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Chapter 1

Introduction

This work is composed of two independent parts with a common motiva-
tion. Inspired by the general theory of Thermodynamic Formalism described
in [LMMS15], we develop concepts like pressure and entropy for general IFS
and quantum channels.

In Chapter 2, we talk about Iterated Function Systems with measures
(IFSm). In this setting, we have a compact metric space X, a family pτθqθPΘ

of maps on X, and finite positive probabilities pqxqqxPX on Θ. Starting on
x0 P X, in the next step we will be on τθpx0q with probability dqxpθq.

While in classical Thermodynamic Formalism we study invariant mea-
sures, when we analyze the ergodic properties of IFS, it is natural to consider
the holonomic measures to play this role. This concept was adapted from
the corresponding one, initially introduced in Aubry-Mather Theory, and
first appeared in thermodynamic formalism papers in [GL08] and [LO09].

We show that the Thermodynamic Formalism for IFSm, in some sense,
is a generalization of the Thermodynamic Formalism for a certain class of
dynamical systems (see section 2.8). This corresponds to consider the inverse
branches of the dynamical system to define an IFSm.

For such perspective, we can verify that, with some regularity in the
potential, the pressure is the same for the IFS and the dynamical system
that inspired the IFS. Furthermore, the transfer operator for the IFS is equal
to the Ruelle Operator of that dynamical system.

It is natural to consider that, under the perspective of IFS, the Ruelle
Operator depends on the inverse branches (the backwards dynamics and not
the forward dynamics). The material of this chapter is part of [BOS22], and
a future question is whether we can obtain ergodic optimization results in
this setting.

Chapter 3 is part of [BKL21b] and is related to another work described
in [BKL21a]. Both works are inspired by the Benoist paper [BFPP19], which
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introduces the idea to consider a quantum channel as an integral and elabo-
rates about (ϕ-Erg) and (Pur) properties, which in [BKL21b, BKL21a] were
shown generic.

At first glance, it might seem that there is no relation between the pre-
vious chapter and this setting. But if we consider the space Dk of density
matrices with complex entries, a function L : Mk Ñ Mk, and a measure µ
on Mk, with certain hypotheses described better in section 3.6, we have a

quantum trajectory that if we start on ρ0 P Dk state, we go to Lpvqρ0Lpvq:

tr pLpvqρ0Lpvq:

state with probability tr pLpvqρ0Lpvq:q dµpvq.
Looking at this quantum trajectory, we can see similarities with the IFSm

setting. By writing this quantum trajectory with the notation of IFSm, we
will see a relation between the linear operator ϕpρq “

ş

Mk
LpvqρLpvq: dµpvq

and the Ruelle Operator.
In this thesis, we observe that irreducible quantum channels have similar

properties to the dual of the Ruelle Operator. First, it maps densities in
densities, and, as it is known, the dual of the Ruelle Operator maps prob-
abilities in probabilities. Furthermore, the Theorem 3.3.5 is similar to a
Ruelle-Perron-Frobenius in this setting, and we can define, for a class of po-
tentials, a notion of pressure (Definition 3.4.3) of this same potential that we
prove to be equal to the log of the spectral radius of the quantum channel
defined from the potential in Theorem 3.4.8.

In section 3.8 we present some interesting examples, one of them showing
that our entropy, somehow, generalizes the concept of entropy for a classical
Markov chain. This shows that our definition is quite natural.

In [BKL21a] we consider Lyapunov exponents associated with quantum
channels, and show a quantum version of Pesin Theorem relating the Lya-
punov exponents with entropy. This reaffirms the claim that our concept of
entropy is natural in this quantum setting.

The Benoist paper [BFPP19] describes quantum channels under a dynam-
ical and ergodic perspective, but does not present the concept of entropy.

The entropy we defined for this quantum setting is of dynamical nature,
which differs from the Von Neumann entropy which is not. The idea to
define this entropy comes from the paper [BLLC10], where the authors were
inspired by certain results in [S lo03].
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Chapter 2

Thermodynamic formalism for
general IFS

Abstract

This chapter is part of [BOS22] and introduces a theory of Thermody-
namic Formalism for Iterated Function Systems with Measures (IFSm). We
study the spectral properties of the Transfer and Markov operators associ-
ated to a IFSm. We introduce variational formulations for the topological
entropy of holonomic measures and the topological pressure of IFSm given by
a potential. A definition of equilibrium state is then natural and we prove its
existence for any continuous potential. We show, in this setting, a uniqueness
result for the equilibrium state requiring only the Gâteaux differentiability
of the pressure functional.

2.1 Introduction

The modern study of Iterated Function Systems (IFS for short) come back
to the early 80’s with the works of J. Hutchinson [Hut81] and M. Barnsley
[BD85] where the theory was unified both in the geometric and the analytical
point of view, generating what we call today the Hutchinson-Barnsley theory
for IFS, meaning that each IFS, which is a family of maps acting from a set
to itself, having good contraction hypothesis has an invariant compact set
called the fractal attractor and, if we add weights having good continuity
hypothesis to each function, the IFS acts on probabilities having an invariant
probability whose support is the fractal attractor set. Although, several
works on geometric features of fractals were done in the previous decades by
Mandelbrot and others, but after the 80’s the IFS assumed the central role
in the generation and study of fractals and its applications.
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For a typical dynamical system T : X Ñ X, an initial point x0 P X is
iterated by T producing the orbit tx0, T px0q, T

2px0q, ...u, whose limit or the
cluster points are the objects of main interest, from a dynamical point of
view. On the other hand, for an IFS pX, τθqθPΘ, we iterate the initial point
by choosing at each step a possibly different map τθ : X Ñ X, indexed by
the generally finite set Θ, producing multiple orbits tZj, j ě 0u “ tZ0 “

x0, Z1 “ τθ0px0q, Z2 “ τθ1pτθ0px0qq, ...u. We notice that the orbit is now
a set of orbits controlled by the sequence tθ0, θ1, ...u P ΘN. To avoid this
complication Hutchinson defined the fractal operator F : KpXq Ñ KpXq by

F pBq “
ď

θPΘ

τθpBq

for B P KpXq, the family of nonempty compact sets of X. This operator
is called the Hutchinson-Barnsley operator and a compact set is invariant or
fractal if F pΩq “ Ω. Additionally Ω is a fractal attractor if the orbit of B
by F , given by tB,F pBq, F 2pBq, ...u converge, w.r.t. the Hausdorff-Pompeiu
metric to Ω, for any B P KpXq (see [BP13] for details on the Hausdorff-
Pompeiu metric).

Other possible point of view to understand the dynamics of an IFS is the
probabilistic one. In this case we consider that, in each step the function
to be iterated is chosen according to some probability, thus we are actually
studying a stochastic process X0, X1, X2, ... P X where each Xj`1 is a random
variable whose distribution is obtained from the previous Xj by a transition
kernel using the IFS law. In other words, given an initial distribution µ0

we iterate it by the Markov operator M : PpXq Ñ PpXq, defined as the
transfer operator’s dual, obtaining the distributions µ0, µ1 “ Mpµ0q, µ2 “

M2pµ0q, ... P PpXq. Analogously to the fractal attractor, we say that µ P

PpXq is an invariant measure if Mpµq “ µ and that µ P PpXq is an attracting
invariant measure (or Hutchinson-Barnsley measure) if M jpµ0q converge to
µ w.r.t. the Monge-Kantorovich metric(see [Hut81]), for any µ0 P PpXq.
It is possible to prove that the support of the invariant attracting measure
is the fractal attractor (see [Hut81]). Since the set of measures over X is
the dual of CpXq the Markov operator is often defined by duality w.r.t. the
transference operator L : CpXq Ñ CpXq.

To illustrate that we consider the classical case of IFS with constant prob-
abilities studied by Hutchinson, Barnsley and many others in the beginnings
of the 80’s. We consider Θ “ t1, 2, ..., nu, meaning that we have a finite
number of maps, and each one is chosen according to a probability pj ą 0
where p1 ` ¨ ¨ ¨ ` pn “ 1, constituting an IFS with probabilities (IFSp for
short). Under this conditions the classic transfer operator (also called Ru-
elle operator, see Ruelle [Rue67, Rue68], Walters [Wal75] and Fan [FL99]) is
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given by

Lpfqpxq “

n
ÿ

j“1

pj fpθjpxqq,

for any f P CpXq, and the Markov operator acting on µ, Mpµq, is implicitly
defined by the property

ż

X

fdMpµq “

ż

X

Lpfqpxqdµ,

for any f P CpXq.
The final feature of IFS dynamics we need to understand is the con-

nection between IFS orbits and the invariant measures. The first one is
the celebrated result due to M. Barnsley, the Chaos Game Theorem (CGT
for short) claiming that, from the initial probabilities pj’s, we can built a
probability P over the space ΘN such that P-a.e. pθ0, θ1, ...q Ă ΘN the corre-
spondent orbit tx0, τθ0px0q, τθ1pτθ0px0qq, ...u approximate the fractal attractor
Ω, for any initial point x0. The second one is the Elton’s Ergodic Theorem
(EET for short) [Elt87] claiming that, from the initial probabilities pj’s, we
can built a probability P over the space ΘN such that P-a.e. pθ0, θ1, ...q Ă ΘN

the correspondent average of visits of the orbit tx0, τθ0px0q, τθ1pτθ0px0qq, ...u
to a measurable set B Ă X is equal to µpBq, if µpBpBqq “ 0, analogously to
the usual Birkhoff ergodic theorem for a single map, where µ is the invariant
measure of the IFS in consideration. For continuous functions it means that

1

N

`

fpx0q ` fpτθ0px0qq ` ¨ ¨ ¨ ` fpτθN´1
p¨ ¨ ¨ τθ0px0qqq

˘

Ñ

ż

X

fdµ,

for any f P CpXq, as N Ñ 8. In other words

1

N

´

δx0 ` δτθ0 px0q ` ¨ ¨ ¨ ` δτθN´1
p¨¨¨τθ0 px0qq

¯

Ñ µ,

as a distribution. In synthesis, the CGT and the EET are random procedures
to approximate the fractal attractor and the invariant measure, respectively.

The study of the conditions under what we have, for a given IFS, a
fractal attractor which is the support of an invariant measure is called the
Hutchinson-Barnsley theory. Such conditions has been extremely relaxed
and generalized in several ways in the past forty years. A first generalization
was for IFSp where the probability pj ą 0 where p1 ` ¨ ¨ ¨ ` pn “ 1, were
replaced by variable probabilities pjpxq ą 0 where p1pxq ` ¨ ¨ ¨ ` pnpxq “ 1 for
all x P X. Now, the transfer operator is defined by

Lpfqpxq “

n
ÿ

j“1

pjpxq fpθjpxqq, @x P X,
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for any f P CpXq. Very general conditions for the existence of the invariant
measure for such IFS are given in [BDEG88]. We point out that the EET
was also proved for variable probabilities and finite functions in [Elt87].

In Fan [FL99], 1999, the condition p1pxq ` ¨ ¨ ¨ ` pnpxq “ 1 is finally
dropped assuming only that each pθpxq ě 0 for θ P t1, ..., nu. In this work
Fan study a contractive system which is a triplet pX, τθ, pθqθPt1,...,nu, where
each τθ is a contractive map and each pθpxq ě 0 for θ “ 1, ..., n, generalizing
the notion of IFS with probabilities. In this setting, Fan proves a Ruelle-
Perron-Frobenius theorem (RPF theorem, for short), meaning the existence
of a positive eigenfunction for the operator L and an eigenmeasure for the
operator M with the same eigenvalue which is the spectral radius of L.

The next key improvement was given by Stenflo [Ste02], where random
iterations are used to represent the iterations of a so called IFS with prob-
abilities, pX, τθ, µqθPΘ for an arbitrary measurable space Θ. The approach
here is slightly different from the previous works on IFS with probabilities,
instead considering weights, the iterations from Z0 P X are Zj`1 “ τIjpZjq
governed by a sequence of i.i.d variables tIj P ΘujPN, with distribution µ,
generating a Markov chain tZj, j ě 0u with transfer operator given by

Lpfqpxq “

ż

Θ

fpτθpxqqdµpθq,

for any f P CpXq. The main goal of Stenflo [Ste02] is to establish, when L
is Feller, the existence of an unique attracting invariant measure π, for this
Markov chain.

In our work we will extend the variational results in [LMMS15, Lop11]
and, more recently, the preprint Cioletti and Oliveira [CO17], to a general IFS
called IFS with measures (IFSm), pX, τθ, qqθPΘ for an arbitrary compact space
Θ (see Dumitru [Dum13] for the Hutchinson-Barnsley theory for such infinite
systems or Lukawska [GLJ05] for infinite countable ones). The approach here
consist in a generalization of Stenflo [Ste02]. We take a family qxp¨q P MpΘq,
indexed by x P X, generating a Markov chain with transfer operator given
by

Bqpfqpxq “

ż

Θ

fpτθpxqqdqxpθq,

for any f P CpXq. The meaning of the distribution qxp¨q P MpΘq is such that,
the position x of a previous iteration of the IFS determine the distribution
qxp¨q of θ used to choose the function τθ and produce the new point τθpxq.
When qxp¨q “ µ, for any x P X, is a constant distribution we recover the
setting from Stenflo [Ste02].

In our setting the IFSm pX, τθ, qqθPΘ can be studied as the sample paths
of the Markov process tZj, j ě 0u with initial distribution µ0 “ µ P MpXq
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and µj`1 “ Lqpµjq, where for any ν P MpXq,

ż

X

fpxqdLqpνqpxq “

ż

X

Bqpfqpxqdνpxq,

for any f P CpXq. Such degree of generality is necessary to enlarge the range
of application for the IFS theory, specially the thermodynamic formalism. In
Section 2.9 we present a situation where we believe the tools developed in
the previous sections can be applied when analysing an interesting problem
in economics.

Our goal is to present a complete theory of thermodynamical formalism
for these IFS with measures, that is, good definitions for transfer operators,
invariant measures, entropy, pressure, equilibrium measures and a variational
principle. Finally, we want to use these tools to characterize the solutions of
the ergodic optimization problem.

For sake of completeness we would like to point out that we do not prove
a RPF theorem for those systems, only the existence of positive eigenfunc-
tions, but we establish all the results that can be derived if we have as-
sumed such a property. To the best of our knowledge the RPF theorem
for IFSm has not been established an it is a very hard problem. There
are several works on the matter of finding IFS for which the RPF theorem
holds, those IFS are said to have the RPF property. In 2009 Lopes and
Oliveira [Lop11] studied those systems renaming it as weighted systems or
IFS with weights, having the RPF property, producing a self contained no-
tion of entropy and topological pressure through a variational principle for
holonomic measures allowing to establish a thermodynamical formalism for
IFS. Other approaches for IFS thermodynamic formalism were developed by
Urbański [SSU01, MU00, HMU02] and many others.

It’s worth to mention that, in Urbański et al. [HMU02] a thermody-
namic formalism for conformal infinite (countable) iterated function systems
is presented using the conformal structure via partition functions. Also in
Käenmäki [Käe04] a thermodynamical formalism for IFS is studied with the
help of cylinder functions, where general IFS means that pX, τθqθPΘ and Θ is
the increasing union of finite alphabets. In Lopes et al. [LMMS15] a ther-
modynamic formalism for shift spaces, taking values on a compact metric
space is presented, although this problem is closely related to thermody-
namic formalism for IFS when we associate the pre images of the shift map
with a respective maps producing an infinite IFS. Also in [ACR18] a varia-
tional principle for the specific entropy on the context of symbolic dynamics
of compact metric space alphabets was developed generalizing somehow the
results in [Lop11].
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The structure of the paper is the following: in Section 2.2, we present
the basic definitions on IFS with measures (IFSm) and a fundamental result
about the eigenspace associated to the maximal eigenvalue of the transfer
operator. In Section 2.3 we define the Markov Operator, which in the case of
a normalized IFSm gives the evolution of the distribution of the associated
Markov Process, and show that the set of eigenmeasures for it is non-empty.
In Section 2.4, we introduce holonomic measures, which play the role of
invariant measures in the IFS setting. In Section 2.5 we define entropy for
a IFSm, the topological pressure of a given potential function, as well as
the concept of equilibrium states. In Section 2.6 a uniqueness result for the
equilibrium states is obtained. Section 2.7 prove the existence of a positive
eigenfunction for the transfer operator associated to the spectral radius and
give a constructive proof of the existence of equilibrium states. In Section
2.8 we show how the classical thermodynamical formalism for a dynamical
system is a particular case of the IFSm Thermodynamic Formalism. Finally,
in Section 2.9 we present a possible application in economic theory of the
theory developed in the previous sections.

2.2 IFS with measures

In this section we set up the basic notation and present a fundamental
result about the eigenspace associated to the maximal eigenvalue (or spectral
radius) of the transfer operator.

In this paper X,Θ are compact metric spaces, equipped with BpXq and
BpΘq respectively the Borel σ-algebra for X and Θ.

The Banach space of all real continuous functions equipped with supre-
mum norm is denoted by CpX,Rq. Its topological dual, as usual, is identified
with MspXq, the space of all finite Borel signed measures endowed with total
variation norm. We use the notation M1pXq for the set of all Borel prob-
ability measures over X supplied with the weak-˚ topology. Since we are
assuming that X is compact metric space then we have that the topological
space M1pXq is compact and metrizable.

Take q “ pqxqxPX a collection of measures on BpΘq, such that

(q1 ) qxpΘq ă 8 for all x P X,

(q2 ) inf q ” inf
xPX

qxpΘq ą 0,

(q3 ) x ÞÑ qxpAq is a Borel map, i.e, is BpXq-measurable for all fixed A P

BpΘq.
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(q4 ) x ÞÑ qx is weak˚-continuous.

An Iterated Function System with measures q, IFSm for short, is a triple
Rq “ pX, τ, qq, where τ “ pτθqθPΘ is a collection of functions from X to itself
with the following

(τ1 ) τ : pΘ,Xq ÞÑ X, where τpθ, xq “ τθpxq is continuous.

The Rq is said to be normalized if for all x P X, qx is a probability
measure.

Definition 2.2.1. Let Rq “ pX, τ, qq be an IFSm. The Transfer Operator
Bq : CpX,Rq ý associated to Rq is defined by:

Bqpfqpxq “

ż

Θ

fpτθpxqq dqxpθq, @x P X.

Bq is well defined. In fact, Bq is continuous once that

∥Bqpfq∥
8

“ sup
x

∣∣∣∣ż fpτθpxqq dqxpθq

∣∣∣∣ ď sup q ∥f∥
8

ă 8.

