can be done. In practice, however, subjective evaluation is usually inconvenient, due to
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Figure 2.2 – The perception-distortion tradeoff region. Source: (BLAU; MICHAELI, 2018)

cost and/or time expended. Objective image quality assessment metrics is the process

of developing quantitative metrics that can automatically perceive image quality (WANG

et al., 2004). Such metrics can be classified as full-reference, meaning that a complete

reference image is available, no-reference, which blindly evaluates pictures, or reduced-

reference, where only parts of the reference image are available, such as sets of extracted

features.

According to Wang et al. (2004), the most widely-used full-reference quality met-

rics are the Mean Squared Error, also referred to as L2 loss, and the Peak Signal-to-Noise

Ratio (PSNR), because they are simple to calculate and have clear optimization purposes.

The PSNR, usually expressed in decibels, calculates the ratio between the maximum pos-

sible power of a signal and the noise present on it. It is given by

PSNRI = 10 ∗ log10
(
MAX2

I

MSE

)
, (2.16)

where MAXI represents the maximum possible pixel value of the image, being equal to

255 in 8-bit images. We can now easily see why many SR tasks are optimized by using

solely the L2 loss: models that minimize the mean squared error also maximize PSNR.

Wang et al. (2004) proposed a full-reference quality index by extracting struc-

tural information from a scene. Their method quantified image degradation as perceived

changes in scene structures by analyzing discrepancies in luminance and contrast mea-

surements. Their proposal, called Structural Similarity (SSIM), was quickly adopted as a

reconstruction metric because it did not attempt to predict image quality by accumulating

errors associated with simple patterns. The SSIM index between images IA and IB is
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calculated by

SSIM(IA, IB) =
(2µIAµIB + c1)(2σIAIB + c2)

(µ2
IA

+ µ2
IB

+ c1)(σ2
IA

+ σ2
IB

+ c2)
, (2.17)

where µIA and σ2
IA

represent the mean and the variance of IA, σIAIB is the covariance

between IA and IB and c1 and c2 are constants that depends on the dynamic range of the

image (typically 2nbits − 1, nbits being the number of bits that define a pixel).

Traditional metrics like PSNR and SSIM, which rely on low-level differences

between pixels, fail to measure the reconstruction quality in a perceived visual manner

(JOHNSON; ALAHI; FEI-FEI, 2016). Therefore, multiple studies aimed to propose a

fitting similarity descriptor based on human judgment of quality (ZHANG et al., 2018a;

JOHNSON; ALAHI; FEI-FEI, 2016). This is a unique challenge due to the high di-

mensionality of visual patterns and the subjective notion of similarity face the human

perception. In this context, Zhang et al. (2018a) proposed the Learned Perceptual Image

Patch Similarity (LPIPS), a framework that evaluates distances in deep feature spaces.

The authors refine the idea of using feature embeddings of trained networks as elements

to calculate a “perceptual distance” between inputs, as first seen in Johnson, Alahi e Fei-

Fei (2016), by adding normalization and calibration procedures when computing feature

distances. They also use a small network to predict a perceptual judgment between a pair

of images.

No-reference image quality assessment can define the visual quality of a recon-

structed image without the need of a ground-truth counterpart. No-reference metrics eval-

uate the image internal components in a way to describe how natural they appear to be. In

most SR applications, no HR reference image is available, which explains the increased

interest of no-reference evaluation metrics, such as in the Challenge on Perceptual Image

Super Resolution (PIRM) (BLAU et al., 2018).

Ma et al. (2017) proposed a modern blind quality assessment of SR images by

calculating low-level statistical features in both spatial and frequency domains to quantify

super-resolved artifacts, being capable of an effective evaluation based on visual per-

ception. The Natural Image Quality Evaluator (NIQE) (MITTAL; SOUNDARARAJAN;

BOVIK, 2012) employs a collection of “quality-aware” features fitted as a multivariate

Gaussian model, being remarkable for the non-exposure to distorted images during the

training process. More recently, the Perceptual Index (PI) aggregates the proposals of Ma

et al. (2017) and Mittal, Soundararajan e Bovik (2012) to be used as a benchmark in the
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PIRM-2018 challenge, following the formulation

PI(I) =
1

2
((10−Ma) +NIQE). (2.18)

As a final comment, it is important to mention that some metrics measure the sim-

ilarity between images while others try to assess distance values. For similarity metrics

(such as PSNR, SSIM), higher scores are better. For distance metrics (such as MSE,

LPIPS or PI), on the other hand, lower scores are desired.

2.6 Related work

In this section, we describe important studies about the core super resolution

theme, while also citing multiple researches covering adjoint themes, such as joint learn-

ing, perceptual quality and semantic segmentation.

2.6.1 Single Image Super Resolution

Artificial Neural Networks (ANNs) represent the beginning of deep learning ap-

proaches to represent data. According to Yang et al. (2019), early ANNs can be traced

back to the 1960s, when concepts such as layer perceptrons were introduced, with signif-

icant developments achieved in the 80’s due to the first implementations of backpropa-

gation algorithms (RUMELHART; HINTON; WILLIAMS, 1986). Convolutional Neural

Networks (CNNs) also date back decades (LECUN et al., 1989), but it was only with the

advance of powerful Graphics Processor Units (GPUs) that we noticed its explosive pop-

ularity on computer vision tasks. One of the pioneer networks using CNN is the LeNet-5

published by LeCun et al. (1998), where stacks of convolutional layers were employed to

recognize handwritten characters.

CNNs are very powerful when used over structured data like images. Since they

can operate directly on raw images, they are spatial-aware and stacks of convolutional lay-

ers are powerful feature extractors. Besides that, the kernel re-usability causes a substan-

tial parameter reduction over fully-connected approaches. The first deep convolutional

neural network aimed to tackle the super-resolution problem was presented by Dong et al.

(2014). The proposed SRCNN has three convolutional layers and used Rectified Linear

Units (NAIR; HINTON, 2010) as activation function, outperforming traditional methods
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and demonstrating the strong learning capacity of CNNs in an end-to-end training sce-

nario

From there on, numerous deep learning strategies were proposed to enhance the

learning capability of DL models. He et al. (2016) proposed residual connections to im-

prove the training of very deep networks, arguing that such connections ease the learning

of identity functions. The author demonstrated that very deep residual networks have

better reconstruction quality than non-residual models, which was a huge achievement

in solving the vanishing gradient problem (that gets more serious as the model gets

deeper). This strategy yielded huge boosts in the image recognition task for the ImageNet

(KRIZHEVSKY; SUTSKEVER; HINTON, 2012) dataset and is still very used in current

methods. Other powerful concepts that increase the performance and ease the train of

deep CNNs are batch normalization (IOFFE; SZEGEDY, 2015), which diminishes data

internal variance shift by parameterizing normalized inputs, and skip connections (KIM;

LEE; LEE, 2016), where layer outputs are directly fed to deeper regions of the model,

allowing the network to register low-level signals.

It is common to find models that adopt a blend of attention mechanisms by whether

using them separately (WOO et al., 2018) or jointly (GUO et al., 2022). Recent practices

also exploit attention modules embedded in specific families of training strategies, as is

the case of the Self-Attention Generative Adversarial Network (SAGAN) (ZHANG et al.,

2019), which employs attention-driven modeling for GAN-based image generation tasks.

In remote sensing applications, we notice the usage of both spatial and channel attention in

CNNs, in most of the cases, but also in GANs, where the attention modules can be applied

in both generator and/or discriminator depending on the targeted task (GHAFFARIAN et

al., 2021).

In the super resolution field, state-of-the-art (SOTA) restoration quality is achieved

by multiple solutions: from simpler residual-learning strategies like the Enhanced Deep

Residual Networks (EDSR) (LIM et al., 2017), Residual Dense Network (RDN) (ZHANG

et al., 2018c) and Densely Residual Laplacian Network (DRLN) (ANWAR; BARNES,

2020), to more complex strategies using Generative Adversarial Networks such as Su-

per Resolution Generative Adversarial Network (SRGAN) (LEDIG et al., 2016) and En-

hanced Super Resolution Genenative Adversarial Network (ESRGAN) (WANG et al.,

2018c). Recent contributions also propose channel attention mechanisms to produce accu-

rate super resolved images, like Residual Channel Attention Network (RCAN)(ZHANG

et al., 2018b) and Cross-Scale Non-Local Attention (CSNLN) (MEI et al., 2020b), or



31

a mixed procedures (generally also using attention networks), such as back-projection

based Deep Back-Projection Network (DBPN) (HARIS; SHAKHNAROVICH; UKITA,

2018a) and Attention Back Projection Network (ABPN) (LIU et al., 2019) or pyramidal

nets like Pyramid Attention Networks (PAEDSR) (MEI et al., 2020a).

In fact, attention mechanisms are quite common in the super resolution literature,

where models adopt a blend of attention procedures by whether using them separately

(WOO et al., 2018) or jointly (GUO et al., 2022). In remote sensing applications, we

notice the usage of both spatial and channel attention in CNNs, in most of the cases,

but also in GANs, where the attention modules can be applied in both generator and/or

discriminator depending on the targeted task (GHAFFARIAN et al., 2021).

2.6.2 Generative Adversarial Networks

GAN mechanisms are very powerful, thus backing up multiple state-of-the-art

studies about generative models in tasks ranging from image translation (HUANG et al.,

2018), image manipulation (WANG et al., 2018a) and image restoration (XU et al., 2017;

TSAI et al., 2017). In the context of SISR, multiple SOTA applications employed ad-

versarial training, such as the EnhanceNet (SAJJADI; SCHOLKOPF; HIRSCH, 2017),

which used a fully convolutional net with learn-able “deconvolution” layers (or convolu-

tional layers with fractional stride) and a perceptual loss; SRGAN, which also exploits

the perceptual loss with a modified ResNet architecture, skip connections and Paramet-

ricReLU (HE et al., 2015) activations for the generator; and the ESRGAN (WANG et

al., 2018c), operating on a new Residual-in-Residual Dense Block (RRDB) without batch

normalization and a relativistic discriminator. Despite the ability to produce good visual

results, GANs often suffer from instabilities in the training process, which might generate

undesired artifacts (ZHAO et al., 2019; BLAU et al., 2018).

