
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

INSTITUTO DE MATEMÁTICA E ESTATÍSTICA
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Prof. Dr. Rogério Ricardo Steffenon (Unisinos)
Prof. Dr. Leonardo Fernandes Guidi (UFRGS)
Prof. Dr. Ricardo Misturini (PPGMat/UFRGS)
Prof. Dr. Carlos Felipe Lardizábal (Orientador, PPGMat/UFRGS)
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Resumo. Neste trabalho estudamos propriedades espectrais e estat́ısticas de passeios quânticos abertos
em termos de polinômios ortogonais com coeficientes matriciais. Relembramos o problema de existência de
medidas matriciais em conjunto com cálculos concretos de conceitos estat́ısticos básicos dos passeios, tais como
probabilidades de transição e recorrência de vértices. Concentramos a discussão no modelo de cadeias de Markov
quânticas introduzido por S. Gudder, na classe particular de passeios quânticos abertos(OQWs), introduzidos
por S. Attal et al., e numa versão cont́ınua de OQWs (denotada por CTOQWs) introduzida por Bardet et. al.
Por fim, generalizamos a equivalência entre recorrência de cadeias de Markov a tempo-cont́ınuo e sua cadeia de
saltos através de um CTOQW especial.

Palavras-chave: mecânica quântica; passeios quânticos; operadores positivos; polinômios ortogonais ma-
triciais; recorrência.

Abstract. In this work we study spectral and statistical properties of open quantum walks in terms
of matrix-valued orthogonal polynomials. We recall the problem of the existence of matrix-valued measures
together with concrete calculations of basic statistics of the walk, such as probability transitions and site
recurrence. The discussion concentrates on the models of quantum Markov chains, due to S. Gudder, on the
particular class of open quantum walks (OQWs), due to S. Attal et al., and on a continuous-time version
of OQWs introduced by Bardet et. al. To finish, we generalize the equivalence between the recurrence of
continuous-time Markov chains with its jump chain through a special CTOQW.

Keywords: quantum mechanics; quantum walks; positive operators; matrix-valued orthogonal polynomials;
recurrence.
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Introduction

In the classical theory, discrete-time birth-death chains on Z≥0 are described by a transition probability matrix
of the form

P =


r0 p0 0 0 · · ·
q1 r1 p1 0 · · ·
0 q2 r2 p2 · · ·
...

...
...

. . .
. . .

 , r0 + p0 ≤ 1, pn + rn + qn = 1, n ≥ 1.

The case p0 +r0 < 1 can be identified as having an extra vertex v(say vertex v = −1), then v is an absorbing
barrier for the chain, thus the walk never leaves v after it was hit for the first time.

Let {Qn(x)}n≥0 be the sequence of polynomials defined by the three-term recurrence relation

Q0(x) = 1, Q−1(x) = 0,

xQn(x) = pnQn+1(x) + rnQn(x) + qnQn−1(x), n ≥ 0,

that is, xQ(x) = PQ(x), where Q(x) = (Q0(x), Q1(x), . . .)T . Then we have xnQ = PnQ, i.e.

xnQi(x) =

∞∑
k=0

PnikQk(x), i ≥ 0. (0.0.1)

For a birth-death chain with transition probabilities pn, rn, qn+1, n ≥ 0, Favard’s Theorem [15] (see also [29])
assures the existence of a probability measure ψ supported on [−1, 1] such that the polynomials {Qn(x)}n≥0

are orthogonal with respect to ψ. Multiplying both sides of the equation (0.0.1) by Qj(x) and integrating with
respect to ψ, we obtain the Karlin-McGregor formula [29], which gives the probability of reaching vertex j in n
steps, given that the process started at vertex i. This formula is given by

Pnij =

∫ 1

−1

xnQi(x)Qj(x)dψ(x)∫ 1

−1

Q2
j (x)dψ(x)

.

From a theoretical point of view, it is interesting to ask whether such classical constructions can be adapted
so that one can also study quantum systems [8, 16] as well. This has been studied in the case of unitary
quantum walks, where the relevant orthogonal polynomials are described in terms of the theory of CMV matrices
[10, 11]. Regarding the setting of open quantum dynamics, the problem of studying orthogonal polynomials
and associated measures is an interesting one as well, although we would have to consider operators which are
no longer unitary.

The main purpose of this thesis is to explore the basic theory of matrix-valued orthogonal polynomials
applied to an open quantum setting by providing results on weight matrices and describing several examples2,
hopefully encouraging the communities of quantum dynamics and orthogonal polynomials to attempt further
developments on this line of research. A first step in this direction has been discussed in [28], where a procedure
for obtaining weight matrices associated with open quantum walks (OQWs) [4] on the half-line was described,
this being in terms of a well-known result due to Durán [21].

The setting we will consider in the first chapter concerns the class of quantum Markov chains (QMCs) on the
line, as defined by S. Gudder [25]. This model is revised in detail in Section 1.1. The main difference with OQWs

2Those examples were computed with the software Maple 15.
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is that the transition maps are not only given by conjugations of the form X 7→ V XV ∗, but, instead, the effect
transitions can be chosen to be any completely positive map. This larger class of examples expands the potential
applicability of the theory and also makes it easier to find evolutions which are distinct from classical dynamics.
With an improved understanding of weight matrices, one is now able to present basic results on recurrence and
positive recurrence of QMCs, as we will see in Sections 1.2 and 1.3. The use of the Stieltjes transform allows us
to further extend recent results on homogeneous OQWs on the line regarding criteria for site-recurrence [27].
Sections 1.4 and 1.5 illustrate the theory with examples on finite segments and on the half-line, while Section
1.6 explains how to consider QMCs acting on the integer line, further extending the applicability of the theory.
Finally, by a proper variation of the Karlin-McGregor formula for weight matrices, we are able to discuss weight
matrices which are not necessarily symmetric. This has been examined by Zygmunt [37, 38], and such theory
leads to interesting examples of QMCs, as described in Section 1.7.

The setting of the second chapter concerns the class of continuous-time open quantum walks (CTOQWs)
on the line. This model is revised in detail in Section 2.2. Analogous to the discrete-time model, an improved
understanding of weight matrices allows us to present basic results on recurrence and positive recurrence of
CTOQWs, as we will see in Section 2.3. Section 2.4 illustrates the theory with examples on finite segments,
on the half-line and on the real line. Section 2.5 illustrates some rates of CTOQWs concerning its quantum
trajectories, allowing us to describe the quantum jump chain of a class of CTOQWs and recurrence properties
in Section 2.6.
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Chapter 1

Quantum Markov chains

In this chapter we present the notion of quantum Markov chains [25] and open quantum walks [4]. We remark
that part of the exposition presented here consist of joint collaboration with M. D. de la Iglesia and can be seen
in the preprint [20].

1.1 Preliminaries

Let H be a separable Hilbert space with inner product 〈 · | · 〉, whose closed subspaces will be referred to as
subspaces for short. The superscript ∗ will denote the adjoint operator. The Banach algebra B(H) of bounded
linear operators on H is the topological dual of its ideal I(H) of trace-class operators with trace norm

‖ρ‖1 = Tr(|ρ|), |ρ| =
√
ρ∗ρ,

through the duality [2, Lec. 6]

〈ρ,X〉 = Tr(ρX), ρ ∈ I(H), X ∈ B(H). (1.1.1)

If dimH = k < ∞, then B(H) = I(H) is identified with the set of square matrices of order k, denoted by
Mk(C). The duality (1.1.1) yields a useful characterization of the positivity of an operator ρ ∈ I(H):

ρ ∈ I(H) : ρ ≥ 0 ⇔ Tr(ρX) ≥ 0, ∀X ∈ B(H), X ≥ 0,

and similarly for the positivity of X ∈ B(H).

In this work, we assume that we have a quantum particle acting either on the integer line, the integer
half-line, or on a finite segment, that is, we have that the set of vertices V is labeled by Z, Z≥0 or a finite set
{0, 1, . . . , N}, respectively. In this work, vertices are also called sites. The state of the system is described by a
column vector

ρ =


ρ0

ρ1

ρ2

...

 , ρi ∈ I(H), ρi ≥ 0,
∑
i∈V

Tr(ρi) = 1. (1.1.2)

After one time step, the system evolves to the state Φ(ρ) given by Φ(ρ)i =
∑
j∈V Φij(ρj), where

Φ =


Φ00 Φ01 Φ02 . . .

Φ10 Φ11 Φ12 . . .

Φ20 Φ21 Φ22 . . .
. . . . . . . . . . . .


is called a Quantum Markov Chain (QMC) [25]: this means that the Φij are completely positive (CP) maps
on I(H) and the column sums

∑
i∈V Φij are trace-preserving (TP) (the summations are assumed to converge

in the strong operator topology), see Figure 1. A density ρ of the form (1.1.2) will be called a QMC density.
The set of density operators acting on a subspace K of H will be denoted by D(K).

4



1.1. PRELIMINARIES CHAPTER 1. QUANTUM MARKOV CHAINS

An important particular class of CP maps is given by the ones of the form

Φij(ρ) = BijρB
∗
ij , Bij ∈ B(H),

∑
k∈V

B∗kjBkj = I, ∀ i, j ∈ V. (1.1.3)

The summation above must be understood in the strong sense, and the corresponding identity is the trace-
preserving condition for the columns of the QMC Φ. We will say that Bij is the effect matrix of transitioning
from vertex j to vertex i. QMCs for which Φij can be written in the form (1.1.3) are called Open Quantum
Random Walks (OQWs), following the terminology established by S. Attal et al. [4]. Explicitly, OQWs are
QMCs of the form

Φ(ρ) =
∑
i∈V

∑
j∈V

BijρjB
∗
ij

⊗ |i〉〈i|, (1.1.4)

and, as any QMC, they may be alternatively seen as CP-TP maps on I(H⊗ V ).

i j

kl

... ...

......

Φji

Φij

ΦkjΦjkΦliΦil

Φkl

Φlk

Figure 1.1: Schematic illustration of QMCs. The walk is realized on a graph with a set of vertices denoted by
i, j, k, l, . . . and each operator Φij is a completely positive map describing a transformation in the internal degree
of freedom of the particle during the transition from vertex j to vertex i. For simplicity of illustration some
edges are not labeled. In the particular case that all maps are conjugations, i.e., for every i, j, Φij = Bij · B∗ij
for certain matrices Bij the QMC is called an open quantum walk. In this work, the graphs considered will be
either a line segment, the half-line, or the integer line.

The vector representation vec(A) of A ∈ Mk(C), given by stacking together its rows, will be a useful tool.
For instance,

A =

[
a11 a12

a21 a22

]
⇒ vec(A) :=


a11

a12

a21

a22

 .
The vec mapping satisfies vec(AXBT ) = (A⊗B) vec(X) [26] for any square matrices A,B,X, with ⊗ denoting

the Kronecker product. In particular, vec(BXB∗) = vec(BXB
T

) = (B⊗B) vec(X), from which we can obtain

the matrix representation Φ̂ for a CP map
∑
iBi ·B∗i when the underlying Hilbert space H is finite-dimensional:

Φ̂ =
∑
i

dBie, dBe := B ⊗B.

Here the operators Bi are identified with some matrix representation. We have that dBe∗ = dB∗e, where B∗

denotes the Hermitian transpose of a matrix B. Then, the vector and matrix representation of states and CP
maps may be easily adapted to QMCs. In fact, since any element of IV (H) is block diagonal, when dimH <∞,
it may be represented by combining the vector representations of the finite diagonal blocks,

ρ =
∑
i∈V

ρi ⊗ |i〉〈i| ⇒ −→ρ :=

vec(ρ1)
vec(ρ2)

...

 .
5



1.1. PRELIMINARIES CHAPTER 1. QUANTUM MARKOV CHAINS

Then, the OQW (1.1.4) admits the block matrix representation

−−→
Φ(ρ) = Φ̂−→ρ , Φ̂ =

dB00e dB01e · · ·
dB10e dB11e · · ·
...

...

 ,
and analogously for QMCs. We will often identify Φ with its block matrix representation and omit the hat,
as the usage of such object will be clear from the context. Also, we will sometimes write X instead of dXe in
contexts where no confusion arises.

Although the above definitions concern QMCs on general graphs, we remark that in this work we will deal
exclusively with the one-dimensional situation, more specifically, with the nearest neighbor QMC or quantum
birth-death chain, e.g.,

Φ =


B0 C1

A0 B1 C2

A1 B2 C3

. . .
. . .

. . .

 , (1.1.5)

for certain operators Ai, Bi, Ci, and the remaining ones being equal to zero.

1.1.1 The calculation of probabilities for QMCs

By letting ρ ⊗ |i〉〈i| be an initial density matrix concentrated at site |i〉, we can describe n iterations of the
QMC (1.1.5). By setting ρ(0) = ρ⊗ |i〉〈i|, Tr(ρ) = 1, we write (assume C0 = 0)

Φn(ρ⊗ |i〉〈i|) =
∑
k≥0

ρ
(n)
k ⊗ |k〉〈k|, ρ

(n)
k = Ckρ

(n−1)
k+1 C∗k +Bkρ

(n−1)
k B∗k +Akρ

(n−1)
k−1 A∗k, n = 1, 2, . . .

Then, the probability of reaching site |j〉 at the n-th step, given that we started at site |i〉 with initial density
ρ concentrated at i is given by

pji;ρ(n) = pn(ρ⊗ |i〉 → |j〉) := Tr(ρ
(n)
j ) = Tr

(
vec−1

[
(Φ̂n)jivec(ρ)

])
,

where (Φ̂n)ji is the (j, i)-th block of the block matrix Φ̂n, the n-th power of the block representation Φ̂.
Following [5, 14], we say that vertex i is recurrent with respect to ρ, or simply ρ-recurrent, if

∞∑
n=0

pii;ρ(n) =∞. (1.1.6)

Otherwise, we say that vertex i is transient with respect to ρ, or ρ-transient. We say that, with respect to
a fixed QMC, vertex i is recurrent if it is ρ-recurrent with respect to every density ρ concentrated in i, and
transient if it is ρ-transient with respect to every density in i. Finally, we say that a QMC Φ is recurrent if
every site is recurrent, and we define transient QMCs analogously.

The series appearing in equation (1.1.6) denotes the mean number of returns to vertex i, given that the walk
started with initial density operator ρ, thus, when this number is infinite, the mean number of returns to vertex
i is infinite.

Remark 1.1. We note that in the setting of QMCs, one can also consider the notion of monitored recurrence,
see e.g. [5, 23, 27]. For simplicity, we will not consider such definition in this work, and we refer the reader to
the references for a detailed discussion on such matter.

Finally, we will be able to discuss expected return times to sites of QMCs in terms of the following notion.
Let T denote a positive map (that is, such that if X ≥ 0 then T (X) ≥ 0) acting on the space I(H) of trace-class
operators of a Hilbert space H. We say that T is irreducible if the only orthogonal projections P such that
T (PI(H)P ) ⊂ PI(H)P , are P = 0 and P = I, see [12, 13] for more on this. Then, we say that a QMC Φ is
positive recurrent if it is irreducible and if it admits an invariant distribution. We note that by [[5], Thm.
4.3 and 4.5] for positive recurrent OQWs, we have finite expected return times for every density and site, and
the same reasoning provides the analogous result in the case of QMCs.
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1.2. WEIGHT MATRICES CHAPTER 1. QUANTUM MARKOV CHAINS

1.1.2 Auxilliary notation: compact form

In some of the examples we study in this work we will use the following algebraic simplification. We know that
the matrix representation of the conjugation map induced by an order 2 matrix M = (mij) is given by

dMe = M ⊗M =


|m11|2 m11m12 m11m12 |m12|2
m11m21 m11m22 m12m21 m12m22

m11m21 m12m21 m11m22 m12m22

|m21|2 m21m22 m21m22 |m22|2

 =


a b b c
d e f g

d f e g
h j j k

 , mij ∈ C.

Let us consider the setting for which all of the above coefficients are real, and acting on positive semidefinite
matrices with real entries. Then

dMevec(ρ) =


a b b c
d e f g
d f e g
h j j k



x
y
y
z

 =


ax+ 2by + cz

dx+ (e+ f)y + gz
dx+ (e+ f)y + gz
hx+ 2jy + kz

 , ρ =

[
x y
y z

]
.

In this particular setting we note that the above computation can be codified in a more economic way, namely,
via the correspondence

dMevec(ρ) ↔ M̌ρ̌ :=

a 2b c
d e+ f g
h 2j k

xy
z

 =

 a+ 2by + cz
dx+ (e+ f)y + gz
hx+ 2jy + kz

 . (1.1.7)

We call the map M̌ the compact form of the conjugation induced by M , or simply the compact form of M .
It is clear that many calculations coming from quantum mechanical models can be written in terms of real
numbers only and, even though the real coefficient assumption often precludes us from complete generality, we
are still able to learn useful information about 1-qubit quantum channels.

The following properties of the compact form are proven by a routine calculation:

1. (̌MR) = M̌Ř for any matrices, resembling the matrix representation property dMRe = dMedRe.

2. The compact form preserves the computation of product of conjugations acting on positive definite ma-
trices. That is, if M and R are matrices then dMedRevec(ρ) corresponds to M̌Řρ̌.

1.2 Weight matrices

Let W be a weight matrix, i.e. a N×N matrix of measures supported in the real line such that dW (y)−dW (x) ≥
0 (positive semidefinite) for x < y. We also allow the case of discrete measures, those appearing naturally in
the case of walks acting on a finite number of vertices. Define the matrix-valued inner product given by

(P,Q) :=

∫
R
P ∗(x)dW (x)Q(x). (1.2.1)

Also regarding positive semidefiniteness, we recall that (P, P ) ≥ 0, (P, P ) > 0 whenever det(P ) 6≡ 0 and
(P, P ) = 0 if and only if P ≡ 0. Let {Qn(x)}n≥0 denote a sequence of matrix-valued orthogonal polynomials
with respect to such product, with nonsingular leading coefficients. Then∫

R
Q∗n(x)dW (x)Qm(x) = ‖Qn‖2δnm.

The set of polynomials will be called orthonormal if ‖Qn‖2 = (Qn, Qn) = I, n ≥ 0. It is well-known that any
family of matrix-valued orthogonal polynomials satisfies a three-term recurrence relation of the form

xQn(x) = Qn+1(x)An +Qn(x)Bn +Qn−1(x)Cn, n ≥ 0, Q0(x) = I, Q−1(x) = 0, (1.2.2)

for certain An, Bn, Cn+1, n ≥ 0, square matrices. This gives rise to a block tridiagonal Jacobi matrix of the
form

P =


B0 C1 0
A0 B1 C2

A1 B2 C3

0
. . .

. . .
. . .

 , (1.2.3)

7
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so that (1.2.2) can be written as xQ(x) = Q(x)P , where Q(x) = (Q0(x), Q1(x), . . . ). Let us now see the inverse
problem, i.e. under what conditions we can guarantee the existence of a weight matrix given a block tridiagonal
matrix of the form (1.2.3). As discussed previously, namely, whenever the weight matrix exists, the (i, j)-th
block of the block matrix Pn can be written as

(Pn)ij = (Qi(x), Qi(x))−1

(∫
R
xnQ∗i (x)dW (x)Qj(x)

)
.

However, unlike the one-dimensional case, a system of matrix-valued polynomials {Qn(x)}n≥0 satisfying such
recurrence relation is not necessarily orthogonal with respect to an inner product induced by a weight matrix.
In view of this, Dette et al. describe an existence criterion.

Let Σ be a d2 × d2 weight matrix and denote by

Sk =

∫
xkdΣ(x), k = 0, 1, . . .

the corresponding moments. The block Hankel matrices are defined by

H2m =

S0 · · · Sm
...

...
Sm · · · S2m

 , m ≥ 0.

Theorem 1.2. ([18, Theorem 2.1]) Assume that the matrices An, Cn+1, n ≥ 0, in the one-step block tridiagonal
transition matrix (1.2.3) are nonsingular. There exists a weight matrix W supported on the real line with positive
definite Hankel matrices H2m(m ∈ Z≥0 such that the polynomials defined by (1.2.2) are orthogonal with respect
to the measure dW (x) if and only if there exists a sequence of nonsingular matrices {Rn}n≥0 such that

1. RnBnR
−1
n is Hermitian, ∀ n = 0, 1, 2, . . . .

2. R∗nRn =
(
A∗0 · · ·A∗n−1

)−1
(R∗0R0)C1 · · ·Cn, ∀ n = 1, 2, . . . .

Following the idea of [28], a nearest neighbour QMC has a block tridiagonal matrix of the form

Φ̂ =


B0 C1 0
A0 B1 C2

A1 B2 C3

0
. . .

. . .
. . .

 . (1.2.4)

In order to find the corresponding weight matrix associated to Φ̂, we need to find nonsingular matrices {Rn}n≥0

such that
Πn := R∗nRn = (A∗0 · · ·A∗n−1)−1Π0C1 · · ·Cn and ΠnBn = B∗nΠn, n = 1, 2, . . .

Finally, we note that we have a version of the Karlin-McGregor formula for QMCs, in close analogy with
the result seen in [28, Theorem 1.2]:

Theorem 1.3. (Karlin-McGregor formula for QMCs). Let Φ̂ in (1.2.4) be the matrix representation of a QMC

Φ. Assume that there exists a weight matrix W associated with Φ̂. Then we have

pji;ρ(n) = Tr

(
vec−1

[
(Qj(x), Qj(x))−1

(∫
R
xnQ∗j (x)dW (x)Qi(x)

)
vec(ρ)

])
,

where ρ = ρi⊗|i〉〈i| is a density matrix concentrated on vertex i and {Qn(x)}n≥0 are the matrix-valued orthogonal
polynomials defined by (1.2.2).

