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“Those swirls in the cream mixing into the coffee? That’s us.
Ephemeral patterns of complexity, riding a wave of increasing

entropy from simple beginnings to a simple end. We should enjoy the ride.”
(Sean Carroll, The Big Picture:

On the Origins of Life, Meaning, and the Universe Itself)





Resumo
A construção de funções de transferência na neurociência teórica desempenha um impor-
tante papel na determinação do comportamento das taxas de disparos de neurônios em
redes. Elas podem ser obtidas por uma variedade de métodos de ajuste onde a relevância
dos parâmetros biológicos não são sempre claros. Entretanto, esses tipos de funções podem
ser obtidos para entradas estacionárias pelo uso de métodos de campo médio, sem o
ajuste de parâmetros livres. Para um neurônio simples de integração e disparo baseado em
correntes, onde o ruído é branco e aditivo, a função de transferência foi obtida por Amit e
Brunel através da construção de uma equação de Fokker-Planck. Varias extensões para
esse método foram introduzidas para dar conta de diferentes tipos de neurônios, mas o
problema de um ruído genérico, colorido e multiplicativo ainda não foi atacado. Aqui nós
propomos uma solução a esse problema.

Para fazer isso, nos reduzimos o sistema estocástico que resulta da aplicação da aproximação
de difusão a uma equação de Langevin unidimensional. Essa equação de Langevin é então
colorida e não pode produzir uma equação de Fokker-Planck exata. Nos então usamos uma
extensão para a teoria de Fox para construir uma equação de Fokker-Planck efetiva com
múltiplas fontes de ruído colorido e multiplicativo. A taxa de disparos foi então calculada
numericamente partindo da Fokker-Planck estacionária resultante. A solução foi capaz
de reproduzir o comportamento da função de transferência dos neurônios simulados em
uma grande gamma de parâmetros. O método também pode ser facilmente estendido para
considerar diferentes fontes de ruído com diferentes termos multiplicativos, e a princípio
pode ser utilizado em outros tipos de problemas.

Palavras-chaves: neurociência. campo médio. integração e disparo. função de transferên-
cia.





Abstract
The construction of transfer functions in theoretical neuroscience plays an important
role in determining the behavior of the spiking rate of neurons in networks. They can be
obtained by a variety of fitting methods where the biological relevance of the parameters
is not always clear. However, this type of function can be obtained for stationary inputs
by the use of mean-field methods, without adjustment of free parameters. For a simple
current base integrate and fire neuron, where the noise is white and addictive, the transfer
function was obtained by Amit and Brunel through the construction of a Fokker-Planck
equation. Several extensions to this method were introduced to account for different types
of neurons, but the problem of a generic colored multiplicative noise has yet to be tackled.
Here we proposed a solution to this problem.

To do this, we reduced the stochastic system resulting from the application of the diffusion
approximation to a one dimensional Langevin equation. This Langevin equation is therefore
colored and cannot produce a exact Fokker-Planck equation. We then used an extension
to the Fox theory to build an effective Fokker-Planck equation with the multiple sources
of colored and multiplicative noise. The firing rate was then calculated numerically from
the resulting stationary Fokker-Planck. The solution was able to reproduce the transfer
function behavior of the simulated neurons in a wide range of parameters. The method is
also easily extendable to account for different sources of noise with different multiplicative
terms, and in principle can be used in other types of problems.

Key-words: neuroscience. mean-field. integrate and fire. transfer function.
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1 Introduction

The brain is a complex system that organizes itself in structures that can range
from fine-scale details (YOSHIMURA; CALLAWAY, 2005), to large-scale arrangements
involving large portions of the cortex (KOZIOL et al., 2014). These structures are invariably
composed of neurons and other supportive cells that interact with each other in complex
ways (VOGELS; RAJAN; ABBOTT, 2005). This whole range of scales that the brain
operates can make it difficult to navigate. For example, experimentally we can probe
individual neurons with great time and spatial resolutions but probing single cells don’t
give much information about the collective behaviors of the system. Microelectrode arrays
can provide multiple sources of measurement, but spatial resolution is lost since the
microelectrodes capture signals from all around the sensors (OBIEN et al., 2014). On the
other end of the spectrum, functional magnetic resonance imaging (fMRI) can provide
large-scale information about the activity, but have a low temporal and spatial resolution
(GLOVER, 2011).

To bridge these multiple scales problems, theoretical models and frameworks are of
great relevance. Indeed, these kinds of problems are not new to physics and especially to
condensed matter physics, where collections of atoms give rise to new behaviors that can
depend on small and large scales of the system (STANLEY, 1971)(YEOMANS, 1992). A
plethora of methods to treat this types of problems was developed by condensed matter
physics and later co-opted by theoretical neuroscientists. One of these methods is known
generically by the name mean-field theories and encompasses a large family of procedures.
It was initially created by Curie and Weiss with the intent to describe phase transitions
in magnetic systems (STANLEY, 1971)(YEOMANS, 1992)(WEISS, 1907), and later
expanded into a wide range of approaches that are used in a diversity of fields.

In neuroscience, it can be used to create firing rate models (also sometimes de-
scribed as transfer functions) from the description of spiking neurons models, for example
(CAMERA, 2021)(BRUNEL; SERGI, 1998)(BRESSLOFF, 2011)(OSTOJIC; BRUNEL,
2011), bridging the gap between the microscopic and the mesoscopic description. The
mean-field in those cases goes beyond the typical substitution of the complex interaction
input by its mean. Since neurons can generate spikes even when the mean input is below
its threshold, it is necessary to add also a fluctuating part. Therefore, mean-field theories
in spiking neurons behave similarly to models of Brownian motion.

For some integrate and fire neuron models, the resulting Brownian motion descrip-
tion can present itself with temporal correlation in the noise (colored noise) and also
nonlinear multiplicative terms. These kind of motions presents difficulties in the exact
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treatment and the derivation of the resulting firing rate. The present work provides a
method to construct firing rate models from generic conductance base integrate and fire
neurons, which can present colored and multiplicative noise in its Brownian description.
In the next subsections we will provide some basic informations for the comprehension of
the main results.

1.1 Neurons and Networks

In this subsection, we will briefly revise the physiology of the neuron and synapses.
More detailed discussions about the topic can be seen in books like (PURVES et al.,
2019) for a biological focus, or (IZHIKEVICH, 2007) and (DAYAN; ABBOTT, 2005) for a
mathematical look.

Neurons are highly specialized cells responsible for the storage and transmission of
information. This storage and transmission are done by changes in the electrical properties
of the membrane of the cell. Specifically, we are talking about the difference in the electrical
potential between the interior and the exterior of the cell. This difference is generated by
different concentrations of ions on both sides of the membrane generated by ionic pumps
that pump ions through the membrane, using energy in the process. The most important
of these pumps is the sodium-potassium pump, which moves 3 sodium ions to the exterior
of the cell and 2 potassium ions to the interior, generating a net flux of positive charges to
the exterior.

Another source of charge unbalance is the composition of ionic channels of the cell
membrane. Ionic channels can selectively allow the passage of specific ions, generating
a passive current. Some channels are permanently open, such as the leak channels that
allow the passage of potassium ions. Others need to be activated by some form of a signal,
such as the binding of a chemical or the depolarization of the membrane patch that it is
embedded in.

For every ion, we can calculate the equilibrium potential resulting from its net flux.
This is done by the Nernst equation, which takes into consideration the flux given by the
diffusion of the ion and the flux resulting from the electrical potential itself. The form of
the equation is

Vion = RT

zF
ln [ion]out

[ion]in
, (1.1.0.1)

where R is the universal gas constant, T is the temperature in Kelvin, z is the valence
number of the ion and F is the Faraday constant. From the simple Ohm’s law we can get
the associated current for the ion

Iion = gion(V − Vion) , (1.1.0.2)
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Figure 1 – Schematics of a traveling pulse resulting from the action potential process.

where gion is the conductance for the ion. The resulting rest potential can then be inferred
by taking the weighted average of all the ionic contributions. This is mostly given by

Vrest = gK+VK+ + gNa+VNa+ + gCa2+VCa2+ + gCl−VCl−

gK+ + gNa+ + gCa2+ + gCl−
. (1.1.0.3)

As already mentioned, some of the channels can be activated and deactivated by
the value of the membrane potential at the local membrane patch. These channels are
responsible for the signal emission process known as the action potential. To be precise,
two types of voltage-dependent channels contribute to the generation of action potentials:
sodium transient channels and persistent potassium current channels. Both channels are
activated when the potential reaches a certain threshold value. The sodium transient
channels activate slightly faster than the potassium ones and produce a depolarization.
This generates more depolarization in the vicinity of the channel and triggers more
voltage-dependent channels to activate. The signal then propagates through the neuron.
The potassium persistent channels can then repolarize the membrane patch by allowing
potassium ions to flow outside the cell. The traveling pulse resulting from this process is
schematized in figure 1. After an action potential, the cell enters a brief period where it
can’t emit another spike. This period is called the absolute refractory period and can last
a few milliseconds.

Neurons also receive inputs mostly by chemical signals. Those come in the form of
small molecules that are liberated in the extracellular medium between the contact point
of both neurons, the synaptic gap. In this directional contact, the receiving neuron (the
postsynaptic neuron) has channels that open when the specific molecule liberated in the
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gap binds to it. These channels then open and produces changes in the membrane potential
that passively propagates through the neuron. The nature of these changes depends on
the ion selectivity of the channel. The channel can be excitatory, producing depolarization
of the neuron; or inhibitory, if it produces a hyperpolarization. In general, it is supposed
that a neuron can make only excitatory or inhibitory synapses (Dale’s principle). In this
sense, a neuron can be considered excitatory or inhibitory.