Recent practices also exploit attention modules embedded in specific families of

training strategies, as is the case of the Self-Attention Generative Adversarial Network

(SAGAN) (ZHANG et al., 2019), which employs attention-driven modeling for GAN-

based image generation tasks.
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2.6.3 Semantic Segmentation

Certain networks have made significant contributions to the field and have become

widely known standards, such is the case of AlexNet (KRIZHEVSKY; SUTSKEVER;

HINTON, 2012), VGG (SIMONYAN; ZISSERMAN, 2014), GoogLeNet (SZEGEDY et

al., 2015) and ResNet (HE et al., 2016), winner models from the ImageNet Large Scale

Visual Recognition Challenge (ILSVRC) competition in the years of 2012, 2013, 2014

and 2016, respectively. The UNet framework (RONNEBERGER; FISCHER; BROX,

2015) also achieved great popularity: its simple yet efficient fully convolutional architec-

ture employing 3× 3 convolutional filters and a set of max-pooling and upsample layers,

is still used as backbone to multiple general-purpose DL applications.

In the remote sensing field, such models are commonly used as the backbone and

later tailored for specific tasks to better handle complicated scenarios. That is the case

of propositions of Zhang, Liu e Wang (2018), which employs a deep residual UNet for

road extraction, and Zhang, Liu e Wang (2018), which used a ResNet-based architecture

to classify urban land usage. Such tailored models still face difficulties in achieving very

good segmentation results because of the difficulties in classifying complex aerial scenes,

which are mostly represented under a large volume of data (YUAN; SHI; GU, 2021).

Amongst SOTA models, architectures such as EfficientNets Tan e Le (2019) or YOLO

adaptations (HURTIK et al., 2022) are commonly used as backbone, further enhanced

with implementations of new pre and self-training techniques (ZOPH et al., 2020). Naive

decoders are also implemented amongst top-performing models, as is the case of HRNet

(WANG; CHEN; HOI, 2020), which uses four parallel stages of convolutional blocks on

different resolutions that are further merged by an up-sampling process, bringing SOTA

segmentation results for the CityScapes dataset (CORDTS et al., 2016).

2.6.4 Joint Learning

Even though the idea of using multiple helper functions to optimize a goal task

is quite recent in the DL world, we notice several propositions of end-to-end training

methodologies that ensemble multiple computer vision tasks. Haris, Shakhnarovich e

Ukita (2018b) propose a task-driven framework by using a super-resolution component

base on a Deep Back-Projection Network (DBPN) (HARIS; SHAKHNAROVICH; UKITA,

2018a) and a fixed Single Shot MultiBox Detector (SSD) (LIU et al., 2016) capable of de-
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tecting multiple objects. They introduce a task-driven compound loss L = αLrec+βLtask,

where Lrec is the Mean Squared Error reconstruction loss and Ltask is the detection loss.

Optimization of object detection networks are also proposed on JCS-Net (PANG

et al., 2019), which specify a joint classification and super-resolution network to improve

small-scale pedestrian detection, and Joint-SRVDNet (MOSTOFA et al., 2020), who in-

troduced an end-to-end joint training process to enhance vehicle detection. Rabbi et al.

(2020) also use super-resolution along with object detection, but focus on recovering high

frequency edge details by using a Edge-Enhanced GAN (JIANG et al., 2019).

2.6.5 Perceptual Quality

Objective evaluation of perceptual quality is a mature subject in the computer

vision field. Studies of Wang, Sheikh e Bovik (2002) and Moorthy e Bovik (2011),

for example, are some noticeable contributions, which evaluates natural scene statis-

tics to propose a no-reference evaluation metric. More recently, the NIQE (MITTAL;

SOUNDARARAJAN; BOVIK, 2012) and PI (BLAU et al., 2018) also evaluates the nat-

ural image quality in no-reference way, being employed in multiple perceptually-aware

reconstruction metrics.

In other hand, deep learning procedures that evaluates (or enhances) perceptual

quality is a very recent topic, mostly due to contemporary improvements in hardware

and software. Its first core subject, the perceptual (or feature reconstruction) loss , was

proposed by Johnson, Alahi e Fei-Fei (2016) to capture distances between intermediate

feature maps on a pre-trained VGG-19 network. He also introduces a style loss that penal-

ize differences in style, such as colors and textures, but such function was not employed

in the SR problem. Another DL-oriented perceptual evaluator is the LPIPS (ZHANG et

al., 2018a), which evaluates cossine distances between deep feature spaces using VGG-19

or AlexNet models. This work also compare the discrepancies between low-level metrics

and classification networks, proving that trained networks learns a representation of the

world that correlates well with perceptual judgments.



34

3 A JOINT-LEARN METHODOLOGY FOR IMAGE SUPER-RESOLUTION

This work aims to suggest a methodology able to improve the super-resolution per-

ceptual quality of any neural network by employing a task-oriented approach. A semantic

segmentation module was chosen as a support function to evaluate the super-resolved

outputs, allowing it to be an evaluator proxy of the SR generative model. In other words,

the segmentation module will force the generator to produce better SR images in regions

where there is compatibility between the original and SR segmentation masks, and we be-

lieve that textured regions can benefit the most from the strategy. The segmentation loss

(Lseg) provided by the comparison of SR output masks and original masks is not related

to traditional per-pixel metrics, allowing to focus on class content on synthesized images

and, therefore, create perceptually better images.

To assert the validity of this proposal, multiple experiments were run with a com-

bination of super-resolution and segmentation modules, on different datasets. For the SR

networks, we analyze the behavior of two GAN-based super-resolution modules: ESR-

GAN (WANG et al., 2018c) and SAGAN (ZHANG et al., 2019). Generative Adversarial

modules were chosen because the adversarial training process is able to generate realistic

textures, and GAN-based architectures are a to-go in SOTA perceptual-oriented networks

(BLAU et al., 2018). ESRGAN was chosen as a direct enhancement of the already pro-

posed SRGAN, the first GAN-based super-resolution method in the deep learning liter-

ature, while the SAGAN method was a pioneer when using attention mechanisms and

generative adversarial nets.

For the segmentation module, two were chosen: the first one is the vanilla UNet

(RONNEBERGER; FISCHER; BROX, 2015), widely used in multiple tasks and com-

monly chosen as a backbone for specific applications. The "vanilla" descriptor means

that the UNet module used in this work is identical to the author’s proposal. The second

choice was HRNet (WANG et al., 2020), a powerful state-of-the-art multi-purpose proce-

dure that keeps high-resolution feature maps through the training process and implements

information exchange between lower-resolution fields. Both models will describe the

hybrid task behavior on a common (and theoretically less performing) and actual (and

perhaps more restrictive) models.

Regardless of the chosen SR and segmentation baselines, the objective loss of

our training procedure is a compound of multiple individual loss functions. The first

component is the MSE reconstruction loss (Lmse), widely explored in image restoration
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Figure 3.1 – Schematic representation of the proposed methodology. The prefixes I and M
indicates the rgb image and the gray-scaled mask, respectively, while de prefix L describes the

loss functions employed in this work.

techniques. As given in the Equation (2.4), the mean squared error objective between the

ground-truth high-resolution image IHR and the synthesized image ISR is given by

Lmse =
∑
i

∥IHR − ISR∥2 (3.1)

for every pixel i of the image in question (or batch of images, in which case the value is

averaged by the amount of images). In other words, it’s the sum of euclidean distance

between IHR and ILR correspondent pixels, for all three RGB bands.

Introducing a Generative Adversarial Network as a learning mechanism usually

implies the usage of a GAN generative loss (Lg, from Equation (2.6)). The min-max loss

described by Goodfellow et al. (2014) provides an effective way of training the generator

to produce more realistic images while improving the capacity of the discriminator to

identify real or fake images. Whilst the discriminator loss function Ld is used only in

the optimization of the discriminator, Lg is employed in the generator optimization in a

slightly modified version from Equation (2.6):

Lgan = − log(Dgan(Ggan(ILR)), (3.2)

and it can be viewed as another way of framing the loss perspective, where the generator

maximizes the probability of images being real, instead of minimizing the probability of

an image being fake. This helps with the vanishing gradient problem often observed in

the beginning of the training, since the loss expression normally would evaluate to small
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values since G is not yet capable of creating good faithful images.

Since our main goal is to achieve visually plausible SR images, we also explicitly

explore a perceptual loss (Lper) to train the model. As per Equation (2.15), it is given by

Lper = ||ϕj(ISR)− ϕj(IHR)||22, (3.3)

such that the model is expected to generate textures that are similar to intermediate feature

representations of an image. Computing distances into a feature space instead of the

image space allows a better representation of high-frequency information, resulting in a

photo-realistic images.

Finally, the fourth and final component of the joint loss is the task-driven seg-

mentation loss (Lseg). The core idea of using a segmentation model to complement the

joint loss is to employ an auxiliary evaluator that mixes the pixel-wise symbolism (since

segmentation maps are calculated pixel-wise, such is the cross-entropy loss) and local

texture detection (by using segmentation models), when translating the super-resolved

image into the label space. This idea shares a similarity with (LIM et al., 2017), which

uses the feature space instead, and obtains interesting visual results. Although multiple

choices for loss functions related to segmentation can be used, we explored the categorical

cross-entropy between the original and SR-inferred masks over Nc classes, given by

Lseg =
i∑

−ti log qi, (3.4)

where, for each pixel i of the image, ti is equal to 1 if the analysed pixel is correctly

classified, being equal to 0 otherwise, and qi determinate the classification probability of

that pixel for the analysed class. An ideal classification score (Lseg = 0) would mean that

every pixel is correctly classified with 100 % confidence, and in a totally mislabeled case,

Lseg would tend to infinite.