Remark 1.4. The inner product introduced in (1.2.1) is different from the one used in many papers on this
subject (see for instance [18, 21, 22, 28, 38, 37] and references therein). The standard inner product used is
called left inner product

(P,Q)L :=

∫
R
P (x)dW (x)Q∗(x),

which is different from the one defined by (1.2.1), which sometimes is called right inner product (see [35]). We
obviously have (P,Q) = (P ∗, Q∗)L.

8
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1.3 Recurrence and first passage

Consider the Stieltjes transform of a weight matrix W with support on the real line given by

B(z;W ) :=

∫
R

dW (x)

z − x
, z ∈ C\R. (1.3.1)

Let N ∈ {1, 2, . . .} and Φ be a QMC described by

Φ =


B0 C1

A0 B1 C2

A1 B2 C3

. . .
. . .

. . .

 , (1.3.2)

where An, Bn, Cn+1 ∈MN2(C), n ≥ 0. Assume there exists a weight matrix W such that

Φ
(n)
ij = Πi

(∫
R
xnQ∗i (x)dW (x)Qj(x)

)
, (1.3.3)

where Πi =
(∫

RQ
∗
i (x)dW (x)Qi(x)

)−1
. Now let us define a generating function associated with hitting proba-

bilities from j to i with respect to the QMC Φ, i.e.

Φij(s) :=

∞∑
n=0

Φ
(n)
ij s

n, Φ
(n)
ij = PiΦnPj , (1.3.4)

where Pk is the projection map onto the space generated by the state |k〉 on Z≥0. We will start with the
following result concerning ρ-recurrence.

Theorem 1.5. Let ρ be some density. A vertex i ∈ V is ρ-recurrent if and only if

lim
s↑1

Tr

[
vec−1

(
Πi

∫
R

1

1− sx
Q∗i (x)dW (x)Qi(x)vec(ρ)

)]
=∞.

As a consequence, vertex |0〉 is ρ-recurrent if and only if

lim
z↓1

Tr
[
vec−1 (B(z;W )vec(ρ))

]
=∞, (1.3.5)

where B(z;W ) is defined by (1.3.1).

Proof. By Fubini’s Theorem and for |sx| <∞ we have

Φji(s) =

∞∑
n=0

snΦ
(n)
ji =

∞∑
n=0

Πj

∫
R

(sx)nQ∗j (x)dW (x)Qi(x)

= Πj

∫
R

∞∑
n=0

(sx)nQ∗j (x)dW (x)Qi(x) = Πj

∫
R

1

1− sx
Q∗j (x)dW (x)Qi(x).

(1.3.6)

Then

lim
s↑1

Tr
(
vec−1 (Φji(s)vec(ρ))

)
= lim

s↑1

∞∑
n=0

Tr
(
vec−1

(
snΦ

(n)
ji vec(ρ)

))
=

∞∑
n=0

pji;ρ(n).

By taking s = 1/z, we obtain (1.3.5).

�

In a similar way we can prove that an irreducible OQW Φ with associated weight matrix W is recurrent
with respect to some density ρ if and only if

lim
s↑1

Tr

(∫
dW (x)

1− xs
ρ

)
=∞.

Regarding positive recurrence in terms of the spectral matrix W , we have the following:

9
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Proposition 1.6. For an irreducible OQW Φ (1.3.2) admitting a weight matrix W , the walk is positive recurrent
if and only if the weight matrix W has a finite jump at x = 1.

Proof. An irreducible, positive recurrent OQW always admits a faithful (strictly positive), invariant distri-
bution by [30, Theorem 5.8]. Therefore, we conclude, by [13, Corollary 5.4], that

lim
n→∞

Tr(P0Φ2nP0ρ) > 0.

Since x2n → 0 monotonically in x ∈ (−1, 1), from Theorem 1.3 we see that the limit is positive if the spectral
measure has positive jumps at x = 1 or at x = −1. However, there cannot be a jump at x = −1 since, otherwise,
the size of the jump would be

− lim
n→∞

Tr

(
vec−1

[∫ 1

−1

x2n+1dW (x)vec(ρ)

])
= − lim

n→∞
Tr(P0Φ2n+1P0ρ) ≤ 0.

But this quantity must be positive, so there is no jump at x = −1, for any choice of density ρ. Therefore, the
OQW is positive recurrent if and only if there is a jump at x = 1.

�

Let us now derive an expression for first passage probabilities of QMCs in terms of matrix-valued polynomials
only. The following discussion is inspired by the classical reasoning presented in [19], with the main result
being formula (1.3.13) presented below, which allows us to obtain first visit probabilities in terms of matrix
polynomials in a simple manner. For k ≥ 0, consider the QMC Φ with matrix representation

Φ =



B0 C1

A0 B1 C2

. . .
. . .

. . .

Ak−1 Bk Ck+1

Ak Bk+1 Ck+2

Ak+1 Bk+2 Ck+3

. . .
. . .

. . .


,

where Bn, An, Cn+1 ∈MN (C), n ≥ 0. As usual, we recursively define the following matrix-valued polynomials,

Q0(x) = IN , Q−1(x) = 0

xQn(x) = Qn+1(x)An +Qn(x)Bn +Qn−1(x)Cn,
(1.3.7)

that is, xQ(x) = Q(x)Φ, where Q(x) = (Q0(x), Q1(x), . . .). Suppose that Φ satisfies the conditions of Theorem
1.2, so the polynomials defined by (1.3.7) are orthogonal with respect to a weight matrix W and ΠΦ = Φ∗Π,
where Π = diag(Π0,Π1, . . .) and Πj = R∗jRj , j ≥ 0. Analogously to the classical case, we define the k-th
associated polynomials

xQ(k)
n (x) = δnk +Q

(k)
n+1(x)An +Q(k)

n (x)Bn +Q
(k)
n−1(x)Cn.

Note that Q
(k)
n (x) = 0 if 0 ≤ n ≤ k and deg(Q

(k)
n (x)) = n − k − 1 if n > k. Consider the generating function

Φ(s) associated with Φ defined by (1.3.4). Assuming ‖sΦ‖ < 1, Φji(s) converges for every i, j, thus

∞∑
n=0

(sΦ)n(I − sΦ) = I ⇒ Φ(s)− Φ(s)(sΦ) = I.

Therefore, we have the equation
Φ(s) = I + Φ(s)(sΦ),

which can be rewritten by blocks as

Φj0(s) = δj0 + Φj0(s)B0 + Φj1(s)A0, j ≥ 0

Φji(s) = δji + Φj,i−1(s)Ci + Φj,i(s)Bi + Φj,i+1(s)Ai, i ≥ 1, j ≥ 0.
(1.3.8)

10
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A particular solution of (1.3.8) is given by

Φji(s) = s−1Q
(j)
i (s−1).

On the other hand, the general solution of Φ(s) = Φ(s)(sΦ), which is

Φji(s) = gj(s)Qi(s
−1)

gives
Φji(s) = Φj,i−1(s)Ci + Φj,i(s)Bi + Φj,i+1(s)Ai,

and consequently, the general solution of (1.3.8) is

Φji(s) = s−1Q
(j)
i (s−1) + gj(s)Qi(s

−1).

Since Q
(j)
0 = 0 and Q0 = 1, one has Φj0(s) = gj(s)Q0(s−1) = gj(s). Moreover, since Φ

(n)
ji = Π−1

j Φ
(n)∗
ij Πi, we

have

Φj0(s) =

∞∑
n=0

snΠ−1
j Φ

(n)∗
0j Π0 = Π−1

j Φ0j(s)
∗Π0,

so we obtain the general solution for gj(s) :

gj(s) = Φj0(s) = Π−1
j Φj0(s)∗Π0

= Π−1
j

(
s−1Q

(0)
j (s−1) + g0(s)Qj(s

−1)
)∗

Π0 = Π−1
j

(
s−1Q

(0)
j (s−1) + Φ00(s)Qj(s

−1)
)∗

Π0.

Therefore the general solution for Φij(s) is given by

Φji(s) = s−1Q
(j)
i (s−1) + Π−1

j

(
s−1Q

(0)
j (s−1) + Φ00(s)Qj(s

−1)
)∗

Π0Qi(s
−1). (1.3.9)

If we assume i < j, then Q
(j)
i = 0 and (1.3.9) becomes

Φji(s) = Π−1
j

(
s−1Q

(0)
j (s−1) + Φ00(s)Qj(s

−1)
)∗

Π0Qi(s
−1). (1.3.10)

Now consider the first passage time operator F (s) satisfying

F (s) = [Fji(s)]j,i=0,1,2,...

Fji(s) = Φjj(s)
−1(Φji(s)− δjiI),

(1.3.11)

that is, with definition given by
F (z) = zPΦ(I − zQΦ)−1, (1.3.12)

where P and Q = I − P are bounded projections from H onto supplementary closed subspaces of H. Further,
we denote by Pk the projection map onto the space generated by the state |k〉 on Z≥0 and Qk := I−Pk. In this
way, we are able to calculate the probability of every reaching vertex j, given that we have started at vertex i
and density ρ, by writing

p(ρ⊗ |i〉 → |j〉) = lim
z↑1

Tr (Fji(z)ρ) = lim
z↑1

Tr
(
zPjΦ(I − zQjΦ)−1ρ

)
,

where Pj is the j-th block entry of P and Qj is the j-th block entry of Q.

By [24], F (s) defined as above indeed satisfies equation (1.3.11). So, let i < j and ρ ∈ MN (C), then by
equation (1.3.10)

Fji(s) = Φjj(s)
−1Φji(s)

= Qj(s
−1)−1Π−1

0

[(
s−1Q

(0)
j (s−1) + Φ00(s)Qj(s

−1)
)∗]−1

Πj

×Π−1
j

(
s−1Q

(0)
j (s−1) + Φ00(s)Qj(s

−1)
)∗

Π0Qi(s
−1) = Qj(s

−1)−1Qi(s
−1).

11
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Therefore, by (1.3.11), we obtain

Fji(s) = Qj(s
−1)−1Qi(s

−1), i < j. (1.3.13)

In particular, the condition Q0 = I gives

F10(s) = Q1(s−1)−1 =

[(
1

s
I −B0

)
A−1

0

]−1

= sA0(I − sB0)−1. (1.3.14)

Example 1.7. Let Φ be the representation matrix of an OQW on V = {0, 1, 2} of the form

Φ =

 0 dCe
dAe 0 dCe

dAe 0

 , A =
1

2

[
−1 0

1
√

2

]
, C =

1

2

[
1 −

√
2

−1 0

]
.

Since A∗A < I, the walk has an absorbing barrier in the frontier. Also, we have

(I − sQ1Φ) =

I4 X 0
0 I4 0
0 Y I4

 , X =
s

4


−1

√
2

√
2 −2

1 0 −
√

2 0

1 −
√

2 0 0
−1 0 0 0

 , Y =
s

4


−1 0 0 0

1
√

2 0 0

1 0
√

2 0

−1 −
√

2 −
√

2 −2

 .
and

F10(s) = sP1Φ(I − sQ1Φ)−1P0 =
s

4


1 0 0 0

−1 −
√

2 0 0

−1 0 −
√

2 0

1
√

2
√

2 2

 .
The first two associated polynomials are given by

Q0(x) = I4, Q1(x) := 2x


2 0 0 0

−
√

2 −
√

2 0 0

−
√

2 0 −
√

2 0
1 1 1 1

 ,
from which we can calculate the product Q1(s−1)−1Q0(s−1), which equals F10(s) as expected. Then, for ρ =[
a b
b∗ 1− a

]
, we obtain

p(ρ⊗ |0〉 → |1〉) = lim
s↑1

Tr(F10(s)ρ) =
1 +
√

2Re(b)

2
∈

[
2−
√

2

4
,

2 +
√

2

4

]
,

since Re(b) ∈ [−1/2, 1/2].

♦

Example 1.8. Let γ ∈ R and kγ = 2 + 2γ2 and Φ be the representation matrix of an OQW of the form

Φ =


dB0e dC1e
dA0e dB1e dC2e

dA1e dB2e dC3e
. . .

. . .
. . .

 , B0 =
1√
kγ

[
−1

√
2γ

0 1

]
, A0 =

1√
kγ

[√
2γ 1
1 0

]
.

We notice that F10(s) does not depend on the blocks Ak, Bk, Ck for k = 1, 2, 3, . . . , thus such blocks can be
chosen arbitrarily so that A∗kAk +B∗kBk + C∗kCk = I for k ≥ 1. Then, equation (1.3.12) gives

F10(s) =
s

2 + 2γ2 − s


2γ2

√
2γ(2γ2s+2−2γ2−s)

2+s+2γ2

√
2γ(2γ2s+2−2γ2−s)

2+s+2γ2
s+4γ2s+4γ4s+2+2γ2

2+s+2γ2√
2γ − 2γ2s

2+s+2γ2
2γ2+2−2γ2s−s

2+s+2γ2

√
2γ(1+2γ2)
2+s+2γ2√

2γ 2γ2+2−2γ2s−s
2+s+2γ2 − 2γ2s

2+s+2γ2

√
2γ(1+2γ2)
2+s+2γ2

1 −
√

2γs
2+s+2γ2 −

√
2γs

2+s+2γ2
2γ2s

2+s+2γ2

 ,
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and, as expected, this is the same matrix obtained by formula (1.3.14). For ρ =

[
a b
b∗ 1− a

]
, we obtain, for

every ρ, that

p(ρ⊗ |0〉 → |1〉) = lim
s↑1

Tr (F10(s)ρ)

= lim
s↑1

4γ4(as− a− s) + 4γ
√

2(s− 1)Re(b)(γ2 + 1) + 2γ2(2as− 3s− 2a− 1)− 2− s
(2 + s+ 2γ2)(−2 + s− 2γ2)

= 1.

We note that, in principle, we are able to obtain probabilities regarding vertices which are arbitrarily distant
from one another but, as the distance between them increases, the task of performing explicit calculations may
become unpractical. In such cases, it may be preferable to use the generating function (1.3.12).

♦

1.4 A QMC on a finite number of vertices

Let us first consider a walk induced by the block matrix on the N + 1 nodes indexed as {0, 1, . . . , N},

Φ =



B rI
tI B rI

tI B rI
. . .

. . .
. . .

tI B rI
tI B


, 0 < r, t < 1,

where if B = dΦBe, ΦB = V ∗1 · V1 + V ∗2 · V2, with

V1 =
√
s

[
a b
b −a

]
, V2 =

√
s(1− a2 − b2)I2.

We can write

B = s


1− b2 ab ab b2

ab 1− 2a2 − b2 b2 −ab
ab b2 1− 2a2 − b2 −ab
b2 −ab −ab 1− b2

 .
For simplicity we assume 0 < a, b, s < 1, a2 + b2 < 1. In this way we have that Tr(Φ(X)) = sTr(X), so we
suppose that r + s + t = 1 in order to have that Φ is trace-preserving, with the exception of the first and last
nodes (we remark that another restriction on r, s, t will be needed, see below).

By the classical symmetrization

R = diag(R0, R1, . . . , RN ), Ri =

(√
r

t

)i−1

I4, i = 1, . . . , N, R0 = I4,

we obtain

J = RΦR−1 =



B kI
kI B kI

kI B kI
. . .

. . .
. . .

kI B kI
kI B


, k =

√
rt.

The matrix-valued polynomials {Qn}n≥0 defined by

Q0(x) = I, Q−1(x) = 0,

xQ0(x) = Q0(x)B + kQ1(x),

xQi(x) = kQi−1(x) +Qi(x)B + kQi+1(x), i = 1, . . . , N − 1,

13
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can be identified with the Chebyshev polynomials of the second kind {Un}n≥0. Indeed, it is possible to see that
Qn(x) = Un ((x−B)/2k) , n ≥ 0. Now, if we define

RN+1(x) := QN (x)(x−B)− kQN−1(x),

we have that the zeros of det(RN+1(x)) coincide with the eigenvalues of J = RΦR−1. A simple calculation
shows that

RN+1(x) = kUN+1

(
x−B

2k

)
.

We would like to solve the equation det(RN+1(x)) = 0. Recalling the representation

Un

(z
2

)
=

n∏
j=1

(
z − 2 cos

(
jπ

n+ 1

))
,

we obtain, for the matrix-valued case at hand,

det(RN+1(x)) = k4det

(
UN+1

(
x−B

2k

))
= k4det

N+1∏
j=1

(
xI4 −B

k
− 2 cos

(
jπ

N + 2

)
I4

)
= k4

N+1∏
j=1

det

[(
xI4 −B

k
− 2 cos

(
jπ

N + 2

)
I4

)]
.

Noting that the eigenvalues of B are s and s(1− 2a2 − 2b2) (both with multiplicity 2) we have

det

[(
xI4 −B

k
− 2 cos

(
jπ

N + 2

)
I4

)]

= det



x−s
k − 2 cos

(
jπ
N+2

)
0 x−s

k − 2 cos
(

jπ
N+2

)
x−s(1−2a2−2b2)

k − 2 cos
(

jπ
N+2

)
x−s(1−2a2−2b2)

k − 2 cos
(

jπ
N+2

)


=

[
x− s
k
− 2 cos

(
jπ

N + 2

)]2 [
x− s(1− 2a2 − 2b2)

k
− 2 cos

(
jπ

N + 2

)]2

.

Hence,

det(RN+1(x)) = k4
N+1∏
j=1

[
x− s
k
− 2 cos

(
jπ

N + 2

)]2 [
x− s(1− 2a2 − 2b2)

k
− 2 cos

(
jπ

N + 2

)]2

, k =
√
rt,

which is a polynomial of degree 4(N + 1) having 2(N + 1) distinct roots (all of multiplicity 2). Therefore, the
roots are of the form

xj = s+ 2k cos

(
π
j + 1

N + 2

)
, j = 0, . . . , N,

yj = s(1− 2a2 − 2b2) + 2k cos

(
π
j + 1

N + 2

)
, j = 0, . . . , N,

all being of multiplicity 2, except in the case where the collection of zeros xN and yN overlap, so the multiplicity
changes accordingly (see the example below). The expressions on the roots also make clear that we must have
further restrictions on the values of r, s and t (recall k =

√
rt) so that xj , yj ∈ [−1, 1], for all j = 0, . . . , N . For

instance, by imposing 0 < k < 1/4 we obtain a corresponding restriction on s (we omit the details).

The above root calculation should be compared with the classical case with a translation of s units, for
which the roots of RN+1 are

xj = s+ 2
√
rt cos

(
π
j + 1

N + 1

)
, j = 0, . . . , N,

14
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once again regarding a random walk with a proper restriction on r, s, t so that xj ∈ [−1, 1], for all j.

Now we compute the matrix weights on the zeros above. Such calculation needs to take in consideration
the fact that each root is double (we omit the discussion for the case of larger multiplicities). In this case the
residue calculation gives us that

Wj = g′j(λj), gj(λ) := −(λj − λ)2(J − λI)−1
00 , λj = xj , yj , j = 0, . . . , N, (1.4.1)

an expression which can be deduced from (see [22])

(J − λI)−1
ij =

N∑
k=0

P ∗i (λk)WkPj(λk)

λk − λ
,

and noting that this corresponds to the Laurent sum of the operator on the left-hand side except for the sign
change λk−λ = −(λ−λk). With formula (1.4.1), a calculation shows that for every N we have a corresponding
set of multiples of the matrices given by

Wa,b;1 :=
1

2(a2 + b2)


2a2 + b2 ab ab b2

ab b2 b2 −ab
ab b2 b2 −ab
b2 −ab −ab 2a2 + b2

 , Wa,b;2 :=
1

2(a2 + b2)


b2 −ab −ab −b2
−ab b2 + 2a2 −b2 ab
−ab −b2 b2 + 2a2 ab
−b2 ab ab b2

 .
More precisely, we have a collection of 4(N + 1) roots with weights

ψ(xj) =
2

N + 2
sin2

(
π
j + 1

N + 2

)
Wa,b;1, j = 0, . . . , N,

ψ(yj) =
2

N + 2
sin2

(
π
j + 1

N + 2

)
Wa,b;2, j = 0, . . . , N.

This should be compared with the classical setting, recalling that in such case,

ψ(xj) =
2

N + 2
sin2

(
π
j + 1

N + 2

)
=

1

2pq(N + 2)
(4pq − x2

j ), j = 0, . . . , N. (1.4.2)

We note a few basic properties of Wa,b;1 and Wa,b;2. First, both are positive semidefinite matrices with eigenval-
ues 0 and 1 (multiplicity 2). Moreover, seen as linear maps, Wa,b;1 is trace-preserving, whereas Wa,b;2 transforms
densities into traceless matrices. Also Wa,b;1 admits the following Kraus representation

Wa,b;1 =

3∑
i=1

W 1
i ⊗W

1

i , W 1
1 =

1

2(a2 + b2)

[
a b
b −a

]
, W 1

2 =
a

2(a2 + b2)
I2, W 1

3 =
b

2(a2 + b2)
I2,

from which we conclude that such weight represents a completely positive map. However, Wa,b;2 does not
represent a positive map in general, as illustrated by an inspection with certain density examples.

For a specific instance of the above take N = 4 (5 sites), so we have 20 roots, with weights

1

3
Wa,b;1,

1

3
Wa,b;2,

associated with zeros s and s(1− 2a2 − 2b2) respectively; weights

1

4
Wa,b;1,

1

4
Wa,b;2,

associated with zeros s± k, s(1− 2a2 − 2b2)± k respectively; and weights

1

12
Wa,b;1,

1

12
Wa,b;2,

associated with zeros s±
√

3k, and s(1− 2a2 − 2b2)±
√

3k respectively. If, moreover, s = a = b = k = 1/2, we
have

{xj}j=0...4 =

{
−
√

3

2
,−1

2
, 0,

1

2
,

√
3

2

}
, {yj}j=0...4 =

{
−
√

3 + 1

2
, 0,

1

2
, 1,

√
3 + 1

2

}
,

each with multiplicity 2 except for 0 and 1/2 with multiplicity 4 (noting that in this case, 1− 2a2 − 2b2 = 0).
This should be compared with the classical setting, see (1.4.2).
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1.5 An example of a QMC on Z≥0

Consider the walk induced by the block matrix on Z≥0 given by

Φ =


0 C 0
A 0 C

A 0 C

0
. . .