Futhermore, for a fixed f P CpX,Rq and x P X, given ε ą 0, take δ ą 0 s.t.

sup
θPΘ

dpfpτθpxqq, fpτθpyqqq ă
ε

2 sup q
,

and ∣∣∣∣ż
Θ

fpτθpxqqqxpθq ´

ż

Θ

fpτθpxqqqypθq

∣∣∣∣ ă
ε

2
,

for all y P X with dpx, yq ă δ. Then,

|Bqpfqpxq ´ Bqpfqpyq| “

∣∣∣∣ż
Θ

fpτθpxqq dqxpθq ´

ż

Θ

fpτθpyqq dqypθq

∣∣∣∣
ď

ż

Θ

|fpτθpxqq ´ fpτθpyqq| dqxpθq `

∣∣∣∣ż
Θ

fpτθpyqq dqxpθq ´

ż

Θ

fpτθpyqq dqypθq

∣∣∣∣
ă

ε

2 sup q

ż

Θ

dqxpθq `
ε

2
“
ε

2
`
ε

2
“ ε.

This shows that, for f P CpX,Rq and x P X, given ε ą 0, there is
δ ą 0 such that for every dpx, yq ă δ, |Bqpfqpxq ´ Bqpfqpyq| ă ϵ, therefore
Bqpfqpxq is continuous.
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Proposition 2.2.2. Let Rq “ pX, τ, qq be a continuous IFSm. Then for the
N-th iteration of Bq we have

BN
q p1qpxq “

ż

ΘN

dPq
xpθ0, . . . , θN´1q

where,

dPq
xpθ0, . . . , θN´1q ”

N
ź

j“1

dqxN´j
pθN´jq, x0 “ x and xj`1 “ τθjxj.

Proof. This expression can be obtained by proceeding a formal induction
on N . For N “ 2 and x “ x0, we have

B2
qp1qpx0q “

ż

Θ

Bqp1qpτθ0px0qq dqx0pθ0q

“

ż

Θ

ż

Θ

dqx1pθ1q dqx0pθ0q

“

ż

Θ2

dPq
x pθ0, θ1q.

And, if

BN
q p1qpxq “

ż

ΘN

dPq
x pθ0, . . . , θN´1q,

then

BN`1
q p1qpxq “

ż

Θ

BN
q p1qpx1q dqpθ0q

“

ż

Θ

ż

ΘN

dPq
x1

pθ1, . . . , θNq dqpθ0q

“

ż

Θ

¨ ¨ ¨

ż

Θ

˜

N´1
ź

j“0

dqxN´j
pθN´jq

¸

dqpθ0q

“

ż

Θ

¨ ¨ ¨

ż

Θ

˜

N`1
ź

j“1

dqxN`1´j
pθN`1´jq

¸

“

ż

ΘN

dPq
x pθ0, . . . θNq.

■
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Remark 2.2.3. The formal notation used for Pq
x , in fact, means that Pq

x

is a measure in ΘN defined by,

Pq
x pΘ0 ˆ ¨ ¨ ¨ ˆ ΘN´1q “

ż

Θ0

¨ ¨ ¨

ż

ΘN´1

dqxN´1
pθN´1q ¨ ¨ ¨ dqx0pθ0q.

In the case N “ 2 for instance,

Pq
x pΘ0 ˆ Θ1q “

ż

Θ0

ż

Θ1

dqτθ0xpθ1q dqxpθ0q

“

ż

Θ0

qτθ0xpΘ1q dqxpθ0q.

Note that qτθ0 px0qpΘ1q, with fixed Θ1 and x0, is a function of θ0 that is
measurable: indeed, if A P BpΘq, fA : X Ñ R defined by fApxq “ qxpAq is
measurable by pq3q and by pτ1q implies τ is measurable. Thus, FA :“ fA ˝ τ
is measurable.

Proposition 2.2.4. If f : X Ñ R is a measurable nonnegative function,
then

Hpxq :“

ż

Θ0

f ˝ τpθ, xq dqxpθq,

is measurable.

Using Proposition 2.2.4, it is a simple induction to prove that

x ÞÑ Pq
x pΘ0 ˆ ¨ ¨ ¨ ˆ ΘN´1q “

ż

Θ0

Pq
τθ0x0

pΘ1 ˆ ¨ ¨ ¨ ˆ ΘN´1q dqx0pθ0q

is measurable for any Θi P BpΘq.
In this way we conclude that Pq

x is well defined for each space ΘN .

Theorem 2.2.5. Let Rq “ pX, τ, qq be a continuous IFSm and suppose
that there are a positive number ρ and a strictly positive continuous function
h : X Ñ R such that Bqphq “ ρh. Then the following limit exits

lim
NÑ8

1

N
ln

`

BN
q p1qpxq

˘

“ ln ρpBqq (2.1)

the convergence is uniform in x and ρ “ ρpBqq is the spectral radius of Bq

acting on CpX,Rq.
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Remark 2.2.6. We will adress the question of existence of positive eigen-
functions in section 2.7.

Proof. From the hypothesis we can build a normalized IFSm Rp “ pX, τ, pq

where

dpxpθq “
hpτθpxqq

ρhpxq
dqxpθq.

Note that dPq
x and dPp

x are related in the following way

dPq
x pθ0, . . . , θN´1q “

N
ź

j“1

dqxN´j
pθN´jq

“

N
ź

j“1

ρhpxN´jq

hpτθpxN´jqq
dpxN´j

pθN´jq

“ ρN
N

ź

j“1

hpxN´jq

hpxN´j`1q
dpxN´j

pθN´jq

“ ρN
hpx0q

hpxNq

N
ź

j“1

dpxN´j
pθN´jq

“ ρN
hpx0q

hpxNq
dPp

x pθ0, . . . , θn´1q

Since X is compact and h is a strictly positive continuous function, we
have for some positive constant a and b the following inequalities

0 ă a ď hpx0q{hpxNq ď b.

Using the Proposition 2.2.2 and the above inequalities, we obtain for any
fixed N P N the following expression

1

N
lnpBN

q p1qpxqq “
1

N
ln

ˆ
ż

ΘN

dPq
x pθ0, . . . , θN´1q

˙

“
1

N
ln

ˆ
ż

ΘN

ρN
hpx0q

hpxNq
dPp

x pθ0, . . . , θN´1q

˙

“ ln ρ `
1

N
ln

ˆ
ż

ΘN

hpx0q

hpxNq
dPp

x pθ0, . . . , θN´1q

˙

.
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Futhermore,

1

N
ln

ˆ
ż

ΘN

hpx0q

hpxNq
dPp

x pθ0, . . . , θN´1q

˙

ě
1

N
ln

ˆ
ż

ΘN

a dPp
x pθ0, . . . , θN´1q

˙

“
1

N
ln a `

1

N
ln

ż

ΘN

dPp
x

“
1

N
ln a

NÑ8
ÝÝÝÝÑ 0

and

1

N
ln

ˆ
ż

ΘN

hpx0q

hpxNq
dPp

x pθ0, . . . , θN´1q

˙

ď
1

N
ln

ˆ
ż

ΘN

b dPp
x pθ0, . . . , θN´1q

˙

“
1

N
ln b `

1

N
ln

ż

ΘN

dPp
x

“
1

N
ln b

NÑ8
ÝÝÝÝÑ 0.

Therefore, for every N ě 1 we have

sup
xPX

∣∣∣∣ 1

N
ln

`

BN
q p1qpxq

˘

´ ln ρ

∣∣∣∣ “ Op1{Nq,

where Op1{Nq is independent of x, wich proves (2.1). From the above in-
equality and Gelfand’s formula for the spectral radius we have

|ln ρpBqq ´ ln ρ| “

∣∣∣ln ´

lim
NÑ8

∥∥BN
q

∥∥ 1
N

¯

´ ln ρ
∣∣∣ “ lim

NÑ8

∣∣∣∣ 1

N
ln
∥∥BN

q

∥∥ ´ ln ρ

∣∣∣∣
ď lim sup

NÑ8

sup
xPX

∣∣∣∣ 1

N
ln

`

BN
q p1qpxq

˘

´ ln ρ

∣∣∣∣
ď lim sup

NÑ8

C

N
“ 0.

■

2.3 Markov Operator and its Eigenmeasures

In this section we define the Markov Operator, which in the case of a
normalized IFSm gives the evolution of the distribution of the associated
Markov Process, and show that the set of eigenmeasures for it is non-empty.
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Definition 2.3.1. The Markov Operator Lq : MspXq ý is the unique
bounded linear operator satisfying

ż

X

f drLqpµqs “

ż

X

Bqpfq dµ,

for all µ P MspXq and f P CpX,Rq.

In the case of a normalized IFSm, we can consider the Markov Process
tZj, j ě 0u with initial distribution Z0 „ µ0, where µ0 P M1pXq, and Zj`1 “

τθjpZjq for j ě 0, where θj „ qZj
. Then, if Zj „ µj, we have µj`1 “ Lqpµjq.

Theorem 2.3.2. Let Rq “ pX, τ, qq be a continuous IFSm. Then there
exists a positive number ρ ď ρpBqq such that the set G˚pqq “ tν P M1pXq :
Lqν “ ρνu is not empty.

Proof. Notice that the mapping

M1pXq Q γ ÞÑ
Lqpγq

LqpγqpXq

sends M1pXq to itself. From its convexity and compactness, in the weak
topology which is Hausdorff when X is metric and compact, it follows from
the continuity of Lq and the Tychonov-Schauder Theorem that there is at
least one probability measure ν satisfying Lqpνq “ pLqpνqpXqq ν.

We claim that

inf
xPX

qxpΘq ď LqpγqpXq ď sup
xPX

qxpΘq (2.2)

for every γ P M1pXq.
Indeed,

Bqp1qpxq “

ż

Θ

1 dqxpθq “ qxpΘq,

LqpγqpXq “

ż

X

1 drLqγs “

ż

X

Bqp1q dγ “

ż

X

qxpΘq dγpxq,

0 ă inf
xPX

qxpΘq ď

ż

X

qxpΘq dγpxq ď sup
xPX

qxpΘq ă 8.

From the inequality (2.2) follows that

0 ă ρ ” suptLqpνqpXq : Lqpνq “ pLqpνqpXqq νu ă `8.

By a compactness argument one can show the existence of ν P M1pXq so
that Lqν “ ρν. Indeed, let pνnqnPN be a sequence such that LqpνnqpXq Ò ρ,
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when n goes to infinity. Since M1pXq is compact metric space in the weak
topology we can assume, up to subsequence, that νn á ν. This convergence
together with the continuity of Lq provides

Lqν “ lim
nÑ8

Lqνn “ lim
nÑ8

LqpνnqpXqνn “ ρ ν,

thus showing that the set G˚pqq ” tν P M1pXq : Lqν “ ρ νu ‰ H.
To finish the proof we observe that by using any ν P G˚pqq, we get the

following inequality

ρN “

ż

X

BN
q p1q dν ď

∥∥BN
q

∥∥ .
From this inequality and Gelfand’s Formula follows that ρ ď ρpBqq. ■

2.4 Holonomic Measure and Disintegrations

Now we introduce holonomic measures, which play the role of invariant
measures in the IFS setting.

An invariant measure for a classical dynamical system T : X ý on a
compact space is a measure µ satisfying for all f P CpX,Rq

ż

X

fpT pxqq dµ “

ż

X

fpxq dµ, equivalently

ż

X

fpT pxqq ´ fpxq dµ “ 0.

From the Ergodic Theory point of view the natural generalization of this
concept for an IFS R “ pX, τq is the concept of holonomy.

Consider the cartesian product space Ω ” XˆΘ and for each f P CpX,Rq

its “Θ-differential” df : Ω Ñ R defined by rdxf spθq ” fpτθpxqq ´ fpxq.

Definition 2.4.1. A measure µ̂ over Ω is said holonomic, with respect to an
IFS R if for all f P CpX,Rq we have

ż

Ω

rdxf spθq dµ̂px, θq “ 0.

Notation,

H pRq ” tµ̂ | µ̂ is a holonomic probability measure with respect to Ru.
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Since Ω is compact the set of all holonomic probability measures is obvi-
ously convex and compact. It is also not empty because Ω is compact and
any average

µ̂N ”
1

N

N´1
ÿ

j“0

δpxj ,θjq,

where xj`1 “ τθjpxjq and x0 P X is fixed, will have their cluster points in
H pRq. Indeed, for all N ě 1 we have the following identity

ż

Ω

rdxf spθq dµ̂Npx, θq “
1

N

N´1
ÿ

j“0

rdxjf spθjq “
1

N
pfpτθN´1

pxN´1qq ´ fpx0qq.

From the above expression is easy to see that if µ̂ is a cluster point of the
sequence pµ̂NqNě1, then there is a subsequence pNkqkÑ8

such that

ż

Ω

rdxf spθq dµ̂px, θq “ lim
kÑ8

ż

Ω

rdxf spθq dµ̂Nk
px, θq

“ lim
kÑ8

1

Nk

pfpxNk
q ´ fpx0qq “ 0.

Theorem 2.4.2 (Disintegration). Let X and Y be compact metric spaces,
µ̂ : BpY q Ñ r0, 1s a Borel probability measure, T : Y Ñ X a Borel
mensurable function and for each A P BpXq define a probability measure
µpAq ” µ̂pT´1pAqq. Then there exists a family of Borel probability measures
pµxqxPX on Y , uniquely determined µ-a.e, such that

1. µxpY zT´1pxqq “ 0, µ-a.e;

2.

ż

Y

f dµ̂ “

ż

X

„
ż

T´1pxq

fpyq dµxpyq

ȷ

dµpxq.

This decomposition is called the disintegration of µ̂, with respect to T .

Proof. For a proof of this theorem, see rDM78s p.78 or rAGS05s, Theorem
5.3.1. ■

In this paper we are interested in disintegrations in cases where Y is the
cartesian product Ω ” X ˆ Θ and T : Ω Ñ X is the projection on the first
coordinate. In such cases if µ̂ is any Borel probability measure on Ω, then
follows from the first conclusion of Theorem 2.4.2 that the disintegration of µ̂
provides for each x P X a unique probability measure µx (µ-a.e.) supported
on txuˆΘ. So we can write the disintegration of µ̂ as dµ̂px, θq “ dµxpθqdµpxq,
where here we are abusing notation identifying µxptxu ˆ Aq with µxpAq.
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Now we take µ̂ P H pRq and f : Ω Ñ R as being any bounded continuous
function, depending only on its first coordinate. From the very definition of
holonomic measures we have the following equations

ż

Ω

rdxf spθq dµ̂px, θq “ 0 ðñ

ż

Ω

fpτθpxqq dµ̂px, θq “

ż

Ω

fpxq dµ̂px, θq

by disintegrating both sides of the second equality above we get that
ż

X

ż

Θ

fpτθpxqq dµxpθqdµpxq “

ż

X

ż

Θ

fpxq dµxpθqdµpxq.

The above equation establish a natural link between holonomic measures
for an IFS R and disintegrations. Given an IFS R “ pX, τq and µ̂ P H pRq

we can use the previous equation to define an IFSm Rq “ pX, τ, qq, where qx
is a probability defined by qxpAq ” µxpAq for every A P BpΘq. If Bq denotes
the transfer operator qx. If Bq denotes the transfer operator associated to
Rq , we have from the last equation the following identity

ż

X

Bqpfq dµ “

ż

X

f dµ.

Since in the last equation f is an arbitrary bounded measurable function,
depending only on the first coordinate, follows that the Markov operator
associated to the IFSm Rq satisfies

Lqpµq “ µ.

In other words the “second marginal” µ of a holonomic measure µ̂ is always an
eingemeasure for the Markov operator associated to the IFSm Rq “ pX, τ, qq
above defined.

Reciprocally, since the last five equations are equivalent, given an IFSm
Rq “ pX, τ, qq such that the associated Markov operator has at least one
fixed point, i.e., Lqpµq “ µ, then it is possible to define a holonomic proba-
bility measure µ̂ P H pRq given by dµ̂px, θq “ dµxpθq dµpxq, where dµxpθq ”

dqxpθq. This Borel probablity measure on Ω will be called the holonomic
lifting of µ, with respect to Rq .

2.5 Entropy and Pressure for IFSm

We now define two concepts of entropy, compare then, show sufficient
conditions for them to be equal and introduce the topological pressure of a
given potential, as well as the concept of equilibrium states. We show in
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this section a first result on the existence of equilibrium states. In all that
follows, the a priori measure has a special role (see [LMMS15]).

As in the previous section the mapping T : Ω Ñ X denotes the pro-
jection on the first coordinate. Even when not explicitly mentioned, any
disintegrations of a probability measure ν̂, defined over Ω, will be from now
on considered with respect to T .

Definition 2.5.1 (Variational Entropy). Let R be an IFS, ν̂ P H pRq, µ
a probability on Θ and dν̂px, θq “ dνxpθqdνpxq a disintegration of ν̂, with
respect to T . The variational entropy of ν̂ with a priori probability µ is
defined by

hµvpν̂q ” inf
g PCpX,Rq

gą0

"
ż

X

ln
Bµpgq

g
dν

*

.

Definition 2.5.2. When q “ pqxqxPX is a family of measures on Θ and µ a
probability on Θ, and ν is a probability on X, we say that the family q is
ν-almost everywhere absolutely continuous with respect to µ when qx ! µ
for ν-almost everywhere x on X and write q !ν µ.

If q !ν µ, we define Jxpθq such that Jx “
dqx

dµ
when qx ! µ and Jxpθq “ 0

otherwise.

Definition 2.5.3 (Average entropy). Let R be an IFS, ν̂ P H pRq, dν̂px, θq “

dνxpθqdνpxq a disintegration of ν̂ with respect to T and µ a probability on Θ
such that pνxq !ν µ. The average entropy of ν̂ with respect to µ is defined
by

hµapν̂q ” ´

ż

Ω

ln Jxpθq dνxpθq dνpxq.

Definition 2.5.4 (Optimal Function). Let R be an IFS, ν̂ P H pRq, dν̂px, θq “

dνxpθq dνpxq a desintegration of ν̂ with respect to T and qx “ νx, for all
x P X. If q !ν µ, we say that a positive function g P CpX,Rq is optimal,
with respect to the IFSm Rq , if we have

Jxpθq “
gpτθpxqq

Bµpgqpxq
.

Proposition 2.5.5. If dqxpθq “ Qxpθq dµpθq and dpxpθq “ Pxpθq dµpθq are
probabilities, then

´

ż

X

ż

Θ

logpQxpθqq dqxpθq dνpxq ď ´

ż

X

ż

Θ

logpPxpθqq dqxpθq dνpxq.
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Proof. Using Jensen’s Inequality on fpxq “ ´x logpxq concave function

ż

X

ż

Θ

´ log

ˆ

Qxpθq

Pxpθq

˙

Qxpθq

Pxpθq
dpxpθq dνpxq

“

ż

Ω

f

ˆ

Qxpθq

Pxpθq

˙

dpxpθq dνpxq

ď f

ˆ
ż

Ω

dpxpθq dνpxq

˙

“ fp1q “ 0.