The four employed losses are balanced through parameters (α, β, γ, δ) according

to the following expression

L = αLmse + βLgan + γLper + δLseg, (3.5)

and an overview of the proposed method can be readily verified in the Figure 3.1.
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3.1 Datasets

Remote sensing data has been widely used as a way to monitor and assess land

cover and land usage in natural resources management and change detection in urban

and countryside areas (BOGUSZEWSKI et al., 2020). They are used in a large pool of

applications, ranging from urban planning (ZHOU; HUANG; CADENASSO, 2011) to

vegetation monitoring (BARBEDO, 2018) to military operations.

From the specific niche of satellite imagery, there are multiple datasets covering

many computer vision tasks, such as object detection (XIA et al., 2017; LAM et al.,

2018), scene classification (SUMBUL et al., 2019; LóPEZ-JIMéNEZ et al., 2019) and

semantic segmentation (BOGUSZEWSKI et al., 2020; MOHAJERANI; SAEEDI, 2020).

However, just a few of them provide images from high-resolution sensors. Furthermore,

accurate multi-label datasets for semantic segmentation tasks are scarce as well.

Choosing and/or manipulating a dataset for machine learning applications is es-

sential for the success of specific hand-tailored tasks. This happens because the dataset

is expected to reproduce with fidelity the range of conditions expected to be found in a

real-world scenario. Besides, building a comprehensive dataset that captures all visual

characteristics of complex environments is often a labor-intensive, complex and error-

prone process (BARBEDO, 2018). In this context, this work presents a high-resolution

land cover image set that describes very well important features of the terrain in very di-

versified biomes. The proposed CGEO dataset is one of the results of the mapping project

of the state of Rio Grande do Sul - BR, which aimed to refresh the state’s cartographic

database to follow a better government strategic planning. This project mapped, until

now, more than 10.000 km² of the metropolitan area of Porto Alegre, the largest city of

Rio Grande do Sul.

The CGEO dataset captures multiple contexts between mix of densely populated

areas and extensive agriculture lands, appropriately describing the heterogeneous scene

of the global surface. It contains aerial RGB orthophotos with resolution of 50cm/pixel,

split in 25,000 patches of 512 × 512 pixels distributed in three folds: 80% train, 10%

validation and 10% test. This collection contains annotations of five classes: natural soil,

woodlands, watersheds, roads and buildings.

Aside from the proposed CGEO dataset, a second set of images is also used for the

sake of comparison. The LandCoverAI dataset, proposed by Boguszewski et al. (2020),

covers a total area of 216.27 km2 from Poland and contains annotations of four classes:
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Figure 3.2 – Sample of CGEO (on top) and LCAI (bottom) datasets. The right part represents the
semantic map of such images.

exposed soil, buildings, woodlands and water. The raw images were pre-processed to

obtain 10, 674 tiles with dimension 512 × 512 and a resolution of 50cm. The authors

divided the image series into three splits: 70% train set, 15% validation set, and 15% test

set. Samples of both datasets are shown in Figure 3.2.

3.2 Evaluation

As the main focus of this work glances on perceptual quality of super-resolved

images, LPIPS and and PI (Perceptual Index) are used as the main evaluation metrics to

assess the visual quality of super-resolved images: while the first one is a full-reference

metric (it uses IHR to calculate its score), the PI is a no-reference metric (since it only

uses ISR). Both metrics were used in the PIRM 2018 challenge (BLAU et al., 2018) to

select the competition winner amongst various categories. However, we also use conven-

tional reconstruction metrics such as PSNR (Equation (2.18)) and SSIM (Equation (2.17))

as complementary measures for two reasons: first, they are still widely used in multiple

research papers involving super-resolution (WANG et al., 2018c; KIM; LEE; LEE, 2016;

LEDIG et al., 2016); and second, to analyze discrepancies between per-pixel and per-
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ceptual metrics and inferring, after visual analysis, which descriptors better represent the

human perception of quality.

Since a segmentation-based loss is used, we expected that the joint approach

would be able to yield better segmentation results than SR images produced by a baseline

super resolution module. The "baseline" model is a network that did not use the segmen-

tation loss as optimization tool. If confirmed, that hypothesis should reinforce the idea

that a joint task could create a closer representation of the latent space described by the

observed HR images. Hence, we analyze the segmentation maps of super-resolved im-

ages to check the mask outputs during the optimization process. For that, widely known

segmentation metrics such as accuracy, IoU and its multi-class counterparts, given by

Equations (2.10),(2.11),(2.12), and (2.13), were employed.

3.3 Training procedure

The complete training schedule is composed by two main parts: 1) pre-training the

SR / Seg modules that will be used as baseline methods; and 2) fine-tuning of the baseline

SR module. The first step, training the segmentation module, was judged necessary for

many reasons: first, initial outputs from the Seg module will be dissonant when compared

to MHR data, thus contributing poorly (or even against) the learning procedure, which

requires some sort of pre-train / warm-up. Second, a pre-trained module will greatly

reduce training duration, providing a reusable component between every experiment that

uses the same Seg model. Third, it will ensure that a common segmentator is shared

between experiments, disclosing the same calculus of Lseg.

Both UNet and HRNet modules were trained for 200 epochs by using an Adam

optimizer (KINGMA; BA, 2014) with default coefficients (α, β) = (0.9, 0.999) and a

multi-step learning strategy which schedules the learning rate to to 1e−4, 1e−5 and 1e−6

on the first, 100th and 150th epochs, respectively. Weights are initialized using a normal

distribution since multiple training procedures report performance gains with such initial-

ization (HE et al., 2015; WANG et al., 2018c). Random flip and rotation (90◦, 180◦, 270◦)

were employed as data augmentation policies. Due to memory restrictions, the chosen

batch size varies accordingly to the baseline segmentation module: 16 when using the

UNet, and 8 for the HRNet, since the latter has a larger memory footprint.

The baseline super-resolution network also passes through a pre-train procedure,

since the fine-tuning of multiple experiments requires a way less time than re-training a
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model from scratch. In such training scenarios, the GAN-based networks were trained for

200 epochs and the base learning rate was empirically set to 1e−4, with a decay factor of

0.1 in the middle of training. Adam optimizer was also employed with default coefficients

(0.9, 0.999). The fixed input size of 256 × 256 was obtained after using random crop,

rotation and flip as data augment functions, and the batch size varied according to the

choice of the GAN network: 12 for ESRGAN and 3 for SAGAN.

After pre-training the baselines, the SR and Seg modules can be both employed

in the joint training process to fine-tune the super-resolution network. Since achieving

stable training of GANs is a known problem (GOODFELLOW; BENGIO; COURVILLE,

2016), it was necessary to employ a two-stage sweep strategy to find the optimal hyper-

parameters described in Equation (3.5). Initially, a grid search is performed for the SR

module alone (i.e., we set δ = 0) on hyper-parameters α, β, γ. To avoid overly large

search spaces, the range for each parameter is a set of three values {1e−3, 1e−2, 1e−1},

yielding 27 runs for each module-dataset combination. The optimal tuple (α∗, β∗, γ∗) was

determined by the highest PSNR/SSIM combination in the validation test at the end of

each train, after 50 epochs. In the second stage, the optimal set (α∗, β∗, γ∗) was frozen,

and the full loss function (with the segmentation term) was tested by using grid search

only for δ ∈ {1e−3, 1e−2, 1e−1}, yielding a total of 30 runs per module/dataset. For

the four possible combinations between SAGAN and ESRGAN modules with LCAI and

CGEO datasets, a total of 120 runs were made just to define the optimal hyper-parameters

(α∗, β∗, γ∗, δ∗) for the experiments. A simple overview of of training procedure is avail-

able as pseudo-code in Algorithm 1.

The joint learning experiments are named with a combination of three letters and a

number, which indicates the dataset used, the SR module employed, the chosen segmen-

tation module and an indicator of the δ value, respectively. The baseline super-resolution

experiments, which do not use the segmentator, have a similar naming convention, but do

not use the last two digits and have a ’B-’ prefix. For example, CEH1 is a experiment

run on CGEO dataset using ESRGAN and HRNET with a loss segmentation weight of

δ = 1e-1. Similarly, the B-LS indicates the baseline SAGAN network for the LCAI

dataset.

Experiments were performed using a single Tesla V100 GPU with 32Gb of mem-

ory, a PyTorch v1.7 backend, and Python 3.7.3. Helper top-level libraries such as Pytorch-

Ignite (FOMIN et al., 2020), and Hydra (YADAN, 2019) were also employed to organize

the training procedure and training metadata organization, respectively.
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Algorithm 1 Training procedure
for Dataset in (LCAI,CGEO) do

for Segmentation Module in (HRNET,UNET) do
Pretrain Segmentation Module

end for
for Super-Resolution Module in (ESRGAN,SAGAN) do

Pretrain Super-Resolution Module
end for
for Super-Resolution Module in (ESRGAN,SAGAN) do

Load Super Resolution pretrained weights
Sweep hyper-parameters for (α, β, γ)
for Segmentation Module in (HRNET,UNET) do

Load Segmentator pretrained weights
Fine-tune the Super-Resolution Module using δ sweep: (α∗, β∗, γ∗, δ)

end for
end for

end for
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4 EXPERIMENTAL RESULTS

The multiple combinations between different data sets, SR and segmentation net-

works, as described in the last chapter, yielded several experiments. As the results are

very dependent of the training data, they were organized according to the image source

used – either CGEO or LCAI –, resulting in two batches of experiments for each dataset:

one for ESRGAN and another for SAGAN as the baseline SR approach. Best results

per batch of experiments are shown in bold, while the best outcomes per segmentation

module are highlighted in blue for the UNet model and in red for the HRNet one.

The generalization capability of the proposed methodology is also analyzed in

Section 4.3, when networks trained in one data set were inferred in a different one. Then,

Section 4.4 displays a comparison between the proposed method and multiple SOTA super

resolution procedures.

4.1 Results for the CGEO dataset

The hyperparameter sweep process yielded the best baseline SR results when us-

ing the weights (α∗, β∗, γ∗) = (0.1, 0.01, 0.001). These values were used to tune the Lseg,

when another grid search was performed to tune hyper-parameter δ, setting up six pro-

cedures (three for each segmentation network). Therefore there are, for each dataset/SR

network combination, six runs to be analyzed, plus one regarding the baseline experiment

(without the segmentator).