. . .
. . .

 , (1.5.1)

where A and C are the compact forms (see (1.1.7)) of R1 ⊗R1 +R2 ⊗R2 and L1 ⊗L1 +L2 ⊗L2, respectively,
and

L1 =
√
p/2I2, L2 =

√
(1− p)/2

[
0 1
1 0

]
, R1 =

√
q/2

[
1 0
0 −1

]
, R2 =

√
(1− q)/2

[
0 1
1 0

]
.

Observe that R∗1R1 +R∗2R2 + L∗1L1 + L∗2L2 = I2. Therefore,

A =
1

2

 q 0 1− q
0 1− 2q 0

1− q 0 q

 , C =
1

2

 p 0 1− p
0 1 0

1− p 0 p

 .
The matrices A and B are simultaneously diagonalizable, i.e.,

A = U

1/2
1/2− q

q − 1/2

U∗, C = U

1/2
1/2

p− 1/2

U∗, U =
1√
2

1 0 −1

0
√

2 0
1 0 1

 . (1.5.2)

Choosing

Πn =


1

(1− 2q)n (
1− 2q

1− 2p

)n
 ,

we can symmetrize the operator (1.5.1), getting that each of the nonzero blocks are given by

1

2
U

1 √
1− 2q √

(1− 2p)(1− 2q)

U∗.
The Stieltjes transform associated with (1.5.1) is given by

B(z;W ) = 2U


z −
√
z2 − 1

z −
√
z2 − (1− 2q)

1− 2q
z −

√
z2 − (1− 2p)(1− 2q)

(1− 2p)(1− 2q)

U∗. (1.5.3)

Therefore, we get an absolutely continuous weight matrix given by

dW (x) =
2

π
UD(x)U∗dx,

where

D(x) =

[ω1(x)]+
[ω2(x)]+

[ω3(x)]+

 ,
where

ω1(x) =
√

1− x2, ω2(x) =

√
1− 2q − x2

1− 2q
, ω3(x) =

√
(1− 2p)(1− 2q)− x2

(1− 2p)(1− 2q)
. (1.5.4)
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Here we are using the notation [f(x)]+ = f(x) if f(x) ≥ 0 and 0 otherwise. Similar results can be obtained if
we do not consider the compact form.

Now consider the same walk as before in (1.5.1), but adding a matrix B at the upper-left corner, i.e.

Φ̃ =


B C 0
A 0 C

A 0 C

0
. . .

. . .
. . .

 , (1.5.5)

where B is a matrix which we assume it can be written as

B =
1

2
U

b1 b2
b3

U∗, (1.5.6)

with U defined by (1.5.2). According to Theorem 2.6 of [18], the Stieltjes transform B(z; W̃ ) associated with

(1.5.5) can be written as B(z; W̃ ) = (B(z;W )−1 − B)−1. Since we are assuming (1.5.6) and taking in mind
(1.5.3), we obtain

B(z; W̃ ) = 2U



1

z −
√
z2 − 1

− b1
1− 2q

z −
√
z2 − (1− 2q)

− b2

(1− 2p)(1− 2q)

z −
√
z2 − (1− 2p)(1− 2q)

− b3



−1

U∗.

After rationalization and some computations we obtain

B(z; W̃ ) = 2U



−z + b1 +
√
z2 − 1

2b1z − 1− b21
−z + b2 −

√
z2 − (1− 2q)

2b2z − 1 + 2q − b22
−z + b3 +

√
z2 − (1− 2p)(1− 2q)

2b3z − (1− 2p)(1− 2q)− b23


U∗.

(1.5.7)

Therefore the weight matrix is given by W̃ = W̃ac + W̃d, where the absolutely continuous part is given by

dW̃ac(x) =
2

π
U



[√
1− x2

]
+

1 + b21 − 2b1x [√
1− 2q − x2

]
+

1− 2q + b22 − 2b2x [√
(1− 2p)(1− 2q)− x2

]
+

(1− 2p)(1− 2q) + b23 − 2b3x


U∗dx.

Observe that the denominators are always nonnegative in the range of the definition of each square root. The
discrete part W̃d is given by three Dirac deltas located at the poles of the Stieltjes transform (1.5.7), i.e.

W̃d(x) = U

W̃ ({z1}) δz1(x)

W̃ ({z2}) δz2(x)

W̃ ({z3}) δz3(x)

U∗,
where

z1 =
1 + b21

2b1
, z2 =

1− 2q + b22
2b2

, z3 =
(1− 2p)(1− 2q) + b23

2b3
,
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and

W̃ ({z1}) =
b21 − 1

b21
1{b21>1},

W̃ ({z2}) =
b22 − (1− 2q)

b22
1{b22>1−2q},

W̃ ({z3}) =
b23 − (1− 2p)(1− 2q)

b23
1{b23>(1−2p)(1−2q)}.

Observe that in principle b1, b2 and b3 can be taken as any real numbers, but we are interested in finding under
what conditions the points z1, z2 and z3 are located inside the interval [−1, 1] (so that all the support of W̃ is
inside the interval [−1, 1]). By the definition it is possible to see that |z1| ≤ 1, |z2| ≤ 1, |z3| ≤ 1, if and only if
b1 = 1, and

b2 ∈ [−1−
√

2q,−1 +
√

2q] ∪ [1−
√

2q, 1 +
√

2q],

b3 ∈ [−1−
√

2(p+ q − 2pq),−1 +
√

2(p+ q − 2pq)] ∪ [1−
√

2(p+ q − 2pq), 1 +
√

2(p+ q − 2pq)].

Joining this with the conditions under we have positive jumps, we have that W̃ ({z1}) = 0 and W̃ ({z2}) , W̃ ({z3})
are positive if

b2 ∈ [−1−
√

2q,−
√

1− 2q) ∪ (
√

1− 2q, 1 +
√

2q],

b3 ∈ [−1−
√

2(p+ q − 2pq),−
√

(1− 2p)(1− 2q)) ∪ (
√

(1− 2p)(1− 2q), 1 +
√

2(p+ q − 2pq)].

The particular case where B = A is given by b1 = 1, b2 = 1 − 2q, b3 = 2q − 1. Therefore z1 = 1, z2 =
1− q, z3 = p+ q − 1, W̃ ({z1}) = W̃ ({z2}) = 0 and

W̃ ({z3}) =
2(p− q)
1− 2q

1{p>q}.

The weight matrix is then given by W̃ = W̃ac + W̃d, where

dW̃ac(x) =
1

π
U



[√
1 + x

1− x

]
+ [√

1− 2q − x2
]

+

(1− 2q)(1− q − x) [√
(1− 2p)(1− 2q)− x2

]
+

(1− 2q)(1− p− q + x)


U∗dx. (1.5.8)

and

W̃d(x) =
p− q
1− 2q

1{p>q}

 1 0 −1
0 0 0
−1 0 1

 δp+q−1(x). (1.5.9)

Observe that in this situation, as expected, the support of W̃ is inside the interval [−1, 1].

Let us now study recurrence of this QMC in terms of the corresponding weight matrices. Note that the QMC
determined by (1.5.1) is such that vertex 0 admits a transition to an absorbing state, so we have the transience
of this walk with respect to such site. Let us prove this in terms of the associated measure. First, recall that
the trace is invariant by the change of coordinates U which, on its turn, does not depend on x. Therefore, we
need only to examine the behavior of ω1 and ω3 in (1.5.4). Regarding ω1, a calculation gives that

lim
z↑1

∫ 1

−1

√
1− x2

1− zx
dx = lim

z↑1

π(z2 − 1 +
√

1− z2)

z2
√

1− z2
= π,

so the above limit is finite. Regarding ω3, note that since 0 < p, q < 1, we have a := (1− 2p)(1− 2q) > 0 if and
only if both p and q are greater than 1/2 or both are less than 1/2. If this is the case, we have that ω3(x) ≥ 0
if x ∈ (−

√
a,
√
a). If we write q = p+ ε (with ε ∈ ( 1

2 − p, 1− p) if 1
2 < p < 1), we obtain

lim
z↑1

∫ √a
−
√
a

√
a− x2

1− zx
dx = π(1−

√
4p(1− p) + 2ε(1− 2p)), (1.5.10)
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which is also a finite number (as expected, the term inside the root is always positive under the above restric-
tions). A similar reasoning holds in the case 0 < p < 1

2 , where we write q = p + ε, with ε ∈ (−p, 1
2 − p). In

the case that ω3 does not have a positive part, the trace computation is determined by ω1. Since U∗ρ is also a
density matrix we conclude that, in every case, site 0 is transient with respect to any initial density.

Now considering (1.5.5) with B = A (see (1.5.8) and (1.5.9)), we have, regarding ω̃1, that

lim
z↑1

∫ 1

−1

1

1− zx

√
1 + x

1− x
dx = lim

z↑1

π(1 + z −
√

1− z2)

z
√

1− z2
=∞.

Regardind ω̃3, we note that the denominator is positive if x ∈ (−
√
a,
√
a), which can be seen as in the transient

walk above (i.e., consider the cases for which p, q ∈ (0, 1
2 ) or p, q ∈ ( 1

2 , 1)). But then the limit to be examined
is the same as for the transient walk, namely, eq. (1.5.10), which is finite. We have concluded that recurrence
of site 0 depends on the initial choice of density matrix. For instance, the densities

ρα =

[
1 0
0 0

]
⊗ |0〉〈0|, ρβ =

[
0 0
0 1

]
⊗ |0〉〈0|,

are such that site 0 is recurrent with respect to ρα but transient with respect to ρβ . More generally, site 0 will
be recurrent with respect to any density matrix ρ ⊗ |0〉〈0| for which ρ11 > 0. It would be interesting to find
examples of matrices B at the block position (0, 0) for which the resulting walks are irreducible (if this is in
fact possible, a guess would be to obtain a change of coordinates V distinct from U).

Remark 1.9. If B in (1.5.6) is not simultaneously diagonalizable with A and C, it is possible to derive again
the weight matrix assuming that B = 1

2Vdiag{b1, b2, b3}V∗, where V is unitary. The corresponding weight matrix
will be also unitarily diagonalizable.

1.6 Spectral analysis of QMCs on Z
In this section, we treat the case of tridiagonal QMCs on the real line, that is, the set of vertices V will consist of
the integers, thus the walk will have one-step transition probabilities from |i〉 to |i− 1〉 , |i〉 or |i+ 1〉 and there
are no barriers. Starting from a tridiagonal QMC Φ on Z, where each of the blocks of the matrix representation
is of order N2 × N2, we will construct a new tridiagonal QMC on Z≥0 × {1, 2}, where each of the blocks of
the matrix representation is of dimension 2N2 × 2N2 with a possible barrier on site |0〉. This is what we call
the folding trick and was introduced for the first time in [6]. Finally, recurrence of this type of walks will be
discussed via an application of the Stieltjes transform.

Consider then the matrix representation for a tridiagonal QMC on Z, given by

Φ =



. . .
. . .

. . . B−2 C−1

A−2 B−1 C0

A−1 B0 C1

A0 B1 C2

A1 B2 C3

. . .
. . .

. . .


, (1.6.1)

where each block Ak, Bk, Ck is an N2 ×N2 matrix given by a summation

Xk =

tk∑
r=1

dYre, Yr ∈MN (C), dYre = Yr ⊗ Yr,

and we assume that there exists a sequence of Hermitian matrices (En)n∈Z ∈MN2(C) and non-singular matrices
(Rn)n∈Z ∈MN2(C) such that

A∗nR
∗
n+1Rn+1 = R∗nRnCn+1, n ≥ 0

R∗−n−1R−n−1C−n = A∗−n−1R
∗
−nR−n, n ≥ 0,

RnBn = EnRn, n ∈ Z. (1.6.2)
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The previous conditions coincide with those of Theorem 1.2 when we consider the first line with the walk
restricted to Z≥0 and the second line with the walk restricted to Z<0. Let us define

Πj := R∗jRj ∈MN2(C), j ∈ Z.

Consider the two independent families of matrix-valued polynomials defined recursively from (1.6.1) as

Q1
0(x) = IN2 , Q2

0(x) = 0,

Q1
−1(x) = 0, Q2

−1(x) = IN2 ,

xQαn(x) = Qαn+1(x)An +Qαn(x)Bn +Qαn−1(x)Cn, α = 1, 2, n ∈ Z.
(1.6.3)

and the block vectors Qα(x) =
(
. . . , Qα−2(x), Qα−1(x), Qα0 (x), Qα1 (x), Qα2 (x), . . .

)
, α = 1, 2, are linearly indepen-

dent solutions, depending on the initial values at n = 0, of the eigenvalue equation xQα(x) = Qα(x)Φ.
As in the classical case, we introduce the block tridiagonal matrix

Φ̆ =


G0 N1

M0 G1 N2

M1 G2 N3

. . .
. . .

. . .

 ,
where each block entry is a 2N2 × 2N2 matrix, given by

G0 =

[
B0 A−1

C0 B−1

]
, Mn =

[
An 0
0 C−n−1

]
, n ≥ 0,

Gn =

[
Bn 0
0 B−n−1

]
, Nn =

[
Cn 0
0 A−n−1

]
, n ≥ 1.

The term folding trick comes from the transformation of the original walk Φ, whose graph is represented in
Figure 1.2, to the QMC described by Φ̆, which is represented by the folded walk in Figure 1.3.

−2 −1 0 1 2 . . .. . .
A−3 A−2 A−1 A0 A1 A2

C2C1C1C0C−1C−2

B1 B2B−2 B−1 B0

Figure 1.2: QMC Φ on Z.

0 1 2 . . .

−1 −2 −3 . . .

A0 A1 A2

C1 C2 C3

B0 B1 B2

C−1 C−2 C−3

A−2 A−3 A−4

B−1 B−2 B−3

C0A−1

Figure 1.3: Folded walk of Φ on Z≥0 × {1, 2} given by Φ̆.

Note that Φ̆ is a block tridiagonal matrix on Z≥0, thereby we can apply all the properties we have seen in
previous sections. The following polynomials are defined in terms of (1.6.3),

Qn(x) =

[
Q1
n(x) Q1

−n−1(x)
Q2
n(x) Q2

−n−1(x)

]
∈M2N2(C), n ≥ 0, (1.6.4)
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and these satisfy

xQ0(x) =Q1(x)M0 +Q0(x)G0, Q0(x) = I2N2 ,

xQn(x) =Qn+1(x)Mn +Qn(x)Gn +Qn−1(x)Nn, n = 1, 2, . . .

The leading coefficient of Qn(x) is always a nonsingular matrix. Moreover, for

R̆n :=

[
Rn 0N2

0N2 R−n−1

]
, n ≥ 0, Ĕ0 :=

[
E0 R0A−1R

−1
−1

R−1C0R
−1
0 E−1

]
, Ĕn :=

[
En 0N2

0N2 E−n−1

]
, n ≥ 1,

we see that the block matrices of Φ̆ satisfy the conditions (1.6.2) for n ≥ 0 :

M∗nR̆
∗
n+1R̆n+1 = R̆∗nR̆nNn+1, R̆nGn = ĔnR̆n,

where matrices R̆n are non-singular and Ĕn are Hermitian for all n ≥ 0. Defining

Π̆j := R̆∗j R̆j ∈M2N2(C), j = 0, 1, 2, . . . ,

the correspondence between Π̆j and Πj is

Π̆j :=

[
Πj 0N2

0N2 Π−j−1

]
.

By [18] (see also (1.3.3)), there exists a weight matrix W leading to the Karlin-McGregor formula for Φ̆ :

Φ̆
(n)
ji = Π̆j

∫
R
xnQ∗j (x)dW (x)Qi(x). (1.6.5)

Once we have found the weight matrix appearing on (1.6.5), we can also obtain the blocks Φ
(n)
ji of the original

walk Φ. The key for this operation is the following proposition:

Proposition 1.10. Assume that Φ is a QMC of the form (1.6.1). The relation between Φ̆
(n)
ij and Φ

(n)
ij is

Φ̆
(n)
ji =

[
Φ

(n)
ji Φ

(n)
j,−i−1

Φ
(n)
−j−1,i Φ

(n)
−j−1,−i−1

]
, i, j ∈ Z≥0. (1.6.6)

Proof. Since Φ̆ji = 02d2 for |i− j| > 1, it is easy to see that (1.6.6) holds for n = 1. So, suppose that (1.6.6) is
valid for some n, then

Φ̆
(n+1)
ji = [Φ̆Φ̆n]ji =

∞∑
k=0

Φ̆jkΦ̆
(n)
ki = Φ̆j,j−1Φ̆

(n)
j−1,i + Φ̆jjΦ̆

(n)
ji + Φ̆j,j+1Φ̆

(n)
j+1,i

= Mj−1Φ̆
(n)
j−1,i +GjΦ̆

(n)
ji +Nj+1Φ̆

(n)
j+1,i.

By the induction hypothesis and the result above,

Φ̆
(n+1)
ji =[
Aj−1 0

0 C−j

] [
Φ

(n)
j−1,i Φ

(n)
j−1,−i−1

Φ
(n)
−j,i Φ

(n)
−j,−i−1

]
+

[
Bj 0
0 B−j−1

] [
Φ

(n)
j,i Φ

(n)
j,−i−1

Φ
(n)
−j−1,i Φ

(n)
−j−1,−i−1

]

+

[
Cj+1 0

0 A−j−2

] [
Φ

(n)
j+1,i Φ

(n)
j+1,−i−1

Φ
(n)
−j−2,i Φ

(n)
−j−2,−i−1

]

=

[
Aj−1Φ

(n)
j−1,i +BjΦ

(n)
j,i + Cj+1Φ

(n)
j+1,i Aj−1Φ

(n)
j−1,−i−1 +BjΦ

(n)
j,−i−1 + Cj+1Φ

(n)
j+1,−i−1

C−jΦ
(n)
−j,i +B−j−1Φ

(n)
−j−1,i +A−j−2Φ

(n)
−j−2,i C−jΦ

(n)
−j,−i−1 +B−j−1Φ

(n)
−j−1,−i−1 +A−j−2Φ

(n)
−j−2,−i−1

]

=

[
Φ

(n+1)
ji Φ

(n+1)
j,−i−1

Φ
(n+1)
−j−1,i Φ

(n+1)
−j−1,−i−1

]
.
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�

Note that we can evaluate Φ̆
(n)
ji by (1.6.5) and then extract the block Φ

(n)
ji as in (1.6.6). Further, for a

density operator ρ ∈MN (C), we have

pji;ρ(n) = Tr
(

Φ
(n)
ji ρ

)
= Tr

([
Φ

(n)
ji 0

0 0

] [
ρ
0

])
= Tr

([
IN2 0
0 0

]
Φ̆

(n)
ji

[
IN2 0
0 0

] [
ρ
0

])
.

However, we would like to obtain the probability above avoiding the evaluation of Φ̆
(n)
ji . This can be done via a

generalization of the Karlin-McGregor formula on Z≥0. We proceed as follows: first, write the decomposition

dW (x) =

[
dW11(x) dW12(x)
dW21(x) dW22(x)

]
,

where dW21(x) = dW ∗12(x), since dW (x) is positive definite. Then one has for i, j ∈ Z≥0,

Φ̆
(n)
ji = Π̆j

∫
R
xnQ∗j (x)dW (x)Qi(x)

(1.6.4)
=

[
Πj 0
0 Π−j−1

] ∫
R
xn
[
Q1
j (x) Q1

−j−1(x)
Q2
j (x) Q2

−j−1(x)

]∗ [
dW11(x) dW12(x)
dW ∗12(x) dW22(x)

] [
Q1
i (x) Q1

−i−1(x)
Q2
i (x) Q2

−i−1(x)

]
=

2∑
α,β=1

[
Πj

∫
R x

nQα∗j (x)dWαβ(x)Qβi (x) Πj

∫
R x

nQα∗j (x)dWαβ(x)Qβ−i−1(x)

Π−j−1

∫
R x

nQα∗−j−1(x)dWαβ(x)Qβi (x) Π−j−1

∫
R x

nQα∗−j−1(x)dWαβ(x)Qβ−i−1(x)

]
.

Joining equation above and Proposition 1.10, we obtain the Karlin-McGregor formula for a QMC on Z, given
by

Φ
(n)
ji =

2∑
α,β=1

Πj

∫
R
xnQα∗j (x)dWαβ(x)Qβi (x), for any i, j ∈ Z, n ≥ 0. (1.6.7)

Conversely, if there exist weight matrices dW11(x), dW12(x), dW22(x) such that Φ
(n)
ji is of the form (1.6.7), then

Φ̆
(n)
ji is of the form

Φ̆
(n)
ji = Π̆j

∫
R
xnQ∗j (x)dW (x)Qi(x).

The weight matrix

W (x) =

[
W11(x) W12(x)
W ∗12(x) W22(x)

]
,

is called the spectral block matrix of Φ.