Then,

ż

X

ż

Θ

´ log

ˆ

Qxpθq

Pxpθq

˙

Qxpθq

Pxpθq
Pxpθq dµpθq dνpxq

“

ż

X

ż

Θ

´ log

ˆ

Qxpθq

Pxpθq

˙

dqxpθq dνpxq ď 0

Therefore,

´

ż

X

ż

Θ

log pQxpθqq dqxpθq dνpxq ď ´

ż

X

ż

Θ

log pPxpθqq dqxpθq dνpxq

■

Theorem 2.5.6. Let R be an IFS, ν̂ P H pRq, dν̂px, θq “ dνxpθq dνpxq a
disintegration of ν̂ with respect to T , Rq “ pX, τ, qq the IFSm with qx “ νx
for all x P X and µ a probability on Θ such that q !ν µ. Then

1. hµapν̂q ď hµv pν̂q ď 0;

2. if there exists some optimal function ϕ, with respect to Rq, then

hµapν̂q “ hµv pν̂q “

ż

X

ln
Bµpϕq

ϕ
dν.

Proof. We first prove item 1 . Since qx is a probability measure follows from
the definition of average entropy that hµapν̂q ě 0.

From the definition of variational entropy we obtain

hµvpν̂q “ inf
gPCpX,Rq

gą0

"
ż

X

ln
Bµpgq

g
dν

*

ď

ż

X

ln
Bµp1q

1
dν “ 0.
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To finish the proof of item 1 it remains to show that hµapν̂q ď hµvpν̂q.
Let g : X Ñ R be continuous positive function and define for each x P X a
probability where dpxpθq “ gpτθpxqq{Bµpgqpxq dµpθq. From Proposition 2.5.5
and the properties of the holonomic measures we get the following inequalities
for any continuous and positive function g:

hµapν̂q “ ´

ż

X

ż

Θ

ln Jxpθq dqxpθq dνpxq

ď ´

ż

X

ż

Θ

ln

ˆ

g ˝ τθ
Bµpgq

˙

dqxpθq dνpxq

“ ´

ż

X

„
ż

Θ

lnpg ˝ τθq dqxpθq ´

ż

Θ

lnpBµpgqq dqxpθq

ȷ

dνpxq

“ ´

ż

X

Bqpln gq dν `

ż

X

lnpBµpgqq dν

“ ´

ż

X

ln g dν `

ż

X

lnpBµpgqq dν

“

ż

X

ln
Bµpgq

g
dν,

Therefore, hµapν̂q ď hµvpν̂q. Futhermore, if Jxpθq “ ϕ ˝ τθpxq{Bµpϕqpxq for

some ϕ ą 0 continuous function, then hµapν̂q “
ş

X
log Bµpϕq

ϕ
“ hµvpν̂q. ■

Definition 2.5.7. Let ψ : X Ñ R be a positive continuous function, µ a
probability on Θ, and RψpX, τ, qq an IFSm, where dqxpθq “ ψ ˝ τθpxq dµpθq.
The topological pressure of ψ, with respect to Rψ, is defined by

P pψq “ sup
ν̂PHpRq

inf
gPCpX;Rqgą0

"
ż

X

ln
Bqpgq

g
dν

*

, (2.3)

where ν :“ T˚ν̂ for T : Ω Ñ X the X projection.

Observe that, for the potential ψ “ 1, the pressure P pψq “ supν̂PHpRq h
µ
vpν̂q.

We also can obtain the following alternative forma for pressure.

Lemma 2.5.8. Let ψ : X Ñ R be a positive continuous function and Rψ “

pX, τ, qq be the IFSm defined above, where dqxpθq “ ψ ˝ τθpxq dµpθq. Then,
the topological pressure of ψ is alternatively given by

P pψq “ sup
ν̂PHpRq

"

hµv pν̂q `

ż

X

logψ dν

*

.
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Proof. First, note that Bqpgq “ Bµpg ¨ ψq where pg ¨ ψqpxq “ gpxqψpxq. In
fact

Bqpgqpxq “

ż

Θ

g˝τθpxqψ˝τθpxq dµpθq “

ż

Θ

pg ¨ψq˝τθpxq dµpθq “ Bµpg ¨ψqpxq.

To finish the proof, we only need to use the pressure’s definition and some
basic properties as follows:

P pψq “ sup
ν̂PHpRq

inf
gą0

"
ż

X

ln
Bqpgq

g
dν

*

,

“ sup
ν̂PHpRq

inf
gą0

"
ż

X

logψ dν ´

ż

X

logψ dν `

ż

X

ln
Bqpgq

g
dν

*

“ sup
ν̂PHpRq

inf
gą0

"
ż

X

logψ dν `

ż

X

ln
Bµpg ¨ ψq

g ¨ ψ
dν

*

“ sup
ν̂PHpRq

"
ż

X

logψ dν ` inf
g̃ą0

ż

X

ln
Bµpg̃q

g̃
dν

*

“ sup
ν̂PHpRq

"

hµvpν̂q `

ż

X

logψ dν

*

.

■

Remark 2.5.9. Note that, if dqxpθq “
ψ˝τθpxq

Bµpψqpxq
dµpθq, by the Theorem 2.3.2

there exists ρ ą 0 and ν s.t. Lqpνq “ ρν.
But,

ρ “

ż

X

dLqpνq “

ż

X

Bqp1qpxq dνpxq “

ż

Ω

ψ ˝ τθpxq

Bµpψqpxq
dµpθq dνpxq

“

ż

X

Bµpψqpxq
´1

ż

Θ

ψ ˝ τθpxq dµpθq dνpxq “

ż

X

dν “ 1.

Therefore we have

P pψq ě sup
νPtLq pνq“νu

ż

X

lnBµpψq dν.

Definition 2.5.10 (Equilibrium States). Let R be an IFS, ν̂ P H pRq and
µ a probability on Θ. Let ψ : X Ñ R be a positive continuous function. We
say that the holonomic measure ν̂ is an equilibrium state for pψ, µq if

hµvpν̂q `

ż

X

logψ dν “ P pψq.

21



Lemma 2.5.11. Let X and Y be compact separable metric spaces and T :
Y Ñ X be a continuous mapping. Then the push-forward mapping ΦT ” Φ :
M1pYq Ñ M1pXq given by

Φpµ̂qpAq “ µ̂pT´1
pAqq, where µ̂ P M1pYq and A P BpXq

is weak-˚ to weak-˚ continuous.

Proof. Since we are assuming that X and Y are separable compact metric
spaces then we can ensure that the weak-˚ topology of both M1pYq and
M1pXq are metrizable. Therefore is enough to prove that Φ is sequentially
continuous. Let pµ̂nqnPN be a sequence in M1pYq so that µ̂n á µ̂. For any
continuous real function f : X Ñ R we have from change of variables theorem
that

ż

X

f drΦpµ̂nqs “

ż

Y

f ˝ T dµ̂n,

for any n P N. From the definition of the weak-˚ topology follows that the
rhs above converges when n Ñ 8 and we have

lim
nÑ8

ż

X

f drΦpµ̂nqs “ lim
nÑ8

ż

Y

f ˝ T dµ̂n “

ż

Y

f ˝ T dµ̂ “

ż

X

f drΦpµ̂qs.

The last equality shows that Φpµ̂nq á Φpµ̂q and consequently the weak-˚ to
weak-˚ continuity of Φ. ■

For any ν̂ P HpRq it is always possible to disintegrate it as dν̂px, iq “

dνxpiqdrΦpν̂qspxq, where Φpν̂q ” ν is the probability measure on BpXq, de-
fined for any A P BpXq by

νpAq ” Φpν̂qpAq ” ν̂pT´1
pAqq, (2.4)

where T : Ω Ñ X is the canonical projection of the first coordinate. This
observation together with the previous lemma allow us to define a continuous
mapping from HpRq to M1pXq given by ν̂ ÞÝÑ Φpν̂q ” ν.

We now prove a theorem ensuring the existence of equilibrium states
for any continuous positive function ψ. Although this theorem has clear
and elegant proof and works in great generality it has the disadvantage of
providing no description of the set of equilibrium states.

Theorem 2.5.12 (Existence of Equilibrium States). Let R be an IFS, ψ :
X Ñ R a positive continuous function and µ a probability on Θ. Then the
set of equilibrium states for pψ, µq is not empty.
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Proof. As we observed above we can define a weak-˚ to weak-˚ continuous
mapping

HpRq Q ν̂ ÞÝÑ ν P M1pXq,

where dν̂px, iq “ dνxpiqdνpxq is the above constructed disintegration of ν̂.
From this observation follows that for any fixed positive continuous g we
have that the mapping HpRq Q ν̂ ÞÝÑ

ş

X
lnpB1pgq{gq dν is continuous with

respect to the weak-˚ topology. Therefore the mapping

HpRq Q ν̂ ÞÝÑ inf
gPCpX,Rq

gą0

"
ż

X

ln
B1pgq

g
dν

*

” hvpν̂q.

is upper semi-continuous (USC) which implies by standard results that the
following mapping is also USC

HpRq Q ν̂ ÞÝÑ hvpν̂q `

ż

X

lnpψpxqq dνpxq.

Since HpRq is compact in the weak-˚ topology and the above mapping is USC
then follows that this mapping attains its supremum at some µ̂ P HpRq, i.e.,

sup
ν̂PHpRq

"
ż

X

lnψ dν ` hvpν̂q

*

“

ż

X

lnψ dµ ` hvpµ̂q

thus proving the existence of at least one equilibrium state. ■

2.6 Pressure Differentiability and Equilibrium

States

We show in this section a uniqueness result for the equilibrium state
introduced in the last section. In order to do that we will need to consider
the functional p : CpX,Rq Ñ R given by

ppφq “ P pexppφqq. (2.5)

It is immediate to verify that p is a convex and finite valued functional. We
say that a Borel signed measure ν P MspXq is a subgradient of p at φ if it
satisfies the following subgradient inequality

ppηq ě ppφq ` νpη ´ φq for any η P MspXq.
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The set of all subgradients at φ is called subdifferential of p at φ and
denoted by Bppφq. It is well-known that if p is a continuous mapping then
Bppφq ‰ H for any φ P CpX,Rq.

We observe that for any pair φ, η P CpX,Rq and 0 ă t ă s, follows from
the convexity of p the following inequality

spppφ ` tηq ´ ppφqq ď tpppφ ` sηq ´ ppφqq.

In particular, the one-sided directional derivative d`ppφq : CpX,Rq Ñ R
given by

d`ppφqpηq “ lim
tÓ0

ppφ ` tηq ´ ppφq

t

is well-defined for any φ P CpX,Rq.

Theorem 2.6.1. For any fixed φ P CpX,Rq we have

1. the signed measure ν P Bppφq iff νpηq ď d`ppφqpηq for all η P CpX,Rq;

2. the set Bppφq is a singleton iff d`ppφq is the Gâteaux derivative of p at
φ.

Proof. This theorem is a consequence of Theorem 7.16 and Corollary 7.17
of the reference [CA06]. ■

Theorem 2.6.2. Let R be an IFS, ψ : X Ñ R a positive continuous function,
µ a probability on Θ and Φpν̂q “ ν for ν̂ P H pRq where ν is given by
disintegration with respect to T . If the functional p defined on (2.5) is Gâteaux
differentiable at φ ” logψ, then

#tΦpµ̂q : µ̂ is an equilibrium state for ψu “ 1.

Proof. Suppose that µ̂ is an equilibrium state for ψ. Then we have from
the definition of the pressure that

ppφ ` tηq ´ ppφq “ P pψ expptηqq ´ P pψq

ě hvpµ̂q `

ż

X

lnψ dµ `

ż

X

tη dµ ´ hvpµ̂q ´

ż

X

lnψ dµ

“ t

ż

X

η dµ.

Since we are assuming that p is Gâteaux differentiable at φ follows from
the above inequality that µpηq ď d`ppφqpηq for all η P CpX,Rq. From this
inequality and Theorem 2.6.1 we can conclude that Bppφq “ tµu. Therefore
for all equilibrium state µ̂ for ψ we have Φpµ̂q “ Bppφq, thus finishing the
proof. ■
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2.7 A Constructive Approach to Equilibrium

States

In this section we prove the existence of a positive eigenfunction for the
transfer operator associated to the spectral radius, and give a constructive
proof of the existence of equilibrium states.

Let Rq “ pX, τ, qq assuming that there is µ a probability on Θ s.t. @x P

X, qx ! µ and J : Θ ˆ X Ñ R, defined by Jpx, θq :“ dqx

dµ
pθq, a continuous

function. Define upx, θq “ log Jpθ, xq, and consider a parametric family of
variable discount functions δn : r0,`8q Ñ R, where δnptq Ñ Iptq “ t, when
n Ñ 8, pointwise and the normalized limits limnwnpxq´maxwn of the fixed
points

wnpxq :“ log

ż

Θ

eupθ,xq`δnpwnpτpθ,xqqq dµ “ log

ż

Θ

eδnpwnpτpθ,xqqq dqxpθq

of a variable discount decision-making process, as defined in rCO19s, Sn :“
pX,Θ,Ψ, τ, u, δnq where Ψpxq “ Θ for all x P X and the sequence pδnq satisfies
the admissibility conditions:

1. the contration modulus γn of δn is also a variable discount function;

2. δnp0q “ 0 and δnptq ď t for any t P p0,`8q;

3. for any fixed α ą 0 we have δnpt ` αq ´ δnptq Ñ α when n Ñ 8,
uniformly in t ą 0.

Theorem 2.7.1. Let Rq and pδnq in above conditions such that the above
defined u satisfy:

1. u is uniformly δ-bounded for pδnq;

2. u is uniformly δ-dominated for pδnq.

Then there exists a positive and continuous eigenfunction h such that Bqphq “

ρpBqqh.

Proof. Theorem 3.28 of rCO19s implies that there exists k P r0, ∥u∥
8

s and
φpxq :“ ehpxq continuous and positive function with

ekφpxq “

ż

Θ

φ ˝ τpθ, xq eupx,θq dµpθq “ Bqpφqpxq,

for all x P X. Now use the Theorem 2.2.5 and the theorem is proven. ■
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Let ψ : X Ñ R be a positive continuous function, µ a probability on Ω,
and RψpX, τ, qq an IFSm, where dqxpθq “ ψ˝τθpxq dµpθq. Suppose that there
is h a positive continuous function such that Bqphq “ Bµph ¨ ψq “ ρpBqqh.
Then we can define, following Definition 2.5.4, Rp “ pX, τ, pq where

dpx
dµ

pθq :“
ph ¨ ψq ˝ τθpxq

Bµph ¨ ψq
“

ph ¨ ψq ˝ τθpxq

ρpBqqh
“
h ˝ τθpxq

ρpBqqh
¨
dqx
dµ

pθq.

The IFSm Rp is called the normalization of Rq . Take Lppνq “ ν and let
ν̂ be the holonomic lifting of ν. Then by the Theorem 2.5.6 we know that

hµapν̂q “ hµvpν̂q “

ż

X

log
Bµph ¨ ψq

h ¨ ψ
dν “ log ρpBqq ´

ż

X

logψ dν.

Then, choosing this ν̂ as particular in supremum given in Lema 2.5.8,
P pψq ě hµvpν̂q `

ş

X
logψ dν “ log ρpBqq.

But, remember that the pressure, defined in expression p2.3q, is

P pψq “ sup
ν̂PHpRq

inf
gPCpX;Rqgą0

"
ż

X

ln
Bqpgq

g
dν

*

,

then,

inf
gPCpX;Rqgą0

"
ż

X

ln
Bqpgq

g
dν

*

ď

ż

X

ln
Bqphq

h
dν “ log ρpBqq.

Taking the supremum over H pRq in both sides of above inequality, we
have P pψq ď log ρpBqq. Since the reverse inequality is already shown, we
prove that

P pψq “ log ρpBqq.

2.8 Example: Thermodynamic Formalism for

right shift

Now we show that the IFSm Thermodynamic Formalism generalizes the
Thermodynamical Formalism for a dynamical system.

Let Θ be a compact metric space and X “ ΘN. For each θ P Θ define
σθpx1, x2, . . .q “ pθ, x1, x2, . . .q the inverse branch of the right shift σ. Take
µ a a-priori probability on Θ. Let ψ : Ω Ñ R be a positive potential and
A “ logψ.
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Now we define dqxpθq “ eA˝σθpxq dµpθq.
Then,

Bqpϕq “

ż

S

eA˝σθpxqϕ ˝ σθpxq dµpθq “ LApϕqpxq,

where LA is the Ruelle Operator for the right shift σ and the potential A
(see [LMMS15] for more details).

By Definition 2.5.7,

P pψq “ sup
ν̂PHpRq

inf
gą0

"
ż

X

ln
Bqpgq

g
dν

*

“ sup
νPMσ

inf
gą0

"
ż

X

ln
LApgq

g
dν

*

.

The last expression is exactly the pressure of the potential A in Thermo-
dynamical Formalism. Suppose that there is ϕA a positive continuous func-
tion such that BqpϕAq “ LApϕAq “ ρpRAqϕA “ λAϕA. Then P peAq “ log λA.
For instance, we know that if A is Hölder, then there exists such ϕA ą 0
function.

From this example, we can see that the IFSm Thermodynamic For-
malism, in certain sense, generalizes the Thermodynamical Formalism for a
dynamical system. When we look at the family tσθuθPΘ of functions, we are
looking at the inverse branches of the dynamical system.

2.9 Example: IFSm and a Possible Applica-

tion in Economics

In Gupta et al. [GS`21] a chaos game is used to represent a time series
as a PC plot and compare similarities and dissimilarities in different time
frame such as the global pandemic of COVID-19. More precisely, the author
consider the set X “ r0, 1s2 as the base space and the four linear contractions

$

’

’

&

’

’

%

τApx, yq “ p0.5x, 0.5yq

τBpx, yq “ p0.5x ` 0.5, 0.5yq

τCpx, yq “ p0.5x, 0.5y ` 0.5q

τDpx, yq “ p0.5x ` 0.5, 0.5y ` 0.5q

(2.6)

so pX, τθqθPΘ,Θ “ tA,B,C,Du, is a classic contractive system whose attrac-
tor is X itself. Consider the identification:
A – if the market falls more than 0.01% of the previous value,
B – if the market falls less than 0.01% of the previous value,
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C – if the market gains less than 0.01% of the previous value and
D – if the market gains more than 0.01% of the previous value,
in this way the time series of length N associated to a certain economic
indicator is translated in to a genetic sequence

γ “ pDACCADCDACDC...AACCBADDq P ΘN .