4.1.1 Super Resolution Results

The first set of experiments focus on evaluating the visual quality of super-resolved

images using different strategies. Table 4.1 shows the results using ERSGAN as the

baseline SR, and it is noticeable that the introduction of the segmentation loss produced

better perceptual metrics in every experiment, peaking in the run CEU1, which produced

≈ 25% improvement on LPIPS, better SSIM and even a comparable PSNR when faced

against the baseline B-CE that did not use the segmentation module. In fact, almost

every experiment performed better in all analyzed metrics: the few exceptions were the

marginally lower scores of PSNR observed when using a greater contribution for Lseg,
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which is expected since the attenuation of pixel-wise participation on total loss L would

deem it less PNSR-oriented.

Table 4.1 – PSNR, SSIM, LPIPS and PI metrics for SR outputs using CGEO dataset and
ESRGAN module.

Experiment δ PSNR ↑ SSIM ↑ LPIPS ↓ PI ↓

B-CE 0 30.2424 0.6568 0.2702 7.1803

CEU1 1e−1 30.1782 0.6747 0.2085 6.5564
CEU2 1e−2 30.3724 0.6751 0.2148 6.8191
CEU3 1e−3 30.5273 0.6792 0.2261 6.7887

CEH1 1e−1 29.9092 0.6672 0.2396 6.6893
CEH2 1e−2 30.2448 0.6779 0.2410 6.6905
CEH3 1e−3 30.5362 0.6806 0.2511 6.8993

It is also worth noticing the uncorrelated nature between conventional metrics and

perceptual quality: it is readily observed that better PSNR/SSIM scores are not always

correlated to similar improvements on perceptual metrics, here represented by LPIPS/PI,

when comparing CEH1 and B-CE runs, for example. This phenomenon can be explained

by the perception-distortion trade-off described by Blau e Michaeli (2018): superior per-

formance of perceptual metrics can come with the cost of distortion and vice versa. Over-

all, we observe that higher values of δ promoted better LPIPS/SSIM, supporting the theory

that realistic textures can be enhanced with segmentation maps from an ensemble model.

For SAGAN-based experiments, reported in Table 4.2, lower values of δ provided

better overall metrics, and the experiment running the UNet as the segmentation module

yielded the best perceptual metrics. A balanced choice of δ = 1e−2 yielded the best

LPIPS/PI results in the experiment CSU2, yet smaller weights also display perceptual

improvements and better distortion metrics. For HRNet-based experiments, it is noticed

that a larger value of δ in the CSH1 experiment already generates great boost in per-pixel

scores, but worse LPIPS and slightly better PI.

Notice that, in this set of experiments, the PSNR was the metric that most benefited

from using the segmentation, even in high values of δ. Metrics improvements translated to

better visual quality, since the more pleasant images had less jagged edges and smoother

transitions between different image features.
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Table 4.2 – PSNR, SSIM, LPIPS and PI metrics for SR outputs using CGEO dataset and SAGAN
module.

Experiment δ PSNR ↑ SSIM ↑ LPIPS ↓ PI ↓

B-CS 0 23.542 0.6385 0.26 7.2329

CSU1 1e−1 26.7678 0.6247 0.2536 7.5562
CSU2 1e−2 27.9387 0.6522 0.2294 6.6737
CSU3 1e−3 28.935 0.6675 0.2302 7.0847

CSH1 1e−1 28.2939 0.6544 0.3117 7.1836
CSH2 1e−2 28.806 0.6586 0.2453 6.8459
CSH3 1e−3 28.9896 0.6678 0.2491 6.941

(a) B-CS sample (b) CSU2 sample (c) CSH1 sample
Figure 4.1 – Sample of baseline (B-CS), better LPIPS/PI (CSU2) and worst LPIPS (CSH1)

experiments. Even though having worse LPIPS score, the high improvement of PSNR wields
sharper and more pleasant super resolved images.

4.1.2 Segmentation Results

Using the segmentation module can also improve the segmentation results of

super-resolved images. This is particularly useful in image synthesis tasks involving aerial

imagery, where segmentation maps are often necessary for multiple applications. Exper-

iments run using the joint methodology displayed better segmentation scores than the

baseline SR method, suggesting that this SR task can be used as a pre-processing phase

on other computer vision task, such as the semantic segmentation.

Improvements of segmentation metrics are vastly improved when using the seg-

mentation loss Lseg when compared to the baseline experiments. The vanilla implemen-

tations of the SR task are not capable, face the segmentator, of producing loyal textures,

but higher values of δ force the outputs to be more coherent to the class labels, which

is directly translated into better perceptual scores according to Tables 4.1 and 4.2. For

runs using the ESRGAN SR network, described on Table 4.3, it is noticeable that the
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baseline experiments reveal a domain transfer problem that was also observed in the ex-

periments running the HRNET module: the road region suffered a class reclassification,

and its common signature (oftentimes similar to exposed soil) was identified as another

class after the super-resolved image synthesis. This behavior was not observed using the

UNET module, but the IoU values for the track region are still low. That is why mean

class scores, like mean accuracy and mean IoU are better on UNet-based experiments;

otherwise the performance of both segmentators would be very similar. Nonetheless, it is

noticed great segmentation improvements in every experiment, especially when consid-

ering the watershed and building classes. The segmentation maps for runs B-CEU and

CEU-1 (best MAcc / MIoU) are displayed on Figure 4.2.

Table 4.3 – Accuracy (Acc), Mean Accuracy (MAcc), Per-class IoU (in the following order:
Woodland, Building, Watershed, Road) and Mean IoU (MIoU) for segmentation masks obtained

from super-resolved images of CGEO dataset and ESRGAN network.

Experiment δ Acc MAcc IoU MIoU

B-CEU 0 0.8282 0.4238 0.8328 / 0.5129 / 0.1619 / 0.0549 0.3906
B-CEH 0 0.8628 0.4162 0.8378 / 0.6223 / 0.2555 / 0 0.4289

CEU1 1e−1 0.8998 0.5803 0.8818 / 0.7205 / 0.4019 / 0.2356 0.56
CEU2 1e−2 0.8999 0.5401 0.8809 / 0.7202 / 0.3977 / 0.1862 0.5464
CEU3 1e−3 0.8891 0.5067 0.8670 / 0.6997 / 0.3277 / 0.1527 0.5118

CEH1 1e−1 0.901 0.4767 0.8825 / 0.7194 / 0.3980 / 0 0.5
CEH2 1e−2 0.8974 0.4665 0.8788 / 0.7166 / 0.3488 / 0 0.4861
CEH3 1e−3 0.8897 0.4551 0.8681 / 0.7027 / 0.3141 / 0 0.4712

(a) Original mask (b) B-CEU mask (c) CEU1 mask
Figure 4.2 – Original mask and sample masks after inference of baseline (B-CEU) and better

MAcc/MIoU (CEU1) experiments. Notice that the road class is not captured on most
experiments, due the domain transfer and thin dimensions of road parts.

Using the SAGAN network has shown similar segmentation results when com-

pared to the ESRGAN model. The baseline experiments are remarkably comparable,
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showing that both segmentators initially have similar inference capabilities on synthe-

sized data. Procedures using the UNet observed better metrics on multiple classes, but

buildings, watersheds and roads benefited the most, while other classes had smaller im-

provements. The HRNet model was still not able to detect the road class, nor in the

vanilla SAGAN module in the joint methodology with the HRNet as segmentator, but

still pleaded great segmentation results on woodland and building classes, as reported in

Table 4.4

Table 4.4 – Accuracy (Acc), Mean Accuracy (MAcc), Per-class IoU (in the following order:
Woodland, Building, Watershed, Road) and Mean IoU (MIoU) for segmentation masks obtained

from super-resolved images of CGEO dataset and SAGAN network.

Experiment δ Acc MAcc IoU MIoU

B-CSU 0 0.8485 0.4266 0.8141 / 0.6281 / 0.2239 / 0.0347 0.4252
B-CSH 0 0.8693 0.41 0.8391 / 0.6583 / 0.2370 / 0 0.4336

CSU1 1e−1 0.8929 0.5318 0.8698 / 0.7065 / 0.3990 / 0.1856 0.5402
CSU2 1e−2 0.8977 0.533 0.8758 / 0.7111 / 0.4280 / 0.1818 0.5491
CSU3 1e−3 0.8874 0.4977 0.8629 / 0.6984 / 0.3259 / 0.1613 0.5125

CSH1 1e−1 0.8859 0.444 0.8629 / 0.7061 / 0.2617 / 0 0.4576
CSH2 1e−2 0.8895 0.4564 0.8687 / 0.7056 / 0.3017 / 0 0.469
CSH3 1e−3 0.8861 0.4479 0.8630 / 0.6966 / 0.2982 / 0 0.4644

4.1.3 Visual Results

Visual results for the inference process of experiments in this chapter are dis-

played in the Appendix A. Figures A.1 and A.3 show inference results for SR outputs

of experiments from Tables 4.1 and 4.2, while Figures A.2 and A.4 refer to experiments

from Tables 4.3 and 4.4. Notice that experiments using the segmentation module are

able to better replicate vegetation and soil textures in comparison with the baselines B-

CE or B-CS experiments. Resampling the LR image using bicubic interpolation yields

jagged linear features (such as roads and cart tracks) and unrecognizable buildings, while

the joint learning approach can better reproduce the vegetation granularity and buildings

edges.

For the SAGAN-based experiments, the non-optimal choice of δ is quickly no-

ticeable in the SR outputs: the example displayed in Figure A.3 has uncanny granularity

for δ = 0.1, but more natural cart tracks on CSU3 and CSH3. It’s also very important

to notice that small visual artifacts do not seem to reasonably affect perceptually-aware
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metrics since CSU2 and CSH2 experiments have the best results for the SAGAN/CGEO

module/dataset combination and still showed artifacts.