Remark 1.11. Extending Theorem 1.5 to the QMC on Z, we observe that, since Q1
0 = Q2

−1 = IN and Q2
0 =

Q1
−1 = 0N , we have

∞∑
n=0

p00;ρ(n) =

∞∑
n=0

Tr
[
Φ

(n)
00 vec(ρ)

]
= lim
z→1

∞∑
n=0

znTr

[
Π0

∫
R
xnQ1∗

0 (x)dW11Q
1
0(x)vec(ρ)

]

= lim
z→1

∞∑
n=0

Tr

[
Π0

∫
R

(zx)n(x)dW11(x)vec(ρ)

]
= lim
z→1

Tr

[
Π0

dW11(x)

1− zx
vec(ρ)

]
= lim

z→1
z Tr

[
Π0B(z−1;W11)vec(ρ)

]
= lim
z→1

Tr [Π0B(z;W11)vec(ρ)] ,

where B(z;W ) is the Stieltjes transform of a weight matrix W defined by (1.3.1). Analogously,

∞∑
n=0

p−1,−1;ρ(n) = lim
z→1

Tr [Π−1B(z;W22)vec(ρ)] .

Since we are assuming that Π0 and Π−1 are positive definite matrices, vertex |0〉 is ρ-recurrent if and only if

lim
z↓1

Tr (B(z;W11)vec(ρ)) =∞,

and vertex |−1〉 is ρ-recurrent if and only if

lim
z↓1

Tr (B(z;W22)vec(ρ)) =∞.
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Let us write the matrix Φ in the form

Φ =

[
Φ− C
A Φ+

]
, C =

 ...
...

...
0 0 0 · · ·
C0 0 0 · · ·

 , A =


· · · 0 0 A−1

· · · 0 0 0
· · · 0 0 0

...
...

...

 , (1.6.8)

Φ+ =


B0 C1

A0 B1 C2

A1 B2 C3

. . .
. . .

. . .

 , Φ− =


. . .

. . .
. . .

A−4 B−3 C−2

A−3 B−2 C−1

A−2 B−1

 .
Our goal now is to write the Stieltjes transforms associated with the weight matrices Wαβ , α, β = 1, 2, in terms
of the Stieltjes transforms associated with W±, the weight matrices associated with Φ±. For that we will need
the following lemma.

Lemma 1.12. [24] Let B be a Banach space and T1 : Dom(T1)→ B and T2 : Dom(T2)→ B be linear operators
with block representations

T1 =

[
A 0
C D

]
and T2 =

[
A C
0 D

]
,

respectively. If A and D are invertible, then T1 and T2 have inverses, given by

T−1
1 =

[
A−1 0

−D−1CA−1 D−1

]
and T−1

2 =

[
A−1 −A−1CD−1

0 D−1

]
.

Denote by Pk, P−k and P+
k the projection maps onto the space generated by site |k〉 on Z, Z<0 and Z≥0,

respectively, and Qk = IZ − Pk, Q−k = IZ<0
− P−k , Q

+
k = IZ≥0

− P+
k . Then, applying Lemma 1.12, we obtain

Φ(I − zQ0Φ)−1 =

[
Φ− C
A Φ+

] [
I − zΦ− −zC

0 I − zQ+
0 Φ+

]−1

=

[
Φ− C
A Φ+

] [
(I − zΦ−)−1 z(I − zΦ−)−1C(I − zQ+

0 Φ+)−1

0 (I − zQ+
0 Φ+)−1

]
=

[
Φ−(I − zΦ−)−1

[
zΦ−(I − zΦ−)−1 + I

]
C(I − zQ+

0 Φ+)−1

A(I − zΦ−)−1 [zA(I − zΦ−)−1C + Φ+](I − zQ+
0 Φ+)−1

]
.

(1.6.9)

By the same arguments,

Φ(I − zQ−1Φ)−1 =

[
Φ− C
A Φ+

] [
I − zQ−−1Φ− 0
−zA I − zΦ+

]−1

=

[
Φ− C
A Φ+

] [
(I − zQ−−1Φ−)−1 0

z(I − zΦ+)−1A(I − zQ−−1Φ−)−1 (I − zΦ+)−1

]
=

[
(Φ− + zC(I − zΦ+)−1A)(I − zQ−−1Φ−)−1 C(I − zΦ+)−1(
I + zΦ+(I − zΦ+)−1

)
A(I − zQ−−1Φ−)−1 Φ+(I − zΦ+)−1

]
,

and

C(I − zQ0Φ+)−1 =

 ...
...

...
0 0 0 · · ·
C0 0 0 · · ·

[I 0
∗ ∗

]−1

=

 ...
...

0 0 · · ·
C0 0 · · ·

 .
Denoting

Φ−(z) :=

∞∑
n=0

zn
(
Φ−
)n

= (I − zΦ−)−1, Φ+(z) :=

∞∑
n=0

zn
(
Φ+
)n

= (I − zΦ+)−1,

we obtain

F00(z) = zP0Φ(I − zQ0Φ)−1P0

=

[
0 0
0 zP+

0

[
zA(I − zΦ−)−1C(I − zQ0Φ+)−1 + Φ+(I − zQ+

0 Φ+)−1
]
P+

0

]
,
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where the only non-null block equals

=z2P+
0



· · · A−1Φ−−1,−2(z) A−1Φ−−1,−1(z)
· · · 0 0
· · · 0 0

...
...


 ...

...
...

0 0 0 · · ·
C0 0 0 · · ·


P+

0 + F+
00(z)

= z2P+
0

[
A−1Φ−−1,−1(z)C0 0

0 0

]
P+

0 + F+
00(z) = z2

[
A−1Φ−−1,−1(z)C0 0

0 0

]
+ F+

00(z).

Note that F00(z) has only one non-null N2 ×N2 block, due to the projections multiplying on the left and on
the right-hand side. Without loss of generality, we will rewrite this kind of blocks as its only non-null block.
For instance, we have

F00(z) = z2A−1Φ−−1,−1(z)C0 + F+
00(z).

Applying twice the equation
Fji(s) = Φjj(s)

−1(Φji(s)− δjiI), (1.6.10)

for F00(z) and F+
00(z), we obtain

I − Φ00(z)−1 = z2A−1Φ−−1,−1(z)C0 + I − Φ+
00(z)−1,

and after some algebra, we get

Φ00(z) = Φ+
00(z)(I − z2A−1Φ−−1,−1(z)C0Φ+

00(z))−1. (1.6.11)

Analogously,

F−1,−1(z) = zP−−1

[
Φ−(I − zQ−1Φ−)−1 + zC(I − zΦ+)−1A(I − zQ0Φ−)−1

]
P−−1

= F−−1,−1(z) + z2CΦ+
00(z)A−1,

thus

Φ−1,−1(z) = (I − F−1,−1(z))−1 = (I − F−−1,−1(z)− z2CΦ+
00(z)A−1)−1

= Φ−−1,−1(z)(I − z2C0Φ+
00(z)A−1Φ−−1,−1(z))−1,

that is,
Φ−1,−1(z) = Φ−−1,−1(z)(I − z2C0Φ+

00(z)A−1Φ−−1,−1(z))−1. (1.6.12)

Now we use equation (1.6.9) to obtain

F0,−1(z) = zP0A(I − zΦ−)−1P−1 = zA−1Φ−−1,−1(z),

which, together with equations (1.6.10) and (1.6.11), gives

Φ0,−1(z) = Φ00(z)F0,−1(z) = zΦ+
00(z)(I − z2A−1Φ−−1,−1(z)C0Φ+

00(z))−1A−1Φ−−1,−1(z). (1.6.13)

In the same way,
F−1,0(z) = zC0Φ+

00(z),

gives

Φ−1,0(z) = Φ−1,−1(z)F−1,0(z) = zΦ−−1,−1(z)(I − z2C0Φ+
00(z)A−1Φ−1,−1(z))−1C0Φ+

00(z). (1.6.14)

We notice that the block matrices of both Φ+ and Φ− satisfy the conditions of equation (1.6.2), thus there
are positive weight matrices W± associated with Φ± for which the associated polynomials are orthogonal. Then,
we can write

Π+
0 :=

∫
R
dW+ and Π−−1 :=

∫
R
dW− .

Recalling that (see (1.3.4))

Φji(s) = Πj

∫
R

1

1− sx
Q∗j (x)dW (x)Qi(x),
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and Q1
0 = Q2

−1 = IN2 , Q2
0 = Q1

−1 = 0N2 , we obtain the following Stieltjes transforms relations

B(z−1;W11) = zΠ−1
0 Φ00(z), B(z−1;W22) = zΠ−1

−1Φ−1,−1(z), B(z−1;W12) = zΠ−1
−1Φ0,−1(z),

B(z−1;W21) = zΠ−1
−1Φ−1,0(z), B(z−1;W+) = z(Π+

0 )−1Φ+
00(z), B(z−1;W−) = z(Π−−1)−1Φ−−1,−1(z).

Joining with the identities (1.6.11),(1.6.12),(1.6.13),(1.6.14), the new Stieltjes transform identities are obtained:

Π0B(z;W11) = Π+
0 B(z;W+)(I −A−1Π−−1B(z;W−)C0Π+

0 B(z;W+))−1,

Π−1B(z;W22) = Π−−1B(z;W−)(I − C0Π+
0 B(z;W+)A−1Π−−1B(z;W−))−1,

Π0B(z;W12) = Π+
0 B(z;W+)(I −A−1Π−−1B(z;W−)C0Π+

0 B(z;W+))−1A−1Π−−1B(z;W−),

Π−1B(z;W21) = Π−−1B(z;W−)(I − C0Π+
0 B(z;W+)A−1Π−−1B(z;W−))−1C0Π+

0 B(z;W+).

(1.6.15)

Sometimes the operators Π+
i and Π−i are equal to the identity operator. In this case, (1.6.15) are reduced to

Π0B(z;W11) = B(z;W+)(I −A−1B(z;W−)C0B(z;W+))−1,

Π−1B(z;W22) = B(z;W−)(I − C0B(z;W+)A−1B(z;W−))−1,

Π0B(z;W12) = B(z;W+)(I −A−1B(z;W−)C0B(z;W+))−1A−1B(z;W−),

Π−1B(z;W21) = B(z;W−)(I − C0B(z;W+)A−1B(z;W−))−1C0B(z;W+).

(1.6.16)

The above results will be applied in the following examples so that one is able to conclude recurrence properties
of the walk.

Example 1.13. Let Φ be a homogeneous OQW on S = Z with matrix representation

Φ =



. . .
. . .

. . . 0 dLe
dRe 0 dLe

dRe 0 dLe
dRe 0 dLe

dRe 0 dLe
. . .

. . .
. . .


, R =

[
1√
3

0

0 1√
2

]
, L =

[√
2√
3

0

0 1√
2

]
.

In order to study recurrence or transience of the walk for each density operator on C2, we will apply the Stieltjes
transformation discussed above. The polynomials associated with Φ are

Q1
0(x) = I4, Q2

0(x) = 04

Q1
−1(x) = 04, Q2

−1(x) = I4

xQαn(x) = Qαn+1(x)dRe+Qαn−1(x)dLe, α, β = 1, 2, n ∈ Z.

The weight matrix associated with Φ+ is

W+(x) =



3
√

2
4π

[√(
4− 9x2

2

)]
+

21/4
√

3
2π

[√(√
2(2
√

2− 3x2)
)]

+

21/4
√

3
2π

[√(√
2(2
√

2− 3x2)
)]

+
2(x2−1+

√
1−x2)

x2(1−x2)


and since the matrices are diagonal, it is easy to see that W+(x) = W−(x). The weight matrix W11(x) is obtained
by an application of the first formula of (1.6.15),

B(z;W11) = B(z;W+)(I −A−1B(z;W+)C0B(z;W+))−1,
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and then we apply the Perron-Stieltjes inversion formula to obtain the referred measure. After some calculus,

we have, for a density matrix ρ =

[
a b
b∗ 1− a

]
on C2,

∞∑
n=0

p00;ρ(n) =

∞∑
n=0

Tr
(

Φ
(n)
00 vec(ρ)

)
= lim
z→1

Tr (Φ00(z)vec(ρ)) = lim
z→1

Tr (B(W11, z)vec(ρ))

(1.6.11)
= lim

z→1

1− a√
1− z2

+
6a(8
√

2z2 + 3
√

18− 16z2 − 9
√

2)

(3
√

2 +
√

18− 16z2)(18− 16z2)
=

{
∞, if a < 1

3/2, if a = 1
.

Therefore site |0〉 is ρ-transient for ρ =

[
1 0
0 0

]
and ρ-recurrent otherwise.

♦

It is worth recalling that the weight matrix of the example above is a particular case of Proposition 1.3 of
[28].

Example 1.14. Consider a QMC Φ̂ induced by the block matrix on V = {0, 1, 2, . . .} given by

Φ =


B rI
tI B rI

tI B rI
. . .

. . .
. . .

 , 0 < r, t < 1,

where B = [σB ], σB = V ∗1 · V1 + V ∗2 · V2, where V1 and V2 are the same as in the example appearing in Section
1.4. For simplicity we assume 0 < a, b, s < 1, a2 + b2 < 1. In this way we have that Tr(σ(X)) = sTr(X), so we
suppose that r + s + t = 1 in order to have that Φ̂ is trace-preserving. The matrices Rn =

(√
r
t

)n
satisfy the

conditions of Equation (1.6.2), thus we denote

Πn = R∗nRn =
(r
t

)n
.

By the classical symmetrization

Y = diag(Y0, Y1, . . .), Yi =

(√
r

t

)i−1

I4, i = 0, 1, . . . ,

we obtain

J = YΦY−1 =


B kI
kI B kI

kI B kI
. . .

. . .
. . .

 , k =
√
rt.

The matrix B is symmetric, thus we can apply the spectral theorem to get

B = UDU∗, D = s


1 0 0 0
0 1 0 0
0 0 1− 2a2 − 2b2 0
0 0 0 1− 2a2 − 2b2

 ,
where

U =

√
2

2


1 a√

a2+b2
− b√

2a2+b2
− ab√

2a2+b2
√
a2+b2

0 b√
a2+b2

2a√
2a2+b2

− b2√
2a2+b2

√
a2+b2

0 b√
a2+b2

0
√

2a2+b2√
a2+b2

1 − a√
a2+b2

b√
2a2+b2

ab√
2a2+b2

√
a2+b2

 ,
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which gives

H(x) := U


(s−x)2

k2 − 4 0 0 0

0 (s−x)2

k2 − 4 0 0

0 0 (s(1−2a2−2b2)−x)2

k2 − 4 0

0 0 0 (s(1−2a2−2b2)−x)2

k2 − 4

U∗,
and then the associated weight matrix is ([21])

dW (x) =
1

4πk(a2 + b2)
×[w1(x)]+


2a2 + b2 ab ab b2

ab b2 b2 −ab
ab b2 b2 −ab
b2 −ab −ab 2a2 + b2

+ [w2(x)]+


b2 −ab −ab −b2
−ab 2a2 + b2 −b2 ab
−ab −b2 2a2 + b2 ab
−b2 ab ab b2


 dx,

where

w1(x) =

√
4− (s− x)2

k2
, w2(x) =

√
4− (s(1− 2a2 − 2b2)− x)2

k2
.

Note that we can rewrite the weight matrix in terms of w1(x), w2(x) and B by

dW (x) =
w1(x)

4πk(a2 + b2)

(
(2a2 + 2b2 − 1)I4 + 1

sB
)

+
w2(x)

4πk(a2 + b2)

(
I4 − 1

sB
)

=
1

2kπ
U


[w1(x)]+

[w1(x)]+
[w2(x)]+

[w2(x)]+

U∗, (1.6.17)

whose support is given by

R := supp(dW ) = {y ∈ R :
1

k
(yI4 −B) has an eigenvalue in [−2, 2]}

= [−2k + s(1− 2a2 − 2b2), s+ 2k].
(1.6.18)

The Stieltjes transform of W is

B(z;W ) =

∫
R

1

2kπ
U


w1(x)
z−x

w1(x)
z−x

w2(x)
z−x

w2(x)
z−x

U∗dx, (1.6.19)

where the integrals of the elements on the diagonal are∫
R

w1(x)dx

z − x
=
π

k
(z − s− i

√
4k2 − (s− z)2) := 2kπh1(z),∫

R

w2(x)dx

z − x
=
π

k
(z − s(1− 2a2 − 2b2)− i

√
4k2 − (s(1− 2a2 − 2b2)− z)2) := 2kπh2(z).

(1.6.20)

The transience of this walk can be computed by using Theorem 1.5:

lim
z↓1

Tr

[
z vec−1

(
B(z;W )vec

([
u v
v∗ 1− u

]))]
=

1− s+
√
s2 − 2s+ 1− 4k

2k2

=
r + t+

√
r2 − 2rt+ t2

2rt

=

{
1/r, if t ≥ r
1/t, otherwise.
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Since this limit is valid for any density operator ρ =

[
u v
v∗ 1− u

]
∈ M(C2), we conclude that this QMC is

transient.

Let us extend the above QMC to the real line: now the set of vertices is V = Z and the new QMC Φ has
matrix representation

Φ =



. . .
. . .

. . .

tI B rI
tI B rI

tI B rI
. . .

. . .
. . .

 .

Take the splitting of equation (1.6.8) applied to Φ :

Φ =

[
Φ− C
A Φ+

]
, C =

 ...
...

...
0 0 0 · · ·
rI 0 0 · · ·

 , A =


· · · 0 0 tI
· · · 0 0 0
· · · 0 0 0

...
...

...

 .
The weight matrix associated with Φ+ is W+ = W , where W is given by (1.6.17) and with support R given
by (1.6.18). We have Π+

0 = Π−−1 = I4 and the Stieltjes transform of W+ is given by (1.6.19) and (1.6.20).
The operators Π0 = R∗0R0 and Π−1 = R∗−1R−1 are the ones obtained by equation (1.6.2), giving Π0 = I and
Π−1 = A−1C = r

t I. For simplicity, assume s = 2k. Then, we apply formula (1.6.15) to obtain

B(z;W11) = U


l1(z)

l1(z)
l2(z)

l2(z)

U∗,
where

l1(z) =

√
z(4k − z)
z(z − 4)

, l2(z) =

√
−z(z + 4k)

z(4k − z)
,

and we evaluate

B(z;W22) =
t

r
B(z;W11)

B(z;W21) = B(z;W12) = tB(z;W11)B(z;W+) = tU


h1(z)l1(z)

h1(z)l1(z)
h2(z)l2(z)

h2(z)l2(z)

U∗,
where hi(z), i = 1, 2 are defined by (1.6.20). Applying [[19], eq. (1.10)] we obtain the spectral measure of Φ,

dW (x) =

[
U 0
0 U

] [
D11(x) D12(x)
D12(x) t

rD11(x)

] [
U∗ 0
0 U∗

]
,

where

D11(x) = diag

 −1[√
x(4k − x)

]
+

,
−1[√

x(4k − x)
]

+

,
−1[√

−x(4k + x)
]

+

,
−1[√

−x(4k + x)
]

+

 ,

D12(x) = diag

 2k − x

2r
[√

x(4k − x)
]

+

,
2k − x

2r
[√

x(4k − x)
]

+

,
−2k − x

2r
[√
−x(4k + x)

]
+

,
−2k − x

2r
[√
−x(4k + x)

]
+

 .

The procedure to obtain the spectral measure for Φ was inspired by the classical case. The reader can note that
the expressions appearing in (1.6.16) are analogous to the classical reasoning. However, some of the transition
matrices do not commute, thus the order of the operators in such formulae has to be maintained.
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Now, for any density operator on C2, we have by Remark 1.11 that

∞∑
n=0

p00;ρ(n) = lim
z→1

Tr
(
Π−1

0 B(z;W11)vec(ρ)
)

= lim
z→1

1√
z(z − 4k)

=

{
1√

1−4k
, if k < 1/4,

∞, if k = 1/4.

That is, the walk Φ (for s = 2k) is recurrent only when k = 1/4 and this happens for t = r = 1/4. For the
general case we can follow the same steps to obtain

∞∑
n=0

p00;ρ(n) = lim
z→1

1√
z2 − 2sz + s2 − 4k2

=

{
1√

1−2s+s2−4k2
, if s 6= 1− 2k,

∞, ifs = 1− 2k.

Since we are assuming r+ s+ t = 1 and k =
√
rt, recurrence occurs when 0 = r− 2

√
rt+ t = (

√
r−
√
t)2, that

is, when t = r.

♦

Remark 1.15. The example in Section 1.4 is such that σB + t2I < I, thus
∑∞
j=0 p0j;ρ(n) < 1 for some initial

density operator ρ. This case is interpreted as a walk with a vertex named |−1〉 , which is an absorbing vertex of
the QMC, giving the correction

∑∞
j=−1 p0j;ρ(n) = 1. Now we point out the difference that an absorbing vertex

on the QMC can take: the QMC Φ acting on Z≥0 has an absorbing vertex on site |0〉 , and it is transient for
any choice of t, r, s, a, b. On the other hand, for a, b, s fixed and t = r = 1− s, the extended QMC on the integer
line is always recurrent.

1.7 Non-symmetric weight matrices

As discussed previously, Theorem 1.2 describes the fundamental conditions regarding the existence of a positive
weight matrix associated with a given QMC. Then, a natural question arises: is there anything that can be
done in the case of QMC that do not satisfy such conditions, perhaps involving a non symmetric matrix of
measures? Based on [37], we are in fact able to discuss a non-general Karlin-McGregor formula for Φ by using a
different kind of polynomial orthogonality, where the term non-general means that we obtain the (i, j)-th block
entry of Φn only for i = 0, which will allow us to obtain certain developments for the recurrence problems we
are interested in.

