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Chapter 1

Introduction

This work is composed of two independent parts with a common motiva-
tion. Inspired by the general theory of Thermodynamic Formalism described
in [LMMS15], we develop concepts like pressure and entropy for general IFS
and quantum channels.

In Chapter [2] we talk about Iterated Function Systems with measures
(IFSm). In this setting, we have a compact metric space X, a family (79),.¢
of maps on X, and finite positive probabilities (q,)),.x on ©. Starting on
xo € X, in the next step we will be on 7y(x¢) with probability dq.(0).

While in classical Thermodynamic Formalism we study invariant mea-
sures, when we analyze the ergodic properties of IF'S, it is natural to consider
the holonomic measures to play this role. This concept was adapted from
the corresponding one, initially introduced in Aubry-Mather Theory, and
first appeared in thermodynamic formalism papers in [GLOS| and [LOQ9].

We show that the Thermodynamic Formalism for IFSm, in some sense,
is a generalization of the Thermodynamic Formalism for a certain class of
dynamical systems (see section . This corresponds to consider the inverse
branches of the dynamical system to define an IFSm.

For such perspective, we can verify that, with some regularity in the
potential, the pressure is the same for the IFS and the dynamical system
that inspired the IF'S. Furthermore, the transfer operator for the IFS is equal
to the Ruelle Operator of that dynamical system.

It is natural to consider that, under the perspective of IFS, the Ruelle
Operator depends on the inverse branches (the backwards dynamics and not
the forward dynamics). The material of this chapter is part of [BOS22], and
a future question is whether we can obtain ergodic optimization results in
this setting.

Chapter 3| is part of [BKL21b] and is related to another work described
in [BKL21a]. Both works are inspired by the Benoist paper [BFPP19], which



introduces the idea to consider a quantum channel as an integral and elabo-
rates about (¢-Erg) and (Pur) properties, which in [BKL21bl [BKL.21a] were
shown generic.

At first glance, it might seem that there is no relation between the pre-
vious chapter and this setting. But if we consider the space D of density
matrices with complex entries, a function L : M — My, and a measure u

on My, with certain hypotheses described better in section [3.6] we have a
L(v)poL(v)'
T (L)oo L)

quantum trajectory that if we start on py € Dy state, we go to
state with probability tr (L(v)poL(v)") du(v).

Looking at this quantum trajectory, we can see similarities with the IFSm
setting. By writing this quantum trajectory with the notation of IFSm, we
will see a relation between the linear operator ¢(p) = SMk L()pL(v)T du(v)
and the Ruelle Operator.

In this thesis, we observe that irreducible quantum channels have similar
properties to the dual of the Ruelle Operator. First, it maps densities in
densities, and, as it is known, the dual of the Ruelle Operator maps prob-
abilities in probabilities. Furthermore, the Theorem is similar to a
Ruelle-Perron-Frobenius in this setting, and we can define, for a class of po-
tentials, a notion of pressure (Definition of this same potential that we
prove to be equal to the log of the spectral radius of the quantum channel
defined from the potential in Theorem [3.4.8]

In section we present some interesting examples, one of them showing
that our entropy, somehow, generalizes the concept of entropy for a classical
Markov chain. This shows that our definition is quite natural.

In [BKL21a] we consider Lyapunov exponents associated with quantum
channels, and show a quantum version of Pesin Theorem relating the Lya-
punov exponents with entropy. This reaffirms the claim that our concept of
entropy is natural in this quantum setting.

The Benoist paper [BEPP19] describes quantum channels under a dynam-
ical and ergodic perspective, but does not present the concept of entropy.

The entropy we defined for this quantum setting is of dynamical nature,
which differs from the Von Neumann entropy which is not. The idea to
define this entropy comes from the paper [BLLCI0|, where the authors were
inspired by certain results in [Slo03].



Chapter 2

Thermodynamic formalism for
general IFS

Abstract

This chapter is part of [BOS22] and introduces a theory of Thermody-
namic Formalism for Iterated Function Systems with Measures (IFSm). We
study the spectral properties of the Transfer and Markov operators associ-
ated to a IFSm. We introduce variational formulations for the topological
entropy of holonomic measures and the topological pressure of [FSm given by
a potential. A definition of equilibrium state is then natural and we prove its
existence for any continuous potential. We show, in this setting, a uniqueness
result for the equilibrium state requiring only the Gateaux differentiability
of the pressure functional.

2.1 Introduction

The modern study of Iterated Function Systems (IF'S for short) come back
to the early 80’s with the works of J. Hutchinson [Hut81] and M. Barnsley
[BD8&5] where the theory was unified both in the geometric and the analytical
point of view, generating what we call today the Hutchinson-Barnsley theory
for IFS, meaning that each IFS, which is a family of maps acting from a set
to itself, having good contraction hypothesis has an invariant compact set
called the fractal attractor and, if we add weights having good continuity
hypothesis to each function, the IF'S acts on probabilities having an invariant
probability whose support is the fractal attractor set. Although, several
works on geometric features of fractals were done in the previous decades by
Mandelbrot and others, but after the 80’s the IFS assumed the central role
in the generation and study of fractals and its applications.



For a typical dynamical system 7' : X — X, an initial point xy € X is
iterated by T producing the orbit {zg, T(z¢), T*(z0), ...}, whose limit or the
cluster points are the objects of main interest, from a dynamical point of
view. On the other hand, for an IFS (X, 7p)sco, We iterate the initial point
by choosing at each step a possibly different map 7 : X — X, indexed by
the generally finite set ©, producing multiple orbits {Z;,7 > 0} = {Z, =
xo, Z1 = Toy(%0), Zo = To,(T9,(x0)),...}. We notice that the orbit is now
a set of orbits controlled by the sequence {fy,6;,...} € ON. To avoid this
complication Hutchinson defined the fractal operator F': K(X) — K(X) by

F(B) = | Jm(B)
0O
for B € K(X), the family of nonempty compact sets of X. This operator
is called the Hutchinson-Barnsley operator and a compact set is invariant or
fractal if F'(2) = Q. Additionally € is a fractal attractor if the orbit of B
by F, given by {B, F(B), F*(B), ...} converge, w.r.t. the Hausdorff-Pompeiu
metric to €2, for any B € K(X) (see [BP13|] for details on the Hausdorff-
Pompeiu metric).

Other possible point of view to understand the dynamics of an IFS is the
probabilistic one. In this case we consider that, in each step the function
to be iterated is chosen according to some probability, thus we are actually
studying a stochastic process Xy, X1, Xo, ... € X where each X, is a random
variable whose distribution is obtained from the previous X; by a transition
kernel using the IFS law. In other words, given an initial distribution pg
we iterate it by the Markov operator M : P(X) — P(X), defined as the
transfer operator’s dual, obtaining the distributions g, 1 = M (uo), po =
M?(ip), ... € P(X). Analogously to the fractal attractor, we say that pu €
P(X) is an invariant measure if M (u) = p and that g € P(X) is an attracting
invariant measure (or Hutchinson-Barnsley measure) if M7 (ug) converge to
p w.r.t. the Monge-Kantorovich metric(see [Hut81]), for any uo € P(X).
It is possible to prove that the support of the invariant attracting measure
is the fractal attractor (see [Hut&1]). Since the set of measures over X is
the dual of C'(X) the Markov operator is often defined by duality w.r.t. the
transference operator L : C(X) — C(X).

To illustrate that we consider the classical case of IF'S with constant prob-
abilities studied by Hutchinson, Barnsley and many others in the beginnings
of the 80’s. We consider © = {1,2,...,n}, meaning that we have a finite
number of maps, and each one is chosen according to a probability p; > 0
where p; + -+ + p, = 1, constituting an IFS with probabilities (IFSp for
short). Under this conditions the classic transfer operator (also called Ru-
elle operator, see Ruelle [Rue67, Rue68|, Walters [Wal75] and Fan [FL99]) is
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given by .
L(f)(z) = ij f(0;(2)),

for any f e C(X), and the Markov operator acting on p, M (p), is implicitly
defined by the property

| ravi = | pp@an

for any f e C(X).

The final feature of IFS dynamics we need to understand is the con-
nection between IFS orbits and the invariant measures. The first one is
the celebrated result due to M. Barnsley, the Chaos Game Theorem (CGT
for short) claiming that, from the initial probabilities p;’s, we can built a
probability P over the space ON such that P-a.e. (6, 01,...) = O the corre-
spondent orbit {z, 79, (z0), 79, (79, (z0)), ...} approximate the fractal attractor
), for any initial point xy. The second one is the Elton’s Ergodic Theorem
(EET for short) [EIt87] claiming that, from the initial probabilities p;’s, we
can built a probability P over the space O such that P-a.e. (6,6, ...) = OF
the correspondent average of visits of the orbit {xg, 74,(z0), 79, (T8, (z0)), ...}
to a measurable set B < X is equal to p(B), if u(0(B)) = 0, analogously to
the usual Birkhoff ergodic theorem for a single map, where p is the invariant
measure of the IFS in consideration. For continuous functions it means that

& (FGa0) 4 £ ) -4 £ (o) = | sl
b'e
for any f e C(X), as N — co. In other words

1
N (53&0 + 57'00(360) 4o+ 6791\771("'790@0))) — L,

as a distribution. In synthesis, the CGT and the EET are random procedures
to approximate the fractal attractor and the invariant measure, respectively.

The study of the conditions under what we have, for a given IFS, a
fractal attractor which is the support of an invariant measure is called the
Hutchinson-Barnsley theory. Such conditions has been extremely relaxed
and generalized in several ways in the past forty years. A first generalization
was for IFSp where the probability p; > 0 where p; + --- 4+ p, = 1, were
replaced by variable probabilities p;(z) > 0 where py(z) + -+ + pp(x) = 1 for
all x € X. Now, the transfer operator is defined by

L(f)(x) = ij(x) f8;(x)), Vo e X,

5



for any f e C(X). Very general conditions for the existence of the invariant
measure for such IFS are given in [BDEGS88]. We point out that the EET
was also proved for variable probabilities and finite functions in [EIt87].

In Fan [FL99], 1999, the condition pi(z) + -+ + pu(x) = 1 is finally
dropped assuming only that each py(z) = 0 for 6 € {1,...,n}. In this work
each 7y is a contractive map and each py(z) = 0 for § = 1, ..., n, generalizing
the notion of IFS with probabilities. In this setting, Fan proves a Ruelle-
Perron-Frobenius theorem (RPF theorem, for short), meaning the existence
of a positive eigenfunction for the operator L and an eigenmeasure for the
operator M with the same eigenvalue which is the spectral radius of L.

The next key improvement was given by Stenflo [Ste02], where random
iterations are used to represent the iterations of a so called IF'S with prob-
abilities, (X, 7y, tt)peo for an arbitrary measurable space ©. The approach
here is slightly different from the previous works on IFS with probabilities,
instead considering weights, the iterations from Zy € X are Z;,1 = 77,(Z;)
governed by a sequence of i.i.d variables {I; € O} ey, with distribution g,
generating a Markov chain {Z;, j > 0} with transfer operator given by

Lqm»=Lﬂm@mmw

for any f € C(X). The main goal of Stenflo [Ste02] is to establish, when L
is Feller, the existence of an unique attracting invariant measure 7, for this
Markov chain.

In our work we will extend the variational results in [LMMS15, [Lopli]
and, more recently, the preprint Cioletti and Oliveira [CO17], to a general IF'S
called IFS with measures (IFSm), (X, 79, ¢)gco for an arbitrary compact space
© (see Dumitru [Dum13] for the Hutchinson-Barnsley theory for such infinite
systems or Lukawska [GLJ05| for infinite countable ones). The approach here
consist in a generalization of Stenflo [Ste02]. We take a family ¢,(-) € M(O),
indexed by x € X, generating a Markov chain with transfer operator given
by

By = | Fute)das 0)

for any f € C(X). The meaning of the distribution ¢,(-) € M(©) is such that,
the position x of a previous iteration of the IFS determine the distribution
¢ () of 6 used to choose the function 7y and produce the new point 74(z).
When ¢,(-) = p, for any x € X, is a constant distribution we recover the
setting from Stenflo [Ste02].

In our setting the IFSm (X, 7y, ¢)geo can be studied as the sample paths
of the Markov process {Z;, j = 0} with initial distribution py = p € M(X)
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and ;11 = L,(p;), where for any v € M(X),

L F(2)dLy() () = L By(f) («)du(x),

for any f € C(X). Such degree of generality is necessary to enlarge the range
of application for the IFS theory, specially the thermodynamic formalism. In
Section we present a situation where we believe the tools developed in
the previous sections can be applied when analysing an interesting problem
in economics.

Our goal is to present a complete theory of thermodynamical formalism
for these IFS with measures, that is, good definitions for transfer operators,
invariant measures, entropy, pressure, equilibrium measures and a variational
principle. Finally, we want to use these tools to characterize the solutions of
the ergodic optimization problem.

For sake of completeness we would like to point out that we do not prove
a RPF theorem for those systems, only the existence of positive eigenfunc-
tions, but we establish all the results that can be derived if we have as-
sumed such a property. To the best of our knowledge the RPF theorem
for IFSm has not been established an it is a very hard problem. There
are several works on the matter of finding IFS for which the RPF theorem
holds, those IFS are said to have the RPF property. In 2009 Lopes and
Oliveira [Lopl1] studied those systems renaming it as weighted systems or
IFS with weights, having the RPF property, producing a self contained no-
tion of entropy and topological pressure through a variational principle for
holonomic measures allowing to establish a thermodynamical formalism for
IFS. Other approaches for IFS thermodynamic formalism were developed by
Urbanski [SSUOTL, MUOO, HMUO2] and many others.

It’s worth to mention that, in Urbanski et al. [HMU02] a thermody-
namic formalism for conformal infinite (countable) iterated function systems
is presented using the conformal structure via partition functions. Also in
Kéenméki [Kae04] a thermodynamical formalism for IFS is studied with the
help of cylinder functions, where general IF'S means that (X, 79)geo and O is
the increasing union of finite alphabets. In Lopes et al. [LMMSI15] a ther-
modynamic formalism for shift spaces, taking values on a compact metric
space is presented, although this problem is closely related to thermody-
namic formalism for IFS when we associate the pre images of the shift map
with a respective maps producing an infinite IFS. Also in [ACRI§| a varia-
tional principle for the specific entropy on the context of symbolic dynamics
of compact metric space alphabets was developed generalizing somehow the
results in [Lopl1].



The structure of the paper is the following: in Section [2.2] we present
the basic definitions on IFS with measures (IFSm) and a fundamental result
about the eigenspace associated to the maximal eigenvalue of the transfer
operator. In Section [2.3| we define the Markov Operator, which in the case of
a normalized IFSm gives the evolution of the distribution of the associated
Markov Process, and show that the set of eigenmeasures for it is non-empty.
In Section [2.4] we introduce holonomic measures, which play the role of
invariant measures in the IFS setting. In Section [2.5| we define entropy for
a IFSm, the topological pressure of a given potential function, as well as
the concept of equilibrium states. In Section [2.6| a uniqueness result for the
equilibrium states is obtained. Section prove the existence of a positive
eigenfunction for the transfer operator associated to the spectral radius and
give a constructive proof of the existence of equilibrium states. In Section
2.8 we show how the classical thermodynamical formalism for a dynamical
system is a particular case of the [FSm Thermodynamic Formalism. Finally,
in Section [2.9] we present a possible application in economic theory of the
theory developed in the previous sections.

