

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE GEOCIÊNCIAS CURSO DE GRADUAÇÃO EM GEOLOGIA

Simone Trindade

ANÁLISE DA VULNERABILIDADE E DO RISCO POTENCIAL DE CONTAMINAÇÃO DAS ÁGUAS SUBTERRÂNEAS DO SISTEMA AQUÍFERO COSTEIRO NA REGIÃO DE CIDREIRA E BALNEÁRIO PINHAL, RS

Porto Alegre - Rio Grande do Sul

Simone Trindade

ANÁLISE DA VULNERABILIDADE E DO RISCO POTENCIAL DE CONTAMINAÇÃO DAS ÁGUAS SUBTERRÂNEAS DO SISTEMA AQUÍFERO COSTEIRO NA REGIÃO DE CIDREIRA E BALNEÁRIO PINHAL, RS

Monografia apresentada a Universidade Federal do Rio Grande do Sul, como parte das exigências para a obtenção do título de Bacharel em Geologia.

Orientadores:

Prof. Dr. Pedro Antônio Roehe Reginato

Prof^{a.} Dra. Maria Luiza Correa da Camara Rosa

Porto Alegre - Rio Grande do Sul

Julho 2022

CIP - Catalogação na Publicação

Trindade, Simone
ANÁLISE DA VULNERABILIDADE E DO RISCO POTENCIAL DE
CONTAMINAÇÃO DAS ÁGUAS SUBTERRÂNEAS DO SISTEMA
AQUÍFERO COSTEIRO NA REGIÃO DE CIDREIRA E BALNEÁRIO
PINHAL, RS / Simone Trindade. -- 2022.
119 f.
Orientador: Pedro Antônio Roehe Reginato.

Coorientadora: Maria Luiza Correa da Camara Rosa.

Trabalho de conclusão de curso (Graduação) --Universidade Federal do Rio Grande do Sul, Instituto de Geociências, Curso de Geologia, Porto Alegre, BR-RS, 2022.

1. SAC. 2. GOD. 3. POSH. 4. Hidrogeologia Costeira. I. Antônio Roehe Reginato, Pedro, orient. II. Correa da Camara Rosa, Maria Luiza, coorient. III. Título.

Elaborada pelo Sistema de Geração Automática de Ficha Catalográfica da UFRGS com os dados fornecidos pelo(a) autor(a).

Simone Trindade

A Comissão Examinadora, abaixo, aprova o Trabalho de Conclusão de Curso ANÁLISE DA VULNERABILIDADE E DO RISCO POTENCIAL DE CONTAMINAÇÃO DAS ÁGUAS SUBTERRÂNEAS DO SISTEMA AQUÍFERO COSTEIRO NA REGIÃO DE CIDREIRA E BALNEÁRIO PINHAL, RS, elaborado por Simone Trindade, como requisito parcial para obtenção do grau de Bacharel em Geologia.

Comissão Examinadora:		
Profa. Dra. Franciéle Schwanck Carlos		
Prof. Dr. Antônio Pedro Viero		
Prof. Dr. Alfonso Risso		

AGRADECIMENTOS

Inicio agradecendo a minha mãe, Terezinha, pelo apoio, dedicação e incentivo ao longo da minha existência. Também agradeço ao meu pai, Valdomiro (in memoriam) que juntamente com ela me ensinou a importância e o valor dos estudos.

Agradeço aos poucos familiares que se mantiveram por perto durante a minha jornada na universidade. Esta é uma jornada que pode ser imensamente solitária quando se é a primeira da família a tomar tal caminho.

Ao meu companheiro, Eduardo, obrigada por ser suporte e conforto nos dias difíceis e por estar tão feliz e radiante com a minha conquista.

Às amizades que fiz na Casa do Estudante da UFRGS (CEUFRGS), na qual residi entre 2012 e 2018, lá conheci pessoas incríveis, as quais carrego como amigas até hoje. Não vou citar nomes pra não deixar ninguém de fora, só quero dizer que foi um privilégio poder ter encontrado tantas pessoas especiais em meu caminho.

Durante a minha graduação tive a oportunidade de aprender com pessoas incríveis, as quais me influenciaram muito, pessoalmente e profissionalmente. Sou grata aos professores e técnicos da UFRGS que fizeram parte da minha trajetória, em especial a professora Maria Luiza por me acolher em seu grupo de orientação durante meus anos de IC e por incentivar minha formação como Hidrotécnica, e ao Professor Pedro Reginato que participou da minha formação enquanto Hidrotécnica e Geóloga por ser tão parceiro na elaboração deste trabalho de conclusão.

Agradeço as pessoas que lutaram e as que seguem lutando, diariamente, pela manutenção e ampliação da assistência estudantil. A finalização deste curso também é resultado do suporte recebido por meio da assistência estudantil.

RESUMO

A crescente demanda para diferentes usos das águas subterrâneas, atrelada a expansão da urbanização, das atividades agrícolas e industriais, geram um aumento das potenciais cargas contaminantes e um aumento do risco potencial de contaminação das águas subterrâneas. Este trabalho tem como objetivo analisar a vulnerabilidade natural e o risco potencial de contaminação das águas subterrâneas do sistema aquífero costeiro (SAC) para a região dos municípios de Cidreira e Balneário Pinhal, litoral norte do Rio Grande do Sul. O Sistema Aguífero Costeiro (SAC) é constituído por pacotes sedimentares heterogêneos e unidades hidroestratigráficas associadas a camadas argilosas e arenosas, de espessuras variadas que por vezes se intercalam. Nesse sistema os aquíferos podem ser granulares livres, semiconfinados a confinados. Através do inventário de poços e organização dos dados, foi realizada a caracterização geológica e hidrogeológica da área. Na região os depósitos sedimentares arenosos correspondem a duas unidades hidroestratigráficas, na porção livre (acima dos 30 m) os poços, majoritariamente ponteira, apresentam vazões que variam de 1,8 a 70 m³/h, com valor médio de 13,63 m³/h e mediana de 7,23 m³/h, sendo que o nível estático médio foi de 2,67 m. E na porção semiconfinadas a confinada (abaixo dos 30m) a vazão varia de 2,56 a 169,6 m³/h com valor médio de 80,23 m³/h e nível estático médio de 4,73m. Avaliou-se a vulnerabilidade natural do SAC através do índice GOD e do risco potencial de contaminação através da classificação POSH de fontes pontuais e difusas de contaminação. Através dos mapas gerados utilizando SIG foi possível concluir que na unidade aquífera com comportamento livre 61% da área apresenta vulnerabilidade alta com predomínio do risco moderado a alto de contaminação do aquífero. A unidade aquífera com comportamento semiconfinado a confinado apresentou 73% da área com vulnerabilidade média e risco potencial de contaminação baixo a moderado.

Palavras chave: SAC, SAC, POSH, Hidrogeologia Costeira...

ABSTRACT

The growing demand for different groundwater use, coupled with the expansion of urbanization and agricultural and industrial activities, results in a rise in the contaminating loads and also a rise in the potential risk of contamination of groundwater. This work aims to analyze the natural vulnerability and potential risk of contamination of the coastal aquifer system (SAC) goundwater in the regions of Cidreira and Balneário Pinhal municipalities, north coast of Rio Grande do Sul. The SAC, object of study of this work, is constituted by heterogeneous sedimentary packages and hydrostratigraphic units associated with clayey and sandy layers, of varying thicknesses that sometimes are interspersed. In this system, the aquifers can be free granular, semi-confined to confined. Through the inventory of wells and the organization of the data, the geological and the hydrogeological characterization of the area was conducted. On the region, the sandy sedimentary deposits correspond to the two hydrostratigraphic units, on the free portion (above 30 m) the wells, mostly wellhead, present flow rates ranging from 1.8 to 70 m³/h, with an average value of 13.63 m³/ h and median of 7.23 m³/h, and an average static level of 2.67 m. On the semi-confined to confined portion (below 30m) the flow varies from 2.56 to 169.6 m³/h with an average value of 80.23 m³/h and an average static level of 4.73m. The natural vulnerability of the SAC was assessed by the GOD index and the potential risk of contamination through the POSH classification of punctual and diffuse sources of contamination. Through the maps generated using GIS it was possible to conclude that, on the aquifer unit with free aquifer behavior 61% of the area presents high vulnerability with predominance of moderate to high risk of aquifer contamination, and the aquifer unit with semi-confined to confined behavior presented 73% of the area with medium vulnerability and low to moderate potential risk of contamination.

Keywords: SAC, GOD, POSH, Coastal Hydrogeology.

LISTA DE FIGURAS

Figura 1. Mapa de localização da área de estudo destacando a sua localização no
Estado do Rio Grande do Sul, e a localização do Estado no mapa do Brasil.
Elaborado a partir de dados do IBGE (2021)3
Figura 2. Mapa geológico da Planície Costeira do Rio Grande do sul (Tomazelli & Villwock, 1996)6
Figura 3. Perfil esquemático da trajetória da linha de costa para os sistemas deposicionais Laguna-Barreira de I a IV (Modificado por ROSA, 2012 de TOMAZELLI; VILLWOCK, 2000)
Figura 4. Mapa geológico da área de estudo, elaborado a partir dos dados da CPRM (2006)8
Figura 5. Representação esquemática do ciclo hidrológico. Retirado de (FEITOSA et al., 2008).
Figura 6. Esquema da distribuição vertical de água no solo e subsolo e suas
respectivas zonas de armazenamento. Retirado de (FEITOSA et al., 2008)10
Figura 7. Mapa hidrogeológico para a área de estudo, elaborado pela autora a partir do Mapa Hidrogeológico do Estado 1: 750.000, (Machado e Freitas, 2005)13
Figura 8. Avaliação da vulnerabilidade pelo método GOD retirada de FOSTER <i>et al.</i> (2006)17
Figura 9. Esquema conceitual para avaliação do perigo de contaminação de água subterrânea. Extraído de Foster et al. (2006). Adaptado de Foster & Hirata (1988). 19
Figura 10. Fluxograma simplificado das diferentes etapas da metodologia do projeto.
Figura 11. Produção do mapa de vulnerabilidade de acordo com a metodologia GOD. Extraído de Foster et. al. 200624
Figura 12. Reclassificação dos índices de vulnerabilidades em classes de

Figura 13. Gráfico do percentual dos tipos de usos das águas subterrâneas na área de estudo
Figura 14. Distribuição geográfica dos poços levantados. Elaborado com base no mapa hidrogeológico do estado do Rio Grande do Sul (CPRM, 2005)28
Figura 15. Distribuição geográfica dos poços levantados a partir do banco de dados de outros projetos e empresas de perfuração de poços, bem como dos poços levantados através do portal SIAGAS e SIOUT. Elaborado com base no mapa hidrogeológico do estado do Rio Grande do Sul (CPRM, 2005)
Figura 16. Gráfico do número de poços cadastrados na área de estudo29
Figura 17. Distribuição geográfica dos poços levantados através do cadastramento e inventário. Separados por pontos de captação comunitários (Associação, Escola e Cooperativa), públicos (CORSAN e Prefeitura) e Particular. Elaborado com base no mapa hidrogeológico do estado do Rio Grande do Sul (CPRM, 2005)
Figura 18. Mapa geológico da área de estudo. Elaborado pela autora, adaptado do Mapa Geológico do Estado do Rio Grande do Sul (CPRM, 2006)31
Figura 19. Perfil construtivo de poço tubular em Capivari do Sul (UTM 550948/6672925), mostrando intercalação de sedimentos costeiros. Extraído do portal SIAGAS (CPRM) e modificado pela autora
Figura 20. Perfil construtivo de poços tubulares em Balneário Pinhal (UTM 561074/6659764; 563863/6659383), mostrando intercalação de sedimentos costeiros. Extraído do portal SIAGAS (CPRM) e modificado pela autora
Figura 21. Perfil construtivo de poços tubulares em Balneário Pinhal (UTM 571458/6648687; 570992/6648365), mostrando intercalação de sedimentos do Sistema Laguna-Barreira IV. Extraído do portal SIAGAS (CPRM) e modificado pela autora.
Figura 22. Mapa Hidrogeológico com indicação do aquífero presente na área de estudo. Elaborado com base no Mapa Hidrogeológico do Rio Grande do Sul (CPRM, 2005).
Figura 23. Mapa Hidrogeológico e localização dos poços utilizados na construção da seção A. Elaborado com base no Mapa Hidrogeológico do Rio Grande do Sul (CPRM, 2005)

Figura 24. Seção A. Ilustração simplificada do perfil construtivo dos poços
cadastrados na área de estudo. Obtido através do software Strater 537
Figura 25. Mapa Hidrogeológico e localização dos poços utilizados na construção da
seção B. Elaborado com base no Mapa Hidrogeológico do Rio Grande do Sul
(CPRM, 2005)
Figura 26. Seção B. Ilustração simplificada do perfil construtivo dos poços Cadastrados na área de estudo. Obtido através do <i>software Strater 5</i> 38
Figura 27. Mapa Hidrogeológico e localização dos poços utilizados na construção da
seção C. Elaborado com base no Mapa Hidrogeológico do Rio Grande do Sul (CPRM, 2005)
Figura 28. Seção C. Ilustração simplificada do perfil construtivo dos poços
Cadastrados na área de estudo. Obtido através do software Strater 540
Figura 29. Mapa Hidrogeológico e localização dos poços utilizados na construção da
seção D. Elaborado com base no Mapa Hidrogeológico do Rio Grande do Sul
(CPRM, 2005)41
Figura 30. Seção D. Ilustração simplificada do perfil construtivo dos poços
Cadastrados na área de estudo. Obtido através do software Strater 541
Figura 31. Gráfico do percentual de poços cadastrados que se encontram no
aquífero livre e no aquífero confinado a semiconfinado42
Figura 32. Mapa do parâmetro G para aquíferos livres50
Figura 33. Mapa do parâmetro O para aquíferos livres50
Figura 34. Mapa do parâmetro D para aquíferos livres51
Figura 35. Mapa da vulnerabilidade natural do aquífero livre51
Figura 36. Mapa do parâmetro G para aquíferos semiconfinado e confinado53
Figura 37. Mapa do parâmetro O para aquíferos semiconfinado e confinado54
Figura 38. Mapa do parâmetro D para aquíferos semiconfinado e confinado54
Figura 39. Mapa da vulnerabilidade natural dos aquíferos semiconfinado/confinado.
55
Figura 40. Mapa de distribuição das fontes pontuais56

Figura 41. Mapa de distribuição das fontes difusas. Elaborado utilizando imagens	s do
Google Earth (2021) e MapBiomas (2020) Coleção 6.0	58
Figura 42. Mapa de vulnerabilidade do aquífero livre com fontes pontuais	60
Figura 43. Mapa de vulnerabilidade do aquífero livre com fontes difusas	61
Figura 44. Mapa de vulnerabilidade do aquífero semiconfinado/confinado o relação às fontes pontuais	
Figura 45. Mapa de vulnerabilidade do aquífero semiconfinado/confinado com for difusas	

LISTA DE TABELAS

Tabela 1. Classificação e ranqueamento das fontes de contaminação pontuais segundo o sistema POSH. Extraído de Foster <i>et al</i> (2006)25
Tabela 2. Classificação das fontes de contaminação difusas segundo a metodologia POSH. Extraído de Foster <i>et al</i> . (2006)26
Tabela 3. Distribuição da quantidade de dados existentes para cada parâmetro dos poços cadastrados na área de estudo43
Tabela 4. Distribuição da quantidade de dados existentes para cada parâmetro dos poços cadastrados na área de estudo44
Tabela 5. Parâmetros G para diferentes características de confinamento46
Tabela 6. Parâmetros O para as diferentes litologias da região dos poços ponteira.47
Tabela 7. Parâmetros O para as diferentes litologias dos poços tubulares captando na porção rasa47
Tabela 8. Parâmetros O para as diferentes litologias dos poços tubulares captando na porção profunda48
Tabela 9. Parâmetro D para as diferentes distâncias até o lençol freático ou teto do aquífero confinado48
Tabela 10. Classes de vulnerabilidade do aquífero livre e seus percentuais em área relativos à área de estudo52
Tabela 11. Classes de vulnerabilidade do aquífero semiconfinado/confinado e seus percentuais em área relativos à área de estudo55
Tabela 12. Tabela das fontes pontuais. Elaborado pela autora utilizando os dados levantados
Tabela 13. Percentual de uso do solo com relação à área de estudo58
Tabela 14.Tabela do acesso ao saneamento nos município que abrangem a área estudada. Elaborado pela autora utilizando dados do IBGE (2021), SNIS (2020) e Municípios e Saneamento (2022)

LISTA DE QUADROS

Quadro 1. Apresentação dos parâmetros utilizados em cada metodologia usada para
avaliar a vulnerabilidade a contaminação de um aquífero, a partir dos trabalhos de
(ALLER et al. 1987), (VAN STEMPVOOR et al.1992) e (FOSTER & HIRATA, 1993).
16
Quadro 2. Classificação do perigo de contaminação em relação a fontes pontuais e
difusas. Modificado de Barbosa e Filho (2011)59

LISTA DE SIGLAS

CORSAN - Companhia Riograndense de Saneamento

CPRM - Serviço Geológico do Brasil

DRH - Divisão de outorga do Departamento de Recursos Hídricos

ETE - Estação de Tratamento de Efluentes

GOD – Groundwater occurrence, Overall lithology of the un satured zone, Depth to the water table

IBGE - INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA

IDW - Interpolação pela Ponderação do Inverso da Distância (Inverse distance weighting)

POSH - Pollutant Origin, Surcharge Hydraulically

SAC - Sistema Aquífero Costeiro

SAQC - Sistema Aquífero Quaternário Costeiro

SEMA - Secretaria Estadual do Meio Ambiente

SIAGAS - Sistema de Informação de águas Subterrâneas

SNIS - Sistema Nacional de Informações sobre Saneamento

1 INTRODUÇÃO

Os reservatórios de água subterrânea resultam do processo de infiltração das águas das chuvas no solo, o que é controlado por características intrínsecas a cada ambiente, como o tipo de solo, a estratigrafia, as estruturas ali presentes e a geomorfologia da área (Lisboa, 2004). Assim, toda e qualquer atividade antrópica sobre esse meio se torna potencial poluidora, pois a entrada dos contaminantes no aquífero vai depender das condições físicas e químicas, tanto do meio, quanto do contaminante (Foster, 1993).

As águas subterrâneas são por vezes fontes seguras de abastecimento, essenciais para o desenvolvimento humano, sendo utilizadas no abastecimento público (cidades e comunidades rurais) e doméstico, no desenvolvimento de atividades industriais e comerciais, além de serem fundamentais para a agricultura e pecuária. Segundo o Relatório das Nações Unidas sobre Desenvolvimento dos Recursos Hídricos UNESCO (2019), nas próximas décadas a água pode se tornar uma ameaça para a saúde humana, decorrente da sua contaminação e por não haver um comprometimento com relação aos cuidados necessários para evitar esse quadro, principalmente nos países subdesenvolvidos.

Para evitar esse cenário, é fundamental pensar em ferramentas que auxiliem no uso correto desse recurso, fazendo com que sua qualidade se mantenha minimamente constante e seu uso assegurado. Para isso algumas medidas podem ser tomadas visando à proteção e prevenção da contaminação dos aquíferos, tanto do ponto de vista ambiental quanto econômico (Foster, 2006).

O risco de contaminação das águas subterrâneas é definido pela interação entre a carga contaminante e a vulnerabilidade natural do aquífero, conceito de Foster (1987) apud Foster (1994). A partir disso é importante ter ferramentas para determinar esse risco e mapear essas fontes potenciais, o que pode ser realizado através de metodologias que quantificam o perigo a contaminação, como índices de vulnerabilidade (Foster, 2006). Assim como estudos de vulnerabilidade que possibilitam avaliar o quanto determinado aquífero é sensível a contaminação quando a ela exposto.

Observada a importância da água subterrânea e da necessidade do desenvolvimento de estudos voltadas à avaliação da proteção da qualidade desse recurso hídrico, este trabalho tem como foco realizar o estudo da vulnerabilidade e avaliação do risco potencial de contaminação de uma área do aquífero costeiro no litoral norte do Rio Grande do Sul.

1.1 Localização da Área de Estudo

A área de estudo é abrangida pelo município de Balneário Pinhal e parte do município de Cidreira. Buscando obter um número maior de poços e para evitar os efeitos de borda na interpolação dos dados a área foi estendida para parte dos munícipios de Capivari do Sul, Osório e Palmares do Sul. Localizados no litoral norte do Rio Grande do Sul, na Latitude 50°20'00" Oeste e Longitude 30°10'00" Sul (Figura 1), esses municípios estão a aproximadamente 130 km de Porto Alegre.

A área foi escolhida por se tratar de um local com uma singularidade geológica, ocorrência de diferentes situações de uso e ocupação do solo, por contar com a disponibilidade de dados e por abranger municípios que se destacam em número populacional na região geográfica imediata a qual estão inseridos, segundo dados do IBGE (2020) para o estado do Rio Grande do sul.

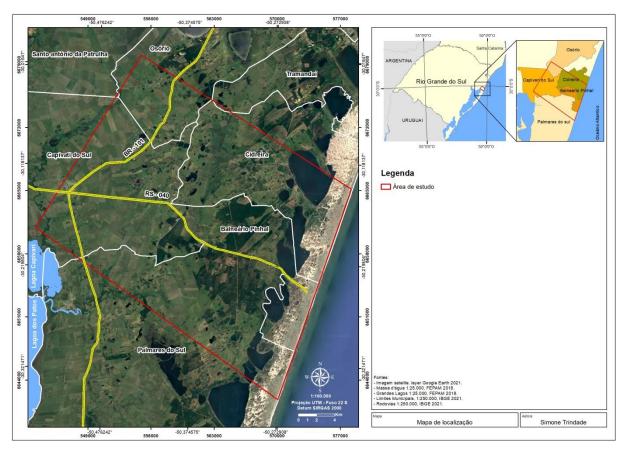


Figura 1. Mapa de localização da área de estudo destacando a sua localização no Estado do Rio Grande do Sul, e a localização do Estado no mapa do Brasil. Elaborado a partir de dados do IBGE (2021).

1.2 Caracterização do Problema / Hipótese

Em estudo realizado por TROIAN et al. (2020) foi observado por meio da interpretação de perfis litológicos e geofísicos que na região do litoral norte a heterogeneidade marca os pacotes sedimentares e que as unidades hidroestratigráficas tem camadas argilosas e arenosas com espessuras variadas. Sabe-se que os aquíferos costeiros são heterogêneos devido a sua gênese, podendo assim apresentar vulnerabilidade variada. Já a ocorrência de diferentes situações de uso e ocupação do solo, como agricultura irrigada, indústrias e o desenvolvimento urbano geram distintas fontes potenciais de contaminação.

O desenvolvimento da região do litoral norte resulta no aumento da busca por recursos hídricos de qualidade e as regiões com maior densidade populacional e extensa atividade agrícola podem apresentar um risco mais elevado à contaminação, visto que nessas regiões além dos problemas de falta de saneamento básico há uma maior concentração de atividades comerciais e

indústrias, bem como aplicação muitas vezes sem controle de adubação e defensivos agrícolas.

Visando o desenvolvimento desse estudo temos como premissa que o Sistema Aquífero Costeiro (SAC) está associado, em sua porção superior a unidades geológicas relacionadas aos sistemas laguna-barreira. Estratigráficamente, a gênese desses sistemas resultou da intercalação de camadas de sedimentos com diferentes faciologias, o que tem como consequência a existência de aquíferos granulares que podem ser livres, semi-confinafdos ou confinados. Assim os aquíferos granulares livres, localizados mais próximos à superfície tendem a apresentar uma vulnerabilidade maior, sendo que dependendo do uso e ocupação do solo existente nessa região, esse aquífero passará a ter um risco de contaminação mais elevado. Já os aquíferos confinados tenderão a apresentar menor vulnerabilidade e, de acordo com a ocupação, consequentemente um menor risco.

Com isso surge a hipótese de que a vulnerabilidade para essa porção do aquífero costeiro seja variável e influenciada pela heterogeneidade da estratigrafia (vertical e horizontal) das unidades aquíferas.

A realização deste trabalho se justifica, pois com o desenvolvimento do mesmo será possível aumentar o entendimento sobre as características, vulnerabilidades e riscos de contaminação da água subterrânea, bem como contribui de forma geral para o avanço do conhecimento sobre os sistemas aquíferos costeiros no Rio Grande do Sul.

Assim os dados e resultados gerados através deste estudo servirão como ferramenta adicional aos gestores, que terão mais um produto para auxiliar no planejamento do uso das águas subterrâneas e na elaboração de planos de monitoramento para áreas críticas, ou seja, áreas com maior vulnerabilidade e alto risco de contaminação.

1.3 Objetivos gerais e específicos

O objetivo geral desse trabalho é realizar o estudo da vulnerabilidade e risco potencial de contaminação dos aquíferos existentes na região abrangida pelo município de Balneário Pinhal, parte sul do município de Cidreira e parte dos municípios de Capivari do sul e Palmares do Sul e Osório.

Assim os objetivos específicos para este estudo são:

- Realizar a caracterização dos aquíferos existente na área de estudo e do uso da água subterrânea.
- Determinar a vulnerabilidade dos aquíferos (livres e confinados) com base no método GOD.
 - Classificar as fontes potenciais de contaminação através do método POSH.
- Determinar o risco potencial de contaminação da água subterrânea na região de estudo.

2 ESTADO DA ARTE

2.1 Contexto Geológico

A área de estudo localiza-se na porção norte da Bacia de Pelotas, que se encontra na margem leste do continente sul-americano, a sul da Bacia de Santos limitada ao norte, pelo Alto Florianópolis (Gamboa & Rabinowitz 1981) e a norte da Bacia de Punta Del Este limitada ao sul, pelo Alto Polônio, no Uruguai (Urien & Martins 1978). Asmus & Porto (1972) a definem como uma bacia marginal subsidente preenchida por sequências clásticas continentais e transicionais.

Os sedimentos expostos na Planície Costeira do Rio Grande do Sul (PCRS) compõem a parte superficial da Bacia de pelotas, e foram depositados a partir do Terciário. Estes depósitos sedimentares foram agrupados em sistemas deposicionais por Villwock *et al.* (1986), sendo representados por quatro "Sistema Laguna-Barreira", três associados a variação do mar no Pleistoceno e um no Holocêno, e um "Sistema de Leques Aluviais", todos registrando a progradação da Planície Costeira do Rio Grande do Sul (Figura 2).

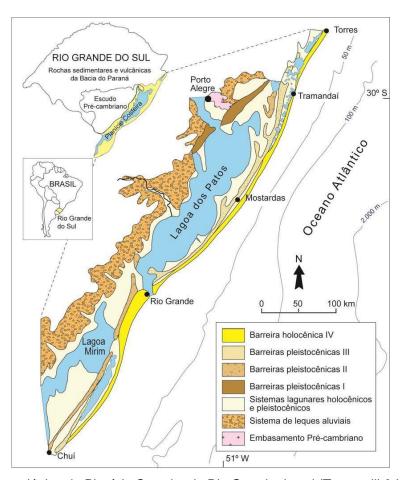


Figura 2. Mapa geológico da Planície Costeira do Rio Grande do sul (Tomazelli & Villwock, 1996).

Os sistemas "Laguna-Barreira" (Figura 2) tem sua origem relacionada à migração para leste da PCRS e registram os picos de transgressão costeira resultantes da glacio-eustasia, assim o Sistema I representa o mais antigo, e o Sistema IV é o mais recente. Esses sistemas tiveram sua formação em tempos distintos num intervalo de 400 mil anos, com idades pleistocênicas (I a III) e holocênica (IV) na sua parte mais externa (VILLWOCK et al., 1986; VILLWOCK; TOMAZELLI, 1995; TOMAZELLI; VILLWOCK, 2000).