Fixed an arbitrary initial point Z0 “ px0, y0q “ p0.5, 0.5q the chaos game
consist in iterating px0, y0q by each map Z1 “ px1, y1q “ τDpx0, y0q, Z2 “

px2, y2q “ τApx1, y1q, Z3 “ px3, y3q “ τCpx2, y2q, .... according to γ. Consider-
ing M ě 2 and the diadic partition of X given by

ď

γ1PΘM

τγ1
M

p¨ ¨ ¨ pτγ1
1
pXqqq,

the PC plot W is a grey scale picture where the color of the each individual
part Λ “ τγ1

M
p¨ ¨ ¨ pτγ1

1
pXqqq is the frequency of visits of the chaos game orbit

tZj, j ě 0u to Λ that is,

W pΛq “
1

N
7tj “ 0, ..., N ´ 1 |Zj P Λu „ µpΛq.

Obviously, νN “
ř

ΛW pΛqδpxΛ, yΛq, where pxΛ, yΛq P Λ is arbitrary, is a
discrete probability and, if µpBpΛqq “ 0 then by the EET ([Elt87], Corollary
2), when N Ñ 8, νN converge in distribution to the invariant measure µ for
the IFS with probabilities pX, τθ, pθqθPΘ, where pA, pB, pC , pD are the relative
frequency of each symbol A,B,C,D in γ, respectively.
For instance, if N “ 100 and if a certain time series produces the genetic
sequence

γ “ pA,A,D,D,A, ..., A,D,B,C,C,B,A,Dq P tA,B,C,Du
100,

we obtain the frequencies rpA, pB, pC , pCs “ r0.39, 0.17, 0.15, 0.29s, and con-
sidering M “ 4 we obtain the following PC plot which is an approxima-
tion for the invariant measure µ of the associated IFS with probabilities
r0.39, 0.17, 0.15, 0.29s.

In order to generalize this idea we need to consider an infinite compact
continuous range of values of the economic indicator, such as Θ “ r0%, 100%s,
instead of taking only four values Θ “ tA,B,C,Du. Also, it is not reasonable
to suppose that the probability of a change of θ% in the indicator is indepen-
dent of the current state of the indicator: the distribution of the occurrence
of θ P r0%, 100%s, given the current state Z P X must be a measure of prob-
ability qZp¨q over r0%, 100%s. Therefore, we believe the theory developed in
the previous sections should be used when making this generalization.
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Figure 2.1: PC plot where each square represents one element Λ of the diadic
partition and grey scale value 0 ď 1

N
7tj “ 0, ..., N ´ 1 |Zj P Λu ď 1.

Aknowledgement: We would like to thanks Prof. Leandro Cioletti
whose contribution on the related preprint [CO17] was fundamental to es-
tablish the tools and ideas that we now generalize in our work.
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Chapter 3

Thermodynamic Formalism for
Quantum Channels

Abstract

This entire chapter is part of the article [BKL21b]. Denote Mk the set of
complex k by k matrices. We will analyze here quantum channels ϕL of the
following kind: given a measurable function L : Mk Ñ Mk and a measure
µ on Mk we define the linear operator ϕL : Mk Ñ Mk, via the expression
ρ Ñ ϕLpρq “

ş

Mk
LpvqρLpvq

: dµpvq, where Lpvq: is the adjunt matrix of

Lpvq.
This paper [BFPP19] is our starting point. They considered the case

where L was the identity.
Under some mild assumptions on the quantum channel ϕL we analyze

the eigenvalue property for ϕL and we define entropy for such channel. For
a fixed µ (the a priori measure) and for a given a Hamiltonian H : Mk Ñ

Mk we present a version of the Ruelle Theorem: a variational principle of
pressure (associated to such H) related to an eigenvalue problem for the
Ruelle operator. We introduce the concept of Gibbs channel.

We also show that for a fixed µ (with more than one point in the support)
the set of L such that it is ϕ-Erg (also irreducible) for µ is a generic set.

We describe a related process Xn, n P N, taking values on the projective
space P pCkq and analyze the question of the existence of invariant proba-
bilities. We also consider an associated process ρn, n P N, with values on
Dk (Dk is the set of density operators). Via the barycenter, we associate the
invariant probability mentioned above with the density operator fixed for ϕL.
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3.1 Introduction

There are many different definitions and meanings for the concept of
quantum dynamical entropy. We mention first the more well-known con-
cepts due to Connes-Narnhofer-Thirring (see rCNT87s), Alicki-Fannes (see
rAF94s), Accardi-Ohya-Watanabe (see rASS20s), Stormer [Stø02] and Kossa-
kowski-Ohya-Watanabe (see rKOW99s). In this case, the entropy can be
exactly computed for several examples of quantum dynamical systems.

A different approach appears in rSS17s and rSŻ94s where the authors
present their definition of quantum dynamical entropy (see also rAW19s).

Classical texts on quantum entropy are rAF01s, rBen09s, rBen03s and
rOP04s, and for quantum channels we also mention rJP19s, rLid19s, and
rWol12s.

We present here a certain concept of dynamical quantum entropy. A
confirmation that this entropy is in fact a concept that describes valuable
information from a dynamic point of view is its relationship with Lyapunov
exponents as presented in [BKL21a] by the same authors. Lyapunov ex-
ponents are quite important tools that are used in Physics, Dynamics, and
Fractals. Moreover, in [BKL21a] we will show that the purification property
is C0-generic.

One of the most challenging open problems in quantum information the-
ory is to introduce a good definition capable of quantifying how entanglement
behaves when part of an entangled state is sent through a quantum channel.
Therefore the understanding of quantum channels is a problem of central
importance.

Denote Mk the set of complex k by k matrices. We will analyze here
quantum channels ϕL of the following kind: given a measurable function
L : Mk Ñ Mk and the measure µ on Mk we define the linear operator
ϕL : Mk Ñ Mk, via the expression ρ Ñ ϕLpρq “

ş

Mk
LpvqρLpvq

: dµpvq.
The probability µ will play the role of an a priori probability for defining

entropy (in the spirit of [LMMS15]) as described in section 3.4.
In rBFPP19s the authors present interesting results for the case L “

I. This paper is our starting point and we follow its notation as much as
possible. Given L (as above) one can consider in the setting of rBFPP19s a
new probability µL “ µ ˝ L´1 and part of the results presented here can be
recovered from there (using µL instead of µ).

We will present all the proofs here using L and µ as above (and not via
µL) because this will be more natural for our future reasoning (for instance
when analyzing generic properties).

In the Thermodynamic Formalism version of Quantum Information, the
L will help on the one hand to express the analogous concept of function
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(even the analog of a Hamiltonian) and on the other hand, a certain class of
L - together with the a priori probability µ on Mk - will help to describe the
analogous concept of invariant probability. Later we will elaborate on that.

This paper is self-contained.
For a fixed µ and a general L we present a natural concept of entropy

for a channel in order to develop a version of Gibbs formalism which seems
natural to us. Example 3.8.5 in Section 3.8 (the Markov model in quan-
tum information) will show that our definition is a natural extension of the
classical concept of entropy. We point out that the definition of entropy we
will consider here is a generalization of the concept described on the papers
rBLLC10s, rBLLC11as and rBLLC11bs. This particular way of defining en-
tropy is inspired by the results of rS lo03s which consider iterated function
systems.

For a given H : Mk Ñ Mk (which plays the role of a Hamiltonian) we
present a version of the Ruelle Theorem for ϕH : a variational principle of
pressure related to an eigenvalue problem for a kind of Ruelle operator (see
Theorem 3.4.8).

A question of terminology: the operator H (mentioned above as Hamilto-
nian) could also be naturally called Liouvillian; it would make perfect sense
taking into account that Mk is an algebra of quantum observables where
the operator acts (Heisenberg picture of QM). The notation L used by the
authors in [BFPP19] was probably inspired by their understanding that L
plays the role of a Liouvillian operator.

We say that E Ă Ck is pL, µq-invariant if LpvqpEq Ă E, for all v in the
support of µ. Given L : Mk Ñ Mk and µ on Mk, we say that L is ϕ-Erg for µ,
if there exists an unique minimal non-trivial space E, such that, E is pL, µq-
invariant. We will show in Section 3.7 that for a fixed µ (with more than one
point in the support) the set of L such that it is ϕ-Erg for µ is generic. In
fact, the set of L which are irreducible is dense according to Theorem 3.7.5.

The introduction of this variable L allows us to consider questions of a
generic nature in this type of problem.

We point out that here we explore the point of view that the (discrete-time
dynamical) classical Kolmogorov-Shannon entropy of an invariant probabil-
ity is in some way attached to an a priori probability (even if this is not
transparent on the classical definition). This point of view becomes more
clear when someone tries to analyze the generalized XY model (the sym-
bolic space MN where the alphabet M is a compact metric space) which is a
case with the property that each point has an uncountable number of preim-
ages (see rLMMS15s and rBCL`11s for discussion). In the dynamical setting
of rLMMS15s to define entropy it is necessary first to introduce the transfer
(Ruelle) operator (which we claim - in some sense - is a more fundamental
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concept than entropy) which requires an a priori probability (not a general
measure). Our results correspond to the case where the alphabet (that in
some sense corresponds to the support of the a priori probability µ) can be
uncountable.

The point of view of defining entropy via the limit of dynamical partitions
is not suitable for the generalized X Y model. We are just saying that in any
case the concept of entropy can be recovered via the Ruelle operator.

We point out, as a curiosity, that for the computation of the classical
Kolmogorov-Shannon entropy of a shift invariant probability on t1, 2, . . . , du

N

one should take as the a priori measure (not a probability) the counting
measure on t1, 2, . . . , du (see discussion in rLMMS15s). In the case, we take as
a priori probability µ the uniform normalized probability on t1, 2, . . . , du the
entropy will be negative (it will be Kolmogorov-Shannon entropy - log d). In
this case the independent 1{d probability on t1, 2, . . . , du

N will have maximal
entropy equal 0.

A general reference for Thermodynamic Formalism is [PP90] and [Lop11].

We point out that we consider here Quantum Channels but the associated
discrete-time process is associated with a Classical Stochastic Process (a
probability on the infinite product of an uncountable state space) and not
to a quantum spin-lattice, where it is required the use of the tensor product
(see [LMMM18] and [BLMM21]).

After some initial sections describing basic properties which will be re-
quired later we analyze in Section 3.3 the eigenvalue property for ϕL.

Under some mild assumptions on ϕL, we define the entropy of the channel
ϕL in Section 3.4. For a fixed µ (the a priori measure) and a given Hamil-
tonian H : Mk Ñ Mk we present a variational principle of pressure and we
associate with all this an eigenvalue problem on Section 3.3. In Definition
3.4.4 we introduce the concept of Gibbs channel for the Hamiltonian H (or,
for the channel ϕH).

In Section 3.5 we describe (adapting rBFPP19s to the present setting) a
process Xn, n P N, taking values on the projective space P pCkq. We also
analyze the existence of an initial invariant probability for this process (see
Theorem 3.5.2).

In Section 3.6 we consider a process ρn, n P N (called quantum trajectory
by T. Benoist, M. Fraas, Y. Pautrat, and C. Pellegrini) taking values on
Dk, where Dk is the set of density operators on Mk. Using the definition
of barycenter taken from rS lo03s we relate in proposition 3.6.2 the invariant
probabilities of Section 3.5 with the fixed point of Section 3.3.

In Section 3.7, for a fixed measure µ, we show that ϕ-Erg (and also

33



irreducible) is a generic property for L (see Corollary 3.7.10).
In Section 3.8, we present several examples that will help the reader

in understanding the theory. Example 3.8.5 shows that the definition of
entropy for Quantum Channels described here is the natural generalization
of the classical concept of entropy. In another example in this section, we
consider the case where µ is a probability with support on a linear space of
M2 (see Example 3.8.6), and among other things we estimate the entropy of
the channel.

In the final section 3.9 we will present some clarifications on which direc-
tions our work is related to relevant issues in the area connected to quantum
entropy.

3.2 General properties

We present some basic definitions.
We denote by Mk, k P N, the set of complex k by k matrices. We consider

M the standard Borel sigma-algebra over Mk and on Ck, we consider the
canonical Euclidean inner product.

We denote by Idk the identity matrix on Mk.
According to our notation, : denotes the operation of taking the dual of

a matrix with respect to the canonical inner product on Ck.
Here tr denotes the trace of a matrix.
Given two matrices A and B we define the Hilbert-Schmidt product

xA , B y “ tr pAB:
q.

This induces a norm ∥A∥ “
a

xA , A y on the Hilbert space Mk which
will be called the Hilbert-Schmidt norm.

Given a linear operator ϕ on Mk we denote by ϕ˚ : Mk Ñ Mk the dual
linear operator in the sense of Hilbert-Schmidt, that is, if for all X, Y we get

xϕpXq , Y y “ xX , ϕ˚
pY q y.

Now, consider a measure µ on M.
For an integrable transformation F : Mk Ñ Mk:

ż

Mk

F pvq dµpvq “

ˆ
ż

Mk

F pvqi,j dµpvq

˙

i,j

,

where F pvqi,j is the entry pi, jq of the matrix F pvq.
We will list a sequence of trivial results (without proof) that will be used

next.

34



Lemma 3.2.1. For an integrable transformation F : Mk Ñ Mk

tr

ż

Mk

F pvq dµpvq “

ż

Mk

trF pvq dµpvq.

Lemma 3.2.2. Given a matrix B P Mk and an integrable transformation
F : Mk Ñ Mk, then,

B

ż

Mk

F pvq dµpvq “

ż

Mk

BF pvq dµpvq.

Proposition 3.2.3. If l : Mk Ñ C is a linear functional and F : Mk Ñ Mk

is integrable, then,

l

ˆ
ż

Mk

F pvq dµpvq

˙

“

ż

Mk

lpF pvqq dµpvq.

Definition 3.2.4. Given a measure µ on Mk and a measurable funtion L :
Mk Ñ Mk, we say that µ is L-square integrable, if

ż

Mk

∥Lpvq∥2 dµpvq ă 8.

For a fixed L we denote by MpLq the set of L-square-integrable measures.
We also denote PpLq the set of L-square-integrable probabilities.

Definition 3.2.5. Given a measurable function L : Mk Ñ Mk and a L-
square-integrable measure µ we define the linear operator ϕL : Mk Ñ Mk via
the expression

ρ Ñ ϕLpρq “

ż

Mk

LpvqρLpvq
: dµpvq.

For a given H : Mk Ñ Mk (which plays the role of a Hamiltonian) we
present a version of the Ruelle Theorem: a variational principle of pressure
related to an eigenvalue problem for a kind of Ruelle operator (see Theorem
3.4.8).

Remember that if A,B P Mk with A,B ě 0, then tr pABq ď tr pAqtr pBq.
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Therefore, if ρ ě 0, we have

∥ϕLpρq∥2 “ tr pϕLpρqϕLpρq
:
q

“

ż

Mk

ż

Mk

tr pLpvqρLpvq
:Lpwq

:ρLpwqq dµpvq dµpwq

“

ż

Mk

ż

Mk

tr pρLpvq
:Lpwq

:ρLpwqLpvqq dµpvq dµpwq

ď tr pρq

ż

Mk

ż

Mk

tr pρLpwqLpvqLpvq
:Lpwq

:
q dµpvq dµpwq

ď tr pρq
2

ż

Mk

ż

Mk

tr pLpwqLpvqLpvq
:Lpwq

:
q dµpvq dµpwq

ď tr pρq
2

ż

Mk

∥Lpvq∥2 dµpvq

ż

Mk

∥Lpwq∥2 dµpwq ă 8.

For a general ρ P Mk, we write ρ “ ρ`´ρ´ where ρ` “ |ρ| and ρ´ “ |ρ|´ρ
are both positive semidefinite matrices. By linearity of ϕL, we have

ϕLpρq “ ϕLpρ`q ´ ϕLpρ´q,

hence, ϕL is well defined.

Proposition 3.2.6. Given a measurable function L : Mk Ñ Mk and a L-
square integrable measure µ, then, the dual transformation ϕ˚

L is given by

ϕ˚
Lpρq “

ż

Mk

Lpvq
:ρLpvq dµpvq.

Definition 3.2.7. Given a measurable function L : Mk Ñ Mk and a L-
square integrable measure µ over Mk, then, the transformation ϕL is called
stochastic if

ϕ˚
LpIdkq “

ż

Mk

Lpvq
:Lpvq dµpvq “ Idk.

By abuse of language, we sometimes say L stochastic to mean that ϕL is
stochastic.

We will be able to define the concept of entropy when the ϕL is stochastic.

Definition 3.2.8. A linear map ϕ : Mk Ñ Mk is called positive if takes
positive matrices to positive matrices.

Definition 3.2.9. A positive linear map ϕ : Mk Ñ Mk is called completely
positive, if for any m, the linear map ϕm “ ϕb Im : Mk bMm Ñ Mk bMm

is positive, where Im is the identity operator acting on the matrices in Mm.
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Definition 3.2.10. If ϕ : Mk Ñ Mk is a linear map and satisfies

1. ϕ is completely positive;

2. ϕ preserves trace.

Then, we say that ϕ is a quantum channel.

Theorem 3.2.11. Given L : Mk Ñ Mk and µ a L-square measure. Then
the associated transformation ϕL is completely positive. Moreover, if ϕL is
stochastic then preserves trace.

Proof. 1. ϕL is completely positive: suppose A b B P Mn b Mk satisfies
A b B ě 0 and ψ P Cn b Ck. Then, if ψLpvq “ pIdn b Lpvq

:
qψ we get

xψ |A b ϕLpBq|ψ y “ xψ |A b

ż

Mk

LpvqBLpvq
: dµpvq|ψ y

“

ż

Mk

xψ |A b pLpvqBLpvq
:
q|ψ y dµpvq

“

ż

Mk

xψ |pIdn b LpvqqpA b BqpIdn b Lpvq
:
q|ψ y dµpvq

“

ż

Mk

x pIdn b Lpvq
:
qψ |pA b Bq| pIdn b Lpvq

:
qψ y dµpvq

“

ż

Mk

xψLpvq |pA b Bq|ψLpvq y dµpvq ě 0.

Above we use the positivity of A b B in order to get xψLpvq |pA b

Bq|ψLpvq y ě 0. We also used in some of the equalities the fact that
lpXq :“ xψ |A b X|ψ y is a linear functional and therefore we can apply
proposition 3.2.3.

2. Under our assumption ϕL preserves trace: given B P Mk

trϕLpBq “ tr

ˆ
ż

Mk

LpvqBLpvq
: dµpvq

˙

“

ż

Mk

tr
´

LpvqBLpvq
:
¯

dµpvq

“

ż

Mk

tr
´

BLpvq
:Lpvq

¯

dµpvq

“ tr

ˆ

B

ż

Mk

Lpvq
:Lpvq dµpvq

˙

“ tr pBq.
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■

Remark 3.2.12 (ϕ˚
L is completely positive). When L is measurable, then,

using the same reasoning as above one can show that ϕ˚
L is completely posi-

tive.
We say that ϕL preserves unity if ϕLpIdq “ Id. In this case, ϕ˚

L preserves
trace. When ϕ˚

L preserves the identity then ϕL preserves trace.