The most common receptor-neurotransmitter pair in the cortex is the AMPA-
glutamate pair. The AMPA receptor (α-amino-3-hydroxy-5methyl-4-isoxazolepropionic
acid receptor) is a tetrameric (composed of four subunits) channel that allows the passage
of both potassium and sodium ions. The equilibrium potential of this channel is greater
than the resting potential and therefore it produces a depolarizing current. AMPA receptors
are generally fast-acting, with a response time of around a millisecond. However, slow
AMPA receptors were also found in the hippocampus, staying active for about half a
second (PAMPALONI et al., 2021). Another common glutamate receptor is the NMDA
receptor (N-methyl-D-aspartate), which is permeable by sodium ions and also calcium. It
is also an excitatory channel since its reversal potential is also greater than the resting
potential. However, the opening of the NMDA channels depends also on the membrane
potential at the moment of the glutamate binding. This occurs because in the structure of
the receptor there are magnesium ions that block the passage of the sodium and calcium
ions when the membrane is at rest. When the membrane is depolarized, those magnesium
ions are dislocated from the channel, allowing current to flow (figure 2). NMDA receptors
have slow dynamics, acting on the order of a hundred milliseconds.

The typical inhibitory receptor in the cortex is the GABA receptor (gamma-
aminobutyric acid). There are three distinct types of GABA receptors that have different
compositions and different functions. GABAA and GABAC behaves as a typical ionic
channels, allowing the passage of chlorine ions, which have an equilibrium potential smaller
than the resting potential (in most cases). GABAB is what we call a metabotropic receptor,
which is a receptor that initiate metabolic changes in the neuron via G protein.

Neurons have distinct physical structures. Even though there is a great zoo of
types of neurons, most of them can be divided into three parts: the dendrites, the soma,
and the axon (figure 3). The dendrites have an arboreal shape and are specialized in the
reception of signals from other neurons. Most of the synapses are located in this region
and as a consequence, most of the synaptic receptors. The soma is the cell body, where
most cellular processes occur. Some synapses can also be located in the soma, but to
a lesser degree. The axon is the long projection that can ramify in its extremities. It
functions as the signal emitter and has a large concentration of voltage-dependent channels.
They make connections with other neurons and liberate the neurotransmitters in their
synaptic end that communicate with the other neurons. In this way, the integration of
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Figure 2 – Dynamics of the NMDA opening and closing.

the signal and firing "decision" is done in the intersection between the soma and the
axon, a region sometimes called the axon hillock. Even though neurons have this rich
architecture, most theoretical works reduce this structure to a single point-like structure,
that integrates signals and emits spikes. This will be the framework adopted here since a
cable-like treatment can significantly complicate the mathematical modeling (NIEBUR,
2008)(DAYAN; ABBOTT, 2005).

1.2 The Neuron as a Transfer Function

Neuron alone exhibits highly complex behaviors (MILLER, 1999)(NOBUKAWA et
al., 2015). This complex vocabulary can then be concatenated and built upon to generate
even more diverse and rich dynamics. However, not every detail is important for the
description of every phenomenon. For example, memory models can rely on precise spike
timings and dynamics to codify the stimulus presented (HAHNLOSER; KOZHEVNIKOV;
FEE, 2002)(BUONOMANO; MAASS, 2009)(LAJE; BUONOMANO, 2013). This kind of
code, sometimes called spike-timing code, is also important for coincidence detection in
the auditory brainstem of mammals and birds (AGMON-SNIR; CARR; RINZEL, 1998).
Their description requires more detailed information on the time course of the neuronal
dynamics and therefore requires a more realistic model for the neural behavior. In other
cases it is only necessary to know the firing rate evolution of the neuron, that is, we only



24 Chapter 1. Introduction

Figure 3 – Diagram of a stereotypical neuron.

need to know the time average of one of its dynamical properties. This is the case when we
are talking about rate codes. Experimentally, rate codes were first discovered by inferring
the stimulus from the readout of the firing rate in sensory neurons (ADRIAN, 1928).
It became a well-established memory model and can account for some descriptions of
working memory (MOLTER; COLLIAUX; YAMAGUCHI, 2008) and long-term memory
(LUBOEINSKI; TETZLAFF, 2022) for example. In general, information extraction from
a single neuron rate code is slow, since it is needed time to average the spikes to good
precision. A way to circumvent this problem is to take the average of a population of weakly
correlated neurons with similar functions instead of averaging single neurons over time.
This way of tackling the problem correlates with the organization of the cortex, where a
large number of neurons are arranged into columns where the function of its constituents
is similar (MOUNTCASTLE, 1997). Therefore, the firing rate transfer functions can
describe neurons to a good approximation when we are dealing with a mesoscopic level of
interactions.

The most straightforward way to obtain the firing rate of a population of neurons
is to simulate individual neurons as spiking neurons and then take the temporal or
populational average of the spikes (figure 4). This process comes with its difficulties. The
act of simulating networks of spiking neurons can be computationally expensive, and as
the size of the network grows, the time necessary for simulating can grow much faster then
the size. Not only that, but exploration of the parameter space of the neuron can become
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Figure 4 – Extracting the firing rate of a population of spiking neurons versus a phe-
nomenological firing rate model. In the integrate and fire model, we simulate
the potential of 5000 non-interacting neurons, plotting the potential for three
of them, the spiking time, and the averaged firing rate. Both neurons receive a
oscillatory current plus a noise. No attempt was made to make the dynamics
equivalent.

unwieldy, since the parameter space is large.

Another way to treat this kind of system is to start with a form of phenomenological
rate model (ERMENTROUT, 1998)(GERSTNER et al., 2014). They can be made to
describe the firing rate evolution of a single neuron or of a whole population in what is
called a neural mass model (figure 4). In general, this type of model is written as a set of
differential equations where the functions to be solved are the firing rates of the neurons
or the populations of neurons. The parameters in these models don’t have an explicit
relation to physiological parameters and encapsulate a variety of properties. Therefore,
when necessary to connect experiment with the model, fitting procedures are needed make
this connections. The great advantage of these models is how mathematically malleable and
tractable they are. They can serve as ways to study phenomenons like phase transitions,
network oscillations, attractor dynamics, and many more (ERMENTROUT, 1998).

There is, however, a way to bridge the gap between those two rate descriptions.
That is, there is a way to construct a firing rate model that carries on the parameters
of the spiking neuron and the input statistics. One way to do this is with the help of
mean-field theories. The way the method proceeds is generally the following. We first
suppose that the neuron receives input in the form of large population of neurons, each
contributing with only a small change in the potential. This population is divided into
groups of similar neurons and the resulting input from each of these groups is substituted
by its mean and, generally, a fluctuating part. The fluctuating appears in contrast with
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traditional mean-field theories in condensed matter physics because spikes in neurons can
also be driven by this fluctuations. Since the relevant part for the rate description is the
spikes, those fluctuations can be relevant contributors. The resulting equation after this
procedure can be transformed into a equation on the probability of finding the system in
a small interval of membrane potential, and this probability can be used to calculate the
firing rate. We will detail the procedure in the next section, however, we can see how it
brings the physiological parameters of the spiking neuron model to the rate model, making
the fitting part unnecessary.

1.3 From Spiking Neurons to Rate Transfer Functions
We can trace back the idea of a mean-field approach to spiking neurons to the

work of Gerstein and Mandelbrot (GERSTEIN; MANDELBROT, 1964). In their work,
they noted that a great number of properties from the distribution of spikes of different
neurons measured experimentally can be reproduced by a Brownian process with drift.
Even though the form of the process was imposed as a solution, it can be shown that
this kind of stochastic equation results from a mean-field treatment of the spiking neuron
model known as the perfect integrate-and-fire neuron.

The first paper that brought up the approach used in the present work was the
seminal paper by Amit and Brunel (AMIT; BRUNEL, 1997). Their method relies on
constructing a Fokker-Planck equation that describes the probability distribution of the
potential as a function of time. With this, it is possible to get a stationary transfer function
by calculating the mean first passage time of the process. Since this method and some
of the results are important to this work, we will lay out some of the derivations here. A
detailed and didactic exposition can also be found in (FENG, 2003).

We start by exposing the neuron model from which we wish to extract the transfer
function. The model is the current-based leaky integrate and fire neuron, written as

τ
dV

dt
= (EL − V ) +

∑
j,k

wjδ(t− tkj ) , (1.3.0.1)

where τ is the membrane time-constant, V is the membrane potential, EL is the equilibrium
potential, wj is the synaptic weight of j synapse, tkj is the time of the k-spike of neuron j
and δ() is the Dirac delta function. Suppose the sum accounts for two populations, an
excitatory with KE neurons with firing rate νE and weight wE, and an inhibitory one
with KI neurons with rate νI and weight wI . Also, suppose that both populations fire
as a Poisson process. When the total number of input neurons is large and the synaptic
weights are small, we can use the diffusion approximation, which substitutes the Poisson
process with a Gaussian white noise with the same mean and variance, that is,

τ
dV

dt
= (µ− V ) + σV ξ(t) , (1.3.0.2)
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where µ is the mean potential given by

µ = EL +KEwEνE −KIwIνI , (1.3.0.3)

σV is the standard deviation

σ2
V = KEw

2
EνE +KIw

2
IνI , (1.3.0.4)

and ξ is a Gaussian white noise with zero mean and unity variance. This is a standard
Langevin equation that describes a stochastic process with a restoring force. Since the
process is stochastic, the description of the potential is the given in terms of the probability
distribution of V . A Fokker-Planck equation can then be obtained from the Langevin
(RISKEN; FRANK, 2012):

∂P (V, t)
∂t

= ∂

∂V

[
(V − µ)

τ
P (V, t)

]
+ σ2

V

2τ
∂2P (V, t)
∂V 2 . (1.3.0.5)

The Fokker-Planck can be used to calculate the stationary probability distribution of
the potential as well as statistics of the spiking time, like the mean firing rate. Time-
dependent analysis can also be done in some situations (Nicolas Brunel; Vincent Hakim,
1999)(BRUNEL et al., 2001)(FOURCAUD-TROCMÉ et al., 2003). Since their interest
was in stationary properties, the time derivative is taken to be zero. The influence of the
threshold, the reset potential, and the refractory period come in the form of boundary
conditions. In fact, we have an absorbing wall at the threshold value, where the absorbed
probabilities are reintroduced at the reset potential after passing the refractory period. It
is also noted that the firing rate is the same as the probability current passing through
the threshold. Applying these conditions to the Fokker-Planck results in the linear ODE

∂

∂V

[
(V − µ)

τ
Ps

]
+ σ2

V

2τ
∂2Ps

∂V 2 = −νδ(V − Vr) , (1.3.0.6)

where Ps is the stationary probability distribution, ν is the firing rate, and Vr is the reset
potential. Solving this linear ODE with the appropriate boundary conditions gives the
expression for the stationary distribution