O Sistema Laguna Barreira I, representa o primeiro evento, encontra-se preservado na região noroeste do estado do Rio Grande do Sul com orientação NE-SW, sendo formado por sedimentos eólicos oriundos das rochas sedimentares e vulcânicas da bacia do Paraná e das rochas do embasamento cristalino Pré-Cambriano. Segundo Rosa *et al.* (2017) as fácies sedimentares são compostas por areia fina a média de cor avermelhada e composição quartzo-feldspática muito bem arredondada, apresentando matriz síltico-argilosa devido à diagênese. Há pouca preservação de estruturas sedimentares em decorrência dos processos pós

deposicionais O Sistema II é o registro do segundo evento transgressivoregressivo, as fácies praiais e eólicas são compostas por areias de cor castanhoamarelada e grãos bem arredondados em matriz diagenética de composição síltico-argilosa. Como no sistema I este também teve suas estruturas sedimentares bastante alteradas por processos posteriores.

Já o Sistema III marca o fechamento do Sistema Lagunar Patos-Mirim, com um depósito contínuo ao longo da PCRS estando em parte ancorado na escarpa do Serra Geral sendo interrompido apenas no canal de Rio Grande e do Arroio Chuí. É formado por fácies arenosas de ambiente marinho raso e praial tendo logo acima registro de depósitos eólicos que indicam um processo progradante. Apresenta areias finas quartzosas de cor clara e bem selecionada, com estratificação plano paralela, cruzada planar, "Hummocky" e acanalada, nos sedimentos praiais, que também apresentam icnofósseis. Nos depósitos eólicos o aspecto é mais maciço de cor avermelhada estando intercalado com paleossolos.

O quarto e último sistema marca o último ciclo de variação glacio-eustática.

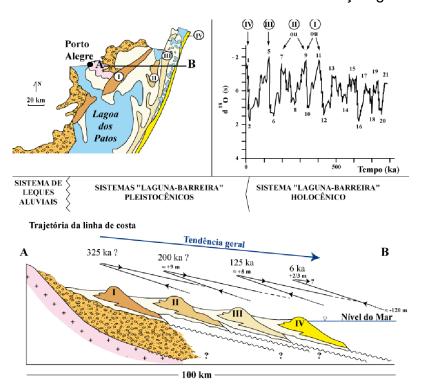


Figura 3. Perfil esquemático da trajetória da linha de costa para os sistemas deposicionais Laguna-Barreira de I a IV (Modificado por ROSA, 2012 de TOMAZELLI; VILLWOCK, 2000).

Segundo Dillenburg et al. (2005). As barreiras Holocênicas apresentam comportamentos distintos ao longo da costa, com regiões que apresentam

reentrância e embaiamentos. No litoral norte e médio, de Torres a Tramandaí, se observa um comportamento regressivo, enquanto de São José do Norte a Tramandaí um comportamento transgressivo. Esse fato é decorrente do balanço de sedimentos, que para a porção regressiva é positivo e para a porção transgressiva é negativo (Dillenburg *et al.* 2004). Esses fatores influenciam diretamente no padrão de empilhamento registrado nessas áreas ocorrendo ao mesmo tempo empilhamento retrogradacional e progradacional a norte de Tramandaí o qual representa o ponto onde ocorre a mudança nos padrões (Dillenburg *et al.* 2005).

Na área de estudo predominam os depósitos do Sistema Laguna-Barreira II, III e IV, como ilustrado no mapa geológico da Figura 4. Nesta porção da costa, o comportamento é transgressivo com padrão de empilhamento retrogradacional, como sinalizado anteriormente. Ocorrem registros do Sistema II (pleistocênico) com depósitos eólicos, praiais e de planície lagunar associado, do Sistema III com depósitos de planície lagunar e turfeira, e do Sistema IV com depósitos eólicos, praiais, de retrabalhamento eólico e planície de inundação (CPRM, 2008).

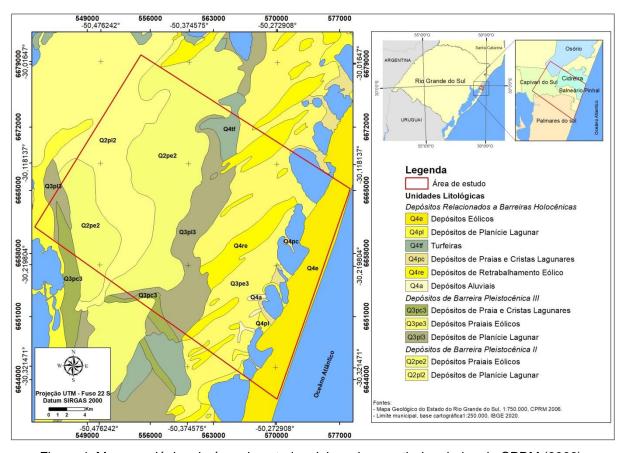


Figura 4. Mapa geológico da área de estudo, elaborado a partir dos dados da CPRM (2006).

2.2 Contexto Hidrológico

A água subterrânea é aquela que ocorre abaixo do nível freático ou nível de saturação (FEITOSA *et al.*, 2008), podendo estar presente nas formações geológicas aflorantes e profundas estando estas parcialmente ou totalmente saturadas, respectivamente. Quase toda a água terrestre forma-se através do ciclo hidrológico, com exceção das águas congênitas. Esse compõe um sistema que age naturalmente direcionando a água do oceano para a atmosfera e depois para os continentes (Figura 5), fluindo posteriormente através das águas superficiais e subterrâneas as águas retornando para os oceanos, reiniciando assim o ciclo.

No ciclo hidrológico cada etapa ocorre em um meio físico diferente e a este estão atreladas variantes que ditam a forma como o ciclo se dá, no subsolo, por exemplo, fatores como gravidade e cobertura vegetal são relevantes, já na atmosfera e superfícies líquidas, como rios, lagos e oceanos, a temperatura do ar, ventos e insolação são alguns dos fatores climáticos responsáveis por controlar a forma como ocorre a circulação de água.

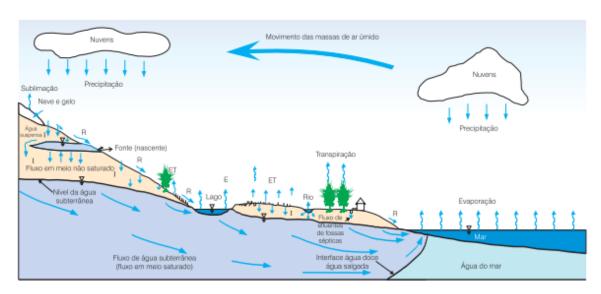


Figura 5. Representação esquemática do ciclo hidrológico. Retirado de (FEITOSA et al., 2008).

As águas subterrâneas enquanto parte do sistema de circulação de água na terra apresenta características e condicionantes quando se trata de armazenamento. De acordo com (FEITOSA *et al.*, 2008) a água presente no subsolo conta com uma distribuição vertical, onde a água contida no solo e formações geológicas está

basicamente separada em duas zonas horizontais, uma saturada e outra não saturada (Figura 6).

A zona saturada ou zona de saturação situa-se abaixo da superfície freática nela todos os vazios presentes no meio estão preenchidos por água, esta superfície é definida como o lugar geométrico dos pontos em que a água encontra-se sob pressão atmosférica. Já zona não saturada, zona de aeração ou ainda zona vadosa encontra-se entre as superfícies do terreno e a freática, neste espaço os poros estão parcialmente preenchidos por gases como ar e vapor d'água, assim como por água (Figura 6). Esta também é subdividida em zona capilar, mais próxima a superfície freática; zona intermediária, que está entre o limite de ascensão de água e o limite de alcance das raízes da plantas; e a zona de água do solo ou zona de evapotranspiração, a qual situa-se entre os extremos radiculares da vegetação e a superfície do terreno (FEITOSA et al., 2008).

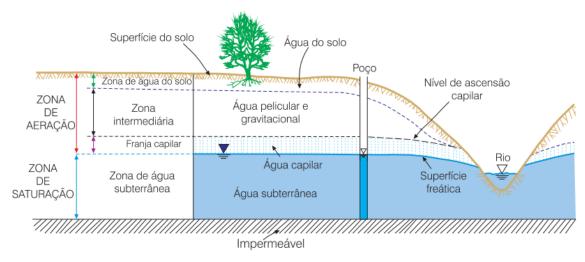


Figura 6. Esquema da distribuição vertical de água no solo e subsolo e suas respectivas zonas de armazenamento. Retirado de (FEITOSA et al., 2008).

Segundo Feitosa *et al.* (2008) na hidrogeologia apenas as águas que circulam na zona de saturação são qualificadas como água subterrânea, ou seja, apenas as águas que encontram-se abaixo da superfície freática. Por sua vez é a capacidade de movimentação ou transmissão dessa água no meio, a qual é influenciada pela permeabilidade das formações, que vai definir a nomeação como um aquífero, aquíclude, aquítardo ou aquífugo.

No geral o aquífero contém água e é capaz de transmiti-la; o aquíclude pode conter água, mas é incapaz de transmiti-la em condições naturais; o aquítardo tem seu comportamento semelhante a uma membrana semipermeável permitindo a filtração vertical e a drenança; por fim o aquífugo é impermeável não armazenando nem transmitindo a água (FEITOSA *et al.*, 2008).

Para FEITOSA *et al.*, (2008) a classificação dos aquíferos baseia-se na pressão das águas nas superfícies limítrofes superior (topo) e inferior (base) dos aquíferos, e na capacidade que essas superfícies tem de transmitir água. Assim os aquíferos são classificados em confinados ou livres, sendo eles:

- Aquíferos Confinados: Nele a pressão da água no topo é maior que a pressão atmosférica, e podem ser confinados não drenantes, por terem suas camadas de topo e base impermeáveis, ou confinados drenantes onde topo ou base são semipermeável facilitando assim o fluxo de entrada ou saída de água.
- Aquífero Livre: Nele o topo corresponde à superfície freática que se encontra sob a pressão atmosférica. Pode ser a partir deles que ocorra a recarga dos aquíferos confinados. A exceção nesse caso são os aquíferos suspensos que se formam em condições especiais sobre camadas impermeáveis ou semipermeáveis de extensão limitada sobre a superfície freática regional.

Lisboa *et al.*, (2004) apresentam um apanhado histórico da evolução dos conhecimentos sobre hidrogeologia no Rio Grande do Sul, relatando que Hausmann (1960 e 1964) faz as primeiras explicações sobre a ocorrência das águas subterrâneas e define as províncias hidrogeológicas do estado do Rio Grande do Sul. No trabalho de Lisboa *et al.*, (2004) mostram que em 1980 Samberg usou as províncias geomorfológicas do Rio Grande do Sul, assim denominada por ele, para efetivar uma compartimentação hidrogeológica no Estado, e que em 1995 Hausmann apresenta uma revisão do seu trabalho, possibilitado pelos avanços geológicos da época e pelo aumento da demanda na perfuração de poços, agregando a ele dados hidroquímicos e hidrogeológicos que proporcionaram um salto no conhecimento sobre a água subterrânea e aquíferos do estado do RS.

Lisboa *et al.* (2004) também realizaram uma atualização dos trabalhos, renovando o conhecimento sobre como ocorrem as águas subterrâneas do ponto de vista geológico. Destacando a importância de uma boa descrição de como a água

subterrânea ocorre em função das suas condicionantes geológicas, para eles isso é fundamental para uma boa interpretação e análise dos dados quantitativos. Eles também afirmam que o modo de armazenamento das águas subterrâneas está ligado diretamente aos materiais que formam os sistemas aquíferos e que estes se relacionam a estratigrafia, as estruturas e a geomorfologia no que se refere a compartimentação do sistema aquífero, características de fluxo e armazenamento e no confinamento e descarga desses sistemas aquíferos respectivamente.

Em 2005 é finalizado o mapa hidrogeológico do Estado 1: 750.000 por Machado e Freitas (2005) em uma parceria do Estado do Rio grande do Sul com o Serviço Geológico do Brasil (CPRM), sendo este a versão disponível ate o momento. O trabalho apresenta para o Rio Grande do Sul 21 Sistemas aquíferos sendo eles, Sistema Aquífero Botucatu/Guará I; Sistema uSanta Maria; Sistema Aquífero Quaternário Costeiro I; Sistema Aquífero Quaternário Barreira Marinha; Sistema Aquífero Sedimentos Deltaicos; Sistema Aquífero Quaternário Indiferenciado; Sistema Aguífero Botucatu/Guará II; Sistema Aguífero Sanga do Cabral/Pirambóia; Sistema Aquífero Botucatu/Pirambóia; Sistema Aquífero Palermo/Rio Bonito; Sistema Aquífero Quaternário Costeiro II; Sistema Aquífero Serra Geral I; Sistema Aquífero Serra Geral II; Sistema Aquífero Embasamento Cristalino I; Aquitardos Permianos; Sistema Aquífero Embasamento Cristalino II; Sistema Aquífero Basalto/Botucatu; Sistema Aquífero Botucatu; Sistema Aquífero Serra Geral III; Aquicludes Eo-Paleozóicos; Sistema Aquífero Embasamento Cristalino III. No mapa hidrogeológico do Rio Grande do Sul estes são agrupados de acordo com a possibilidade de água e porosidade.

Segundo o mapa hidrogeológico do Rio Grande do Sul e Machado e Freitas, (2005) a área de estudo ocorre sobre o Sistema aquífero Quaternário Costeiro I (SAQC) (Figura 7), este ocorre desde o Chuí até Torres sendo formado por sedimentos da planície costeira, representados por intercalações de camadas arenosas inconsolidadas de tamanho areia fina a média e cor clara, e por intercalações de camadas síltico-arenosas com camadas argilosas.

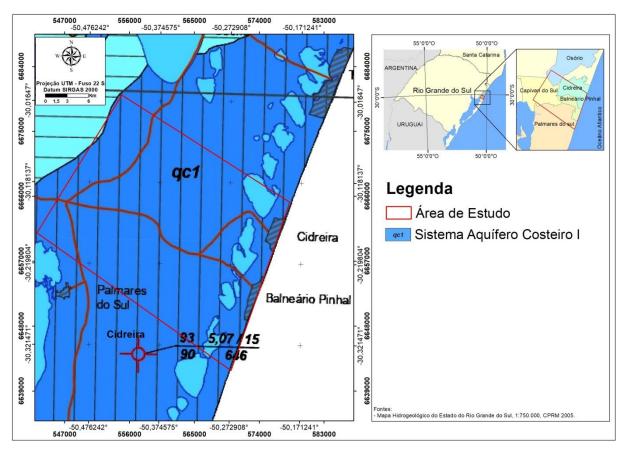


Figura 7. Mapa hidrogeológico para a área de estudo, elaborado pela autora a partir do Mapa Hidrogeológico do Estado 1: 750.000, (Machado e Freitas, 2005).

Em um estudo realizado no litoral norte do estado, TROIAN et al, (2020), identificam que os sedimentos constituintes do Sistema Aquífero Costeiro (SAC) não estão restritos aos depósitos quaternários, sendo formado por sedimentos inconsolidados datados do Cenozoico. Segundo o autor a região apresenta grande heterogeneidade estratigráfica caracterizada pela intercalação em diferentes profundidades de camadas de sedimentos arenosos, que variam de areia muito fina a areia grossa, com camadas de sedimentos argilosos e siltosos. Para a região também são identificadas quatro unidades hidroestratigráficas, sendo duas com predomínio de sedimentos arenosos e valores de porosidade efetiva altos, e duas com valores menores de porosidade efetiva associada a sedimentos argilosos.

Em um estudo realizado por PAIM (2018) no litoral norte do estado, para o município de Osório mostrou que o SAC na região é caracterizado pela ocorrência de aquíferos livres e confinados, que ocorrem associados a camadas de sedimentos distintas com variação de 30 metros próximo a escarpa, chegando a ter 140 metros próximo a linha de costa. Formado por camadas de areias finas a média com

coloração amarelada, esbranquiçada e cinza, areias argilosas de coloração esverdeada e areia grossa, que se intercalam com camadas de argila e argila arenosa. O intervalo entre 0 aos 30 metros de profundidade se caracteriza pela intercalação de camadas de areia que variam de muito fina a média com camadas de argila ou argila arenosa, nessa porção os aquíferos são livres ou semiconfinado geralmente associados aos sedimentos arenosos que variam de 6 a 29 metros de espessura.

Um estudo realizado sobre as águas subterrâneas por Reginato et al. (2017), para a região de Osório, litoral norte da planície costeira do estado, indica que o Sistema Aquífero Quaternário Costeiro (SAQC) nessa região é formado por aquíferos granulares livres e confinados localizados nos sedimentos arenosos, os quais variam de areias fina a média e areia argilosa e coloração variada. Essas camadas ocorrem em diferentes profundidades, com espessuras variadas e de forma intercalada com as camadas ou lentes de sedimentos finos. Os aquíferos granulares livres em geral ocorrem nas camadas arenosas com profundidade até 25 metros, já os aquíferos granulares confinados ocorrem nas camadas arenosas que se intercalam com camadas argilosas, entre os 25 e 75 metros de profundidade.

Um estudo realizado em Osório por Soares (2016), no litoral norte do estado mostra que o SAC nessa região é heterogêneo, caracterizado por uma diversidade litológica com espessuras variadas, tendo origem em ambientes de sedimentação fluvial, lagunar, eólico, praial e marinho. Ocorre intercalação de sedimentos arenosos e argilosos e os aquíferos porosos estão associados as camadas arenosas, que são compostos por areia fina a grossa podendo conter fragmentos de conchas, e por areia argilosa com coloração variando em cinza, amarelo bege e castanho. No geral as camadas são encontradas em diversas profundidades intercaladas com camadas argilosas, siltosas e argilo siltosas. Os aquíferos até os 30 metros, tem comportamento semiconfinado ou livre, já os profundos, com mais de 30 metros, são considerados confinados devido as camadas mais espessas de argila que favorecem esse comportamento.

Para a região de Palmares do sul, litoral médio o SAC apresenta aquíferos granulares livres a semiconfinados nos primeiros 40 metros de profundidades, formado pela intercalação de camadas de areias fina a muito fina de coloração

amarelada, cinza e cinza esverdeado com camadas de areia siltosa e argilosa. Abaixo destas ocorrem camadas mais espessas de argila que confinam os aquíferos granulares formados pela intercalação de camadas de areia fina e camadas de argila (CAMARGO, 2016).

Recentemente, COLLISCHONN, (2021) em um estudo para a camada aquífera sal grosso, na região de Osório e Tramandaí relata a ocorrência de três unidades estratigráficas relacionadas aos aquíferos livre e confinado. A Unidade I encontra-se a partir dos 83 metros de profundidade é formada por sedimentos aluviais grossos de origem granítica, e compõem o aquífero sal grosso. Entre os 20 e 83 metros de profundidade encontra-se a Unidade II, que corresponde ao pacote de sedimentos finos (silte e argila) de origem marinha responsável pelo confinamento do aquífero Sal Grosso. A Unidade III, que ocorre acima dos 20m, é formada por sedimentos arenosos finos associados as barreiras costeiras compondo o aquífero livre.

2.3 Vulnerabilidade de Aquíferos

A vulnerabilidade de contaminação do aquífero tem como premissa o entendimento das características desse aquífero que torna ele suscetível a contaminação quando na presença de cargas contaminantes (Foster, 1987). Leva-se em consideração a capacidade hidráulica de penetração desse contaminante e a capacidade que as camadas da zona não saturada têm, para diminuir, retardar ou degradar os contaminantes, em função de processos e interações físico-químicas e biológicas que possam ocorrer nessas camadas (Foster, 1994).

O modo como está disposto esse contaminante e a sua classificação também devem ser levados em consideração, pois o tempo de residência dele na zona não saturada depende fortemente desses fatores (Foster, 1994). Para fazer esse tipo de avaliação é necessária a compilação de diversos dados que nem sempre são de fácil mensuração, e o suporte e desenvolvimento de metodologias que consigam simplificar esses parâmetros.

Visando desenvolver essa avaliação qualitativa e quantitativa surgem algumas metodologias: DRASTIC (ALLER *et al.* 1987) desenvolvida pela agência ambiental norte-americana; AVI (*Aquifer Vulnerability Index*) (VAN STEMPVOOR *et*

al., 1992), onde de forma simples são considerados a espessura das camadas saturadas e a sua condutividade hidráulica; e a metodologia que será utilizada neste estudo: GOD (FOSTER & HIRATA, 1993), que leva em conta o tipo de aquífero, a profundidade do lençol freático e a litologia do meio. Abaixo é apresentado o Quadro 1 com a relação dos parâmetros considerados em cada método.

Quadro 1. Apresentação dos parâmetros utilizados em cada metodologia usada para avaliar a vulnerabilidade a contaminação de um aquífero, a partir dos trabalhos de (ALLER *et al.* 1987), (VAN STEMPVOOR *et al.*1992) e (FOSTER & HIRATA, 1993).

Método	Parâmetros
DRASTIC	(D) Profundidade do nível d'água;
	(R) Recarga ao aquífero;
	(A) Litologia do aquífero;
	(S) Tipo de solo;
	(T) Topografia do local;
	(I) Textura da zona vadosa;
	(C) Condutividade hidráulica do aquífero.
AVI	Espessura de cada camada de sedimento não saturado acima do aquífero e a condutividade hidráulica estimada em cada camada.
GOD	(G) Ocorrência do lençol freático (livre, confinado, semiconfinado);
	(O) Litologia da zona vadosa e camadas confinantes;
	(D) Profundidade do Lençol freático (espessura da zona vadosa).

Segundo FOSTER & HIRATA, (1993) mensurar a vulnerabilidade de um aquífero não é uma tarefa fácil por haver vários parâmetros a serem considerados, então ele propõe que os parâmetros analisados sejam mais simplificados e de fácil coleta, e que sejam gerados mapas para que a vulnerabilidade seja melhor representada. Elaborada por Foster e Hirata (1993) e aperfeiçoada por Foster et al. (2002), a metodologia GOD (*Groundwater occurrence, Overall lithology of the unsatured zone, Depth to the water table*) avalia a vulnerabilidade dada pelas

características do meio aquífero e visa utilizar informações de fácil acesso, diferentemente das outras metodologias. Essas informações são apresentadas esquematicamente na Figura 8. Sucintamente, é dado um peso que varia entre zero e um, a cada uma das informações, onde os maiores valores são atribuídos a parâmetros que tem maior relevância e interferem no aumento ou diminuição da vulnerabilidade do aquífero. Os índices são multiplicados entre si gerando um número final, que é correlacionado a uma classificação de vulnerabilidade.

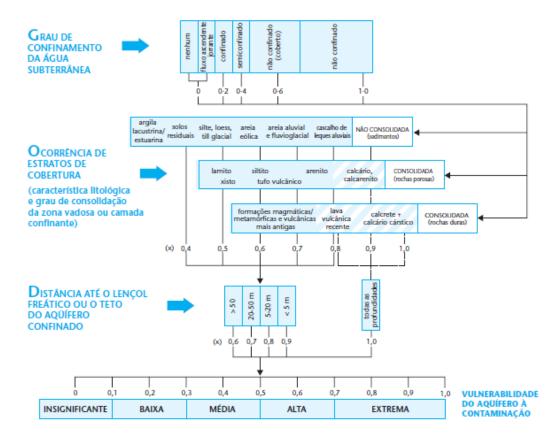


Figura 8. Avaliação da vulnerabilidade pelo método GOD retirada de FOSTER et al. (2006).

Devido à facilidade e ao baixo custo de sua aplicação, a metodologia GOD costuma ser amplamente utilizada em países em desenvolvimento (FOSTER et al., 2002). Alguns exemplos de aplicações do método GOD para avaliação da vulnerabilidade à contaminação na região costeira são os trabalhos realizados por Camargo (2016), Feron & Reginato (2014).

Um estudo realizado em Canoas por Feron & Reginato (2014) aplicando o método GOD indicou que nas porções onde havia predomínio da cobertura de sedimentos finos (argilas e silte) em aquíferos localizados a uma maior profundidade a vulnerabilidade se apresentou baixa, já nas porções com aquíferos fraturados

cobertos por sedimentos arenosos e com níveis de água pouco profundos a vulnerabilidade é média.

Mais recentemente Camargo (2016) aplicou o método GOD para o município de Palmares do Sul, próximo à região de estudo, onde foi observado que para a região dos aquíferos livres apresentam vulnerabilidade alta, e dos aquíferos confinados vulnerabilidade baixa e insignificante.

2.4 Risco Potencial de Contaminação de Aquíferos

O risco potencial de contaminação se baseia na interação entre a carga contaminante, gerada através das atividades antrópicas e a vulnerabilidade do aquífero, que depende apenas do meio natural e suas características (Figura 9). As fontes de contaminação estão relacionadas a todas as praticas humanas que envolvem o meio físico como mineração, urbanização, desenvolvimento industrial e agrícola. Essas fontes podem ser classificadas de acordo com a sua distribuição espacial, onde as fontes difusas seriam aquelas que não apresentam uma pluma de contaminação definida e abrangem uma área maior do aquífero, já as fontes pontuais seriam aquelas onde a pluma de contaminação é mais concentrada e definida se distribuindo numa área mais restrita. Outras classificações também são usadas como fonte passada onde uma área já passou por um processo de uso e ocupação e ali permanece sendo uma fonte potencial, fonte existente relacionada as fontes das ocupações atuais e fonte futura que é aquela referente a empreendimentos ou usos do solo que ainda estão na fase de projeto (Foster, 2006).

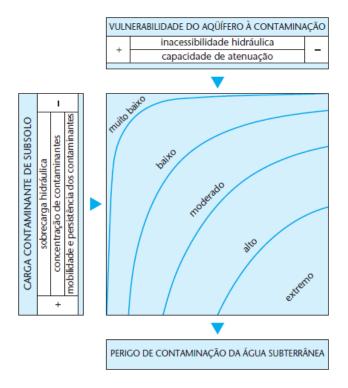


Figura 9. Esquema conceitual para avaliação do perigo de contaminação de água subterrânea. Extraído de Foster et al. (2006). Adaptado de Foster & Hirata (1988).

O método POSH (*Pollutant Origin, Surcharge Hydraulically*), leva em conta duas características que podem ser estimadas: a origem do poluente e sua sobrecarga hidráulica. O método produz três níveis qualitativos que visam identificar o potencial de se gerar uma carga contaminante no subsolo, classificados como reduzido, moderado e elevado, conforme pode ser observado na Figura 9 (Foster, 2006).

O termo "risco de contaminação" foi substituído pelo termo "perigo de contaminação" por Foster et al. (2002), mantendo o mesmo significado. A mudança na terminologia ocorreu para se adequar aos estudos realizados por outras áreas que também avaliam riscos aos ecossistemas e à saúde humana.

Cabrera et al (2008) fez o estudo da estimativa de risco de contaminação das águas por pesticidas para a cidade de Palmares do Sul onde indica que as águas subterrâneas da região costeira devem ser melhor estudadas com relação a uma série de potenciais contaminantes oriundos de pesticidas utilizados nas plantações de arroz na área.

O estudo de Alois *et al* (2017) relata a qualidade da água na região de Osório e identifica as possíveis fontes de contaminação da água subterrânea para essa região. Indicou que o aumento da população e sua concentração nos centros urbanos geram o aumento da produção de resíduos, que juntamente com a falta de saneamento básico adequado são fontes potenciais de contaminação nessa região. Visto que os resultados das análises físicas, bacteriológicas químicas e metais pesados mostraram que em alguns poços os valores de coliformes totais indicaram microrganismos patogênicos, e evidenciaram contaminação por cloreto, fluoreto e chumbo, todos relacionados a atividade antrópica.

3 MATERIAIS E MÉTODOS

Para a realização desse estudo foram desenvolvidas atividades que estão relacionadas a diversas etapas, as quais serão descritas a seguir, as mesmas são simplificadas no fluxograma (Figura 10) abaixo:

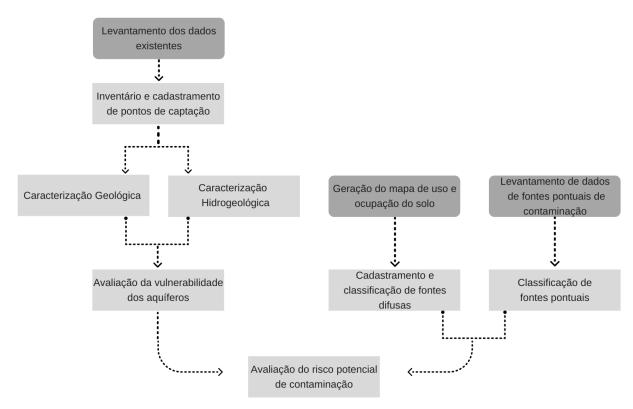


Figura 10. Fluxograma simplificado das diferentes etapas da metodologia do projeto.