2.2 IFS with measures

In this section we set up the basic notation and present a fundamental
result about the eigenspace associated to the maximal eigenvalue (or spectral
radius) of the transfer operator.

In this paper X, © are compact metric spaces, equipped with #(X) and
A (0) respectively the Borel o-algebra for X and ©.

The Banach space of all real continuous functions equipped with supre-
mum norm is denoted by C'(X, R). Its topological dual, as usual, is identified
with .#;(X), the space of all finite Borel signed measures endowed with total
variation norm. We use the notation .#,(X) for the set of all Borel prob-
ability measures over X supplied with the weak-+ topology. Since we are
assuming that X is compact metric space then we have that the topological
space .#1(X) is compact and metrizable.

Take q = (q4),.x & collection of measures on #(0), such that

(¢1) q(©) < oo for all x € X,

(¢2) infq = inf q,(©) > 0,
zeX

(¢3) x — q.(A) is a Borel map, i.e, is B(X)-measurable for all fixed A €
AB(0).



(¢4) = — q, is weak*-continuous.

An Tterated Function System with measures ¢, [FSm for short, is a triple
Rq = (X, 7,q), where 7 = (79) g is a collection of functions from X to itself

with the following
(11) 7:(0,X) — X, where 7(0, z) = 7p(z) is continuous.

The R, is said to be normalized if for all z € X, q, is a probability
measure.

Definition 2.2.1. Let R, = (X, 7,q) be an IFSm. The Transfer Operator
B, : C(X,R) © associated to R is defined by:

By(f)(z) = f@ Fro() dau(8),  Vre X,

B, is well defined. In fact, B, is continuous once that

| f(Te(l’))dqx(@)’ < supq [[f]l, < 0

[Ba(Pl,, = sup

Futhermore, for a fixed f € C(X,R) and x € X, given ¢ > 0, take § > 0 s.t.

3

sup d(f(ro(x). f(18(9))) < g

JfTe )atz (0 JfTa )dy (0 ‘ 5

for all y € X with d(x,y) < 0. Then,

and

) d4.(0) ~ [ 1l dqyw)'
1) dacte) - [ st dqy<e>]

Ba(£)(2) - Ba(£)(y
< f 1Feofa)) = Frou)] dau(6) +

9 9
< 2sup q J@ dqx(e) + 5 =

This shows that, for f € C(X,R) and = € X given ¢ > 0, there is
§ > 0 such that for every d(z,y) < 6, |Bq(f)(z) —Bq(f)(y)| < €, therefore
B, (f)(x) is continuous.

= E£.

DO | ™
Do ™



Proposition 2.2.2. Let R, = (X, 7, q) be a continuous IFSm. Then for the
N-th iteration of B, we have

B{lv(]_)(ﬁ) = J@N dPg(eo, ce 70N—1)

where,

N
dP¥(0,...,0n_1) = H Qon_; (On—j), o = & and xj,1 = Ty, ;.

Proof. This expression can be obtained by proceeding a formal induction
on N. For N = 2 and x = x, we have

BA(1)(a0) = | Ba(1)(ra,(v0)) s 60

J f dqxl 91 dqxo(GO)

:J AP (0, 01).
92

And, if
iju)(x) = LN dP(6y,...,0n 1),

then

By " (1)(x) =

Ud

g (1)(@1) da(6)

N qu 017 SR 70]\/) dq(60>
S}

L (H dquy_; (On—;) ) dq(6o)
L (ﬁ ddey,,; (Ong1- ﬂ)

P9 (0, ... Oy).

(&

(&

I
@ O NG > O ?

o,

2
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Remark 2.2.3. The formal notation used for P2

4. in fact, means that P}
is a measure in OV defined by,

PI(Op x - x Oy_1) :f f ey (O 1) -~ dquy (6).
SN ON_1

In the case N = 2 for instance,
PU©y % 0) = [ [ dan,.(0)dasl6y)
00 Jo,
~ [ dnel@1) dacton)
©0

Note that qTGO(m)(@l), with fixed ©; and z, is a function of 6, that is
measurable: indeed, if A € Z(0), fa: X — R defined by fa(z) = q.(A) is
measurable by |(¢%) and by |[(71)|implies 7 is measurable. Thus, Fi4 := faoT

is measurable.

Proposition 2.2.4. If f : X — R is a measurable nonnegative function,
then

H(z):= | fo7(0,z)dg(0),
B9

18 measurable.

Using Proposition [2.2.4] it is a simple induction to prove that

x> P3Oy x - x On_y) = J Pfeoxo(@l X -+ x On_1) dag,(6o)

0
is measurable for any ©, € B(0).

In this way we conclude that P2 is well defined for each space OV,

Theorem 2.2.5. Let R, = (X, 7,q) be a continuous IFSm and suppose

that there are a positive number p and a strictly positive continuous function
h: X — R such that B,(h) = ph. Then the following limit exits

lim — In (BY(1)(z)) = ln p(B,) (2.1)

N-ow N a

the convergence is uniform in x and p = p(B,) is the spectral radius of B,
acting on C(X,R).

11



Remark 2.2.6. We will adress the question of existence of positive eigen-
functions in section 2.7

Proof. From the hypothesis we can build a normalized IFSm R, = (X, 7,p)

where (o ()
ph—(:v)dqw((g)'

Note that dP; and dP? are related in the following way

dp.(0) =

N
dP (0o, ... On—1) = | [ dday_,(On)

[ e 000

= pN 1_[ h}(L;fV]i]ii) dpr ](QN—])
~ h(zo) =

= Ry L] B 0)

Since X is compact and h is a strictly positive continuous function, we
have for some positive constant a and b the following inequalities

0 <a<h(xg)/h(zy) <.

Using the Proposition and the above inequalities, we obtain for any
fixed N € N the following expression

Nln(BéV(l)(x)) = %m (J@N dP2 (6, . .. ,eN_l))
- %ln (J@N pN;Ll((TxJ[\)/

)
Clnp+ —n (J M) 1pe (g, ,eN_l)) .
N Uow

o
.

89

—
>

g

“%

=

L

N———

12



Futhermore,

%ln (J@N ;’;((;fi)) dPﬁ(Ho,---a9N1)> > %m (J adPP(fy, . .. 9N1)>

= +—1nJ dp?
On

1 .
=—lna—]j—3o—>0

| h(zo) ) | (J )
—In dPP (0, ....0n_1) | < —1In bdPP (6, ..., 0N
N <f@N h(xN) I( 0 N 1) N oN ( 0 N 1)

1 1
— —Inb+ —1 pP
N nb+N HL)N dP}

1 .
— —Inb =2, 0.

Therefore, for every N > 1 we have

ilel)lg %ln (BY(1)(z)) —Inp| = O(1/N),

where O(1/N) is independent of x, wich proves ({2.1). From the above in-
equality and Gelfand’s formula for the spectral radius we have

N—

1 1
lnp(Bq) —~tnp| = In ((Jim [[BY||™) ~1np| = lim | n||BY]| I,

< limsup sup
N—o0 zeX

%ln (Bév(l)(:c)) —1Inp

< limsup — = 0.
N—0

2.3 Markov Operator and its Eigenmeasures

In this section we define the Markov Operator, which in the case of a
normalized TFSm gives the evolution of the distribution of the associated
Markov Process, and show that the set of eigenmeasures for it is non-empty.
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Definition 2.3.1. The Markov Operator L, : .Z(X) © is the unique
bounded linear operator satisfying

| rate,on= | Bahan

for all pe #,(X) and f e C(X,R).

In the case of a normalized IFSm, we can consider the Markov Process
{Z;,7 = 0} with initial distribution Zy ~ o, where p9 € A#(X), and Z; 1 =
79,(Z;) for j = 0, where 6; ~ qz,. Then, if Z; ~ p;, we have p; 11 = Lq (1)

Theorem 2.3.2. Let R, = (X,7,q) be a continuous IFSm. Then there
ezists a positive number p < p(B,) such that the set G*(q) = {v € A1 (X) :
L,v = pv} is not empty.

Proof. Notice that the mapping

£y(7)
Ly(7)(X)

sends ., (X) to itself. From its convexity and compactness, in the weak
topology which is Hausdorff when X is metric and compact, it follows from
the continuity of £, and the Tychonov-Schauder Theorem that there is at
least one probability measure v satistying £,(v) = (£,(v)(X)) v.

We claim that

%1()() D7 >

inf q,(0) < Ly(7)(X) < supq,(O) (2.2)

zeX 2eX

N

for every v € .1 (X).
Indeed,

By(1)(x) = f 1da.(6) = 4.(6),
La(7)(X) = L 1d[L4] = fx B (1) dy = L 0:(0) d(x),

0 < inf q,(0) < J q:(0) dy(x) < supq.(O) < w.
rzeX X zeX
From the inequality follows that
0 < p = sup{La(V)(X) : La(v) = (Lo () (X)) v} < +o0.

By a compactness argument one can show the existence of v € .#(X) so
that Lqv = pr. Indeed, let (v,),.y be a sequence such that L (v,)(X) 1 p,

14



when n goes to infinity. Since .#;(X) is compact metric space in the weak
topology we can assume, up to subsequence, that v, — v. This convergence
together with the continuity of £, provides

Lov = lim Loy, = lim L, (v,)(X)v, = pv,

n—o0 n—0o0

thus showing that the set G*(¢) = {v € A4 (X) : Lyv = pv} # .
To finish the proof we observe that by using any v € G*(q), we get the
following inequality

PN = L BY(1)dv < ||BY].

From this inequality and Gelfand’s Formula follows that p < p(B,). |

2.4 Holonomic Measure and Disintegrations

Now we introduce holonomic measures, which play the role of invariant
measures in the IFS setting.

An invariant measure for a classical dynamical system T : X “ on a
compact space is a measure p satisfying for all f € C(X,R)

‘Lﬂﬂ@NM=LﬂMMAe®mmmw Lf@u»—mwmzo

From the Ergodic Theory point of view the natural generalization of this
concept for an IFS R = (X, 7) is the concept of holonomy.

Consider the cartesian product space Q2 = X x © and for each f € C(X,R)
its “©-differential” df : Q@ — R defined by [d,f](0) = f(m(x)) — f(2).

Definition 2.4.1. A measure ji over € is said holonomic, with respect to an
IFS R if for all f e C(X,R) we have

| [ date.0) o
Notation,

H(R) = {it| fr is a holonomic probability measure with respect to R}.

15



Since €2 is compact the set of all holonomic probability measures is obvi-
ously convex and compact. It is also not empty because €2 is compact and

any average
1 N-1
= 2 S0,
j=0

where z;,; = 7y,(x;) and zy € X is fixed, will have their cluster points in
H (R). Indeed, for all N > 1 we have the following identity

fin

| [0 diine.0) = 5 1, 7165) = (o (on-1)) = S o)),

From the above expression is easy to see that if ji is a cluster point of the
sequence (fiy)ysq, then there is a subsequence (Ng),_,,, such that

L (4. £16) dis(z, 0) = i [ [d,£1(6) diin, (2. 6)

k—o0 Q

1
= kh_{g) Fk(f(ﬁzvk) — f(z0)) = 0.
Theorem 2.4.2 (Disintegration). Let X and Y be compact metric spaces,
g BY) — [0,1] a Borel probability measure, T : Y — X a Borel
mensurable function and for each A € HB(X) define a probability measure
w(A) = a(T=1(A)). Then there exists a family of Borel probability measures
(Pa)ex 0n Y, uniquely determined ji-a.e, such that

1. p,(Y\T Y(z)) =0, p-a.e;

o [ ran= [ |] g duin]anio)

This decomposition is called the disintegration of fi, with respect to T'.

Proof. For a proof of this theorem, see [DMT78] p.78 or [AGS05]|, Theorem
5.3.1. -

In this paper we are interested in disintegrations in cases where Y is the
cartesian product 1 = X x © and T : 2 — X is the projection on the first
coordinate. In such cases if i is any Borel probability measure on €2, then
follows from the first conclusion of Theorem that the disintegration of [
provides for each x € X a unique probability measure p, (p-a.e.) supported
on {z}x 0. So we can write the disintegration of 1 as dj(x,0) = dp,(0)du(z),
where here we are abusing notation identifying u,({z} x A) with p,(A).

16



Now we take i € H (R) and f : Q — R as being any bounded continuous
function, depending only on its first coordinate. From the very definition of
holonomic measures we have the following equations

| [n@aite.0) = 0= | ) i) = | s dite.0)

by disintegrating both sides of the second equality above we get that

fffTe ) dpe (0)dpu(z Jff ) dpig (0)dp(z).

The above equation establish a natural link between holonomic measures
for an IFS R and disintegrations. Given an IFS R = (X, 7) and i € H (R)
we can use the previous equation to define an IFSm R, = (X, 7, q), where q,
is a probability defined by q,(A) = p,(A) for every A € B(0). If B, denotes
the transfer operator q,. If B, denotes the transfer operator associated to
R, we have from the last equation the following identity

[ Bahran= [ ran

Since in the last equation f is an arbitrary bounded measurable function,
depending only on the first coordinate, follows that the Markov operator
associated to the IFSm R, satisfies

Lq(p) = p.

In other words the “second marginal” p of a holonomic measure 1 is always an
eingemeasure for the Markov operator associated to the [IFSm R, = (X, 7, q)
above defined.

Reciprocally, since the last five equations are equivalent, given an IFSm
Rq = (X, 7,q) such that the associated Markov operator has at least one
fixed point, i.e., L,(p) = p, then it is possible to define a holonomic proba-
bility measure 1 € H (R) given by dji(x,0) = du,(0) du(z), where dp,(0) =
dq.(0). This Borel probablity measure on €2 will be called the holonomic
lifting of ;, with respect to R.

2.5 Entropy and Pressure for IFSm

We now define two concepts of entropy, compare then, show sufficient
conditions for them to be equal and introduce the topological pressure of a
given potential, as well as the concept of equilibrium states. We show in
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this section a first result on the existence of equilibrium states. In all that
follows, the a priori measure has a special role (see [LMMS15]).

As in the previous section the mapping T : Q@ — X denotes the pro-
jection on the first coordinate. Even when not explicitly mentioned, any
disintegrations of a probability measure ©, defined over €2, will be from now
on considered with respect to 7.

Definition 2.5.1 (Variational Entropy). Let R be an IFS, 7 € H(R), p
a probability on © and di(z,0) = dv,(0)dv(x) a disintegration of ¥, with
respect to T'. The variational entropy of © with a priori probability u is

defined by
B
()= inf {J lnﬂdy} .
geC(X,R) [ Jx g
g>0

Definition 2.5.2. When q = (q;),.x is a family of measures on © and x a
probability on ©, and v is a probability on X, we say that the family q is
v-almost everywhere absolutely continuous with respect to p when q, « u
for v-almost everywhere z on X and write q <, p.

If q «, p, we define J,(#) such that J, = q’” when ¢, « g and J,(f) =0
otherwise.

Definition 2.5.3 (Average entropy). Let R be an IFS, v € H (R), dv(z,0) =
dv,(0)dv(z) a disintegration of  with respect to 7" and p a probability on ©
such that (v,) <, p. The average entropy of © with respect to u is defined
by

hE (D) = — L In J,(0)dv,(0) dv(zx).