Ps(V ) = 2ντ
σV

exp
(

−(V − µ)2

σ2
V

)∫ θ−µ
σV

V −µ
σV

Θ
(
x− Vr − µ

σV

)
ex2
dx , (1.3.0.7)

where θ is the threshold value and Θ() is the Heaviside function. With the help of the
normalization condition ∫ θ

−∞
Ps(V )dV + ντr = 1 , (1.3.0.8)

we finally get the transfer function

1
ν

= τr + τ
√
π

∫ θ−µ
σV

Vr−µ
σV

ex2(1 + erf(x))dx , (1.3.0.9)
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Figure 5 – Schematics of the Fokker-Planck mean-field approach. We start with a neuron
receiving inputs from populations of similar neurons, here described by red
and blue circles. A mean-field is taken from the inputs for each population,
converting them into a Gaussian process. From the neuron receiving Gaussian
inputs, we can extract the probability distribution of the potential using a
Fokker-Planck equation. It is then possible to calculate the transfer function of
the neuron.

with τr the refractory period. We schematized the procedure in figure

This procedure set the ground for the treatment of a variety of other models with
different levels of complexity. The first extension that we can talk about is the addition
of synaptic filtering in the current (BRUNEL; SERGI, 1998). This makes the synaptic
inputs smooth but adds another dimension to the system. The multidimensional problem
was then solved by constructing a Fokker-Planck of the distribution in the potential and
current and then extracting the probability flux through the threshold line barrier. The
result was a correction to the (1.3.0.9) that to a first approximation equates to a change
in the threshold of the neuron.

Conductance-based models where the current is of the form gi(t)(Ei − V ) and gi(t)
are exponentially decaying pulses were dealt with in the approximation of instantaneous
pulses (RICHARDSON, 2004). The model resulted in a one-dimensional multiplicative
Langevin that can be used to generate a Fokker-Planck and then solved for the firing rate.
It is also possible to get rid of the multiplicative term by using an approximation that
substitutes the membrane potential in these terms with its stationary value (RICHARD-
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SON; GERSTNER, 2005)(SANZENI; HISTED; BRUNEL, 2020). This approximation is
called the effective time-constant approximation and we will talk about it a little bit more
in the methods section.

Nonlinear terms in the leaky part of the integrate-and-fire models were also dealt
with in this mean-field approach. The mean-field solution to the quadratic integrate-
and-fire was found by Brunel and Latham (BRUNEL; LATHAM, 2003). The numerical
solution of the exponential integrate-and-fire was constructed by Richardson, for example
(RICHARDSON, 2007).

Generic time correlation were tackled for the perfect integrate and fire neuron,
which doesn’t have a leaky term (SCHWALGER; DROSTE; LINDNER, 2015). This
correlations were treated by a process known as Markovian embedding that projects
those noises into a multivariate Ornstein-Uhlenbeck process. In this way, the multivariate
Fokker-Planck was solved in the small noise regime.

All of this leads us to a question: is it possible to construct a Fokker-Planck equation
from a generic conductance-based integrate-and-fire neuron? That is, is it possible to arrive
at a differential equation of the probability distribution of the potential from a Langevin
with generic nonlinearities and colored noise? Is it also possible to extract the transfer
function for a large range of parameters and time correlations? In a attempt to solve those
problems, we looked at a different approach to construct a Fokker-Planck equation. That
is the main focus of the current work.

1.4 Objectives

• Develop a mean-field approach to construct the transfer function of generic conductance-
based integrate-and-fire neurons.

• Test the method for three different neuron models, increasing the complexity:

1. A simple conductance-based integrate-and-fire neuron;

2. A conductance-based integrate-and-fire neuron with interpolated fast and slow
excitatory currents

3. A conductance-based integrate-and-fire neuron with AMPA and nonlinear
NMDA channels.
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2 Methods

2.1 Model

We studied the behavior of a point like generic leaky integrate-and-fire (IF) neuron
with conductance-based input embedded in a network of similar units. The neuron is
described by the membrane potential V that follows the differential equation

τL
dV

dt
= −(V − EL) −

∑
i

gi(t)si(V )(V − Ei) (2.1.0.1)

where τL is the membrane time constant, EL is the resting potential, Ei is the reversal
potential of the corresponding channel i, and si(V ) is a modulating function that can
depend on V . It is important to note that the addition of a nonlinear term ψ(V ) to
the equation is possible in principle, although we will not deal with this case here. The
conductances gi(t) behave as linear filters of the input signal. Specifically, we have

τi
dgi

dt
= −gi +

∑
j,k

wiδ(t− tkj ) (2.1.0.2)

The summation here is performed over all pre-synaptic sites j and all spikes k emitted in
that site. wi is the synaptic weight which is kept the same for all neurons belonging to the
same population.

The membrane potential V evolves according to (2.1.0.1) until it reaches the
threshold θ, when it emits a spike. The potential is then reset to Vr and after the reset,
the membrane potential is not updated for the extent of the refractory interval τr.

2.2 Mean-field analysis

2.2.1 Conductance

As a starting point, we suppose that the neuron receives inputs from separate
populations of neurons corresponding to the different channels, each of them making
Ki connections. We assume that the inputs from each population come from Poisson
rate neurons with fixed rate ν. Considering a large number of connections in the system
(Ki ≫ 1) and a small connection weight (wi ≪ 1) we can make use of the diffusion
approximation (AMIT; BRUNEL, 1997)(FENG, 2003). This approximation consists in
changing the discontinuous nature of the spike input by a continuous white noise. It is
similar to the treatment of a Brownian motion in one dimension, where the bumps of
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fluid particles into the larger one are taken to be infinitesimally small. With this, equation
(2.1.0.2) become

τi
dgi

dt
= −gi + µi + √

τiσiξi(t) (2.2.1.1)

where
µi = wiKiντi (2.2.1.2)

σ2
i = w2

iKiντi (2.2.1.3)

and the noise terms are uncorrelated Gaussian white noise with mean zero and unit
variance:

⟨ξi(t)⟩ = 0 ⟨ξi(t)ξi(t′)⟩ = δ(t− t′)

⟨ξi(t)ξj(t′)⟩ = 0 for i ̸= j

In the limit t ≫ τi, the solution of (2.2.1.1) is

gi(t) = µi + σi√
τi

∫ t

0
e

− T
τi ξi(t− T )dT (2.2.1.4)

from which we get the moments

⟨gi(t)⟩ = µi ⟨∆gi(t)∆gi(t′)⟩ = σ2
i

2 e
− |t−t′|

τi (2.2.1.5)

2.2.2 Membrane Potential

We can now work on reconstructing the membrane potential equation (2.1.0.1),
using the recently obtained conductances. Substituting the conductances and rearranging
the terms we get

dV

dt
= −(V − µ)

τ
+
∑

i

hi(V )ηi(t) (2.2.2.1)

where we have defined a new set of variables

τ = τL

1 +
∑

i si(V )µi

(2.2.2.2)

µ = τ

τL

(EL +
∑

i

si(V )µiEi) (2.2.2.3)

hi(V ) = si(V )
√
τi

τL

σi(Ei − V ) (2.2.2.4)

The noise terms are now written as

ηi(t) = 1
τi

∫ t

0
e

− T
τi ξi(t− T )dT (2.2.2.5)
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and have the following correlations

⟨ηi(t)ηi(t′)⟩ = 1
2τi

e
− |t−t′|

τi (2.2.2.6)

What we have now is a Langevin equation with distinct sources of colored noise.
The n dimensional stochastic system is now reduced to 1 stochastic differential equation.
This, however, has cost us the markovian property of the noise, i.e, the value of the noise
at time t depends on its values at previous times t′ < t. It makes it impossible to obtain an
exact Fokker-Planck equation since it adds an additional time integration. We, therefore,
need to construct an approximate Fokker-Planck in order to be able to use the Amit and
Brunel method. In some cases, it might also be useful to simplify the problem by finding
an approximation that allows us to drop the multiplicative noise.

But first, let’s notice some differences in the parameters involved between the
standard current-based Langevin equation and the one we found (2.2.2.1). The first one is
that the effective membrane time constant now depends on the mean individual currents µi.
This tells us that the filtering properties of the membrane rely on the input strength so that
a time-varying current will impose time-varying filtering of the signal. Specifically, stronger
currents decrease the cutoff frequency of the low-pass filter property of the membrane
potential.

The second difference is that the mean current behaves as a weighted sum of the
reversal potentials instead of a simple sum of the individual means. In this case, the mean
currents act like the weights. Therefore the current is limited in the interval determined
by the maximal end minimal reversal potential.

Finally, we can see that the noise variance depends on the distance of the membrane
potential from the corresponding reversal. This means that the noise is modulated by the
membrane potential, and since it also contains the effective membrane time constant, it is
modulated by the mean current.

2.2.3 Effective Time Constant Approximation

As stated earlier, in some cases we can reduce the complexity of the problem by
dropping the multiplicative noise with an appropriate approximation. This can be done
by applying what is called the effective time constant approximation (RICHARDSON,
2004)(RICHARDSON; GERSTNER, 2005). It consists of the substitution of the membrane
potential in the noise term by the equilibrium potential µ, resulting in

hi(V ) → hi(µ)

This implies that the modulation of noise can be seen as dependent on the distance of the
equilibrium potential from its reversal potential, at least at first order. In fact, it can be
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argued that the use of this approximation leads, when the terms hi(V ) are linear, to a
more consistent treatment of the problem, since the error generated by this approach is of
the same order as the error introduced by the diffusion approximation (RICHARDSON;
GERSTNER, 2005). Not only that, but in some cases the errors from both of these
sources can partially cancel each other, resulting in a better approximation. But the most
important fact here is that this approach simplifies considerably the treatment of the
resulting Fokker-Planck equation. A direct consequence of this is that it lends to more
easily interpretable parameters.