3.1 Levantamento de Dados Geológicos e Hidrogeológicos

Esta etapa se deu com o levantamento de mapas e publicações já existentes para a região de estudo. Foram utilizados os Mapas Geológico do Rio Grande do Sul

1:750.000 (CPRM 2008), Mapa Hidrogeológico do Rio Grande do Sul 1:750.000 (CPRM 2005) e o Mapa da Planície Costeira do Rio Grande do Sul (PCRS) modificado por Tomazelli e Villwock (1996). A interpretação e caracterização geológica e hidrogeológica da área deu-se através do estudo de artigos publicados, boletins informativos e relatórios técnicos de órgãos governamentais, como CPRM, FEPAM, SEMA e CORSAN. A compilação de parte desses levantamentos encontrase no estado da arte com o intuito de dar embasamento ao assunto abordado neste trabalho.

3.2 Inventário e Cadastramento de Pontos de Captação

Esta etapa constituiu no levantamento dos dados de poços ponteira e tubulares existentes na região e disponibilizados pela CORSAN, CPRM (SIAGAS), DRH/SEMA, empresa de perfuração HIDROGEO e pelo banco de dados do Projeto LACOS II (REGINATO e MICHAELSKI, 2013), gentilmente cedidos para realização deste trabalho.

Os dados litológicos e hidrogeológicos obtidos foram compilados utilizando o software Microsoft Excel (Apêndice A), dando origem a um banco de dados que conta com informações de localização geográfica dos pontos de captação (coordenadas UTM e cota), características construtivas (tipo de poço, profundidade, diâmetro e intervalos com seção filtrante), hidrodinâmicas (nível estático e vazão), geológicas (litologias) e hidrogeológicas (espessura das camadas aquíferas, aquíferos captados). Estes dados compilados possibilitaram a identificação das formas de captação, usos das águas subterrâneas, a avaliação e caracterização dos aquíferos da região, assim como na determinação dos valores designados aos parâmetros da metodologia GOD.

3.3 Geologia da área de estudo

O estudo da geologia foi realizado através da análise dos perfis dos poços cadastrados juntamente com as informações do Mapa geológico do Estado do Rio Grande do sul 1:750.000 (CPRM, 2008), do Mapa da Planície Costeira do Rio Grande do Sul (PCRS) modificado por Tomazelli e Villwock (1996) e de trabalhos realizados para a região. Foi possível identificar e correlacionar as litologias em

profundidade através da geração de perfis geológicos dos poços alinhados de forma transversais e longitudinais a linha de costa, utilizando o Software Strater5. Este software é utilizado para plotagem de perfis de poços e criação de seções transversais, segundo Golden Software 2021.

3.4 Avaliação Hidrogeológica da área de estudo

A avaliação hidrogeológica foi realizada com base nos dados obtidos na etapa de inventário e cadastramento dos poços para a área de estudo, juntamente com trabalhos realizados na área e análise do Mapa Hidrogeológico do Rio Grande do Sul 1:750.000 (CPRM 2005).

A caracterização hidrogeológica foi realizada utilizando propriedades como nível estático, profundidade e vazão, sendo que esses dados foram avaliados e analisados utilizando técnicas de estatística descritiva visando a determinação de valores máximos e mínimos, media, mediana e desvio padrão.

A identificação dos aquíferos foi realizada através da interpretação dos perfis geológicos e construtivos, e da identificação da posição das seções filtrantes dos poços identificados na região. Foi possível levantar informações sobre a litologia, espessura saturada, continuidade das camadas e grau de confinamento dos aquíferos (se livres, semiconfinado ou confinados) em alguns pontos dos aquíferos.

Através da análise dos perfis e seções foi elaborado o modelo hidrogeológico conceitual, o qual foi validado com base na literatura existente sobre a hidrogeologia da área. Isso possibilitou averiguar diferenças na hidrogeologia da região estudada, e também avaliar a geometria das diferentes camadas aquíferas, profundidade de ocorrência, espessura e tipo de sedimento.

3.5 Avaliação da Vulnerabilidade do SAC

A avaliação da vulnerabilidade do Sistema Aquífero costeiro (SAC) foi realizada com base na metodologia GOD (Groundwater occurrence, Overall lithology of the unsatured zone, Depth to the water table) desenvolvida por Foster e Hirata (1993) e posteriormente aperfeiçoada por Foster *et al.* (2002), esta leva em consideração três parâmetros:

- (G) Grau de confinamento do aquífero (livre, confinado, semiconfinado);
- (O) Ocorrência de estratos de cobertura;
- (D) Distância até o lençol freático ou teto do aquífero confinado (espessura da zona vadosa).

Cada parâmetro recebeu um valor baseado na interpretação dos dados adquiridos nas etapas de inventário e cadastramento dos pontos de captação. Através da avaliação da geologia e hidrogeologia os pesos foram distribuídos de 0 a 1. Depósitos arenosos receberam valores mais altos do que os argilosos, a presença e espessura das camadas argilosas também foram consideradas para definir os pesos adotados no parâmetro de confinamento, quanto mais espessa a camada, menores os valores considerados. A profundidade da camada confinante ou do lençol freático foram utilizados, de forma que quanto mais profunda a camada confinante ou o nível estático, menores foram os pesos considerados.

Para cada parâmetro foram gerados mapas temáticos utilizando o software ArcGis 10.5 através do processo de interpolação pelo método do Inverso do Quadrado da Distância (IDW). O mapa com o índice final GOD (Figura 11), também foi gerado dessa forma utilizando o índice já calculado no Microsoft Excel. Após a interpolação os resultados foram ajustados de acordo com as classes do método GOD para uma melhor interpretação do mapa de vulnerabilidade dos aquíferos da região estudada, com índices que variando de 0 a 1.

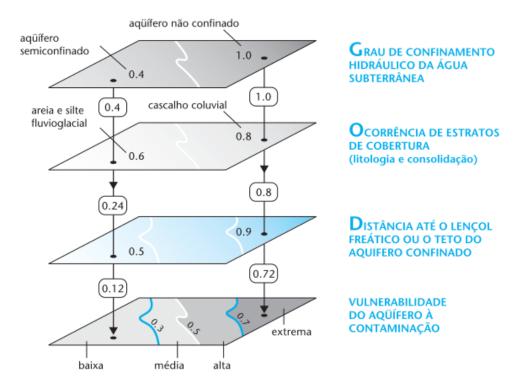


Figura 11. Produção do mapa de vulnerabilidade de acordo com a metodologia GOD. Extraído de Foster et. al. 2006.

A reclassificação do mapa de vulnerabilidade foi feita seguindo os intervalos de vulnerabilidade estabelecidos pela metodologia (Figura 12).

Figura 12. Reclassificação dos índices de vulnerabilidades em classes de vulnerabilidade. Extraído de Foster et. al. 2006.

3.6 Avaliação do Risco Potencial de Contaminação do SAC

Nesta etapa a avaliação do risco potencial de contaminação do SAC deu-se através do mapeamento de fontes de contaminação (pontuais e difusas) juntamente com a aplicação da metodologia POSH (FOSTER *et al.*, 2002), a qual leva em consideração a probabilidade da presença do contaminante e a carga hidráulica que transportaria esse contaminante para o sistema aquífero.

As fontes pontuais de contaminação foram tabeladas em planilhas no Microsoft Excel, a partir do mapeamento de fontes como postos de gasolina, cemitérios, oficinas mecânicas, áreas de atividade industrial e mineração. Também foram levantados dados junto a FEPAM e Prefeituras dos municípios que abrangem

a região de estudo. Estas foram identificadas através da análise de imagens do Google Earth pro.

Após este mapeamento foi feita a classificação do potencial de geração de carga contaminante no subsolo de cada um dos pontos e áreas através da metodologia POSH, que classifica essas fontes em potencial elevado, moderado ou reduzido de contaminação de acordo com as suas características. Como apresentado na Tabela 1.

Tabela 1. Classificação e ranqueamento das fontes de contaminação pontuais segundo o sistema POSH. Extraído de Foster *et al* (2006).

POTENCIAL DE GERAR CARGA	FONTES DE CONTAMINAÇÃO				minoração
CONTAMINANTE NO SUBSOLO	deposição de resíduos sólidos	áreas Industriais*	lagoas de águas residuais	outras (urbanas)	mineração e exploração de petróleo
Elevado	resíduo industrial tipo 3, resíduo de origem desconhecida	indústria tipo 3 ou qualquer atividade que manuseie >100 kg/d de produtos químicos perigosos	todos os resíduos industriais tipo 3, qualquer efluente (exceto esgoto residence se a área >5 ha	ial)	operações em campos de petróleo, mineração de metais
Moderado	chuva >500 mm/a com resíduos residenciais/ agroindustriais/ industriais tipo 1, ou todos os demais casos	indústria tipo 2	esgoto residencial se a área >5 ha, demais casos não relacionados acima ou abaixo	postos de gasolina, vias de transporte com tráfico regular de produtos químicos perigosos	algumas atividades de mineração/ extração de materiais inertes
Reduzido	chuva <500 mm/a com resíduos residenciais/ agroindustriais/ industriais tipo 1	indústria tipo 1	águas residuais residenciais, mistas, urbanas, agro- industriais e de mineração de não metálicos	cemitérios	
* solos contaminados de indústrias abandonadas devem ter a mesma classificação que a da própria indústria Indústria madeireiras, manufaturas de alimentos e bebidas, destilarias de álcool e açúcar, processamento de materiais não metálicos lábricas de borracha, fábricas de papel e celulose, indústrias têxteis, fábricas de fertilizantes, usinas elétricas, fábricas de detergente e sabão oficinas de engenharia, refinarias de gás/petróleo, fábricas de produtos químicos/farmacêuticos/plásticos/pesticidas, curtumes, indústrias eletrônicas, processamento de metal					

As fontes difusas foram levantadas através do mapeamento do uso do solo utilizando de imagens de satélite, Google Earth 2021 e do MapBiomas 2020 da coleção 6.0, série anual de mapas de uso. Juntamente elaborou-se a tabela com o percentual de uso do solo com relação à área de estudo. Foram definidas as seguintes classes: Agricultura e pecuária, formação campestre, floresta plantada, massas d'água, infraestrutura urbana, praias e dunas e formação florestal. As quais foram classificadas segundo o método POSH quanto ao risco potencial (elevado, moderado, reduzido) de contaminação, conforme apresentado na Tabela 2.

Tabela 2. Classificação das fontes de contaminação difusas segundo a metodologia POSH. Extraído de Foster *et al.* (2006).

POTENCIAL DE CARGA CONTAMINANTE DE SUBSOLO	FONTE DE CONTAMINAÇÃO o saneamento <i>in situ</i> práticas agrícolas	
Elevado	cobertura da rede de esgoto inferior a 25% e densidade populacional superior a 100 pessoas/ha	culturas comerciais intensivas, geralmente monoculturas em solos bem drenados, em climas úmidos ou com baixa eficiência de irrigação, pasto intensivo em campos intensamente fertilizados
Moderado	intermediário entre elevado e reduzido	
Reduzido	cobertura da rede de esgoto superior a 75% e densidade populacional inferior a 550 pessoas/ha	rotação das culturas, terra para pasto extensivo, sistemas de cultivo ecológico, plantações com alta eficiência de irrigação em regiões áridas e semi-áridas

Assim os produtos gerados após a identificação e classificação das fontes pontuais e difusas de contaminação foi um mapa de uso e ocupação do solo e um mapa com a distribuição das fontes pontuais. Possibilitando que as feições mapeadas possam ser avaliadas junto aos mapas de vulnerabilidade elaborados para a área.

4 RESULTADOS

4.1 Recursos Hídricos Subterrâneos na Área de Estudo

A área de estudo é amplamente abastecida pelas águas subterrâneas, sendo utilizadas na indústria, no comércio, na agricultura e para o abastecimento doméstico e público. As águas desempenham um papel importante para o desenvolvimento econômico da região e tem como função fundamental o abastecimento público e doméstico, estes dois últimos somam 61% dos usos destinados aos poços levantados na área (Figura 13).

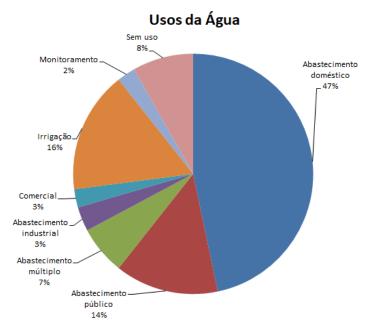


Figura 13. Gráfico do percentual dos tipos de usos das águas subterrâneas na área de estudo.

O inventário e cadastramento dos poços resultaram na identificação de 122 poços, somando tubulares e poços ponteira, localizados nas áreas rural e urbana cuja distribuição geográfica pode ser observada na Figura 14.

A relação de poços cadastrados teve origem no banco de dados do SIAGAS, SIOUT, de outros projetos e de empresas de perfuração que gentilmente compartilharam parte de seus dados. Na Figura 15 é possível observar a distribuição dos poços na área de estudo de acordo com sua origem.

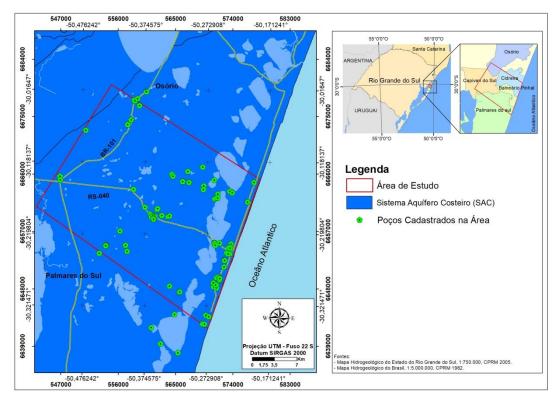


Figura 14. Distribuição geográfica dos poços levantados. Elaborado com base no mapa hidrogeológico do estado do Rio Grande do Sul (CPRM, 2005).

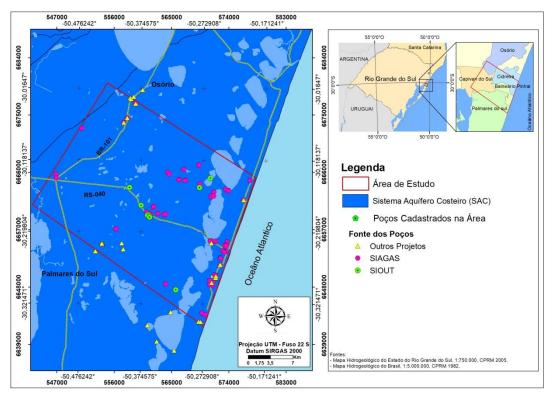


Figura 15. Distribuição geográfica dos poços levantados a partir do banco de dados de outros projetos e empresas de perfuração de poços, bem como dos poços levantados através do portal SIAGAS e SIOUT. Elaborado com base no mapa hidrogeológico do estado do Rio Grande do Sul (CPRM, 2005).

Dos 122 poços 31 são poços tubulares, 90 poços ponteira e 1 piezômetro (Figura 16). Dos 122 poços 7 estão fora ou sobre o limite delimitado para a área de estudo, porém por entender que estes poços contribuem para as avaliações da área eles foram mantidos.

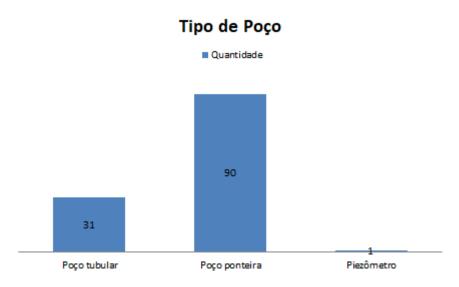


Figura 16. Gráfico do número de poços cadastrados na área de estudo.

A maior parte da área urbana e dos aglomerados residenciais são abastecidos pela rede pública através dos poços tubulares pertencentes à CORSAN, nos pontos em que o abastecimento público não chega a água é captada através de poços ponteira. Dos 122 poços cadastrados 28 pertencem a CORSAN, destes 9 estão sem uso, por estarem parados ou tamponados, 1 é utilizado para monitoramento das águas subterrâneas, 7 são para abastecimento doméstico e 11 para abastecimento urbano. As áreas rurais são abastecidas predominantemente por poços ponteira, que por vezes tem múltiplos usos, sendo utilizados ao mesmo tempo para irrigação, abastecimento doméstico e dessedentação animal, por exemplo.

A partir do levantamento também foi possível observar que dos 122 poços 64 são de captação particular (Figura 17), 1 para monitoramento e o restante, 29 poços, pertencem a empresas, escolas, cooperativas, comércios e hotéis.

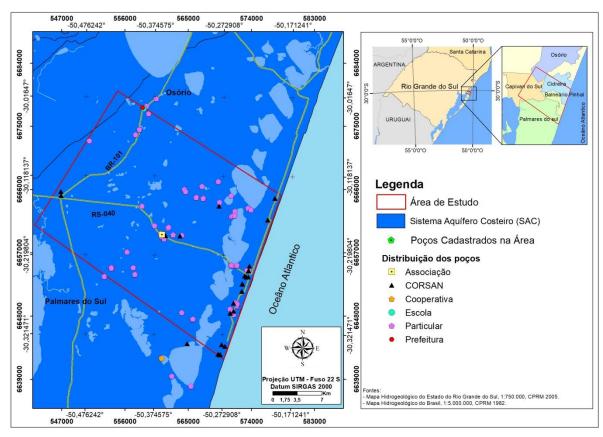


Figura 17. Distribuição geográfica dos poços levantados através do cadastramento e inventário. Separados por pontos de captação comunitários (Associação, Escola e Cooperativa), públicos (CORSAN e Prefeitura) e Particular. Elaborado com base no mapa hidrogeológico do estado do Rio Grande do Sul (CPRM, 2005).

4.2 Caracterização Geológica

Essa caracterização foi feita com base no Mapa Geológico do Rio Grande do Sul (CPRM, 2006), no Mapa geológico da Planície Costeira do Rio Grande do Sul (Tomazelli & Villwock, 1996), nos dados bibliográficos e nos dados dos perfis geológicos de poços tubulares disponibilizados pela CPRM através do portal SIAGAS e por empresas de perfuração. Levando em consideração a compartimentação dos depósitos costeiros proposta por Villwock (1972), observouse a ocorrência de sedimentos dos sistemas Laguna-Barreira II, III e IV. Na Figura 18 é apresentado o mapa geológico da área de estudo.

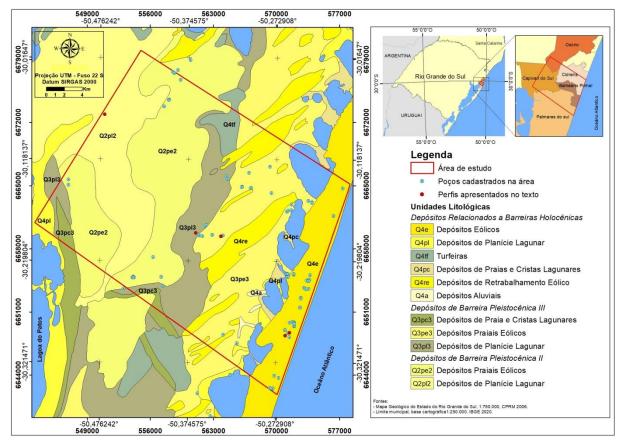


Figura 18. Mapa geológico da área de estudo. Elaborado pela autora, adaptado do Mapa Geológico do Estado do Rio Grande do Sul (CPRM, 2006).

No mapa geológico da área (Figura 18), foram reconhecidos depósitos Pleistocênicos Laguna-Barreira II que correspondem a depósitos planície lagunar e depósitos praiais e eólicos. Também foram identificados Depósitos Pleistocênicos Laguna-Barreira III que correspondem a depósitos de planície lagunar e depósitos praiais eólicos. Além dos depósitos Holocênicos que correspondem a depósitos de retrabalhamento eólico, aluvionares, praiais, cristas lagunares, e depósitos eólicos.

Sistema Laguna-barreira II

A fácies do Sistema Lagunar II representada pelos depósitos de planície lagunar é constituídas por sedimentos arenosos com coloração branca amarronzada e areia argilosa de mesma coloração (CPRM, 2006), nos perfis construtivos de alguns poços da região é possível observar a presença desses sedimentos nas camadas mais rasas (Figura 19). Já o Sistema Barreira II representados pelos depósitos praiais e eólicos são descritos como areia fina amarelada.

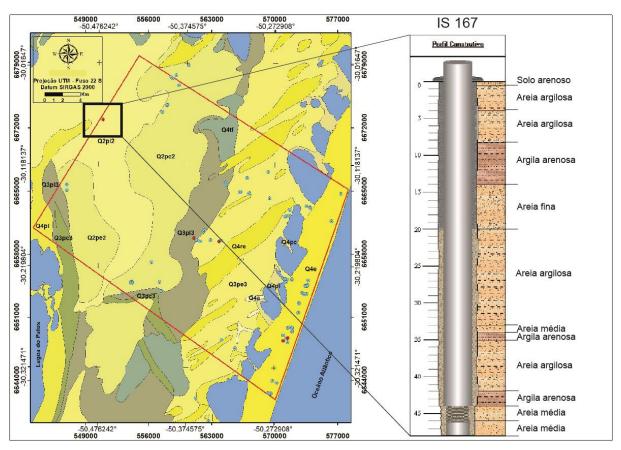


Figura 19. Perfil construtivo de poço tubular em Capivari do Sul (UTM 550948/6672925), mostrando intercalação de sedimentos costeiros. Extraído do portal SIAGAS (CPRM) e modificado pela autora.

Sistema Laguna-barreira III

O Sistema Lagunar III, representado pelos depósitos de planície lagunar, é constituído por argila siltosa cor cinza escuro e areia argilosa cor cinza esverdeada (CPRM, 2006), conforme se observa na descrição das camadas mais rasas do perfil construtivo do poço 001206-05.00/14-3 2488-HIDROGEO (Figura 20). Esse sistema também apresenta a descrição de depósitos de turfeira constituídos por sedimentos inconsolidados, principalmente turfa e subordinadamente areia, argila, diatomito e silte (CPRM, 2006). O Sistema barreira III é constituído por depósitos praiais e eólicos que correspondem a areia fina cor amarela (CPRM, 2006), conforme se observa na descrição das camadas mais rasas do perfil construtivo do poço COR-BPI-TUV-01 G.2627 IS192 (Figura 20).

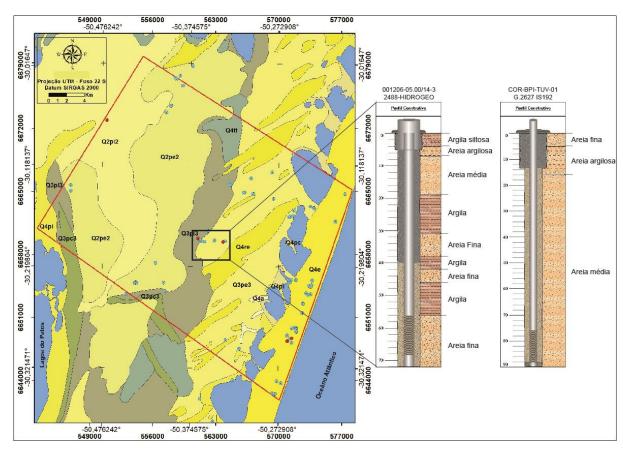


Figura 20. Perfil construtivo de poços tubulares em Balneário Pinhal (UTM 561074/6659764; 563863/6659383), mostrando intercalação de sedimentos costeiros. Extraído do portal SIAGAS (CPRM) e modificado pela autora.

Sistema Laguna-barreira IV

O sistema Lagunar IV, representado pelos depósitos aluvionares como barras de pontal, barras arenosas e dunas subaquosas, por exemplo, é constituído por sedimentos inconsolidados tipo areia, argila, cascalhos, conglomerado polimítico e silte. Os depósitos de praias e cristas lagunares são constituídos basicamente por areia. O Sistema Barreira IV, representado pelos depósitos eólicos e pelos depósitos de retrabalhamento eólico, é constituído por sedimentos inconsolidados do tipo areia (CPRM, 2006), conforme observado nas camadas mais rasas dos perfis construtivos dos poços apresentados na Figura 21.

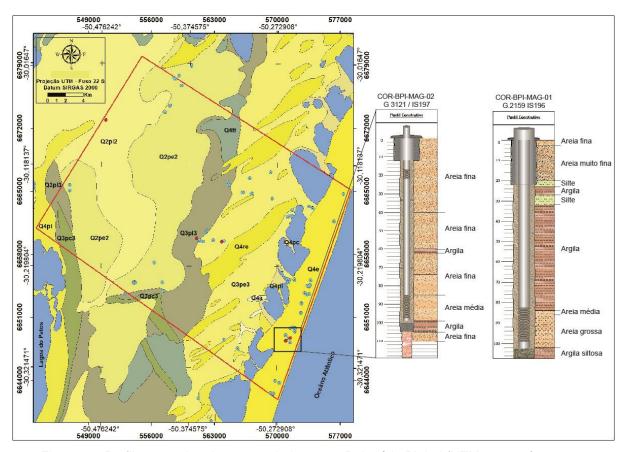


Figura 21. Perfil construtivo de poços tubulares em Balneário Pinhal (UTM 571458/6648687; 570992/6648365), mostrando intercalação de sedimentos do Sistema Laguna-Barreira IV. Extraído do portal SIAGAS (CPRM) e modificado pela autora.

4.3 Caracterização Hidrogeológica

De acordo com o Mapa Hidrogeológico Rio Grande do Sul (CPRM, 2005), conforme apresentado na Figura 22, na área de estudo ocorre o Sistema Aquífero Quaternário Costeiro I (SAQC). Neste trabalho este sistema será chamado de Sistema Aquífero Costeiro (SAC), pois em trabalhos recentes de TROIAN et al, (2020) esse sistema é constituído por sedimentos depositados em diferentes períodos geológicos, além do Quaternário.

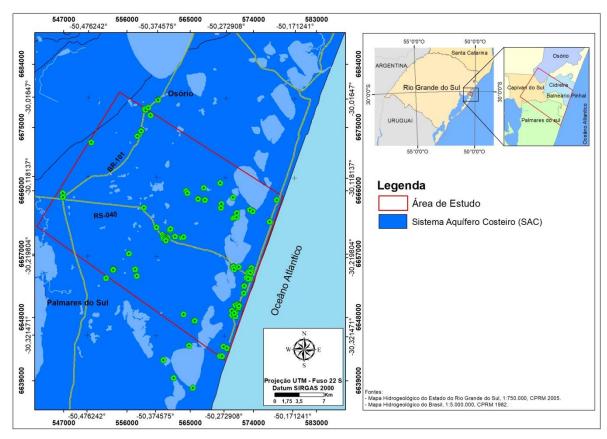


Figura 22. Mapa Hidrogeológico com indicação do aquífero presente na área de estudo. Elaborado com base no Mapa Hidrogeológico do Rio Grande do Sul (CPRM, 2005).

Levando em consideração a distribuição espacial dos poços cadastrados que possuíam perfil construtivo foram traçadas quatro seções A, B, C, e D, que auxiliaram na correlação das informações obtidas através da análise dos perfis hidrogeológicos conceituais (Figura 24) elaborados para a área, como litologia e espessura saturada das camadas.

Na seção A (Figura 23) os perfis apresentam camadas arenosas com espessuras que variam de 10 a 40 metros e camadas argilosas com espessuras entre 5 e 70 metros. De 0 a 30 metros, aproximadamente, ocorre uma predominância dos sedimentos arenosos e a partir dos 30 metros de profundidade é possível observar a intercalação de camadas arenosas e argilosas, com exceção do poço 96 que predomina sedimentos arenosos. As seções filtrantes nas camadas arenosas rasas estão posicionadas entre 15 e 10 metros de profundidade, já nas camadas arenosas profundas as seções filtrantes estão posicionadas entre os 50 e 100 metros de profundidade. Dessa forma assume-se que a intercalação de camadas argilosas a partir dos 30 metros, assim como sua variação lateral favorece

a formação de uma unidade aquífera mais profunda confinada a semiconfinada e uma unidade aquífera livre nas porções mais rasas, ou seja, acima dos 30 metros.