We will be mostly interested in homogeneous QMCs, that is, operators Φ of the form (1.3.2), such that An =
A,Bn = B,Cn+1 = C, ∀n = 0, 1, 2, . . . for some A,B,C ∈ MN2(C). For instance, if we have a homogeneous
OQW with

A =
1√
3

[
1 0
−1 1

]
, C =

1√
3

[
1 1
0 1

]
, B = 02,

then A0C1 is not Hermitian, consequently it is not possible to obtain a proper positive definite weight matrix
W that makes the corresponding matrix-valued polynomials orthogonal with respect to W. However, we may
consider another kind of orthogonality for the associated polynomials in terms of a reasoning seen in [37]. For a
homogeneous QMC, Theorem 3.4 of [37] assures the existence of a weight matrix W supported on some subspace
∆ of C such that the polynomials Qn(x), defined recursively by

Q0(x) = IN2 , Q−1(x) = 0N2 ,

xQn(x) = Qn+1(x)An +Qn(x)Bn +Qn−1(x)Cn,
(1.7.1)

satisfy ∫
∆

xkdW (x)Qn(x) = 0, (1.7.2)

for all integers n > k ≥ 0. Polynomials {Qn(x)}n≥0 for which there exists a weight matrix W satisfying (1.7.2)
are called semi-orthogonal polynomials with respect to W . Since this concept of orthogonality is weaker,
the Karlin-McGregor formula for non-symmetric QMCs will be weaker as well. Nevertheless, we will be able to
obtain an application of such construction for the problem of recurrence.

29



1.7. NON-SYMMETRIC WEIGHT MATRICES CHAPTER 1. QUANTUM MARKOV CHAINS

For completeness, let us derive the Karlin-McGregor formula for non-symmetric weight matrices with
the necessary adaptations with respect to semi-orthogonality. We have xnQ(x) = Q(x)Φn, where Q(x) =
(Q0(x), Q1(x), . . .). Component-wise,

xnQr(x) =

∞∑
k=0

Qk(x)Φ
(n)
kr . (1.7.3)

Fix i, j ∈ Z≥0 vertices. Fix a time parameter n with the extra condition n ≥ i, then multiply Q∗j (x) on the
left-hand side of (1.7.3) with r = j + i and integrate on ∆ to obtain∫

∆

xnQ∗j (x)dW (x)Qj+i(x) =

∞∑
k=0

∫
∆

Q∗j (x)dW (x)Qk(x)Φ
(n)
k,j+i

(1.7.2)
=

j∑
k=0

∫
∆

Q∗j (x)dW (x)Qk(x)Φ
(n)
k,j+i. (1.7.4)

Hypothesis n < i in this situation would make the integral on the left-hand side of (1.7.4) to vanish, by an
application of (1.7.2). The same idea is applied to the right-hand side of (1.7.4), where we want the sum of
integrals to become only one term, which happens for the particular case j = 0:∫

∆

xnQ∗0(x)dW (x)Qi(x) =

∫
∆

Q∗0(x)dW (x)Q0(x)Φ
(n)
0,i .

Hence, we obtain the Karlin McGregor Formula for non-symmetric QMCs:

Φ
(n)
0,i =

(∫
∆

dW (x)

)−1 ∫
∆

xndW (x)Qi(x), i ∈ Z≥0, n = 0, 1, 2, . . . (1.7.5)

This equation gives, for a fixed vertex i ∈ Z≥0, the (0, i)-th block entry of Φn for any time n ≥ 0. The case n ≥ i
follows from the construction above and, for n < i, Φ

(n)
0,i = 0d2 since Φ is block tridiagonal and the right-hand

side of equation (1.7.5) vanishes by equation (1.7.2). Therefore, we can obtain the probability for the walker to
reach site |0〉, given that it started on site |i〉 with initial state ρ ∈MN (C), by

p0i;ρ(n) = Tr
(

Φ
(n)
0,i ρ

)
= Tr

((∫
∆

dW (x)

)−1 ∫
∆

xndW (x)Qi(x)ρ

)
, i ∈ Z≥0, n = 0, 1, 2, . . . .

Regarding the case of a finite number of vertices V = {0, 1, 2, . . . , N}, we proceed as expected: the eigenvalues
of Φ are the roots of the determinant of

RN+1(x) = QN (x)(xI −BN )−QN−1(x)CN ,

where {Qn(x)}Nn=0 are the polynomials associated with Φ. Suppose that Φ describes a homogeneous QMC,
then {Qn(x)}Nn=0 are semi-orthogonal with respect to the measure

Wk = lim
z→λk

(λk − z) ([Φ]− zI)
−1
00 ,

that is,
τ∑
k=1

λikWkQj(λk) = 0,

for j > i, where τ is the number of eigenvalues of Φ counting multiplicities. The Karlin-McGregor formula for
this kind of QMC is then

Φ
(n)
0j =

τ∑
k=1

λnkWkQj(λk).

Example 1.16. Let Φ be the homogeneous OQW with 3 vertices defined by

Φ =

 0 dCe 0
dAe 0 dCe

0 dAe 0

 , A =
1√
3

[
1 1
0 1

]
C =

1√
3

[
1 0
−1 1

]
. (1.7.6)

The polynomials associated with Φ are

Q0(x) = I4, Q1(x) = xdAe−1, Q2(x) = xQ1(x)dAe−1 − dCedAe−1.
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Hence the eigenvalues of Φ are precisely the roots of

R3(x) = xQ2(x)−Q1(x)dCe,

which are

λ1 = 0, λ2 = −
√

2

3
, λ3 =

√
2

3
, λ4 = −

√
3

3
, λ5 =

√
3

3
,

λ6 = −
√

2
√

6− 3

6
+ i

√
2
√

6 + 3

6
, λ7 =

√
2
√

6− 3

6
− i
√

2
√

6 + 3

6
,

λ8 = −
√

2
√

6− 3

6
− i
√

2
√

6 + 3

6
, λ9 =

√
2
√

6− 3

6
+ i

√
2
√

6 + 3

6
,

λ1 has multiplicity 4. Joining the results of [22] and [37], we obtain

9∑
k=1

Q∗i (λk)WkQj(λk) =

{
04, if i > j

Fij ∈M4(C),not necessarily null if i ≤ j
,

where

Wk = lim
z→λk

(λk − z)([Φ]− zI12)−1
00

= lim
z→λk

(
(λk − z)

1

81z6 − 3z2 − 2
×

− 81z6+9z4−2z2−2
z − 27z4+6z2−1

3z − 27z4+6z2−1
3z −z(9z2 + 5)

27z4+6z2−1
3z − 729z8−162z6−54z4−z2+2

z(9z2−2)
z(81z4+27z2−14)

9z2−2
21z2+1

3z

27z4+6z2−1
3z

z(81z4+27z2−14)
9z2−2 − 729z8−162z6−54z4−z2+2

z(9z2−2)
21z2+1

3z

−z(9z2 + 5) − 21z2+1
3z − 21z2+1

3z −z(81z4 + 7)


 .

Those values are

W1 =
1

6


6 1 1 0
−1 3 0 1
−1 0 3 1
0 −1 −1 0

 , W2 = W3 =
1

8


0 0 0 0
0 1 −1 0
0 −1 1 0
0 0 0 0

 , W4 = W5 =
1

12


1 1 1 2
−1 −1 −1 −2
−1 −1 −1 −2
2 2 2 4

 ,

W6 = W7 =


3−i
√

5
−90+6i

√
15

− 1
12 − 1

12
7−i
√

15
−30+18i

√
15

− 1
12

5
30−6i

√
15

5
30−6i

√
15

−15−7i
√

15
−180+12i

√
15

− 1
12

5
30−6i

√
15

5
30−6i

√
15

−15−7i
√

15
−180+12i

√
15

7−i
√

15
−30+18i

√
15

15+7i
√

15
−180+12i

√
15

15+7i
√

15
−180+12i

√
15

11+3i
√

15
−30+18i

√
15

 ,

W8 = W9 =


−3−i

√
5

−90+6i
√

15
− 1

12 − 1
12

−7−i
√

15
−30+18i

√
15

− 1
12 − 5

30−6i
√

15
− 5

30−6i
√

15
15−7i

√
15

−180+12i
√

15

− 1
12 − 5

30−6i
√

15
− 5

30−6i
√

15
15−7i

√
15

−180+12i
√

15
−7−i

√
15

−30+18i
√

15
−15+7i

√
15

−180+12i
√

15
−15+7i

√
15

−180+12i
√

15
−11+3i

√
15

30+18i
√

15

 .
A simple calculation shows that

dW (x) =

9∑
k=1

Wk = I4.

Therefore the Karlin-McGregor formula for this OQW is

Φ
(n)
0,i =

(∫
∆

dW (x)

)−1 ∫
∆

xndW (x)Qi(x) =

9∑
k=1

λnkWkQi(λk), i = 0, 1, 2, n ≥ i.
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For instance, we have

Φ
(10)
0,2 =

9∑
k=1

λnkWkQ2(λk) =
1

59049


63 −45 −45 54
−27 26 10 −45
−27 10 26 −45
90 −27 −27 63

 ,
which agrees with the corresponding block of Φ10. The probability of the walker to be on site |0〉 after 10 steps,

given that it started on site |2〉 with initial density operator ρ =

[
a b
b∗ 1− a

]
is

p02;ρ(10) = Tr

vec−1

 1

59049


63 −45 −45 54
−27 26 10 −45
−27 10 26 −45
90 −27 −27 63




a
b
b∗

1− a



 =

13 + 4a− 16Re(b)

6561
.

Analogously,

p02;ρ(2) =
1 + 4a− 4Re(b)

9
, p02;ρ(3) = 0, p02;ρ(4) =

1

27
.

However, the general Karlin-McGregor formula does not apply for this OQW. Indeed, we have

Φ
(2)
2,2 =

1

9


0 0 0 1
0 0 −1 1
0 −1 0 1
1 −1 −1 1

 ,
and

1

18


15 37 37 82
24 32 30 18
24 30 32 18
25 29 29 6

 =

(
9∑
k=1

Q∗2(λk)WkQ2(λk)

)−1( 9∑
k=1

λ2
kQ
∗
2(λk)WkQ2(λk)

)
6= Φ

(2)
2,2.

The reason why this is happening is that Q2 and Q0 are not orthogonal, since

9∑
k=1

Q∗0(λk)WkQ2(λk) =
1

4


−2 4 4 28
−8 −21 −21 −62
−8 −21 −21 −62
4 18 18 68

 .
Let us study now the case of a larger number of sites n. Consider

Φ =


0 dCe
dAe 0 dCe

. . .
. . .

. . .

dAe 0 dCe
dAe 0

 ∈M4n(C),

where A,C are defined by (1.7.6). The compact form of Φ is given by

Φ̌ =


0 C
A 0 C

.. .
. . .

. . .

A 0 C
A 0

 ∈M3n(C), A =
1

3

 1 0 0
−1 1 0
1 −2 1

 , C =
1

3

1 2 1
0 1 1
0 0 1

 .

If we evaluate the eigenvalues λ1, . . . , λ3n of Φ̌ and put them on the complex plane, the outcome is a graph of
the form represented in Figure 1.4. Each dot represents an eigenvalue of Φ̌.

♦
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Figure 1.4: Eigenvalues of Φ̌ with 20 vertices.

Example 1.17. Let Φ be a homogeneous QMC with 5 vertices defined by

Φ =


dB0e dC1e+ dC2e 0 0 0

dA1e+ dA2e dB0e dC1e+ dC2e 0 0
dA1e+ dA2e dB0e dC1e+ dC2e 0

dA1e+ dA2e dB0e dC1e+ dC2e
dA1e+ dA2e dB0e

 ,
where

B0 =

√
5

5

[
0 0
0 1

]
, C1 =

√
5

5

[
1 0
0 1

]
, C2 =

√
5

5

[
0 0
0 1

]
, A1 =

√
5

5

[
1 0
−1 1

]
, A2 =

√
5

5

[
1 0
1 1

]
.

In compact form, Φ becomes

Φ̌ =


B C 0 0 0
A B C 0 0
0 A B C 0
0 0 A B C
0 0 0 A B

 , B =
1

5

0 0 0
0 0 0
0 0 1

 , A =
1

5

2 0 0
0 2 0
2 0 2

 , C =
1

5

1 0 0
0 1 0
0 0 2

 .

The eigenvalues of Φ̌ are given by

λ1 = 0, λ2 = −1

5
, λ3 =

1

5
, λ4 =

3

5
, λ5 = −

√
2

5
, λ6 =

√
2

5
,

λ7 = −
√

6

5
, λ8 =

√
6

5
, λ9 =

1

5
− 2
√

3

5
, λ10 =

1

5
+

2
√

3

5
,

where λ1, λ5, λ6, λ7 and λ8 have multiplicity 2. The weight matrix is given by

W1 =

 1/3 0 0
0 1/3 0

2/11 0 0

 , W2 =

 0 0 0
0 0 0
−1/2 0 1/4

 , W3 =

 0 0 0
0 0 0

−8/15 0 1/3

 , W4 =

 0 0 0
0 0 0

1/6 0 1/4



W5 =

 1/4 0 0
0 1/4 0

104+
√

2
292 0 0

 , W6 =

 1/4 0 0
0 1/4 0

104−
√

2
292 0 0

 , W7 =

 1/12 0 0
0 1/12 0

− 17
√

6
20 −

67
30 0 0

 ,
W8 =

 1/12 0 0
0 1/12 0

17
√

6
20 −

67
30 0 0

 , W9 =

 0 0 0
0 0 0

10529
4818 + 3016

√
3

2409 0 1/12

 , W10 =

 0 0 0
0 0 0

10529
4818 −

3016
√

3
2409 0 1/12

 .
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The polynomials Qn(x) associated with Φ̌ (see (1.7.1)) satisfy (1.7.2), that is,

10∑
j=1

λnjW (j)Qk(λj) = 0,

for all integers n > k ≥ 0. As an example, formula (1.7.5) gives, for ρ =

[
a b
b∗ 1− a

]
, that

Φ̌
(7)
0,3 =

10∑
k=1

λ7
kW (k)Q3(λk) =

8

78125

 52 0 0
0 52 0

907 0 579

 =⇒ p03;ρ(7) =
4632 + 608a

15625
.

♦

Let us now consider the case of infinite vertices. For that we recall that the Stieltjes transform B(z;W )
associated with a homogeneous QMC Φ with matrix representation

Φ =


B C
A B C

A B C
.. .

. . .
. . .

 ,
where A,C ∈MN2(C) are non-singular, is given by

B(z;W ) = (z −B − CB(z;W )A)−1. (1.7.7)

Similarly, the Stieltjes transform B(z; W̃ ) associated with a QMC Φ̃ with matrix representation

Φ̃ =


B0 C
A0 B C

A B C
.. .

. . .
. . .

 ,
where A0, A,C ∈MN2(C) are non-singular, is given by

B(z; W̃ ) = (z −B0 − CB(z;W )A0)−1. (1.7.8)

Example 1.18. Take V = Z≥0 and matrices R = L = 1√
2
I2,

B1 =

√
5

5

[
1 0
0 1

]
, B2 =

√
5

5

[
0 0
0 1

]
, R1 =

√
5

5

[
1 0
−1 1

]
, R2 =

√
5

5

[
1 0
1 1

]
.

We define a QMC on V whose compact form is

Φ̌ =


B0 C
A0 0 C

A 0 C
A 0 C

.. .
. . .

. . .

 , B0 = B̌1 + B̌2, A0 = Ř1 + Ř2, C = Ľ, A = Ř.

Denote by Φ̌0 the matrix

Φ̌0 =


0 C
A 0 C

A 0 C
.. .

. . .
. . .

 ,
and W,W0 the weight matrices associated with Φ̌ and Φ̌0, respectively. Using (1.7.7) and (1.7.8) we obtain

B(z;W0)(z) = (2z + 2
√
z2 − 1)I3.
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and

B(z;W ) =
5

5z2 − 6z + 5

 2
√
z2 − 1 + 3z − 1 0 0

0 2
√
z2 − 1 + 3z − 1 0

2((25z2−20z−1)
√
z2−1+25z3−20z2−13z+8)

5z2−18z+13 0 2
√
z2 − 1 + 3z − 3

 .
With the Stieltjes transform, we may obtain the associated weight matrix for Φ̌ by applying the Perron-Stieltjes
inversion formula. A simple calculation shows that the weight matrix W is given by

W (x) =
5

π(5x2 − 6x+ 5)


2
√

1− x2 0 0

0 2
√

1− x2 0

2(25x2 − 20x− 1)
√

1− x2

5x2 − 18x+ 13
0 2

√
1− x2

 , x ∈ [−1, 1].

We now have ∫ 1

−1

Q∗i (x)dW (x)Qj(x) = 0, i > j,

thus formula (1.7.5) holds.

Let us now analyze recurrence of the first vertex of both QMCs Φ̌ and Φ̌0. By (1.3.5), we are able to conclude
whether the walk is recurrent just by considering the Stieltjes transform associated with the QMC, that is, we
do not need to obtain the explicit weight matrix associated with the referred QMC. Above, we determined the
weight matrix for completeness, and in order to write the transitions probabilities of the walk described by Φ
using the Karlin-McGregor formula.

Applying limits to the Stieltjes transform B(z;W0) and B(z;W ) associated with Φ̌0 and Φ̌, respectively, we
obtain

lim
z→1

Tr(B(z,W0)ρ) = lim
z→1

2z + 2
√
z2 − 1 = 2,

and using l’Hospital’s rule we get
lim
z→1

Tr(B(z,W )ρ) =∞,

for any density operator ρ ∈M2(C). Therefore, by (1.3.5), the first vertex |0〉 is transient for Φ̌0 and recurrent
for Φ̌.

♦

Example 1.19. Take V = Z≥0 and matrices

R1 =
1√
7

[
1 0

−1
√

3

]
, R2 =

1√
7

[
1 0

1
√

3

]
, L1 =

1√
7

[√
3 0

0 1

]
. (1.7.9)

We define a QMC on V whose compact form is

Φ̌ =


0 C
A 0 C

A 0 C
.. .

. . .
. . .

 , A = Ř1 + Ř2, C = Ľ1.

The Stieltjes transform associated with Φ̌ satisfies

B(z;W )(zI3 − CB(z;W )A) = I3,

for which a solution is

B(z;W ) =
7

12


7z − i

√
−49z2 + 24 0 0

0 7z − i
√
−49z2 + 24 0

−343z3 + 140z + (49z2 − 8)
√

49z2 − 24

49z2 − 32
0 7z − i

√
−49z2 + 24

 .
(1.7.10)
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The weight matrix associated with Φ̌ is then

W (x) =
7

12


√

24− 49x2 0 0

0
√

24− 49x2 0

− (49x2 + 8)
√

24− 49x2

49x2 − 32
0

√
24− 49x2

 , x ∈

[
−2
√

6

7
,

2
√

6

7

]
.

The polynomials associated with Φ̌, Qk(x), satisfy∫ 2
√

6
7

− 2
√

6
7

xidW (x)Qj(x) = 0, i > j,

thus formula (1.7.5) holds. Finally, we conclude that vertex |0〉 is transient, since

∞∑
n=0

p00;ρ(n) = lim
z→1

Tr (B(z,W )ρ)

=
49z − 7

√
49z2 − 24

12
+

7a

12

−343z3 + 140z + (49z2 − 8)
√

49z2 − 24

49z2 − 32
=

119 + 7a

102
<∞.

♦

Example 1.20. Let us consider the QMC on V = Z≥0 whose compact form is

Φ̌ =


C C
A 0 C

A 0 C
.. .

. . .
. . .

 , A = Ř1 + Ř2, C = Ľ1,

where

R1 =
1√
7

[
1 0

−1
√

3

]
, R2 =

1√
7

[
1 0

1
√

3

]
, L1 =

1√
7

[√
3 0

0 1

]
.

This QMC is similar to the one on Example 1.19 with the difference that the first block is replaced by C. Now
Φ̌ is trace preserving and the associated Stieltjes transform to Φ̌, B(z;W ), satisfies

B(z;W )(zI3 − C − CB(z; W̃ )A) = I3,

where B(z; W̃ ) is the associated Stieltjes transform to the QMC on Example 1.19. Thus, we obtain

B(z;W ) =


7
6

7z−6+
√

49z2−24
5−7z 0 0

0 7
2
−7z+2

√
3−
√

49z2−24
7
√

3z−9
0

343z3−196z2−126z+64+(49z2−28z−4)
√

49z2−24
160−384z−21z2+588z3−343z4 0 1

2
7z−2+

√
49z2−24

1−z

 .
Therefore,

∞∑
n=0

p00;ρ(n) = lim
z→1

Tr (B(z;W )ρ)

=
7

3

(343z3 + (49z2 − 20)
√

49z2 − 24− 182z)a

343z3 − 245z2 − 224z + 160
+

1

2

7z − 2 +
√

49z2 − 24

1− z
=∞,

for any density operator ρ =

[
a b
b∗ 1− a

]
. Hence, this QMC is recurrent.

♦
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Applying the folding trick to a nonpositive measure. It is worth noting that the folding trick can also
be applied to QMCs whose matrix representations are not symmetrizable, allowing us to examine the associated
recurrence problem. In fact, let us recall equation (1.6.11):

Φ00(z) = Φ+
00(z)(I − z2A−1Φ−−1,−1(z)C0Φ+

00(z))−1.

In order to analyze recurrence of site |0〉 of a given QMC on Z, we have to calculate
∑∞
n=0 p00;ρ(n) =∑∞

n=0 Tr(Φ
(n)
00 ρ) for each density operator ρ. This can be done by using equation (1.6.11) in the following

way:
∞∑
n=0

Φ
(n)
00 = lim

z↑1
Φ00(z) = lim

z↑1
Π+

0 B(z;W+)(I −A−1Π−−1B(z;W−)C0Π+
0 B(z;W+))−1, (1.7.11)

where the Stieltjes transform appearing on the right-hand side are obtained by applying (1.3.6).
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Chapter 2

Continuous-time open quantum walks

2.1 General setting

In this work, we assume that we have a quantum particle acting either on the integer line, the integer half-line,
or on a finite segment, that is, we have that the set of vertices V is labeled by Z, Z≥0 or a finite set {0, 1, . . . , N},
respectively. We will also call vertices as sites. The state of the system is described by a column vector

ρ =


ρ0

ρ1

ρ2

...