2.2.4 Fox Theory

Temporal correlations in the noise of Langevin equations are known to impede
the construction of a exact Fokker-Planck equation. So our task is to find an appropriate
approximation that leads to an differential equation of the probability distribution of the
membrane potential. There are different ways to approximate this equation: the so-called
best Fokker-Planck approximation (SANCHO et al., 1982)(LINDENBERG; WEST, 1983),
is one method which supposes a differential form for the diffusion term which is exact in
the white noise limit. This differential form is solvable in only particular cases making the
use of perturbative methods necessary in most uses. The Fox theory (FOX, 1986a)(FOX,
1986b) uses functional calculus to derive an approximation for small correlations. At first
order in the time correlation, both the best Fokker-Planck and the Fox theory give the same
result, diverging in higher orders (GRIGOLINI et al., 1988). Jung and Hänggi also derived
an approximation which relies in an adiabatic elimination procedure (JUNG; HÄNGGI,
1987). This are only some examples of the different ways to approximate the Fokker-Planck.
We use here the Fox theory, since it is the one with the most direct application and is the
easiest to generalize for multiple noise sources.

In this section, we will take a detour to give a brief explanation of this method
and expand the original derivation to multiple decorrelated noise sources. This will be
used in the sequence to obtain an appropriate Fokker-Planck so that we can formulate
an equation for the probability distribution of V . The Fox theory, as stated, is based
on a functional calculus approach to the Langevin equations. So, instead of drawing the
stochastic variable from a gaussian distribution at each point in time, we draw the entire
trajectory of the stochastic variable from a functional Gaussian distribution (figure 6).
The original derivation of the Fox theory is valid for a single source of the noise. Since
in our case we have different sources of noise with different correlation times, we need to
expand the method. This exposition is, therefore, heavily based on the original papers by
Fox (FOX, 1986a)(FOX, 1986b).



2.2. Mean-field analysis 35

Figure 6 – Schematics of the difference between the standard approach to the Fokker-
Planck equation construction and the functional one.

Lets first define our generic stochastic differential equation in the variable x,

dx

dt
= W (x) + h1(x)η1(t) + h2(x)η2(t) , (2.2.4.1)

where W (x) is our drift term, h1(x) and h2(x) the multiplicative term, and η1 and η2 are
the colored noises in the system. For simplicity, we use two noise sources in this derivation,
but the generalization for n sources is trivial. As stated, we treat the noise in a functional
form, drawing the entire trajectory from an appropriate Gaussian distribution. These
distributions are given by

Pi[ηi] = Ni exp
(

−1
2

∫
ds

∫
ds′ηi(s)ηi(s′)Ki(s− s′)

)
, (2.2.4.2)

where i ∈ {1, 2} is the noise index. The normalization constant Ni is calculated by
integrating over all paths that ηi can take:

N−1
i =

∫
Dηi exp

(
−1

2

∫
ds

∫
ds′ηi(s)ηi(s′)Ki(s− s′)

)
. (2.2.4.3)

We also have the kernel Ki which correspond to the inverse of the correlation function of
the noise. Let the noise correlation be described by

⟨ηi(t)ηi(t′)⟩ = Ci(t− t′) . (2.2.4.4)

This implies that the kernel Ki has the form∫
Ki(t− t′)Ci(t′ − s)dt′ = δ(t− s) . (2.2.4.5)

If the noise is white, the correlation is a delta function Ci(t− s) = Aδ(t− s) and therefore
the kernel is also a delta function Ki = A−1δ(t− t′). For a colored noise, the kernel will



36 Chapter 2. Methods

depend on the functional form of Ci. We assume here that the noises are independent from
each other, which means that

P [η] ≡ P [η1, η2] = P1[η1]P2[η2] . (2.2.4.6)

We start by writing the probability of a specific path y

P (y, t) =
∫

DηP [η]δ(y − x(t)) . (2.2.4.7)

The symbol
∫

Dη is defined as the path integral taken over both noise variables, that is,∫
Dη =

∫
Dη1

∫
Dη2. Deriving with respect to time gives

∂P

∂t
= −

∫
DηP [η] ∂

∂y
δ(y − x(t))dx

dt
. (2.2.4.8)

We can now substitute (2.2.4.1) to get

∂P

∂t
= − ∂

∂y
[W (y)P ]− ∂

∂y
h1(y)

∫
DηP [η]η1(t)δ(y−x(t))− ∂

∂y
h2(y)

∫
DηP [η]η2(t)δ(y−x(t)) .

(2.2.4.9)
From now on, lets focus only on the first integral, since the procedure is similar for
the second. To be able to get the correspondent diffusion term, we need to resolve the
expression P [η]η1(t). This can be done by writing

P [η]η1(t) = P [η]
∫
dsδ(t− s)η1(s) = P [η]

∫
ds

∫
ds′C1(t− s′)K1(s′ − s)η1(s) =

= −
∫
ds′C1(t− s′) δP [η]

δη1(s′) , (2.2.4.10)

where we used the delta identity (2.2.4.5) in the second step and the functional derivative
of the distribution

δP [η]
δη1(s′) = −P [η]

∫
dsK1(t− s)η1(s) (2.2.4.11)

in the third step. Substituting in the integral of (2.2.4.9) and using functional integration
by parts, it becomes∫

DηP [η]η1(t)δ(y−x(t)) = −
∫
ds′C1(t−s′)

∫
DηP [η] ∂

∂y
δ(y−x(t)) δx(t)

δη1(s′) . (2.2.4.12)

The problem now is the functional derivative on x(t). For this, we take the respective
functional derivative of (2.2.4.1)

d

dt

δx(t)
δη1(s′) = W ′(x) δx(t)

δη1(s′) + h1(x)δ(t− s′) + h′
1(x) δx(t)

δη1(s′)η1(t) + h′
2(x) δx(t)

δη1(s′)η2(t)

(2.2.4.13)
This differential equation in δx(t)

δη1(s′) can be solved to yield

δx(t)
δη1(s′) = Θ(t− s′)h1(x(s′)) exp

(∫ t

s′
ds[W ′(x(s)) + h′

1(x(s))η1(s) + h′
2(x(s))η2(s)]

)
(2.2.4.14)
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We can now substitute this expression and the correspondent one for the second integral
in (2.2.4.12) and get the full exact equation on the distribution

∂P

∂t
= − ∂

∂y
[W (y)P ] + ∂

∂y
h1(y) ∂

∂y

∫ t

0
ds′C1(t− s′)×

×
∫

DηP [η]δ(y−x(t)) exp
(∫ t

s′
ds[W ′(x(s)) + h′

1(x(s))η1(s) + h′
2(x(s))η2(s)]

)
h1(x(s′))+... ,

(2.2.4.15)

where we hid the second integration term for the sake of clarity. We can see here the non-
markovian property of the process. The equation of the probability distribution depends
on previous times by the correlation kernel C1 and C2. It can also be seen that a white
noise correlation Ci(t− s′) = δ(t− s′) will result in the well known Fokker-Planck equation.

We will get rid of the time integration in the exponential by taylor expanding the
integral. But first, lets evolve h1(s′) until t.

d

dt
h1(x(t)) = h′

1(x(t))ẋ(t) = h′
1(x(t))
h1(x(t)) [W (x(t)) + h1(x(t))η1(t) + h2(x(t))η2(t)]h1(x(t)) .

(2.2.4.16)
The formal solution for h(x(s′)) is then

h1(x(s′)) = exp
(∫ s′

t

ds
h′

1(x(t))
h1(x(t)) [W (x(t)) + h1(x(t))η1(t) + h2(x(t))η2(t)]

)
h1(x(t)) .

(2.2.4.17)
We can now introduce the form of interest of our correlation function, that is, an exponen-
tially decaying function

⟨ηi(t)ηi(s)⟩ = Ci(t− s) = Di

τi

exp
(

−|t− s|
τi

)
. (2.2.4.18)

Proceeding to substitute (2.2.4.17) and (2.2.4.18) in (2.2.4.15) results in

∂P

∂t
= − ∂

∂y
[W (y)P ] + ∂

∂y
h(y) ∂

∂y

∫ t

0
ds′ D1

τ1
exp

(
−|t − s|

τ1

)∫
DηP[η]δ(y − x(t))

×exp
(∫ t

s′
ds

[
W ′(x(s)) + h′

1(x(s))
h1(x(s))W (x(s)) +

(
h′

2(x(s)) − h′
1(x(s))

h1(x(s))h2(x(s))
)

η2(s)
])

h1(x(t))+... .

(2.2.4.19)

Our first approximation here is to use the average of the noise instead of the noise in the
exponential. This means that, since the average is zero, the cross dependence of the η2 term
in the first path integral (and similarly, the dependence of η1 in the second) is dropped.
This procedure can be shown to be self consistent in the sense that it correctly reduces
to the adequate additive noise case. You can note that both noise terms in (2.2.4.13) are
zero in the additive case and therefore a cross-term don’t appear. The same procedure
was used in the first derivation of the Fox theory (FOX, 1986a).
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We can now change the integration variable s′ to θ1 = (t− s′)/τ1 (similarly for the
second integral term) and expand the integral in the exponential for τ1 → 0, resulting in

D1

∫ t/τ1

0
dθ1e−θ1

∫
DηP[η]δ(y−x(t)) exp

[∫ t

t−τ1θ1

ds

(
W ′(x(s)) − h′

1(x(s))
h1(x(s))W (x(s))

)]
h1(x(t)) ≈

τ1→0

≈
τ1→0

D1

∫ ∞

0
dθ1e−θ1

∫
DηP[η]δ(y−x(t)) exp

[
τ1θ1

(
W ′(x(s)) − h′

1(x(s))
h1(x(s))W (x(s))

)]
h1(x(t)) =

= D1h1(y)
1 − τ1

(
W ′(y) − h′

1(y)
h1(y)W (y)

)P (y, t) . (2.2.4.20)

Therefore we arrive at our effective Fokker-Planck equation for two sources of colored
multiplicative noise

∂P (y, t)
∂t

= − ∂

∂y
[W (y)P (y, t)]+D1

∂

∂y

h1(y) ∂
∂y

 h1(y)
1 − τ1

(
W ′(y) − h′

1(y)
h1(y)W (y)

)P (y, t)

+

+D2
∂

∂y

h2(y) ∂
∂y

 h2(y)
1 − τ2

(
W ′(y) − h′

2(y)
h2(y)W (y)

)P (y, t)

 . (2.2.4.21)

The Fokker-Planck approximation presented here does have some interesting prop-
erties that are relevant to this work. First of all, it is important to note that the approach
followed in this method is not perturbative. In fact, under a certain condition, the conver-
gence of the approximation for τi → 0 is uniform, that is, it converges to the white noise
case for all values of y in the domain of interest (FOX, 1986b). The uniformity condition
is

1 − τi

(
W ′(y) − h′

i(y)
hi(y)W (y)

)
> 0 . (2.2.4.22)

This condition gives us a form of metric of τi for which we can expect the approximation
to behave reasonably well.