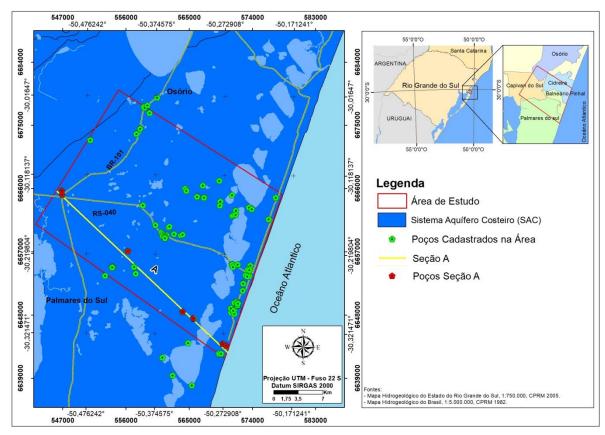


Figura 23. Mapa Hidrogeológico e localização dos poços utilizados na construção da seção A. Elaborado com base no Mapa Hidrogeológico do Rio Grande do Sul (CPRM, 2005).

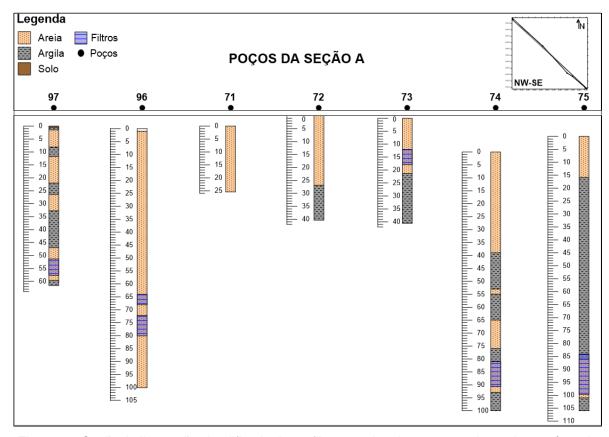


Figura 24. Seção A. Ilustração simplificada do perfil construtivo dos poços cadastrados na área de estudo. Obtido através do software Strater 5.

Na Figura 25 é apresentada a distribuição espacial dos poços que compõem a Seção B. Nos poços desta seção (Figura 26) ocorrem camadas arenosas e argilosas com espessuras variadas, as camadas arenosas predominam até os 30 metros de profundidade e na sequência ocorre à intercalação de camadas arenosas e argilosas, com exceção do poço 26 que apresenta predomínio de sedimentos arenosos. Nesses poços os filtros estão instalados entre os 44 e 100 metros de profundidade acima deles as camadas argilosas são responsáveis pelo processo de confinamento e/ou semiconfinamento em alguns pontos do aquífero. A presença de filtros acima dos 30 metros nas camadas predominantemente arenosas também indica a presença de um aquífero livre (Poço 31).

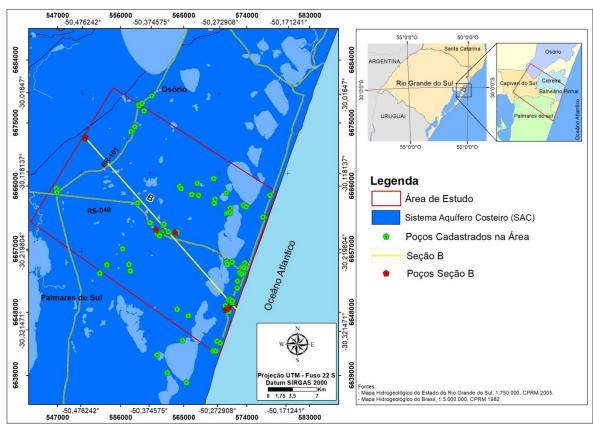


Figura 25. Mapa Hidrogeológico e localização dos poços utilizados na construção da seção B. Elaborado com base no Mapa Hidrogeológico do Rio Grande do Sul (CPRM, 2005).

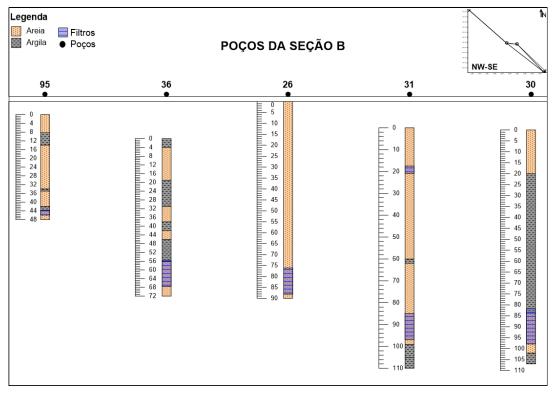


Figura 26. Seção B. Ilustração simplificada do perfil construtivo dos poços Cadastrados na área de estudo. Obtido através do software Strater 5.

Para a elaboração da Seção C (Figura 28) foram considerados 18 poços conforme apresentado na Figura 27.

Nesta seção ocorrem camadas arenosas e argilosas com espessuras variadas. Em alguns poços ocorre apenas sedimentos arenosos enquanto outros apresentam apenas sedimentos argilosos, o que pode não corresponder com a realidade heterogênea dos depósitos costeiros. De forma geral do topo até aproximadamente os 30 metros ocorre o predomínio de camadas arenosas, abaixo dos 30 metros observa-se intercalação de camadas arenosas e argilosas, com predomínio de camadas argilosas. As seções filtrantes nesta seção ocorrem em sua maioria nas camadas arenosas abaixo dos 70 metros de profundidade, estando assim em uma região que pode ser considerada como unidade aquífera confinada com pontos de semiconfinamento. Assim na porção superior (acima dos 30m) os sedimentos arenosos configuram um aquífero livre (os poços 76 e 31 apresentam filtros nessa porção).

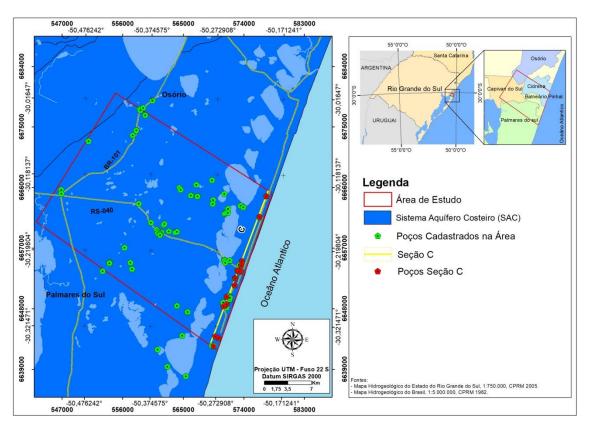


Figura 27. Mapa Hidrogeológico e localização dos poços utilizados na construção da seção C. Elaborado com base no Mapa Hidrogeológico do Rio Grande do Sul (CPRM, 2005).

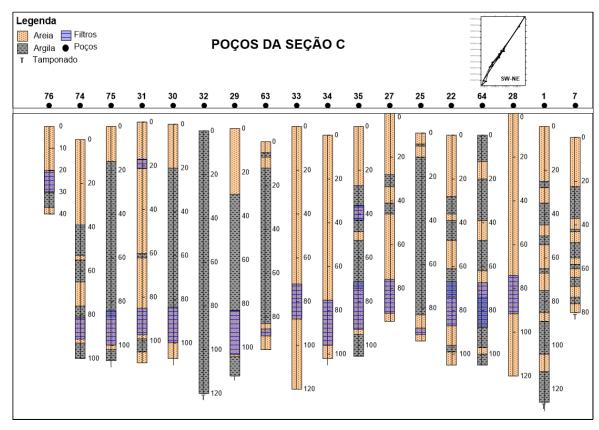


Figura 28. Seção C. Ilustração simplificada do perfil construtivo dos poços Cadastrados na área de estudo. Obtido através do software Strater 5.

Nos perfis construtivos utilizados para descrição da seção D (Figura 29 e Figura 30) ocorrem camadas arenosas e argilosas de espessuras variadas. De 0 a 30 metros de profundidade ocorre o predomínio de sedimentos arenosos, abaixo dos 30 metros observa-se a intercalação de camadas arenosas e argilosas, com predomínio de sedimentos argilosos. Nos poços profundos (poços 7 e 1) não constavam filtros devido ao tamponamento dos mesmos e nos poços rasos (poços 100, 99 e 101) a camada aquífera captada corresponde o aquífero livre formado predominantemente por sedimentos arenosos.

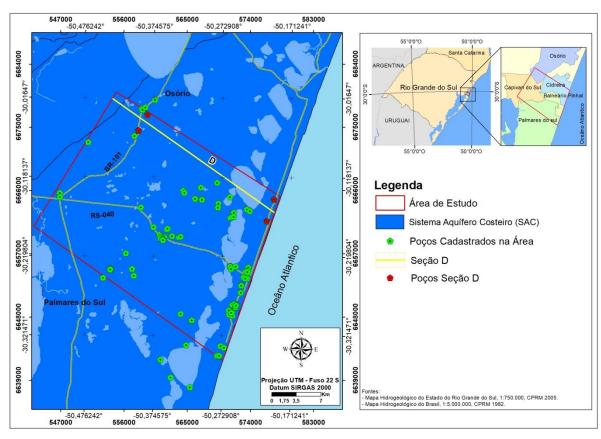


Figura 29. Mapa Hidrogeológico e localização dos poços utilizados na construção da seção D. Elaborado com base no Mapa Hidrogeológico do Rio Grande do Sul (CPRM, 2005).

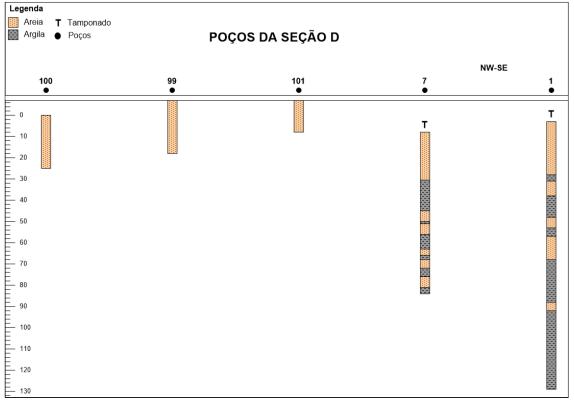


Figura 30. Seção D. Ilustração simplificada do perfil construtivo dos poços Cadastrados na área de estudo. Obtido através do software Strater 5.

De acordo com a descrição das seções anteriormente apresentadas pode-se dizer que na área de estudo ocorrem duas unidades aquíferas. Uma unidade aquífera livre na porção mais rasa composta predominantemente por sedimentos arenosos que ocorrem acima dos 30 metros de profundidade. E uma unidade aquífera na porção mais profunda ocorrendo abaixo dos 30m de profundidade nas camadas arenosas que são confinadas ou semiconfinadas pela intercalação das camadas argilosas e arenosas. O confinamento e semiconfinamento dependem da presença das camadas argilosas, assim como sua espessura e continuidade lateral.

Dos 122 poços cadastrados 85 deles estão posicionados no aquífero livre e 37 no aquífero confinado a semiconfinado (Figura 31).

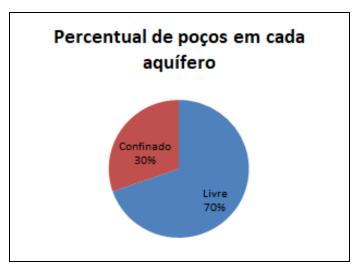


Figura 31. Gráfico do percentual de poços cadastrados que se encontram no aquífero livre e no aquífero confinado a semiconfinado.

Considerando 77 poços na unidade aquífera livre sendo 72 poços ponteira e 4 poços tubulares, os quais foram considerados por terem filtros nessa unidade. Na Tabela 3 estão descritas a quantidades de dados para cada parâmetro utilizado na caracterização do aquífero livre.

Tabela 3. Distribuição da quantidade de dados existentes para cada parâmetro dos poços cadastrados na área de estudo.

Camada aquífera: Livre (< 30m)				
NE (m) Profundidade (m) Vazão (Q=m³/h)				
Mediana	1,55	15,00	7,23	
Média	2,67	18,37	13,63	
Máximo	8,00	119,00	70,00	
Mínimo	1,01	3,50	1,80	
Desvio Padrão	2,20	14,50	17,78	
N° de Dados	13	77	12	

O nível estático médio foi de 2,67 com um desvio padrão de 2,2m e uma variação de 1m para o nível de água mais superficial e de 8m para o nível de água mais profundo, mostrando uma captação das porções rasas desse aquífero.

A profundidade média dos poços perfurados é de 18,37m com um desvio padrão de 14,50 e uma variação de 119m e 3,5m, a mediana ficou em 15m. Esses valores condizem com predomínio de poços ponteira que tendem a serem não tão profundos.

A vazão média que esses poços apresentam é de 13,63 m³/h, com mediana de 7,23 e variação de 70 m³/h e 1,8 m³/h. Como os valores podem ter sido influenciados pelos poços tubulares, que geralmente apresentam vazões maiores, foi considera mediana como vazão por ser um valor mais coerente com o predomínio de poços ponteira nesse aquífero.

Considerando 37 poços na unidade aquífera confinada a semiconfinada, sendo destes 28 poços tubulares e 9 poços ponteira, na Tabela 4 foram descritos os dados da análise estatística para cada parâmetro utilizados na caracterização da unidade aquífera profunda confinada a semiconfinada.

Tabela 4. Distribuição da quantidade de dados existentes para cada parâmetro dos poços	>			
cadastrados na área de estudo.				

Camada aquífera: Semiconfinado a Confinado (> 30m)				
NE (m) Profundidade (m) Vazão (Q=m³/h)				
Mediana	4,02	100,00	80,00	
Média	4,73	91,03	80,23	
Máximo	9,83	152,00	169,60	
Mínimo	1,50	33,00	2,56	
Desvio Padrão	2,47	29,83	50,68	
N° de Dados	25	34	23	

O valor médio do nível estático desses poços é de 4,73 metros com variação de 1,50m para os níveis mais rasos e 9,83m para os níveis mais profundos, com desvio padrão de 2,47m. Quando relacionados aos valores de profundidade que apresentam valores médios de 91 metros com variação de 33m e 152m e mediana de 100m, isso indica que as águas captadas nesse aquífero estão em profundidade que a pressão de confinamento faz com que os níveis estáticos desses poços estejam mais próximos à superfície.

A vazão média dos poços que captam água dessa unidade aquífera confinada a semiconfinada é de 80,23 m²/h com mediana de 80 m²/h, variação de 169,6 m³/h e 2,56 m³/h e desvio padrão de 50,68 m³/h.

4.4 Avaliação da Vulnerabilidade dos Aquíferos:

Para a avaliação da vulnerabilidade, realizada através da aplicação do método GOD, foram consideradas duas unidades aquíferas na área estudada. Um aquífero livre, raso, com predominância de sedimentos arenosos, posicionado acima dos 30m de profundidade, ou seja, logo acima da região com predominância das camadas argilosas e um aquífero semiconfinado a confinado, profundo localizado nas camadas arenosas a partir dos 30 m que é, ora confinado, ora semiconfinado dependendo da presença e espessura das camadas argilosas que ocorrem sobrepostas.

A avaliação dos poços se deu a partir da divisão do banco de dados, realizando a separação dos poços com até 30 metros de profundidade, sendo considerados poços ponteira e poços tubulares profundos com filtros captando

nessa porção ou que não apresentam camadas confinantes, e poços com mais de 30 metros que apresentem camadas confinantes ou não.

Parâmetro G

O confinamento hidráulico das águas subterrâneas é indicado pelo parâmetro G. Os poços avaliados para a unidade aquífera livre estão na condição de não confinamento ou não confinamento com cobertura. Neste aquífero ocorre o predomínio de poços ponteira e como a maioria desses poços não possui perfil construtivo e estão localizados na porção rasa, em média 15m de profundidade, foram aferidos os seguintes valores, 0,5 para os poços não confinados cobertos, que de acordo com o mapa geológico estão cobertos por uma camada de argila lacustrina, e 1,0 (Tabela 5) para os poços não confinados. Esses valores correspondem a alto e máximo grau de vulnerabilidade respectivamente.

Para os poços tubulares que apresentam perfil construtivo e captam água deste aquífero foram consideradas as diferentes camadas acima dos pontos de captação, pois estas apresentam permeabilidade diferente, fazendo com que ocorram variações no parâmetro G. Por Exemplo, nos poços que apresentavam camadas de areia muito fina, determinou-se o valor de 0,7. Nos casos em que ocorriam camadas de areia fina, determinou-se o valor de 0,8 e para os poços que apresentavam na descrição camadas de areia média determinou-se o valor de 0,9 (Tabela 5).

Nas unidades aquíferas confinadas e semiconfinadas, a captação ocorre através de poços tubulares profundos. A definição e distribuição dos valores foram realizadas através da analise dos perfis geológicos dos poços com base na profundidade de instalação dos filtros. Na categoria confinada foram considerados os poços com captação nas camadas arenosas situadas abaixo das camadas argilosas mais espessas, para estes aplicou-se o valor de 0,2. Na categoria semiconfinado foram considerados os poços com captação nas camadas arenosas situadas abaixo das camadas de argila menos espessas, para estes casos aplicou-se o valor de 0,4. Para os poços com filtros no aquífero confinado e semiconfinado o

peso atribuído foi de 0,3 e para os poços com filtros nos aquíferos semiconfinado e livre foi definido um peso de 0,5 conforme Tabela 5.

Tabela 5. Parâmetros G para diferentes características de confinamento.

Aquífero	Pesos			
<u>LIVRE</u>				
Poços ponteira				
Não confinado coberto	0,5			
Não confinado	1			
Poços tubulares				
Areia muito fina	0.7			
Areia fina	0.8			
Areia média	0.9			
CONFINAL				
(considerando a capta	ção dos filtros)			
Confinado	0.2			
Confinado e semiconfinado	0.3			
Semiconfinado	0.4			
Semiconfinado e livre	0.5			

Parâmetro O

A ocorrência de estratos de cobertura representada pelo parâmetro O, leva em consideração as características litológicas e o grau de consolidação da zona vadosa ou das camadas confinantes. A partir disso a avaliação dos poços que captam água do aquífero livre levou em consideração a localização de cada um dos poços ponteira distribuídos sobre o mapa geológico. Isso possibilitou a identificação dos diferentes tipos de depósitos associados a esses pontos tornando possível a atribuição de um peso a cada um deles. Conforme apresentado na Tabela 6.

Tabela 6. Parâmetros O para as diferentes litologias da região dos poços ponteira.

Poços Ponteira - LIVRE				
Depósito	Peso			
Depósitos eólicos	0.6			
Depósitos de planície lagunar	0.5			
Turfeiras	0.4			
Depósitos de praias e cristas lagunares	0.4			
Depósitos de retrabalhamento eólico	0.6			
Depósitos aluviais	0.7			
Depósitos praiais eólicos	0.6			

A avaliação dos poços tubulares que captam água do aquífero livre levou em consideração a descrição dos perfis construtivos e as camadas sedimentares posicionadas acima das seções filtrantes. Assim as camadas receberam pesos que foram distribuídos de acordo com a Tabela 7 abaixo.

Tabela 7. Parâmetros O para as diferentes litologias dos poços tubulares captando na porção rasa.

Poços Tubulares - LIVRE				
Estratos de cobertura (Zona vadosa ou camada confinante considerando sedimentos não consolidados)	Correspondente na área	Peso		
Argila lacustrina/estuarina	Argila	0.4		
Solos residuais	Solo	0.4		
Silte	Silte	0.5		
Areia eólica	Areia fina	0.6		
Areia aluvial	Areia argilosa, areia siltosa e areia média	0.7		
Cascalho de leques aluviais	Areia grossa	0.8		

Com relação ao aquífero confinado e semiconfinado para os poços tubulares avaliados foi considerada a litologia predominante da camada confinante e das camadas acima desta, com relação à posição da seção filtrante. Os valores foram atribuídos considerando a presença e ou predomínio de argila, silte ou areia nas camadas recebendo pesos de 0,4; 0,5 e 0,6 respectivamente (Tabela 8).

Tabela 8. Parâmetros O para as diferentes litologias dos poços tubulares captando na porção profunda.

Poços tubulares - Confinado e Semiconfinado			
Material predominante acima da Peso			
camada argilosa principal	reso		
Argila	0.4		
Silte	0.5		
Areia	0.6		

Parâmetro D

O parâmetro D corresponde à distância até o lençol freático ou o teto do aquífero confinado. Para determinar os valores deste parâmetro no aquífero livre considerou-se o nível estático da água nos poços, atribuindo peso 0,9 para os poços que apresentaram nível estáticos menores que 5m de profundidade e 0,8 para os que apresentaram profundidades entre 5 e 20m. No caso do aquífero confinado e semiconfinado considerou-se a profundidade da base da camada argilosa confinante, com valores 0,9 quando o teto se localiza a valores menores que 5 metros; peso 0,8 para profundidade do teto entre 5-20 metros; quando o teto estava entre 20 – 50 metros o peso atribuído foi de 0,7 e para profundidades maiores que 50 metros o peso atribuído foi de 0,6 conforme Tabela 9 abaixo.

Tabela 9. Parâmetro D para as diferentes distâncias até o lençol freático ou teto do aquífero confinado.

Aquífero - LIVRE	Peso
< 5m	0.9
5-20m	0.8
Aquífero Confinado/Semiconfinado	Peso
<5m	0.9
5-20m	0.8
20-50m	0.7
>50m	0.6

Avaliação da vulnerabilidade

Para a geração dos mapas de vulnerabilidade foram testados os interpoladores "Vizinho Natural" e "IDW". Constatou-se que o interpolador "Vizinho Natural" não foi tão eficiente, pois não extrapolou a área abrangida. Já o método

"IDW" gerou mapas com uma cobertura melhor da área para a avaliação dos parâmetros GOD.

As figuras 32, 33 e 34 representam as interpolações geradas para os parâmetros G, O e D do método GOD, e a Figura 35 mostra a vulnerabilidade natural do aquífero livre segundo o índice de vulnerabilidade GOD.

Observou-se que os aquíferos livres da área estudada apresentam predominantemente vulnerabilidade natural média a alta, conforme apresentado na Figura 35 e na Tabela 10.

Para os poços ponteira locados no aquífero livre observou-se a vulnerabilidade natural baixa a alta, aqueles com vulnerabilidade baixa, de forma geral, estão relacionados a depósitos de planície lagunar. Já os poços ponteira que apresentam vulnerabilidade alta no geral ocorrem relacionados a depósitos eólicos, constituídos de sedimentos arenosos. Os poços tubulares que captam água do aquífero livre apresentaram principalmente vulnerabilidade média, de forma geral esses poços estão relacionados a depósitos eólicos formados por areias fina a muito fina.

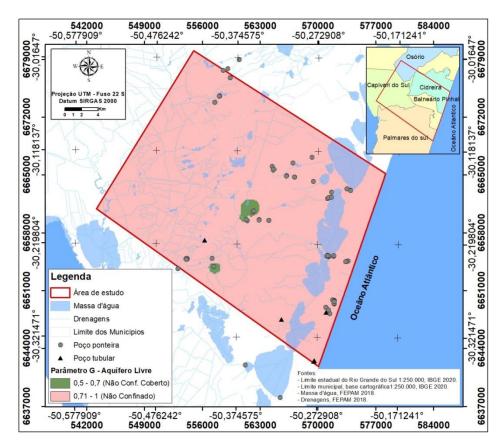


Figura 32. Mapa do parâmetro G para aquíferos livres.

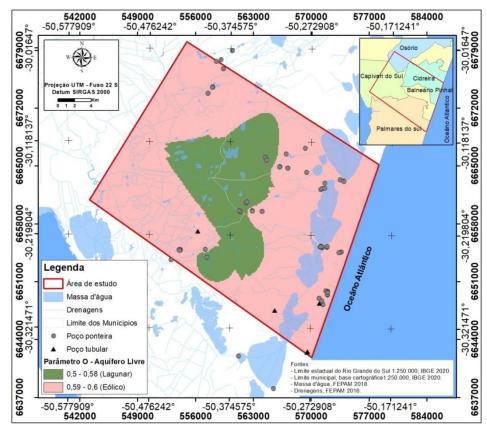


Figura 33. Mapa do parâmetro O para aquíferos livres.

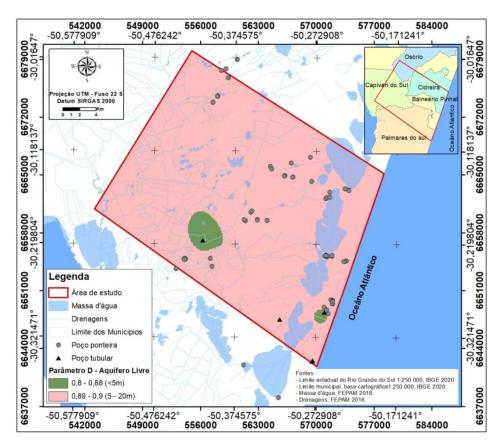


Figura 34. Mapa do parâmetro D para aquíferos livres.

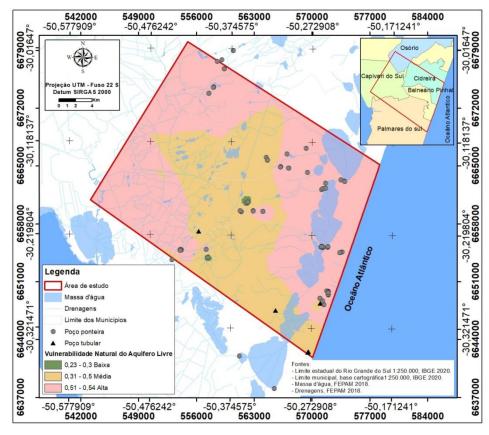


Figura 35. Mapa da vulnerabilidade natural do aquífero livre.

Tabela 10. Classes de vulnerabilidade do aquífero livre e seus percentuais em área relativos à área de estudo.

Vulnerabilidade do aquífero livre			
Classe Área (ha) %			
Baixa	181.3726	0.2583	
Média	26900.7549	38.3038	
Alta	43143.1850	61.4313	
Área de estudo	70229.96	100.0	

As figuras 36, 37 e 38 mostram os resultados obtidos através das interpolações para os parâmetros G, O e D, e a Figura 39 representa a vulnerabilidade natural dos aquíferos semiconfinado e confinado.

Considera-se que a unidade aquífera localizada abaixo dos 30 metros de profundidade tem comportamento semiconfinado e confinado, variando lateralmente. Ressalta-se que para uma melhor avaliação dessa unidade aquífera nos mapas elaborados ela foi considerada como um aquífero semiconfinado/confinado apresentando pontos localmente não confinados.

Observou-se que a vulnerabilidade natural dos aquíferos semiconfinado/confinado é predominantemente média a baixa, conforme apresentado na Figura 39 e na Tabela 11.

Em torno de 73% da área de estudo apresentou vulnerabilidade média, os poços nesta região são pontos de não confinamento, cobertos por estratos predominantemente arenosos com distância até o lençol freático ou teto do aquífero entre 5 e 20 metros. A classe vulnerabilidade baixa cobre aproximadamente 24% da área. Nesta porção o grau de confinamento varia de semiconfinado a confinado, coberto por estratos predominantemente arenosos por vezes intercalados com camadas argilosas de espessura variada, a distância até o lençol freático ou o teto da camada de confinamento varia de 5 a 50 metros de profundidade. A vulnerabilidade alta cobre 1.1% da área, os pontos avaliados indicam uma região de não confinamento com cobertura predominantemente arenosa e distância até o freático menor que 5 metros. A vulnerabilidade insignificante é a menos representativa cobrindo 0.8% da área, os pontos indicam uma porção de

confinamento coberto por estratos predominantemente argilosos com distância até o teto do aquífero variando de 5 até valores superiores a 50 metros de profundidade.