Definition 2.5.4 (Optimal Function). Let R bean IFS, v € H (R), dv(x,0) =
dv,(0) dv(z) a desintegration of © with respect to T and ¢, = v,, for all

x e X. If q «, u, we say that a positive function g € C(X,R) is optimal,

with respect to the IFSm R, if we have

o)
70 = B (o))

Proposition 2.5.5. If dq.(0) = Q.(0) du(0) and dp,(0) = P.(0) du(0) are
probabilities, then

f f log(Q.(0)) dga(0) dv(x Jflog ) s (6) dv(z).
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Proof. Using Jensen’s Inequality on f(z) = —zlog(x) concave function

L=
( g>>dpx
(f dp.(6) dv(a >) 7(1) = o.

Then,
J [ (B7) Farr- oo e
— fx . —log (JQD:((;)) dq.(0)dv(z) <0
Therefore,

f f log (Q(6)) dq.(6) du(x f f log (P,(6)) da, (6) dv(x)

Theorem 2.5.6. Let R be an IFS, v € H(R), dv(x,0) = dv.(0) dv(x) a
disintegration of U with respect to T, R, = (X, 7,q) the IFSm with ¢, = v,
for all x € X and p a probability on © such that q¢ <, . Then

1. hH (D) < W (v) < 0;
2. if there exists some optimal function ¢, with respect to Ry, then

W (D) = (D) = L In B“Tw) dv.

Proof. We first prove item 1. Since ¢, is a probability measure follows from
the definition of average entropy that h#(2) = 0.
From the definition of variational entropy we obtain

We(D) = inf f n 2209) g, <J i 2 g, g,
M geC’(>)67]R) X g X 1
g
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To finish the proof of item 1 it remains to show that h¥ (D) < h¥(D).
Let g : X — R be continuous positive function and define for each z € X a
probability where dp,(0) = g(19(x))/B,(g)(x) du(f). From Proposition [2.5.5]
and the properties of the holonomic measures we get the following inequalities
for any continuous and positive function g:

)
mo) =~ | j In J,(6) da, (6) dv(a)

; L n (é;g)) da, (6) dv(x)

N

_ [ ngom)dqx(e)_ meg))dqx(e) dv(x)

JX

N
|

(&

:
N j In(B,.(g)) dv

JX X

-
=—| Ingdv+ f In(B,(g)) dv
X

JX

:f n 269 4,
X g

Therefore, h#(0) < h#(0). Futhermore, ifJ( ) = QSOTg( )/B(¢)(z) for
some ¢ > 0 continuous function, then h# () = {4 log 2e?) ¢ = hi(D). |

Definition 2.5.7. Let ¢ : X — R be a positive continuous function, y a
probability on ©, and Ry(X, 7,q) an IFSm, where dq, () = v o7p(x) du(6).
The topological pressure of ¢, with respect to Ry, is defined by

. Bq(9) }
P = su inf In =2 du} 2.3
®) 1)67—[(82) 9eC(X;R)g>0 {Jx 9 (23)

where v :=T,v for T': 2 — X the X projection.

Observe that, for the potential 1) = 1, the pressure P (1)) = sup,eyr) b4 (7).
We also can obtain the following alternative forma for pressure.

Lemma 2.5.8. Let 1 : X — R be a positive continuous function and Ry =
(X, 7,q) be the IFSm defined above, where dq,(0) = v o y(x) du(f). Then,
the topological pressure of ¢ is alternatively given by

P() = sup {hg(ﬁ)+Llog¢dy}.

PEH(R)
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Proof. First, note that B,(g) = B,(g - ¥) where (g - ¢)(z) = g(z)¢(z). In
fact

Bu(0)(o) = | gome)son(a) du®) = | (a-0)om(w) 4u(0) = Bylg-0)(a).

S}

To finish the proof, we only need to use the pressure’s definition and some
basic properties as follows:

P() = sup inf {LmBq—@dy},

peM(R) 970 g
[ B
= sup inf{f log+ dv — log@/)du+f lnﬁdy}
peH(R) 970 LJx Jx X g
r )
In —B“(g ¥) dy}
X g-v
C B.(5
= sup {J log ¢ dv + inf lnﬁdy}
X

PeH(R) 9>0 Jx g

= sup {h‘v‘(ﬁ) + J log¢dy} :
PeEH(R) X

= sup inf {J log v dv +
per(R) 970 (JUx J

|
Remark 2.5.9. Note that, if dq,(0) = Bw:(:Z)(ZZ) du(0), by the Theorem [2.3.2
there exists p > 0 and v s.t. L,(v) = pv.
But,
Y o ()
= dﬁuszlxdl/:vzf—d 0)dv(x
o= 420 = [ BOE d) = | I duo)avie)

- | Baw@ [ ven@ e dve) = [ av -1

Therefore we have

P(y)) =  sup L{ In B, (¢) dv.

ve{Lq(v)=v}

Definition 2.5.10 (Equilibrium States). Let R be an IFS, 7 € H (R) and
i a probability on ©. Let ¢ : X — R be a positive continuous function. We
say that the holonomic measure  is an equilibrium state for (¢, ) if

hi (D) + J logydv = P(v).

X
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Lemma 2.5.11. Let X and Y be compact separable metric spaces and T :
Y — X be a continuous mapping. Then the push-forward mapping &7 = & :

A(Y) — A1 (X) given by
O(p)(A) = p(T™HA)), where e #,(Y) and A e B(X)

1s weak-+ to weak-+ continuous.

Proof. Since we are assuming that X and Y are separable compact metric
spaces then we can ensure that the weak-» topology of both .#(Y) and
A1 (X) are metrizable. Therefore is enough to prove that ® is sequentially
continuous. Let (fi,)nen be a sequence in .#(Y) so that (i, — ji. For any
continuous real function f : X — R we have from change of variables theorem
that

| s = | st

for any n € N. From the definition of the weak-+ topology follows that the
rhs above converges when n — oo and we have

i | Faf(i)] = i | foTdi, = [ foTda~ | fde()
n—00 X n—00 Y Y X

The last equality shows that ®(j,,) — ®(i) and consequently the weak-+ to
weak-* continuity of . |

For any v € H(R) it is always possible to disintegrate it as di(x,i) =
dv,(1)d[P(V)](z), where ®(0) = v is the probability measure on #(X), de-
fined for any A € Z(X) by

v(A) = ®(0)(A) = v(T(A)), (2.4)
where T' : 2 — X is the canonical projection of the first coordinate. This
observation together with the previous lemma allow us to define a continuous
mapping from H(R) to .#,(X) given by v — (V) = v.

We now prove a theorem ensuring the existence of equilibrium states
for any continuous positive function ¢. Although this theorem has clear
and elegant proof and works in great generality it has the disadvantage of
providing no description of the set of equilibrium states.

Theorem 2.5.12 (Existence of Equilibrium States). Let R be an IF'S, 1) :
X — R a positive continuous function and p a probability on ©. Then the
set of equilibrium states for (v, 1) is not empty.
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Proof. As we observed above we can define a weak-* to weak-* continuous

mapping
H(R) >0 +— ve #(X),

where dv(x,1) = dv,(i)dv(z) is the above constructed disintegration of .
From this observation follows that for any fixed positive continuous g we
have that the mapping #(R) 3 7 — {4 In(B1(g)/g) dv is continuous with
respect to the weak-= topology. Therefore the mapping

H(R) 50— inf {LlnBl—@dy}zhv(a).

geC(X,R) g
g>0

is upper semi-continuous (USC) which implies by standard results that the
following mapping is also USC

H(R) 20— hy(V) + Jx In(¢(z)) dv(x).

Since H(R) is compact in the weak-* topology and the above mapping is USC
then follows that this mapping attains its supremum at some i € H(R), i.e.,

sup {Jx Inydv + hv(ﬁ)} = Jx Invy dp + hy(f1)

PEH(R)

thus proving the existence of at least one equilibrium state. |

2.6 Pressure Differentiability and Equilibrium
States

We show in this section a uniqueness result for the equilibrium state
introduced in the last section. In order to do that we will need to consider
the functional p : C'(X,R) — R given by

p(p) = Plexp(e)). (2.5)

It is immediate to verify that p is a convex and finite valued functional. We
say that a Borel signed measure v € .#;(X) is a subgradient of p at ¢ if it
satisfies the following subgradient inequality

p(n) = p(p) +v(n — ) for any ne #,(X).
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The set of all subgradients at ¢ is called subdifferential of p at ¢ and
denoted by dp(p). It is well-known that if p is a continuous mapping then
op(p) # & for any p € C(X,R).

We observe that for any pair ¢, n € C(X,R) and 0 < t < s, follows from
the convexity of p the following inequality

s(p(p +tn) — p(p)) < tlp(e + sn) — p(p)).

In particular, the one-sided directional derivative d*p(y) : C(X,R) —» R
given by

is well-defined for any ¢ € C'(X,R).
Theorem 2.6.1. For any fized p € C(X,R) we have
1. the signed measure v € op(p) iff v(n) < d*p(p)(n) for alln e C(X,R);

2. the set Op(p) is a singleton iff d*p(p) is the Gateaur derivative of p at
©.

Proof. This theorem is a consequence of Theorem 7.16 and Corollary 7.17
of the reference [CAQG]. |

Theorem 2.6.2. Let R be an IF'S, ¢ : X — R a positive continuous function,
w a probability on © and ®(0) = v for v € H(R) where v is given by
disintegration with respect toT'. If the functional p defined on 18 Gateaur
differentiable at ¢ = log), then

#H#{P(1) : [ is an equilibrium state for ¥} = 1.

Proof. Suppose that fi is an equilibrium state for ¢). Then we have from
the definition of the pressure that

p(p +1tn) —p(p) = P(Yexp(tn)) — P(¥)
> b+ [ o dace | tnda—n) [ wo dy

= tj ndpu.
X

Since we are assuming that p is Gateaux differentiable at ¢ follows from
the above inequality that pu(n) < d™p(p)(n) for all n € C(X,R). From this
inequality and Theorem we can conclude that dp(¢) = {u}. Therefore
for all equilibrium state fi for ¢ we have ®(1) = dp(p), thus finishing the
proof. |
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2.7 A Constructive Approach to Equilibrium
States

In this section we prove the existence of a positive eigenfunction for the
transfer operator associated to the spectral radius, and give a constructive
proof of the existence of equilibrium states.

Let Rq = (X, 7,q) assuming that there is p a probability on © s.t. Vo €
X, qz « pand J : © x X - R, defined by J(z,0) := Ciiq/f (0), a continuous
function. Define u(x,0) = log J(#,x), and consider a parametric family of
variable discount functions 0, : [0, +0) — R, where §,,(t) — I(t) = t, when
n — o0, pointwise and the normalized limits lim,, w, () —max w, of the fixed
points

wy(x) = logf

S}

oU(0,0)+3n (wn (r(0,2))) dp = logj eOn(wn(7(0,2))) dqz(Q)
o

of a variable discount decision-making process, as defined in [CO19], S, :=
(X,0,¥,7,u,d,) where U(z) = O for all x € X and the sequence (d,,) satisfies
the admissibility conditions:

1. the contration modulus 7, of §, is also a variable discount function;
2. 6,(0) =0 and 6,(t) <t for any t € (0, +0);

3. for any fixed a > 0 we have 0,(t + a) — ,(t) - a when n — o0,
uniformly in ¢ > 0.

Theorem 2.7.1. Let R, and (6,) in above conditions such that the above
defined u satisfy:

1. w is uniformly §-bounded for (6,);
2. w is uniformly 0-dominated for (4,).
Then there exists a positive and continuous eigenfunction h such that B,(h) =

p(By)h.

Proof. Theorem 3.28 of [[CO19]| implies that there exists k € [0, ||ul|,] and
¢(x) := M@ continuous and positive function with

tola) = | oo r0,2) e du(b) = B(o)(o).
e
for all x € X. Now use the Theorem and the theorem is proven. W
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Let ¢ : X — R be a positive continuous function, p a probability on €2,
and Ry (X, 7,q) an IFSm, where dq,(6) = ory(x) du(#). Suppose that there
is h a positive continuous function such that B, (h) = B,(h - 1) = p(Bq)h.
Then we can define, following Definition 2.5.4 R, = (X, 7,p) where

dpe gy (h-¥)om(e) _ (hov)orfa) _ homlx) do,

dp Bu(h-1) p(By)h p(By)h  dp
The IFSm R, is called the normalization of R,. Take £,(v) = v and let

v be the holonomic lifting of . Then by the Theorem we know that

(6).

) = (o) = [ 1og 2R

Then, choosing this 7 as particular in supremum given in Lema [2.5.8

P($) > i (5) + § log ¢ dv — log p(By).
But, remember that the pressure, defined in expression (2.3)), is

P() = sup inf { Jxlan—@dy},

PEH(R) geC(X;R)g>0 g
then,
B Bq(h
inf {f lnﬂdu} < f In alh) dv = log p(By).
geC(X;R)g>0 ( Jx g X h

Taking the supremum over H (R) in both sides of above inequality, we
have P(¢) < logp(Bg). Since the reverse inequality is already shown, we
prove that

P(1) = log p(By).

2.8 Example: Thermodynamic Formalism for
right shift

Now we show that the I F'Sm Thermodynamic Formalism generalizes the
Thermodynamical Formalism for a dynamical system.

Let © be a compact metric space and X = OY. For each # € © define
o¢(21,Ta,...) = (0,21, x9,...) the inverse branch of the right shift 0. Take
[t a a-priori probability on ©. Let ¥ : 2 — R be a positive potential and
A =log.
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Now we define dq,(0) = e2°7¢@ dpu(6).
Then,

Bq(9) = f A7) g0 gy () dpu(6) = La()(x),

where L4 is the Ruelle Operator for the right shift ¢ and the potential A
(see [LMMST5] for more details).
By Definition [2.5.7]

P(Y) = sup inf{fxlan—@du}

ver(R) 970 9

= sup inf {f lnLA—@dy}.
veM, 9>0 X g

The last expression is exactly the pressure of the potential A in Thermo-
dynamical Formalism. Suppose that there is ¢4 a positive continuous func-
tion such that By(¢4) = La(¢a) = p(Ra)pa = Aada. Then P(e) = log Aa.
For instance, we know that if A is Hoélder, then there exists such ¢, > 0
function.

From this example, we can see that the IF'Sm Thermodynamic For-
malism, in certain sense, generalizes the Thermodynamical Formalism for a
dynamical system. When we look at the family {og}seo of functions, we are
looking at the inverse branches of the dynamical system.

2.9 Example: IFSm and a Possible Applica-
tion in Economics

In Gupta et al. [GST21] a chaos game is used to represent a time series
as a PC plot and compare similarities and dissimilarities in different time
frame such as the global pandemic of COVID-19. More precisely, the author
consider the set X = [0, 1]? as the base space and the four linear contractions

Exyi = Eo.5x,0.5y) |
z,y) = (0.52 +0.5,0.5
(x,g) = (0.5z,0.5y + o.g) (2.6)
(z,y) = (

TA
TB
TC
DT, 0.5z + 0.5,0.5y + 0.5)

s0 (X, Tp)eco, © = {A, B,C, D}, is a classic contractive system whose attrac-
tor is X itself. Consider the identification:

A — if the market falls more than 0.01% of the previous value,

B — if the market falls less than 0.01% of the previous value,
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C — if the market gains less than 0.01% of the previous value and

D — if the market gains more than 0.01% of the previous value,

in this way the time series of length N associated to a certain economic
indicator is translated in to a genetic sequence

v = (DACCADCDACDC...AACCBADD) € ©V.