Another property was found by Jung and Hänggi (JUNG; HÄNGGI, 1987). Their
adiabatic method resulted in an approximation that is valid for small and large values
τi. They noted, however, that the stationary solution of the Fox theory agrees with their
stationary solution. Therefore, even though the resulting effective Fokker-Planck obtained
by the Fox theory was derived for small τi values, the stationary solution is valid also for
large τi (given that condition (2.2.4.22) is obeyed). The validity for both limits suggests
that the Fox theory is a good interpolation between both stationary results. A small
derivation of the validity of the stationary solution of the Fox theory for τi → ∞ can also
be found in (GRIGOLINI et al., 1988).
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2.2.5 Transfer Function

After this detour, we have in our hands all the tools needed to solve the problem.
The Langevin equation using the effective time constant approximation can be written as

dV

dt
= −(V − µ)

τ
+
∑

i

hi(µ)ηi(t) . (2.2.5.1)

A straightforward application of (2.2.4.21) results in the corresponding effective Fokker-
Planck equation of interest

∂P (V, t)
∂t

= ∂

∂V

[
(V − µ)

τ
P (V, t)

]
+ 1

2τ

[∑
i

τ 2

τ + τi

h2
i

]
∂2P (V, t)
∂V 2 , (2.2.5.2)

where we have simplified the notation by calling hi(µ) = hi.

This Fokker-Planck has the same form as the one derived for the current-based
integrate-and-fire model (CuBa-IFM) (1.3.0.5). The comparison establishes a relationship
between the noise variance of the CuBa-IFM and the diffusion coefficient of our CoBa-IFM
result. We can state this relationship as follows

σ2
V =

∑
i

σ2
Vi

=
∑

i

τ 2

τ + τi

h2
i , (2.2.5.3)

where the independence of the terms in the sum suggests the separation of the full variance
in two independent components. There is, then, a simple interpretation of the parameters
of the effective Fokker-Planck equation. The first-order term (the drift term) corresponds
to the deterministic drive of the membrane potential, as is in the CuBa-IFM. The second-
order term (the diffusion term) can be seen as the sum of the variance of the noise sources,
where the noise sources are treated as white. The combination of both approximations
(effective time-constant and the Fox theory), therefore, produces the same behavior as the
following Langevin system:

dV

dt
= −(V − µ)

τ
+ σV ξ(t) (2.2.5.4)

Since the Fokker-Planck (2.2.5.2) has the same form as (1.3.0.5), we can take the
same solution (1.3.0.9) and apply it with our set of parameters

1
ν

= τr + τ
√
π

∫ θ−µ
σV

Vr−µ
σV

ex2(1 + erf(x))dx (2.2.5.5)

where σV is given by (2.2.5.3), µ by (2.2.2.3), and τ by (2.2.2.2). We can also get the
stationary probability distribution

Ps(V ) = 2ντ
σV

exp
(

−(V − µ)2

σ2
V

)∫ θ−µ
σV

V −µ
σV

Θ
(
x− Vr − µ

σV

)
ex2
dx (2.2.5.6)
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2.2.6 Multiplicative Noise

In some cases, the effective time constant approximation is not appropriate or
cannot be used. Specifically, when the multiplicative noise terms are nonlinear, we need
to carry the full-terms to the Fokker-Planck equation. Let’s tackle the full-multiplicative
noise problem, then. We begin with the generic Langevin equation, written as

dV

dt
= W (V ) +

∑
i

hi(V )ηi(t) . (2.2.6.1)

where W (V ) = −(V − µ)/τ . We note that since µ and τ depend on si, which can be a
function of V , both can also be functions of V . Applying the result of the Fox theory lead
us to the following effective Fokker-Planck equation

∂P

∂t
= − ∂

∂V
[W (V )P ] +

∑
i

1
2
∂

∂V

hi(V ) ∂

∂V

 hi(V )
1 − τi(W ′(V ) − h′

i(V )
hi(V )W (V )

P

 .

(2.2.6.2)
We can simplify the notation by introducing new variables

Si(V ) = 1
2

 hi(V )
1 − τi(W ′(V ) − h′

i(V )
hi(V )W (V )

 (2.2.6.3)

The differential equation has now the form

∂P

∂t
= − ∂

∂V

[
W (V )P −

∑
i

hi(V ) ∂

∂V
(Si(V )P )

]
(2.2.6.4)

This can be written in the form of a continuity equation
∂P

∂t
= − ∂J

∂V
, (2.2.6.5)

where
J = W (V )P −

∑
i

hi(V ) ∂

∂V
(Si(V )P ) . (2.2.6.6)

In the steady-state, ∂Ps

∂t
= 0. This means that J is constant in the whole domain, except

in the discontinuity points Vr and θ. In the threshold θ, we also have an absorbing
boundary condition. The absorbed probability current corresponds to the firing rate ν and
is reintroduced in the reset potential Vr after the refractory period τr. We can therefore
write the current as

J = νΘ(V − Vr) = W (V )Ps −
∑

i

hi(V ) ∂

∂V
(Si(V )Ps) , (2.2.6.7)

where Θ is the Heaviside function. We now have a first-order linear differential equation
on Ps. Proceeding to solve it via integrating factor, lets first rewrite it in a more explicit
form

∂Ps

∂V
+
[∑

i hi(V )dSi

dV
−W (V )

]∑
i hi(V )Si(V ) Ps = − νΘ(V − Vr)∑

i hi(V )Si(V ) . (2.2.6.8)
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Defining new variables
χ(V ) =

∑
i

hi(V )Si(V ) , (2.2.6.9)

B(V ) =
∑

i hi(V )dSi

dV
−W (V )

χ(V ) . (2.2.6.10)

We can now multiply by the integrating factor e
∫

B(V )dV = eF (V ) and integrate from V to
θ to get

Ps(V ) = ν

∫ θ

V

eF (x)−F (V ) Θ(x− Vr)
χ(x) dx . (2.2.6.11)

Using the normalization condition∫ θ

−∞
Ps(V )dV + ντr = 1 , (2.2.6.12)

we can substitute the probability expression to get

1
ν

= τr +
∫ θ

−∞

∫ θ

V

Θ(x− Vr)
χ(x) eF (x)−F (V )dxdV . (2.2.6.13)

We can finally change the integration order to arrive in the expression for ν

1
ν

= τr +
∫ θ

Vr

∫ x

−∞

eF (x)−F (V )

χ(x) dV dx (2.2.6.14)

The lower limit of the first interval can be limited by the lowest of the reversal potentials,
since the dynamics of the membrane potential cannot be lower than this value. But in a
general sense, the infinity can be written in place as we did.

This formal solution, unfortunately, is not straightforward to use since a closed
form for the integrating factor is generally not obtainable. Also, it is necessary to carefully
evaluate the existence of poles in the differential equation, which we did not do here.
Therefore, to get numerical results for the firing rate transfer function we made use of a
numerical procedure.

2.3 Numerical Approach
We can numerically integrate the differential equation to get the results for P and

ν. The most direct way of doing this would be to use the Euler method, but since we
have a formal solution, we can use it to make a better integration procedure with better
convergence properties. This method was developed by [Richardson:2007], and we will
describe it in the following.

First lets rewrite our differential equation in Ps

∂Ps

∂V
+B(V )Ps = −νΘ(V − Vr)

χ(V ) . (2.3.0.1)
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To get rid off the firing rate term, we can define the rescaled variable p0 as Ps = p0ν.
Therefore, our equation becomes independent of ν

−∂p0

∂V
= B(V )p0 +H(V ) , (2.3.0.2)

where we defined H(V ) = Θ(V −Vr)
χ(V ) . We then divide the integration interval (in our case

(EI , θ)) in steps of size ∆, giving us the points V (k) = EI +∆k. This implies that V (0) = EI

and V (N) = θ. In this division, is also convenient to have a k such that V (k) = Vr, so that
the discontinuity lies in one of the points. Integrating in one step, we get

p
(k−1)
0 = p

(k)
0 e

∫ V (k)

V (k−1) B(V )dV +
∫ V (k)

V (k−1)
H(V )e

∫ V

V (k−1) B(U)dUdV . (2.3.0.3)

Expanding B and H around V (k) to zeroth order in ∆, we get

p
(k−1)
0 ≈ p

(k)
0 e∆B(k) + ∆H(k)

(
e∆B(k) − 1

∆B(k)

)
, (2.3.0.4)

where B(k) = B(V (k)) and H(k) = H(V (k)). Since we know that p0(θ) = 0, we can reverse
integrate p0 using this recursion relation. From the definition of p0 and the normalization
condition (2.2.6.12) we get

ν = 1
τr +

∑N
k=0 ∆p(k)

0
. (2.3.0.5)

Substituting this expression in the definition Ps = p0ν results in the stationary probability
distribution

Ps = p0

τr +
∑N

k=0 ∆p(k)
0
. (2.3.0.6)
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3 Results

3.1 Conductance-Based Integrate-and-Fire Neuron
We will first apply our model to a simple conductance-based integrate-and-fire

neuron with two input channels: an excitatory gE(t), and an inhibitory gI(t) channel. So
the equations describing our system are

τL
dV

dt
= −(V − EL) − gE(t)(V − EE) − gI(t)(V − EI) , (3.1.0.1)

τE
dgE

dt
= −gE +

∑
j,k

wEδ(t− tkj ) , (3.1.0.2)

τI
dgI

dt
= −gI +

∑
j,k

wIδ(t− tkj ) . (3.1.0.3)

The neuron also receives input from KE excitatory input neurons and KI inhibitory. Both
populations fire at a rate νi. The neuron fire if the potential reaches the threshold θ

and then the potential is reset to Vr for a period τR. To be able to simulate this system,
specific values are needed to be attributed to the parameters. The values are taken to be
physiologically plausible and are in the range of typically used values in simulated works,
for example, in (ZENKE; AGNES; GERSTNER, 2014). The specific values are listed in
table 1.