3.3 The eigenvalue property for ϕL

In this section, we will investigate questions related to the existence of
eigenvalues and eigenmatrices for the setting of Quantum Information. An
important role will be played by a result about positive maps on C˚-algebras
described in [Eva78] which presents a noncommutative version of the Perron
Theorem.

Definition 3.3.1 (Irreducibility). We say that ϕ : Mk Ñ Mk is irreducible
if one of the equivalent properties is true

• Does not exists λ ą 0 and a projection p on a proper non-trivial sub-
space of Ck, such that, ϕppq ď λp;

• For all non null A ě 0, pId ` ϕq
k´1

pAq ą 0;

• For all non null A ě 0 there exists tA ą 0, such that, petAϕqpAq ą 0;

• If P P Mk is a hermitian projector such that ϕpPMkP q Ă PMkP , then
P P t0, Idu;

• For all pair of non null positive matrices A,B P Mk there exists a
natural number n P t1, . . . , k ´ 1u, such that, tr rBϕnpAqs ą 0.

The proof of the equivalence of the two first items appears in rEva78s.
The equivalence of the two middle ones appears in rSch00s where also

one can find the proof of the improved positivity (to be defined below) which
implies irreducibility. For the proof that the last two items, we refer to
rWol12s.

Definition 3.3.2 (Irreducibility). Given µ we will say (by abuse of language)
that L is irreducible for µ or µ-irreducible if the associated ϕL is irreducible.

Lemma 3.3.3. Given L : Mk Ñ Mk and µ a L-square measure, the following
statements are equivalent:
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1. ϕL is irreducible;

2. If E Ă Ck is a subspace such that LpvqE Ă E for all v P suppµ, then
E P t t0u,Cku.

Proof. 1. Ñ 2.: If ϕL is irreducible and E Ă Ck is a subspace such that
LpvqE Ă E for all v P suppµ, take P the orthogonal projection on E. Then
PLpvqP “ LpvqP for all v P suppµ. Moreover, for every A P Mk

ϕLpPAP q “

ż

Mk

LpvqPAPLpvq
: dµpvq

“

ż

suppµ

PLpvqPAPLpvq
:P dµpvq

“ P

ż

suppµ

LpvqPAPLpvq
: dµpvqP P PMkP,

and by the fourth equivalence of 3.3.1, P P t0, Idu. Therefore E “ t0u or
E “ Ck.

2. Ñ 1.: If there is P P Mk Hermitian projection such that ϕLpPMkP q P

PMkP , take E “ ImP , x P E and A “ |x y xx |. Then we have

0 “ tr pϕLpPAP q ´ PϕLpPAP qP q “

“

ż

Mk

tr
´

LpvqALpvq
:

´ PLpvqALpvq
:P

¯

dµpvq

“

ż

Bx

tr
´

LpvqALpvq
:

´ PLpvqALpvq
:P

¯

dµpvq

“

ż

Bx

tr
´

LpvqALpvq
:
pI ´ P q

¯

dµpvq,

where Bx :“ tv |Lpvqx R Eu. Suppose P R t0, Idu, then we have

tr pLpvqALpvq
:
q ´ tr pPLpvqALpvq

:P q ą 0,

and, since the integral is zero, µpBxq “ 0. Thus, for all x P E, suppµ Ă Bc
x

and so LpvqE Ă E for v P suppµ. By hypothesis, we have that E P t t0u,Cku

which brings us to an absurd.
■
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Definition 3.3.4 (Improving positivity). We say that ϕL is positivity im-
proving, if ϕLpAq ą 0, for any non-null A ě 0. Note that improving positivity
implies irreducibility.

For any µ and square-integrable L the Theorem 3.2.11 assures that ϕL is
completely positive. In the case ϕL is irreducible we can use the Theorem 2.3
and 2.4 of rEva78s in order to get λ and ρ ą 0, such that, ϕLpρq “ λρ (ρ is
unique up to multiplication by scalar). For what comes next, we will choose
ρ such that tr ρ “ 1. Moreover, in the same work the authors show that ϕL
is irreducible, if and only if, ϕ˚

L also is completely positive, and therefore we
get:

Theorem 3.3.5 (The spectral radius is a simple eigenvalue). Given a square
integrable L : Mk Ñ Mk assume that the associated ϕL is irreducible. On a
Hilbert space, the spectral radius λL ą 0 of ϕL and ϕ˚

L is the same. In
this case it is also an eigenvalue and it is simple. We denote, respectively,
by ρL ą 0 and σL ą 0, the eigenmatrices, such that, ϕLpρLq “ λLρL and
ϕ˚
LpσLq “ λLσL, where ρL and σL are the unique non null eigenmatrices (up

to multiplication by scalar).

The above theorem is the natural version of the Perron-Frobenius The-
orem for the present setting. It is natural to think that ϕL acts on density
matrices and ϕ˚

L acts in selfadjoint matrices.

Remark 3.3.6. We choose ρL in such way that tr ρL “ 1 and after that,
we take σL such that tr pσLρL q “ 1. By doing that, we have chosen the
precise scalar multiples that makes both ρL and σLρL densities. Notice that,
as eigendensity, ρL is unique. We point out that at this moment it is natural
to make an analogy with Thermodynamic Formalism: ϕ˚

L corresponds to
the Ruelle operator (acting on functions) and ϕL to the dual of the Ruelle
operator (acting on probabilities). We refer the reader to rPP90s for details.
In this sense, the density operator σLρL plays the role of an equilibrium
probability. The paper rSpi72s by Spitzer describes this formalism in a simple
way in the case the potential depends on two coordinates.

Remark 3.3.7. If L is irreducible and stochastic (resp. ϕL is unital, i.e.,
ϕLpIdq “ Id) then λL “ 1 and σL “ Idk (resp. ρL “ Idk) by Proposition 6.1
on rWol12s page 91.

3.3.1 Normalization

We consider in this section a fixed measure µ over Mk which plays the
role of the a priori probability.
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In this section we will introduce the concept of normalized transformation
L (see definition 3.3.9). If L is not normalized we will be able to find an
associated L̂ which is normalized (see (3.1)).

Given a continuous L (variable) we assume in this section that ϕL is
irreducible (we do not assume that preserves trace).

We will associate to this square integrable transformation L : Mk Ñ Mk

(and the associated ϕL) another transformation L̂ : Mk Ñ Mk which will
correspond to a normalization of L. This will define another quantum channel
ϕL̂ : Mk Ñ Mk.

Results of this section have a large intersection with some material in
rWol12s. For completeness, we describe here what we will need later.

Consider σL e λL as described above. As σL is positive we consider
σL

1{2 ą 0 and σL
´1{2 ą 0.

In this way we define

L̂pvq “
1

?
λL
σL

1{2LpvqσL
´1{2. (3.1)

Using the measure µ we can define the associated ϕL̂.
Therefore,

ϕ˚

L̂
pIdq “

1

λL

ż

Mk

σL
´1{2Lpvq

:σL
1{2σL

1{2Lpvqσ
´1{2
L dµ

“
1

λL
σ

´1{2
L

ż

Mk

Lpvq
:σLLpvq dµ σ

´1{2
L

“
1

λL
σ

´1{2
L ϕ˚

LpσLqσ
´1{2
L

“
1

λL
σ

´1{2
L λLσL σ

´1{2
L

“ σ
´1{2
L σLσ

´1{2
L

“ Id.

Note that L̂pvq
:

“ 1?
λL
σ

´1{2
L Lpvq

:σ
1{2
L . From this we get easily that ϕL̂ is

completely positive and preserves trace (is stochastic).
We will show that ϕL̂ is irreducible. Given A P Mk we have

ϕL̂pAq “
1

λL
σ
1{2
L ϕLpσ

´1{2
L Aσ

´1{2
L qσ

1{2
L .
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Then,

ϕ2
L̂

pAq “
1

λL
σ
1{2
L ϕLpσ

´1{2
L

1

λL
σ
1{2
L ϕLpσ

´1{2
L Aσ

´1{2
L qσ

1{2
L σ

´1{2
L qσ

1{2
L

“
1

λ2L
σ
1{2
L ϕ2

Lpσ
´1{2
L Aσ

´1{2
L qσ

1{2
L .

By induction we get

ϕn
L̂

pAq “
1

λnL
σ
1{2
L ϕnLpσ

´1{2
L Aσ

´1{2
L qσ

1{2
L .

Given A,B ě 0, note that σ
´1{2
L Aσ

´1{2
L ě 0 and σ

1{2
L Bσ

1{2
L ě 0. Therefore,

using irreducibility of ϕL, there exists an integer n P t1, . . . , k´1u, such that,

0 ă λ´n
L tr rσ

1{2
L Bσ

1{2
L ϕnLpσ

´1{2
L Aσ

´1{2
L qs

“ λ´n
L tr rBσ

1{2
L ϕnLpσ

´1{2
L Aσ

´1{2
L qσ

1{2
L s

“ tr rBϕn
L̂

pAqs.

Therefore, ϕL̂ is irreducible and completely positive and preserves trace.

In this way, to the given L we can associate L̂ which will be called the
normalization of L. The transformation ϕL̂ is a quantum channel.

Definition 3.3.8. Given the measure µ over Mk we denote by Lpµq the set
of all integrable L such that the associated ϕL is irreducible.

Definition 3.3.9. Suppose L is in Lpµq. We say that L is normalized if ϕL
has spectral radius 1 and preserves trace. We denote by Npµq the set of all
normalized L.

Note that the transformation L̂ defined above in (3.1) is normalized.
If L P Npµq, then, we get from Theorem 3.3.5 and the fact that ϕ˚

LpIdq “

Id, that the spectral radius, which is also a simple eigenvalue, is λL “ 1.
According to Remark 3.3.6, there is a unique eigendensity ρL such that
ϕLpρLq “ ρL. These properties will be important for what will come next.

Theorem 3.3.10 (Ergodicity and temporal means). Suppose L P Npµq.
Then, for all density matrix ρ P Mk it is true that

lim
NÑ8

1

N

N
ÿ

n“1

ϕnLpρq “ ρL,

where ρL is the density matrix associated to L.
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Proof. The proof follows from Theorem 3.3.5 and Corollary 6.3 in rWol12s.
■

The above result connects irreducibility and ergodicity (the temporal
means have a unique limit).

3.4 Entropy

In this section, we will define entropy for ϕL, when the associated L is
irreducible and stochastic (see Definition 3.4.2). After that, it will be possible
to give a meaning for a certain variational principle of pressure in Definition
3.4.3 (this is similar to the setting in Thermodynamic Formalism which is
described in rPP90s, for instance).

Remember the classical entropy is defined just for invariant (stationary)
probabilities. Something of this sort is required for defining the entropy of
a quantum channel ϕL: L has to be stochastic. These ϕL will play in some
sense the role of the different possible invariant probabilities.

We will explore some ideas which were already present on the paper
rBLLC10s (which explores some previous nice results on r LŻS03s and rS lo03s)
which considers a certain a priori probability.

Hereafter, we consider fixed a measure µ over Mk which plays the role
of the a priori probability. Given L P Lpµq we will associate in a natural
way the transformation ϕL : Mk Ñ Mk.

Definition 3.4.1. We denote by ϕ “ ϕµ the set of all L such that the
associated ϕL : Mk Ñ Mk is irreducible and stochastic.

We will describe a discrete-time process that takes values on Mk.
Suppose L is irreducible and stochastic. We will associate to such L a

kind of “transition probability kernel” PL (to be defined soon) acting on
matrices. Given the matrices v and w the value PLpv, wq will describe the
probability of going in the next step to w if the process is on v.

Given L, suppose that the discrete-time process is given in such a way
that the initial state is described by the density matrix ρL which is invariant
for ϕL (see Theorem 3.3.5).

The reasoning here is that such process should be in “some sense sta-
tionary” because ρL is invariant by ϕL. As we said before in ergodic theory
the concept of Shanon-Kolmogorov entropy has a meaning just for invariant
(for a discrete-time dynamical system) probabilities. Therefore, something
of this order is required.
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In our reasoning given that the state is described by ρ, then, in the next

step of the process we get LpvqρLpvq
:

tr pLpvqρLpvq
:
q

with probability tr pLpvqρLpvq
:
q dµpvq.

This discrete-time process takes values on density operators in Mk.

Definition 3.4.2. We define entropy for L (or, for ϕL) by the expression
(when finite):

hpLq “ hµpLq :“ ´

ż

MkˆMk

tr pLpvqρLLpvq
:
qPLpv, wq logPLpv, wq dµpvq dµpwq,

where

PLpv, wq :“
tr pLpwqLpvqρLLpvq

:Lpwq
:
q

tr pLpvqρLLpvq
:
q

.

This definition is a generalization of the analogous concept presented on
the papers rBLLC10s, rBLLC11as and rBLLC11bs.

Note that tr pLpvqρLLpvq
:
q is the probability of being in state LpvqρLLpvq

:

tr pLpvqρLLpvq
:
q
.

Moreover, PLpv, wq describes the probability of going from v to w, being in
state

LpwqLpvqρLLpvq
:Lpwq

:

tr pLpwqLpvqρLLpvq
:Lpwq

:
q
.

In this way hµpLq in some way resembles the analogous expression of entropy
for the case of Markov chains.

We will show in Example 3.8.5 that the above definition of entropy is
indeed a natural generalization of the classical one in Ergodic Theory.

Suppose H : Mk Ñ Mk is square integrable, irreducible and Hpvq ‰ 0,
for µ-a.e. v. For such H, consider the corresponding ρH , σH and λH which
are given by Theorem 3.3.5, where tr ρH “ 1 and trσHρH “ 1.

This H describes the action of a potential.
Then, we define

UHpvq :“ log
´

tr pσHHpvqρHHpvq
:
q

¯

.

Definition 3.4.3. We define the pressure of H by

PµpHq “ P pHq :“ sup
LPϕ

"

hµpLq `

ż

UHpvq tr pLpvqρLLpvq
:
q dµpvq

*

.

Remember that ϕµ is the set of all L : Mk Ñ Mk which are square-
integrable, irreducible, and stochastic.
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Definition 3.4.4. Given µ and H as above we say that ϕL, for some L P ϕµ,
is a Gibbs channel, if

PµpHq “ hµpLq `

ż

UHpvq tr pLpvqρLLpvq
:
q dµpvq.

We will need soon the following well-known result (see rPP90s).

Proposition 3.4.5. Suppose p, q : Mk Ñ R` are such that p, q ą 0, µ-almost
everywhere,

ş

Mk
p dµ “ 1 and

ş

Mk
q dµ “ 1. Then,

´

ż

p log p dµ `

ż

p log q dµ ď 0.

Moreover, the above inequality is an equality just when p “ q, µ-almost
everywhere.

Theorem 3.4.6. Assume that H : Mk Ñ Mk is continuous, irreducible and
Hpvq ‰ 0 for µ-a.e. v, then,

P pHq :“ sup
LPϕ

"

hµpLq `

ż

UHpvq tr pLpvqρLLpvq
:
q dµpvq

*

ď logpλHq,

The supremum is attained only if

tr pLpwqLpvqρLLpvq
:Lpwq

:
q

tr pLpvqρLLpvq
:
q

“
1

λH
tr pσHHpwqρHHpwq

:
q, forµ-a.e. v, w.

In this case, P pHq “ logpλHq.

Proof. We define qpwq :“ 1
λH

tr pσHHpwqρHHpwq:q. Note that

ż

q dµ “
1

λH

ż

tr pσHHpwqρHHpwq
:
q dµpwq

“
1

λH
tr

ˆ

σH

ż

HpwqρHHpvq
: dµpwq

˙

“
1

λH
tr pσHλHρHq

“ tr pσHρHq “ 1.

For fixed v and irreducible and stochastic L take

pvpwq “ PLpv, wq “
tr pLpwqLpvqρLLpvq:Lpwq:q

tr pLpvqρLLpvq:q
,
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If tr pLpvqρLLpvq:q ‰ 0 and pvpwq “ 0 otherwise. It follows that

ż

pvpwq dµpwq “

ż

tr pLpwqLpvqρLLpvq:Lpwq:q

tr pLpvqρLLpvq:q
dµpwq

“
tr pLpvqρLLpvq:

ş

Lpwq:Lpwqq dµpwq

tr pLpvqρLLpvq:q
“ 1.

From Proposition 3.4.5 we get that for each v

´

ż

pvpwq logppvpwqq dµpwq `

ż

pvpwq logpqpwqq dµpwq ď 0. (3.2)

Equality will happen when

tr pLpwqLpvqρLLpvq:Lpwq:q

tr pLpvqρLLpvq:q
“

1

λH
tr pσHHpwqρHHpwq

:
q,

for µ-almost everywhere w.
Note that from (3.2) it follows that

ż

´PLpv, wq logPLpv, wq ` PLpv, wq log
`

tr pσHHpwqρHHpwq
:
q
˘

dµpwq

ď

ż

PLpv, wq logpλHq dµpwq “ logpλHq.

Now we multiply both sides of the above inequality by tr pLpvqρLLpvq
:
q,

integrate with respect to v (remember that
ş

tr pLpvqqρLLpvq
:
q “ 1) and we

get

hµpLq `
ż

tr pLpwqLpvqρLLpvq
:Lpwq

:
q log

`

tr pσHHpwqρHHpwq
:
q
˘

dµpwq dµpvq

“ hµpLq `

ż

tr pLpwqϕLpρLqLpwq
:
q log

`

tr pσHHpwqρHHpwq
:
q
˘

dµpwq

“ hµpLq `

ż

log
`

tr pσHHpvqρHHpvq
:
q
˘

tr pLpvqρLLpvq
:
q dµpvq

ď logpλHq.

As this is true for any L P ϕ, we take the sup over all such L to finally
get:
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P pHq ď logpλHq.

■

A natural question: is there a L P ϕ such that the supremum is attained?
This kind of result would correspond in our setting to the Ruelle Theorem
of Thermodynamic Formalism (see [PP90]). In this direction, we are able to
get Theorem 3.4.8.

Before trying to address this question we point out that given H as
above one can get the associated normalized Ĥ by the expression Ĥ “

1?
λH
σ
1{2
H Hσ

´1{2
H .

Note that σĤ “ Id, ρĤ “ σ
1{2
H ρHσ

1{2
H and λĤ “ 1. Therefore,

ż

log
´

tr pσĤĤpvqρĤĤpvq
:
q

¯

tr pLpvqρLLpvq
:
q dµpvq

“

ż

log

ˆ

tr p
1

λH
σ
1{2
H Hpvqσ

´1{2
H σ

1{2
H ρHσ

1{2
H σ

´1{2
H Hpvq

:σ
1{2
H q

˙

tr pLpvqρLLpvq
:
q dµpvq

“

ż

log

ˆ

tr p
1

λH
σHHpvqρHHpvq

:
q

˙

tr pLpvqρLLpvq
:
q dµpvq

“

ż

log
`

tr pσHHpvqρHHpvq
:
q
˘

tr pLpvqρLLpvq
:
q dµpvq ´ logpλHq.