Figures A.2 and A.4 exhibits how the SR outputs are observed face the segmen-

tation networks. CEU3 run captured the best vegetation contour details and a small nu-

ance of buildings on the top of the image, even when the original label did not assert

it. The baseline runs show jagged vegetation contour, suggesting the use of SR task as

pre-processing phase for the pixel classification. For the Figure A.4, a forest area on the

left of the image is not retracted in the original label, but is still captured in every experi-

ment. The UNet and HRNet modules, although, have slightly different perceptions of the

terrain, since the central area, which is a mix of land and vegetation, is captured mostly

as woodlands for the HRNet, while the UNet classifies it as land. In both experiments,

a major problem present in large computer vision datasets is noticeable: the quality of

annotated data. High-quality annotations are usually done manually, so very large aerial

imagery datasets would require much manpower to create and review an “ideal” set of

labels, which is often not feasible.

4.2 Results for the LCAI dataset

Like the experiments run on the CGEO dataset, the 27-run hyper-parameter sweep

wielded optimal vales of (α∗, β∗, γ∗) = (0.1, 0.01, 0.01), which were used in the joint ap-

proach. Since the same optimal set of hyper-parameters was found, there is an indication

of good cross-dataset generalization for the ESRGAN proposal.

4.2.1 Super Resolution Results

The baseline experiment dwelled on a vanilla ESRGAN implementation (B-LE)

displayed higher values of PSNR and LPIPS if compared to the CGEO dataset, indicating

different core characteristics between datasets. The segmentation-guided experiments re-

ported in Table 4.5 show consistent improvements in perceptual metrics when compared

to the baseline SR approach, supporting the hypothesis that using a segmentation mod-

ule could improve super-resolution results. In particular, experiments LEU1 and LEH1

yielded the best overall perceptual scores, while LEU1 displayed improvements on ev-

ery four metrics. Notice that the LEH1 experiment displayed better perceptual scores but
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worse pixel-oriented metrics, which could be correlated to the distortion-perception trade-

off already reported in the literature (BLAU; MICHAELI, 2018), which asserts the com-

plementary (or oppose) behavior between pixel-wise observations and perceptual ones.

Table 4.5 – PSNR, SSIM, LPIPS and PI metrics SR outputs using LandCoverAI dataset and
ESRGAN module

Experiment δ PSNR ↑ SSIM ↑ LPIPS ↓ PI ↓

B-LE 0 32.1645 0.7909 0.2608 7.1715

LEU1 1e−1 32.1049 0.7929 0.1912 6.794
LEU2 1e−2 32.2496 0.7954 0.2092 6.8183
LEU3 1e−3 32.2701 0.7961 0.2105 6.8752

LEH1 1e−1 29.7972 0.7774 0.2041 6.4591
LEH2 1e−2 31.6353 0.7871 0.2153 6.7021
LEH3 1e−3 32.2266 0.7982 0.2201 6.8829

The combination of SAGAN and segmentation proxy also yielded better metric

measurements against comparison with the baseline approach. Almost every factor of δ,

as seen in Table 4.6, reported better values, with the exception of experiments that had

δ = 0.1, which created some training instability and degradation of perceptual and pixel-

wise metrics. Unbalanced values of Lseg in front of Lmse, Lgan and Lper is probably the

reason for degradation in the image generation procedure, since incoherent values of Lseg

are not expected to improve the SR module.

Larger values of δ in experiments LSU1 and LSH1 displayed distortions of PSNR,

SSIM and LPIPS against the B-LS run, while the LSU3 and LSH3 had great improve-

ments in all four metrics. As the SSIM value was not so affected between runs (opposed

to the PSNR), it is plausible to affirm that the distortions originated by LSU1 and LSH1

are mostly in the pixel level and not on image structure, which is confirmed in Figure 4.3.

Experiments LSU2 and LSH2 had an average performance: both have better LPIPS and

worse PI values.

4.2.2 Segmentation Results

The segmentation results for the LandCoverAI dataset + ESRGAN module is dis-

played in Table 4.7. As it was observed in other combinations of segmentator/datasets,

the segmentation results also benefit from the joint approach when compared to vanilla

SR implementations. Classification improvements were mostly noticeable in the HRNet



49

Table 4.6 – PSNR, SSIM, LPIPS and PI metrics SR outputs using LandCoverAI dataset and
SAGAN module

Experiment δ PSNR ↑ SSIM ↑ LPIPS ↓ PI ↓

B-LS 0 28.4893 0.7727 0.2782 6.7645

LSU1 1e−1 26.5764 0.7475 0.3566 7.0317
LSU2 1e−2 28.4868 0.7797 0.2581 6.813
LSU3 1e−3 30.4482 0.7883 0.2319 6.6583

LSH1 1e−1 24.5875 0.7507 0.3628 7.1098
LSH2 1e−2 29.4145 0.7787 0.2591 6.7822
LSH3 1e−3 30.0162 0.785 0.2237 6.7004

(a) HR image (b) LSH1 image (c) LSH3 image
Figure 4.3 – HR image, LSH1 and LSH3 generated images. The LSH1 low PSNR value was

originated by a pixel translation value, but the image structure is still present.

experiments, since the super-resolved images from these runs improved the building IoU

by over 20%. In contrast to the CGEO dataset, the watershed detection worked very well

on the baseline experiments, especially using the UNet background and achieving around

90% of IoU. Besides the watershed class, the LCAI dataset is perceived similarly between

the UNet and HRNet modules.

The watershed detection in the LCAI set achieved almost 0.95 value in the LEH2

run, which is a remarkable improvement of over 50% from the vanilla B-LEH experiment.

For HRNet-based methodologies, segmentation metrics were enhanced in every experi-

ment if compared to the B-LEH experiment suggesting, in consonance with 4.5, that the

Lseg contribution is guiding a better texture generation face the improved segmentation

perception. UNet-based experiment, on the other hand, displayed only minimal enhance-

ments on segmentation maps, but such small improvements were already enough to es-

tablish perceptual improvements on the SR module. We also note that, from amongst the

four segmentation metrics here displayed, the accuracy is the most correlated to percep-

tual scores: LEU1 and LEH1 have the best accuracy scores and best perceptual metrics,
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which is expected, since higher accuracy means a smaller value of Lseg produced by the

cross-entropy loss function.

Table 4.7 – Accuracy (Acc), Mean Accuracy (MAcc), Per-class IoU (in the following order:
Soil,Building,Woodland,Watershed) and Mean IoU (MIoU) for segmentation masks obtained

from super-resolved images of LCAI dataset and ESRGAN network.

Experiment δ Acc MAcc IoU MIoU

B-LEU 0 0.9378 0.8476 0.8906 / 0.4538 / 0.8720 / 0.9046 0.7803
B-LEH 0 0.9151 0.7499 0.8569 / 0.4514 / 0.8783 / 0.5944 0.6953

LEU1 1e−1 0.9463 0.8441 0.9030 / 0.4681 / 0.8962 / 0.8850 0.7881
LEU2 1e−2 0.9438 0.8408 0.9007 / 0.4667 / 0.8895 / 0.8849 0.7855
LEU3 1e−3 0.9416 0.84 0.8992 / 0.4666 / 0.8801 / 0.8874 0.7833

LEH1 1e−1 0.9604 0.8829 0.9280 / 0.5630 / 0.9147 / 0.9463 0.838
LEH2 1e−2 0.96 0.8797 0.9276 / 0.5504 / 0.9145 / 0.9439 0.8342
LEH3 1e−3 0.9597 0.879 0.9283 / 0.5562 / 0.9176 / 0.9387 0.8353

Following up on the SAGAN procedures, we noticed the best relative segmen-

tation performance increase of any combination of dataset/segmentator. The watershed

IoU, for example, surged from 0.298 from the B-LSU probe to 0.8483 in the LSU3 run,

almost tripling its initial value; for the same tuple of experiments, the building detection

improved from 0.0366 to 0.3615, an improvement of around ten times. UNet-based runs

observed better results with lower values of δ, as also the HRNet-based ones, but the

sensibility to σ adjustments was higher when employing the UNet segmentation module.

Optimization of the SR module behaves differently between different combina-

tions of SR model / dataset. While using the SAGAN module over the CGEO data pro-

vided better segmentation metrics for δ = 0.01, LCAI data displayed optimal scores when

δ = 0.001, while higher values of δ did not provide the best segmentation metrics (but

still yielded great improvements when compared to baseline experiments B-LSU and B-

LSH). ESRGAN experiments, on the other hand, usually yield the best scores for higher

values of δ.

The UNet-related run witnessed huge IoU improvements on experiment LSU3,

especially on buildings (from 0.0366 to 0.3615) and watershed (from 0.2980 to 0.8483)

classes. Using the HRNet module also yielded similar improvements: the mIoU improved

from 0.425 on B-LSH to 0.7076 on LSH3, also pushed up from enhancement on buildings,

which is noticeable in Figure 4.4, and watershed classifications. The baseline experiments

also have a similar segmentation capacity on synthesized data, with the UNet showing

slightly better classification capacity on the watershed class. That is why the MIoU and

MAcc scores are better on UNet runs.
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Table 4.8 – Accuracy (Acc), Mean Accuracy (MAcc), Per-class IoU (in the following order:
Soil,Building,Woodland,Watershed) and Mean IoU (MIoU) for segmentation masks obtained

from super-resolved images of LCAI dataset and SAGAN network.

Experiment δ Acc MAcc IoU MIoU

B-LSU 0 0.779 0.5883 0.6561 / 0.0366 / 0.7733 / 0.2980 0.4411
B-LSH 0 0.7576 0.5652 0.6267 / 0.0520 / 0.7898 / 0.2312 0.425

LSU1 1e−1 0.8544 0.7067 0.7590 / 0.1948 / 0.8481 / 0.4329 0.5588
LSU2 1e−2 0.8879 0.7269 0.8157 / 0.1096 / 0.7971 / 0.7450 0.6169
LSU3 1e−3 0.9317 0.8171 0.8805 / 0.3615 / 0.8705 / 0.8483 0.7403

LSH1 1e−1 0.9166 0.7283 0.8714 / 0.2661 / 0.8645 / 0.6151 0.6543
LSH2 1e−2 0.926 0.7425 0.8760 / 0.3401 / 0.8896 / 0.6542 0.69
LSH3 1e−3 0.9309 0.7633 0.8825 / 0.3829 / 0.8990 / 0.6659 0.7076

(a) Label (b) B-LSH image (c) LSH3 image
Figure 4.4 – Original label, B-LSH and LSH3 segmentation maps. The inference capability of

super-resolved images face the segmentator is increased, as observed by the building
classification gains.