Variable Value
EL -60mV
EE 0mV
EI -80mV
wE {0.1, 0.5}
wI {0.1, 0.4, 1.0, 10.0}
τL 20ms
τE variable
τI 10ms
τR 2ms
KE 400
KI 100
θ -50mV
Vr -60mV
νi {5, 20, 50}Hz

Table 1 – Table containing the set of parameters used for the simple Conductance-Based
Integrate-and-Fire model.
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As a way to demonstrate the validity of the diffusion approximation, for the range
of values used here, we plotted the mean, the standard deviation, and the skewness of the
analytical conductance and the simulated one (figure 7). As expected by the construction,
the expressions for the mean and the standard deviation are good representation of the
values simulated even when the synaptic weight wE is large. In contrast, we can see
deviations in the skewness for small values of τE. This is somewhat expected since the
values of g(t) can’t be negative and the diffusion approximation don’t take this into
consideration. Therefore, for small τE, we have small µE and the Gaussian form of the
approximation fails to account the asymmetric shape of the distribution with a hard
boundary at g = 0. Therefore, as stated by (RICHARDSON; GERSTNER, 2005), the
diffusion approximation introduce errors at the third order moment of the distribution.

Proceeding, the form of the Langevin equation for the Conductance-Based Integrate-
and-Fire is

dV

dt
= −(V − µ)

τ
+ hE(V )ηE(t) + hI(V )ηI(t) , (3.1.0.4)

where
τ = τL

1 + µE + µI

, (3.1.0.5)

µ = τ

τL

(EL + µEEE + µIEI) , (3.1.0.6)

hE,I(V ) =
√
τE,I

τL

σE,I(EE,I − V ) . (3.1.0.7)

We can now use the effective time-constant approximation or deal with the full
multiplicative problem. Lets first apply the approximation and see what it results.

3.1.1 Additive Noise

With the effective time-constant approximation, the Langevin simplify to

dV

dt
= −(V − µ)

τ
+ hEηE(t) + hIηI(t) , (3.1.1.1)

where the constant coefficients are hE = hE(µ) and hI = hI(µ). Application of the Fox
theory results in the transfer function (2.2.5.5) and the probability distribution (2.2.4.15)
with the expression for σV given by

σ2
V = τ 2

τ + τE

h2
E + τ 2

τ + τI

h2
I . (3.1.1.2)

A comparison of the analytical results (numerically integrated as explained in section 2.3)
with the simulations can be seen in figure 8. Good agreement is present for all variables
calculated with this set of parameters. Changing the input rate νi has little effect on the
stationary potential µ but changes the noise variance σ2

V of the neuron without threshold.
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Figure 7 – Comparison of the analytical expressions obtained for the statistics of gE using
the diffusion approximation (lines) with simulations (circles). We can see that
the analytical expressions are good descriptions of the simulations for all the
range of parameters tested for the first and second moments. The skewness,
however, exhibits a deviation from the Gaussian approximation for small τE.
Parameters for first column, wE = 0.1, wI = 0.4; second column, wI = 0.8,
νi = 5Hz
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Figure 8 – Comparison of the analytical model with simulations for the simple conductance-
based integrate-and-fire neuron using the effective time-constant approximation.
Three different values of input firing rate νi as a function of the excitatory time
constant. (A) Mean potential for a thresholdless model. (B) Standard deviation
of the membrane potential for the same thresholdless model. (C) Firing rate
and (D) absolute error between the the analytical firing rate and simulations.
Absolute error was calculated as the absolute value between both measures.
Relevant parameters are wE = 0.1, wI = 0.4.

So the variation in the firing rate is mostly given by the changes in the variance in this
case. A higher noise variance makes the transition from silent to firing smoother. This
behavior can be intuited by picturing a moving Gaussian: changing the time constant τE

has as one of its effects moving the distribution towards the threshold. Since the firing rate
is equal to the probability current at the threshold, and this current is proportional to the
derivative of the distribution at the same point (equation (2.2.6.7), noting that Ps(θ) = 0),
this derivative has a smoother transition when the variance is larger. Therefore, the firing
rate also increases more smoothly. From figure 8C and 8D we can also note that the error
concentrate in the region of transition.

Lets now evaluate the model for different inhibition levels by increasing the in-
hibitory synaptic weight wI (figure 9). We use three values of inhibitory synaptic weight:
wI = 0.1, wI = 1.0, and wI = 10.0 with a constant excitatory weight wE = 0.5. It is
possible to see again a good agreement for the mean and variance. For the firing rate,
however, the curve for wI = 10.0 has a sharper transition than expected. We can also
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Figure 9 – Comparison of the analytical model with simulations for the simple conductance-
based integrate-and-fire neuron using the effective time-constant approximation.
Three different values of inhibitory synaptic weight wI as a function of the
excitatory time constant. (A) Mean potential for a thresholdless model. (B)
Standard deviation of the membrane potential for the same thresholdless model.
(C) Firing rate and (D) absolute error between the the analytical firing rate
and simulations. Relevant parameters are wE = 0.5, νi = 5Hz.

see that the error is larger in the region where µ is between EL and θ, that is, in the
sub-threshold regime. In this region spikes are driven by fluctuations in the membrane
potential. The sharpness of the transition compared to the data suggests that in this,
for those parameters values, the model underestimates the fluctuations. We can examine
what differences the introduction of the full multiplicative noise produce compared to the
simplified one.

3.1.2 Multiplicative Noise

The full-multiplicative noise results in a Fokker-Planck equation with the form

∂P

∂t
= − ∂

∂V
[W (V )P ] + ∂

∂V
hE(V ) ∂

∂V
(SE(V )P ) + ∂

∂V
hI(V ) ∂

∂V
(SI(V )P ) , (3.1.2.1)

where the functions SE(V ) and SI(V ) are given by the generic expression in (2.2.6.3). The
stationary differential equation that will be solved numerically is then

∂Ps

∂V
+B(V )Ps = −νH(V ) , (3.1.2.2)
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Figure 10 – Comparison of the analytical model with simulations for the simple
conductance-based integrate-and-fire neuron using the full-multiplicative
model. Three values of input firing rate were tested. (A) Firing rate and
(B) absolute error between the the analytical firing rate and simulations.
Relevant parameters are wE = 0.1, wI = 0.4.

with
B(V ) = hE(V )S ′

E(V ) + hI(V )S ′
I(V ) −W (V )

χ(V ) , (3.1.2.3)

H(V ) = Θ(V − Vr)
χ(V ) , (3.1.2.4)

χ(V ) = hE(V )SE(V ) + hI(V )SI(V ) . (3.1.2.5)

With this in our hands, we solved again the stationary Fokker-Planck numerically
for the same set of parameters as in the last subsection. For the different input firing rates,
no appreciable differences can be seen between the additive model and the multiplicative
one (figure 10). However, a considerable difference appears when we look at the higher
value of inhibitory weight wI = 10.0 (figure 11). At a first glance, the treatment of the full
multiplicative noise appears to result in a worst solution to the problem, since the error
increases a little in the transition region. But a closer inspection of the form of the curves
reveals a better qualitative behavior since both the analytical curve and the simulation
data have the same shape. In fact, it seems that a translation of the curve in the τE axis
would make it fit the data almost perfectly. Therefore, an improvement can probably
be obtained by comparing the error for different parameters and fitting an appropriate
translation. We suspect that the multiplicative treatment improves the variance estimation
but underestimates the mean.

To finish the analysis of the conductance-based integrate-and-fire neuron, we look
at the stationary probability distributions with and without the effective time-constant
approximation (figure 12). Top row corresponds to the parameters of the blue curve of
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Figure 11 – Comparison of the analytical model with simulations for the simple
conductance-based integrate-and-fire neuron using the full-multiplicative
model. Three values of inhibitory synaptic weight were tested. (A) Firing rate
and (B) absolute error between the the analytical firing rate and simulations.
Relevant parameters are wE = 0.5, νi = 5Hz.

figure 8 and 10. Bottom corresponds to green curve in 9 and 11. It can be seen that better
agreement is obtained for low (first column) and high (last column) τE. For the transition
region (middle column) agreement tends to be worst, especially in the high inhibition case
(12E). This is to be expected since it is the region where the analytical firing rate also is
not in good accord with data. The overestimation of the firing rate means that a larger
amount of the distribution will be refractory, as observed by the smaller area under the
curves.

It is also important to reinforce that using the effective time-constant approximation
can provide better results in some situations but worst in others. The most explicit
comparison case is figures 12C and 12D. In 12C, the approximation provides a better
description of the distribution, while the full multiplicative model overestimates the left
tail. The reverse happens for 12F, where the multiplicative model better accounts for both
ends of the distribution.

3.2 Interpolated Integrate-and-Fire

A natural progression in the models to test is the addition of one mode channel to
the neuron. More specifically, we will interpolate two excitatory channels with a proportion
variable and keep the inhibitory the same. The excitatory channels can be classified as
fast response and slow response channels. We write the model as

τL
dV

dt
= −(V −EL)− (1−α)gF (t)(V −EE)−αgS(t)(V −EE)−gI(t)(V −EI) , (3.2.0.1)
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Figure 12 – Stationary probability distribution for conductance-based integrate-and-fire
neuron. (A) τE = 1ms, wE = 0.1 and wI = 0.4. (B) τE = 20ms, wE = 0.1 and
wI = 0.4. (C) τE = 70ms, wE = 0.1 and wI = 0.4. (D) τE = 1ms, wE = 0.5
and wI = 10.0. (E) τE = 20ms, wE = 0.5 and wI = 10.0. (F) τE = 70ms,
wE = 0.5 and wI = 10.0. Additive model corresponds to the use of the effective
time constant approximation, while multiplicative uses the full Langevin. Data
for the grey histogram was collected from simulations over a period of 20s.
Refractory time not displayed.

τF
dgF

dt
= −gF +

∑
j,k

wEδ(t− tkj ) , (3.2.0.2)

τS
dgS

dt
= −gS +

∑
j,k

wEδ(t− tkj ) , (3.2.0.3)

τI
dgI

dt
= −gI +

∑
j,k

wIδ(t− tkj ) , (3.2.0.4)

where gF is the fast conductance, gS is the slow conductance, and α indicates the proportion
of fast and slow response channels. To keep this interpretation of the variable α, we set
KF = KS = KE, KE the total number of excitatory input. The input firing rate for all
populations νi is again kept constant. The values of the parameters of the interpolated
conductance-based integrate-and-fire neuron are listed in table 2.