From the above reasoning we get:

Theorem 3.4.7. Assume that H : Mk Ñ Mk is irreducible, square integrable
and Hpvq ‰ 0, for µ-a.e. v. If Ĥ denotes the associated normalization, then,

P pĤq “ P pHq ´ logpλHq.

Note that Ĥ P ϕµ.

Theorem 3.4.8. If H is irreducible, square integrable and Hpvq ‰ 0, for
µ-a.e. v, then,

P pHq “ log λH .

Proof. We already know that P pHq ď log λH . We will show that there
exists an irreducible and stochastic L which attains the supremum. In order
to do that we take an orthonormal basis t| i yui“1,2,...,k of Ck. Then, we define

an operator P such that P | i ` 1 y “ | i y (for instance, P “
řk
i“1| i y x i ` 1 |

and by convention | 1 y “ | k ` 1 y).
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Note that the dual of P is P : “
ř

i| i ` 1 yx i |. This is so because given
u, v P Ck, we get that

xu , Pv y “
ÿ

i

xu , | i yx i ` 1 |v y “
ÿ

i

x | i ` 1 yx i |u , v y “ xP :u , v y.

Moreover, P :P “ Id. Indeed,

ÿ

i,j

| j ` 1 yx j || i yx i ` 1 | “
ÿ

i

| i yx i | “ Id.

Now, take Q “ pqijq the matrix with qkk “ ´1, qii “ 1, for i “ 1, ..., k´ 1,
and qij “ 0 otherwise. Note that Q:Q “ Id.

Consider ρH , σH , λH given by Theorem 3.3.5, where tr pσHρHq “ 1 and

tr pρHq “ 1 and let φpvq “

b

1
λH

tr pσHHpvqρHHpvq
:
q.

Note that if # suppµ “ 1, H can’t be irreducible because any eingenvec-
tor of Hpvq for v P suppµ generates an invariant subspace.

There exist v1, v2 P suppµ with φpviq ‰ 0 by hypothesis. Take O an open
set with v1 P O and dpO, v2q ą 0. Now we can define L by Lpvq “ φpvqP ,
for v R O, and Lpvq “ φpvqQ, for v P O.

Observe that Lpvq:Lpvq “ |φpvq|2 Id, for all v, and
ş

|φpvq|2 dµpvq “ 1.
This implies that ϕ˚

LpIdq “ Id.

Suppose that E is an invariant subspace of Ck for all Lpvq with v P suppµ.
Of course, as φpviq ‰ 0, E is invariant for P and Q. In this sense, taking
x “ px1, . . . , xkq P E, we get Qx “ px1, . . . ,´xkq P E. As E is a linear sub-
space this implies that px1, . . . , xk´1, 0q P E, and p0, . . . , 0, xkq P E. Taking
P np0, . . . , 0, xkq, for n “ 0, . . . , k ´ 1, if xk ‰ 0, we get a base of Ck in E.
Therefore, if xk ‰ 0, we have E “ Ck. On the other hand, if initially xk “ 0,
we take P nx, where pP nxqk ‰ 0, and we use the previous argument. If there
is no x P E and n such that pP nxqk ‰ 0, then E “ t0u. Therefore, ϕL is
irreducible by Lemma 3.3.3.

To show that L satisfy the supremum for pressure, from the inequality
give by Theorem 3.4.5, it is enough to show that

tr pLpwqLpvqρLLpvq:Lpwq:q

tr pLpvqρLLpvq:q
“

1

λH
tr pσHHpwqρHHpwq

:
q.
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In order to get this, observe that

tr pLpwqLpvqρLLpvq
:Lpwq

:
q

“ tr pLpvqρLLpvq
:Lpwq

:Lpwqq

“ tr pLpvqρLLpvq
:
q |φpwq|2 .

Thus, the required equation holds. ■

3.5 Process Xn, n P N, taking values on P pCkq

Consider a fixed measure µ on Mk and a fixed L : Mk Ñ Mk, such that,
ş

Mk
∥Lpvq∥2 dµpvq ă 8, and, also that ϕL is irreducible and stochastic.
Note that if, for example, µ is a probability and the the function v Ñ

∥Lpvq∥ is bounded we get that
ş

Mk
∥Lpvq∥2 dµpvq ă 8.

Denote by P pCkq the projective space on Ck with the metric dpx̂, ŷq “

p1 ´ |xx , y y|2q1{2, where x, y are representatives with norm 1 and x ¨ , ¨ y is
the canonical inner product.

We choose representatives and from now on for generic x̂, ŷ the associated
ones are denoted by x, y. We assume “continuity” on these choices.

Take x̂ P P pCkq and S Ă P pCkq. For a stochastic ϕL we consider the
kernel

ΠLpx̂, Sq “

ż

Mk

1SpLpvq ¨ x̂q ∥Lpvqx∥2 dµpvq, (3.3)

where the norm above is the euclidean one.
Above Lpvq ¨ x̂ denotes the projectivized element in P pCkq.
As ϕL is stochastic we get that ΠLpx̂, P pCkqq “ 1. ΠLpx̂, Sq describes the

probability of getting in the next step a state in S, if the system is presently
at the state x̂.

Remember that tr pLpvqπx̂Lpvq
:
q “ ∥Lpvqx∥2, where πx̂ “ |x yxx | and x

are representatives of norm 1 in the class of x̂.

This discrete-time process (described by the kernel) taking values on
P pCkq is determined by µ and L. If ν is a probability on the Borel σ-algebra
B of P pCkq define
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νΠLpSq “

ż

P pCkq

ΠLpx̂, Sq dνpx̂q

“

ż

P pCkqˆMk

1SpLpvq ¨ x̂q ∥Lpvqx∥2 dνpx̂q dµpvq.

νΠL is a new probability on P pCkq and ΠL is a Markov operator. The
above definition of ν Ñ νΠL is a simple generalization of the one in rBFPP19s,
where the authors take the L considered here as the identity transformation.

The map ν Ñ ν ΠL (acting on probabilities ν) is called the Markov oper-
ator obtained from ϕL in the paper r LŻS03s. There the a priori measure µ
is a sum of Dirac probabilities. Here we consider a more general setting.

Definition 3.5.1. We say that the probability ν over P pCkq is invariant for
ΠL, if νΠL “ ν.

The natural question is: does exist such invariant probability for ΠL?

About the question of existence, we are going to prove that the kernel
defined above is a continuous Markov operator (in the weak-star topology).
So, leaving the compact set of probabilities over P pCkq invariant, by the
Markov-Kakutani theorem there exists a fixed point, which means that there
exists an invariant probability. In order to do that we only need to find
a linear operator U : C0pP pCkq,Cq Ñ C0pP pCkq,Cq such that xUf, νy “

xf, νΠLy. Here, C0pP pCkq,Cq stands for continuous functions from P pCkq to
C with the C0 norm which we denote by ∥¨∥

8
. When such U exists we say

that the Markov operator ΠL is Feller.
According to Proposition 2.10 in rS lo03s if such U exists, then, ΠL is

continuous in weak-star topology and by Markov-Kakutani theorem, there is
a fixed probability in P pCkq.

In Example 3.8.5 we calculate the explicit expression of the invariant
probability ν.

Theorem 3.5.2. Suppose that L is such that
ş

Mk
∥Lpvq∥2 dµpvq ă 8. Then,

there exists at least one invariant probability ν for the Markov operator ΠL.

Proof. Define U : C0pP pCkq,Cq Ñ C0pP pCkq,Cq by

Ufpx̂q “

ż

Mk

fpLpvq ¨ x̂q ∥Lpvqx∥2 dµpvq.

50



Notice that

xUf, νy “

ż

P pCkq

Ufpx̂q dνpx̂q

“

ż

P pCkqˆMk

fpLpvq ¨ x̂q ∥Lpvqx∥2 , dµpvqdνpx̂q

“

ż

P pCkq

fpx̂q dpνΠLqpx̂q “ xνΠLy.

Therefore, xUf, νy “ xf, νΠLy.
Then, we only need to prove that Uf is a continuous function of P pCkq.
Consider a sequence px̂nq P P pCkq, such that, x̂n ÝÑ x̂ P P pCkq. We are

going to show that Ufpx̂nq ÝÑ Ufpx̂q. Define F, Fn : Mk Ñ C by

Fnpvq “ fpLpvq ¨ x̂nq ∥Lpvqxn∥2

and
F pvq “ fpLpvq ¨ x̂q ∥Lpvqx∥2

This way, Ufpx̂nq “
ş

Fnpvq dµpvq and Ufpx̂q “
ş

F pvq dµpvq. Since the
function f and the norm are continuous, we have Fnpvq ÝÑ F pvq, for all
v P Mk.

Also,

|Fnpvq| “ |fpLpvq ¨ x̂nq| ¨ ∥Lpvqxn∥2 ď ∥f∥
8

tr pLpvq|xn yxxn |Lpvq
:
q

“ ∥f∥
8

tr p|xn yxxn |LpvqLpvq
:
q ď ∥f∥

8
tr pLpvqLpvq

:
q “ ∥f∥

8
∥Lpvq∥2 .

As
ş

∥Lpvq∥2 dµpvq ă 8, we can apply Lebesgue Dominated Convergence
Theorem to conclude that

Ufpx̂nq “

ż

Fnpvq dµpvq ÝÑ

ż

F pvq dµpvq “ Ufpx̂q.

So we have that Uf is continuous and this is the end of the proof. ■

3.6 Process ρn, n P N, taking values on Dk

For a fixed µ over Mk and L such that ϕL is irreducible and stochastic, one
can naturally define a process pρnq on Dk “ tρ P Mk : tr ρ “ 1 and ρ ě 0u

which is called quantum trajectory by T. Benoist, M. Fraas, Y. Pautrat, and
C. Pellegrini in rBFPP19s. Given a ρ0 initial state, we get

ρn “
Lpvqρn´1Lpvq

:

tr pLpvqρn´1Lpvq
:
q
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with probability
tr pLpvqρn´1Lpvq

:
q dµpvq, n P N.

This process has similarities with the previous one in P pCkq and we ex-
plore some relations between them. In this section, we follow closely the
notation of rBFPP19s.

We want to relate the invariant probabilities of the last section with the
fixed point ρinv “ ρLinv of ϕL.

First, denote Ω :“ MN
k , and for ω “ pωiqiPN, take πnpωq “ pω1, . . . , ωnq.

Recall that M is the Borel sigma-algebra on Mk. For all, n P N, consider
On the sigma algebra on Ω generated by the cylinder sets of size n, that
is, On :“ π´1

n pMnq. We equip Ω with the smallest sigma algebra O which
contains all On, n P N.

Denote Jn :“ B ˆ On and J :“ B ˆ O. In this way, pP pCkq ˆ Ω,J q

is an measurable space. By abuse of language we consider Vi : Ω Ñ Mk as
a random variable Vipωq “ ωi. We also introduce another random variable
Wn :“ LpVnq ¨ ¨ ¨LpV1q, where Wnpωq “ Lpωnq ¨ ¨ ¨Lpω1q.

For a given a probability ν on P pCkq, we define for S P B and On P On

another probability on P pCk ˆ Ωq by

Pν,npS ˆ Onq :“

ż

SˆOn

∥Wnpωqx∥2 dνpx̂q dµbn
pωq. (3.4)

Remark 3.6.1. We can extend the above probability Pν over B ˆ O. We
claim that Pν,n, n P N, is a consistent family over the cylinders of size n
(then, we can use the Caratheodory-Kolmogorov extension theorem).

Indeed, note that Wn`1pωq “ Ln`1pωqWnpωq. Then

Pν,n`1pS ˆ On ˆ Mkq “

ż

SˆOnˆMk

∥Wn`1pωqx∥2 dνpx̂q dµbn`1
pωq

“

ż

SˆOnˆMk

tr

ˆ

Lpωn`1qWnpωqπx̂Wnpωq
:Lpωn`1q

:

˙

dνpx̂q dµbn`1
pωq

“

ż

SˆOn

tr

ˆ

Wnpωqπx̂Wnpωq
:

ż

Mk

Lpωn`1q
:Lpωn`1q dµpωn`1q

˙

dνpx̂q dµbn
pωq

“

ż

SˆOn

∥Wnpωqx∥2 dνpx̂q dµbn
pωq

“ Pν,npS ˆ Onq.

Since the set tWnx “ 0u leads to a null integrating term in (3.4), we
have PνpWnx “ 0q “ 0. Therefore, we define the expression for each n and
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then extend it. In this way Wnpωqx ‰ 0. Remember that Wnpωq ¨ x̂ is the
representative of the class Wnpωqx, when Wnpωqx ‰ 0.

Denote Eν the expected value with respect to Pν . Now observe that for
a ν probability on P pCkq, if πX0 is an orthogonal projection on subspace
generated by X0 on Ck, we have

ρν :“ EνpπX0q “

ż

P pCkq

πx0 dνpx0q.

We call ρν barycenter of ν, and it is easy to see that ρν P Dk.

Note that for each ρ P Dk, exists pvnq an orthonormal basis of eigenvec-
tors with eigenvalues ai such that ρ “

ř

i aiπvi . Therefore, exists ν “
ř

aiδvi
such that ρν “ ρ.

We collect the above results in the next proposition (which was previously
stated as Proposition 2.1 in rBFPP19s for the case L “ I).

Proposition 3.6.2. If ν is invariant for ΠL, then

ρν “ EνpπX̂0
q “ EνpπX̂1

q “ ϕLpρνq.

Therefore, for an irreducible L, every invariant measure ν for ΠL has the
same barycenter.

We point out that in this way we can recover ρinv, the fixed point of ϕL,
by taking the barycenter of any invariant probability (the quantum channel
ϕL admits only one fixed point). That is, for any invariant probability ν for
ΠL, we get that ρν “ ρinv.

Note that the previous process can be seen as ρn : Ω Ñ Dk, such that,
ρ0px̂, ωq “ ρν and, and n P N

ρnpωq “
Wnpωqρ0Wnpωq:

tr pWnpωqρ0Wnpωq:q
.

Using an invariant ρ we can define a Stationary Stochastic Process taking
values on Mk. That is, we will define a probability P over Ω “ pMkqN.

Take On P On and define

PρpOnq “

ż

On

tr pWnpωqρWnpωq
:
q dµbn

pωq.

The probability P on Ω defines a Stationary Stochastic Process.
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3.7 ϕ-Erg and irreducible is Generic

Definition 3.7.1. Given L : Mk Ñ Mk, µ on Mk and E subspace of Ck, we
say that E is pL, µq-invariant, if LpvqE Ă E, for all v P suppµ.

Definition 3.7.2. Given L : Mk Ñ Mk, µ on Mk, we say that L is ϕ-Erg
for µ, if there exists an unique minimal non-trivial space E, such that, E is
pL, µq-invariant.

In the case the space E is equal to Ck, as shown in Lemma 3.3.3, we have
L irreducible for µ (or µ-irreducible) in the sense of Definition 3.3.2.

Consider BpMkq “ tL : Mk Ñ Mk |L is continuous and boundedu where
∥L∥ “ supvPMk

∥Lpvq∥. We write B “ BpMkq when k is implicit.

Proposition 3.7.3. Given L P BpMkq, µ over Mk, v1 P supp µ and ε ą 0,
there exists Lε P BpMkq such that ∥L ´ Lε∥ ă ε

2
and Lεpv1q has k distinct

eigenvalues.

Proof. Take v1 P suppµ. Denote by J the Jordan canonical form for
the complex matrix Lpv1q and take B such that Lpv1q “ B´1JB. Define
Dn “ pdi,jqi,j P Mk, where

di,j “

#

1 if i “ n and j “ n

0 otherwise.

Now, we look for each diagonal element of J . If the first, i.e., the element
p1, 1q is zero, we sum δ

4
D1. If the second element is not different from the

first or is not different of zero, then, we sum δ
2i
D2, where i ą 2 is chosen to

satisfy both. We repeat this process until all the elements of diagonal are
considered. After that, we get that all diagonal elements of J `

ř

j
δ

2ij
Dj are

different and none is zero. Moreover,

∥∥∥∥∥ÿ

j

δ

2ij
Dj

∥∥∥∥∥ ď
ÿ

j

δ

2ij
ď
δ

2
.

We define Dδ
“

ÿ

j

δ

2ij
Dj and Lε “ L`B´1DδB. Therefore, ∥Lε ´ L∥ “

∥∥B´1DδB
∥∥ ď

δ

2

∥∥B´1
∥∥ ∥B∥. Choosing δ ă ε

∥B´1∥∥B∥ we get

∥Lε ´ L∥ ă
ε

2
.

Therefore, as J ` Dδ has the same eigenvalues of Lεpv1q, we finished the
proof. ■
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Lemma 3.7.4. Consider eigenvectors vi P Ck, 1 ď i ď n of a linear trans-
formation A with respective eigenvalues λi, where λi ‰ λj, for i ‰ j. If a
subspace F Ď Ck is invariant for A and satisfies for some non-null constants
α1, . . . , αn P C

α1v1 ` ¨ ¨ ¨ ` αnvn P F,

then, vi P F for all 1 ď i ď n.

Proof. We proceed by induction. Suppose n “ 2. Since Apα1v1 ` α2v2q P

F and λ1pα1v1 ` α2v2q P F , we have

λ1pα1v1 ` α2v2q ´ Apα1v1 ` α2v2q

“ λ1pα1v1 ` α2v2q ´ pλ1α1v1 ` λ2α2v2q

“ pλ1 ´ λ2qα2v2 P F.

Therefore, v1, v2 P F . Now, assuming that the claim is true for every
n ď k, we get

λk`1pα1v1 ` ¨ ¨ ¨ ` αk`1vk`1q ´ Apα1v1 ` ¨ ¨ ¨ ` αk`1vk`1q P F.

Which means pλk`1 ´ λ1qα1v1 ` ¨ ¨ ¨ ` pλk`1 ´ λkqαkvk P F . From the
hypothesis, this implies v1, ¨ ¨ ¨ , vk P F . It follows that vk`1 P F .

Theorem 3.7.5. Given L P BpMkq, µ over Mk with # suppµ ą 1 and
ε ą 0, there exists Mδ P BpMkq, such that, ∥L ´ Mδ∥ ă ε and Mδ is ϕ-Erg
and irreducible for µ.

Proof. Given an ε ą 0, take v1 P suppµ such that v1 ‰ 0, the respective
Lε from Proposition 3.7.3 and moreover tx1, . . . , xku such that they are a
base of eigenvectors of Lεpv1q, with corresponding eigenvalues λi. If Lε is
irreducible for µ, we are done. Otherwise, there exists a decomposition in
E1, . . . , En minimal non-trivial subspaces that are invariant for all Lεpvq,
with v in suppµ and k ą dimE1 ě dimEi, for all i.