4.2.3 Visual Results

Like the experiments conducted with CGEO dataset, more visual results are ex-

pressed in the Appendix A. Results related to LCAI are shown in Figures A.5, A.7, A.6

and A.8. The chosen picture to represent the combo ESRGAN/LCAI contains a mix of

watershed, woodlands and exposed soil, and the results of Table 4.5 are very explainable

from figures of A.5: near metrics are translated to similar images, but the PSNR/SSIM

differences observed when using the HRNet module are readily seen from the slight col-

oration change on runs LEH1 and LEH2. This subtle color change did not affect the clas-

sification accuracy of the HRNet module, since experiments using the ESRGAN/HRNet

combination wielded the best segmentation metrics over the other combinations. Even

though the experiments in Figure A.6 share similar metrics, the segmentation maps can

utterly change, a fact mostly observed in the tree class. Also, the small lake on the right
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part of the image is most of the time “forgotten" by the UNet module but remembered by

the HRNet one, a probable cause of higher values IoU values for LEH experiments for

the watershed class.

The joint approach demonstrated a strong regularization capacity for low values of

δ on SAGAN experiments, results that can be seen on Figure A.7. The color match prob-

lem on baseline and LSU1 and LSH1 runs explains the low PSNR/SSIM values, while

the best looking images , from inquired on LSU3 and LSH3, also had the best perceptual

scores. For the segmentation results displayed on Figure A.8, it’s also noticeable once

more the regularization factor of Lseg since B-LSU and B-LSH demonstrated insalubri-

ous masks, which got better on other experiments.

4.3 Generalization capability over datasets

Successful deployment of machine learning models often requires generalization

capability, being able to accurately cover multiple data domains without hurting the model

accuracy. While this is usually achieved by applying transfer learning techniques to the

trained model, poor generalization and decreased accuracy are still observable due the

domain shift. Besides transfer learning (model weights manipulation from multiple net-

works trained on different data), generalization can also be achieved by incrementing the

amount of data (and annotations) from the target domain, a situation where augmentation

techniques could create substantial datasets to tackle multiple domains.

Ideally, the trained model should present similar results on multiple unseen do-

mains without further training, but limitations on training a generalized model issue poor

performance of “unseen” data, which is a major roadblock for deploying models into real-

world data. This is especially true for remote sensing imagery: good performance over a

unique dataset is already difficult because of the very extensive set of possible object rep-

resentations of the terrain, while the literature about aerial multi-dataset coverage is still

scarce (NEUPANE; HORANONT; ARYAL, 2021). Therefore, to analyze the generaliza-

tion capacity of the proposed joint methodology, the inference phase runs on a different

dataset from the training procedure, so experiments trained on CGEO data will be in-

ferred on LCAI data and vice-versa. The chosen models for this analysis are the versions

that produced the best perceptual metrics on each dataset, namely CEU1 and LEH1, and

the respective baselines without the segmentation proxy, B-CE and B-LE, respectively, as

reported in Table 4.9.
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Table 4.9 – PSNR, SSIM, LPIPS and PI metrics for models trained on CGEO data and inferred
on LCAI (B-CE,CEU1) and trained on LCAI and inferred on CGEO (B-LE,LEH1) for the best

perceptually-aware runs from Tables 4.1, 4.2, 4.5 and 4.6. Original runs follow the naming
convention adopted before, while the inference on a module trained on a different dataset uses a

“-CGEO" or “-LCAI" suffix to nominate on which dataset the inference occurred.

Experiment PSNR ↑ SSIM ↑ LPIPS ↓ PI ↓

Trained on CGEO data

B-CE 30.2424 0.6568 0.2702 7.1803
B-CE-LCAI 30.1805 0.7142 0.335 7.6286

CEU1 30.1782 0.6747 0.2085 6.5564
CEU1-LCAI 30.1458 0.7255 0.3134 7.2349

Trained on LCAI data

B-LE 32.1645 0.7909 0.2608 7.1715
B-LE-CGEO 29.2101 0.6432 0.4382 6.5829

LEH1 29.7972 0.7774 0.2041 6.4591
LEH1-CGEO 26.1745 0.5949 0.5757 6.722

The generalization capacity of the chosen ESRGAN-based models is not great

when it is inferred from data not seen during the training phase. While similar values

of PSNR for runs trained on CGEO data, on the upper part of Table 4.9, could some-

how suggest good delineation capacities, it is easily seen the performance degradation

between baseline experiments: inference of LCAI data on runs that did not employ the

segmentation approach display PSNR / SSIM values of around 32 / 0.79, respectively,

while the same values of PSNR/SSIM on B-CE-LCAI experiment are around 8 % worse

just because of the domain change. A similar scenario can be observed in the percep-

tual metrics: B-CE-LCAI displays worse LPIPS / PI values if compared to the vanilla

B-LE implementation. This is due to many factors: 1) the dataset has multiple differ-

ent core characteristics, such as resolution, land descriptors and RGB mean and standard

deviation; 2) augmentation techniques, while still employed, were chosen to not change

the core attributes of each dataset (for example, saturation, brightness and contrast were

not used), reducing the generalization capacity on diverse data, and 3) different classes

could especially affect performance on segmentation-oriented experiments, since models

trained on specific class data may synthesize unrealistic images if train/test data do not

present the same classes, which is actually the case of CGEO and LCAI.

A different behavior is found for models trained on LCAI dataset. The baseline

experiment, B-LE-CGEO, had a similar SSIM value if compared to B-CE and slightly

smaller PSNR, but a huge deterioration for LPIPS. Metrics degradation were more promi-

nent on the LEH1-CGEO run, but the combination between ESRGAN module and HR-
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Net segmentator already yielded relative worse values amongst values from Table 4.1.

Nonetheless, PSNR, SSIM, and LPIPS values were deeply depreciated, which can be ex-

pected when using the SR + segmentation approach because of the class domain problem

between both datasets, therefore hurting the optimization realized by Lseg on G. Percep-

tual indexes were not as damaged as other metrics, such as the experiment LEH1-CGEO,

but still did not display similar results for data inferred on different datasets, such as the

pair B-CE-LCAI and B-LE, for example.

It’s also worth noticing that, for the model trained on CGEO data and inferred

on LCAI, the perceptual metrics were improved while using the segmentation proxy, but

we observed the inverse trend when reversing the datasets. In special, the LPIPS re-

sults between experiments LEH-1 / LEH-1-CGEO were disruptive for the cross-dataset

run, which can be explained by differences in class annotations between datasets and the

domain transfer problem. The latter is quite perceived in both segmentation and super res-

olution tasks (TANG et al., 2020), but it’s even more noticeable in the B-LE-CGEO and

LEH1-CGEO experiments since both SR and segmentation networks will be negatively

impacted by different class data distributions and absence of classes in the LCAI dataset,

in comparison to the CGEO data.

Results of visual inspection in Figure 4.5 show that LCAI images generated on

models trained on CGEO data were more realistic than the other combination, but still far

from pleasant visual textures, as it would suggest the metrics on “-LCAI” experiments.

More visual results are available on Appendix B.

(a) LEH1 image (b) B-CE-LCAI image (c) CEU1-LCAI image
Figure 4.5 – Images generated from the LEH1 (trained only on LCAI data), B-CE-LCAI and
CEU1-LCAI (both trained on CGEO data) for a image from the LCAI dataset. Notice that the

last two models fails to replicate the same levels of detail from the LEH1 run.
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4.4 Comparison against other super-resolution methods

To compare the performance gains of the proposed joint super-resolution method

in a real-world scenario, we used multiple recent supervised super-resolution methodolo-

gies using deep learning for a benchmark comparison:

• Attention-based Back Projection Network (ABPN) (LIU et al., 2019), where back-

projection blocks are suggested to iteratively update low and high-resolution feature

residues, and spatial attention blocks learn correlations between features at different

layers;

• Cross-Scale Non-Local Attention (CSNLN) (MEI et al., 2020b), which analyses

cross-scale feature correlation by using intra- and inter-scale attention modules;

• Deep Back-Projection Network (DBPN) (HARIS; SHAKHNAROVICH; UKITA,

2018a), which calculates correlations between mutually connected up- and down-

sampling stages by using a back-projection (IRANI; PELEG, 1991) based mecha-

nism;

• Densely Residual Laplacian (DRLN) (ANWAR; BARNES, 2020), proposing a cas-

cading residual on the residual structure to learn information from high and mid-

level features via densely concatenated residual blocks and a Laplacian attention

model;

• Enhanced Deep Residual Networks (EDSR) (LIM et al., 2017), displaying a multi-

scale model that shares most of the parameters across different scales;

• Pyramid Attention Network (PAEDSR) (MEI et al., 2020a), which analyses self-

similarity relative to image priors on a multi-scale level by using self scale-agnostic

attention modules;

• Residual Channel Attention Networks (RCAN) (ZHANG et al., 2018b), consisting

of several residual groups with skip connections and a channel attention mechanism

to adaptively rescale channel-wise features;

• Residual Dense Network (RDN) (ZHANG et al., 2018c), proposing residual dense

blocks to extract local features via dense connected convolutional layers and a

global feature fusion method to learn global hierarchical features; and

• Single Image Super-Resolution Using a Generative Adversarial Network (SRGAN)

(LEDIG et al., 2016), a pioneer GAN-based architecture to generate realistic super-

resolved images by employing adversarial and a content losses.
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It is noticeable that recent SOTA methods rely on self-attention mechanisms, stim-

ulating a fair comparison against the joint segmentation methodology with the SAGAN

module. Attention modules are a way to go to produce optimal PSNR/SSIM values, al-

though they may not be able to redeem good perceptual scores. For a fair comparison, all

models were trained using the default architecture settings suggested by the authors for

the same number of epochs (100).