With this knowledge, the Langevin equation is written as

dV

dt
= (V − µ)

τ
+ hF (V )ηF (t) + hS(V )ηS(t) + hI(V )ηI(t) , (3.2.0.5)
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Variable Value
α variable
EL -60mV
EE 0mV
EI -80mV
wE {0.1, 0.5}
wI {0.1, 0.4, 1.0, 10.0}
τL 20ms
τF 1ms
τS 100ms
τI 10ms
τR 2ms
KE 400
KI 100
θ -50mV
Vr -60mV
νi {5, 20, 50}Hz

Table 2 – Table containing the set of parameters used for the interpolated conductance-
based integrate-and-fire model.

where
τ = τL

1 + (1 − α)µF + αµS + µI

(3.2.0.6)

µ = τ

τL

(EL + (1 − α)µFEE + αµSEE + µIEI) , (3.2.0.7)

hF (V ) = (1 − α)
√
τF

τL

σF (EE − V ) hS(V ) = α

√
τS

τL

σS(EE − V ) , (3.2.0.8)

hI(V ) =
√
τI

τL

σI(EI − V ) . (3.2.0.9)

Lets again compare the results of the method using the effective time-constant
approximation and the full multiplicative Langevin.

3.2.1 Additive Noise

Application of the effective time-constant approximation results in

dV

dt
= (V − µ)

τ
+ hFηF (t) + hSηS(t) + hIη(t) , (3.2.1.1)

where the coefficients are as earlier hF = hF (µ), hS = hS(µ), and hI = hI(µ). The Fox
theory gives us again a transfer function with the same form as (2.2.5.5) and a stationary
probability distribution (2.2.4.15), but now σV is given by

σ2
V = τ 2

τ + τF

h2
F + τ 2

τ + τS

h2
S + τ 2

τ + τI

h2
I . (3.2.1.2)
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Figure 13 – Comparison of the analytical model with simulations for the interpolated
neuron using the effective time-constant approximation. Three different values
of input firing rate νi was used. (A) Mean potential for a thresholdless model.
(B) Standard deviation of the membrane potential for the same thresholdless
model. (C) Firing rate and (D) absolute error between the the analytical firing
rate and simulations. Relevant parameters are wE = 0.1, wI = 0.4.

Comparing the resulting mean potential and the standard deviation for the thresh-
oldless model we see, again, good agreement for all values (figure 13). We can also see
that the mean potential is the same as in the simple conductance-based integrate-and-fire
neuron. This equivalence can be explicit calculated by using τE = (1 − α)τF + ατS in the
expression of µ. However, the equivalence doesn’t occur for the standard deviation, which
has a less pronounced maximum in the interpolated case. The transfer function retains an
almost identical shape to the conductance-based, which means that what contributes the
most in the form of the curve is the mean potential. In any case, the error continues to be
small except for the small transition region.

We can now proceed to change the inhibition levels by modifying wI . As expected,
the mean potential behaves the same as in the simple conductance-based neuron. The
standard deviation presents a more pronounced difference, not only changing the peak
values but also changing the overall shape of the curve. Specifically, the interpolated model
exhibits smaller values in general and the curve for wI = 0.1 decreases monotonically.
The analytical transfer function doesn’t work very well again for wI = 10. The transition
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Figure 14 – Comparison of the analytical model with simulations for the interpolated
neuron using the effective time-constant approximation. Three different values
of inhibitory synaptic weight was used. (A) Mean potential for a threshold-
less model. (B) Standard deviation of the membrane potential for the same
thresholdless model. (C) Firing rate and (D) absolute error between the the
analytical firing rate and simulations. Relevant parameters are wE = 0.5,
νi = 5Hz.

is again exceedingly sharper than expected. Let’s again look at the treatment of the
full-multiplicative model.

3.2.2 Multiplicative Noise

The Fokker-Planck for the multiplicative model has now three diffusion terms, the
fast and the slow excitatory ones, and the same inhibitory one. The form of the equation
is therefore

∂P

∂t
= − ∂

∂V
[W (V )P ]+ ∂

∂V
hF (V ) ∂

∂V
(SF (V )P )+ ∂

∂V
hS(V ) ∂

∂V
(SS(V )P )+ ∂

∂V
hI(V ) ∂

∂V
(SI(V )P ) ,

(3.2.2.1)
where again the functions SF (V ), SS(V ), and SI(V ) can be inferred from the generic
expression (2.2.6.3). We obtain the same linear differential equation

∂Ps

∂V
+B(V )Ps = −νH(V ) , (3.2.2.2)
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Figure 15 – Comparison of the interpolated model with simulations for three different
values of input firing rate νi as a function of the interpolation parameter
α. Full multiplicative model was used testing for three values of input rate.
(A) Mean potential for a thresholdless model. (B) Standard deviation of the
membrane potential for the same thresholdless model. (C) Firing rate and (D)
absolute error between the the analytical firing rate and simulations. Relevant
parameters are wE = 0.1, wI = 0.4.

with coefficients

B(V ) = hF (V )S ′
F (V ) + hS(V )S ′

S(V ) + hI(V )S ′
I(V ) −W (V )

χ(V ) , (3.2.2.3)

H(V ) = Θ(V − Vr)
χ(V ) , (3.2.2.4)

χ(V ) = hF (V )SF (V ) + hS(V )SS(V ) + hI(V )SI(V ) . (3.2.2.5)

Looking at figures 15 and 16, the behavior of the simple conductance base repeats
here, with the multiplicative model exhibiting a smoother transitions but with an early
beginning. It is, again, heavily implied by the figures that a translation in the α direction
would improve the results dramatically in the high inhibition case. A deeper investigation
of this behavior and how generalizable it is for other parameters and neuron models is
needed.

It is clear that the behavior of the simple conductance-based integrate-and-fire and
the interpolated one is essentially the same at least when we are considering the firing rate.
The small deviations in the variance of the noise don’t translate into significant differences
in how the neuron fires when receiving a stationary input.

The comparison of the stationary probability distributions tells us again that
using the effective time-constant approximation or not doesn’t guarantee a better result
(figure 17). Even though the full-multiplicative model gives us a better description of
the distribution for most of the cases in the picture, for 17C the approximation better
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Figure 16 – Comparison of the interpolated analytical model with simulations for three
different values of inhibitory synaptic weight wI as a function of the interpola-
tion parameter α. Full multiplicative model was used testing for three values
of inhibitory synaptic weight.(A) Mean potential for a thresholdless model.
(B) Standard deviation of the membrane potential for the same thresholdless
model. (C) Firing rate and (D) absolute error between the the analytical firing
rate and simulations. Relevant parameters are wE = 0.5, νi = 5Hz.

Figure 17 – Stationary probability distribution for different parameters of the interpolated
model. (A) α = 0.1, wE = 0.1 and wI = 0.4. (B) α = 0.3, wE = 0.1 and
wI = 0.4. (C) α = 0.7, wE = 0.1 and wI = 0.4. (D) α = 0.1, wE = 0.5 and
wI = 10.0. (E) α = 0.3, wE = 0.5 and wI = 10.0. (F) α = 0.7, wE = 0.5
and wI = 10.0. Additive model corresponds to the use of the effective time
constant approximation, while multiplicative uses the full Langevin. Data
for the grey histogram was collected from simulations over a period of 20s.
Refractory time not displayed.
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encapsulate the data. For the transition region in the high inhibition case we can see that
the analytical result is considerably flatter than the real distribution and has a smaller
area. This is to be expected since it overestimates the firing rate and therefore a larger
portion of the distribution is refractory.

3.3 NMDA Integrate-and-Fire
Until now, there was no V nonlinearity in the resulting Langevin equation of

the neurons tested. In principle, our mean-field method should be able to deal with
nonlinearities in the drift term, in the diffusion terms, or both. Here we will add a
nonlinearity by introducing NMDA channels. NMDA channels are excitatory channels
that the activation depends also on the membrane potential, as stated in the introduction.
An appropriate way to model this behavior is by adding an appropriately tuned sigmoidal
factor to the conductance term (JAHR; STEVENS, 1990). The complete model can be
written as

τL
dV

dt
= −(V−EL)−(1−α)gA(t)(V−EE)−αs(V )gN(t)(V−EE)−gI(t)(V−EI) , (3.3.0.1)

τA
dgA

dt
= −gA +

∑
j,k

wEδ(t− tkj ) , (3.3.0.2)

τN
dgN

dt
= −gN +

∑
j,k

wEδ(t− tkj ) , (3.3.0.3)

τI
dgI

dt
= −gI +

∑
j,k

wIδ(t− tkj ) , (3.3.0.4)

s(V ) = 1
1 + ([Mg2+]/γ) exp (−βV )

, (3.3.0.5)

where gA are the AMPA channels (excitatory fast acting channels here), gN the NMDA
channels, s is the sigmoidal modulating function, [Mg2+] is the concentration of magnesium
ions, and γ and β are fitting parameters. For α to represent the proportion of AMPA and
NMDA channels, we again keep the number of their inputs equal, i.e, KA = KN = KE, and
KE the number of excitatory inputs. The input rate νi is also the same for all populations.
The list of the parameters and their values are kept in table 3.

The set of equations for this model when applied the diffusion approximation and
reduced to a one dimensional Langevin equation produces

dV

dt
= (V − µ(V ))

τ(V ) + hA(V )ηA(t) + hN(V )ηN(t) + hI(V )ηI(t) , (3.3.0.6)

where
τ(V ) = τL

1 + (1 − α)µA + αs(V )µN + µI

(3.3.0.7)
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Variable Value
α variable
EL -60mV
EE 0mV
EI -80mV
wE {0.1, 0.5}
wI {0.1, 0.4, 1.0, 10.0}
τL 20ms
τA 1ms
τN 100ms
τI 10ms
τR 2ms
KE 400
KI 100
θ -50mV
Vr -60mV
νi {5, 20, 50}Hz

[Mg2+] 1mM
γ 3.57mM
β 0.062(mV)−1

Table 3 – Table containing the set of parameters used for the interpolated conductance
based integrate and fire model.