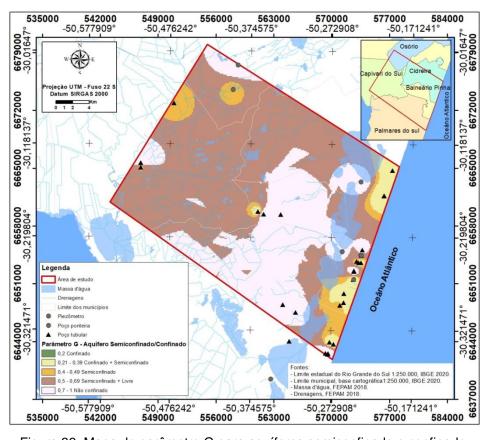


Figura 36. Mapa do parâmetro G para aquíferos semiconfinado e confinado.

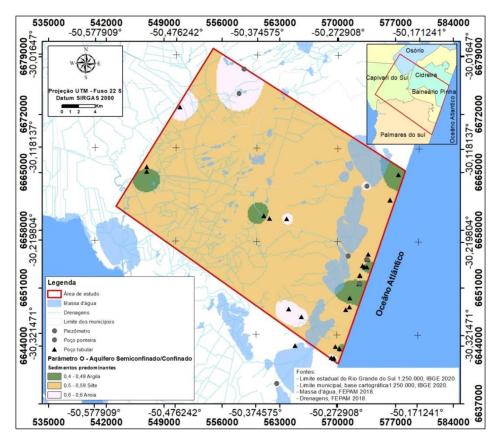


Figura 37. Mapa do parâmetro O para aquíferos semiconfinado e confinado.

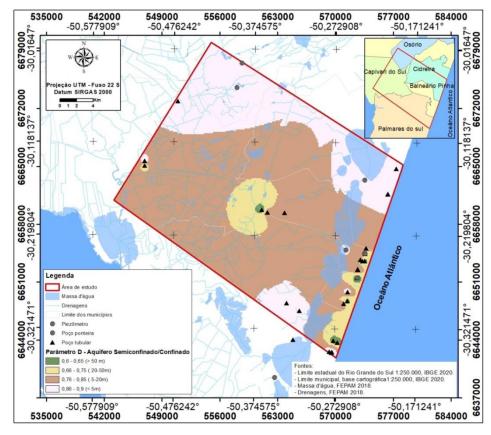


Figura 38. Mapa do parâmetro D para aquíferos semiconfinado e confinado.

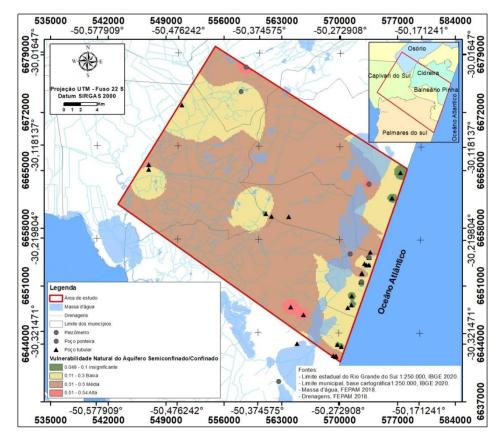


Figura 39. Mapa da vulnerabilidade natural dos aquíferos semiconfinado/confinado.

Tabela 11. Classes de vulnerabilidade do aquífero semiconfinado/confinado e seus percentuais em área relativos à área de estudo.

Vulnerabilidade do aquífero semiconfinado/confinado			
Classe	%		
Insignificante	576.3343	0.8206	
Baixa	17391.4797	24.7636	
Média	51420.3731	73.2171	
Alta	816.3982	1.1625	
Área de estudo	70229.96	100.0	

Os mapas apresentados foram gerados por interpolação "IDW" no software ArcGis. A fim de facilitar o entendimento dos mapas, os intervalos dos parâmetros e os graus de vulnerabilidade foram ajustados de acordo com o método GOD. Os percentuais em áreas relativos à área estudada, também foram obtidos através do software ArcGis.

4.5 Avaliação das Fontes Potencias de Contaminação e do Potencial de Geração de Carga Contaminante

Classificaram-se 47 fontes pontuais na área de estudo de acordo com a aplicação da metodologia POSH (Foster *et al.* 2006). A distribuição das fontes é apresentada na Figura 40, destas 9 fontes foram consideradas com potencial reduzido (19,15%), 9 com potencial moderado (19,15%) e 29 com potencial elevado (61,70%) (Tabela 12). Entre as fontes de potencial levado destacam-se postos de gasolina, oficinas mecânicas e a Estação de Tratamento de Efluentes (ETE) de Cidreira, esse potencial foi considerado para estas fontes, pois são locais com potencial manuseio de produtos químicos tóxicos ou vazamento de esgoto diretamente no aquífero. Os 9 pontos de mineração de areia foram considerados com potencial moderado, por ser um tipo de mineração executada com draga, em cavas a céu aberto.

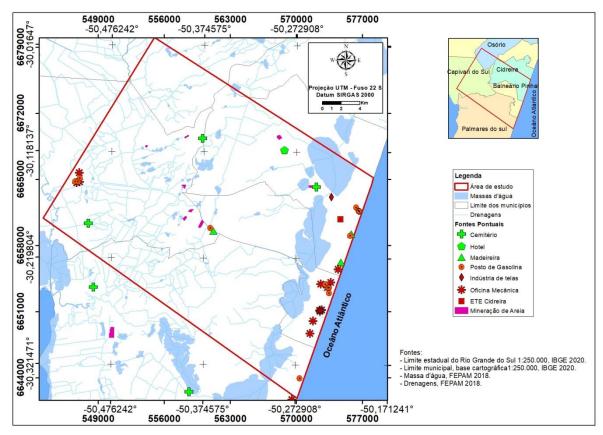


Figura 40. Mapa de distribuição das fontes pontuais.

Tabela 12. Tabela das fontes pontuais. Elaborado pela autora utilizando os dados levantados.

Fontes Pontuais	Número de Pontos	Potencial de gerar carga contaminante no subsolo	%	
Cemitério	5	Reduzido		
Hotel	1	Reduzido 19.15		
Madeireira	3	Reduzido	Reduzido	
Posto de Gasolina	14	Elevado		
Oficina Mecânica	13	Elevado 61.70		
ETE (Cidreira)	1	Elevado 61.70		
Indústria de telas	1	Elevado		
Mineração de areia	9	Moderado	19.15	
Total de fontes	47		100.00	

A classificação das fontes difusas foi realizada de acordo com o método POSH (Foster *et al.* 2006), visando compreender o uso e ocupação do solo. O mapeamento foi realizado através de dados do MapBiomas 2020 coleção 6.0 associado a imagens de satélite do Google Earth (2021), as áreas mapeadas são apresentadas na Figura 41 e os percentuais de cada área em relação a área de estudo na Tabela 13. O uso do solo foi classificado em área de agricultura e pecuária (38,22%), formação campestre (24,76 %), floresta plantada (14,84%), massas d'água (8,66%), infraestrutura urbana (6,99%), praias e dunas (6,24%) e formação florestal (0,31%).

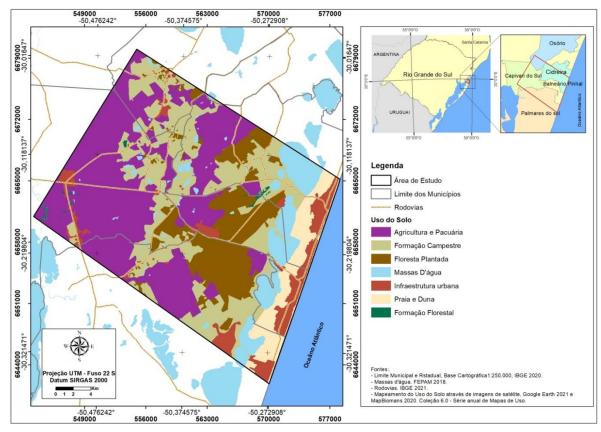


Figura 41. Mapa de distribuição das fontes difusas. Elaborado utilizando imagens do Google Earth (2021) e MapBiomas (2020) Coleção 6.0.

Tabela 13. Percentual de uso do solo com relação à área de estudo.

Uso do solo	Área (ha)	%	Potencial de gerar carga contaminante no subsolo
Formação campestre	17388	24.76	Reduzido
Praia e Dunas	4380.93	6.24	Reduzido
Massa d'água	6079.39	8.66	Moderado
Agricultura e pecuária	26842.39	38.22	Elevado
Floresta plantada	10420.80	14.84	Elevado
Formação Florestal	219.49	0.31	Reduzido
Infraestrutura Urbana	4909.33	6.99	Elevado
Área de estudo	70229.96	100.00	

Para o levantamento do percentual da cobertura da rede de esgoto (saneamento *in situ*) foram utilizados dados disponibilizados pelo IBGE (2010; 2021), SNIS (2020) e através da plataforma *Municípios e Saneamento* (2022.) (Tabela 14). Constatou-se que a cobertura da rede de esgoto é inferior a 25% e que nem todos os municípios que abrangem a área de estudos apresentaram os dados relacionados ao saneamento. A metodologia POSH classifica como potencial elevado as áreas com cobertura da rede de esgoto inferior a 25%. Mesmo que os dados disponíveis senso IBGE (2010) considerem valores altos para cobertura dos

do esgotamento sanitário adequado, dentro desses valores são considerados os domicílios com esgotamento sanitário do tipo rede geral ou fossa séptica e nesse caso as fossas sépticas funcionam por percolação de efluentes no solo podendo resultar na recarga do aquífero quando construídas em solos permeáveis (Foster et al. 2006). Assim a cobertura do esgotamento sanitário segue sendo avaliada com potencial de contaminação elevado.

Tabela 14. Tabela do acesso ao saneamento nos município que abrangem a área estudada. Elaborado pela autora utilizando dados do IBGE (2021), SNIS (2020) e Municípios e Saneamento (2022).

Municipios e Saneamento	Acesso ao esgotamento sanitário (%) (SNIS, 2020)	Habitantes com esgoto (SNIS 2020)	Tipo	Esgotamento sanitário adequado (%) (IBGE, 2010)	População (IBGE, 2021
Cidreira	6,37	1.056	urbano	45,9	16.897
Palmares do sul	sem informação	sem informação	sem informação	89.4	11.342
Balneário Pinhal	sem informação	sem informação	sem informação	69,5	14.645
Capivari do Sul	sem informação	sem informação	sem informação	77,4	4.793
Osório	2,48	1,146	urbano	71,6	46.815

4.6 Análise do Risco Potencial de Contaminação dos Aquíferos.

A análise do risco potencial de contaminação tem como premissa a sobreposição das possíveis cargas contaminantes (pontuais e difusas) e do estudo de vulnerabilidade do sistema aquífero de uma determinada área. A verificação do risco neste trabalho foi realizada através da metodologia proposta no Quadro 2.

Quadro 2. Classificação do perigo de contaminação em relação a fontes pontuais e difusas. Modificado de Barbosa e Filho (2011).

Risco de contam	Risco de contaminação em relação a		Potencial de Contaminação			
	tuais e difusas	Reduzido	Moderado	Elevado		
ade	Insignificante	Desprezível	Desprezível	Baixo		
ulnerabilidade	Baixo	Desprezível	Baixo	Moderado		
Vulner	Médio	Baixo	Moderado	Alto		
ер ер	Alto	Moderado	Alto	Alto		
Índice	Extremo	Moderado	Alto	Extremo		

Para o aquífero livre na Figura 42. apresenta-se o cruzamento da vulnerabilidade natural deste aquífero com as fontes pontuais de contaminação e seus respectivos potenciais de contaminação. No mapa é possível observar áreas com vulnerabilidade alta e fontes com potencial elevado, moderado e reduzido indicando um risco alto para as fontes classificadas com potencial elevado e moderado e risco moderado para as fontes classificadas com potencial reduzido.

Nas porções com vulnerabilidade média e fontes com potencial de contaminação moderado, o risco é moderado e onde as fontes tem potencial reduzido o risco é baixo.

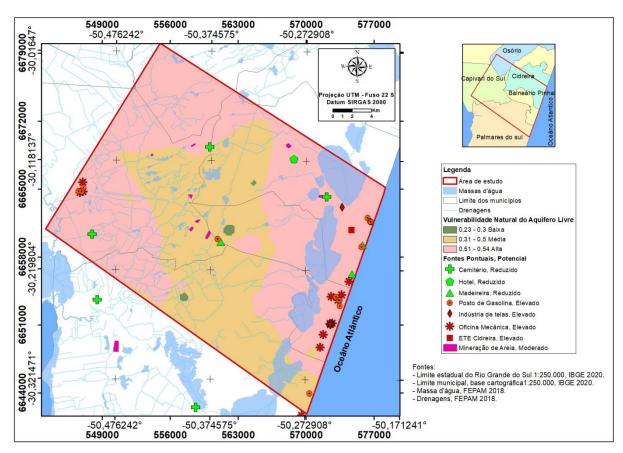


Figura 42. Mapa de vulnerabilidade do aquífero livre com fontes pontuais.

A Figura 43. apresenta o cruzamento da vulnerabilidade natural do aquífero livre com as fontes difusas de contaminação. Então considerando o predomínio das áreas de agricultura e pecuária, formação campestre floresta plantada e massas d'água no uso do solo, avaliou-se que o risco potencial de contaminação do aquífero livre é alto.

Relacionando os dados do mapa de vulnerabilidade do aquífero livre com as fontes pontuais e difusas entende-se que o risco potencial de contaminação para o aquífero livre é moderado a alto.

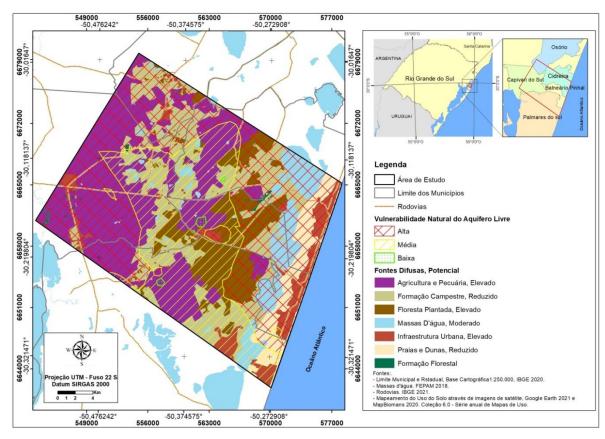


Figura 43. Mapa de vulnerabilidade do aquífero livre com fontes difusas.

Para a unidade aquífera, com comportamento semiconfinado a confinado, a Figura 44 apresenta a sobreposição da vulnerabilidade natural com as fontes pontuais e seu respectivo potencial de contaminação. Observa-se que a vulnerabilidade varia de baixa a média com predomínio de fontes com potencial moderado a elevado, fazendo com que o risco potencial de contaminação desta unidade aquífera varie de baixo a moderado. A Figura 45 apresenta a sobreposição do mapa de vulnerabilidade natural da unidade aquífera, no qual a vulnerabilidade varia de baixa a média, localmente insignificante e alta, e das fontes difusas e seu respectivo potencial de contaminação, que apresentam principalmente potencial reduzido e elevado. O resultado dessa sobreposição é uma área com risco potencial de contaminação que varia de baixo a moderado.

Combinando os resultados obtidos nos mapas de vulnerabilidade da unidade aquífera, com comportamento semiconfinado a confinado, com a distribuição das fontes potenciais e difusas, entende-se que o risco potencial de contaminação deste aquífero varia de baixo a moderado.

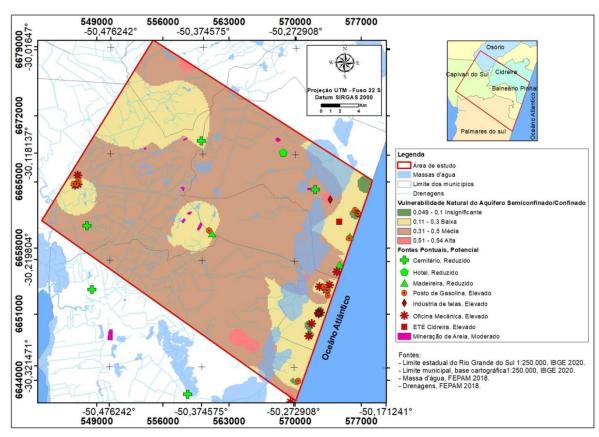


Figura 44. Mapa de vulnerabilidade do aquífero semiconfinado/confinado com relação às fontes pontuais.

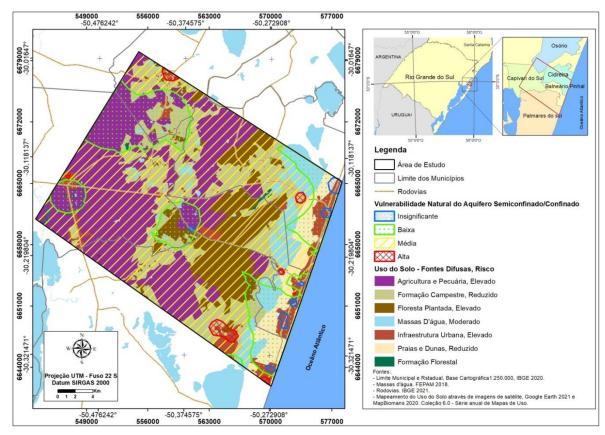


Figura 45. Mapa de vulnerabilidade do aquífero semiconfinado/confinado com fontes difusas.

5 DISCUSSÃO

Aponta-se que na porção central da área estudada a vulnerabilidade natural do aquífero livre é média a baixa, esta porção está relacionada aos sedimentos de planície lagunar identificados na geologia local. Estes depósitos naturalmente apresentam sedimentos finos e por vezes argilosos, entende-se que estes sedimentos podem apresentar menor permeabilidade retardando a percolação de fluido. A porção avaliada com vulnerabilidade natural alta está relacionada a depósitos formados por sedimentos de origem eólica que naturalmente apresenta maior porosidade e permeabilidade. Neste caso percebe-se que a litologia influência diretamente as variações de vulnerabilidade no aquífero livre, indicando que variações no parâmetro O (Ocorrência de estratos de cobertura) influencia diretamente a diferença na distribuição da vulnerabilidade natural do aquífero livre na área.

Percebeu-se que a vulnerabilidade natural insignificante dos aquíferos semiconfinado e confinado está relacionada ao maior grau de confinamento proporcionado pelas camadas de sedimentos finos e argilosos dessa forma os parâmetros G e O se destacam e tanto a geologia quanto o tipo de aquífero contribuem para a menor vulnerabilidade nessa região. A vulnerabilidade baixa, resultante de um cenário que varia entre semiconfinado e confinado com maior presença de sedimentos arenosos com relação aos argilosos, corrobora com a ideia de que nessa porção o grau de confinamento e o tipo de estratos de cobertura são fatores importantes para a variação da vulnerabilidade. Constatou-se que a vulnerabilidade média e alta na unidade aquífera profunda decorre em função do não confinamento dessa região juntamente com o fato da distância do lençol freático ou por vezes o teto do aquífero, quando da presença de alguma camada argilosa menos espessa, se encontrarem na porção mais rasa. Nesse caso o tipo de aquífero e a profundidade que ele se encontra são fatores determinantes para a maior vulnerabilidade.

Demonstrou-se que de forma geral, ocorre o predomínio do risco moderado a alto de contaminação para a unidade aquífera com comportamento livre (acima dos 30m de profundidade), e risco potencial de contaminação de baixo a moderado para

a unidade aquífera com comportamento semiconfinado a confinado.

Diante disso é importante chamar a atenção para alguns pontos, como a ETE de Cidreira, pois segundo o estudo ela encontra-se em uma área de vulnerabilidade natural alta com um risco potencial de contaminação elevado configurando um ponto de alto risco de contaminação dessa porção do aquífero. Sendo indicado neste caso um estudo detalhado dessa região através de uma rede de monitoramento. A falta de saneamento na região resulta em um alto risco de contaminação das unidades aquíferas, semiconfinada/ confinada e livre. Nesse caso o ideal é que cada município amplie a cobertura de dados relacionados ao saneamento e direcionando mais investimentos nesse setor.

6 CONSIDERAÇÕES FINAIS

Através do estudo realizado concluiu-se que, na área de estudo, as principais formas de captação da água subterrânea se dão através de poços tubulares. Além disso, são utilizados principalmente para abastecimento público e doméstico e para atividades como abastecimento industrial e irrigação. Os recursos hídricos subterrâneos da área estão associados ao Sistema Aquífero Costeiro (SAC).

O Sistema Aquífero Costeiro (SAC) está associado aos depósitos sedimentares dos sistemas "laguna-Barreira" II, III e IV. Na área ocorrem duas unidades aquíferas, uma com comportamento livre localizada acima dos 30 metros de profundidade formada majoritariamente por sedimentos arenosos. Na qual os poços apresentam vazões com valor médio de 13,63 m³/h e mediana de 7,23 m³/h, e nível estático médio foi de 2,67 m. E uma unidade aquífera com comportamento semiconfinado a confinado localizado abaixo dos 30m de profundidade e que tem seu início marcado pelo aparecimento e intercalação de camadas argilosas e arenosas, com poços que apresentam vazão média de 80,23 m³/h e nível estático médio de 4,73m.

A análise da vulnerabilidade do SAC para área de estudo apontou que a vulnerabilidade no aquífero livre varia entre as classes, média com 38% da área e relação com sedimentos lagunares e alta correspondendo a 61% da área e relação

com sedimentos eólicos. Para o aquífero semiconfinado/confinado a vulnerabilidade varia de baixa a média, com 24% e 73% da área e relacionados a sedimentos argilosos e siltosos respectivamente. O mapeamento e identificação das fontes pontuais e difusas evidenciaram que as principais fontes estão relacionadas tanto a área urbana quanto rural, apresentando principalmente potencial elevado. Resultando em um risco potencial de contaminação moderado a alto para o aquífero livre e baixo a moderada para a unidade aquífera semiconfinada/confinada.

Aponta-se que essa é uma avaliação difícil de ser desenrolada, pois a área costeira conta com uma geologia única e heterogênea ao passo que por mais criteriosa que seja a avaliação dos dados levantados trabalhar com uma malha irregular de pontos, com conteúdo dos perfis geológico tão variado, perfis de poços com diferentes padrões executados por diferentes profissionais em diferentes épocas, podem acarretar em erros, devido a diferentes interpretações com relação ao material avaliado e descrito. De toda forma reflete-se que apesar de todos os pontos passíveis de erro o trabalho condiz com o esperado para a área, evidenciando classes mais altas de vulnerabilidade nas porções mais arenosas e menor vulnerabilidade nas porções com maior presença de sedimentos argilosos.

Os mapas de vulnerabilidade das águas subterrâneas do SAC propostos nesse trabalho são resultado da quantidade de dados compilados para a área de estudo. Eles podem ser aprimorados à medida que o número de dados avaliados (parâmetros geológicos e hidrogeológicos) aumenta, e com a evolução do conhecimento da hidrogeologia. Esses mapas contribuem para o entendimento da área, sendo uma ferramenta adicional aos gestores funcionando como instrumento no planejamento, instalação e ampliação das redes de monitoramento das águas subterrâneas podendo resultar em um melhor uso e proteção das águas subterrâneas.

REFERÊNCIAS BIBLIOGRÁFICAS

ALLER, L.; BENNET, T.; LEHR, J. H. & PETTY, R. J. DRASTIC: A standardized system for evaluating groundwater pollution potential using hydrogeologic settings. United States Environmental Protection Agency. 1987. EPA/600/2-85/018. 29 p.

ALOIS S. *et al.* 2017. Atlas socioambiental do município de Osório. Caxias do Sul, RS. ed UCS, 248 p.

ASMUS, H.E. & PORTO, R.1972. Classificação das bacias sedimentares brasileiras segundo a tectônica de placas. In: CONGRESSO BRASILEIRO DE GEOLOGIA, 26, Belém, 1972. Anais, Belém: SBG, v.2, p. 67-90.

Avaliação da cobertura dos domicílios com acesso ao saneamento básico. Municípios e Saneamento. Disponível em: https://www.aguaesaneamento.org.br/municipios-e-saneamento/. Acesso em 06/04/2022.

BARBOSA M. C.; FILHO, J. L. A. Avaliação do perigo de contaminação do Sistema Aquífero Guarani em sua área de afloramento do estado de São Paulo decorrente das atividades agrícolas. Águas Subterrâneas, v.25, n.1, p.1-14, 2011.

FEPAM, Fundação Estadual de Proteção Ambiental Henrique Luís Roessler, RS. 2018. Dados de recursos hídricos. Base Cartográfica, 1:25.000,.

Cabrera L. *et al* 2008. Estimativa de risco de contaminação das águas por pesticidas na região sul do estado do RS. Quim. Nova, Vol. 31, No. 8, 1982-1986.

CAMARGO, P. S. S. 2016. AVALIAÇÃO DA VULNERABILIDADE DO SISTEMA AQUÍFERO QUATERNÁRIO COSTEIRO NA REGIÃO DE PALMARES DO SUL (RS). Porto Alegre. Monografia de Conclusão de Curso, curso de Engenharia Ambiental. Universidade Federal do Rio Grande do Sul,

COLLISCHONN, L. 2021 GÊNESE E ESTRATIGRAFIA DO AQUÍFERO "SAL GROSSO", LITORAL NORTE DA PLANÍCIE COSTEIRA DO RIO GRANDE DO SUL. Porto Alegre, p. 94. Dissertação de Mestrado, Programa de Pós-graduação em Geociências, Instituto de Geociências, Universidade Federal do Rio Grande do Sul.

CPRM - SERVIÇO GEOLÓGICO BRASILEIRO. Mapa Geológico do Estado do Rio Grande do Sul Escala 1:750.000. Porto Alegre. 2008.

CPRM - SERVIÇO GEOLÓICO BRASILEIRO. Mapa Hidrogeológico do Estado do Rio Grande do Sul, Escala 1:750.000. Porto Alegre. 2005.

DE FREITAS, M. A. et al 2004. Mapa hidrogeológico do rio grande do sul: Um avanço no conhecimento das águas subterrâneas no estado. Águas Subterrâneas, n. 1.

De, Rafael &Stevaux, Souza &Dillenburg, Sergio &Dillenburg, Relbello. 2011. Propriedades sedimentológicas e mineralógicas das barreiras costeiras do rio grande do sul: uma análise preliminar.

DIAS, J.L; SAD, A.R.E.; FONTANA, R.L. & FEIJÓ, F.J. 1994. Bacia de Pelotas. Boletim de Geociências da Petrobras, v. 8, p. 235- 245.

DILLENBURG, S. R.; ESTEVES, L. S. &TOMAZELLI, L. J. 2004b.A critical evaluation of coastal erosion in Rio Grande do Sul, Southern Brazil. Anais da Academia Brasileira de Ciências, 76(3): 611-623.

Dillenburg, Sergio & Tomazelli, Luiz & Martins, L. & Barboza, Eduardo. (2005). Modificações de Longo Período da Linha de Costa das Barreiras Costeiras do Rio Grande do Sul. Gravel - ISSN 1678-5975. 3. 4-9.

FERON, Guilherme Lahm; REGINATO, Pedro Antônio Roehe. Avaliação da vulnerabilidade de aquíferos localizados na região central de Canoas–RS. Águas Subterrâneas, v. 28, n. 2, 2014.

Funcionamento do Software STRATER. Disponível em: https://www.goldensoftware.com/products/strater. Acesso em 15/02/2021.

FONTANA, R.L. 1989. Investigações geofísicas sobre o Cone do Rio Grande, Bacia de Pelotas, Brasil. In: SIMPÓSIO SULBRASILEIRO DE GEOLOGIA, 4. Porto Alegre, 1989. Atas... 2: XIII. Porto Alegre: SBG, p. 161-170.

FOSTER, S.; HIRATA, R.; GOMES, D.; D'ELIA, M.; PARIS, M. Proteção da qualidade da água subterrânea: um guia para empresas de abastecimento de água, órgãos municipais e agências ambientais. Banco Mundial, 2006.