Fixed an arbitrary initial point Zy = (zo,%0) = (0.5,0.5) the chaos game
consist in iterating (xo,y0) by each map Z; = (x1,y1) = 7p(zo, %), Z2 =
(x2,y2) = Ta(x1,01), Z3 = (23,y3) = Tc(22,Y2), .... according to . Consider-
ing M > 2 and the diadic partition of X given by

L 7, - (g (X)),

’y/E@NI

the PC plot W is a grey scale picture where the color of the each individual
part A = 7, (--- (7, (X))) is the frequency of visits of the chaos game orbit
{Z;,7 = 0} to A that is,

W(A) = %ﬁ{j 0, N—1|Z;€ A} ~ p(h).

Obviously, vn = Xy W(A)d(zy,ya), Where (x4, ya) € A is arbitrary, is a
discrete probability and, if ©(0(A)) = 0 then by the EET ([Elt87], Corollary
2), when N — oo, vy converge in distribution to the invariant measure y for
the IF'S with probabilities (X, 7, pp)sco, Where pa, pp, pc, pp are the relative
frequency of each symbol A, B,C, D in ~, respectively.

For instance, if N = 100 and if a certain time series produces the genetic
sequence

v =(A,A,D,D,A,..,A,D,B,C,C,B,A,D) e {A,B,C, D},

we obtain the frequencies [pa, pg, pc, pc] = [0.39, 0.17, 0.15, 0.29], and con-
sidering M = 4 we obtain the following PC plot which is an approxima-
tion for the invariant measure p of the associated IFS with probabilities
[0.39, 0.17, 0.15, 0.29].

In order to generalize this idea we need to consider an infinite compact
continuous range of values of the economic indicator, such as © = [0%, 100%],
instead of taking only four values © = {A, B, C, D}. Also, it is not reasonable
to suppose that the probability of a change of #% in the indicator is indepen-
dent of the current state of the indicator: the distribution of the occurrence
of 6 € [0%, 100%], given the current state Z € X must be a measure of prob-
ability gz (-) over [0%, 100%]. Therefore, we believe the theory developed in
the previous sections should be used when making this generalization.
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Figure 2.1: PC plot where each square represents one element A of the diadic
partition and grey scale value 0 < % t{j=0,.,.N—-1|Z;e A} <1
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Chapter 3

Thermodynamic Formalism for
Quantum Channels

Abstract

This entire chapter is part of the article [BKL21b]. Denote M, the set of
complex k by k matrices. We will analyze here quantum channels ¢, of the
following kind: given a measurable function L : M; — M, and a measure
i on M we define the linear operator ¢p : My — M, via the expression
p — ¢rlp) = SMk L(w)pL(v)" du(v), where L(v)! is the adjunt matrix of
L(v).

This paper [BFPP19] is our starting point. They considered the case
where L was the identity.

Under some mild assumptions on the quantum channel ¢; we analyze
the eigenvalue property for ¢, and we define entropy for such channel. For
a fixed p (the a priori measure) and for a given a Hamiltonian H : M, —
M, we present a version of the Ruelle Theorem: a variational principle of
pressure (associated to such H) related to an eigenvalue problem for the
Ruelle operator. We introduce the concept of Gibbs channel.

We also show that for a fixed p (with more than one point in the support)
the set of L such that it is ¢-Erg (also irreducible) for p is a generic set.

We describe a related process X,,, n € N, taking values on the projective
space P(C*) and analyze the question of the existence of invariant proba-
bilities. We also consider an associated process p,, n € N, with values on
Dy, (Dy, is the set of density operators). Via the barycenter, we associate the
invariant probability mentioned above with the density operator fixed for ¢,.
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3.1 Introduction

There are many different definitions and meanings for the concept of
quantum dynamical entropy. We mention first the more well-known con-
cepts due to Connes-Narnhofer-Thirring (see [CNTS8T]), Alicki-Fannes (see
[AF94]), Accardi-Ohya-Watanabe (see [ASS20]), Stormer [Stg02] and Kossa-
kowski-Ohya-Watanabe (see [KOW99]). In this case, the entropy can be
exactly computed for several examples of quantum dynamical systems.

A different approach appears in [SS17] and [SZ94] where the authors
present their definition of quantum dynamical entropy (see also [AW19]).

Classical texts on quantum entropy are [AF0I], [Ben09], [Ben03] and
[OP04], and for quantum channels we also mention [JP19], [Lid19)], and
[Wol12].

We present here a certain concept of dynamical quantum entropy. A
confirmation that this entropy is in fact a concept that describes valuable
information from a dynamic point of view is its relationship with Lyapunov
exponents as presented in [BKL21a] by the same authors. Lyapunov ex-
ponents are quite important tools that are used in Physics, Dynamics, and
Fractals. Moreover, in [BKL21a] we will show that the purification property
is C%-generic.

One of the most challenging open problems in quantum information the-
ory is to introduce a good definition capable of quantifying how entanglement
behaves when part of an entangled state is sent through a quantum channel.
Therefore the understanding of quantum channels is a problem of central
importance.

Denote M} the set of complex k& by k matrices. We will analyze here
quantum channels ¢; of the following kind: given a measurable function
L : M, — M; and the measure p on M, we define the linear operator
¢r : My — My, via the expression p — ¢ (p) = SMk L)pL(v)" du(v).

The probability p will play the role of an a priori probability for defining
entropy (in the spirit of [LMMS15]) as described in section

In [BFPP19] the authors present interesting results for the case L =
I. This paper is our starting point and we follow its notation as much as
possible. Given L (as above) one can consider in the setting of [BFPP19]| a
new probability u; = uo L™! and part of the results presented here can be
recovered from there (using py, instead of p).

We will present all the proofs here using L and p as above (and not via
) because this will be more natural for our future reasoning (for instance
when analyzing generic properties).

In the Thermodynamic Formalism version of Quantum Information, the
L will help on the one hand to express the analogous concept of function
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(even the analog of a Hamiltonian) and on the other hand, a certain class of
L - together with the a priori probability u on My - will help to describe the
analogous concept of invariant probability. Later we will elaborate on that.

This paper is self-contained.

For a fixed p and a general L we present a natural concept of entropy
for a channel in order to develop a version of Gibbs formalism which seems
natural to us. Example m in Section (the Markov model in quan-
tum information) will show that our definition is a natural extension of the
classical concept of entropy. We point out that the definition of entropy we
will consider here is a generalization of the concept described on the papers
[BLLC10], [BLLCIIa] and [BLLC11bl|. This particular way of defining en-
tropy is inspired by the results of [Slo03] which consider iterated function
systems.

For a given H : My — My (which plays the role of a Hamiltonian) we
present a version of the Ruelle Theorem for ¢p: a variational principle of
pressure related to an eigenvalue problem for a kind of Ruelle operator (see
Theorem [3.4.8).

A question of terminology: the operator H (mentioned above as Hamilto-
nian) could also be naturally called Liouvillian; it would make perfect sense
taking into account that M) is an algebra of quantum observables where
the operator acts (Heisenberg picture of QM). The notation L used by the
authors in [BFPP19] was probably inspired by their understanding that L
plays the role of a Liouvillian operator.

We say that £ < C* is (L, p)-invariant if L(v)(F) < E, for all v in the
support of u. Given L : My — My and p on My, we say that L is ¢-Erg for p,
if there exists an unique minimal non-trivial space E, such that, E is (L, p)-
invariant. We will show in Section [3.7|that for a fixed p (with more than one
point in the support) the set of L such that it is ¢-Erg for u is generic. In
fact, the set of L which are irreducible is dense according to Theorem [3.7.5

The introduction of this variable L allows us to consider questions of a
generic nature in this type of problem.

We point out that here we explore the point of view that the (discrete-time
dynamical) classical Kolmogorov-Shannon entropy of an invariant probabil-
ity is in some way attached to an a priori probability (even if this is not
transparent on the classical definition). This point of view becomes more
clear when someone tries to analyze the generalized XY model (the sym-
bolic space M™ where the alphabet M is a compact metric space) which is a
case with the property that each point has an uncountable number of preim-
ages (see [LMMS15] and [BCL*11] for discussion). In the dynamical setting
of [LMMSTI5] to define entropy it is necessary first to introduce the transfer
(Ruelle) operator (which we claim - in some sense - is a more fundamental
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concept than entropy) which requires an a priori probability (not a general
measure). Our results correspond to the case where the alphabet (that in
some sense corresponds to the support of the a priori probability p) can be
uncountable.

The point of view of defining entropy via the limit of dynamical partitions
is not suitable for the generalized X Y model. We are just saying that in any
case the concept of entropy can be recovered via the Ruelle operator.

We point out, as a curiosity, that for the computation of the classical
Kolmogorov-Shannon entropy of a shift invariant probability on {1, 2, ..., d}N
one should take as the a priori measure (not a probability) the counting
measure on {1,2, ..., d} (see discussion in [LMMS15]]). In the case, we take as
a priori probability u the uniform normalized probability on {1,2,... d} the
entropy will be negative (it will be Kolmogorov-Shannon entropy - log d). In
this case the independent 1/d probability on {1,2,..., d}N will have maximal
entropy equal 0.

A general reference for Thermodynamic Formalism is [PP90] and [Lop11].

We point out that we consider here Quantum Channels but the associated
discrete-time process is associated with a Classical Stochastic Process (a
probability on the infinite product of an uncountable state space) and not
to a quantum spin-lattice, where it is required the use of the tensor product
(see [LMMMI18] and [BLMM21]).

After some initial sections describing basic properties which will be re-
quired later we analyze in Section the eigenvalue property for ¢ .

Under some mild assumptions on ¢, we define the entropy of the channel
¢r, in Section . For a fixed p (the a priori measure) and a given Hamil-
tonian H : M, — M, we present a variational principle of pressure and we
associate with all this an eigenvalue problem on Section [3.3] In Definition
we introduce the concept of Gibbs channel for the Hamiltonian H (or,
for the channel ¢g).

In Section we describe (adapting [BEPP19] to the present setting) a
process X,, n € N, taking values on the projective space P(C*). We also
analyze the existence of an initial invariant probability for this process (see
Theorem .

In Sectionwe consider a process p,, n € N (called quantum trajectory
by T. Benoist, M. Fraas, Y. Pautrat, and C. Pellegrini) taking values on
Dy, where D, is the set of density operators on Mj. Using the definition
of barycenter taken from [[Slo03] we relate in proposition the invariant
probabilities of Section [3.5| with the fixed point of Section [3.3]

In Section , for a fixed measure p, we show that ¢-Erg (and also
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irreducible) is a generic property for L (see Corollary [3.7.10)).

In Section |3.8, we present several examples that will help the reader
in understanding the theory. Example shows that the definition of
entropy for Quantum Channels described here is the natural generalization
of the classical concept of entropy. In another example in this section, we
consider the case where p is a probability with support on a linear space of
M, (see Example , and among other things we estimate the entropy of
the channel.

In the final section (3.9 we will present some clarifications on which direc-
tions our work is related to relevant issues in the area connected to quantum
entropy.

3.2 (General properties

We present some basic definitions.

We denote by My, k € N, the set of complex k£ by k£ matrices. We consider
M the standard Borel sigma-algebra over M;, and on C*, we consider the
canonical Euclidean inner product.

We denote by Id; the identity matrix on Mj.

According to our notation, { denotes the operation of taking the dual of
a matrix with respect to the canonical inner product on CF.

Here tr denotes the trace of a matrix.

Given two matrices A and B we define the Hilbert-Schmidt product

(A, BY = tr (AB").

This induces a norm [|A|| = 4/( A, A) on the Hilbert space M, which
will be called the Hilbert-Schmidt norm.

Given a linear operator ¢ on M we denote by ¢* : M — M, the dual
linear operator in the sense of Hilbert-Schmidt, that is, if for all XY we get

(o(X), V) =(X, ¢"(Y))
Now, consider a measure p on M.
For an integrable transformation F': M, — My:

JMk F(v) du(v) = <JM F(v),, du(v)) ;

1’7]

where F(v), ; is the entry (i, j) of the matrix F(v).
We will list a sequence of trivial results (without proof) that will be used
next.
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Lemma 3.2.1. For an integrable transformation F : My — Mj,

tr ka F(v) du(v) = ka tr F(v) dp(v).

Lemma 3.2.2. Given a matric B € M, and an integrable transformation
F: Mk — Mk, then,

B ka F(v) du(v) = ka BF(v) du(v).

Proposition 3.2.3. If [ : M, — C is a linear functional and F : M, — M,
15 integrable, then,

! [ P i) ) - [ 1P duo)

Definition 3.2.4. Given a measure y on M} and a measurable funtion L :
M — M., we say that u is L-square integrable, if

[ e dut) <

For a fixed L we denote by M(L) the set of L-square-integrable measures.
We also denote P (L) the set of L-square-integrable probabilities.

Definition 3.2.5. Given a measurable function L : M, — M, and a L-
square-integrable measure p we define the linear operator ¢y : My — M, via
the expression

p — orp) =J L(v)pL(v)" dp(v).

My,

For a given H : M), — My (which plays the role of a Hamiltonian) we
present a version of the Ruelle Theorem: a variational principle of pressure
related to an eigenvalue problem for a kind of Ruelle operator (see Theorem
3.1.9).

Remember that if A, B € M, with A, B > 0, then tr (AB) < tr (A)tr (B).

35



Therefore, if p > 0, we have

o (p)||” = tr (¢r(p )T)
JM JM tr (L(v)pL(v)' L(w)' pL(w)) dp(v) dps(w)

- ka ka tr (pL(0)' L(w) pL(w) L(v)) dya(w) du(w)

<t . ka tr (pL(w) L(0) (o) L(w)") dyu(v) dp(uw)
o[ L)L) L") dutw)duto

<) MO dutw) | LI dis) < o0

For a general p € My, we write p = p, —p_ where p, = |p| and p_ = |p|—
are both positive semidefinite matrices. By linearity of ¢, we have

oL(p) = or(py) — drlp-),

hence, ¢y, is well defined.

Proposition 3.2.6. Given a measurable function L : My — My and a L-
square integrable measure ji, then, the dual transformation ¢j is given by

b1(p) = fM L)' pL(v) du(v).

Definition 3.2.7. Given a measurable function L : M, — M, and a L-
square integrable measure p over My, then, the transformation ¢y is called
stochastic if

¢r(Idy) = fM L) L(v) du(v) = Idy.

By abuse of language, we sometimes say L stochastic to mean that ¢y, is
stochastic.

We will be able to define the concept of entropy when the ¢, is stochastic.

Definition 3.2.8. A linear map ¢ : My — M is called positive if takes
positive matrices to positive matrices.

Definition 3.2.9. A positive linear map ¢ : M; — M, is called completely
positive, if for any m, the linear map ¢,, = ¢ I,,, : M, & M,,, - M, ® M,,
is positive, where I,,, is the identity operator acting on the matrices in M,,.
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Definition 3.2.10. If ¢ : M, — M} is a linear map and satisfies
1. ¢ is completely positive;
2. ¢ preserves trace.

Then, we say that ¢ is a quantum channel.