µ(V ) = τ

τL

(EL + (1 − α)µAEE + αs(V )µNEE + µIEI) , (3.3.0.8)

hA(V ) = (1 − α)
√
τA

τL

σA(EE − V ) hN(V ) = αs(V )
√
τN

τL

σN(EE − V ) , (3.3.0.9)

hI(V ) =
√
τI

τL

σI(EI − V ) . (3.3.0.10)

It is clear now that we can’t use the effective time-constant approximation to
obtain a coherent result. The term hN (V ) is no longer linear, and the approximation loses
its logic [Richardson,Gerstner:2005]. We also have a highly nonlinear drift term, as the
effective membrane time-constant τ(V ) and the stationary potential µ(V ) depends on the
membrane potential V through the modulating function s(V ). It is possible to modify the
equation (3.3.0.1) so that the effective time-constant approximation becomes applicable
again. To this end it is necessary to linearize the term s(V )(V − EE) around the average
membrane potential value ⟨V ⟩, so that all terms are linear in V again. This procedure
was used by Brunel and Wang to see the effects of NMDA neuromodulation on working
memory (BRUNEL; WANG, 2001). The disadvantage of this method is that it introduce
the firing rate itself in the Langevin, needing a self consistent procedure to get the resulting
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firing rate. Therefore, we will not use the approximation, treating the full-model, since our
method don’t have any restrictions of this kind.

Calculating the Fokker-Planck, we get the following

∂P

∂t
= − ∂

∂V
[W (V )P ]+ ∂

∂V
hA(V ) ∂

∂V
(SA(V )P )+ ∂

∂V
hN(V ) ∂

∂V
(SN(V )P )+ ∂

∂V
hI(V ) ∂

∂V
(SI(V )P ) ,

(3.3.0.11)
where the functions SA(V ), SN(V ), and SI(V ) are given by (2.2.6.3). We also note that
W (V ) is no longer linear in V and will result in different functional forms for the S

functions. The linear differential equation in V is then

∂Ps

∂V
+B(V )Ps = −νH(V ) , (3.3.0.12)

with coefficients

B(V ) = hA(V )S ′
A(V ) + hN(V )S ′

N(V ) + hI(V )S ′
I(V ) −W (V )

χ(V ) , (3.3.0.13)

H(V ) = Θ(V − Vr)
χ(V ) , (3.3.0.14)

χ(V ) = hA(V )SA(V ) + hN(V )SN(V ) + hI(V )SI(V ) . (3.3.0.15)

We proceed to test this model against simulation data for different input rates
(figure 18A and 18B) and for different inhibitory weights (figure 18C and 18D). Given the
highly nonlinear model in hands, it is remarkable how good the agreement between the
mean-field result and the simulations iss for the majority of the cases. We can see the
early rise of the curve as in the previous models, so the method retains, even in this case,
the overestimation of the firing rate. But it is notable that a slight translation in the α
axis can result in a better fitting, similar to our previous results for the full-multiplicative
model. The only case where the model isn’t a good descriptor is for wI = 10. In this case
the early rise of the curve is really pronounced when the simulation data barely moves.

There is also a crucial point that we need to allude to. In the methods, we imposed
the condition for uniform convergence (2.2.4.22) as a metric for the good behavior of
the method (FOX, 1986b). In the linear conductance-based models, this condition was
obeyed for all values. However, the introduction of the NMDA nonlinearity makes this
condition break for a large range of parameters. This is the case for the curves in figure
18C. Notably, breaking this condition didn’t affect the ability of the model to describe the
system. But, for the method to work correctly it is necessary to deal with the divergence
point at 1 − τi

(
W ′(y) − h′

i(y)
hi(y)W (y)

)
= 0. For a lack of time, we removed the divergences

by removing the diverging values of B and H when numerically integrating. This resulted
in some kinks and distortions in the results of figure 18C, but is clear that a more clever
procedure can completely remove these instabilities without compromising the model.



3.3. NMDA Integrate-and-Fire 59

Figure 18 – Comparison of the NMDA analytical model with simulations for three different
values of input rate νI and inhibitory synaptic weight wI as a function of the
interpolation parameter α. (A) Firing rate and (B) error of the analytical
model for the different input rates with wE = 0.1 and wI = 0.4. (C) Firing rate
and (D) absolute error between the the analytical firing rate and simulations
for three values of inhibitory weights wI with wE = 0.5 and νi = 5Hz

Lastly, we can look at the probability distributions estimated for the NMDA model
(figure 19). For the top row, the estimation is good when the distribution don’t interact
heavily with the threshold but degrades when this interaction is significant. On the bottom
row, where wI = 10, the estimation works really well for all values of α. This happens for
the same reason as the figure 19A, that is, the distribution is concentrated well bellow the
threshold, and for this reason the absorbing barrier have little effect in the model.
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Figure 19 – Stationary probability distribution for the NMDA model with different pa-
rameters. (A) α = 0.1, wE = 0.1 and wI = 0.4. (B) α = 0.5, wE = 0.1 and
wI = 0.4. (C) α = 0.7, wE = 0.1 and wI = 0.4. (D) α = 0.1, wE = 0.5 and
wI = 10.0. (E) α = 0.5, wE = 0.5 and wI = 10.0. (F) α = 0.7, wE = 0.5 and
wI = 10.0. Red curve corresponds to the probability distribution estimated
from the model. Data for the grey histogram was collected from simulations
over a period of 20s. Refractory time not displayed.
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4 Conclusion

In this work, we have developed a new method for the construction of a transfer
function that gives the firing rate of a generic conductance-based integrate-and-fire neuron.
The method is based on the standard diffusion approximation, which substitutes the
Poissonian input with a gaussian white noise with the same mean and variance as the
original. We reduced the N-dimensional system into a single Langevin equation with
colored and multiplicative noise, which does not have a corresponding exact Fokker-Planck
equation. To solve this problem, we used an extension of the Fox theory [Fox, 1986A-1986B]
to construct an effective Fokker-Planck equation, which can be used to obtain the resulting
stationary firing rate. Three distinct neuron models with progressive complexity were
picked to test the method described, namely, a standard conductance-based integrate-and-
fire; an interpolated fast and slow channels conductance-based integrate-and-fire; and a
conductance-based integrate-and-fire with nonlinear NMDA channels.

The mean-field result for the standard conductance-based integrate-and-fire neu-
ron was compared with the firing rate data resulting from simulations as a function of
the excitatory time constant. We also compared the use of the effective time-constant
approximation, which reduces the linear multiplicative terms into additive ones, to the
full treatment of the multiplicative Langevin. We saw good agreement between the data
and the mean-field results in most of the scenarios tested. The only exception was for
the high inhibition case, where the error was considerably high for the transition region.
A quick look at the stationary membrane potential for the thresholdless model tells us
that the region of large error is the fluctuation-driven one, where spikes are generated by
fluctuations in the membrane potential. The method, therefore, tends to overestimate the
firing rate in this region. We can also see that, even though the error is smaller when we use
the effective time-constant approximation, the qualitative behavior for the multiplicative
model was better. The results for the multiplicative model also suggest that a translational
correction can improve the results. Corrections with the form proposed by Brunel and Sergi
(BRUNEL; SERGI, 1998) for the model with the effective time-constant approximation
may be a fruitful way to get a better description of the data in some cases since it provides
higher order terms in the fastest time constant channel. However, we did not manage to
test this hypothesis in our models.

The interpolated integrate-and-fire model produced a very similar result as the
standard one. That is mostly because the stationary membrane potential is the same in
both models. The differences in the variance of the noise are not sufficient to significantly
change the resulting firing rate. So in terms of the firing rate behavior, changing the
proportion of fast and slow channels corresponds to changing the response time of one
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single type of channel.

At last we added nonlinear NMDA channels to the model to teste the effectiveness
of the method for nonlinear terms. The nonlinearity in the resulting diffusion coefficients
required extra care, since for some set of parameters the system goes outside the range of
validity of the method and divergences can occur. However, if the divergences are taken
care in an appropriate manner, the method produces a good description of the simulated
data even when outside the range of validity. The exception is again the region of high
inhibition, where the method generates an early rising curve.

We also plotted the probability distributions of the membrane potential against
the simulation data. It was noticeable that the probability distribution obtained from
the method was a good approximation of the real distributions when the influence of the
threshold was minor. That occurs when the average membrane potential is sufficient low,
not generating spikes, or when it is high enough so that spikes are constant. When between
these regions, the resulting probability distributions can result in lousy representations.

We stopped at this three types of neuron models. However, the method proposed
here, in principle, goes beyond these three test cases. One of these extensions, mentioned
in the methods section, is the possible introduction of the nonlinear term ψ(V ) in the drift
expression. This nonlinear term can represent a quadratic (LATHAM et al., 2000) or an
exponential integrate-and-fire neuron (FOURCAUD-TROCMÉ et al., 2003), for example.
It is also possible to introduce adaptation currents that depends on the spiking time of the
modeled neuron. This would introduce the firing rate in the resulting Langevin equation,
making a self-consistent treatment required.

It is also possible to look for non-stationary solutions when the input changes in
time. Let’s say we introduce an oscillatory Poissonian input. It is possible to construct a
Fokker-Planck equation with the Fox theory since the noise terms still have the same form
but are now modulated by the firing rate. Nonetheless, only the stationary solutions of
Fox theory are valid for all the range of the time constants (JUNG; HÄNGGI, 1987). The
non-stationary ones are valid in the small τi limit, and careful consideration of this fact is
necessary when putting the method into practice.

Finally, we allure to the fact that we can use this procedure to study networks
of spiking neurons in equilibrium. If the neuron is inserted in a network of similar units,
then it is expected that the resulting firing rate of this neuron is similar to the rest of the
network. Effectively, this means that we can set the input rate as equal to the output rate
for neurons of the same type, and solve it in a self-consistent manner (FENG, 2003). This
was famously done by Brunel to evaluate phase transitions of a network of simple current
based integrate and fire neurons (BRUNEL; BRUNEL, 2000). Stability and oscillations,
however, can be a little challenging to calculate for some of the models given here, since
the nonlinearities complicate the analysis.
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