Besides the aforementioned experiments, we also compare the results of baseline

runs, so we can clearly notice the impact of adopting the joint methodology on the top of

baseline experiments.

Table 4.10 displays the values of PSNR, SSIM, LPIPS and PI for the nine compet-

itive methodologies and the best perceptual-oriented experiment for the CGEO dataset on

CEU1 run. The proposed methodology generates better results for perceptual LPIPS/PI

metrics, with LPIPS value being approximately 40% better than the second-best model,

namely ABPN. Perceptual values also were the best amongst all competitors, with the

second place being the baseline B-CE experiment, and the third place is comprised by

the SRGAN module, which is expected since both (B-CE and SRGAN) employs a per-

ceptual loss in its optimization. However, the bad (second-worst) value of LPIPS value

in SRGAN was unexpected for the same reason (sole experiment, besides B-CE and our

proposal, to use a perceptual loss). One possible answer is a non-optimal combination of

original hyper-parameters for the datasets used in this work.

Best PSNR/SSIM values are observed in the ABPN run, which has the second-

worst PI. The proposed method has lower but still competitive values of pixel-wise met-

rics. The comparison against SRGAN method is especially interesting: both have similar

values of PSNR/SSIM, but the joint method yields very good improvements over the

perceptual metrics, proving the great potential of the joint method as a super-resolution

technique.

Results over the LCAI dataset, shown in Table 4.11, indicate that the proposed

methodology has the best LPIPS/PI amongst all competitors, displaying LPIPS improve-

ments of over 50% from the second-best model (CSNLN), 20% over the baseline B-LE

model and more than one point of PI over the SRGAN method. The CSNLN approach

had the best PSNR/SSIM values, but all four metrics had very similar values to the ABPN

run. The pyramid-based method PAEDSR displayed the worst LPIPS and PSNR and

second-worst SSIM, and similar bad values were observed when running the CGEO data,

probably explained by the lack of network adherence to both datasets due to non-optimal
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Table 4.10 – PSNR, SSIM, LPIPS and PI metrics for other networks when using the CGEO
dataset

Experiment PSNR ↑ SSIM ↑ LPIPS ↓ PI ↓

Proposed 30.1782 0.6747 0.2085 6.5564
ABPN 31.5132 0.7115 0.3516 10.6724

CSNLN 30.9173 0.7029 0.3534 10.4000
DBPN 30.3087 0.6746 0.4794 9.8185
DRLN 31.1385 0.7064 0.3769 10.0155
EDSR 30.7681 0.6914 0.3974 9.0428

PAEDSR 28.8526 0.6818 0.3915 10.7262
RCAN 30.9879 0.6995 0.3757 8.2211
RDN 31.2054 0.7073 0.3653 7.9088

SRGAN 30.2158 0.6710 0.4558 7.5756
B-CE 30.2424 0.6568 0.2702 7.1803

hyper-parameters. It is important to mention that we selected our representative approach

(LEH1) based on the perceptual metrics at the cost of having smaller PSNR/SSIM val-

ues. As analyzed in Chapter 4.2, selecting smaller values for δ alleviate the PSNR/SSIM

degradation. For example, the LEH3 run has more competitive PSNR (32.2266) and

SSIM (0.7982) scores while still providing the best LPIPS (0.2201) and PI (6.8829) when

compared to competitive approaches.

Table 4.11 – PSNR, SSIM and LPIPS and PI metrics for other networks - LCAI dataset

Experiment PSNR ↑ SSIM ↑ LPIPS ↓ PI ↓

Proposed 29.7972 0.7774 0.2041 6.4591
ABPN 33.2417 0.8236 0.3288 8.4332

CSNLN 33.2694 0.8259 0.3231 8.4518
DBPN 31.4422 0.7778 0.3968 7.8218
DRLN 32.6290 0.8073 0.3752 7.4282
EDSR 32.2913 0.7980 0.4000 7.5908

PAEDSR 28.2293 0.7571 0.4334 7.5296
RCAN 32.9592 0.8167 0.3521 7.7881
RDN 32.3606 0.8018 0.3852 7.4369

SRGAN 30.8207 0.7543 0.3511 7.3551
B-LE 32.1645 0.7909 0.2608 7.1715

Visual outputs for the proposed methodology, the nine corresponding models and

the original high-resolution image are displayed in Appendix C. These outputs give us a

visual representation of how better perceptual metrics are translated to texture synthesis

and, therefore, better better human assessment of the scene. Figure C.1, representing the

CGEO dataset, displays over-smoothed outputs very noticeable in most of the methods,

not only in texture but also in shape, especially in non-uniform areas (rooftops and veg-
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etation, for example). Most of the methods also find it hard to produce sharp building

edges, producing irregular edges, explained by the texture discontinuity between build-

ings and soil on LR images and the ill-posed nature of the super-resolution task. The

proposed method is able to produce jagged edges at the cost of blurriness, especially in

densely populated areas: class transitions are blurry, being otherwise faithful to the HR

image, particularly in heterogeneous patterns, such as rooftops and vegetation. The same

issue is verified in Figure C.2: no method is very close to the same sharpness details of

the HR image, but a middle term between over-smoothed (such as CSNLN and ABPN)

and granulated (SRGAN) terms made the proposed model a good alternative to generate

more realistic images.
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5 CONCLUSION

Whilst being one of the oldest and most important problems of computer vision,

super resolution only noticed considerable performance gains and rising popularity after

the adoption of approaches based on deep learning. In this context, multiple proposals

achieved good reconstruction quality when analyzing solely pixel-wise metrics, such as

PSNR and SSIM, but failed to reconstruct realistic textures since commonly used pixel-

oriented metrics like the MSE do not consider either shallow or deep features contexts

from the SR module, producing mostly blurred images guided by the minimized distance

in the SR’s image pixel space.

Perceptually-based super resolution is, therefore, a recent alternative to produce

more appealing and realistic images, particularly regarding textured regions. This is spe-

cially applicable when dealing with land cover imagery, since visual coherence is essential

to synthesize natural-like images from a huge diversity of terrain textures.

This work proposed a novel approach to produce more realistic textures in class-

aware manner. By introducing a loss function provided by a semantic segmentation mod-

ule, the optimization of the super resolution module gets a feedback about the synthesis

of faithful class-wise textures. Such input does not rely on simple comparisons about HR

and SR images: it takes in consideration whole different outputs, the real and inferred

segmentation maps, to introduce a perceptually-aware loss component on the SR module

optimization.

Employing this joint training methodology proved successful to create better im-

ages on a human comprehension scale in a complex and multi-class domain created by

aerial imagery. Even though pixel-wise metrics were marginally affected by the introduc-

tion of a new training strategy, perceptually-aware metrics, both full-reference (LPIPS)

and no-reference (PI) metrics observed great improvements over vanilla SR methods that

did not employ the segmentation strategy. This was translated to better visual results in

four sets of experiments, running two different datasets and two distinct super resolution

backbones, and also better segmentation results for the super-resolved image over vanilla

SR methods.

Such methodology has potential to be used as an enhancement tool in any DL-

based SR framework. This is reinforced by improvements on reconstruction metrics even

when using different combinations of SR and segmentation models. Besides, this joint

methodology is easy to customize, understand and implement, while supporting a range
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of adaptations, either in super resolution or segmentation modules, either in the loss com-

ponents. However, the proposed methodology possesses some pitfalls, such is the diffi-

culty in finding optimal hyperparameters, which can be solved by implementing optimal

parameter-searching algorithms, and the higher memory consumption, which are very

notable when using heavy segmentation modules.

Comparisons against state of the art methodologies also confirm the capacity of the

joint approach in synthesizing images with high perceptual indexes. Even when choosing

older super resolution methods, the joint methodology yields better perceptual metrics

(and in some cases, even pixel-wise metrics too) than its vanilla implementations, bringing

much space to improve the latest SR techniques by introducing a trained segmentation

module on the SR pipeline at a relatively low training cost.

5.1 Future work

The are several avenues for extending this work. One option would be to widen

the choices of datasets, super-resolution and segmentation modules, including an analysis

on newer methodologies on our joint proposal, such Graph Neural Networks or Multi-

head Attention mechanisms on vision transformers. Analysis of multiple super resolution

factors (x2, x3, x8) or even fractional SR scales could also be tackled in future versions

of this research.

Another possibility of improvement is the development of a better strategy for

tuning the hyper-parameters, since grid search brings a big computational burden. The

joint refinement of both the SR and the segmentation modules could be an interesting

idea, but the number of learnable parameters would be high and care should be taken with

memory issues. For addressing the generalization problem, possible solutions could be

the use of different augmentation strategies, a mix of datasets or even using a self-training

strategy, which has already been proven successful in the literature (ZOPH et al., 2020).