Theorem 3.2.11. Given L : My — My and p a L-square measure. Then
the associated transformation ¢ is completely positive. Moreover, if ¢y, is
stochastic then preserves trace.

Proof. 1. ¢ is completely positive: suppose A ® B € M, ® M, satisfies
A®B=>0and ¢ € C*"®CF. Then, if ¢ (v) = (Id, ® L(v)")¢ we get

(VIA®GL(B)|¢) = (P |A® |  L(v)BL(v)" du(v)|¢)

My,

= | (Y|A® (L()BL®)"|¥) du(v)

My,

= | (¥1(1d, ® L(0))(A® B)(Idn ® L(v))|¢) dps(v)

My,

= | {1d, @ L)) |(A® B)| (Id, @ L(v)")) du(v)

My,
= | () [(A® B)[¢r(v)) du(v) = 0.
My,
Above we use the positivity of A ® B in order to get {(¢(v)|(A ®

B)|Yr(v)) = 0. We also used in some of the equalities the fact that
I(X) == (Y|A® X|1) is a linear functional and therefore we can apply

proposition [3.2.3]

2. Under our assumption ¢y, preserves trace: given B € My,
trép(B) = tr ( f L(v)BL(v)' du(v))
My,
_ J r (L)BL)') du(o)
My,
:J tr (BL(U)TL(U)> dpu(v)
My,

ot (B JM L)' L(v) du(v))
_wB).
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Remark 3.2.12 (¢} is completely positive). When L is measurable, then,
using the same reasoning as above one can show that ¢ is completely posi-
tive.

We say that ¢, preserves unity if ¢ (Id) = Id. In this case, ¢} preserves
trace. When ¢ preserves the identity then ¢; preserves trace.

3.3 The eigenvalue property for ¢;

In this section, we will investigate questions related to the existence of
eigenvalues and eigenmatrices for the setting of Quantum Information. An
important role will be played by a result about positive maps on C*-algebras
described in [Eva78] which presents a noncommutative version of the Perron
Theorem.

Definition 3.3.1 (Irreducibility). We say that ¢ : My, — M, is irreducible
if one of the equivalent properties is true

e Does not exists A > 0 and a projection p on a proper non-trivial sub-
space of C*, such that, ¢(p) < \p;

For all non null A > 0, (Id + ¢)* ' (A) > 0;

For all non null A > 0 there exists t4 > 0, such that, (e'4?)(A) > 0;

If P € My, is a hermitian projector such that ¢(PMyP) < PM;P, then
P e {0,1d};

For all pair of non null positive matrices A, B € M, there exists a
natural number n € {1,...,k — 1}, such that, tr [B¢™(A)] > 0.

The proof of the equivalence of the two first items appears in [Eva7§].

The equivalence of the two middle ones appears in [Sch00] where also
one can find the proof of the improved positivity (to be defined below) which
implies irreducibility. For the proof that the last two items, we refer to
[Wol12].

Definition 3.3.2 (Irreducibility). Given u we will say (by abuse of language)
that L is irreducible for u or p-irreducible if the associated ¢y, is irreducible.

Lemma 3.3.3. Given L : M — My, and p a L-square measure, the following
statements are equivalent:
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1. ¢r, is irreducible;

2. If E < C* is a subspace such that L(v)E < E for all v € supp u, then
E e {{0},C*}.

Proof. 1. — 2.: If ¢y is irreducible and E < C* is a subspace such that
L(v)E < E for all v € supp u, take P the orthogonal projection on E. Then
PL(v)P = L(v)P for all v € supp . Moreover, for every A € M

¢ (PAP) = JM L(v)PAPL(w)" du(v)

— J PL(v)PAPL(v)'P dp(v)
supp
= PJ L(v)PAPL(v)" du(v)P € PM,P,
supp p

and by the fourth equivalence of [3.3.1, P € {0,Id}. Therefore £ = {0} or
E = C*.

2. — 1.: If there is P € M, Hermitian projection such that ¢, (PMP) €
PMP, take E =Im P, x € E and A = |z ) {x|. Then we have

0 = tr (¢,(PAP) — Pé(PAP)P) =

_ JPM tr <L(U)AL(U)T . PL(U)AL(U)TP) dp(v)

_ ; tr (L(0)AL(w)' ~ PL()AL(0)'P) du(v)
2

| (L(U)AL(U)T (I - P)) d(v),

JB,

where B, := {v|L(v)z ¢ E}. Suppose P ¢ {0,1d}, then we have
tr (L(v)AL(v)") — tr (PL(v)AL(v)' P) > 0,

and, since the integral is zero, u(B,) = 0. Thus, for all z € E, supp u < B¢
and so L(v)E < E for v € supp . By hypothesis, we have that E e { {0}, C*}

which brings us to an absurd.
|
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Definition 3.3.4 (Improving positivity). We say that ¢, is positivity im-
proving, if ¢, (A) > 0, for any non-null A > 0. Note that improving positivity
implies irreducibility.

For any p and square-integrable L the Theorem assures that ¢r, is
completely positive. In the case ¢y, is irreducible we can use the Theorem 2.3
and 2.4 of [Eva78] in order to get A and p > 0, such that, ¢r(p) = A\p (p is
unique up to multiplication by scalar). For what comes next, we will choose
p such that trp = 1. Moreover, in the same work the authors show that ¢
is irreducible, if and only if, ¢ also is completely positive, and therefore we
get:

Theorem 3.3.5 (The spectral radius is a simple eigenvalue). Given a square
integrable L : My — My assume that the associated ¢y, is irreducible. On a
Hilbert space, the spectral radius A\, > 0 of ¢p and ¢7 is the same. In
this case it is also an eigenvalue and it is simple. We denote, respectively,
by pr > 0 and o, > 0, the eigenmatrices, such that, ¢r(pr) = Appr and
o5 (o) = Apor, where pr, and o, are the unique non null eigenmatrices (up
to multiplication by scalar).

The above theorem is the natural version of the Perron-Frobenius The-
orem for the present setting. It is natural to think that ¢y acts on density
matrices and ¢} acts in selfadjoint matrices.

Remark 3.3.6. We choose py in such way that trpy, = 1 and after that,
we take o, such that tr(oppr,) = 1. By doing that, we have chosen the
precise scalar multiples that makes both p; and oy p; densities. Notice that,
as eigendensity, py, is unique. We point out that at this moment it is natural
to make an analogy with Thermodynamic Formalism: ¢7 corresponds to
the Ruelle operator (acting on functions) and ¢, to the dual of the Ruelle
operator (acting on probabilities). We refer the reader to [PP90] for details.
In this sense, the density operator opp; plays the role of an equilibrium
probability. The paper [Spi72|| by Spitzer describes this formalism in a simple
way in the case the potential depends on two coordinates.

Remark 3.3.7. If L is irreducible and stochastic (resp. ¢y, is unital, i.e.,
¢r(Id) = Id) then A, = 1 and o7 = Idy (resp. pr = Idy) by Proposition 6.1
on [Woll2] page 91.

3.3.1 Normalization

We consider in this section a fixed measure p over M) which plays the
role of the a priori probability.
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In this section we will introduce the concept of normalized transformation
L (see definition [3.3.9). If L is not normalized we will be able to find an
associated L which is normalized (see (3.1))).

Given a continuous L (variable) we assume in this section that ¢ is
irreducible (we do not assume that preserves trace).

We will associate to this square integrable transformation L : My — M}
(and the associated ¢ ) another transformation L : M, — M, which will
correspond to a normalization of L. This will define another quantum channel
qb i - M g M k-

Results of this section have a large intersection with some material in
[Woll12]. For completeness, we describe here what we will need later.

Consider o7, e A\ as described above. As o is positive we consider
o2 >0 and 0,72 > 0.

In this way we define

i) = o, 2L(0)o, (3.1)
VA" b '
Using the measure p we can define the associated ¢; .
Therefore,

Note that IA/(U)T = \/%JZI/QL(U)QT;/Q. From this we get easily that ¢; is
completely positive and preserves trace (is stochastic).

We will show that ¢; is irreducible. Given A € M}, we have

1 - -
03(A) = o1 oulo, Aoy ol
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1 4 —12 1 1 12, —1/2 1/2 _—1/2\ 1/2
Q(A) = _UL/ ér(oy, / EUL/ ooy, / AULl/ )UL/ op, / )UL/

1/2 ~1/2 4 5112y 512
)\2 L/ ¢L( / /)UL/-

By induction we get

op(A) = 1 An 0] 00" Ao, ).

Given A, B = 0, note that o 1/2A0L > (0 and ai/QBai/Q > (. Therefore,
using irreducibility of ¢, there exists an integer n € {1,..., k—1}, such that,

0 < A"t [0)*Bo ¢ (o, ? Ao, )]
= A\ "tr[Bo) ¢ (0, Aoy o))
= tr [Bo} (A)].

Therefore, ¢; is irreducible and completely positive and preserves trace.

In this way, to the given L we can associate L which will be called the
normalization of L. The transformation ¢; is a quantum channel.

Definition 3.3.8. Given the measure p over M we denote by £(u) the set
of all integrable L such that the associated ¢ is irreducible.

Definition 3.3.9. Suppose L is in £(u). We say that L is normalized if ¢,
has spectral radius 1 and preserves trace. We denote by 9%(u) the set of all
normalized L.

Note that the transformation L defined above in is normalized.

If L € M(p), then, we get from Theorem and the fact that ¢7 (Id) =
Id, that the spectral radius, which is also a simple eigenvalue, is A\;, = 1.
According to Remark [3.3.6] there is a unique eigendensity p; such that
¢1(pr) = pr. These properties will be important for what will come next.

Theorem 3.3.10 (Ergodicity and temporal means). Suppose L € 9(u).
Then, for all density matrix p € My, it is true that

where py, is the density matrix associated to L.
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Proof. The proof follows from Theorem and Corollary 6.3 in [Wol12].
|

The above result connects irreducibility and ergodicity (the temporal
means have a unique limit).

3.4 Entropy

In this section, we will define entropy for ¢, when the associated L is
irreducible and stochastic (see Definition[3.4.2). After that, it will be possible
to give a meaning for a certain variational principle of pressure in Definition
(this is similar to the setting in Thermodynamic Formalism which is
described in [PP90], for instance).

Remember the classical entropy is defined just for invariant (stationary)
probabilities. Something of this sort is required for defining the entropy of
a quantum channel ¢r: L has to be stochastic. These ¢ will play in some
sense the role of the different possible invariant probabilities.

We will explore some ideas which were already present on the paper
[BLLCTO] (which explores some previous nice results on [LZS03] and [Slo03])
which considers a certain a prior: probability.

Hereafter, we consider fixed a measure . over M which plays the role
of the a priori probability. Given L € £(u) we will associate in a natural
way the transformation ¢ : My — M.

Definition 3.4.1. We denote by ¢ = ¢, the set of all L such that the
associated ¢r, : M — My is irreducible and stochastic.

We will describe a discrete-time process that takes values on M.

Suppose L is irreducible and stochastic. We will associate to such L a
kind of “transition probability kernel” P (to be defined soon) acting on
matrices. Given the matrices v and w the value Pp(v,w) will describe the
probability of going in the next step to w if the process is on v.

Given L, suppose that the discrete-time process is given in such a way
that the initial state is described by the density matrix p; which is invariant
for ¢, (see Theorem [3.3.5).

The reasoning here is that such process should be in “some sense sta-
tionary” because py, is invariant by ¢;. As we said before in ergodic theory
the concept of Shanon-Kolmogorov entropy has a meaning just for invariant
(for a discrete-time dynamical system) probabilities. Therefore, something
of this order is required.
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In our reasoning given that the state is described by p, then, in the next

step of the process we get % with probability tr (L(v)pL(v)") du(v).

This discrete-time process takes values on density operators in Mj,.

Definition 3.4.2. We define entropy for L (or, for ¢;) by the expression
(when finite):

Mm=mnﬁ—hyﬂmww@wﬂmm%&mmmmmwm

x Mj,

tr (L(w) L(v)pr L(v) L(w)")
tr (L(v)prL(v)") '
This definition is a generalization of the analogous concept presented on
the papers [BLLCI10], [BLLCI1al and [BLLCI1h].
Note that tr (L(v)pL(v)") is the probability of being in state M

r(L(v)prL(v)")’
Moreover, Pp(v,w) describes the probability of going from v to w, being in

state

Pr(v,w) :=

L(w) Lw)pi L(0) L(w)'
tr (L) L(0)pe L(0) L w)')

In this way h, (L) in some way resembles the analogous expression of entropy
for the case of Markov chains.

We will show in Example that the above definition of entropy is
indeed a natural generalization of the classical one in Ergodic Theory.

Suppose H : M), — Mj, is square integrable, irreducible and H(v) # 0,
for p-a.e. v. For such H, consider the corresponding py, oy and Ay which
are given by Theorem |3.3.5, where trpy = 1 and trogpy = 1.

This H describes the action of a potential.

Then, we define

Un(v) := log (tr (o H()pw H(0)")) .

Definition 3.4.3. We define the pressure of H by

P,(H)=P(H) := sLug{h#(L) + f Ug (v) tr (L(v)prL(v)) dﬂ(v)}.
€
Remember that ¢, is the set of all L : My — M; which are square-
integrable, irreducible, and stochastic.
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Definition 3.4.4. Given p and H as above we say that ¢, for some L € ¢,,
is a Gibbs channel, if

PUH) = hy(D) + | Un(0) tr (L(0)psL(0)") difo)

We will need soon the following well-known result (see [PP90]).

Proposition 3.4.5. Suppose p,q : M — R, are such that p,q > 0, p-almost
everywhere, SMkp du =1 and SMk q du = 1. Then,

—Jplogp dp + fplogq dp < 0.
Moreover, the above inequality is an equality just when p = q, p-almost

everywhere.

Theorem 3.4.6. Assume that H : My, — M, is continuous, irreducible and
H(v) # 0 for p-a.e. v, then,

P(H) :=sup {hM(L) + JUH(U) tr (L(v)prL(v)") d,u(v)} < log(Am),
Leo

The supremum is attained only if

tr (L(w)L(v)pp L(v) L(w)") _ itr (onH(w)prH (W), forp-a.c.v,w.

tr (L(v)pLL(v)") Y
In this case, P(H) = log(\y).

Proof. We define q(w) := ﬁtr (o H(w)py H(w)?). Note that

J g dp= - e (o Hw)prH(w)") du(w)

AH

1
L. (UH [y du(w))
= itr (CHAHPH)
= tr(ogpu) = 1.

For fixed v and irreducible and stochastic L take

tr (L(w) L(v)pL L(v) L(w)")
po(w) = Pp(v,w) = tr (L(v)prL(v)T) ’
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If tr (L(v)pr,L(v)") # 0 and p,(w) = 0 otherwise. It follows that

T I l
Jpv(w) dp(w) =Jt Hw )(LL(( ))ppi(( )>§( ol dp(w)

— O 0) S L0 L) du)
tr (L) L))

From Proposition we get that for each v

= 1.

- f po(w) log(po () du(w) + f po(w) log(q(w)) du(w) <0.  (32)
Equality will happen when

tr (L(w)L(v)prL(v)'L(w)") 1
tr (L(v)prL(v)T) A
for p-almost everywhere w.
Note that from (3.2)) it follows that

tr (o H (w)pr H(w)"),

J—PL(U, w) log Pr(v,w) + Pp(v, w)log (tr (JHH(w)pHH(w)T)) du(w)

< JPL@J,ZU) log(Ag) du(w) = log(Ag).