 , ρi ∈ I(H), ρi ≥ 0,
∑
i∈V

Tr(ρi) = 1. (2.1.1)

An operator semigroup T on a Hilbert space H is a family of bounded linear operators (Tt) acting on H,
t ≥ 0, such that

TtTs = Tt+s, s, t ∈ R+, T0 = IH.

If t 7→ Tt is continuous for the operator norm of H, then T is said to be uniformly continuous. This class
of semigroups is characterized by the following result:

Theorem 2.1. [7], page 161] The following assertions are equivalent for a semigroup T on H :

1. T is uniformly continuous;

2. There exists a bounded operator L on H such that

Tt = etL, t ∈ R+.

Further, if the conditions are satisfied, then

L = lim
t→0+

Tt − IB
t

.

The operator L is called the generator of T .

2.2 CTOQWs

A semigroup T := (Tt)t≥0 of CPTP maps acting on I1(H), set of trace-class operators on H, is called a
Quantum Markov Semigroup (QMS) on I1(H). When limt→0 ||Tt − Id|| = 0, then T has a generator
L = limt→0+(Tt − Id)/t (see [31]), which is a bounded operator on I1(H), also known as Lindblad operator.

We consider a finite or countable set of vertices V and then take the composite system

H =
⊕
i∈V

hi,
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where each hi denotes a separable Hilbert space. The label i ∈ V is interpreted as being the position of the
walker and, when the walker is located at the vertex i ∈ V , its internal state is encoded in the space hi, describing
the internal degrees of freedom of the particle when it is sitting at site i ∈ V. Since we will be considering only
examples with hi = hj for all i, j ∈ V, we let hi = h for every i ∈ V.

The set of diagonal density operator acting on H will be denoted by

D =

{∑
i∈V

ρ(i) |i〉 〈i| : ρ(i) = ρ(i)∗, ρ(i) ≥ 0,
∑
i∈V

Tr(ρ(i)) = 1

}
.

Definition 2.2. A Continuous-time Open Quantum Walk (CTOQW) is an uniformly continuous QMS
on I1(H) with Lindblad operator of the form

L : I1(H) → I1(H)

ρ 7→ −i[H, ρ] +
∑
i,j∈V

(
Sji ρS

j∗

i −
1

2
{Sj∗i S

j
i , ρ}

)
, (2.2.1)

where, consistently with the notation, we write Sji = Rji ⊗|j〉 〈i| for bounded operators Rji ∈ B(hi, hj). Moreover,

H and Sji are bounded operators on H of the form H =
∑
i∈V Hi ⊗ |i〉 〈i| , Hi is self-adjoint on hi, S

j
i is a

bounded operator on H with
∑
i,j∈V S

j∗
i S

j
i converging in the strong sense. Also, [A,B] ≡ AB − BA is the

commutator between A and B and {A,B} ≡ AB +BA is the anti-commutator between A and B.

Then, we have ρ =
∑
i∈V ρ(i)⊗ |i〉 〈i| ∈ D, etL(ρ) = Tt(ρ) =

∑
i∈V ρt(i)⊗ |i〉 〈i| ,∀t ≥ 0, with

d

dt
ρt(i) = −i[Hi, ρt(i)] +

∑
j∈V

(
Rijρt(j)R

i∗

j −
1

2
{Rj∗i R

j
i , ρt(i)}

)
.

An alternative way to rewrite (2.2.1) is given by equation (18.7) in [5]:

L(ρ) =
∑
i∈V

Giρ(i) + ρ(i)G∗i +
∑
j∈V

Rijρ(j)Ri∗j

⊗ |i〉 〈i| , (2.2.2)

where

Gi = −iHi −
1

2

∑
j∈V

Rj∗i R
j
i .

Note that we then have Gi +G∗i = −
∑
j∈V R

j∗
i R

j
i .

Starting the walk on site |i〉 with initial density operator ρ ∈ S(hi) =
∑
i∈V ρ(i) |i〉 〈i| , the quantum mea-

surement of the position gives rise to a probability distribution p0 on V, such that

p0(i) = P(the quantum particle is in site |i〉) = Tr(ρ(i))

and for evolution on time t ≥ 0,

pt(i) = P(the quantum particle, at time t, is in site |i〉) = Tr(ρt(i)),

where
etL(ρ) =

∑
i∈V

ρt(i)⊗ |i〉 〈i| .

The vector and matrix representation of states and CP maps may be easily adapted to CTOQWs. In fact,
since any element of IV (H) is block diagonal, when dimH <∞, it may be represented by combining the vector
representations of the finite diagonal blocks,

ρ =
∑
i∈V

ρi ⊗ |i〉〈i| ⇒ −→ρ :=

vec(ρ1)
vec(ρ2)

...

 .
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Then, the CTOQW (2.2.2) admits a block matrix representation

−−−−→
etL(ρ) = etL̂−→ρ , L̂ =


Gα0 dR0

1e dR0
2e · · ·

dR1
0e Gα1 dR1

2e · · ·
dR2

0e dR2
1e Gα2 · · ·

...
...

...
. . .

 ,
where

Gαi = −iHi ⊗ I + iI ⊗Hi −
1

2

∞∑
j=0

(
Rj∗i R

j
i ⊗ I + I ⊗Rj∗i R

j
i

)
, i = 0, 1, 2, . . . .

We will often identify L with its block matrix representation and omit the hat, as the usage of such object
will be clear from context. Also, we will sometimes write X instead of dXe in contexts where no confusion
arises.

It is worth noting that although the above definitions concern CTOQWs on general graphs, in this work we
will deal exclusively with the one-dimensional situation which we may also call quantum birth-death process,
and represented by

L =


B0 C1

A0 B1 C2

A1 B2 C3

. . .
. . .

. . .

 , (2.2.3)

for certain operators Ai, Bi, Ci, and the remaining operators being equal to zero. The above representation is
for a quantum particle acting on the integer half-line Z≥0, but we will also study examples acting on a finite
set {0, 1, . . . , N} or the integer line Z.

The blocks of L in (2.2.3) are then

Gα0 =− iH0 ⊗ I + iI ⊗H0 −
1

2

1∑
j=0

(
Rj∗0 R

j
0 ⊗ I + I ⊗Rj∗0 R

j
0

)

Gαi =− iHi ⊗ I + iI ⊗Hi −
1

2

i+1∑
j=i−1

(
Rj∗i R

j
i ⊗ I + I ⊗Rj∗i R

j
i

)
, i = 1, 2, . . .

Ai =dRi+1
i e, Bi = dRiie, Ci+1 = dRii+1e, i = 0, 1, 2, . . . .

For simplicity, we will write

dAie = Ai ⊗Ai, dBie = Bi ⊗Bi, dCie = Ci ⊗ Ci,

and

Gαi = −iHi ⊗ I + iI ⊗Hi −
1

2

[
(A∗iAi +B∗iBi + C∗i Ci)⊗ I + I ⊗

(
A∗iAi +B∗iBi + C∗i Ci

)]
.

When Gαi is the same for all i, then we will write Gα = Gαi .

2.2.1 Recurrence and transience for CTOQWs

Let us denote by Xt the process that indicates the position of the walker and by ρt the density operator at time
t, then, by [33], the process µt = (Xt, ρt) is a Markov process. Analogous to the classical walk, let us discretize
a CTOQW by a process {X(nδ), n ≥ 0}, where δ > 0, having one-step transition probabilities pji;ρ(δ) (thus it
has n step transition probabilities pji;ρ(nδ)). This process is called δ-skeleton of {X(t), t ≥ 0}.

Let Λ be a CTOQW, i ∈ V, ρ ∈ S(hi) and δ > 0. We say that a vertex i is

� ρ-recurrent1 if ∫ ∞
0

pii;ρ(t)dt =∞.

Otherwise, i is said to be ρ-transient;

1In the continuous-time version, the mean number of returns to some site is given by an integral. This integral should be
compared with the series (1.1.6).
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� ρ-SJK-recurrent2 on the δ-skeleton if

∞∑
n=0

pii;ρ(nδ) =∞.

Otherwise, i is said to be ρ-SJK-transient on the δ-skeleton;

� recurrent if i is ρ−recurrent for all ρ ∈ Shi ;

� transient if i is ρ−transient for some ρ ∈ Shi ;

� SJK-recurrent if i is ρ-SJK-recurrent on the δ-skeleton for all ρ ∈ Shi ;

� SJK-transient if i is ρ-SJK-transient on the δ-skeleton for some ρ ∈ Shi .

Remark 2.3. Further, in this section, we shall show that for a semi-finite CTOQW which are of our interest,
that a vertex is ρ-recurrent on the δ-skeleton if and only if it is ρ-recurrent on the δ′-skeleton for any δ′ > 0.
So, the definitions of SJK-recurrence and SJK-transience are consistent.

Definition 2.4. A CTOQW is said to be:

� recurrent if every vertex is recurrent;

� transient if every vertex is transient;

� SJK-recurrent if every vertex is SJK-recurrent;

� SJK-transient if every vertex is SJK-transient.

Example 2.5. Let V = {1, 2, 3, 4}, L = Φ − I a generator of a CTOQW, Φ a quantum channel with Kraus
operators

B11 :=

[
0 0
−1 0

]
, B21 :=

[
0 i
0 0

]
, B12 :=

[
1 0
0 0

]
,

B32 :=

[
0 1
0 0

]
, B23 :=

[
0 1
−1 0

]
, B24 :=

[
1 0
0 1

]
,

Bji = 0 for the remain blocks.

We take a density operator τ =
∑4
i=1 τ(i)⊗ |i〉 〈i| to write the explicit form of the generator L by

L(τ) = (−τ(1) +B11ρ(1)B∗11 +B21ρ(2)B∗21)⊗ |1〉 〈1|
+ (−τ(2) +B12ρ(1)B∗12 +B32ρ(3)B∗32)⊗ |2〉 〈2|+ (−τ(3) +B23ρ(2)B∗23)⊗ |3〉 〈3|
+ (−τ(4) +B24ρ(2)B∗24)⊗ |4〉 〈4| .

The graph in Figure 2.1 represents this CTOQW. This CTOQW has two recurrent and two transient vertices.

Indeed, for ρ =

[
a b
b∗ 1− a

]
, one has

∫ ∞
0

p33;ρ(t) =

∫ ∞
0

[
a

(
1

2
+
e−2t

2
− e−t

)
+ e−t

]
dt =

{
1, if a = 0

∞, a ∈ (0, 1]
,

meaning that |3〉 is ρ-transient for ρ =

[
0 0
0 1

]
and ρ′-recurrent for any ρ′ 6= ρ, that is, vertex |3〉 is transient.

Similarly, we can also obtain that vertices |1〉 and |2〉 are recurrent and |4〉 is transient.

♦

2The notion of SJK-recurrence in the discrete time unitary setting is described on [36]. SJK-recurrence is named after the
initials of the authors of the that work.
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1 2

3

4

B21

B12

B32B23

B24

B11

Figure 2.1: CTOQW with two recurrent and two transient vertices.

2.2.2 Further properties on the transition probabilities

The following results gives some properties of the transition function which have a fundamental importance on
the next definitions and results, since it gives sufficient conditions to the transition functions be strictly positive
for t sufficient large.

Proposition 2.6. For any vertex of a CTOQW,

pji;ρ(α+ β) =
∑
k

pjk;ρ′ki(β)(α)pki;ρ(β), (2.2.4)

where

ρ′ki(β) :=
PkΛβPiρ

Tr(PkΛβPiρ)
,∀α, β ≥ 0.

Since on the Markov process there is one only quantum state ρ = 1 ∈ C, equation Chapman-Kolmogorov
Identity is a particular case of (2.2.4).

Remark 2.7. The classical Chapman-Kolmogorov does not apply for CTOQW. Indeed, consider the CTOQW

on example 2.5. For ρ =

[
0 0
0 1

]
,

4∑
k=1

p0k;ρ

(
π√
3

)
pk0;ρ

(
π√
3

)
=

1

9

(√
3e−

√
3π
2 − 2

)2

,

however

p00;ρ

(
2π√

3

)
=

2− e−
√

3π

3
,

therefore we can not consider ρ = ρ′ki(β) on equation (2.2.4) because

4∑
k=1

p0k;ρ

(
π√
3

)
pk0;ρ

(
π√
3

)
6= p00;ρ

(
2π√

3

)
.

To get around this situation, in order to show equivalence between recurrence and SJK-recurrence, we show
that the function g(ρ, s) = pji;ρ(s) is jointly continuous under the variables s ∈ [0,∞) and ρ ∈ Shi .

Proposition 2.8. Let Λt a CTOQW and i, j ∈ V. Denote Wi := Shi×[0,+∞), then the function g : Wi → [0, 1]
defined by g(ρ, s) = pji;ρ(s) is jointly continuous on Wi.

Proposition 2.9. Let L be the generator of a CTOQW and i ∈ V. Then

1. For all ρ ∈ Shi and t ≥ 0, pii;ρ(t) > 0;

2. If pij;ρ(t) > 0 for some t > 0, then pij;ρ(s) > 0,∀s ≥ t;
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3. If pii;ρ(t) = 1 for some t > 0, then pii;ρ(s) = 1,∀s ∈ [0, t];

4. If δ > 0, dim(hi) < ∞ and there exists 0 ≤ t0 ≤ δ such that pji;ρ(t0) > 0, then the minimum Nji :=
min{pji;ρ(s) : ρ ∈ Shi and s ∈ [t0, δ]} is attained on (0, 1]. When j = i, we denote Nii = Ni.

A generalization from the classical case to the quantum model is presented below. As on the classical
model, the proof is based on the Mean Value Theorem for Integrals, with the addition in which convergence
and divergence of the integrals and the series are looked on the tail of the series. This is necessary because we
do not have the Levy Dichotomy 3 on the quantum model, only the results on Proposition 2.9.

Theorem 2.10. Let δ > 0 and i, j ∈ V vertices of the graph on which a CTOQW is defined. If dim(hj) <∞,
then

∞∑
n=0

pji;ρ(nδ) = +∞ ⇔
∫ ∞

0

pji;ρ(t) = +∞.

Consequently, i is ρ-recurrent if, and only if, i is ρ-SJK-recurrent in the δ-skeleton.

Now we have an equivalence among the CTOQW and its discretized random walk with n-step transition
probabilities on the δ-skeleton. The next results associates the ρ-recurrence among faithful (ρ is non-singular
and therefore it is positive definite) and non-faithful (ρ is singular and therefore it is positive semidefinite)
densities for a vertex with finite internal degrees.

Proposition 2.11. Let Λ a CTOQW, i ∈ V, dim(hi) = n <∞ and ρ̃ ∈ S(hi) and suppose that i is ρ̃-recurrent.

1. For any faithful ρ ∈ S(hi), i is ρ-recurrent;

2. If ρ ∈ S(hi) and there exists δ ≥ 0 such that ρ′ii(δ) is faithful, then i is ρ-recurrent;

3. If n ≥ 2, there is a non-faithful density ρ on Shi in which i is ρ-recurrent;

4. If n = 2, then the non-faithful density ρ on item (3) is pure.

Remark 2.12. By contraposition, we get by the first item of the Proposition 2.11 that if i ∈ V, dim(hi) = n <∞
and ρ ∈ S(hi) faithful with i being ρ-transient, then i is ρ′-transient for any ρ′.

2.3 Weight Matrices

In this section we introduce the Karlin-McGregor Formula for CTOQW with set of vertices of the forms
V = {0, 1, 2, . . . , N} and V = Z+ = {0, 1, 2 . . .}. Then we will be able to give a recurrence criterion for vertex
|0〉 based on the Stieltjes transform of the associated measure.

Following [17], we pick d ∈ {1, 2, 3, . . .}, (An)n≥0, (Bn)n≥0, and (Cn)n≥1, such that the block tridiagonal
matrix

L̂ =


B0 C1

A0 B1 C2

A1 B2 C3

. . .
. . .

. . .

 , (2.3.1)

represents a generator of a CTOQW Λ.
Define recursively the associated matrix-valued polynomials from the matrix L̂ on (2.3.1) by

Q0(x) =Id, Q−1(x) = 0d

−xQn(x) =Qn+1(x)An +Qn(x)Bn +Qn−1(x)Cn, n = 0, 1, 2, . . . ,
(2.3.2)

that is, Q(x) = (Q0(x), Q1(x), . . .) are solutions of the equation −xQ(x) = Q(x)L̂. Here we denote Id and 0d
the identity and the null matrix of dimension d× d.

We recall property Λ′t = L̂Λt, where Λt = etL̂ and define the two-variable function

f(x, t) = Q(x)Λt, x ∈ C, t ∈ [0,∞).

3The Levy Dichotomy asserts that, for a continuous Markov chain, for vertices i 6= j, we have pij(t) > 0 for every t > 0 or
pij(t) = 0 for every t > 0.
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One has
∂f(x, t)

∂t
= Q(x)Λ′t = Q(x)L̂Λt = −xQ(x)Λt = −xf(x, t), f(x, 0) = Q(x),

whose solution is f(x, t) = e−xtQ(x). Hence e−xtQ(x) = Q(x)Λt. Componentwise,

e−xtQi(x) =

∞∑
k=0

Qk(x)Λki(t), (2.3.3)

where Λki(t) is the (k, i)-th block of Λ(t).

If there exists a weight matrix Σ such that the matrix-valued polynomials {Qn(x)}n≥0 are orthogonal with
respect to Σ, in the following sense∫

Q∗j (x)dΣ(x)Qi(x) = δjiFi, det(Fi) 6= 0,

then multiplying on the left side of (2.3.3) by Q∗j (x) and integrating with respect to Σ we obtain∫
R
e−xtQ∗j (x)dΣ(x)Qi(x) =

∫
R
Q∗j (x)dΣ(x)Qj(x)Λji(t),

therefore for any i, j ∈ V, we have the Karlin-McGregor Formula for CTOQW:

Λji(t) =

(∫
Q∗j (x)dΣ(x)Qj(x)

)−1(∫
e−xtQ∗j (x)dΣ(x)Qi(x)

)
, (2.3.4)

Λ(t) = (Λji(t))j,i=0,1,.... For more details about how to construct this formula see [17].
Sometimes we will write (2.3.4) as

Λji(t) = Πj

(∫
e−xtQ∗j (x)dΣ(x)Qi(x)

)
,

where

Πj =

(∫
Q∗j (x)dΣ(x)Qj(x)

)−1

.

Therefore, the transition probabilities may be obtained by

pji;ρ(t) = Tr

[
Πj

∫
e−xtQ∗j (x)dΣ(x)Qi(x)ρ

]
.

Theorem 2.13. Let Λ be a tridiagonal CTOQW on Z≥0 = {0, 1, 2, . . .} and Σ its associated weight matrix.
Vertex |j〉 is ρ-recurrent if and only if

lim
λ→0

Tr

[
Πj

∫
C

Q∗j (x)dΣ(x)Qi(x)

λ+ x
ρ

]
=∞.

Proof. For each pair i, j ∈ V we have∫ ∞
0

pji;ρ(t)dt = lim
λ→0

∫ ∞
0

e−λtpji;ρ(t)dt

= lim
λ→0

∫ ∞
0

e−λtTr

[
Πj

∫
C
e−xtQ∗j (x)dΣ(x)Qi(x)ρ

]
dt

= lim
λ→0

Tr

[
Πj

∫
C

(∫ ∞
0

e−(λ+x)tdt

)
Q∗j (x)dΣ(x)Qi(x)ρ

]
= lim
λ→0

Tr

[
Πj

∫
C

Q∗j (x)dΣ(x)Qi(x)

λ+ x
ρ

]
.

�
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We recall the Stieltjes transform associated to Σ :

B(z,Σ) =

∫
C

dΣ(x)

z − x
,

thus we obtain the straightforward consequence of Theorem 2.13:

Corollary 2.14. Let Λ be a tridiagonal CTOQW on Z≥0 = {0, 1, 2, . . .} and Σ its associated weight matrix.
Vertex |0〉 is ρ-recurrent if and only if

− lim
z→0

Tr [Π0B(z,Σ)ρ] =∞.

2.3.1 Some basic results

The following are basic results from the setting of matrix-valued orthogonal polynomials, which will be used in
this work.

1. Let Σ be a d2 × d2 weight matrix and denote by

Sk =

∫
xkdΣ(x), k = 0, 1, . . .

the corresponding moments. The block Hankel matrices are defined by

H2m =

S0 · · · Sm
...

...
Sm · · · S2m

 , m ≥ 0.

Theorem 2.15 (Theorem 2.1 of [17]). Consider the block matrix L̂ given by Equation (2.3.1), assume that
An, Cn+1, n ≥ 0 are nonsingular matrices and Bn ≥ 0 for all n. Now let {Qn(x)}n≥0 be the sequence of
matrix-valued polynomials defined by (2.3.2). Then there exists a weight matrix Σ with positive definite block
Hankel matrices H2m,m ≥ 0, such that the sequence of polynomials {Qn(x)}n≥0 is orthogonal with respect to
Σ if and only if there is a sequence of nonsingular matrices (Rn)n≥0 such that

RnBnR
−1
n is symmetric, n ≥ 0,

R∗nRn = (A∗0 · · ·A∗n−1)−1R∗0R0C1 · · ·Cn, n ≥ 0.
(2.3.5)

Moreover, S0 = (R∗0R0)
−1
.

2. Perturbation of Stieltjes transform:

Theorem 2.16 (Theorem 2.3 of [17]). Consider the block matrix L̂ given by Equation (2.3.1) and the matrix
L̃ which is the same as L̂ but with a perturbation on the first block, that is,

L̃ =


B̃0 C1

A0 B1 C2

A1 B2 C3

. . .
. . .