FOSTER, Stephen et al. Groundwater quality protection: a guide for water service companies, municipal authorities and environment agencies. The World Bank, 2002.

FOSTER, Stephen SD et al. Contaminacion de las águas subterrâneas: Un enfoque ejecutivo de lasituacionen América Latina y el Caribe enrelaciónconelsuministro de água potable. In: Contaminación de las aguas subterráneas: un enfoque ejecutivo de lasituaciónen América Latina y El Caribe em relación com elsuministro de agua potable. CEPIS, 1987.

FOSTER, Stephen SD; HIRATA AOKI, Ricardo. Determinação do risco de contaminação das aguas subterrâneas; um método baseado em dados existentes. In: Boletim. InstitutoGeológico, 1993.

Gamboa L.A.P., Rabinowitz P.D. 1981. The Rio Grande Fracture Zone in the western South Atlantic & its tectonic implications. Earth & Planetary Science Letters, 52:410-418.

GUIGUER, Nilson; KOHNKE, Michael Wolfgang. Métodos para determinação da vulnerabilidade de aquíferos. Águas Subterrâneas, n. 1, 2002.

HAUSMAN, A. Províncias Hidrogeológicas do Estado do Rio Grande do Sul, RS. Estudos Tecnológicos: Acta Geológica Leopoldensia, Série Mapas. Nº 2. P-1-127, 1995.

IBGE -INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA. 2010/2021. Cidreira e Balneário Pinhal e região da área de estudos. Disponível em: https://cidades.ibge.gov.br/brasil/rs/cidreira/panorama. Acesso em: 23 out. 2020.

IBGE -INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA. 2021. Limite municipal, estadual e rodovias. Base Cartográfica, escala1:250.000.

IBGE -INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA. 2018-2019 Taxa de crescimentos da população 2018-2019. Cidreira e Balneário Pinhal. Disponível em: >"> Acesso em: 23 out. 2020.

LISBOA, Nelson Amorettiet al. Síntese da Ocorrência Geológica das Águas Subterrâneas do Rio Grande do Sul. Águas Subterrâneas, n. 1, 2004.

Mente et al, 1982. Mapa hidrogeológico do Brasil. CPRM., escala 1:5000.000.

MapBiomas. Projeto de Mapeamento Anual do Uso e Cobertura da Terra no Brasil Mapeamento do uso do solo, Coleção 6,0, escala 1:250.000, Disponível em: https://mapbiomas.org/. Acesso em 10/04/2022

Municípios do Litoral são os que mais crescem no Rio Grande do Sul. Jornal do comércio Online, 2018. Disponível em: https://www.jornaldocomercio.com/ conteudo/geral/2018/08/646259-municipios-dolitoral-sao-os-que-mais-crescem-no-rio-grande-do-sul.html>. Acesso em: 30 out. 2020.

MACHADO, J. L. F.; DE FREITAS, M.A. Mapa Hidrogeológico do Rio Grande do Sul. Rio de Janeiro: CPRM, 2005, 1 mapa, col. Escala 1:750.000.

O que é ArcGis. Porto Alegre. Disponível em: https://www.esri.com/en-us/what-is-gis/overview>. Acesso em: 02de nov. de 2020.

PAIM, R. A. 2018 AVALIAÇÃO DA QUALIDADE DA ÁGUA SUBTERRÂNEA DE POÇOS PONTEIRA OSÓRIO. Porto Alegre, 79p.Dissertação de Mestrado, Programa de Pós-graduação em Recursos Hídricos e Saneamento Ambiental, Instituto de Pesquisas Hidráulicas, Universidade Federal do Rio Grande do Sul.

REGINATO, P. A. R.; MICHALSKI, E. Z.; PAIM, R. A.Água Subterrânea na Região de Osório. In: AloisSchäfer; Rosane Lanzer; Luciana Scur. (Org.). Atlas

Socioambiental do Município de Osório. 1ed. Caxias do Sul: EDUCS, 2017, v., p. 207-.

ROSA, M.L.C.C. 2012. Geomorfologia, estratigrafia de sequências e potencial de preservação dos sistemas laguna-barreira do Quaternário costeiro do Rio Grande do Sul. Porto Alegre, 232 p., Tese de doutorado, Instituto de Geociências. Universidade Federal do Rio Grande do Sul.

Rosa, Maria & Barboza, Eduardo & Abreu, V. & Tomazelli, Luiz & Dillenburg, Sergio. (2017). High-Frequency Sequences in the Quaternary of Pelotas Basin (coastal plain): A record of degradational stacking as a function of longer-Term base-level fall. Brazilian Journal of Geology. 47. 183-207. 10.1590/2317-4889201720160138.

Soares, A. D. 2016. Caracterização hidrogeológica e hidroquímica das águas subterrâneas do município de Osório RS. Porto Alegre, 115p, Trabalho de Conclusão de Curso, Instituto de Geociências. Universidade Federal do Rio Grande do Sul.

TROIAN, G. C. et al. Modelo conceitual hidroestratigráfico do sistema aquífero costeiro no litoral norte do Estado do Rio Grande do Sul. Águas Subterrâneas, v. 34, n. 3, p. 264–274, 2020.

Urien C.M. & Martins L.R.S. 1978. Structural & physiographic map of eastern South America & western South Africa. Porto Alegre, Centro de Estudos de Geologia Costeira e Oceânica (CECO/UFRGS), Série Mapas, 03.

VILLWOCK, J.A.; TOMAZELLI, L.J.; LOSS, E.L.; DEHNHARDT, E.A.; HORN F^o, N.O.; BACHI, F.A. & DENHARDT, B.A. 1986. Geology of the Rio Grande doSul Coastal Province. In: RABASSA, J. (ed.). Quaternary of South America and Antarctic Peninsula. A. A. Balkema, Rotterdam: v. 4, p. 79-97.

TOMAZELLI, L. J.; VILLWOCK, J. A. 2000. O Cenozóico no Rio Grande do Sul: geologia da planície costeira. Geologia do Rio Grande do Sul, 2, 375- 406.

ANEXOS

- Dados hidrogeológicos;Dados hidroquímicosDados do SIOUT

- Parâmetros GOD

ID	Município	Natureza	Código	FONTE	Proprietário	Coordenadas E
1	Cidreira	Poço tubular	COR-CID-01	Siagas	Corsan	576351
2	Cidreira	Poço ponteira	PPS65CID	Siagas	Fortaleza	566213
3	Cidreira	Poço ponteira	PPS66CID	Siagas	Fortaleza	566210
1	Cidreira	Poço ponteira	PPS67CID	Siagas	Fortaleza	564466
5	Cidreira	Poço ponteira	PP54CID	Siagas/Reginato	ledo Teixeira Fraga	573953
3	Cidreira/Salinas	Poço ponteira	COR-CID-SLS-01 NG.2464	Siagas	Corsan	450000
7	Cidreira	Poço tubular	COR-CID-SLS-01 NG. 2873	Siagas	Corsan	577367
3	Cidreira	Poço ponteira	PP56 CID	Siagas/Reginato	Geraldo Machado	573545
)	Cidreira	Poço ponteira	PP57 CID	Siagas/Reginato	Geraldo Machado	573543
10	Cidreira	Poço ponteira	PP58 CID	Siagas/Reginato	Geraldo Machado	573541
11	Cidreira	Poço ponteira	PP55 CID	Siagas/Reginato	ledo Teixeira Fraga	573958
12	Cidreira	Poço ponteira	PP59 CID	Siagas/Reginato	Jovina de Morais	571157
13	Cidreira	Poço ponteira	PP60 CID	Siagas/Reginato	Gilberto Ely	571323
14	Cidreira	Poço ponteira	PP61 CID	Siagas/Reginato	Célio Lima	571676
15	Cidreira	Poço ponteira	PP62 CID	Siagas/Reginato	Sistema de Abastecimento	571653
16	Cidreira	Poço ponteira	PP63 CID	Siagas/Reginato	Fortaleza	569468
17	Cidreira	Poço ponteira	PP64 CID	Siagas/Reginato	Fortaleza	566168
8	Cidreira	Poço ponteira	PP68 CID	Siagas/Reginato	Fortaleza	564621
9	Cidreira	Poço ponteira	PP69 CID	Siagas/Reginato	Fortaleza - Parque de Rodeio	567209
20	Cidreira	Poço ponteira	PP70 CID	Siagas/Reginato	Fortaleza - Parque de Rodeio	567136
21	Cidreira	Poço tubular	COR CID 01 2518	Reginato	Corsan	576353
22	Cidreira	Poço tubular	POÇO 1798	Reginato	Corsan	573619
23	Cidreira	Poço ponteira	PP72 CID	Siagas/Reginato	Fortaleza	566975
24	Cidreira	Poço ponteira	PP73 CID	Siagas/Reginato	Fortaleza	569290
25	Balneário Pinhal	Poço tubular	G.2196 PIH.1A	Siagas	Corsan	573580
26	Balneário Pinhal	Poço tubular	COR-BPI-TUV-01 G.2627 IS192	Siagas	Corsan	563863
27	Balneário Pinhal	Poço tubular	COR-PIH-02-A IS193	Siagas	Corsan	573053
28	Balneário Pinhal	Poço tubular	COR-BPI-03 G. 2730 IS194 G PIH 04	Siagas	Corsan	573736
29	Balneário Pinhal	Poço tubular	COR-BPI-01 G.2158 IS195	Siagas	Corsan	572644
30	Balneário Pinhal	Poço tubular	COR-BPI-MAG-01 G.2159 IS196	Siagas	Corsan	571458
31	Balneário Pinhal	Poço tubular	COR-BPI-MAG-02 G 3121 / IS197	Siagas	Corsan	570992
32	Balneário Pinhal	Poço tubular	COR-BPI-MAG-03 3692	Reginato	Corsan	571474
33	Balneário Pinhal	Poço tubular	COR-PIH-03 IS199	Siagas	Corsan	572707
34	Balneário Pinhal	Poço tubular	COR-BPI-04-A 2732	Siagas	Corsan	572711
5	Balneário Pinhal	Poço tubular	COR-BPI-06 G.3481	Siagas	Corsan	573293
6	Balneário Pinhal	Poço tubular	001206-05.00/14-3 2488-HIDROGEO	Siagas	HIDROGEO	561074
37	Balneário Pinhal	Poço ponteira	PP8PIN	Siagas/Reginato	Gilmar Bandas - Parque de Rodeios	564076
88	Balneário Pinhal	Poço ponteira	PP9PIN	Siagas/Reginato	Norberto Silveira Sobrinho	562870
39	Balneário Pinhal	Poço ponteira	PP7PIN	Siagas/Reginato	Gilmar Bandas - Parque de Rodeios	564078
0	Balneário Pinhal	Poço ponteira	PP4PIN	Siagas/Reginato	Marilange Pereira Guimaraes	571454
1	Balneário Pinhal	Poço tubular	COR-TUV-01 G.4237	Siagas	Corsan	561791

ID		Altitude	Uso da Água	Situação	Poço Produtivo ou Seco	Perfil Geológico
1	6661635	8	Sem uso	Fechado		sim
2	6664881	17	Irrigação	Parado	não	não
3	6664880	17	Irrigação	Parado	não	não
4	6666017	13	Irrigação	Parado	não	não
5	6663159	1	Comercial	Bombeando	produtivo	não
6	6700000	1	Sem uso	Fechado	não deu agua	sim
7	6664709	3	Sem uso	fechado	seco	sim
8	6663320	1	Abastecimento doméstico	Bombeando	produtivo	não
9	6663316	1	Abastecimento doméstico	Abandonado	não	não
10	6663316	1	Abastecimento doméstico	Abandonado	não	não
11	6663097	1	Comercial	Ativo	produtivo	não
12	6662138	6	Abastecimento doméstico	Bombeando	produtivo	não
13	6662243	4	Abastecimento doméstico	Bombeando	produtivo	não
14	6662904	5	Abastecimento doméstico	Bombeando	produtivo	não
15	6662297	6	Abastecimento urbano	Bombeando	produtivo	não
16	6664193	11	Abastecimento múltiplo	Bombeando	produtivo	não
17	6664848	18	Abastecimento doméstico	Bombeando	produtivo	não
18	6665717	14	Abastecimento doméstico	Bombeando	produtivo	não
19	6664745	26	Abastecimento doméstico	Bombeando	produtivo	não
20	6664735	29	Abastecimento doméstico	Parado	não	não
21	6661648	3	Abastecimento doméstico	FECHADO	Alto Cloreto	sim
22	6654432	4	Abastecimento doméstico	bombeando	Produtivo	sim
23	6666445		Abastecimento doméstico	Bombeando	produtivo	não
24	6667118		Abastecimento doméstico	Bombeando	produtivo	não
25	6653550	5	Abastecimento urbano	Equipado		sim
26	6659383	22	Abastecimento doméstico	Bombeando	Produtivo	sim
27	6653678	14	Abastecimento urbano	Equipado		sim
28	6655077	14	Abastecimento urbano	Bombeando		sim
29	6651486	7	Abastecimento urbano	Bombeando		sim
30	6648687	9	Abastecimento doméstico	Bombeando		sim
31	6648365	10	Sem uso	Não instalado		sim
32	6649802	6	Sem uso	Tamponado	sem motivo	sim
33	6652562	8	Abastecimento urbano	Equipado		sim
34	6652489	4	Abastecimento urbano			sim
35	6653517	8	Monitoramento	Poço RIMAS equipado c medidor automático de nível	sem uso	sim
36	6659764	5	Abastecimento industrial	Bombeando		sim
37	6659479	20	Abastecimento doméstico	Abandonado	não	não
38	6659559	20	Abastecimento doméstico	Bombeando		não
39	6659481	20	Abastecimento doméstico	Bombeando		não
40	6648201	7	Abastecimento doméstico	Bombeando		não
41	6659406		Sem uso	Parado		

ID	Tipo de aquífero	Aquífero Captado	Litologia acima do Aquífero
	Depositos litoraneos		intercalação de areia silte e argila
2	Depositos litoraneos	livre	areia fina
3	Depositos litoraneos	livre	areia fina
4	Depositos litoraneos	livre	areia fina
5	Depositos litoraneos	livre	areia fina
6	Depositos litoraneos		intercalação de areia fina/silte/argila/areia med
7	Depositos litoraneos	SAQC1	intercalaçãod de areia fina/argila/silte-arenoargiloso
8	Depositos litoraneos	livre	areia fina
	· ·	livre	areia fina
10	Depositos litoraneos	livre	areia fina
	Depositos litoraneos	livre	areia fina
	Depositos litoraneos	livre	areia fina
		livre	areia fina
	Depositos litoraneos	livre	areia fina
	Depositos litoraneos	livre	areia fina
	•	livre	areia fina
	Depositos litoraneos		areia fina
	•	livre	areia fina
		livre	areia fina
	· ·	livre	areia fina
	Depositos litoraneos	SAQC1	intercalação arenito/siltito/arenito argiloso
	costeiro		intercalação Arenoso/siltoso/argiloso
	•	livre	areia fina
	Depositos litoraneos	livre	areia fina
	Quaternario		intercalação de areia e argila
	Depositos litoraneos		areia fina/areia arg./areia média
	Depositos litoraneos		
	SAQC1	SAQC1	intercalação de areia fina e areia argilosa
	SAQC1	SAQC1	areia /argila/ areia
	Depositos litoraneos		intercalação de areia silte e argila
	Depositos litoraneos		areia fina a média
	SAQC1		argila e silte todo o furo
	Depositos litoraneos		intercalação de areia fina com areia argilosa
	SAQC1	SAQC1	areia, arenito,argilito,areia
	SAQC1		intercalação de areia e argila
	Depositos litoraneos		intercalaçõa de areia siltosa, argilosa, argila e areia fina
	Depositos litoraneos		não
	Depositos litoraneos		areia fina
	Depositos litoraneos		areia fina
	Depositos litoraneos		areia fina
41	Depositos litoraneos		

ID	Profundidade do Poço	Diâmetro do Poço	Diâmetro do Poço	Entrada de Água	Filtros	NE (m)	Vazão (m³/h)
1	126	457.2	18				
2	8.4	70	3			1.3	
3	8.27	70	3			1.32	
4	19	70	3				
5	15	40	2				
6	152	457.2	18				
7	80	457.2	18				
8	48	40	2				
9	9.1	40	2			1.48	
10	4.1	40	2			1.36	
11	15	40	2				
12	10	40	2				
13	7.5	40	2				
14	15	40	2				
15	14	70	3				
16	18	40	2				
17	12	40	2				
18	12	40	2				
19	18	40	2				
20	14.27	40	2			1.55	
21	126	457.2	18				
22	105	203.2	8	80m SED. ARENOSO QTZ/FELDS	75-95m	9.83	169.6
23	12	40	2				
24	15	40	2				
25	95	52	2		89-91 m	1.96	
26	90	152.4	6		76-88m	9.7	80
27	95	203.2	8		76-91m	3.64	133.8
28	120	203.2	8		72-89m	7.42	60
29	113	203.2	8	46m e 99m	88-108m	2.45	150
30	107	203.2	8		82,5-98,5m	3.64	128.571
31	119	203.2	8		17-21 e 85-97m	7.33	70
	120	não informado		NI			
33	120	203.2	8		72-88m	5.36	100
34	102	203.2	8	46	75-96m	4.98	100
35	105	254	10		10m e 84m	7	150
36	72	150	6		56-68m	6.9	31.6
37	4.4	40	2	livre	não	1.55	
38	18	40	2		não		
39	15	40	2	livre	não		
	28	40	2	livre	não		
41	96			30m		5.98	

ID	Capacidade Específica (m³/h/m) ou VAZÃO ESPEC.
1	
3	
2 3 4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	+
15	
16	
17	
18	
19	
20	
21	
22	12.37
23	1
24	
25	0.15
26	7.76
27	6.72
28	4.77
29	10.52
30	8.76
31	9.12
32	
33	6.83
34	11.73
35	11.54
36	3.35
37	†
38	
39	
40	+
41	49.5
<u> </u>	· · · · ·

ID	Município	Natureza	Código	FONTE	Proprietário	Coordenadas E
42	Balneário Pinhal	Poço ponteira	PP10PIN	Siagas/Reginato	Norberto Silveira Sobrinho	562876
43	Balneário Pinhal	Poço ponteira	PP11PIN	Siagas/Reginato	Carlos Alberto Silva	562120
44	Balneário Pinhal	Poço ponteira	PP12PIN	Siagas/Reginato	Carlos Alberto Silva	562240
45	Balneário Pinhal	Poço ponteira	PP13PIN	Siagas/Reginato	Nelson Rodrigo Pereira	561482
46	Balneário Pinhal	Poço ponteira	PP15PIN	Siagas/Reginato	José da Rosa Nunes	571165
47	Balneário Pinhal	Poço ponteira	PP3PIN	Siagas/Reginato	Mercedes	571973
48	Balneário Pinhal	Poço ponteira	PP25PIN	Siagas/Reginato	Adão Vieira Valério	573535
49	Balneário Pinhal	Poço ponteira	PP24PIN	Siagas/Reginato	Almiro Francisco Vaz	573653
50	Balneário Pinhal	Poço ponteira	PP23PIN	Siagas/Reginato	Antonio	573667
51	Balneário Pinhal	Poço ponteira	PP21PIN	Siagas/Reginato	Nestor Lopes da Silva	573393
52	Balneário Pinhal	Poço ponteira	PP20PIN	Siagas/Reginato	Orlene	571919
53	Balneário Pinhal	Poço ponteira	PP1PIN	Siagas/Reginato	João B. Maia Carlos	571774
54	Balneário Pinhal	Poço ponteira	PP18PIN	Siagas/Reginato	Ituino Kreme	571112
55	Balneário Pinhal	Poço ponteira	PP2PIN	Siagas/Reginato	Roberto B. de Oliveira (Betinho)	571986
56	Balneário Pinhal	Poço ponteira	PP14PIN	Siagas/Reginato	Vilson	571350
57	Balneário Pinhal	Poço ponteira	PP17PIN	Siagas/Reginato	Ubiraçu Silveira de Souza	571345
58	Balneário Pinhal	Poço ponteira	PP16PIN	Siagas/Reginato	Jair de Souza	571176
59	Balneário Pinhal	Poço ponteira	PP19PIN	Siagas/Reginato	Orlene	571937
60	Balneário Pinhal	Poço ponteira	PP22PIN	Siagas/Reginato	Margarete Padilha	573356
61	Balneário Pinhal	Poço ponteira	PP5PIN	Siagas/Reginato	Fernando	570961
62	Balneário Pinhal	Poço ponteira	PP6PIN	Siagas/Reginato	Fernando	570969
63	Balneário Pinhal	piezometro	COR-BPI-01A 2196	Reginato/ SURLIT	Corsan	572660
64	Balneário Pinhal	Poço ponteira	COR-BPI-05-3145	Siagas/ Reginato	Corsan	573619
65	Balneário Pinhal	Poço ponteira	Trado	Reginato		571276
66	Balneário Pinhal	Poço ponteira	PP26 PIN	Reginato	Arrildo Elido Pharali	571985
67	Balneário Pinhal	Poço ponteira	PP27 PIN	Reginato	Carlos Barnosa	571931
68	Balneário Pinhal	Poço ponteira	PP28 PIN	Reginato	Jorge Luis da Silva Lemos	571990
69	Balneário Pinhal	Poço ponteira	PP29 PIN	Reginato	Douglas Gomes	571285
70	Balneário Pinhal	Poço ponteira	PP30 PIN	Reginato	As. Tunel Verde de Apicultores	561293
71	Palmares do Sul	poço tubular	IS221	SIAGAS	DELMAR HOFELDER	556320
72	Palmares do Sul	Poço tubular	4300022255	SIAGAS	ATLANTICA PARQUE EOLICO S/A	564103
73	Palmares do Sul	Poço tubular	4300022254	SIAGAS	ATLANTICA PARQUE EOLICO S/A	565625
74	Palmares do Sul	Poço tubular	COR-PDS-QUN-05 G.2528 IS235	SIAGAS	Corsan	569766
75	Palmares do Sul	Poço tubular	COR-PDS-QUN-04 G.2155 IS198	SIAGAS	Corsan	570245
76	Palmares do Sul	Poço tubular	IS334 COR-PDS-QUI-01 G. 2009	SIAGAS	Corsan	569512
77	Palmares do Sul	Poço ponteira	PPS26 PAL	Reginato	Rafael José da Silveira	554081
78	Palmares do Sul	Poço ponteira	PPS27 PAL	Reginato	Rafael José da Silveira	554082
79	Palmares do Sul	Poço ponteira	PPS28 PAL	Reginato	Rafael José da Silveira	554010
80	Palmares do Sul	Poço ponteira	PP29 PAL	Reginato	Rafael José da Silveira	554064
81	Palmares do Sul	Poço ponteira	PP38 PAL	Reginato	Cooperativa Granja Vargas	561229
82	Palmares do Sul	Poço ponteira	PP48 PAL	Reginato	Aloisio Perdomini	562655

ID	Coordenadas N	Altitude	Uso da Água	Situação	Poço Produtivo ou Seco	Perfil Geológico
42	6659554	não	Abastecimento doméstico	Bombeando		não
43	6660506	não	Abastecimento doméstico	Abandonado		não
44	6660639	não	Abastecimento doméstico	Bombeando		não
45	6659456	não	Abastecimento doméstico	Bombeando		não
46	6655248		Abastecimento doméstico	Bombeando		não
47	6649818	6	Abastecimento doméstico	Bombeando		não
48	6654429	9	Abastecimento doméstico	Bombeando		não
49	6654565	7	Abastecimento doméstico	Bombeando		não
50	6654591	6	Abastecimento doméstico	Bombeando		não
51	6654484	11	Abastecimento doméstico	Bombeando		não
52	6655140	5	Abastecimento múltiplo	Bombeando		não
53	6649884	7	Abastecimento doméstico	Bombeando		não
54	6655194	6	Irrigação	Bombeando		não
55	6649763	6	Abastecimento doméstico	Bombeando		não
56	6655115	7	Irrigação	Bombeando		não
57	6655168	7	Abastecimento doméstico	Abandonado		não
58	6655215		Abastecimento doméstico	Bombeando		não
59	6655212		Abastecimento doméstico	Bombeando		não
60	6654484		Abastecimento doméstico	Bombeando		não
61	6648982		Abastecimento doméstico	Bombeando		não
62	6648984		Abastecimento múltiplo	Bombeando		não
63	6651483	1	Monitoramento	tamponado		sim
64	6654432	4	Monitoramento	sem informaçãp		sim
65	6654857		Sem uso	sem informação		não
66	6649384		Irrigação			não
67	6649418		Abastecimento doméstico	sem informação		não
68	6649657		Abastecimento doméstico			não
69	6648642		Irrigação			não
70	6659591		Abastecimento múltiplo			não
71	6657096	12	Sem uso	abandonado		sim
72	6648469	16	Abastecimento múltiplo			sim
73	6647518	15	Abastecimento urbano			sim
74	6643905	2	Abastecimento urbano	Não instalado		sim
75	6643665	8	Abastecimento urbano	equipado		sim
76	6642448	8	Abastecimento urbano	bombeando		sim
77	6654839		Abastecimento doméstico	Ativo		não
78	6654864		Irrigação	Ativo		não
79	6654830		Irrigação	Parado		não
80	6654833		Abastecimento doméstico	Ativo		não
81	6641974		Abastecimento doméstico	Ativo		não
82	6639450		Abastecimento doméstico	Ativo		não

ID	Tipo de aquífero	Aguífero Captado	Litologia acima do Aquífero
42	Depositos litoraneos	<u> </u>	areia fina
43	Depositos litoraneos		areia fina
44	Depositos litoraneos		areia fina
45	Depositos litoraneos		areia fina
46	Depositos litoraneos		areia fina
47	Depositos litoraneos		areia fina
48	Depositos litoraneos		areia fina
49	Depositos litoraneos		areia fina
	Depositos litoraneos		areia fina
51	Depositos litoraneos		areia fina
52	Depositos litoraneos		areia fina
53	Depositos litoraneos		areia argilosa
	Depositos litoraneos		areia fina
55	Depositos litoraneos		areia fina
	Depositos litoraneos		areia fina
	Depositos litoraneos		areia fina
	Depositos litoraneos		areia fina
59	Depositos litoraneos		areia fina
	Depositos litoraneos		areia fina
	Depositos litoraneos		areia fina
	Depositos litoraneos		areia fina
	SAQC1	SAQC1	intercalação de areia e argila
	Depositos litoraneos	SAQC1	argila/silte/areai
65			
66			
67			
68			
69			
70			
	Depositos litoraneos	livre	areia média
	Depositos fluvio-lagunares	SAQC1	areia fina muito fina/areia siltosa/argila siltosa
	poroso Depositos fluvio-lagunares	SAQC1	areia fina média muito fina/siltito
	poroso Depositos fluvio-lagunares	SAQC1	intercalação de areia fina a média com argila
	poroso Depositos fluvio-lagunares	SAQC1	areia fina a mfina/argila/areia fina med grossa/silte
	poroso Depositos fluvio-lagunares	SAQC1	areia M F MF/argilaarenosa/silte/areia MF
77			
78			
79			
80			
81			
82			

ID	Profundidade do Poço	Diâmetro do Poço	Diâmetro do Poço	Entrada de Água	Filtros	NE (m)	Vazão (m³/h)
42	14	40	2	livre	não		
43	4.48	40	2	livre	não	1.01	
44	16	40	2	livre	não		
45	3.5	40	2	livre	não		
46	13	40	2	livre	não		
47	30	40	2	livre	não		
48	33	40	2	livre	não		
49	27	40	2	livre	não		
50	22	40	2	livre	não		
51	6	40	2	livre	não		
52	27	40	2	livre	não		
53	22	40	2	livre	não		
54	8	40	2	livre	não		
55	30	40	2	livre	não		
56	18	40	2	livre	não		
57	8.4	40	2	livre	não	1.96	
58	11	40	2	livre	não		
59	22	40	2	livre	não		
60	6	40	2	livre	não		
61	26	40	2	livre	não		
62	6	40	2	livre	não		
63	95	40	2	47m Argila	90m areia		
64	105	203.2	8			8.83	100
65						1.5	
66	30						
67	25						
68	18						
69	23						
70	30						
71	26	203.2	8			8	3
72	42	152.4	6	livre	não	3	4.31
73	42	152.4		livre	12-18m	2.9	2.56
74	100	203.2	8	82-92m	81-91m	4.02	80
75	107	203.2	8	84,39-100,39m		4.51	128.567
76	40	152.4	6	26-36m	26-36m	2.47	7
77	22	70	3				
78	26	70	3				
79	26	70	3				
80	8	40	2				
81	9	40	2				
82		40	2				