Now we multiply both sides of the above inequality by tr (L(v)ppL(v)"),
integrate with respect to v (remember that § tr (L()prL(v)") = 1) and we
get
hu (L) +
| o L@@ L) L)) o (2 (7 () Hw))) dite) du(o)
= (L) + [t (L )on(on) Lw)) o (i (o H (w)p H(w)") ditw)
= i)+ [T (i (uHpu I 0))) b1 (E@pu L)) d(o)
< log(Ap).

As this is true for any L € ¢, we take the sup over all such L to finally
get:
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P(H) < log(\p).
|

A natural question: is there a L € ¢ such that the supremum is attained?
This kind of result would correspond in our setting to the Ruelle Theorem
of Thermodynamic Formalism (see [PP90]). In this direction, we are able to
get Theorem (3.4.8

Before trying to address this question we point out that given H as

A

above one can get the associated normalized H by the expression H =
1 12, —1/2
\/T—HO'H HO'H .
1/2

Note that o4 =1d, py = oy pHU}{/2 and Ay = 1. Therefore,

A ~

| 108 (s (@41 EH)) 0 (L)L) duto)

1 _ _
- j log (tr<Eafﬂ(v)aH”%}PpHa}faHWH<v>Ta}f>) tr (L(v)prL(v)") dp(v)

- [1ox (tr(iaHHw)pHH(vm) tr (L(o)puL(0)T) du(v)
= [ o8 (tr (ouH@pnH()) tr (L)peL0))) due) ~ log(An)

From the above reasoning we get:

Theorem 3.4.7. Assume that H = My — Mj, 1s irreducible, square integrable
and H(v) # 0, for u-a.e. v. If H denotes the associated normalization, then,

P(H) = P(H) —log(An).
Note that H € O

Theorem 3.4.8. If H is irreducible, square integrable and H(v) # 0, for
p-a.e. v, then,
P(H) =log Ay.

Proof. We already know that P(H) < logAy. We will show that there
exists an irreducible and stochastic L which attains the supremum. In order
to do that we take an orthonormal basis {|i )}i—12..x of C¥. Then, we define
an operator P such that P|i+ 1) = |i) (for instance, P = Y% |3 ) (i + 1]
and by convention | 1) = |k + 1)).
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Note that the dual of P is PT = |7+ 1){i|. This is so because given
u,v € C*, we get that

(u, Pv) =Z<u, |idi+1|v) :Z<|¢+ 1) ilu, vy = (P, v).
Moreover, PTP = Id. Indeed,
Z\j+ LGl ){i+ 1] =Z|i><i| = Id.

Now, take @) = (g;;) the matrix with gx, = —1, ¢ = 1, fori =1, ..., k—1,
and ¢;; = 0 otherwise. Note that QTQ = Id.

Consider py, oy, Ag given by Theorem [3.3.5] where tr (cgpy) = 1 and

tr (py) = 1 and let p(v) = \/ﬁtr (o H () puH ().

Note that if #suppu = 1, H can’t be irreducible because any eingenvec-
tor of H(v) for v € supp p generates an invariant subspace.

There exist vy, vy € supp p with ¢(v;) # 0 by hypothesis. Take O an open
set with v; € O and d(O,v;) > 0. Now we can define L by L(v) = p(v)P,
for v ¢ O, and L(v) = ¢(v)Q, for v € O.

Observe that L(v)'L(v) = |p(v)[*1d, for all v, and §|p(v)]* du(v) = 1.
This implies that ¢% (Id) = Id.

Suppose that E is an invariant subspace of C¥ for all L(v) with v € supp p.
Of course, as ¢(v;) # 0, E is invariant for P and (. In this sense, taking
x = (x1,...,2%) € E, we get Qz = (z1,...,—xx) € E. As E is a linear sub-
space this implies that (xy,...,25_1,0) € E, and (0,...,0,z;) € E. Taking
P™0,...,0,24), for n = 0,...,k—1, if 2, # 0, we get a base of C* in FE.
Therefore, if 2, # 0, we have £ = C*. On the other hand, if initially z;, = 0,
we take P"x, where (P"z); # 0, and we use the previous argument. If there
is no x € E and n such that (P"z), # 0, then £ = {0}. Therefore, ¢, is
irreducible by Lemma [3.3.3

To show that L satisfy the supremum for pressure, from the inequality
give by Theorem [3.4.5} it is enough to show that

b (L(w)L@)pr L)' L)) 1
tr (L(0)pr L)) =5, (onH(w)pn H(w)").
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In order to get this, observe that

Thus, the required equation holds. |

3.5 Process X,, n € N, taking values on P(CF)

Consider a fixed measure p on My and a fixed L : M — M, such that,
SMk |1 L(v)||> dp(v) < o0, and, also that ¢y, is irreducible and stochastic.

Note that if, for example, p is a probability and the the function v —
IL(v)| is bounded we get that §, |L(v)|]> du(v) < .

Denote by P(CF) the projective space on CF with the metric d(Z,9) =
(1 — |[(x, y)I))V2, where x,y are representatives with norm 1 and (-, - ) is
the canonical inner product.

We choose representatives and from now on for generic z, 3 the associated
ones are denoted by x,y. We assume “continuity” on these choices.

Take 2 € P(C*) and S = P(C*). For a stochastic ¢, we consider the
kernel

M(25) = | 1s(L0)-8) |l du(o), (33)
k
where the norm above is the euclidean one.
Above L(v) - & denotes the projectivized element in P(C*).
As ¢y, is stochastic we get that Iy (2, P(CF)) = 1. (2, S) describes the
probability of getting in the next step a state in .S, if the system is presently
at the state 7.

Remember that tr (L(v)m;L(v)") = ||L(v)z|]®, where m; = |2 ) 2| and
are representatives of norm 1 in the class of z.

This discrete-time process (described by the kernel) taking values on
P(CF*) is determined by p and L. If v is a probability on the Borel o-algebra
B of P(C*) define
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VT, (S) — L(m M, (3, S) dv(3)
-| 16(L(v) - ) | L(v)all® d(&) du(v).
P(CFk)x My,

vl is a new probability on P(C¥) and IIj, is a Markov operator. The
above definition of v — 11}, is a simple generalization of the one in [BEPP19],
where the authors take the L considered here as the identity transformation.

The map v — v 11, (acting on probabilities v) is called the Markov oper-
ator obtained from ¢, in the paper [LZS03]. There the a priori measure p
is a sum of Dirac probabilities. Here we consider a more general setting.

Definition 3.5.1. We say that the probability v over P(CF) is invariant for
HL; if VHL = V.

The natural question is: does exist such invariant probability for 11,7

About the question of existence, we are going to prove that the kernel
defined above is a continuous Markov operator (in the weak-star topology).
So, leaving the compact set of probabilities over P(CF) invariant, by the
Markov-Kakutani theorem there exists a fixed point, which means that there
exists an invariant probability. In order to do that we only need to find
a linear operator U : Cy(P(C*),C) — Co(P(C*),C) such that (Uf,v) =
{f,vII1). Here, Co(P(CF),C) stands for continuous functions from P(CF) to
C with the Cy norm which we denote by ||-||.,,. When such U exists we say
that the Markov operator 11 is Feller.

According to Proposition 2.10 in [Slo03]] if such U exists, then, II is
continuous in weak-star topology and by Markov-Kakutani theorem, there is
a fixed probability in P(C*).

In Example [3.8.5] we calculate the explicit expression of the invariant
probability v.

Theorem 3.5.2. Suppose that L is such that SMk |L(v)||> du(v) < oo. Then,
there exists at least one invariant probability v for the Markov operator 11y,

Proof. Define U : Co(P(CF),C) — Cy(P(CF),C) by

Uf(@) =] f(L@)-2)[|IL@)z]" du(v).

My,
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Notice that

Ufv) = Uf(#)dv(E)

P(Ck)

- JP((Ck) M, F(L() - &) | L(v)al*, dpu(v)dv ()
— J (@) dwly)(2) = VL)
P(C)

Therefore, (U f,v) = (f,vII).

Then, we only need to prove that U f is a continuous function of P(CF).

Consider a sequence (7,) € P(C¥), such that, #,, — & € P(C¥). We are
going to show that U f(#,) — U f(Z). Define F, F,, : M}, — C by

Fo(v) = f(L(v) - ) | L(0)aa]

and
Fv) = f(L(v) - 2) [[L(v )37H2
This way, U f(4,) = { F,(v)du(v) and Uf(z) = § F(v) . Since the
function f and the norm are continuous, we have F.(v ) ( ), for all
vE M.
Also,

[Fa(0)] = [f(L(0) - Za)l - IL@)zal* < [ flls tr (L(0)] 20 X @ |L(0)')
= £l tr (| X @ IL@O) L)) < [I£ll, tr (L) L)) = | £ll, L)

As §||L(v)||” dp(v) < o0, we can apply Lebesgue Dominated Convergence
Theorem to conclude that

Uf(z )—JF ) dpi(v —>J Uf(2).

So we have that U f is continuous and this is the end of the proof. |

3.6 Process p,, n € N, taking values on Dy,

For a fixed p over M}, and L such that ¢, is irreducible and stochastic, one
can naturally define a process (p,) on Dy = {p € My, : trp = 1 and p = 0}
which is called quantum trajectory by T. Benoist, M. Fraas, Y. Pautrat, and
C. Pellegrini in [BEPP19]. Given a pj initial state, we get

L()pp1 L(v)
tr (L(v) pn—1 L(v)")

o1

Pn =



with probability
tr (L(0) pacs L(0)) dia(v), e N,

This process has similarities with the previous one in P(C*) and we ex-
plore some relations between them. In this section, we follow closely the
notation of [BFPP19].

We want to relate the invariant probabilities of the last section with the
fixed point pi, = pk, of ¢r.

First, denote  := M}, and for w = (w;),oy, take m,(w) = (w1,...,wy).
Recall that M is the Borel sigma-algebra on M;. For all, n € N, consider
O,, the sigma algebra on €2 generated by the cylinder sets of size n, that
is, O, = 7, }(M"). We equip Q with the smallest sigma algebra © which
contains all O,,, n € N.

Denote J,, := B x O, and J := B x O. In this way, (P(CF) x Q,7)
is an measurable space. By abuse of language we consider V; : 2 — M, as

a random variable V;(w) = w;. We also introduce another random variable
W, = L(V,)--- L(V}), where W, (w) = L(wy) - - L(wy).

For a given a probability v on P(CF), we define for S € B and O, € O,
another probability on P(C* x Q) by

P, (S x Op) := J W (w)z||” dv(z) du®™(w). (3.4)
SxOnp

Remark 3.6.1. We can extend the above probability P, over B x O. We

claim that P,,, n € N, is a consistent family over the cylinders of size n

(then, we can use the Caratheodory-Kolmogorov extension theorem).
Indeed, note that W, 11(w) = Ly41(w)W,(w). Then

Py (S x Op x My) — J Woar )zl dv() dp®™*(w)
SXOp X M,
= J tr (L(wnH)Wn(w)wiWn(w)TL(wnH)T) dv(2) du®"+t(w)
SXOnXMk

= | tr ( Wa(@)mWa(@)" | Lwns) Llwnr) dpwnir) | (@) dp® ()
Jor( J )

X On My,

= |l v e
SxOnp
= PV,TL(S X On)

Since the set {W,z = 0} leads to a null integrating term in ([3.4]), we
have P, (W,z = 0) = 0. Therefore, we define the expression for each n and
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then extend it. In this way W, (w)x # 0. Remember that W, (w) - Z is the
representative of the class W, (w)z, when W, (w)z # 0.

Denote E, the expected value with respect to P,. Now observe that for
a v probability on P(C*), if mx, is an orthogonal projection on subspace
generated by X, on C*, we have

Py ‘= El,<7TX0) = J Tzo dl/(xo).
P(Ck)

We call p, barycenter of v, and it is easy to see that p, € Dy.

Note that for each p € Dy, exists (v,,) an orthonormal basis of eigenvec-
tors with eigenvalues a; such that p = > . a;m,,. Therefore, exists v = ] a;,,
such that p, = p.

We collect the above results in the next proposition (which was previously
stated as Proposition 2.1 in [BFPP19] for the case L = I).

Proposition 3.6.2. If v is invariant for 11y, then

py =Ey(rg,) =Eu(ng,) = orlpy).

Therefore, for an irreducible L, every invariant measure v for Il has the
same barycenter.

We point out that in this way we can recover p;,,, the fixed point of ¢,
by taking the barycenter of any invariant probability (the quantum channel
¢, admits only one fixed point). That is, for any invariant probability v for
I, we get that p, = pine-

Note that the previous process can be seen as p, : 2 — Dy, such that,
po(Z,w) = p, and, and n € N

p (w> _ Wn(w)pOWn(w)T )
") @)Wl
Using an invariant p we can define a Stationary Stochastic Process taking
values on Mj. That is, we will define a probability P over Q = (M,)".
Take O,, € O,, and define

P#(0,) = L b (W (@)p W ()1 dpe ().

The probability P on €2 defines a Stationary Stochastic Process.
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3.7 ¢-Erg and irreducible is Generic

Definition 3.7.1. Given L : M) — M, u on M, and E subspace of C¥, we
say that E is (L, p)-invariant, if L(v)E < E, for all v € supp p.

Definition 3.7.2. Given L : My — My, p on My, we say that L is ¢-Erg
for p, if there exists an unique minimal non-trivial space E, such that, F is
(L, pv)-invariant.

In the case the space E is equal to C*, as shown in Lemma [3.3.3] we have
L irreducible for p (or p-irreducible) in the sense of Definition [3.3.2]

Consider B(My,) = {L : M — M| L is continuous and bounded} where
| L|| = supyepr, [IL(v)]|. We write B = B(M},) when k is implicit.

Proposition 3.7.3. Given L € B(My), p over My, vy € supp p and € > 0,
there exists L. € B(My) such that ||[L — L.|| < £ and L.(vy) has k distinct

2
ergenvalues.

Proof. Take v; € suppu. Denote by J the Jordan canonical form for
the complex matrix L(v;) and take B such that L(v;) = B~'JB. Define
Dn = (di,j)i,j € Mk, where

dij =

1 ifi=nandj=n
0 otherwise.

Now, we look for each diagonal element of J. If the first, i.e., the element
(1,1) is zero, we sum $D;. If the second element is not different from the
first or is not different of zero, then, we sum %DQ, where ¢ > 2 is chosen to

satisfy both. We repeat this process until all the elements of diagonal are
considered. After that, we get that all diagonal elements of J + ] y 0 Dj are

2%

) ) )

257 Di 2
j

< RN
= 2t 2
j
J
We define D° = Z ?Dj and L. = L+ B~'D°B. Therefore, | L. — L| =
J

different and none is zero. Moreover,

HB_ID‘SBH < g |B7!| I B]|- Choosing § < we get

£
(IB=LIBIl
L.~ L] < =.
2

Therefore, as J + D° has the same eigenvalues of L. (v;), we finished the
proof. |
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Lemma 3.7.4. Consider eigenvectors v; € CF,1 < i < n of a linear trans-
formation A with respective eigenvalues X;, where \; # \;, fori # j. If a
subspace F' < CF is invariant for A and satisfies for some non-null constants
ay,...,0, € C

v + -+ auuy, € F)

then, v; € F for all 1 < i < n.