Remember that Ei X Ej “ t0u and since all Ei are invariant for Lεpv1q,
they are generated by some of its eigenvectors.

Relabel x1, . . . , xk in such way that we get:
E1 “ xx1, . . . , xd1y, E2 “ xxd1`1, . . . , xd2y, . . . , En “ xxdn´1`1, . . . , xdny

and K “ xxdn`1, . . . , xky, with Ck “ E1 ‘ ¨ ¨ ¨ ‘ En ‘ K, where K is either
t0u or is not invariant for all Lεpvq.

Now, define the linear transformation A : Ck Ñ Ck by Apxjq “ xj`1. By
abuse of notation, we assume that xk`1 “ x1. Consider, for a δ ą 0, the

55



operator Mδpvq “ Lεpvq `
δφpvq

2∥A∥A, where φpvq “
∥v´v1∥

∥v∥`∥v1∥ ď 1. Denote cpvq “

δφpvq

2∥A∥ ě 0. Note that cpvq ą 0, for all v ‰ v1. Notice that Mδpv1q “ Lεpv1q.
The idea here is to make an element xi move to all of the other subspaces,
making it impossible to have an invariant and proper subspace for all Mδpvq.
This combined with the proximity of the original L will give us the result.

Claim: There exists a δ ą 0, such that the only non-trivial (and therefore
minimal) subspace invariant for all Mδpvq, with v P supp µ, is Ck.

Suppose F Ď Ck is such a subspace. There exists a non-trivial element
α1x1 ` ¨ ¨ ¨ `αkxk P F XEi, for some constants al P Ck and some i. This is so
because if K is t0u or not invariant for Mδpv1q “ Lεpv1q, then F Ć K. Since
not all ai can be zero, we have by the above lemma that some xj P F .

We take a matrix v2 P supp µ, v2 ‰ v1. Now,

Mδpv2qxj “ Lεpv2qxj ` cpv2qAxj “ Lεpv2qxj ` cpv2qxj`1 P F.

As Ei is invariant for Lεpv2q, we get that

Lεpv2qxj “

di
ÿ

m“di´1`1

αmxm.

Now, again, F is invariant for Mδpv1q “ Lεpv1q, and then

Lεpv1qMδpv2qpxjq “ Lεpv1q

˜

di
ÿ

m“di´1`1

αmxm ` cpv2qxj`1

¸

“

di
ÿ

m“di´1`1

λmαmxm ` cpv2qλj`1 xj`1 P F.

Moving on, Lεpv1qMδpv2qxj ´ λj`1 ¨ Mδpv2qxj P F . This means

di
ÿ

m“di´1`1

pλm ´ λj`1qαmxm P F.

By the lemma, xm P F , for all m which are not j`1 and the corresponding
αm is not zero. Now, suppose that xj`1 R Ei (this excludes the possibility of
m “ j` 1 above). In this way, αmxm P F , for all m P tdi´1 ` 1, . . . , diu, with
no exceptions. It follows that

ř

m αmxm P F and

Mδpv2qxj ´

di
ÿ

m“di´1`1

αmxm P F
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“

di
ÿ

m“di´1`1

αmxm ` cpv2qxj`1 ´

di
ÿ

m“di´1`1

αmxm

“ cpv2qxj`1 P F.

As cpv2q ‰ 0, we get xj`1 P F . Now suppose xj`1 P Ei. Then

Mδpv2qxj ´

di
ÿ

m“di´1`1
m‰j`1

αmxm P F.

This means cpv2qxj`1`αj`1xj`1 P F . If cpv2q`αj`1 “ 0 we get a problem.

In order to fix this, we need that δφpv2q

2∥A∥ ‰ ´αj`1 ðñ δ ‰
´2αj`1∥A∥

φpv2q
.

But, note that αj`1 does not depend on δ. In fact, it appears only in the
decomposition

Lεpv2qxj “

di
ÿ

m“di´1`1

αmxm.

Since we can do this decomposition for all j, we only have to check that

δ R

"

´2αj`1 ∥A∥
φpv2q

; 1 ď j ď dn

*

.

Taking δ small enough, we accomplish this and also we get δ ă ε. Now,
we get the claim in the same way: xj`1 P F and F “ Ck. So, for this δ we
get that Mδ is irreducible. Finally,

∥L ´ Mδ∥ ď ∥L ´ Lε∥ ` ∥Lε ´ Mδ∥ ă ε{2 `

∥∥∥∥δφpvqA

2 ∥A∥

∥∥∥∥ ă ε.

■

Definition 3.7.6. For a fixed measure µ over Mk, define

BµpMkq “ tL P B | L irreducible forµu,

and

BϕµpMkq “ tL P B | L is ϕ-Erg for µu.

Corollary 3.7.7. Given µ over Mk with # suppµ ą 1, BµpMkq is dense on
BpMkq.
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Proof. It follows from the above. ■

Proposition 3.7.8. BµpMkq is open for a fixed µ on Mk.

Proof. We will prove that the complement of BµpMkq is closed in BpMkq. Let
Ln be a sequence outside BµpMkq converging to some L P BpMkq. For each
n, consider En a non-trivial pLn, µq-invariant subspace and Pn the projection
on En.

The pLn, µq-invariance is equivalent to say that LnpvqPn “ PnLnpvqPn,
for all v P suppµ. Therefore, there is a subsequence such that Pni

Ñ P ,
where P is a projection. Rename Pn Ñ P . Furthermore, Ln Ñ L, thus
PnLnpvqPn “ LnpvqPn Ñ PLpvqP “ LpvqP , for all v P suppµ. This implies
that E :“ ℑpP q is pL, µq-invariant for L. Of course, E is not the trivial
space because ∥P∥ ě 1. Moreover, we know that kerpPnq is non-trivial for
all n, once Ln is not µ-irreducible. So, take xn P kerpPnq with ∥xn∥ “ 1,
and rename it in order to get a subsequence such that xn Ñ x. Observe
that Pnxn “ 0, for all n and Pnxn Ñ Px. This implies that Px “ 0 and, of
course, kerpP q is non-trivial. Hence, E ‰ Ck and L is not µ-irreducible.

■

Proposition 3.7.9. BϕµpMkq is open for a fixed µ on Mk.

Proof. Take Ln Ñ L such that Ln is not ϕ-Erg. Therefore, there exists
E1,n ‘ E2,n ‘ E0,n “ Ck, with Ei,n minimal pLn, µq-invariant for Ln, where
i “ 1, 2 and E0,n is not necessarily pLn, µq-invariant. Take Pi,n the projection
on Ei,n. Rename them in order to get a subsequence such that Pi,n Ñ Pi, for
all i “ 1, 2, 0. By using the same argument as the one used in Proposition
3.7.8, we observe that Ei “ ℑpPiq is pL, µq-invariant for L, for i “ 1, 2.
If x P E1zt0u we know that limn ∥P1,nx ´ x∥ “ ∥P1x ´ x∥ “ 0, so defining
xn :“ P1,nx P E1,n, we get xn Ñ x. As 0 “ P2,nxn Ñ P2x, we know x P kerP2

and therefore x R E2. This argument shows that E1 X E2 “ t0u, hence L is
not ϕ-Erg because it admits two pL, µq-invariant subspaces. ■

Corollary 3.7.10. Given µ over Mk with # suppµ ą 1, BϕµpMkq is open,
dense and, therefore, generic.
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3.8 Some examples

In this section, we present several examples. The main one is Example
3.8.5 that considers a quantum channel which is a kind of version of a Markov
chain. We can show in expression (3.8) that the entropy of this channel
coincides with the entropy of the associated stationary Markov Process. This
is a piece of clear evidence that our definition is a natural extension of the
classical concept of entropy. In [BKL21a] it is shown that the entropy of this
channel is related to one of the Lyapunov exponents of the associated time
evolution process which are described in sections 3.5 and 3.6.

Example 3.8.1. Let V2n “ c ¨

ˆ

1
2n

0
0 0

˙

and V2n´1 “ d ¨

ˆ

0 1
2n´1

0 0

˙

, for

all n ě 1 (with constants c and d to be defined). Then,

V :

2nV2n “
c2

p2nq2
¨

ˆ

1 0
0 0

˙

and V :

2n´1V2n´1 “
d2

p2n ´ 1q2
¨

ˆ

0 0
0 1

˙

.

Setting L “ I (the identity map v ÞÑ v) and µ “
ř8

n“1 δVn , we have

ż

Mk

Lpvq
:Lpvq dµpvq “

8
ÿ

n“1

V :
nVn

“ c2
ˆ

1 0
0 0

˙ 8
ÿ

n“1

1

p2nq2
` d2

ˆ

0 0
0 1

˙ 8
ÿ

n“1

1

p2n ´ 1q2
.

Choosing

c “

˜

8
ÿ

n“1

1

p2nq2

¸´1{2

and d “

˜

8
ÿ

n“1

1

p2n ´ 1q2

¸´1{2

,

we get
ş

Lpvq:Lpvq dµpvq “ Id. Now, notice that

ż

∥Lpvq∥ dµpvq “ c ¨

8
ÿ

n“1

1

2n
` d ¨

8
ÿ

n“1

1

2n ´ 1
“ 8,

whereas ∥Lpvq∥ ď maxtc, du ă 8, for all v P supppµq. Even when the last
integral is not finite, the limitation on the norm above should produce an
invariant probability for the kernel, according to Theorem 3.5.2. To show this
will be our goal. Before that, we will compute the action of the quantum
channel (in order to clear out what is the fixed density).

59



For a general density ρ “

ˆ

ρ1 ρ2
ρ3 ρ4

˙

, we have

V2nρV
:

2n “
c2

p2nq2

ˆ

1 0
0 0

˙ ˆ

ρ1 ρ2
ρ3 ρ4

˙ ˆ

1 0
0 0

˙

“
c2

p2nq2

ˆ

ρ1 0
0 0

˙

,

and

V2n´1ρV
:

2n “
d2

p2n ´ 1q2

ˆ

0 1
0 0

˙ ˆ

ρ1 ρ2
ρ3 ρ4

˙ ˆ

0 0
1 0

˙

“
d2

p2n ´ 1q2

ˆ

ρ4 0
0 0

˙

.

That is,

ϕLpρq “

8
ÿ

n“1

ˆ

c2

p2nq2
ρ1 `

d2

p2n ´ 1q2
ρ4

˙ ˆ

1 0
0 0

˙

“ pρ1 ` ρ4q

ˆ

1 0
0 0

˙

“ tr pρq ¨ | e1 yx e1 | “ | e1 yx e1 |.

This ϕL is not irreducible but it is an interesting example. It is a case
where the invariant probability is unique as we will see soon.

Clearly, the only fixed point for ϕL is ρinv “ | e1 yx e1 |. What we should
expect for invariant probabilities over P pCkq? As the fixed point is itself a
projection and the proposition 3.6.2 says it is an average of projections around
any invariant probability, the only option is a probability concentrated in ê1,
which is ν “ δê1 . Let’s check that it is the case.

For a general probability ν over P pCkq and a Borel set B Ă P pCkq, we
have

νΠLpBq “

ż

Mk

ż

P pCkq

1BpLpvq ¨ x̂q ∥Lpvqx∥2HS dµpvqdνpx̂q

“

ż

P pCkq

8
ÿ

n“1

“

1BpV2n ¨ x̂q ∥V2nx∥2HS ` 1BpV2n´1 ¨ x̂q ∥V2n´1x∥2HS
‰

dνpx̂q.

Notice that V2n ¨ x̂ “ ê1 for x̂ ‰ ê2 and V2n´1 ¨ x̂ “ ê1 for x̂ ‰ ê1, whereas
V2ne1 “ V2n´1e2 “ 0. Also, for a representative x “ px1, x2q of norm 1, we
got p|x yxx |qij “ xixj. So,

tr pV2n |x yxx |V :

2nq “
c2

p2nq2
¨ p|x yxx |q11 “

c2

p2nq2
|x1|

2,
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and

tr pV2n´1 |x yxx |V :

2n´1q “
d2

p2n ´ 1q2
¨ p|x yxx |q22 “

d2

p2n ´ 1q2
|x2|

2.

Then,

νΠLpBq “

ż

P pCkq

8
ÿ

n“1

1Bpê1q

„

c2

p2nq2
|x1|

2
`

d2

p2n ´ 1q2
|x2|

2

ȷ

dνpx̂q

“

ż

P pCkq

1Bpê1qp|x1|
2

` |x2|
2
qdνpx̂q

“

ż

P pCkq

1Bpê1qdνpx̂q

“ 1Bpê1q.

We conclude that if νΠL “ ν, then ν “ δê1 . We also get a bonus: the
invariant probability is unique.

To illustrate Proposition 3.6.2 (under the irreducible condition) we write
down the following example.

Example 3.8.2. The next example is somehow related to Example 3.8.5.
Let’s define

V1 “

ˆ

1 0
0 0

˙

and V2 “

ˆ

0 1
0 0

˙

.

These two matrices generate the same elements which we will consider in
Example 3.8.5, since for µ “ δV1 ` δV2 ,

ϕIpρq “ V1ρV
:

1 ` V2ρV
:

2 “ | e1 yx e1 |.

Also, we get that ϕI is not irreducible. Wanting to fix this issue, we
introduce

V3 “

ˆ

0 0
1 0

˙

and V4 “

ˆ

0 0
0 1

˙

.

Notice that these two matrices generates another channel ψ that maps
every density ρ into | e2 yx e2 |. So, it is also not irreducible. Now, redefining
µ “ 1

2

ř4
i“1 δVi , we get that
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ϕIpρq “
1

2

4
ÿ

i“1

ViρV
:

i “
1

2
p| e1 yx e1 | ` | e2 yx e2 |q “

1

2
Id.

In this case, µ is a measure and not a probability.
We compute the products

V :

1 V1 “ V1, V
:

2 V2 “ V4,

and
V :

3 V3 “ V1 and V :

4 V4 “ V4.

In this way,

ϕ˚
I pIdq “

1

2

4
ÿ

i“1

V :

i Vi “ V1 ` V4 “ Id,

and ϕI is stochastic. As Id ą 0, we get that pI`ϕqpρq “ ρ`ϕpρq “ ρ`Id ą 0,
and so ϕ is irreducible. Clearly, ρinv “ 1

2
Id.

Now, for a general ν over P pCkq and a Borel set B Ă P pCkq, we get

νΠIpBq “

ż

P pCkq

ż

Mk

1BpLpvq ¨ x̂q ∥Lpvqx∥2HS dµpvqdνpx̂q

“

ż

P pCkq

4
ÿ

i“1

1

2
1BpVi ¨ x̂q ∥Vix∥2HS dνpx̂q.

Remember that

V1 |x yxx |V :

1 “

ˆ

|x1|
2 0

0 0

˙

, V2 |x yxx |V :

2 “

ˆ

|x2|2 0
0 0

˙

,

V3 |x yxx |V :

3 “

ˆ

0 0
0 |x1|2

˙

and V4 |x yxx |V :

4 “

ˆ

0 0
0 |x2|

2

˙

.

So,

νΠIpBq “
1

2

ż

P pCkq

r1BpV1¨x̂q`1BpV3¨x̂qs|x1|
2
`r1BpV2¨x̂q`1BpV4¨x̂qs|x2|

2 dνpx̂q

“
1

2

ż

P pCkq

r1Bpê1q ` 1Bpê2qs|x1|
2

` r1Bpê1q ` 1Bpê2qs|x2|
2 dνpx̂q

“
1

2

ż

P pCkq

1Bpê1q ` 1Bpê2q dνpx̂q
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“
1

2
1Bpê1q ` 1Bpê2q

“
1

2
δê1pBq `

1

2
δê2pBq.

We conclude that if ν “ νΠI , then ν “ 1
2
δê1 ` 1

2
δê2 . Note that (see the

concept of barycenter in Section 3.6)

ż

P pCkq

πx dνpx̂q “
1

2
πe1 `

1

2
πe2 “

1

2
Id “ ρinv.

Example 3.8.3 (L is a C˚-automorphism). Suppose that µ over Mk satisfies
the below conditions:

•
ż

Mk

v:v dµpvq “ Id; and

•
ż

Mk

∥v∥2 dµpvq ă 8, where ∥¨∥ is the Hilbert-Schmidt norm.

Take an unitary matrix U P Mk and define Lpvq “ UvU :. Note that∥∥UvU :
∥∥2

“ tr pUvU :q “ tr pvq “ ∥v∥2. Moreover,

ż

Mk

Lpvq
:Lpvq dµpvq “

ż

Mk

Uv:U :UvU : dµpvq

“ U

ż

Mk

v:v dµpvqU :

“ Id.

Remark 3.8.4. The operators of the form Lpvq “ UvU :, for an unitary U ,
are the C˚-automorphisms of Mk (see Section 1.4 in rArv98s).

In the next example, we adapt the reasoning of an Example 4 in rBLLC10s

to the present setting.
We will show that for a certain µ and L (and, quantum channel) the value

we get here for the entropy is equal to the classical entropy of a Markov Chain
(when the state space is finite).

Example 3.8.5 (The Markov model in quantum information). Suppose that

P “

ˆ

p00 p01
p10 p11

˙

is a irreducible (in the classical sense for a Markov chain)

column stochastic matrix. Define µ over M2 by

µ “

4
ÿ

i“1

δVi ,
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where the matrices Vi are

V1 “

ˆ ?
p00 0
0 0

˙

, V2 “

ˆ

0
?
p01

0 0

˙

,

V3 “

ˆ

0 0
?
p10 0

˙

and V4 “

ˆ

0 0
0

?
p11

˙

.

We take L “ I and ϕI “ ϕL, in order to get the quantum channel

ϕpρq “

4
ÿ

1

ViρV
:

i ,

whose dual is

ϕ˚
pρq “

4
ÿ

1

V :

i ρVi.

Note that

V :

1 V1 “

ˆ

p00 0
0 0

˙

, V :

2 V2 “

ˆ

0 0
0 p01

˙

V :

3 V3 “

ˆ

p10 0
0 0

˙

and V :

4 V4 “

ˆ

0 0
0 p11

˙

, (3.5)

that is,

ϕ˚
pId2q “

ˆ

p00 ` p10 0
0 p01 ` p11

˙

“ Id2

The channel ϕ is stochastic. We claim that the channel is irreducible
(later we will exhibit the associated invariant density operator ρ). Consider
first the positive operator

ρ “

ˆ

ρ1 ρ2
ρ3 ρ4

˙

where ρ1, ρ2 P R and ρ3 “ ρ2 (in order to get that ρ ě 0)
The ViρV

:

i are given by:

ρ1 :“ V1ρV
:

1 “

ˆ

p00ρ1 0
0 0

˙

, ρ2 :“ V2ρV
:

2 “

ˆ

p01ρ4 0
0 0

˙

ρ3 :“ V3ρV
:

3 “

ˆ

0 0
0 p10ρ1

˙

and ρ4 :“ V4ρV
:

4 “

ˆ

0 0
0 p11ρ4

˙

(3.6)
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It follows that

ϕpρq “

ˆ

p00ρ1 ` p01ρ4 0
0 p10ρ1 ` p11ρ4

˙

.