42	ID	Capacidade Específica (m³/h/m) ou VAZÃO ESPEC.
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 13.28 65 66 67 68 69 70 71 72 73 0.683 74 1.38 75 7.187 76 0.347 77 78 79 80 81		
44		
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 13.28 65 66 67 68 69 70 71 72 73 0.683 74 1.38 75 7.187 76 0.347 77 78 79 80 81		
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 13.28 65 66 67 68 69 70 71 72 73 0.683 74 1.38 75 7.187 76 0.347 77 78 79 80 81	45	
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 13.28 65 66 67 68 69 70 71 72 73 0.683 74 1.38 75 7.187 76 0.347 77 78 79 80 81		
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 13.28 65 66 67 68 69 70 71 72 73 0.683 74 1.38 75 7.187 76 0.347 77 78 79 80 81		
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 13.28 65 66 67 68 69 70 71 72 73 0.683 74 1.38 75 7.187 76 0.347 77 78 79 80 81		
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 13.28 65 66 67 68 69 70 71 72 73 0.683 74 1.38 75 7.187 76 0.347 77 78 79 80 81	49	
51 52 53 54 55 56 57 58 59 60 61 62 63 64 13.28 65 66 67 68 69 70 71 72 73 0.683 74 1.38 75 7.187 76 0.347 77 78 79 80 81		
52 53 54 55 56 57 58 59 60 61 62 63 64 13.28 65 66 67 68 69 70 71 72 73 0.683 74 1.38 75 7.187 76 0.347 77 78 79 80 81		
53 54 55 56 57 58 59 60 61 62 63 64 13.28 65 66 67 68 69 70 71 72 73 0.683 74 1.38 75 7.187 76 0.347 77 78 79 80 81	52	
54 55 56 57 58 59 60 61 62 63 64 13.28 65 66 67 68 69 70 71 72 73 0.683 74 1.38 75 7.187 76 0.347 77 78 79 80 81	53	
55 56 57 58 59 60 61 62 63 64 13.28 65 66 67 68 69 70 71 72 73 0.683 74 1.38 75 7.187 76 0.347 77 78 79 80 81	54	
56 57 58 59 60 61 62 63 64 13.28 65 66 67 68 69 70 71 72 73 0.683 74 1.38 75 7.187 76 0.347 77 78 79 80 81	55	
57 58 59 60 61 62 63 64 13.28 65 66 67 68 69 70 71 72 73 0.683 74 1.38 75 7.187 76 0.347 77 78 79 80 81	56	
59 60 61 62 63 64 13.28 65 66 67 68 69 70 71 72 73 0.683 74 1.38 75 7.187 76 0.347 77 78 79 80 81	57	
60 61 62 63 64 13.28 65 66 67 68 69 70 71 72 73 0.683 74 1.38 75 7.187 76 0.347 77 78 79 80 81		
61 62 63 64 13.28 65 66 67 68 69 70 71 72 73 0.683 74 1.38 75 7.187 76 0.347 77 78 79	59	
62 63 64 13.28 65 66 67 68 69 70 71 72 73 0.683 74 1.38 75 7.187 76 0.347 77 78 79	60	
63		
64 13.28 65 66 67 68 69 70 71 72 73 0.683 74 1.38 75 7.187 76 0.347 77 78 79		
65 66 67 68 69 70 71 72 73 0.683 74 1.38 75 7.187 76 0.347 77 78 79 80 81		
66		13.28
67 68 69 70 71 72 73 0.683 74 1.38 75 7.187 76 0.347 77 78 79 80 81		
68 69 70 71 72 73 0.683 74 1.38 75 7.187 76 0.347 77 78 79 80 81		
69 70 71 72 73 0.683 74 1.38 75 7.187 76 0.347 77 78 79 80 81		
70 71 72 73 0.683 74 1.38 75 7.187 76 0.347 77 78 79 80 81		
71		
72 73		
73		
74 1.38 75 7.187 76 0.347 77 78 79 80 81		
75 7.187 76 0.347 77 78 79 80 81		
76 0.347 77 78 79 80 81		
77 78 79 80 81		
78 79 80 81		0.347
79 80 81		
80 81		
81		
82		
	82	

ID	Município	Natureza	Código	FONTE	Proprietário	Coordenadas E
83	Palmares do Sul	Poço ponteira	PP52 PAL	Reginato	Camping Dunas Altas	565426
84	Palmares do Sul	Poço ponteira	PPS91 PAL	Reginato	Donato Lima de Oliveira	557205
85	Palmares do Sul	Poço ponteira	PPS97 PAL	Reginato	Ivo de Matos Velho	554198
86	Palmares do Sul	Poço ponteira	PPS141 PAL	Reginato	Rafael José da Silveira	554126
87	Palmares do Sul	Poço ponteira	PPS 142 PAL	Reginato	Rafael José da Silveira	554118
88	Palmares do Sul	Poço ponteira	PPS143 PAL	Reginato	Rafael José da Silveira	554073
89	Palmares do Sul	Poço ponteira	PPS144 APL	Reginato	Renato Gomes da Conceição	553043
90	Palmares do Sul	Poço ponteira	PPS153 PAL	Reginato	Sebastião Antônio da Rosa Silveira	554088
91	Palmares do Sul	Poço ponteira	PPS156 PAL	Reginato	Terezinha Canabarro	557409
92	Palmares do Sul	Poço tubular	COR PDS QUN04	Reginato	Corsan	569266
93	Palmares do Sul	Poço tubular	COR PDS QUN05	Reginato	Corsan	564858
94	Palmares do Sul	Poço tubular	COR SIAGAS 5	Reginato	Corsan	569590
95	Capivari do Sul	Poço tubular	IS167	SIAGAS	LORIVALDO M DE OLIVEIRA	550948
96	Capivari do Sul	Poço tubular	COR-CPV-02 G.2719 IS219	SIAGAS	Corsan	546905
97	Capivari do Sul	Poço tubular	COR-CPV-01 G.926 IS218	SIAGAS	Corsan	546922
98	Osório	Poço ponteira	PP01	SIAGAS	Lauro Ribeiro	557540
99	Osório	Poço ponteira	D	SIAGAS	DAVELSINHO JOSE DOS SANTOS	558076
100	Osório	Poço ponteira	В	SIAGAS	DAVELSINHO JOSE DOS SANTOS	558103
101	Osório	Poço ponteira	PP03	SIAGAS	João Antônio Farias	559375
102	Osório	Poço ponteira	22SPPP	Reginato	Sub Prefeitura do Passinhos	558526
103	Osório	Poço ponteira	23EEEFMLP	Reginato	EEEF Mirko Lauffer	558689
104	Osório	Poço ponteira	Α	Reginato	Vera Maria Lopez Da Silva	559095
105	Osório	Poço ponteira	В	Reginato	Develsino José Dos Santos	558087
106	Osório	Poço ponteira	С	Reginato	Develsino José Dos Santos	558084
107	Osório	Poço ponteira	D	Reginato	Develsino José Dos Santos	558065
108	Osório	Poço ponteira	PP01	Reginato	Lauro Ribeiro	557540
109	Osório	Poço ponteira	PP02	Reginato	João Antonioo Farias	560484
110	Osório	Poço ponteira	PP03	Reginato	João Antonio Farias - Sitio	559375

ID	Coordenadas N	Altitude	Uso da Água	Situação	Poço Produtivo ou Seco	Perfil Geológico
83	6638030		Abastecimento doméstico	Ativo		não
84	6654884		Irrigação	Ativo		não
85	6654825		Irrigação	Ativo		não
86	6654884		Irrigação	Ativo		não
87	6654909		Irrigação	Ativo		não
88	6654900		Irrigação	Ativo		não
89	6653627		Irrigação	Ativo		não
90	6654798		Irrigação	Ativo		não
91	6653922		Irrigação	Ativo		não
92	6642551		Abastecimento público	Ativo		não
93	6644036		Abastecimento público	Ativo (Reserva Técnica)		não
94	6642503		Sem uso	Abandonado		não
95	6672925	16	Sem uso	abandonado		sim
96	6665690	11	Abastecimento urbano	bombeando		sim
97	6665113	12	Abastecimento urbano	combeando		sim
98	6673799		Abastecimento doméstico	bombeando		não
99	6674525	18	Abastecimento doméstico	bombeando		sim
100	6674556	11	Abastecimento doméstico	bombeando		sim
	6676760		Abastecimento doméstico	bombeando		sim
102	6677640		Abastecimento doméstico	Bombeando		não
	6677500		Abastecimento público	Bombeando		não
	6677843		Abastecimento doméstico	Bombeando		não
105	6674545		Abastecimento doméstico	Bombeando		não
106	6674549		Abastecimento doméstico	Bombeando		não
	6674533		Abastecimento doméstico	Bombeando		não
108	6673799		Abastecimento doméstico	Bombeando		não
	6678950		Abastecimento doméstico	Bombeando		não
110	6676760		Abastecimento doméstico	Bombeando		não

ID	Tipo de aquífero	Aquífero Captado	Litologia acima do Aquífero
83			
84			
85			
86			
87			
88			
89			
90			
91			
92			Areia Fina a Méida e Areia Grossa com conchas
93			Areia Fina a Média
94			Areia média a fina
	poroso Depositos fluvio-lagunares	SAQC1	solo arenoso/ intercalação de areia argilosa/argila arenosa/areia média
	poroso Depositos fluvio-lagunares	SAQC1	areia média
	poroso Depositos fluvio-lagunares	SAQC1	intercalação de argila arenosa siltosa/areia média/areia fina/argila siltosa/argila/areia siltosa
	poroso Depositos fluvio-lagunares	SAQC1	areia fina
	poroso Depositos fluvio-lagunares	SAQC1	areia fina
	poroso Depositos fluvio-lagunares	SAQC1	areia fina
101	poroso Depositos fluvio-lagunares	SAQC1	areia fina
102		costeiro	
103		costeiro	
104		costeiro	
105		costeiro	
106		costeiro	
107		costeiro	
108		costeiro	
109		costeiro	
110		costeiro	

ID	Profundidade do Poço		Diâmetro do Poço	Entrada de Água	Filtros	NE (m)	Vazão (m³/h)
83	12	40	2	_			
84	10	70	3				7.25
85	12	70	3				7.3
86	22	70	3				16.8
87	22	70	3				16.8
88	22	70	3				16.8
89	12	70	3				
90	8	70	3				7.2
91	8	70	3				
92	107	203.2	8		85-101	4.51	120
93	100	203.2	8		81-91	4.02	80
94	40	152.4	6		23-31	2.47	7
95	48	152.4	6	44-46m	44-46m		9.66
96	102	203.2	8		64-68;72-80m	2.23	78.1
97	63	152.4	6		51-58m	1.59	54.545
98	6		2				
99	25		2				
100	25		2				
101	15		2				
102			2				1.8
103			2				
104	16		2				
105	25		2				
106			2				
107	25		2				
108	6		2				
109	16		2				
110	15		2				

ID	Capacidade Específica (m³/h/m) ou VAZÃO ESPEC.
83	
84	
85	
86	
87	
88	
89	
90	
91	
92	7.45
93	1.38
94	
95	0.396
96	12.99
97	5.83
98	
99	
100	
101	
102	
103	
104	
105	
106	
107	
108	
109	
110	

ld	Município	Proprietário	Código	Coordenada E	Coordenada N	рН	Condutividade elétrica	Sódio
1	Cidreira	Corsan	COR-CID-01	576351	6661635			
2	Cidreira	Fortaleza	PPS65CID	566213	6664881	6.64	39.7	
3	Cidreira	Fortaleza	PPS66CID	566210	6664880			
4	Cidreira	Fortaleza	PPS67CID	564466	6666017		144.4	
5	Cidreira	ledo Teixeira Fraga	PP54CID	573953	6663159	6.95	1390	324
6	Cidreira/Salinas	Corsan	COR-CID-SLS-01 G.2464	577367	6664709			
7	Cidreira	Corsan	COR-CID-SLS-01 NG. 2873	450000	6700000			
8	Cidreira	Geraldo Machado	PP56 CID	573545	6663320	7.78	773	141
9	Cidreira	Geraldo Machado	PP57 CID	573543	6663316	7.04	1650	
10	Cidreira	Geraldo Machado	PP58 CID	573541	6663316	7.22	581	
11	Cidreira	ledo Teixeira Fraga	PP55 CID	573958	6663097	7.58	598	
12	Cidreira	Jovina de Morais	PP59 CID	571157	6662138	7.36	91.6	19
13	Cidreira	Gilberto Ely	PP60 CID	571323	6662243	7.49	115	
14	Cidreira	Célio Lima	PP61 CID	571676	6662904	6.88	269	31.7
15	Cidreira	Sistema de Abastecimento	PP62 CID	571653	6662297	7.59	178	20.8
16	Cidreira	Fortaleza	PP63 CID	569468	6664193	8.08	105.2	15.6
17	Cidreira	Fortaleza	PP64 CID	566168	6664848	7.68	50.6	
18	Cidreira	Fortaleza	PP68 CID	564621	6665717	7.24	203.3	22.7
19	Cidreira	Fortaleza - Parque de Rodeio	PP69 CID	567209	6664745	6.85	34.9	9.3
20	Cidreira	Fortaleza - Parque de Rodeio	PP70 CID	567136	6664735		180	
21	Cidreira	Corsan	COR DID 01 2518	576353	6661648			
22	Cidreira	Corsan	POÇO 1798	573619	6654432	8.16	654	190
23	Cidreira	Fortaleza	PP72 CID	566975	6666445	6.73	24.9	5.7
24	Cidreira	Fortaleza	PP73 CID	569290	6667118	8	194.1	
25	Balneário Pinhal	Corsan	G.2196 PIH.1A	573580	6653550	7.7	672.1	102
26	Balneário Pinhal	Corsan	COR-BPI-TUV-01 G.2627 IS192	563863	6659383	7.7	744	97
27	Balneário Pinhal	Corsan	COR-PIH-02-A IS193	573053	6653678	8.2	651	93
28	Balneário Pinhal	Corsan	COR-BPI-03 G. 2730 IS194 G PIH 04	573736	6655077	8	858	116
29	Balneário Pinhal	Corsan	COR-BPI-01 G.2158 IS195	572644	6651486		780	103
30	Balneário Pinhal	Corsan	COR-BPI-MAG-01 G.2159 IS196	571458	6648687	7.7	724	97
31	Balneário Pinhal	Corsan	COR-BPI-MAG-02 G 3121 / IS197	570992	6648365	8.3	633	105
32	Balneário Pinhal	Corsan	COR-BPI-MAG-03 3692	571474	6649802			
33	Balneário Pinhal	Corsan	COR-PIH-03 IS199	572707	6652562	7.9	806	119
34	Balneário Pinhal	Corsan	COR-BPI-04-A 2732	572711	6652489	7	837	123
35	Balneário Pinhal	Corsan	COR-BPI-06 G.3481	573293	6653517	6.37	354.9	58.7
36	Balneário Pinhal	HIDROGEO	001206-05.00/14-3 2488-HIDROGEO	561074	6659764	8.9	445.7	74.2
37	Balneário Pinhal	Gilmar Bandas - Parque de Rodeios	PP8PIN	564076	6659479			
38	Balneário Pinhal	Norberto Silveira Sobrinho	PP9PIN	562870		8.18	209.4	
39	Balneário Pinhal	Gilmar Bandas - Parque de Rodeios	PP7PIN	564078	6659481	6.75	846	
40	Balneário Pinhal	Marilange Pereira Guimaraes	PP4PIN	571454	6648201	8.09	248	

ld	Potássio	Cálcio	Magnésio	Cloretos	Sulfatos	Alcalinidade	Carbonatos	Bicarbonatos	Ferro	Manganês	Fluoretos	Nitrato	N-NH3 amoniaco
1													
2													
3													
4													
5	10.8	51.703	18.783	5.605	24.681	200		200	ND	0.984	1.596	2.646	2.028
6													
7													
8	18.5	107.014	38.877	18.5	0.97	130		130	0.212	0.724	1.578	4.23	1.859
9													
10													
11	<u> </u>											0.315	3.12
12	2.1	8.817	3.203	0.198	1.299	30		30	0.023	0.204	1.679	0.54	1.69
13	<u> </u>	05.070	110.050	1,000	4.450	1.5		1.5	0.440	N.D.	0.440	0.141	1.43
14	5	35.672	12.958	1.286	1.158	15		15	0.149	ND	2.448	0.225	2.028
15	1.9	36.873	13.395	0.237	2.707	85		85	ND	0.204	0.345	0.189	3.887
16	2.1	20.841	7.571	0.102	0.689	60		60	ND	0.204	ND	0.189	2.028
17		14.000	145.440	0.000	4.000	100		100	1 000	0.404	NID	0.141	1.56
18	2.2	41.683	15.143	0.269	1.299	100		100	1.223	0.464	ND	0.711	2.535
19	1	3.206	1.165	0.064	0.595	5		5	ND	ND	ND	0.225	2.873
20				I TO									
21	10	04.40	0.70	ALTO	 	400.00		000	0.44	0.04	0.00	ND	
22	18	31.18	9.72	115.45	5.5	190.32		232	0.14	0.01	0.22	ND	0.505
23 24	0.6	2	0.728	0.13	1.909	5		5	ND	0.204	ND	0.243	2.535
	13	25.3	7.8	112	0.0	156		190.3	0.4		0.2	0.501	1.82
25 26	13	40		128	0.2 1.4	157		190.3	0.4	0.03	0.2		
26 27	10	24	5 7		0.7	193		236	0.2	0.03	0.2	0.3	
28	110	34	8	85 145	<250	187		228			0.2	0.3	
29 29	12	28	9	132	0.76	263		321	0.42	0.38	0.3	0.3	
30	15.5	34.1	9.7	140	1	144		175.7	0.42	0.00	0.3	0.0	
31	10.0	25	8	107	0.1	190		220	0.4	0.104	0.2		
32		20	+	107	0.1	100	1		0.12	0.104	0.1		
33	9	37	11	156	0.6	182		222	0.1	0.03	0.2		
34	ľ 	27	11	144	0.0	180	1	220	10.1	0.00	J.2		
35	5.73	16.2	9.02	1177	 	81.93	1	99.9	5.49	0.424			
36	2.87	11.9	1.33	35	0	165		165	0.067	0.073	0.146		
37	07	1.1.0	1			1.00		1.00	10.007	0.070	0.110		
38		<u> </u>	+			 	+		 				
39			+										
40					1	1	1		1			1	
	1	1	1		l	I	1	1	1	I		1	I

ld	P-PO4 fosfato	Cor	Odor	Sabor	Temperatura	Turbidez	Sólidos sedimentaveis	Sólidos suspensos	Aspecto natural
1									
2					20.6				
3					20.6				
4					22.6				
5	0.8				24.2				
6									
7									
8	1.6				23				
9					20.7				
10					21.5				
11	0.24								
12	0.96								
13	0.92								
14	0.8								
	3.84								
16	1.92				22.9				
17	0.2								
18	4.64				24				
	0.96				22.2				
20					20.5				
21									
22		10							
23	0.8				21.2				
24	0.88								
25		7	HERBATI.2			0.5	355.4	62.4	
26					20.5				
27		13	INODORO			1.6			
28		2	CLORO 2		24	0 LQM			
29									
30					23				
31		12	HERBATICO2			0.7			
32 33									
33		5	HERBATICO2			1			
34		5	2		23				
35						45.8			
36		25.1			21	3.3			
37									
38					25.3				
39					25				
40				1					

ld	Entorno	Problemas	Fotografias
1			
2	Campo	Cor amarelada e cheiro de ovo podre	
3	Campo		
4	Agricultura, Animais	Cor Amarelada na tubulação da ponteira	
5	Construção, Tanque de Combustível	Salobra, Gosto, Cor Amarela	
6			
7			
8			
	Rampa de Lavagem de Caminhos, Silos e ao lado arroz	Salobra, Amarelada	
10	Rampa de Lavagem de Caminhos, Silos e ao lado arroz	Salobra, Amarelada	
11	Construção, Campo, Animais, banhado	Salobra, Gosto, Cor Amarela	
12	Casa, Fossa, Depósito de Lixo Reciclável	Antes tinha um poço de 6m com água salobra	
13	Casa	Caixa d'água amarelada	
	Casas	Quando parado há cheiro de ovo podre	
	Casas (diversas)	Sistema de quatro ponteiras abastecimento (Tem análise completa)	
16	Casa, Galpão, Terreno com Animais soltos	Tinha um outro poço com 13 e água amarelada	
	Casas	Cor um pouco amarelada	
	Casa, Açude, Vegetação	Cor amarelada na caixa d'água	
19	Sumidouros com 5 metros de tamanho		
	Àrea de Camping do Parque		
21			
22			
	Casas, Animais e Vegetação		
	Casa, Animais, Horta, Campo		
25			
26			
27			
28			
29		Ferro e Manganês	
30			
31			
32			
33			
34		Cor e Turbidez	
35		Cor	
36			
	Casa, Cabanha, Animais		
	Casa, Açude	Cor Amarelada	
39	Casa, Cabanha, Animais	Cor amarelada na caixa	
40	Casas	Cheiro logo que abastece - Tinha um poço raso com cheiro e cor	

ld	Município	Proprietário	Código	Coordenada E	Coordenada N	рН	Condutividade elétrica	Sódio
41	Balneário Pinhal	Corsan	COR-TUV-01 G.4237	561791	6659406	8	827	110
42	Balneário Pinhal	Norberto Silveira Sobrinho	PP10PIN	562876	6659554			40.7
43	Balneário Pinhal	Carlos Alberto Silva	PP11PIN	562120	6660506			24.4
44	Balneário Pinhal	Carlos Alberto Silva	PP12PIN	562240	6660639			24.2
45	Balneário Pinhal	Nelson Rodrigo Pereira	PP13PIN	561482	6659456			90
46	Balneário Pinhal	José da Rosa Nunes	PP15PIN	571165	6655248			152
47	Balneário Pinhal	Mercedes	PP3PIN	571973	6649818	8.21	212.9	
48	Balneário Pinhal	Adão Vieira Valério	PP25PIN	573535	6654429	8.27	249	
49	Balneário Pinhal	Almiro Francisco Vaz	PP24PIN	573653	6654565	8.16	230	
50	Balneário Pinhal	Antonio	PP23PIN	573667	6654591	8.23	189.7	
51	Balneário Pinhal	Nestor Lopes da Silva	PP21PIN	573393	6654484	8.7	57.4	
52	Balneário Pinhal	Orlene	PP20PIN	571919	6655140	8.95	495	
53	Balneário Pinhal	João B. Maia Carlos	PP1PIN	571774	6649884	7.47	116.3	
54	Balneário Pinhal	Ituino Kreme	PP18PIN	571112	6655194	9	674	
55	Balneário Pinhal	Roberto B. de Oliveira (Betinho)	PP2PIN	571986	6649763	8.06	176.7	
56	Balneário Pinhal	Vilson	PP14PIN	571350	6655115	7.98	530	
57	Balneário Pinhal	Ubiraçu Silveira de Souza	PP17PIN	571345	6655168	8.49	1082	
58	Balneário Pinhal	Jair de Souza	PP16PIN	571176	6655215			161
59	Balneário Pinhal	Orlene	PP19PIN	571937	6655212			30.3
60	Balneário Pinhal	Margarete Padilha	PP22PIN	573356	6654484			95
61	Balneário Pinhal	Fernando	PP5PIN	570961	6648982			95
62	Balneário Pinhal	Fernando	PP6PIN	570969	6648984			25.7
63	Balneário Pinhal	Corsan	COR-BPI-01A 2196	572660	6651843	7.8	867	108
64	Balneário Pinhal	Corsan	COR-BPI-05-3145/1798	573619	6654432	8	722	108
65	Balneário Pinhal	Poço ponteira	Trado	571276	6654857			
66	Balneário Pinhal	Arrildo Elido Pharali	PP26 PIN MAG	571985	6649384		125	
67	Balneário Pinhal	Carlos Barnosa	PP27 PIN MAG	571931	6649418		201	
68	Balneário Pinhal	Jorge Luis da Silva Lemos	PP28 PIN MAG	571990	6649657		210	
69	Balneário Pinhal	Douglas Gomes	PP29 PIN MAG	571285	6648642		179	
70	Balneário Pinhal	As. Tunel Verde de Apicultores	PP30 PIN TUV	561293	6659591		187	
71	Palmares do Sul	DELMAR HOFELDER	IS221	556320	6657096			
72	Palmares do Sul	ATLANTICA PARQUE EOLICO S/A	4300022255	564103	6648469	5.46	150	
73	Palmares do Sul	ATLANTICA PARQUE EOLICO S/A	4300022254	565625	6647518	6.1	145.2	
74	Palmares do Sul	Corsan	COR-PDS-QUN-05 G.2528 IS235	569766	643905	8.5	601	
75	Palmares do Sul	Corsan	COR-PDS-QUN-04 G.2155 IS198	570245	6643665	7.8	725	
76	Palmares do Sul	Rafael José da Silveira	PPS26 PAL	554081	6654839	8.1	198.6	
77	Palmares do Sul	Rafael José da Silveira	PPS27 PAL	554082	6654864	8.25	199.1	
78	Palmares do Sul	Rafael José da Silveira	PPS28 PAL	554010	6654830	7.87	417	
79	Palmares do Sul	Rafael José da Silveira	PP29 PAL	554064	6654833	7.5	397	
80	Palmares do Sul	Cooperativa Granja Vargas	PP38 PAL	561229	6641974	8.17	333	

ld	Potássio		Magnésio		Sulfatos		Carbonatos	Bicarbonatos	Ferro	Manganês	Fluoretos	Nitrato	N-NH3 amoniaco
41	6.1	37	7	151	0.74	247		302	0.23	0.38	1.3	0.32	
42	1	12.42	4.5	0.249	2.28	5		5		0.984	0.586		
43	2	40.48	14.7	0.224	2.23	120		120	3.13	0.464	0.385		
44	0.9	12.82	4.65	0.505	2.285	15		15	5.43	0.464	0.183		
45	12.7	22.04	8	0.774	0	15		15		0.724	0.697	8.389	
46	6.2	6.01	2.18	0.333	3.98			210	0.213	0.204	0.303		
47													
48												1.266	1.82
49													
50												0.978	1.69
51													
52						1							
53													
54						1						<u> </u>	
55													
56													
57													
	28.3	70.54	25.62	1.606	4.539	260		260	0.512	0.204	1.046		
	6.7	13.627	4.951	0.3	2.097	70		70	0.012	0.204	1.119		
	6.7	6.012	2.184		3.928	15		15	0.118	0.464	1.33	2932	
61	11.8	26.85	9.756	0.326	2.473	1.0		180		0.724	0.449	2002	
62	3.3	8.417	3.058	0.237	2.473			30		0.204	0.404		
63	0.0	29	9	165	0.27	169		206	0.700	0.204		0.002	
64	<u> </u>	30	10	113	1.11	245		299	0.1	0.22	0.06	0.002	
65	<u> </u>	00	110	não	1	240		200	0.1	0.22	0.00	0.07	1.5
66	+			IIao									1.0
67	+		+						1				
68	1												
69	<u> </u>												
70	-		+										
71	-	-	+		 				-			_	
72			+							-			
73			+			-						-	
74			+				-				-		
74 75			1		1	 	-	ļ	-			-	-
76						-			1				
76 77													
			1										
78			ļ										
79													
80													