Proof. We proceed by induction. Suppose n = 2. Since A(a1v1 + aovs) €
F and A\ (ajv; + agvg) € F') we have

)\1 (CY1U1 + Oéng) — A(ozlvl + CEQ'UQ)

= )\1(@11)1 + 0621)2) — ()\1041?]1 + )\20(27)2)
= ()\1 — )\2)0&2’02 e F.

Therefore, vi,v, € F. Now, assuming that the claim is true for every
n < k, we get

/\k+1(alvl + -+ akHka) — A(awl + -+ ak+1vk+1) e F.

Which means (Ary1 — A1)agvy + -+ + (Akr1 — Ap)agvg € F. From the
hypothesis, this implies vy, - -+ , v, € F. It follows that v, 1 € F.

Theorem 3.7.5. Given L € B(My), p over My with #suppu > 1 and
e > 0, there exists My € B(My), such that, |L — M;s|| < € and My is ¢-Erg
and irreducible for p.

Proof. Given an € > 0, take vy € supp u such that v; # 0, the respective
L. from Proposition and moreover {z1,...,x;} such that they are a
base of eigenvectors of L.(v;), with corresponding eigenvalues \;. If L. is
irreducible for u, we are done. Otherwise, there exists a decomposition in
Ey, ..., E, minimal non-trivial subspaces that are invariant for all L.(v),
with v in supp u and k > dim E; > dim E;, for all .

Remember that E; n E; = {0} and since all E; are invariant for L.(vy),
they are generated by some of its eigenvectors.

Relabel x1, ...,z in such way that we get:

Ey = {x1,...,xa,), By = &ays1y -y Tay)y ooy B = {xq,_ 41, Ta,)
and K = (xq,41,..., 71y, with C* = B, ® .- ® E, ® K, where K is either
{0} or is not invariant for all L.(v).

Now, define the linear transformation A : C¥ — C* by A(z;) = z;41. By
abuse of notation, we assume that xp,1 = x;. Consider, for a 6 > 0, the
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operator M;(v) = L.(v) + g‘ﬁ%fA, where p(v) = Hﬂﬁ;ﬁﬂ” < 1. Denote ¢(v) =

‘;‘ﬁ—g’”) > 0. Note that ¢(v) > 0, for all v # v;. Notice that Ms(vy) = L.(vy).
The idea here is to make an element x; move to all of the other subspaces,
making it impossible to have an invariant and proper subspace for all M;(v).

This combined with the proximity of the original L will give us the result.

Claim: There exists a § > 0, such that the only non-trivial (and therefore
minimal) subspace invariant for all M;s(v), with v € supp p, is CF.

Suppose F' < CF is such a subspace. There exists a non-trivial element
121 + - -+ apxy € F N E;, for some constants a; € CF and some 4. This is so
because if K is {0} or not invariant for Ms(vy) = L.(vy), then F ¢ K. Since
not all a; can be zero, we have by the above lemma that some z; € F.

We take a matrix vo € supp p, vy # v1. Now,

Ms(ve)z; = Le(va)xj + c(ve)Axj; = Lo(ve)xj + c(v2)xj11 € F.

As Ej; is invariant for L.(vy), we get that

d;

L.(vy)x; = Z Oy T,

m=d;_1+1

Now, again, F' is invariant for Ms(v;) = L.(v1), and then

d;
Le(v1) Ms(v2)(x5) = Le(v1) ( Z QT + C(U2)xj+1>
m=d;_1+1
d;
= Z /\mOémIm -+ C(/UQ))\J‘+1 Tjt1 e F.
m=d;_1+1

Moving on, L.(vi)Ms(ve)x; — Njp1 - Ms(va)x; € F. This means

d;
()\m — >\j+1)0éml‘m e F.
m=d;_1+1
By the lemma, x,, € I, for all m which are not j+1 and the corresponding
@y, is not zero. Now, suppose that z;41 ¢ E; (this excludes the possibility of
m = j + 1 above). In this way, a,,x,, € F, for allme {d;_; +1,...,d;}, with
no exceptions. It follows that )} .z, € F and

d;

Ms(ve)z; — Z Ty, € F

m=d;—1+1
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di di
= Z QT + ¢(V2) X511 — Z O Tom
m=d;_1+1 m=d;_1+1
= c(v)xj41 € F.
As ¢(vg) # 0, we get ;1 € F. Now suppose z;41 € E;. Then

d;
Ms(vo)xj — Z O Ty, € F.

m=d;—1+1
m#j+1
This means ¢(vg)xj 41+ 41241 € F. If ¢(vy) a1 = 0 we get a problem.
In order to fix this, we need that 6;7'(27') # —qj = 0 # %;)HA”
But, note that «;;; does not depend on 4. In fact, it appears only in the

decomposition

d;
L.(vg)x; = 2 O T .-

m=di_1+1

Since we can do this decomposition for all j, we only have to check that

5¢{M;1<J<dn}.
p(v2)

Taking 0 small enough, we accomplish this and also we get 6 < . Now,
we get the claim in the same way: z;,; € F and F = CF. So, for this § we
get that Mj is irreducible. Finally,

dp(v)A
I Ml < 2= Ll 1l <2+ | 0 < e

Definition 3.7.6. For a fixed measure u over My, define

B,.(My) = {L € B|L irreducible foryu},

and

B(My) = {L € B| L is ¢-Erg for j}.

Corollary 3.7.7. Given p over My, with # supp > 1, B, (My) is dense on
B(My,).
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Proof. It follows from the above. [ |

Proposition 3.7.8. B, (M) is open for a fized p on M.

Proof. We will prove that the complement of B,,(M},) is closed in B(Mjy,). Let
L,, be a sequence outside B, (M},) converging to some L € B(My). For each
n, consider F,, a non-trivial (L,, u)-invariant subspace and P, the projection
on F,.

The (L, pu)-invariance is equivalent to say that L,(v)P, = P,L,(v)FP,,
for all v € supp . Therefore, there is a subsequence such that P, — P,
where P is a projection. Rename P, — P. Furthermore, L, — L, thus
P,L,(v)P, = L,(v)P, — PL(v)P = L(v)P, for all v € supp . This implies
that £ := S(P) is (L, p)-invariant for L. Of course, E is not the trivial
space because ||P|| = 1. Moreover, we know that ker(P,) is non-trivial for
all n, once L, is not p-irreducible. So, take x, € ker(P,) with ||z,| = 1,
and rename it in order to get a subsequence such that x, — x. Observe
that P,z, = 0, for all n and P,z, — Px. This implies that Px = 0 and, of
course, ker(P) is non-trivial. Hence, E # C* and L is not p-irreducible.

|
Proposition 3.7.9. B (M) is open for a fived pn on M.

Proof. Take L, — L such that L, is not ¢-Erg. Therefore, there exists
Eyn® By, @ Ey,, = C*, with E;,, minimal (L,, p)-invariant for L,,, where
i = 1,2 and Ej, is not necessarily (L,, pt)-invariant. Take P, ,, the projection
on L ,. Rename them in order to get a subsequence such that P;,, — P, for
all ¢ = 1,2,0. By using the same argument as the one used in Proposition
we observe that F; = (P;) is (L, u)-invariant for L, for i = 1,2.
If x € E4\{0} we know that lim, ||P 2 —z|| = ||[Pix — || = 0, so defining
Ty = Pipx € By, we get x, > x. As0 = Py ,x, — Pox, we know z € ker P,
and therefore x ¢ Fy. This argument shows that F; n Ey = {0}, hence L is
not ¢-Erg because it admits two (L, p)-invariant subspaces. |

Corollary 3.7.10. Given u over M, with #suppu > 1, ij(Mk) is open,
dense and, therefore, generic.
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3.8 Some examples

In this section, we present several examples. The main one is Example
[3.8.5] that considers a quantum channel which is a kind of version of a Markov
chain. We can show in expression that the entropy of this channel
coincides with the entropy of the associated stationary Markov Process. This
is a piece of clear evidence that our definition is a natural extension of the
classical concept of entropy. In [BKL21a] it is shown that the entropy of this
channel is related to one of the Lyapunov exponents of the associated time
evolution process which are described in sections and [3.6]

1 0 0 —
Example 3.8.1. Let V5, = ¢- ( 261 0 and V5,1 = d - 0 2”61 , for
all n > 1 (with constants ¢ and d to be defined). Then,

2 2
ty - ¢ (10 i __ 4@ (00
‘/271‘/2“ - (2”)2 ( O O ) and ‘/Qn—l‘/v?nfl - (277, — 1)2 O 1 .

Setting L = I (the identity map v — v) and u = >, dy,, we have

we get { L(v)TL(v) du(v) = Id. Now, notice that

| |
L d =c- 4 =
f LI d(w) = 3 5o+ d- 3 oy =

whereas || L(v)|| < max{c,d} < oo, for all v € supp(u). Even when the last
integral is not finite, the limitation on the norm above should produce an
invariant probability for the kernel, according to Theorem|3.5.2, To show this
will be our goal. Before that, we will compute the action of the quantum
channel (in order to clear out what is the fixed density).
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P3 P4

2 2
P C 10 P P2 10y _ c pr 0
o= (00 ) (o ) (o 0) = (5 0):

and
22 0 1 00
P d P11 P2
‘/YQn—lp‘/?n (2n_1)2(0 O) (p3 p4) (1 O)

mow ()

For a general density p = ( P P2 ), we have

¢L(P):i (%pﬁﬁm) (é 8):<p1+p4)((1) 8)
=tr(p) - [er)Xer] =|er Xer].

This ¢y, is not irreducible but it is an interesting example. It is a case
where the invariant probability is unique as we will see soon.

Clearly, the only fixed point for ¢y, is pi, = | €1 )(e1 |. What we should
expect for invariant probabilities over P(CF)? As the fixed point is itself a
projection and the proposition [3.6.2)says it is an average of projections around
any invariant probability, the only option is a probability concentrated in é;,
which is v = d¢,. Let’s check that it is the case.

For a general probability v over P(C*) and a Borel set B = P(C*), we
have

MB) = || a(0(0) ) el duon(i

o0
[ Ve ) [Varslys + La(Var - 8) [Vanosa ] ().
P(Ck) n=1
Notice that Va, - = é; for  # é3 and V,,_1 - & = é; for T # é;, whereas
Voner = Vo169 = 0. Also, for a representative x = (1, x2) of norm 1, we
got (|z )z |)ij = z:T;. So,

2 2 ,
7 (e )Xz u = ol

(2n)?

C

(2n)

60

tr (Vo |2 X 2| V3,) =



and

tr (Varea [ [ Vi) = o - () e = g ggloal

Then,

2

() = [ 3 [t + g gl )

(Ck) n=1
[t +eP)av(a)
P(CF)

_ L(Ck) 15(60)dv(2)

— 15(é,).

We conclude that if vII;, = v, then v = d;. We also get a bonus: the
invariant probability is unique.

To illustrate Proposition [3.6.2] (under the irreducible condition) we write
down the following example.

Example 3.8.2. The next example is somehow related to Example [3.8.5

Let’s define
1 0 01
Vl:(o 0) andv?:(o 0)‘

These two matrices generate the same elements which we will consider in
Example [3.8.5] since for p = dy, + vy,

d1(p) = VipVil + VapV = | er X ey |.

Also, we get that ¢; is not irreducible. Wanting to fix this issue, we

introduce
00 00
ng(lo)andw=<01).

Notice that these two matrices generates another channel v that maps
every density p into |es )(ea|. So, it is also not irreducible. Now, redefining
1 4
p=752_,0v,, we get that

61



Zwv* Lerxer] +lesXeal) = 21

In this case, p is a measure and not a probability.
We compute the products

Vivi = Vi, ViV, = Vi,

and
ViVs = Vi and V]V, = V.
In this way,
1 4
_ v, _ _
¢t (1d) = 5;_1% Vi=Vi+V,=1d,

and ¢ is stochastic. AsId > 0, we get that (I+¢)(p) = p+o(p) = p+1d > 0,
and so ¢ is irreducible. Clearly, pin, = %Id.
Now, for a general v over P(C*) and a Borel set B = P(CF), we get

B)= | | 10D 1wl i)

j 2 16(Vi - 2) Vil dv(@).
P(CF) ]

Remember that

71?0 29?0
Vilexalvi = (15 0 ), veleen = (125 1),

0 O 0 O
lexelv) = () 0 ) and Vilexteivi= (g0 ).
1] 0

||

So,
1 . . R .
(B) = 5 | ) F a1 (Vo 2+ 1Vl ()

— —J ((Ck)[lB(él) +1p(&)]|z1 > + [15(é1) + 15(é2)]|22|? dv()

1

=5 L(Ck) 1p(é1) + 15(é2) dv(2)
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.. .

= 513(61) + 13(62)
1 1

- 5(5@1(3) + 5 5@2(.3).

We conclude that if v = vII;, then v = £ 8z, + 3 d,. Note that (see the
concept of barycenter in Section 3.6

1 1 1
T dv(z) = = g T 5 ey = =Id = inv-

Example 3.8.3 (L is a C*-automorphism). Suppose that p over M, satisfies
the below conditions:

) J vfv du(v) = Id; and
My,

. J |v]|* dpu(v) < oo, where ||-|| is the Hilbert-Schmidt norm.
My,

Take an unitary matrix U € M, and define L(v) = UvU'. Note that
HUUUTHQ — tr (UvU') = tr (v) = ||v]|*. Moreover,

J L)L) du(v) = |  UTUTUWUT du(v)

My,
= Uf vlv du(v)UT
My,
= Id.

Remark 3.8.4. The operators of the form L(v) = UvU", for an unitary U,
are the C*-automorphisms of M, (see Section 1.4 in [Arv9s]).

In the next example, we adapt the reasoning of an Example 4 in [BLLCI0]
to the present setting.

We will show that for a certain p and L (and, quantum channel) the value
we get here for the entropy is equal to the classical entropy of a Markov Chain
(when the state space is finite).

Example 3.8.5 (The Markov model in quantum information). Suppose that
P = < PooPor ) is a irreducible (in the classical sense for a Markov chain)

Pio Pn
column stochastic matrix. Define y over My by

4
w= 25%7
=1
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where the matrices V; are

_ 4/ Poo 0 B 0 /por
‘/1 - ( O O ) ‘/2 - 0 O I

0 O 0 O
Vi = dVy= :
’ ( vPio 0 ) anc < 0 /pu )

We take L = I and ¢; = ¢, in order to get the quantum channel

4
é(p) = > VipVi',
1

whose dual is

Note that
f poo 0 i, (0 0
= (P ) v (0 )
i P1o 0 T _ 0 0
ViV <0 O)and ViVy (Opn)’ (3.5)
that is,

Po1 + P11

The channel ¢ is stochastic. We claim that the channel is irreducible
(later we will exhibit the associated invariant density operator p). Consider

first the positive operator
_ [ P1 P2
P < P3 P4 >

where p1, p2 € R and p3 = p3 (in order to get that p > 0)
The VipViT are given by:

1. t+ _ ( poopr O 2. t+ _ ( poipa O

" + 0
¢ (Idg) _ <p00 Oplo ) ~1dy

0 0 0 0
3= VapVid = d pt:= ViV = 3.6
P 3PV 0 P1opP1 and e 4PVa 0 P11pP4 ( )
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It follows that

_( DPoop1r + Po1pa 0
“lp) ( 0 DP1op1 + P11p4 ) '

In the diagonal one can find the classical action on vectors of the Markov
Chain described by P.
In the same way for v = (vy,v5) € C?, we get

(v|o(p)v) = (poop1 + ]901,04)|U1|2 + (p1op1 +p11p4)\v2|2 = 0.