. . .

 .
If Σ is the weight matrix associated to L̂ with positive definite block Hankel matrices such that R0B̃0R

−1
0 is

symmetric and such that (Rn)n≥0 is a sequence of matrices which satisfies condition (2.3.5), then there exists a

weight matrix Σ corresponding to L̃. If the weight matrix Σ and Σ̃ are determined by their moments, then the
Stieltjes transforms of the measures satisfy

B(z,Σ) =
{
B(z, Σ̃)−1 − S−1

0

(
B̃0 −B0

)}−1

.
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3. Explicit weight matrix for a class of walks on the half-line. The following is a restatement of a result due
to A.J. Durán: let A be positive definite and define

H(z) = A−1/2(B − zI)A−1(B − zI)A−1/2 − 4I.

Such matrix is diagonalizable except for at most finitely many complex numbers z′s, so that we can write
−H(z) = U(z)D(z)U−1(z), where D(z) is a diagonal matrix with diagonal entries {dii(z)}. For x real, we have
that −H(z) is Hermitian, so it is unitarily diagonalizable, that is, we can have U such that U(x)U∗(x) = I.
Also, D has real entries. With such matrices defined, we have:

Theorem 2.17. [21] If A is positive definite and B Hermitian, the weight matrix for the matrix-valued poly-
nomials defined by

tUn(t) = Un+1(t)A+ Un(t)B + Un−1(t)A, n ≥ 0, U0(t) = I, U−1(t) = 0,

is the matrix of measures given by

dW (x) =
1

2π
A−1/2U(x)(D+(x))1/2U∗(x)A−1/2dx,

where D+(z) is a diagonal matrix with diagonal entries d+
ii(z) = max{dii(x), 0}.

2.3.2 Walks on Z: the folding trick

Consider the generator of a tridiagonal CTOQW on Z, given by

L̂ =



. . .
. . .

. . . Gα−2 + dB−2e dC−1e
dA−2e Gα−1 + dB−1e dC0e

dA−1e Gα0 + dB0e dC1e
dA0e Gα1 + dB1e dC2e

dA1e Gα2 + dB2e dC3e
. . .

. . .
. . .


. (2.3.6)

We recall that dXe = X ⊗X, while the representation of Gαn will be given later.
We assume that there exists a sequence of d2 × d2 Hermitian matrices (En)n∈Z and non-singular matrices

(Rn)n∈Z such that

dAne∗R∗n+1Rn+1 = R∗nRndCn+1e, n ≥ 0

R∗−n−1R−n−1dC−ne = dA−n−1e∗R∗−nR−n, n ≥ 0,
Rn(Gαn + dBne) = EnRn, n ∈ Z. (2.3.7)

Let us define
Πj := R∗jRj , j ∈ Z.

Consider the two independent families of matrix-valued polynomials defined recursively from (2.3.6) as

Q1
0(x) = Id2 , Q2

0(x) = 0d2 ,

Q1
−1(x) = 0d2 , Q2

−1(x) = Id2 ,

−xQαn(x) = Qαn+1(x)dAne+Qαn(x)(Gαn + dBne) +Qαn−1(x)dCne, α = 1, 2, n ∈ Z,
(2.3.8)

where we have the block vector Qα(x) =
(
. . . , Qα−2(x), Qα−1(x), Qα0 (x), Qα1 (x), Qα2 (x), . . .

)
, α = 1, 2, satisfying

−xQα(x) = Qα(x)L̂.
As in the classical case, we introduce the block tridiagonal matrix

L̆ =


D0 N1

M0 D1 N2

M1 D2 N3

. . .
. . .

. . .

 ,

46



2.3. WEIGHT MATRICES CHAPTER 2. CONTINUOUS-TIME OPEN QUANTUM WALKS

where each block entry is a 2d2 × 2d2 matrix, given by

D0 =

[
Gα0 + dB0e dA−1e
dC0e Gα−1 + dB−1e

]
, Mn =

[
dAne 0

0 dC−n−1e

]
, n ≥ 0,

Dn =

[
Gαn + dBne 0

0 Gα−n−1 + dB−n−1e

]
, Nn =

[
dCne 0

0 dA−n−1e

]
, n ≥ 1.

The term folding trick comes from the transformation of the original generator L̂, whose graph is represented
in Figure 2.2, to the generator described by L̆, which is represented by the folded walk in Figure 2.3.

−2 −1 0 1 2 . . .. . .
A−3 A−2 A−1 A0 A1 A2

C2C1C1C0C−1C−2

B1 B2B−2 B−1 B0

Figure 2.2: Generator L̂ of a CTOQW on Z.

0 1 2 . . .

−1 −2 −3 . . .

A0 A1 A2

C1 C2 C3

B0 B1 B2

C−1 C−2 C−3

A−2 A−3 A−4

B−1 B−2 B−3

C0A−1

Figure 2.3: Folded walk of L̂ on Z≥0 × {1, 2} given by L̆.

Note that L̆ is a block tridiagonal matrix on Z≥0, thereby we can apply all the properties we have seen in
previous sections. The following 2d2 × 2d2 matrix polynomials are defined in terms of (2.3.8),

Qn(x) =

[
Q1
n(x) Q1

−n−1(x)
Q2
n(x) Q2

−n−1(x)

]
, n ≥ 0, (2.3.9)

and these satisfy

xQ0(x) =Q1(x)M0 +Q0(x)D0, Q0(x) = I2d2 ,

xQn(x) =Qn+1(x)Mn +Qn(x)Dn +Qn−1(x)Nn, n = 1, 2, . . .

The leading coefficient of Qn(x) is always a nonsingular matrix. Moreover, for

R̆n :=

[
Rn 0d2
0d2 R−n−1

]
, n ≥ 0, Ĕ0 :=

[
E0 R0dA−1eR−1

−1

R−1dC0eR−1
0 E−1

]
, Ĕn :=

[
En 0d2
0d2 E−n−1

]
, n ≥ 1,

we see that the block matrices of L̆ satisfy the conditions (2.3.7) for n ≥ 0 :

M∗nR̆
∗
n+1R̆n+1 = R̆∗nR̆nNn+1, R̆nDn = ĔnR̆n,

where matrices R̆n are non-singular and Ĕn are Hermitian for all n ≥ 0. Defining

Π̆j := R̆∗j R̆j ∈M2d2(C), j = 0, 1, 2, . . . ,
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the correspondence between Π̆j and Πj is

Π̆j :=

[
Πj 0d2
0d2 Π−j−1

]
.

By [18], there exists a weight matrix W leading to the Karlin-McGregor formula for Λ̆ = etL̆ :

Λ̆ji(t) = Π̆j

∫
R
e−xtQ∗j (x)dW (x)Qi(x). (2.3.10)

Once we have found the weight matrix appearing on (2.3.10), we can also obtain the blocks Λji(t) of the original

walk generated by L̂. The key for this operation is the following proposition:

Proposition 2.18. Assume that L̂ is the generator of a CTOQW of the form (2.3.6). The relation between
Λ̆ji(t) and Λji(t) is

Λ̆ji(t) =

[
Λji(t) Λj,−i−1(t)

Λ−j−1,i(t) Λ−j−1,−i−1(t)

]
, i, j ∈ Z≥0. (2.3.11)

Proof. First we use Proposition 2.18 (replace Φ̆
(n)
ji and Φ̂

(n)
ji by L̆nji and L̂nji respectively) to obtain that

L̆nji =

[
L̂nji L̂nj,−i−1

L̂n−j−1,i L̂n−j−1,−i−1

]
, i, j ∈ Z≥0, for all n = 0, 1, 2, . . . ,

hence we obtain for every i, j ∈ Z≥0 the expression

Λ̆ji(t) = (etL̆)ji =

∞∑
n=0

tn

n!
L̆nji =

∞∑
n=0

tn

n!

[
L̂nji tnL̂nj,−i−1

L̂n−j−1,i L̂n−j−1,−i−1

]
=

[
Λji(t) Λj,−i−1(t)

Λ−j−1,i(t) Λ−j−1,−i−1(t)

]
.

�

Note that we can evaluate Λ̆ji(t) by (2.3.10) and then extract the block Λji(t) as in (2.3.11). Further, for a
density operator ρ we have

pji;ρ(n) = Tr (Λji(t)ρ) = Tr

([
Λji(t) 0

0 0

] [
ρ
0

])
= Tr

([
Id2 0
0 0

]
Λ̆ji(t)

[
Id2 0
0 0

] [
ρ
0

])
.

However, we would like to obtain the probability above avoiding the evaluation of Λ̆ji(t). This can be done via
a generalization of the Karlin-McGregor formula on Z≥0. We proceed as follows: first, write the decomposition

dW (x) =

[
dW11(x) dW12(x)
dW21(x) dW22(x)

]
,

where dW21(x) = dW ∗12(x), since dW (x) is positive definite. Then one has for i, j ∈ Z≥0,

Λ̆ji(t) = Π̆j

∫
R
e−xtQ∗j (x)dW (x)Qi(x)

(2.3.9)
=

[
Πj 0d2
0d2 Π−j−1

] ∫
R
e−xt

[
Q1
j (x) Q1

−j−1(x)
Q2
j (x) Q2

−j−1(x)

]∗ [
dW11(x) dW12(x)
dW ∗12(x) dW22(x)

] [
Q1
i (x) Q1

−i−1(x)
Q2
i (x) Q2

−i−1(x)

]
=

2∑
α,β=1

[
Πj

∫
R e
−xtQα∗j (x)dWαβ(x)Qβi (x) Πj

∫
R e
−xtQα∗j (x)dWαβ(x)Qβ−i−1(x)

Π−j−1

∫
R e
−xtQα∗−j−1(x)dWαβ(x)Qβi (x) Π−j−1

∫
R e
−xtQα∗−j−1(x)dWαβ(x)Qβ−i−1(x)

]
.

Joining equation above and Proposition 2.18, we obtain the Karlin-McGregor formula for a CTOQW on Z,
given by

Λji(t) =

2∑
α,β=1

Πj

∫
R
e−xtQα∗j (x)dWαβ(x)Qβi (x), for any i, j ∈ Z, n ≥ 0. (2.3.12)
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Conversely, if there exist weight matrices dW11(x), dW12(x), dW22(x) such that Λji(t) is of the form (2.3.12),

then Λ̆ji(t) is of the form

Φ̆
(n)
ji = Π̆j

∫
R
e−xtQ∗j (x)dW (x)Qi(x).

The weight matrix

W (x) =

[
W11(x) W12(x)
W ∗12(x) W22(x)

]
,

is called the spectral block matrix of L.

Remark 2.19. Extending Theorem 2.14 to the CTOQW on Z, we observe that, since Q1
0 = Q2

−1 = Id and
Q2

0 = Q1
−1 = 0d, we obtain ∫ ∞

0

p00;ρ(t)dt = lim
z↑0

Tr [Π0B(z;W11)vec(ρ)] .

where B(z;W ) is the Stieltjes transform of a weight matrix W . Analogously,∫ ∞
0

p−1,−1;ρ(t)dt = lim
z↑0

Tr [Π−1B(z;W22)vec(ρ)] .

Since we are assuming that Π0 and Π−1 are positive definite matrices, we apply Corollary 2.14 to verify that
vertex |0〉 is ρ-recurrent if and only if

lim
z↑0

Tr (B(z;W11)vec(ρ)) =∞,

and vertex |−1〉 is ρ-recurrent if and only if

lim
z↑0

Tr (B(z;W22)vec(ρ)) =∞.

Let us write the matrix L̂ in the form

L̆ =

[
L̂− C

A L̂+

]
, C =

 ...
...

...
0 0 0 · · ·
dC0e 0 0 · · ·

 , A =


· · · 0 0 dA−1e
· · · 0 0 0
· · · 0 0 0

...
...

...

 ,

L̂+ =


Gα0 + dB0e dC1e
dA0e Gα1 + dB1e dC2e

dA1e Gα2 + dB2e dC3e
. . .

. . .
. . .

 ,

L̂− =


. . .

. . .
. . .

dA−4e Gα−3 + dB−3e dC−2e
dA−3e Gα−2 + dB−2e dC−1e

dA−2e Gα−1 + dB−1e

 .
Our goal now is to write the Stieltjes transforms associated with the weight matrices Wαβ , α, β = 1, 2, in terms

of the Stieltjes transforms associated with W±, the weight matrices associated with L̂±.
We introduce the generating function of L

Φ(s) :=

∞∑
n=0

snL̂n

to obtain an explicit form for the Laplace Transform of Λ(t) on the following way:

Λ̂ji(t) =

∫ ∞
0

e−xtΛji(x)dx =

∞∑
n=0

∫ ∞
0

e−xt
xn

n!
L̂njidx =

∞∑
n=0

t̂n

n!
L̂nji =

∞∑
n=0

L̂nji
tn+1

=
Φji(t

−1)

t
.
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Using equations (1.6.11),(1.6.12),(1.6.13) and (1.6.14) applied to Φji(s
−1) = sΛ̂ji(s), we obtain

Λ̂00(z) = Λ̂+
00(z)(I − dA−1eΛ̂−−1,−1(z)dC0eΛ̂+

00(z))−1. (2.3.13)

Λ̂−1,−1(z) = Λ̂−−1,−1(z)(I − dC0eΛ̂+
00(z)dA−1eΛ̂−−1,−1(z))−1. (2.3.14)

Λ̂0,−1(z) = z−1Λ̂+
00(z)(I − dA−1eΛ̂−−1,−1(z)dC0eΛ̂+

00(z))−1dA−1eΛ̂−−1,−1(z). (2.3.15)

Λ̂−1,0(z) = z−1Λ̂−−1,−1(z)(I − dC0eΛ̂+
00(z)dA−1eΛ̂−1,−1(z))−1dC0eΛ̂+

00(z). (2.3.16)

We notice that the block matrices of both L̆+ and L̆− satisfy the conditions of equation (2.3.7), thus there
are positive weight matrices W± associated with L̆± for which the associated polynomials are orthogonal. Then,
we can write

Π+
0 :=

∫
R
dW+ and Π−−1 :=

∫
R
dW− .

The Laplace Transform of Λji(t) can be associated to the Stieltjes transform using that

Λ̂ji(s) =

∫ ∞
0

e−tsΛji(t)dt =

∫ ∞
0

e−ts
(

Πj

∫
R
e−xtQ∗j (x)dW (x)Qi(x)dt

)
= Πj

∫
R

Q∗j (x)dW (x)Qi(x)

s+ x
,

s > 0, that is,

Λ̂ji(−s) = Πj

∫
R

Q∗j (x)dW (x)Qi(x)

x− s
, s < 0,

thereby we recall that Q1
0 = Q2

−1 = Id2 , Q
2
0 = Q1

−1 = 0d2 in order to obtain the relations

B(z;W11) = Π−1
0 Λ̂00(−z), B(z;W22) = Π−1

−1Λ̂−1,−1(−z), B(z−1;W12) = Π−1
−1Λ̂0,−1(−z),

B(z;W21) = Π−1
−1Λ̂−1,0(−z), B(z;W+) = (Π+

0 )−1Λ̂+
00(−z), B(z−1;W−) = (Π−−1)−1Λ̂−−1,−1(−z).

Joining with the identities (2.3.13),(2.3.14),(2.3.15),(2.3.16), the new Stieltjes transform identities are obtained:

Π0B(z;W11) = Π+
0 B(z;W+)(I − dA−1eΠ−−1B(z;W−)dC0eΠ+

0 B(z;W+))−1,

Π−1B(z;W22) = Π−−1B(z;W−)(I − dC0eΠ+
0 B(z;W+)dA−1eΠ−−1B(z;W−))−1,

Π0B(z;W12) = Π+
0 B(z;W+)(I − dA−1eΠ−−1B(z;W−)dC0eΠ+

0 B(z;W+))−1dA−1eΠ−−1B(z;W−),

Π−1B(z;W21) = Π−−1B(z;W−)(I − dC0eΠ+
0 B(z;W+)dA−1eΠ−−1B(z;W−))−1dC0eΠ+

0 B(z;W+).

(2.3.17)

Sometimes the operators Π+
i and Π−i are equal to the identity operator. In this case, (2.3.17) are reduced to

B(z;W11) = B(z;W+)(I − dA−1eB(z;W−)dC0eB(z;W+))−1,

B(z;W22) = B(z;W−)(I − dC0eB(z;W+)dA−1eB(z;W−))−1,

B(z;W12) = B(z;W+)(I − dA−1eB(z;W−)dC0eB(z;W+))−1dA−1eB(z;W−),

B(z;W21) = B(z;W−)(I − dC0eB(z;W+)dA−1eB(z;W−))−1dC0eB(z;W+).

(2.3.18)

Equations (2.3.17) and (2.3.18) allow us to obtain the Stieltjes transform of the CTOQW with V = Z
when we know the Stieltjes transform associated to the walks on Z≥0 and Z≤0. Since we are interested on the
recurrence and transience of the CTOQWs, those equations are enough to obtain this information as it will be
seen on the next section.

Remark 2.20. A sufficient condition for Π+
i = Π−i = I is to have An = C∗n+1 and Bn = B∗n for every n ∈ Z,

since we will always have Gn = G∗n for all n ∈ Z in this case and therefore we can take Ri = I for all i ∈ Z
(see Equation (2.3.7)). On the other hand, those conditions are not necessary, since we can find examples with
Rn being any unitary matrices for each n.

2.4 Examples

In this section we present examples of matrix weights associated to tridiagonal CTOQWs and then we evaluate
statistics properties of the random walks with finite and infinite number of vertices.
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2.4.1 Diagonal and simultaneously diagonalizable transitions

First, we will consider a homogeneous CTOQW, with Rii = 0 for each site, whose generator L on the N + 1
nodes indexed as {0, 1, . . . , N} is given by

L̂ =



Gα dCe
dAe Gα dCe

dAe Gα dCe
. . .

. . .
. . .

dAe Gα dCe
dAe Gα


, A =

[
a1 0
0 a2

]
, C =

[
c1 0
0 c2

]
, a1, a2, c2, c2 > 0,

Gα = −diag
(
a2

1 + c21,
a2

1 + c21 + a2
2 + c22

2
,
a2

1 + c21 + a2
2 + c22, a

2
2 + c22

2
, a2

2 + c22

)
.

Note that there are absorbing barriers on sites 0 and N . The classical symmetrization

R = diag(R0, R1, . . . , RN ), Ri = K
i−1
2 , i = 1, . . . , N, R0 = I4,

where K = d
√
ACe = diag

(
a1c1,

√
a1c1a2c2,

√
a1c1a2c2, a2c2

)
, gives

J = RL̂R−1 =



Gα K
K Gα K

K Gα K
.. .

. . .
. . .

K Gα K
K Gα


.

The matrix-valued polynomials {Qn}n≥0 are recursively defined by

Q0(x) = 1, Q−1(x) = 0,

−xQ0(x) = Q0(x)Gα +Q1(x)K,

−xQi(x) = Qi+1(x)K +Qi(x)Gα +Qi−1(x)K, i = 1, . . . , N − 1,

which can be identified with the Chebyshev polynomials of the second kind {Un}n≥0. Indeed, we have

Qn(x) = Un

(
(−x−Gα)K−1

2

)
, n ≥ 0.

Now, if we define
RN+1(x) := QN (x)(−x−Gα)−QN−1(x)K,

we have that the zeros of det(RN+1(x)) coincide with the eigenvalues of −J . A simple calculation shows that

RN+1(x) = UN+1

(
(−x−Gα)K−1

2

)
K.

We would like to solve the equation det(RN+1(x)) = 0. Recalling the representation

Un

(z
2

)
=

n∏
j=1

(
z − 2 cos

(
jπ

n+ 1

))
,

we obtain, for the matrix-valued case at hand,

det(RN+1(x)) = det

(
UN+1

(
(−x−Gα)K−1

2

)
K

)
= det

N+1∏
j=1

(
(−xI4 −Gα)K−1 − 2 cos

(
jπ

N + 2

))
K

 ,
thus

det(RN+1(x)) = k1k
2
2k4

N+1∏
j=1

4∏
m=1

[
(−x− gm)

km
− 2 cos

(
jπ

N + 2

)]
,
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where we have put G = −diag(g1, g2, g3, g4) and K = −diag(k1, k2, k3, k4). Since g2 = g3 and k2 = k3,
det(RN+1(x)) is a polynomial of degree 4(N + 1) having 3(N + 1) distinct roots, which are of the form

xj =− g1 − 2k1 cos

(
π
j + 1

N + 2

)
= a2

1 + c21 − 2a1c1 cos

(
π
j + 1

N + 2

)
,

yj =− g2 − 2k2 cos

(
π
j + 1

N + 2

)
=
√
a1c1a2c2 − (a2

1 + c21 + a2
2 + c22) cos

(
π
j + 1

N + 2

)
,

zj =− g4 − 2k4 cos

(
π
j + 1

N + 2

)
= a2

2 + c22 − 2a2c2 cos

(
π
j + 1

N + 2

)
, j = 0, . . . , N,

each yj being of multiplicity 2. There can be cases of eigenvalues with a greater multiplicity, which happens
when the collection of zeros xN , yN and zN overlap, so the multiplicity changes accordingly.

Let us compute the weight matrixs on the zeros above. We have

Wj = g′j(λj), gj(λ) := −(λj − λ)2(−J − λI)−1
00 , λj = xj , yj , zj , j = 0, . . . , N, (2.4.1)

an expression which can be deduced from (see [22])

(−J − λI)−1
ij =

N∑
k=0

P ∗i (λk)WkPj(λk)

λk − λ
,

and noting that this corresponds to the Laurent sum of the operator on the left-hand side except for the sign
change λk−λ = −(λ−λk). With formula (2.4.1), a calculation shows that for every N we have a corresponding
set of multiples of the matrices given by

WK;1 =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 , WK;2 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

 , WK;3 =


0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

 .
More precisely, we have a collection of 3(N + 1) roots with weights

ψ(xj) =
2

N + 2
sin2

(
π
j + 1

N + 2

)
WK;1, j = 0, . . . , N,

ψ(yj) =
2

N + 2
sin2

(
π
j + 1

N + 2

)
WK;2, j = 0, . . . , N.