	fosfato	Cor	Odor	Sabor	Temperatura		Sólidos sedimentaveis	Sólidos suspensos	Aspecto natural
41		12	TERROSO 2			7.3			
42		0.15	inodora			9.86			
43		3.84	inodora			21.51			
44		62.46	inodora			20.53			
45		3.18	inodora			5			
46		3.01	inodora			18.59			
47									
48 1.36					22.4				
49									
50 0.72					21.7				
51					23.3				
52									
53					23.4				
54					22				
55					22.7	 			
56					23	†			
57					20.1	<u> </u>			
58		35.46	inodora			10.83			
59		9.11	inodora			9.37			
60		10.43	inodora			9.86			
61		21.63	inodora			4.22			
62		15.04	fraco			8.399			
63		2	cloro 2		23	0.62			
64		10	INODORO 0			0 LQM			
65						10 = 0			
66									
67									
68		<u> </u>				+			
69									
70									
71		 			1	+			
72		 			1	+			
73					1	1			
74									
75					1				
76		-		+	21.7	+			+
77					22				
78			<u> </u>		22.2	1			
78 79			1		21.7	1			1
					Z1.1				
80								1	

ld	Entorno	Problemas	Fotografias
41			
	Casas	Turbidez e Cor amarelada	
	Campo, Criação de Animais	Ferro - Precipitação na Tubulação	Poço PP11 , a, b,c, d, e
	Casas, Animais	Ferro - Problemas na máquina de lavar	Poço PP12, a
	Casas, estrada	A partir dos 5 metros turfa - cheiro forte	Poço PP13, a
46	Casas, Fossa	Água um pouco salobra	Poço PP 15, a, b, c, d, e
47	Casas, Fossa	Tinha um poço mais raso com cheiro, cor e odor	
	Casas, Fossa		
49			
	Casas, Fossa		
51	Casas, Fossa		
52	Casas - Dentro do Galpão		PP20,, a
53	Galpão, Casas, Cavalos		
54	Casas		PP18, a
55	Casas		
56	Casas		Poço PP14
57	Casas	Cor amarela e preta	PP17, a, b, c, d, e, f, g
58	Casas	Cor amarela, odor	PP16
59	Casas, Dunas, Lagoa, Cabanha		PP19, a
	Casas, Fossa	Cheiro Forte após a chuva, Cor Amarelada	
61	Casa, Fossa, Criação de Animais	Quando Chove - cheiro e gosto	
62	Casa, Fossa, Criação de Animais	Cheiro Forte, cor e turbidez	
63			
64		Manganês	
65			
	Casa		
	Casa		
68			
	Casa, lage (garragem)		
70	Casa, agroindustria, jardim		
71			
72			
73			
74			
75			
	Açude, Lavoura de Arroz, Galpão	No açude já ocorreu morte de peixes	
	Arroz, Açude, Galpão		
	Arroz, Galpão		
	Casa, Galpão, Açude	Cor amarelada	
80	Casa, Lagoa, Mata, animais	Caixa com cor amarelada	

ld	Município	Proprietário	Código	Coordenada E	Coordenada N	рН	Condutividade elétrica	Sódio
81	Palmares do Sul	Aloisio Perdomini	PP48 PAL	562655	6639450	8.52	322	
82	Palmares do Sul	Camping Dunas Altas	PP52 PAL	565426	6638030	8.36	447	
83	Palmares do Sul	Donato Lima de Oliveira	PPS91 PAL	557205	6654884			
84	Palmares do Sul	Ivo de Matos Velho	PPS97 PAL	554198	6654825			
85	Palmares do Sul	Rafael José da Silveira	PPS141 PAL	554126	6654884			
86	Palmares do Sul	Rafael José da Silveira	PPS 142 PAL	554118	6654909			
87	Palmares do Sul	Rafael José da Silveira	PPS143 PAL	554073	6654900			
88	Palmares do Sul	Renato Gomes da Conceição	PPS144 APL	553043	6653627			
89	Palmares do Sul	Sebastião Antônio da Rosa Silveira	PPS153 PAL	554088	6654798			
90	Palmares do Sul	Terezinha Canabarro	PPS156 PAL	557409	6653922			
91	Palmares do Sul	Corsan	COR PDS QUN04	569266	6642551	8	729	
92	Palmares do Sul	Corsan	COR PDS QUN05	564858	6644036	8.5	601	
93	Palmares do Sul	Corsan	COR SIAGAS 5	569590	6642503	6.9	409.2	
94	Palmares do Sul	Corsan	IS334 COR-PDS-QUI-01 G. 2009	569512	6642448	6.9	409.2	
95	Capivari do Sul	LORIVALDO M DE OLIVEIRA	IS167	550948	6672925			
96	Capivari do Sul	Corsan	COR-CPV-02 G.2719 IS219	546905	6665690	7	329	
97	Capivari do Sul	Corsan	COR-CPV-01 G.926 IS218	546922	6665113	7.1	346	
98	Osório	Lauro Ribeiro	PP01	557540	6673799	4.7	43.7	
99	Osório	DAVELSINHO JOSE DOS SANTOS	D	558076	6674525	6.14	157.4	
100	Osório	DAVELSINHO JOSE DOS SANTOS	В	558103	6674556	6.31	172	
101	Osório	João Antônio Farias	PP03	559375	6676760	5.7	94.4	
102	Osório	Sub Prefeitura do Passinhos	22SPPP	558526	6677640	4.3	113.3	20
103	Osório	EEEF Mirko Lauffer	23EEEFMLP	558689	6677500	5.61	155.3	32.5
104	Osório	Vera Maria Lopez Da Silva	A	559095	6677843	5.15	52.6	10.4
105	Osório	Develsino José Dos Santos	В	558087	6674545	6.31	172	25.5
106	Osório	Develsino José Dos Santos	С	558084	6674549	7.68	395	30.9
107	Osório	Develsino José Dos Santos	D	558065		6.14	157.4	22.3
108	Osório	Lauro Ribeiro	PP01	557540	6673799	5.61	49.7	
109	Osório	João Antonioo Farias	PP02	560484	6678950	5.19	49.9	
110	Osório	João Antonio Farias - Sitio	PP03	559375	6676760	6.27	107.4	

ld	Potássio	Cálcio	Magnésio	Cloretos	Sulfatos	Alcalinidade	Carbonatos	Bicarbonatos	Ferro	Manganês	Fluoretos	Nitrato	N-NH3 amoniaco
81													
82													
83													
84													
85													
86													
87													
88													
89													
90													
91													
92													
93													
94													
95													
96													
97													
98													
99													
100													
101													
102				12.8								0.2	
103				22.8									
104				20.7									
105				33.7									
106				25.3								0.2	
107				26.5									
108				8.3								0.5	
109				9.7								0.3	
110				11.5								0	

-	P-PO4 fosfato	Cor	Odor	Sabor	Temperatura	Turbidez	Sólidos sedimentaveis	Sólidos suspensos	Aspecto natural
81									
82									
83									
84									
85									
86									
87									
88									
89									
90									
91									
92									
93									
94									
95									
96									
97									
98									
99									
100									
101									
102					22.7	0			
103					22.6				
104					21.9				
105					21.37				
106					22.11				
107					20.96				
108									
109									
110									

	Entorno	Problemas	Fotografias
81			
82			
83			
84			
85			
86			
87			
88			
89			
90			
91		Cor, Alumíno e Manganês	
92			
93		Cor, Turbidez e Ferro	
94			
95			
96			
97			
98			
99			
100			
101			
102			
103			
104			
105			
106			
107			
108			
109		Limo na Caixa - Gordura	
110		Ferro - Não utilzada para consumo	

Dados SIOUT

ld	Código	Cadastro SIOUT	UTM E	UTM N	Long	Lat
1		2017019526	561421	6659135	-50.3619	-30.1977
2		2017040817	558451	6663650	-50.393	-30.1571
3	COR PDS QUN 04	COR PDS QUN 04/2018015627	569401	6663587	-50.2793	-30.3468
4		2019003604-2	565683	6647563	-50.3169	-30.3019
5		2019012227-1	561365	6659357	-50.3625	-30.1957
6		2019012250-1	561239	6659269	-50.3638	-30.1965
7		2019012254-1	561556	6659201	-50.3605	-30.1971
8		2019012258-1	561507	6659068	-50.3610	-30.1983
9		2019012264-1	561632	6658979	-50.3597	-30.1991
10		2019013135-1	560227	6660826	-50.3744	-30.1825
11		2019017154-1	561603	6658979	-50.36	-30.1991
12		2019018655-1	571124	6665083	-50.2615	-30.1435

ld	Proprietário	Município	Analise
1	Flosul Indústria e Comércio de Madeiras Ltda 92.961.119/0001-49,	Capivari do Sul	sim
1-	28.552.846/0001-53,	Cidreira	não
3	Compahia Riograndense de Saneamento, CNPJ n º 92.802.784/0001-90,	Palmares do Sul	sim
4	ATLÂNTICA V PARQUE EÓLICO S/A , CNPJ n º 12.864.421/0002-20	Palmares do Sul	sim
5	Flosul Indústria e Comércio de Madeiras Ltda 92.961.119/0001-49,	Capivari do Sul	sim
6	Flosul Indústria e Comércio de Madeiras Ltda 92.961.119/0001-49,	Capivari do Sul	sim
7	Flosul Indústria e Comércio de Madeiras Ltda 92.961.119/0001-49	Capivari do Sul	sim
8	Flosul Indústria e Comércio de Madeiras Ltda 92.961.119/0001-49	Capivari do Sul	sim
9	Flosul Indústria e Comércio de Madeiras Ltda 92.961.119/0001-49,	Capivari do Sul	sim
10	Luiz Fernando Aguirre dos Santos - 044.216.380-05,	Balneário Pinhal	não
11	Flosul Indústria e Comércio de Madeiras Ltda 92.961.119/0001-49,	Capivari do Sul	não
12	LTDA - 92.175.314/0001-43	Cidreira	não

ld	Area	Licença	Usos	Tipo do poço	Diâmetro cm
1	rural	00339/2017	industria	Poço ponteira	2.24
2	rural		comércio	Poço ponteira	5.08
3	urbana		abastecimento publico	Poço tubular	20.32
4	rural	7025/2014-DL	consumo humano	Poço tubular	10.16
5	rural		consumo humano e irrigação	Poço ponteira	2.24
6	rural	6976/2019	irrigação	Poço ponteira	2.54
7	rural	6976/2017	industria	Poço ponteira	2.54
8	rural	6976/2017	industria	Poço ponteira	2.54
9	rural	6979/2017	irrigação	Poço ponteira	2.54
10	rural		consumo e comércio	Poço ponteira	4.00
11	rural		irrigação	Poço ponteira	2.54
12	urbana		Atividades comerciais e Consumo agroindustrial	Poço ponteira	4.00

ld	Profundidade	Aquifero	Equipamento	Sistema	Aquifero	Vazão média diária
1	10	livre	Bomba centrífuga	sirgas 2000	Quaternário Costeiro I	8 m³/dia
2	25	livre	Bomba centrífuga	sirgas 2000	Quaternário Costeiro I	37,3333 m³/dia
3	104.39	conf	Bomba submersa	sirgas 2000	Quaternário Costeiro I	1.080 m³/dia
4	42	conf	Bomba submersa	sirgas 2000	Quaternário Costeiro I	4,5 m³/dia
5	10	livre	Bomba centrífuga	sirgas 2000	Quaternário Costeiro I	72 m³/dia
6	35	conf	Bomba centrífuga	sirgas 2000	Quaternário Costeiro I	22 m³/dia
7	25	livre	Bomba centrífuga	sirgas 2000	Quaternário Costeiro I	16 m³/dia
8	35	conf	Bomba centrífuga	sirgas 2000	Quaternário Costeiro I	72 m³/dia
9	25	livre	Bomba centrífuga	sirgas 2000	Quaternário Costeiro I	36 m³/dia
10	18	livre	Bomba centrífuga	sirgas 2000	Quaternário Costeiro I	0,9 m³/dia
11	25	livre	Bomba centrífuga	sirgas 2000	Quaternário Costeiro I	36 m³/dia
12	15	livre	Bomba centrífuga	sirgas 2000	Quaternário Costeiro I	1,5 m³/dia

GOD Livre

ID	Litologia superficie (mapa geo)	total	Código	Confinado (C
2	praiais eólicos	1	PPS65CID	NC
3	praiais eólicos	2	PPS66CID	NC
4	plan lagunar	3	PPS67CID	NC
5	praiais eólicos	4	PP54CID	NC
9	praiais eólicos	5	PP57 CID	NC
10	praiais eólicos	6	PP58 CID	NC
11	praiais eólicos	7	PP55 CID	NC
12	praiais eólicos	8	PP59 CID	NC
13	praiais eólicos	9	PP60 CID	NC
14	praiais eólicos	10	PP61 CID	NC
15	praiais eólicos	11	PP62 CID	NC
16	praiais eólicos	12	PP63 CID	NC
17	praiais eólicos	13	PP64 CID	NC
18	plan lagunar	14	PP68 CID	NCC
19	praiais eólicos	15	PP69 CID	NC
20	praiais eólicos	16	PP70 CID	NC
23	praiais eólicos	17	PP72 CID	NC
24	praiais eólicos	18	PP73 CID	NC
37	praiais eólicos	19	PP8PIN	NC NC
38	praiais eólicos	20	PP9PIN	NC
39	praiais eólicos	21	PP7PIN	NC NC
40	eólicos	22	PP4PIN	NC
42	praiais eólicos	23	PP10PIN	NC
43	plan lagunar	24	PP11PIN	NCC
44	plan lagunar	25	PP12PIN	NCC
45	praiais eólicos	26	PP13PIN	NC NC
46	praiais eólicos	27	PP15PIN	NC NC
47	eólicos	28	PP3PIN	NC NC
49	eólicos	29	PP24PIN	NC NC
50	eólicos	30	PP23PIN	NC NC
51	eólicos	31	PP21PIN	NC NC
52	eólicos	32	PP20PIN	NC NC
53	eólicos	33	PP1PIN	NC NC
54	praiais eólicos	34	PP18PIN	NC NC
55	eólicos	35	PP2PIN	NC NC
56	praiais eólicos	36	PP14PIN	NC NC
57	praiais eólicos	37	PP17PIN	NC NC
58	praiais colicos	38	PP16PIN	NC NC
59	eólicos	39	PP19PIN	NC NC
60	eólicos	40	PP22PIN	NC NC
61	eólicos	41	PP5PIN	NC NC
62	eólicos	42	PP6PIN	NC NC
66	eólicos	43	PP26 PIN	NC NC
67	eólicos	44	PP27 PIN	NC NC
68	eólicos	45	PP28 PIN	NC NC
69	eólicos	46	PP29 PIN	NC NC
70	eolicos plan lagunar	46	PP29 PIN PP30 PIN	NCC
71	praiais eólicos	48	IS221	NC NC
77	praiais eolicos praiais eólicos	49	PPS26 PAL	NC NC
78	praiais eolicos praiais eólicos	50	PPS26 PAL PPS27 PAL	NC NC
78	·	51	PPS27 PAL PPS28 PAL	NC NC
	praiais eólicos	_		NC NC
80	praiais eólicos	52	PP29 PAL	NC NC
81	praiais eólicos	53 54	PP38 PAL	NC NC
83	eólicos	_	PP52 PAL	
84	praiais eólicos praiais eólicos	55 56	PPS91 PAL PPS97 PAL	NC NC
85				

ID	G	vadosa	0	NE (m)	D	Índice	Vulnerabilidade
2	1	areia fina	0.6	1.3	0.9	0.54	ALTA
3	1	areia fina	0.6	1.32	0.9	0.54	ALTA
4	1	areia fina	0.5	1.55	0.9	0.45	MÉDIA
5	1	areia fina	0.6	1.55	0.9	0.54	ALTA
9	1	areia fina	0.6	1.48	0.9	0.54	ALTA
10	1	areia fina	0.6	1.36	0.9	0.54	ALTA
11	1	areia fina	0.6	1.55	0.9	0.54	ALTA
12	1	areia fina	0.6	1.55	0.9	0.54	ALTA
13	1	areia fina	0.6	1.55	0.9	0.54	ALTA
14	1	areia fina	0.6	1.55	0.9	0.54	ALTA
15	1	areia fina	0.6	1.55	0.9	0.54	ALTA
16	1	areia fina	0.6	1.55	0.9	0.54	ALTA
17	1	areia fina	0.6	1.55	0.9	0.54	ALTA
18	0.5	argila lacustrina	0.5	1.55	0.9	0.225	BAIXA
19	1	areia fina	0.6	1.55	0.9	0.54	ALTA
20	1	areia fina	0.6	1.55	0.9	0.54	ALTA
23	1	areia fina	0.6	1.55	0.9	0.54	ALTA
24	1	areia fina	0.6	1.55	0.9	0.54	ALTA
37	1	areia fina	0.6	1.55	0.9	0.54	ALTA
38	1	areia fina	0.6	1.55	0.9	0.54	ALTA
39	1	areia fina	0.6	1.55	0.9	0.54	ALTA
40	1	areia fina	0.6	1.55	0.9	0.54	ALTA
42	1	areia fina	0.6	1.55	0.9	0.54	ALTA
43	0.5	argila lacustrina	0.5	1.01	0.9	0.225	BAIXA
44	0.5	argila lacustrina	0.5	1.55	0.9	0.225	BAIXA
45	1	areia fina	0.6	1.55	0.9	0.54	ALTA
46	1	areia fina	0.6	1.55	0.9	0.54	ALTA
47	1	areia fina	0.6	1.55	0.9	0.54	ALTA
49	1	areia fina	0.6	1.55	0.9	0.54	ALTA
50	1	areia fina	0.6	1.55	0.9	0.54	ALTA
51	1	areia fina	0.6	1.55	0.9	0.54	ALTA
52	1	areia fina	0.6	1.55	0.9	0.54	ALTA
53	1	areia argilosa	0.6	1.55	0.9	0.54	ALTA
54	1	areia fina	0.6	1.55	0.9	0.54	ALTA
55	1	areia fina	0.6	1.55	0.9	0.54	ALTA
56	1	areia fina	0.6	1.55	0.9	0.54	ALTA
57	1	areia fina	0.6	1.96	0.9	0.54	ALTA
58	1	areia fina	0.6	1.55	0.9	0.54	ALTA
59	1	areia fina	0.6	1.55	0.9	0.54	ALTA
60	1	areia fina	0.6	1.55	0.9	0.54	ALTA
61	1	areia fina	0.6	1.55	0.9	0.54	ALTA
62	1	areia fina	0.6	1.55	0.9	0.54	ALTA
66	1	areia fina	0.6	1.55	0.9	0.54	ALTA
67	1	areia fina	0.6	1.55	0.9	0.54	ALTA
68	1	areia fina	0.6	1.55	0.9	0.54	ALTA
69	1	areia fina	0.6	1.55	0.9	0.54	ALTA
70	0.5	argila lacustrina	0.5	1.55	0.9	0.225	BAIXA
71	0.9	areia média	0.6	8	0.8	0.432	MÉDIA
77	1	areia fina	0.6	1.55	0.9	0.54	ALTA
78	1	areia fina	0.6	1.55	0.9	0.54	ALTA
79	1	areia fina	0.6	1.55	0.9	0.54	ALTA
80	1	areia fina	0.6	1.55	0.9	0.54	ALTA
81	1	areia fina	0.6	1.55	0.9	0.54	ALTA
83	1	areia fina	0.6	1.55	0.9	0.54	ALTA
84	1	areia fina	0.6	1.55	0.9	0.54	ALTA
85	1	areia fina	0.6	1.55	0.9	0.54	ALTA
86	1	areia fina	0.6	1.55	0.9	0.54	ALTA
55	•	arola lilia		1.00	J.J	3.01	, <u>, , , , , , , , , , , , , , , , , , </u>

GOD Livre

ID	Litologia superficie (mapa geo)	total	Código	Confinado (C
87	praiais eólicos	58	PPS 142 PAL	NC
88	praiais eólicos	praiais eólicos 59 PPS143 PAL		NC
89	praiais eólicos	60	PPS144 APL	NCC
90	praiais eólicos	61	PPS153 PAL	NC
91	plan lagunar	62	PPS156 PAL	NCC
98	praiais eólicos	63	PP01	NC
99	praiais eólicos	64	D	NC
100	praiais eólicos	65	В	NC
101	praiais eólicos	66	PP03	NC
102	praiais eólicos	67	22SPPP	NC
104	praiais eólicos	68	A	NC
105	praiais eólicos	69	В	NC
107	praiais eólicos	70	D	NC
108	praiais eólicos	71	PP01	NC
109	praiais eólicos	72	PP02	NC
110	praiais eólicos	73	PP03	NC
31	eólicos	74	COR-BPI-MAG-02 G 3121 / IS197	NC
73	praiais eólicos	75	4300022254	NC
76	eólicos	76	IS334 COR-PDS-QUI-01 G. 2009	NC
94	eólicos	77	COR SIAGAS 5	NC

NC	Não Nonfinado			
NCC	Não Confinado Coberto			

GOD Livre

ID	G	vadosa	0	NE (m)	D	Índice	Vulnerabilidade
87	1	areia fina	0.6	1.55	0.9	0.54	ALTA
88	1	areia fina	0.6	1.55	0.9	0.54	ALTA
89	0.5	argila lacustrina	0.6	1.55	0.9	0.27	BAIXA
90	1	areia fina	0.6	1.55	0.9	0.54	ALTA
91	0.5	argila lacustrina	0.5	1.55	0.9	0.225	BAIXA
98	1	areia fina	0.6	1.55	0.9	0.54	ALTA
99	1	areia fina	0.6	1.55	0.9	0.54	ALTA
100	1	areia fina	0.6	1.55	0.9	0.54	ALTA
101	1	areia fina	0.6	1.55	0.9	0.54	ALTA
102	1	areia fina	0.6	1.55	0.9	0.54	ALTA
104	1	areia fina	0.6	1.55	0.9	0.54	ALTA
105	1	areia fina	0.6	1.55	0.9	0.54	ALTA
107	1	areia fina	0.6	1.55	0.9	0.54	ALTA
108	1	areia fina	0.6	1.55	0.9	0.54	ALTA
109	1	areia fina	0.6	1.55	0.9	0.54	ALTA
110	1	areia fina	0.6	1.55	0.9	0.54	ALTA
31	8.0	areia fina	0.6	7.33	0.8	0.384	MÉDIA
73	0.7	areia muitto fina a média	0.6	2.9	0.9	0.378	MÉDIA
76	0.7	areia muiro fina a média	0.6	2.47	0.9	0.378	MÉDIA
94	8.0	areia fina	0.6	2.47	0.9	0.432	MÉDIA

NC NCC

GOD Semiconfinado-Confinado

ID	total	Código	Confinamento	G	Predominio na camada confinante
1	1	COR-CID-01	T C	0.2	argila
6	2	COR-CID-SLS-01 NG.2464	T C	0.2	argila
7	3	COR-CID-SLS-01 NG. 2873	T C	0.2	argila
8	4	PP56 CID	NC	1	areia fina
21	5	COR CID 01 2518	TC	0.2	areia fina
22	6	POÇO 1798	С	0.2	arenoso
25	7	G.2196 PIH.1A	С	0.2	argila
26	8	COR-BPI-TUV-01 G.2627 IS192	NC	1	areia
27	9	COR-PIH-02-A IS193	SC	0.4	areia
28	10	COR-BPI-03 G. 2730 IS194 G PIH 04	NC	1	areia
29	11	COR-BPI-01 G.2158 IS195	С	0.2	argila
30	12	COR-BPI-MAG-01 G.2159 IS196	С	0.2	argila, silte
31	13	COR-BPI-MAG-02 G 3121 / IS197	SC+L	0.5	areia fina
32	14	COR-BPI-MAG-03 3692	Т	0.2	argila
33	15	COR-PIH-03 IS199	NC	1	areia fina,areia argilosa
34	16	COR-BPI-04-A 2732	NC	1	areia fina
35	17	COR-BPI-06 G.3481	SC - C	0.3	areia fina, argila
36	18	001206-05.00/14-3 2488-HIDROGEO	С	0.2	argila
41	19	COR-TUV-01 G.4237	NC/PARADO	1	areia fina
48	20	PP25PIN	NC	1	areia fina
63	21	COR-BPI-01A 2196	С	0.2	argila
64	22	COR-BPI-05-3145	С	0.2	argila
65	23	Trado	NC	1	areia fina
72	24	4300022255	NC	1	areia fina, areia siltosa
73	25	4300022254	NC	1	areia fina, areia siltosa
74	26	COR-PDS-QUN-05 G.2528 IS235	С	0.2	areia fina
75	27	COR-PDS-QUN-04 G.2155 IS198	С	0.2	argila
76	28	IS334 COR-PDS-QUI-01 G. 2009	NC	1	areia fina
82	29	PP48 PAL	NC	1	areia fina
92	30	COR PDS QUN04	NC	1	areia fina
93	31	COR PDS QUN05	С	0.2	areia fina
94	32	COR SIAGAS 5	NC	1	areia fina
95	33	IS167	SC	0.4	solo, areia argilosa, areia fina, areia argilosa
96	34	COR-CPV-02 G.2719 IS219	NC	1	solo, areia média
97	35	COR-CPV-01 G.926 IS218	SC	0.4	solo, argila, areia média, areia fina, argila, areia siltosa
103	36	23EEEFMLP	NC	1	areia fina
106	37	С	SC	0.4	areia fina

ID	0	NE (m) OU topo do aquífero	D	Íindice	Vulnerabilidade]		
1	0.4	4	0.9	0.072	INSIGNIFICANTE			
6	0.4	4	0.9	0.072	INSIGNIFICANTE	Ē		
7	0.4	4	0.9	0.072	INSIGNIFICANTE			
8	0.6	4	0.9	0.54	ALTA	ALTA		
21	0.6	4	0.9	0.108	BAIXA	1		
22	0.6	9.83	0.6	0.072	INSIGNIFICANTE			
25	0.4	1.96	0.6	0.048	INSIGNIFICANTE			
26	0.6	9.7	0.8	0.48	MÉDIA			
27	0.6	3.64	0.9	0.216	BAIXA			
28	0.6	7.42	0.8	0.48	MÉDIA			
29	0.4	2.45	0.6	0.048	INSIGNIFICANTE			
30	0.5	3.64	0.6	0.06	INSIGNIFICANTE			
31	0.6	7.33	0.8	0.24	BAIXA			
32	0.4	4	0.9	0.072	INSIGNIFICANTE			
33	0.6	5.36	0.8	0.48	MÉDIA			
34	0.6	4.98	0.9	0.54	ALTA			
35	0.4	7	0.6	0.072	INSIGNIFICANTE	ITE		
36	0.4	6.9	0.6	0.048	INSIGNIFICANTE	1		
41	0.6	5.98	0.8	0.48	MÉDIA	1		
48	0.6	4	0.9	0.54	ALTA	1		
63	0.4	4	0.6	0.048	INSIGNIFICANTE			
64	0.4	8.83	0.6	0.048	INSIGNIFICANTE			
65	0.6	1.5	0.9	0.54	ALTA	7		
72	0.6	3	0.9	0.54	ALTA	1		
73	0.6	2.9	0.9	0.54	ALTA	Nenhum (N)		
74	0.6	4.02	0.6	0.072			Confinado (C)	
75	0.4	4.51	0.6	0.048	INSIGNIFICANTE		Semiconfinado (SC)	
76	0.6	2.47	0.9	0.54	ALTA	Não	Confinado Coberto (NCC)	
82	0.6	4	0.9	0.54	ALTA		Não Confinado (NC)	
92	0.6	4.51	0.9	0.54	ALTA			
93	0.6	4.02	0.9	0.108	BAIXA	TC	Tamponado, Confinado	
94	0.6	2.47	0.9	0.54	ALTA	NC	Não Confinado	
95	0.6	4	0.9	0.216	BAIXA C Confinado		Confinado	
96	0.6	2.23	0.9	0.54	ALTA SC Semiconfin		Semiconfinado	
97	0.4	1.59	0.7	0.112	BAIXA	SC+L	Semiconfinado Livre	
103	0.6	4	0.9	0.54	ALTA	Т	Tamponado	
106	0.6	4	0.9	0.216	BAIXA	SC C	Semiconfinado Confinado	