Finally, one last direction worth mentioning is the inclusion of other tasks in the

learning process. For example, one could simultaneously explore semantic segmentation

and object detection to guide the super resolution task.
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APPENDIX A — EXPERIMENT OUTPUTS

(a) HR image (b) B-CE image (c) Bicubic-resized image

(d) CEU1 image (e) CEU2 image (f) CEU3 image

(g) CEH1 image (h) CEH2 image (i) CEH3 image
Figure A.1 – HR image, bicubic re-sampled image and and inference results of Table 4.1 for the
CGEO dataset using an ESRGAN-based SR module and UNet or HRNet segmentation netwoks.
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(a) Label image (b) B-CEU image (c) B-CEH image

(d) CEU1 image (e) CEU2 image (f) CEU3 image

(g) CEH1 image (h) CEH2 image (i) CEH3 image
Figure A.2 – Groud truth label and segmentation outputs of experiments from of Table 4.3 for the
CGEO dataset using an ESRGAN-based SR module and UNet or HRNet segmentation netwoks.
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(a) HR image (b) B-CS image (c) Bicubic-resized image

(d) CSU1 image (e) CSU2 image (f) CSU3 image

(g) CSH1 image (h) CSH2 image (i) CSH3 image
Figure A.3 – HR image, bicubic re-sampled image and and inference results of Table 4.2 for the
CGEO dataset using an SAGAN-based SR module and UNet or HRNet segmentation netwoks.
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(a) Label image (b) B-CSU image (c) B-CSH image

(d) CSU1 image (e) CSU2 image (f) CSU3 image

(g) CSH1 image (h) CSH2 image (i) CSH3 image
Figure A.4 – Groud truth label and segmentation outputs of experiments from of Table 4.4 for the
CGEO dataset using an SAGAN-based SR module and UNet or HRNet segmentation netwoks.
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(a) HR image (b) B-LE image (c) Bicubic-resized image

(d) LEU1 image (e) LEU2 image (f) LEU3 image

(g) LEH1 image (h) LEH2 image (i) LEH3 image
Figure A.5 – HR image, bicubic re-sampled image and and inference results of Table 4.5 for the
LCAI dataset using an ESRGAN-based SR module and UNet or HRNet segmentation netwoks.
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(a) Label image (b) B-LEU image (c) B-LEH image

(d) LEU1 image (e) LEU2 image (f) LEU3 image

(g) LEH1 image (h) LEH2 image (i) LEH3 image
Figure A.6 – Groud truth label and segmentation outputs of experiments from of Table 4.7 for the
LCAI dataset using an ESRGAN-based SR module and UNet or HRNet segmentation netwoks.
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(a) HR image (b) B-LS image (c) Bicubic-resized image

(d) LSU1 image (e) LSU2 image (f) LSU3 image

(g) LSH1 image (h) LSH2 image (i) LSH3 image
Figure A.7 – HR image, bicubic re-sampled image and and inference results of Table 4.6 for the
LCAI dataset using an SAGAN-based SR module and UNet or HRNet segmentation netwoks.
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(a) Label image (b) B-LSU image (c) B-LSH image

(d) LSU1 image (e) LSU2 image (f) LSU3 image

(g) LSH1 image (h) LSH2 image (i) LSH3 image
Figure A.8 – Groud truth label and segmentation outputs of experiments from of Table 4.8 for the

LCAI dataset using an SAGAN-based SR module and UNet or HRNet segmentation netwoks.
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APPENDIX B — GENERALIZATION ON DIFFERENT TRAIN/TEST SETS

(a) HR Image (b) B-CE Image (c) B-LE-CGEO Image

(d) CEU1 Image (e) LEH1-CGEO
Figure B.1 – HR image and inference results for the CGEO dataset on networks trained on

CGEO (B-CE,CEU1) or LCAI (B-LE-CGEO,LEH1-CGEO) data.
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(a) HR Image (b) B-CE-LCAI Image (c) B-LE Image

(d) CEU1-LCAI Image (e) LEH1
Figure B.2 – HR image and inference results for the LCAI dataset on networks trained on CGEO

(B-CE-LCAI,CEU1-LCAI) or LCAI (B-LE,LEH1) data.
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APPENDIX C — COMPARISON BETWEEN SUPER RESOLUTION METHODS

(a) HR Image (b) Proposed (c) ABPN

(d) CSNLN (e) DBPN (f) DRNLN

(g) EDSR (h) EDSR (i) PAEDSR

(j) RCAN (k) RDN (l) SRGAN
Figure C.1 – Comparison between proposed method and multiple SOTA super-resolution

methodologies for x4 enhancement on the CGEO dataset.



72

(a) HR Image (b) Proposed (c) ABPN

(d) CSNLN (e) DBPN (f) DRNLN

(g) EDSR (h) EDSR (i) PAEDSR

(j) RCAN (k) RDN (l) SRGAN
Figure C.2 – Comparison between proposed method and multiple SOTA super-resolution

methodologies for x4 enhancement on the LCAI dataset.
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APPENDIX D — RESUMO EXPANDIDO

Super resolução (SR) é um problema bastante conhecido no mundo da Visão Computa-

cional (VC) que visa reconstruir uma uma imagem de alta resolução (HR) a partir de uma

imagem de baixa resolução (LR). Este prolema é bastante desafiador por vários motivos,

dentre eles a dificuldade em sintetizar texturas e estruturas não existentes nas imagens de

baixa resolução, especialmente quando tratamos de altos fatores de reconstrução. Essas

dificuldades são agravadas quando utilizamos imagens aéreas, visto que algumas carac-

terísticas intrínsecas a este domínio dificultam a tarefa de super resolução, tais como a

grande variedade de texturas na superfície terrestre, a pequena extensão espacial de al-

gumas feições (sendo praticamente irreconhecíveis em imagens LR), a invariabilidade

de objetos à rotação e orientação e a alta disponibilidade de dados brutos. Entretanto, a

síntese de imagens aéreas super resolvidas gera um impacto positivo em aplicações que

utilizam imagens aéreas, uma vez que o maior nível de detalhe e a síntese de cenas a par-

tir de imagens mais recentes são bem-vindas no contexto de aplicações em sensoriamento

remoto.

Dentre as múltiplas soluções para o problema de super resolução, vemos a cres-

cente adoção de métodos baseados em Redes de Aprendizado Profundo, capazes de su-

perar a performance de algoritmos clássicos de SR. Mesmo apresentando melhores es-

tatísticas de reconstrução de imagem, essas redes ainda apresentam dificuldades na ger-

ação de texturas, e a supressão de artefatos ou texturas indesejáveis ainda são, no contexto

da Aprendizagem Profunda, problemas a serem resolvidos. Uma das causas desses prob-

lemas é a diferença entre a percepção de qualidade entre o homem e a máquina: enquanto

o computador utiliza modelos matemáticos para definir a qualidade de uma imagem, o ser

humano emprega um modelo subjetivo que não é descritível por máquinas. A definição de

uma métrica de percepção “ideal” que seja similar à opinião humana é ainda um desafio.

Nesse contexto, o nosso objetivo é gerar imagens aéreas super resolvidas que se-

jam próximas do critério de qualidade humana. A síntese de imagens com bons níveis de

qualidade perceptual resultará em cenas mais realísticas, especialmente em regiões com

textura. Para isso, nós utilizamos diversas técnicas:

• Aprendizagem conjunta utilizando duas redes de aprendizado profundo. Nós uti-

lizamos uma rede de super resolução e uma rede de segmentação semântica que

será responsável por gerar um parecer sobre a qualidade dos mapas de segmentação

de imagens super resolvidas. A rede de segmentação, treinada em imagens HR,
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quantifica a performance da rede de super resolução face à capacidade de geração

de texturas que são coerentes às verdadeiras classes de cobertura terrestre. Em out-

ras palavras, o módulo de super resolução é guiado pelo modelo de segmentação

a gerar texturas conscientes à classe (como florestas, edificações ou rodovias, por

exemplo). A consciência sobre a classe permite a síntese de texturas mais realistas.

• Módulo de SR baseado em Redes Adversariais Generativas (GANs). O método de

aprendizagem utilizado por GANs, que utiliza duas redes (uma generativa, para a

criação de dados sintéticos, e uma discriminativa, que analisa a veracidade do dado

gerado), permite a geração de imagens mais naturais.

• Função de custo baseada em qualidade perceptiva. Para isso, utilizamos duas funções

de custo com a intenção de gerar imagens com melhores qualidades perceptivas: a

primeira, chamada custo de reconstrução de feições, ou simplesmente função de

perda perceptiva, que analisa a distância de mapas de ativação em redes profundas

pré-treinadas, e a segunda, uma função de entropia cruzada, que analisa a qualidade

de reconstrução de texturas de imagens super resolvidas.

Para comprovar a nossa hipótese, reproduzimos experimentos utilizando múltiplas

combinações de redes de super resolução (ESRGAN, “Enhanced Super Resolution Gen-

erative Adversarial Network”, e SAGAN, “Self Attention Generative Adversarial Net-

work”), de segmentação semântica (UNet, e “High Resolution Network”, HRNet) e de

conjuntos de imagens aéreas (CGEO e “Land Cover AI”) para analisar os resultados da

metodologia proposta em diferentes condições de treino. Utilizamos métricas percep-

tivas para analisar a qualidade da super resolução, além das métricas convencionais de

análise de reconstrução por pixel. Além disso, verificamos os resultados da segmentação

semântica dos dados super resolvidos como uma forma de confirmar que a metodologia

de treinamento conjunto está influenciando a geração de texturas coerentes à classe.

Nossos resultados amparam a hipótese de que a metodologia proposta gera ima-

gens com melhores índices perceptivos. Quase a totalidade dos experimentos geram mel-

hores índices para as duas métricas perceptivas utilizadas, o “Learned Perceptual Image

Patch Similarity”, LPIPS, e o “Perceptual Index”, PI, para diferentes pesos de partici-

pação da função entropia cruzada fornecida pelo módulo de segmentação. Em alguns

casos, também notamos melhorias nas métricas de reconstrução convencionais utilizadas

nesse estudo, o “Peak Signal-to-Noise Ratio”, PSNR, e o “Structural Similarity”, SSIM.

Ao analisar os resultados das máscaras de segmentação produzidas por imagens

SR, confirmamos que a metodologia proposta auxilia a geração de texturas coerentes à
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classe, uma vez que métricas de segmentação semânticas tradicionais, como acurácia e

interseção sobre união, apresentam melhorias após o uso conjunto dos módulos de super

resolução e segmentação. Logo o método proposto não só auxilia a gerar imagens com

melhores índices perceptivos, mas também gera imagens de maior resolução que per-

formam melhor na tarefa de segmentação semântica que as imagens de baixa resolução

correlacionadas.

A comparação entre diversas metodologias de super resolução no estado da arte

comprovam que a metodologia proposta neste trabalho produz as melhores métricas per-

ceptivas na síntese de imagens aéreas, gerando também valores competitivos de PSNR e

SSIM.

Por fim, este trabalho propôs uma metodologia para a geração de texturas realís-

ticas e coerentes à classe pela introdução de um módulo de segmentação que gera um

parecer sobre a reconstrução de texturas coesivas à classe. Essa metodologia é de fácil

entendimento, customização e capaz de melhorar a qualidade perceptual de imagens super

resolvidas utilizando um custo computacional extra relativamente baixo.
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