Moreover, the equality only happens when

PoopP1 + Po1p4 = prop1 + p11pa = 0.

From this we get p; = ps = 0, because p;; = 0.

In this case, we get p = 0.

This means that , p # 0,p = 0 = ¢(p) > 0, and, finally, we get that ¢ is
positive improving. From this, it follows that ¢ is irreducible.

Now, we will look for the invariant density matrix. Assuming p; +ps = 1,
we observe that ¢(p) = p = py = p3 = 0, and

{ P1 = PoopP1 + Po1pP4 (3.7)
P4 = P1opP1 + P11P4-

We get
(1 —poo)p1 = porps = por1(1 — p1) = po1 — Por1p1

= (1 — poo + po1)p1 = po1-
As P is irreducible, it follows that 0 < p;; <1 e 1 — poo + po1 > 0. That
is,
DPo1 1 — poo
=———— and py=—"-—"—.
1 — poo + po1 1 — poo + po1

An invariant density matrix is

P1

Po1 0
_ | 1—poo+ por
P 0 1 — poo
1 — poo + por

Note that m = (py, ps) € R? is the vector of probability which is invariant
for the stochastic matrix P (see (3.7))).
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Now, we will estimate the entropy of the quantum channel ¢. Using (3.6))
in the expression tr (VjVipViTVjT) we get

For example,

tr (VaVipVi' Vi) = tr (Vap' V) = pio(p")1 = propoopr.

From this we get the table.

tr (V;VipVi V) | 1 2 3 4
J
1 Peop1 | PooPo1pa 0 0
2 0 0 Po1P1opP1 | Po1P11P4
3 PooP10P1 | P1oPo1p4 0 0
4 0 0 puibiop1 | Piips
tr (V;PV;) Poop1 DPo1pa P1op1 P11p4

The entropy we defined in the text is given by

hu(L) = —JM o (L(v)pL(v)")P(v, w) log(P(v, w))du(v)du(w),

where P(v, w) = EE@LEWLG Lw))

tr (L(v)pL(v)")
We assumed before that L = I and o = ), dy,. Then, we finally get,
43 tr (V;VipV,'v)
h(I) = — tr (V;VipVi' V1) - 1o LS
1) = = 33 i)t SO

= - [p(Q)opllOQ(poo) + poop10p1 10g(p10) + Pooporpa log(poo) + Propo1palog(pio)

+po1p1op1 10g(po1) + pripiopr 10g(p1r) + porpiipalog(por) + piypalog(pin)]

= —[poo log(poo) (Poop1 + Po1pa) + piolog(pio)(Poopr + Po1pa)
+po1 log(po1) (prop1 + pr1pa) + pi1log(pin) (propr + p1104)]
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= —poo Log(poo)p1 — P10 log(p10)p1 — por log(por) pa — P11 log(pi1)pa

= —Ppoo 10g(poo)mo — P10 10g(p10)mo — po1 log(por)m — p11log(pii)m =
1
- 2 pij 1og(pij)-
i,j=0
Therefore,
1
ha(1) = = | mipijlog(pi;). (3.8)
i,j=0

The last expression is the value of the classical Shannon-Kolmogorov en-
tropy of the stationary Markov Process associated to the line stochastic ma-
trix P = (pij)ij=0.1 (see [Spi72] and [PY9]]).

The entropy is positive because the a priori u is a measure (of mass equal
to 4) and not a probability.

Now, let’s look at the kernel II;, and find an invariant probability. For a
given probability v in P(CF) and a Borel set B = P(C*), we have

MB) = [ | 008 L@l (i)

which means

4
V1, (B) = f S 15(Vi - ) Vil dv().
P(Ck) ;4

Note that
Vi-z=¢é, itz #éy Vo-T=¢, if T #éy;
Vi =6, it #6y Vi -T=0¢y ifx#é
and Vi(es) = Va(er) = Va(ez) = Vi(er) = 0.
It follows that

vIIL(B) = L(Ck) Lg(én) [[IVaz|| + [[Vaz |l + 1p(é2) [[IVaz]| + [[Vaz||] dv(2).

Now, we compute
tr (Vi |2 )(z| V1T) = Poo \131\2,
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tr (Val )X | V) = por [,
tr (Vs |2 )(x | V§) = pro a1 |
and tr (Vy |z X x| V4T) = pu1 |22|*.

In this way, we get

vIIL(B) = J 15(é1) (poo |z1]*+por [22|*)+15(E2) (p1o |21 [*+p11 |22]?) dv(2).
P(CH)

From the last expression, we conclude that vI1I; has support in the set
{é1,é2}.

In this way, if ¥ = vIIy, then it has to be equal to a - d, + 3 - ds,, With
constants «, 8 = 0, such that, o+ 5 = 1. As we know the expression for p;,,,
we can go further:

Pinv = f e AV (T) = a0 Te, + B+ Tey-
P(CFk)

As »
01 0
o 1 — poo + po1

Pinv = 0 1 — poo ’
1 — poo + po1
]__

we get that a = S U andﬁ=¢.
1 — poo + po1 1 — poo + po1

In order to finish our example, we write down the invariant probability

1 _
Po1 5 Poo

V:—. ~ +—
1—poo+por 1 —poo+por

: 6é2 = T 5é1 + T2 5é27

and we point out that the two constants are no more no less then the entries
of the invariant probability vector m = (m,m) for the Markov chain with
transitions P = (pij)’i,jzl,Q'

In this way, the concept of entropy we considered before in Section [3.4]is a
natural generalization of the classical Kolmogorov-Shannon entropy and the
process X,,,n € N, of Section [3.5 is a natural generalization of the classical
Markov Chain process.
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Example 3.8.6. Consider a measure p with support on the set

r -y
{(y . )\x,yeR}cMQ,

- e (see also (9) in [EWQT])

Taking L = I we get that py = ( 1(/)2 192 > satisfies ¢;(po) = po.

Indeed the channel is given by

,0:(? Z) — ¢1(p) =

xr -y a b z oy \ 1 e (12 5
JIC ) () (5 0) e - (5 1R)
/2 is a fixed point of ¢y, it is not a

Notice that although ( 12

density unless b = 0. Thus, pg is the only eigendensity.
Given a probability v on P(C*) the expression for the kernel is

such that has density f(z,y) = &€

VI, (S) = L(Ck) L, (0, ) du(i) =

Lm | Ls(L) - D) [ L()wl® dv(d) du(v) =

1 (v% +v%)

V1 W1 — V2 W2 2 2 ——1_ 27 A
1 v +v5)—e 2 dvy dvs dv(w).
Jp(ck)ka S( V2 W1 + U1 W ) (v +v2) Am 1 dva ()

Now, we will estimate the entropy (which will be negative).
1

Using the fixed density operator py = < 8 > we get (according to

Section

Ni= O

tr (wvpeviw)

Plv,w) = tr (vpov’)

We denote
wy —W2 V1 —U2
w = and v = ,
w2 W Va2 U
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1 V1 —Uy U1 (%)
tr @povT) - §tr (< v2 U1 > < U2 U1
1 v} + v2 0
:itr( 10 2 2 4 2 = v} + vj

and

1 _
tr (wopgvTw’) = Ztr (w ( v ) ( v )wT)
2 V2 U1 —U2 Up
= (02 + v)tr (ww') = (V? + v2)(w? + w3).
Thus, we get the following expression for the entropy (remember that

2
D 3T o).
o roe” zdr = 2):

1
o6

-

1

1

4

1 0
]

1

2

v2+'u2 w2+w2
(V2 + 02)(w? + wd) log(w? + wd)e "7 e~ 2 dvydvydw; dw,

hu<L) ==

2
3,.3 2y, —k —Tw
rory log(ri)e” 2 e” 2 drydr,

s
L

Q0 2 2
3 - 3 2\ —Tw
J roe” 2 dm] ro log(rs)e™ 2 dry,

80

~ —1.11593

We used polar coordinates above.

3.9 Conclusion and relations with other works

We introduce a concept of entropy and pressure (definitions depending
on an a priori probability u). For a given H : My, — M, (which plays the
role of an Hamiltonian, or a Liouvillian) we define a version of the Ruelle
operator ¢y : My — My, via the expression:

p— oulp)=| HpH) du(v).

My,
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After that, we presented a type of Ruelle Theorem: a variational principle
of pressure related to an eigenvalue problem for the Ruelle operator (see
Theorem . The entropy and the Ruelle operator are linked via the a
priori probability in a natural and fundamental way.

The definition of entropy considered here is not based on the point of view
of dynamical partitions. It is a kind of generalization of Rokhlin Formula
which says the entropy of an o-invariant probability v is H(v) = — {log Jdv,
where J is the Jacobian (a dynamical version of Radon-Nikodym derivative).
Note that this entropy is not relative but absolute. Results in [LMMS15] -
for the classical (not quantum) Thermodynamic Formalism theory - include
the case where the alphabet M (a compact metric space) is uncountable.
We did not use the results of [LMMSI5] we just mentioned it to say that we
followed similar reasoning.

A common procedure in Statistical Mechanics (for the one-dimensional
lattice M™N or M%) is to define entropy by considering first a finite box of size,
let’s say n, and then take the limit on the size of the box: the thermodynamic
limit. The probability on the finite box M" has no dynamical content. On
the limit, when n — o0, it may have dynamical content (where the dynamics
of shift corresponds to translation in the lattice MY or M%). We say in
this case that the entropy was obtained via finite partitions. In this setting,
probabilities maximizing pressure are obtained in a similar way, like via the
limit See__Hde;, n — o0, where the Hamiltonian H is in some way defined on
each box of size n. The procedure is different in Thermodynamic Formalism,
where you work primarily with the Shannon-Kolmogorov entropy on the
lattice MY or M? (which has dynamical content) for getting shift invariant
probabilities that maximize pressure. This entropy can be estimated by a
version of the Rokhlin Formula (see [LMMS15]). The Ruelle operator also
played an important role in our definition of entropy. Both concepts are
linked in a natural and fundamental way (see [LMMSI5], or section 4 in
[BKL21a] for the classical thermodynamic formalism case).

In [BKL2Ia] the authors show a relation of the entropy presented here
with Lyapunov exponents, and this is a clear indication of its dynamical
nature.

Below we will present some clarifications on which directions our work is
related to relevant issues in the area related to quantum entropy.

First of all, is needed to say that the von Neumann entropy, which is
given by - trace (plogp), in the same way as the expressions — Zle p; log p;,
or {log f(z)f(x)dz, where f is positive and § f(z)dz = 1, are not exactly
dynamical entropies (at least from our point of view).

Quantum entropies with dynamical content were considered in a large
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number of papers and books for several decades. We believe our point of
view does not coincide exactly (as far as we know) with the quite important
results on the topic we describe next.

In [Ara73] and [Ara69] H. Haraki considers the relative entropy which can
be defined for arbitrary normal states on a von Neumann algebra. As it is a
relative entropy is different from ours.

A very well know version is the dynamical entropy of C*-algebras and
von Neumann algebras of A. Connes, H. Narnhofer, and W. Thirring (see
[CNT8T]); as far we understand is in “some sense based” on the principle of
dynamic partitions.

L. Accardi, A. Souissi and E. Soueidy in [ASS20] consider a Quantum
version of Markov Chains which is in ”some sense” based’ on the principle
of dynamic partitions. It is different from ours.

R. Alicki and M. Fannes in [AF01] considers the concept of quantum
dynamical entropy from different points of view: section 12 considers entropy
production; section 13.1 consider the case of the quantum cat map; section
13.2 consider noncommutative Lyapunov exponents and the Ruelle inequality
(the dynamics are associated with the continuous-time semigroup generated
by the Laplacian in a compact Riemannian manifold); section 13.3 is devoted
to quasi-free fermionic dynamics. All of them are different from ours.

The setting of [S1o03] which considers iterated function systems and
Markov operators is the point of view closer to our work. But this refer-
ence does not consider the variational principle of pressure neither a version
of the Ruelle operator. Results in [BLLCI10], [BLLCI11a] and [BLLCI1Db]
addressed these topics and they were generalized here.

The book [Pet(07] consider the relative von Neumann entropy in Quantum
information with a view to some applications like the Quantum Stein Lemma,
Quantum Chernoff bounds, and Quantum Fisher information.

T. Sagawa in [Sag21] consider the relative entropy of von Neumann and
questions related to the second law of Thermodynamics and majorization:
what happens with the value of the entropy of a density matrix after the
iteration by a quantum channel? The book [Pet07] addresses preliminarily
the question of majorization when a matrix is applied on a finite probability
([LR22] consider a similar problem considering the iteration of the dual of
the Ruelle operator and not a matrix). Maybe a future work could be to
analyze majorization under the context of the present paper.

C. Pinzari, Y. Watatani, and K. Yonetani in [PY700] consider entropy
and a variational principle of entropy from the point of view of C*-algebras.
A version of the Perron-Frobenius theorem was used as an important tool for
analyzing KMS states for some interesting examples arising from subshifts
in symbolic dynamics. The relationship between the Voiculescu topological
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entropy and the topological entropy of the associated subshift is studied. In
the case of the Cuntz-Krieger algebras, explicit construction of the state of
maximal entropy was done. We understood that the space of symbols (the
alphabet) considered in [PY*00] is finite. Our results correspond to the case
where the alphabet (in some sense the support of the a priori probability p)
can be uncountable.

In [KP02] the variational principle of pressure is considered by D. Kerr
and C. Pinzari. They introduce a notion of pressure for a selfadjoint element
in a C*-algebra, adapting Voiculescu’s formulation of topological entropy for
a nuclear C*-algebra (see [Vo0i95] and [Stg02]). The variational inequality
holds for the Connes-Narnhofer-Thirring entropy. They also introduce the
concept of local state approximation entropy which is different from our
definition of entropy.

. Nechita and C. Pellegrini addressed questions related to generic prop-
erties for quantum channels. In [NP12] the authors show that for a fixed
density matrix 7 : C* — C", the existence of a set of full measure for the
Haar measure, on the set of unitary operator U : C" ® C" — C" ® C", sat-
isfying the property that for the associated quantum channel Q@ — ®(Q) =
Tro(U(q ® B)U*) there exists a unique fixed point. In [LS15] the authors
show that, in fact, there exists an open and dense set of unitary operators U
with such property.

A final remark: our main theorems considered the case of the C*-algebra
of matrices M, and a natural question is if our proofs can be implemented
for a general C*-algebra? Several results for completely positive maps that
were used here are also known in a more general scope. This eventual exten-
sion would involve several issues that by their nature would be much more
complex; in its generality would encompass - in a sense - the classical ther-
modynamic formalism for potentials that depends on an infinite number of
coordinates. The main eigenfunction for the Ruelle operator of a continuous
potential may not exist; the existence requires the use of the Holder regu-
larity of the potential. For the Markov case, the Perron Theorem provides
similar results without further hypotheses due to the fact that a potential
that depends on two coordinates is automatic of Holder class. We leave the
question related to the general C'*-algebra for future work.
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