In the diagonal one can find the classical action on vectors of the Markov
Chain described by P .

In the same way for v “ pv1, v2q P C2, we get

x v |ϕpρqv y “ pp00ρ1 ` p01ρ4q|v1|
2

` pp10ρ1 ` p11ρ4q|v2|
2

ě 0.

Moreover, the equality only happens when

p00ρ1 ` p01ρ4 “ p10ρ1 ` p11ρ4 “ 0.

From this we get ρ1 “ ρ4 “ 0, because pij ě 0.
In this case, we get ρ “ 0.
This means that , ρ ‰ 0, ρ ě 0 ñ ϕpρq ą 0, and, finally, we get that ϕ is

positive improving. From this, it follows that ϕ is irreducible.
Now, we will look for the invariant density matrix. Assuming ρ1 `ρ4 “ 1,

we observe that ϕpρq “ ρ ñ ρ2 “ ρ3 “ 0, and

"

ρ1 “ p00ρ1 ` p01ρ4
ρ4 “ p10ρ1 ` p11ρ4.

(3.7)

We get

p1 ´ p00qρ1 “ p01ρ4 “ p01p1 ´ ρ1q “ p01 ´ p01ρ1

ñ p1 ´ p00 ` p01qρ1 “ p01.

As P is irreducible, it follows that 0 ă pij ă 1 e 1 ´ p00 ` p01 ą 0. That
is,

ρ1 “
p01

1 ´ p00 ` p01
and ρ4 “

1 ´ p00
1 ´ p00 ` p01

.

An invariant density matrix is

ρ “

¨

˚

˝

p01
1 ´ p00 ` p01

0

0
1 ´ p00

1 ´ p00 ` p01

˛

‹

‚

.

Note that π “ pρ1, ρ4q P R2 is the vector of probability which is invariant
for the stochastic matrix P (see (3.7)).

65



Now, we will estimate the entropy of the quantum channel ϕ. Using (3.6)
in the expression tr pVjViρV

:

i V
:

j q we get

$

’

’

&

’

’

%

tr pV1ρ
iV :

1 q “ p00pρiq1
tr pV2ρ

iV :

2 q “ p01pρiq4
tr pV3ρ

iV :

3 q “ p10pρiq1
tr pV4ρ

iV :

4 q “ p11pρiq4

For example,

tr pV3V1ρV
:

1 V
:

3 q “ tr pV3ρ
1V :

3 q “ p10pρ1q1 “ p10p00ρ1.

From this we get the table.

tr pVjViρV
:

i V
:

j q i 1 2 3 4

j
1 p200ρ1 p00p01ρ4 0 0
2 0 0 p01p10ρ1 p01p11ρ4
3 p00p10ρ1 p10p01ρ4 0 0
4 0 0 p11p10ρ1 p211ρ4

tr pViρV
:

i q p00ρ1 p01ρ4 p10ρ1 p11ρ4

The entropy we defined in the text is given by

hµpLq “ ´

ż

MkˆMk

tr pLpvqρLpvq
:
qP pv, wq logpP pv, wqqdµpvqdµpwq,

where P pv, wq “
tr pLpwqLpvqρLpvq:Lpwq:q

tr pLpvqρLpvq:q
.

We assumed before that L “ I and µ “
ř

i δVi . Then, we finally get,

hµpIq “ ´

4
ÿ

i“1

4
ÿ

j“1

tr pVjViρV
:

i V
:

j q ¨ log

˜

tr pVjViρV
:

i V
:

j q

tr pViρV
:

i q

¸

“ ´
“

p200ρ1logpp00q ` p00p10ρ1 logpp10q ` p00p01ρ4 logpp00q ` p10p01ρ4 logpp10q

`p01p10ρ1 logpp01q ` p11p10ρ1 logpp11q ` p01p11ρ4 logpp01q ` p211ρ4 logpp11q
‰

“ ´
“

p00 logpp00qpp00ρ1 ` p01ρ4q ` p10 logpp10qpp00ρ1 ` p01ρ4q

`p01 logpp01qpp10ρ1 ` p11ρ4q ` p11 logpp11qpp10ρ1 ` p11ρ4q
‰
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“ ´p00 logpp00qρ1 ´ p10 logpp10qρ1 ´ p01 logpp01qρ4 ´ p11 logpp11qρ4

“ ´p00 logpp00qπ0 ´ p10 logpp10qπ0 ´ p01 logpp01qπ1 ´ p11 logpp11qπ1 “

´

1
ÿ

i,j“0

πjpij logppijq.

Therefore,

hµpIq “ ´

1
ÿ

i,j“0

πjpij logppijq. (3.8)

The last expression is the value of the classical Shannon-Kolmogorov en-
tropy of the stationary Markov Process associated to the line stochastic ma-
trix P “ ppijqi,j“0,1 (see rSpi72s and rPY98s).

The entropy is positive because the a priori µ is a measure (of mass equal
to 4) and not a probability.

Now, let’s look at the kernel ΠL and find an invariant probability. For a
given probability ν in P pCkq and a Borel set B Ă P pCkq, we have

νΠLpBq “

ż

P pCkq

ż

Mk

1BpLpvq ¨ x̂q ∥Lpvqx∥2HS dµpvqdνpx̂q,

which means

νΠLpBq “

ż

P pCkq

4
ÿ

i“1

1BpVi ¨ x̂q ∥Vi x∥2HS dνpx̂q.

Note that

V1 ¨ x̂ “ ê1, if x̂ ‰ ê2; V2 ¨ x̂ “ ê1, if x̂ ‰ ê1;

V3 ¨ x̂ “ ê2, if x̂ ‰ ê2; V4 ¨ x̂ “ ê2, if x̂ ‰ ê1

and V1pe2q “ V2pe1q “ V3pe2q “ V4pe1q “ 0.

It follows that

νΠLpBq “

ż

P pCkq

1Bpê1q r∥V1x∥ ` ∥V2x∥s ` 1Bpê2q r∥V3x∥ ` ∥V4x∥s dνpx̂q.

Now, we compute

tr pV1 |x yxx |V :

1 q “ p00 |x1|
2,
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tr pV2 |x yxx |V :

2 q “ p01 |x2|
2,

tr pV3 |x yxx |V :

3 q “ p10 |x1|
2

and tr pV4 |x yxx |V :

4 q “ p11 |x2|
2.

In this way, we get

νΠLpBq “

ż

P pCkq

1Bpê1q pp00 |x1|
2
`p01 |x2|

2
q`1Bpê2q pp10 |x1|

2
`p11 |x2|

2
q dνpx̂q.

From the last expression, we conclude that νΠL has support in the set
tê1, ê2u.

In this way, if ν “ νΠL, then it has to be equal to α ¨ δê1 ` β ¨ δê2 , with
constants α, β ě 0, such that, α`β “ 1. As we know the expression for ρinv,
we can go further:

ρinv “

ż

P pCkq

πx dνpx̂q “ α ¨ πe1 ` β ¨ πe2 .

As

ρinv “

¨

˚

˝

p01
1 ´ p00 ` p01

0

0
1 ´ p00

1 ´ p00 ` p01

˛

‹

‚

,

we get that α “
p01

1 ´ p00 ` p01
and β “

1 ´ p00
1 ´ p00 ` p01

.

In order to finish our example, we write down the invariant probability

ν “
p01

1 ´ p00 ` p01
¨ δê1 `

1 ´ p00
1 ´ p00 ` p01

¨ δê2 “ π1 δê1 ` π2 δê2 ,

and we point out that the two constants are no more no less then the entries
of the invariant probability vector π “ pπ1, π2q for the Markov chain with
transitions P “ ppijqi,j“1,2.

In this way, the concept of entropy we considered before in Section 3.4 is a
natural generalization of the classical Kolmogorov-Shannon entropy and the
process Xn, n P N, of Section 3.5 is a natural generalization of the classical
Markov Chain process.
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Example 3.8.6. Consider a measure µ with support on the set

t

ˆ

x ´y
y x

˙

|x, y P Ru Ă M2,

such that has density fpx, yq “ 1
4π
e´

px2 ` y2q

2 (see also (9) in rEW07s)

Taking L “ I we get that ρ0 “

ˆ

1{2 0
0 1{2

˙

satisfies ϕIpρ0q “ ρ0.

Indeed the channel is given by

ρ “

ˆ

a b
c d

˙

Ñ ϕIpρq “

ż ż
ˆ

x ´y
y x

˙ ˆ

a b
c d

˙ ˆ

x y
´y x

˙

1

4π
e´

px2 ` y2q

2 dx dy “

ˆ

1{2 b´c
2

c´b
2

1{2

˙

.

Notice that although

ˆ

1{2 b
´b 1{2

˙

is a fixed point of ϕI , it is not a

density unless b “ 0. Thus, ρ0 is the only eigendensity.
Given a probability ν on P pCkq the expression for the kernel is

νΠLpSq “

ż

P pCkq

ΠLpŵ, Sq dνpŵq “

ż

P pCkqˆMk

1SpLpvq ¨ ŵq ∥Lpvqw∥2 dνpŵq dµpvq “

ż

P pCkqˆMk

1S
{

ˆ

v1w1 ´ v2w2

v2w1 ` v1w2

˙

pv21 ` v22q
1

4π
e´

pv21 ` v22q

2 dv1 dv2 dνpŵq.

Now, we will estimate the entropy (which will be negative).

Using the fixed density operator ρ0 “

ˆ

1
2

0
0 1

2

˙

we get (according to

Section 3.4)

P pv, wq “
tr pwvρ0v

:w:q

tr pvρ0v:q
.

We denote

w “

ˆ

w1 ´w2

w2 w1

˙

and v “

ˆ

v1 ´v2
v2 v1

˙

,

and we get
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tr pvρ0v
:
q “

1

2
tr

ˆˆ

v1 ´v2
v2 v1

˙ ˆ

v1 v2
´v2 v1

˙˙

“
1

2
tr

ˆ

v21 ` v22 0
0 v21 ` v22

˙

“ v21 ` v22

and

tr pwvρ0v
:w:

q “
1

2
tr

ˆ

w

ˆ

v1 ´v2
v2 v1

˙ ˆ

v1 v2
´v2 v1

˙

w:

˙

“ pv21 ` v22qtr pww:
q “ pv21 ` v22qpw2

1 ` w2
2q.

Thus, we get the following expression for the entropy (remember that
ş8

0
x3e´x2

2 dx “ 2):

hµpLq “ ´
1

16π2

ż

pv21 ` v22qpw2
1 ` w2

2q logpw2
1 ` w2

2qe´
v21`v22

2 e´
w2
1`w2

2
2 dv1dv2dw1dw2

“ ´
1

4

ż 8

0

ż 8

0

r3vr
3
w logpr2wqe´

r2v
2 e´

r2w
2 drvdrw

“ ´
1

4

ż 8

0

„
ż 8

0

r3ve
´

r2v
2 drv

ȷ

r3w logpr2wqe´
r2w
2 drw

“ ´
1

2

ż 8

0

r3w logpr2wqe´
r2w
2 drw

“ ´

ż 8

0

r3w logprwqe´
r2w
2 drw

« ´1.11593

We used polar coordinates above.

3.9 Conclusion and relations with other works

We introduce a concept of entropy and pressure (definitions depending
on an a priori probability µ). For a given H : Mk Ñ Mk (which plays the
role of an Hamiltonian, or a Liouvillian) we define a version of the Ruelle
operator ϕH : Mk Ñ Mk, via the expression:

ρ Ñ ϕHpρq “

ż

Mk

HpvqρHpvq
: dµpvq.
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After that, we presented a type of Ruelle Theorem: a variational principle
of pressure related to an eigenvalue problem for the Ruelle operator (see
Theorem 3.4.8). The entropy and the Ruelle operator are linked via the a
priori probability in a natural and fundamental way.

The definition of entropy considered here is not based on the point of view
of dynamical partitions. It is a kind of generalization of Rokhlin Formula
which says the entropy of an σ-invariant probability ν is Hpνq “ ´

ş

log Jdν,
where J is the Jacobian (a dynamical version of Radon-Nikodym derivative).
Note that this entropy is not relative but absolute. Results in [LMMS15] -
for the classical (not quantum) Thermodynamic Formalism theory - include
the case where the alphabet M (a compact metric space) is uncountable.
We did not use the results of [LMMS15] we just mentioned it to say that we
followed similar reasoning.

A common procedure in Statistical Mechanics (for the one-dimensional
lattice MN or MZ) is to define entropy by considering first a finite box of size,
let’s say n, and then take the limit on the size of the box: the thermodynamic
limit. The probability on the finite box Mn has no dynamical content. On
the limit, when n Ñ 8, it may have dynamical content (where the dynamics
of shift corresponds to translation in the lattice MN or MZ). We say in
this case that the entropy was obtained via finite partitions. In this setting,
probabilities maximizing pressure are obtained in a similar way, like via the
limit e´H dP

ş

e´H dP
, n Ñ 8, where the Hamiltonian H is in some way defined on

each box of size n. The procedure is different in Thermodynamic Formalism,
where you work primarily with the Shannon–Kolmogorov entropy on the
lattice MN or MZ (which has dynamical content) for getting shift invariant
probabilities that maximize pressure. This entropy can be estimated by a
version of the Rokhlin Formula (see [LMMS15]). The Ruelle operator also
played an important role in our definition of entropy. Both concepts are
linked in a natural and fundamental way (see [LMMS15], or section 4 in
[BKL21a] for the classical thermodynamic formalism case).

In [BKL21a] the authors show a relation of the entropy presented here
with Lyapunov exponents, and this is a clear indication of its dynamical
nature.

Below we will present some clarifications on which directions our work is
related to relevant issues in the area related to quantum entropy.

First of all, is needed to say that the von Neumann entropy, which is
given by - trace pρ log ρq, in the same way as the expressions ´

řd
i“1 pi log pi,

or
ş

log fpxqfpxqdx, where f is positive and
ş

fpxqdx “ 1, are not exactly
dynamical entropies (at least from our point of view).

Quantum entropies with dynamical content were considered in a large
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number of papers and books for several decades. We believe our point of
view does not coincide exactly (as far as we know) with the quite important
results on the topic we describe next.

In [Ara73] and [Ara69] H. Haraki considers the relative entropy which can
be defined for arbitrary normal states on a von Neumann algebra. As it is a
relative entropy is different from ours.

A very well know version is the dynamical entropy of C˚-algebras and
von Neumann algebras of A. Connes, H. Narnhofer, and W. Thirring (see
[CNT87]); as far we understand is in ”some sense based” on the principle of
dynamic partitions.

L. Accardi, A. Souissi and E. Soueidy in [ASS20] consider a Quantum
version of Markov Chains which is in ”some sense” based’ on the principle
of dynamic partitions. It is different from ours.

R. Alicki and M. Fannes in [AF01] considers the concept of quantum
dynamical entropy from different points of view: section 12 considers entropy
production; section 13.1 consider the case of the quantum cat map; section
13.2 consider noncommutative Lyapunov exponents and the Ruelle inequality
(the dynamics are associated with the continuous-time semigroup generated
by the Laplacian in a compact Riemannian manifold); section 13.3 is devoted
to quasi-free fermionic dynamics. All of them are different from ours.

The setting of [S lo03] which considers iterated function systems and
Markov operators is the point of view closer to our work. But this refer-
ence does not consider the variational principle of pressure neither a version
of the Ruelle operator. Results in [BLLC10], [BLLC11a] and [BLLC11b]
addressed these topics and they were generalized here.

The book [Pet07] consider the relative von Neumann entropy in Quantum
information with a view to some applications like the Quantum Stein Lemma,
Quantum Chernoff bounds, and Quantum Fisher information.

T. Sagawa in [Sag21] consider the relative entropy of von Neumann and
questions related to the second law of Thermodynamics and majorization:
what happens with the value of the entropy of a density matrix after the
iteration by a quantum channel? The book [Pet07] addresses preliminarily
the question of majorization when a matrix is applied on a finite probability
([LR22] consider a similar problem considering the iteration of the dual of
the Ruelle operator and not a matrix). Maybe a future work could be to
analyze majorization under the context of the present paper.

C. Pinzari, Y. Watatani, and K. Yonetani in [PY`00] consider entropy
and a variational principle of entropy from the point of view of C˚-algebras.
A version of the Perron-Frobenius theorem was used as an important tool for
analyzing KMS states for some interesting examples arising from subshifts
in symbolic dynamics. The relationship between the Voiculescu topological
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entropy and the topological entropy of the associated subshift is studied. In
the case of the Cuntz-Krieger algebras, explicit construction of the state of
maximal entropy was done. We understood that the space of symbols (the
alphabet) considered in [PY`00] is finite. Our results correspond to the case
where the alphabet (in some sense the support of the a priori probability µ)
can be uncountable.

In [KP02] the variational principle of pressure is considered by D. Kerr
and C. Pinzari. They introduce a notion of pressure for a selfadjoint element
in a C˚-algebra, adapting Voiculescu’s formulation of topological entropy for
a nuclear C˚-algebra (see [Voi95] and [Stø02]). The variational inequality
holds for the Connes-Narnhofer-Thirring entropy. They also introduce the
concept of local state approximation entropy which is different from our
definition of entropy.

I. Nechita and C. Pellegrini addressed questions related to generic prop-
erties for quantum channels. In [NP12] the authors show that for a fixed
density matrix β : Cn Ñ Cn, the existence of a set of full measure for the
Haar measure, on the set of unitary operator U : Cn b Cn Ñ Cn b Cn, sat-
isfying the property that for the associated quantum channel Q Ñ ΦpQq “

Tr2pUpq b βqU˚q there exists a unique fixed point. In [LS15] the authors
show that, in fact, there exists an open and dense set of unitary operators U
with such property.

A final remark: our main theorems considered the case of the C˚-algebra
of matrices Mk and a natural question is if our proofs can be implemented
for a general C˚-algebra? Several results for completely positive maps that
were used here are also known in a more general scope. This eventual exten-
sion would involve several issues that by their nature would be much more
complex; in its generality would encompass - in a sense - the classical ther-
modynamic formalism for potentials that depends on an infinite number of
coordinates. The main eigenfunction for the Ruelle operator of a continuous
potential may not exist; the existence requires the use of the Holder regu-
larity of the potential. For the Markov case, the Perron Theorem provides
similar results without further hypotheses due to the fact that a potential
that depends on two coordinates is automatic of Holder class. We leave the
question related to the general C˚-algebra for future work.
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