ψ(zj) =
2

N + 2
sin2

(
π
j + 1

N + 2

)
WK;2, j = 0, . . . , N.

For a specific instance of the above take N = 2 (3 sites), so we have 9 roots, with weights

1

4
WK;1,

1

4
WK;2,

1

4
WK;3

associated with zeros a2
1 + c21−2a1c1,

√
a1c1a2c2− (a2

1 + c21 +a2
2 + c22) and a2

2 + c22−2a2c2 respectively; weights

1

2
WK;1,

1

2
WK;2,

1

2
WK;3

associated with zeros a2
1 +c21−

√
2a1c1,

√
a1c1a2c2−

√
2(a2

1 +c21 +a2
2 +c22)/2 and a2

2 +c22−
√

2a2c2 respectively;
and weights

1

4
WK;1,

1

4
WK;2,

1

4
WK;3

associated with zeros a2
1 + c21,

√
a1c1a2c2 and a2

2 + c22 respectively.

Now, let us consider the walk on the half-line.
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The matrix

L̂ =


Gα0 dCe
dAe Gα dCe

dAe Gα dCe
. . .

. . .
. . .

 ,
Gα = − 1

2 ((A∗A+ C∗C)⊗ I2 + I2 ⊗ (A∗A+ C∗C))

Gα0 = − 1
2 ((A∗A)⊗ I2 + I2 ⊗ (A∗A))

is a valid generator of a CTOQW. Also,

Gα = −


a2

1 + c21 0 0 0

0
a21+c21+a22+c22

2 0 0

0 0
a21+c21+a22+c22

2 0
0 0 0 a2

2 + c22

 ,

Gα0 = −


a2

1 0 0 0

0
a21+a22

2 0 0

0 0
a21+a22

2 0
0 0 0 a2

2

 .
If we take K := d(AC)e1/2 then we obtain the symmetrization

J = R(−L̂)R−1 =


−Gα0 K
K −Gα K

K −Gα K
.. .

. . .
. . .

 ,
where K is positive definite,

R = diag(R0, R1, . . . , RN ), Ri = dA−1Cei−1, i = 1, 2, 3, . . . , N, R0 = I4.

Let us obtain the weight matrix associated to J̃ ,

J̃ :=


−Gα K
K −Gα K

K −Gα K
.. .

. . .
. . .

 ,
using the results of A.J. Durán ([21]).

Since Gα and K commute it is easy to see that the matrix HA,B(x) given by [21] is

H(x) =(xI +Gα)2K−2 − 4I4 = (xI +Gα)2dACe−1 − 4I4

=



(x−a21−c
2
1)2

a21c
2
1

− 4 0 0 0

0
(x− a

2
1+c21+a22+c22

2 )2

a1a2c1c2
− 4 0 0

0 0
(x− a

2
1+c21+a22+c22

2 )2

a1a2c1c2
− 4 0

0 0 0
(x−a22−c

2
2)2

a22c
2
2

− 4

 .

The associated weight matrix to J̃ is

dΣ̃(x) =
1

2π
K−1

√
diag(h1, h2, h3, h4) =

1

2π


d1(x) 0 0 0

0 d2(x) 0 0
0 0 d3(x) 0
0 0 0 d4(x)

 dx, (2.4.2)
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where hj represents the j-th diagonal entry of the diagonal appearing on the representation of H(x) and

d1(x) =

[√
4a2

1c
2
1 − (x− a2

1 − c21)2
]

+

a2
1c

2
1

, d4(x) =

[√
4a2

2c
2
2 − (x− a2

2 − c22)2
]

+

a2
2c

2
2

d2(x) =d3(x) =

[√
4a1a2c1c2 −

(
x− a21+c21+a22+c22

2

)2
]

+

2a1a2c1c2
.

Here we are using the notation [f(x)]+ = f(x) if f(x) ≥ 0 and 0 otherwise.
We are interested on the transitions of the CTOQW, thus only d1(x) and d4(x) contribute for the calculus

of the trace when we evaluate

Tr



d1(x) 0 0 0

0 d2(x) 0 0
0 0 d3(x) 0
0 0 0 d4(x)

 vec(ρ)

 ,

thereby we will avoid the massive calculations using terms as d2(x) and d3(x) appearing on the sequel of this
section.

The Stieltjes transform is

B(z, Σ̃) = K−1
√
diag(h1, h2, h3, h4) =


w1(z) 0 0 0

0 w2(z) 0 0
0 0 w3(z) 0
0 0 0 w4(z)

 , (2.4.3)

where w2(z) = w3(z) is a function that does not vanish and

w1(z) =
z − a2

1 − c21 − i
√

4a2
1c

2
1 − (z − a2

1 − c21)2

2a2
1c

2
1

,

w4(z) =
z − a2

2 − c22 − i
√

4a2
2c

2
2 − (z − a2

2 − c22)2

2a2
2c

2
2

.

Since the measure is obtained on the terms of [21], we must have Π0 = I4, then we use equation (2.20) of
[17] to obtain the Stieltjes transform of the weight matrix associated to J :

B(z,Σ) =
(
B(z, Σ̃)−1 + (Gα0 −Gα)

)−1

=


σ1(z) 0 0 0

0 ∗ 0 0
0 0 ∗ 0
0 0 0 σ2(z)

 ,
where

σj(z) =
z − a2

j + c2j +
√
−4a2

jc
2
j + (z + a2

j + c2j )

2c2jz
, j = 1, 2.

It is a simple calculation to verify that limz↑0 σj(z) = ∞ ⇔ aj ≤ cj , thus, given a density operator

ρ =

[
a b
b∗ 1− a

]
, we have

lim
z↑0

Tr
[
vec−1Π0 (B(z,Σ)vec(ρ))

]
= lim

z↑0
(π1σ1(z)a+ π2σ2(z)(1− a)) ,

where π1, π2 > 0. Therefore, if {|e0〉 , |e1〉} is the canonical basis of C2, then an application of Corollary 2.14
shows that

� a1 ≤ c1 and a2 ≤ c2 ⇒ vertex |0〉 is recurrent;

� a1 ≤ c1 and a2 > c2 ⇒ vertex |0〉 is |e1〉 〈e1|-transient and ρ-recurrent for ρ 6= |e1〉 〈e1| ;
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� a1 > c1 and a2 ≤ c2 ⇒ vertex |0〉 is |e0〉 〈e0|-transient and ρ-recurrent for ρ 6= |e0〉 〈e0| ;

� a1 > c1 and a2 > c2 ⇒ vertex |0〉 is transient.

The Perron-Stieltjes inversion formula (Proposition 1.1 of [19]) gives

dΣ(x) =
1

π



[√
4a21c

2
1−(x−a21−c21)2

2c21x

]
+

0 0 0

0 ∗ 0 0
0 0 ∗ 0

0 0 0

[√
4a22c

2
2−(x−a22−c22)2

2c22x

]
+

 dx,

thus an application of the Karlin-McGregor formula for CTOQWs gives for ρ =

[
a b
b∗ 1− a

]
,

p00;ρ(t) = a

∫ ∞
0

e−xt

[√
4a2

1c
2
1 − (x− a2

1 − c21)2

2c21x

]
+

dx+ (1− a)

∫ ∞
0

e−xt

[√
4a2

2c
2
2 − (x− a2

2 − c22)2

2c22x

]
+

dx.

Moreover, assume that r := a1 = c1 and s := a2 = c2, then the weight matrix dΣ(x) is

dΣ(x) =
1

π


[√
−x2+4xr2

2r2x

]
+

0 0 0

0 wr,s(x) 0 0
0 0 wr,s(x) 0

0 0 0
[√
−x2+4xs2

2s2x

]
+

 dx
where

wr,s(x) =

[
2
√

((r + s)2 − x)(x− (r − s)2)

2(r2 + s2)x− (r2 − s2)2

]
+

+

(
(r + s)(r − s)

r2 + s2

)2

δx0
(z), x0 =

(r + s)2(r − s)2

2(r2 + s2)
.

Finally, we describe the associated walk on the integer line.

Let us consider the homogeneous CTOQW on Z with

Ri+1
i = A =

[
a1 0
0 a2

]
, Ri−1

i = C =

[
c1 0
0 c2

]
, ∀i ∈ Z, a1, a2, c1, c2 > 0.

In this case we have

Gi = −


a2

1 + c21 0 0 0

0
a21+c21+a22+c22

2 0 0

0 0
a21+c21+a22+c22

2 0
0 0 0 a2

2 + c22

 , i ∈ Z.

Using the first equation on (2.3.18) with A−1 = A and C0 = C, we obtain

B(z;W11) =


√

(z−a21−c21)2−4a21c
2
1

(z−a21−c21)2−4a21c
2
1

0 0 0

0 ∗ 0 0
0 0 ∗ 0

0 0 0

√
(z−a22−c22)2−4a22c

2
2

(z−a22−c22)2−4a22c
2
2

 ,

where we used dW+ = dW− = dΣ̃(x), dΣ̃(x) being the weight matrix given by (2.4.2).
It is easily seen that

lim
z↑0

√
(z − a2

k − c2k)2 − 4a2
kc

2
k

(z − a2
k − c2k)2 − 4a2

kc
2
k

=∞ ⇔ ak = ck, k = 1, 2,

therefore, for ρ =

[
a b
b∗ 1− a

]
, we obtain that
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� a1 = c1 and a2 = c2 implies that the walk is recurrent;

� a1 6= c1 and a2 6= c2 implies that the walk is transient;

� a1 = c1 and a2 6= c2 implies that the walk is ρ-transient for a = 0 and ρ-recurrent for a > 0;

� a1 6= c1 and a2 = c2 implies that the walk is ρ-transient for a = 1 and ρ-recurrent for a < 1.

Moreover, the measure dW11 is obtained by applications of the Perron-Stieltjes inversion formula:

dW11(x) =



[√
(x−a21−c21)2−4a21c

2
1

(x−a21−c21)2−4a21c
2
1

]
+

0 0 0

0 ∗ 0 0
0 0 ∗ 0

0 0 0

[√
(x−a22−c22)2−4a22c

2
2

(x−a22−c22)2−4a22c
2
2

]
+

 .

The case of simultaneous unitarily diagonalizable transitions. The above analysis can be applied
to the simultaneous unitary diagonalizable coins, that is, we can take an unitary matrix U and coins given by

A = U

[
a1 0
0 a2

]
U∗, C = U

[
c1 0
0 c2

]
U∗, a1, a2, c1, c2 > 0

to obtain analogous conclusions about the recurrence of vertex |0〉 . In this case, we have

� a1 ≤ c1 and a2 ≤ c2 ⇒ vertex |0〉 is recurrent;

� a1 ≤ c1 and a2 > c2 ⇒ vertex |0〉 is U |e1〉 〈e1|U∗-transient and ρ-recurrent for ρ 6= U |e1〉 〈e1|U∗;

� a1 > c1 and a2 ≤ c2 ⇒ vertex |0〉 is U |e0〉 〈e0|U∗-transient and ρ-recurrent for ρ 6= U |e0〉 〈e0|U∗;

� a1 > c1 and a2 > c2 ⇒ vertex |0〉 is transient.

Let us describe an example of this and, in addition, let us consider a perturbation on the first vertex. In
this case, the walk can be represented by Figure 2.4, where B0 represents the rate of jumping from vertex |0〉 to
itself. Moreover, since we are taking B0 as the operator containing the rate of remaining on site |0〉 , one may

0 1 2 3 . . .
A A A

CCC

A

C

B0

Figure 2.4: A slight modification on the first vertex.

think that B0 6= 0 should increase the probability of recurrence on site |0〉 , however the exactly opposite may
happen as the following example illustrates.

Example 2.21. Let U = 1√
2

[
1 1
−1 1

]
and consider the CTOQW with generator

L̂ =


G0 + dB0e dCe
dAe G dCe

dAe G dCe
. . .

. . .
. . .

 , A = C = U

[
2 0
0 1

]
U∗, B0 = U

[
b1 b2
b2 b3

]
U∗,

bk ∈ R, k = 1, 2, 3, G = −Udiag(8, 5, 5, 2)U∗ and

G0 = −2U


8 + 2b2 b2(b3 − b1) b2(b3 − b1) −2b22

b2(b3 − b1) 5 + (b1 − b3)2 + 2b22 −2b22 b2(b1 − b3)
b2(b3 − b1) −2b22 5 + (b1 − b3)2 + 2b22 b2(b1 − b3)
−2b22 b2(b1 − b3) b2(b1 − b3) 2 + 2b22

U∗,
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where U = U ⊗ U.
We remark that the matrix B0 is a multiplication B0 = UTU∗, where T is Hermitian, therefore unitary

diagonalizable. In this case we have B0 = UV DV ∗U∗, where D is diagonal and V is unitary, however we
preserve the representation B0 = UTU∗ in order to preserve the products involving the coins and to assure that
the transitions of the walk do not have a diagonal dynamics when b2 6= 0.

The Stieltjes transform of the weight matrix associated to L̃ (L̂ with G0 + dB0e switched by G) is then, by
equation (2.4.3),

B(z, Σ̃) =
1

32
U


w1(z) 0 0 0

0 w2(z) 0 0
0 0 w3(z) 0
0 0 0 w4(z)

U∗, w1(z) = 8− z −
√
z(z − 16)

w2(z) = w3(z) = 20− 4z − 4
√
z2 − 10z + 9

w4(z) = 32− 16z − 16
√
z2 − 4z

. (2.4.4)

The Stieltjes transform of −L̂ is obtained by

B(z,Σ) =
(
B(z, Σ̃)−1 + (G0 + dB0e −G)

)−1

=U


4− b22 + w1(z)

32
b2(b1−b3)

2
b2(b1−b3)

2 b22
b2(b1−b3)

2
5−b21−b

2
2−b

2
3+2b1b3

2 + w2(z)
32 b22

b2(b1−b3)
2

b2(b1−b3)
2 b22

5−b21−b
2
2−b

2
3+2b1b3

2 + w3(z)
32

b2(b1−b3)
2

b22
b2(b1−b3)

2
b2(b1−b3)

2 1− b22 + w4(z)
32


−1

U∗.

After some calculus using the limit given in Corollary 2.14, we obtain the following results:

� b2 = 0 and b1 /∈ {b3 + 3
√

2/2, b3 − 3
√

2/2, b3} ⇒ vertex |0〉 is recurrent;

� b2 = 0 and b1 ∈ {b3 + 3
√

2/2, b3 − 3
√

2/2, 1} ⇒ vertex |0〉 is ρ-recurrent if and only if ρ = 1
2

[
1 −1
−1 1

]
;

� b2 6= 0⇒ vertex |0〉 is transient.

Now we point out that the choice b2 = 0 keeps some recurrence properties of site |0〉 , however a non-null b2
assures that vertex |0〉 is transient for any choice of ρ.

A perturbation on the vertex |0〉 fot the CTOQW on Z : We consider CTOQW on Z with the same
transitions as above with a perturbation on vertex |0〉 , that is, the we are taking the walk given by Figure 2.5,
where

A = C = U

[
2 0
0 1

]
U∗, B0 = U

[
b1 b2
b2 b3

]
U∗, U =

1√
2

[
1 1
−1 1

]
, b1, b2, b3 ∈ R.

−2 −1 0 1 2 . . .. . .
A A A A A A

CCCCC

B0

Figure 2.5: Generator L̂ of a CTOQW on Z with a perturbation on vertex |0〉.

We want to apply Equation (2.3.17) to verify if vertex |0〉 is recurrent. To do this, we notice that

L̂+ =


Gα0 + dB0e dCe
dAe Gα dCe

dAe Gα dCe
. . .

. . .
. . .

 , L̂− =


. . .

. . .
. . .

dAe Gα dCe
dAe Gα dCe

dAe Gα

 ,
where Gα = −Udiag(8, 5, 5, 2)U∗ and

Gα0 = −1

2
[(A∗A+B∗0B0 + C∗C)⊗ I + I ⊗ (A∗A+B∗0B0 + C∗C)] .
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The Stieltjes transform of the weight matrix associated to L̂− is given on Equation (2.4.4)(since A = C)
while the Stieltjes transform of the weight matrix associated to L̂+ is

B(z,W+) =
(
B(z,W−)−1 + (Gα0 + dB0e −Gα)

)−1

=U


s1(z) b2(b1−b3)

2
b2(b1−b3)

2 b22
b2(b1−b3)

2 s2(z) b22
b2(b1−b3)

2
b2(b1−b3)

2 b22 s2(z) b2(b1−b3)
2

b22
b2(b1−b3)

2
b2(b1−b3)

2 s3(z)


−1

U∗.

where s1(z) = z−
√
z2−16z
2 − 4− b22, s2(z) = 5−z−(b1−b3)2+

√
z2−10z+9

2 − b22, s3(z) = z−
√
z2−4z
2 − 1− b22.

Some calculus show that
− lim
z↑0

Tr (B(z,W11)ρ) =∞

for any choice of b1, b2, b3 ∈ R and ρ ∈M2(C), therefore vertex |0〉 is always recurrent for this CTOQW.
The same can be done with vertex |−1〉 , however in this case we have to evaluate − limz↑0 Tr (B(z,W22)ρ) =

∞, which is always infinite for any choice of b1, b2, b3 ∈ R and ρ ∈ M2(C), therefore vertex |−1〉 is also always
recurrent for this CTOQW.

2.4.2 Noncommuting transitions

Let

A =

[
1 0
1 −1

]
, C =

[
1 1
0 −1

]
,

where

G1 = −3I4, G0 =
1

2


−4 1 1 0
1 −3 0 1
1 0 −3 1
0 1 1 −2

 , G2 = −1

2


2 1 1 0
1 3 0 1
1 0 3 1
0 1 1 4

 .
Consider the CTOQW with V = {0, 1, 2, 3} induced by the generator

L̂ =


G0 dCe 0 0
dAe G1 dCe 0

0 dAe G1 dCe
0 0 dAe G2

 .
Note that this generator satisfies the conditions (2.3.5) with Rn = I4, n = 0, 1, 2, 3, thus there exists a

positive weight matrix associated to L̂, which will be evaluated now.
The eigenvalues of −L̂ are

λ1 =0, λ2 = 3−
√

5, λ3 = 3 +
√

5, λ4 = 3−
√

7, λ5 = 3 +
√

7

λ6 =
7−
√

17

4
, λ7 =

7 +
√

17

4
, λ8 =

11−
√

41

4
, λ9 =

11 +
√

41

4
,

(λ1, λ4, λ5, λ6, λ7, λ8 and λ9 have multiplicity 2) with weights

W1 =
1

20


3 −1 −1 2
−1 2 2 1
−1 2 2 1
2 1 1 3

 , W2 =
1

2

(
W1 +

√
5

20
Y

)
, W3 =

1

2

(
W1 −

√
5

20
Y

)
,

W4 =
1

14

(
(14 + 3

√
7)W1 +

√
7

4
Y

)
, W5 =

1

14

(
(14− 3

√
7)W1 −

√
7

4
Y

)
,

W6 =
1

4

(
1 +

√
17

17

)
(I4 − 4W1) ,W7 =

1

4

(
1−
√

17

17

)
(I4 − 4W1)

W8 =
1

4

(
1 +

4
√

41

41

)
(I4 − 4W1) ,W9 =

1

4

(
1− 4

√
41

41

)
(I4 − 4W1) .
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where

Y =


−1 1 1 0
1 0 0 1
1 0 0 1
0 1 1 1

 .
For instance, we have for ρ =

[
a b
b∗ 1− a

]
,

p00;ρ(t) =

9∑
k=1

e−λkWk =
1

4
+
(
e−λ2t − e−λ3t

)
v1 +

e−λ2t + e−λ3t

8
+
(
e−λ4t − e−λ5t

)
v2 +

e−λ4t + e−λ5t

4
,

where v1 =

√
5

40
(1− 2a+ 4Re(b)) and v2 =

√
7

28
(2− a+ 2Re(b)).

2.4.3 Antidiagonal transitions: another approach

In this section we discuss an example with antidiagonal transitions, and we do this in terms of a preliminary
reasoning with a generator that have alternating matrices. More precisely, first we consider a block matrix of
the form

J =



−G0 dP0e
dP0e −G dP1e

dP1e −G dP0e
dP0e −G dP1e

dP1e −G dP0e
. . .

. . .
. . .


,

where

P0 =

[√
a2c1 0
0

√
a1c2

]
, P1 =

[√
a1c2 0
0

√
a2c1

]
, a1, a2, c1, c2 ≥ 0,

G0 = −


a2

2 0 0 0

0
a21+a22

2 0 0

0 0
a21+a22

2 0
0 0 0 a2

1

 , G = −


a2

2 + c22 0 0 0

0
a21+a22+c21+c22

2 0 0

0 0
a21+a22+c21+c22

2 0
0 0 0 a2

1 + c21

 .
We notice that J may not be a valid generator of a CTOQW, however this block matrix will be auxiliary

to obtain a weight matrix associated to a specific kind of generator later. Then, we use Theorem 2.4 of [17] to
obtain the following equality associated to the Stieltjes transform of the weight matrix dΣ(x) associated to J̃ ,
which is the equivalent of J with G0 switched by G :

B(z, Σ̃) = {zI4 −G+ dP0e{zI4 −G+ dP1eB(z, Σ̃)(−dP1e)}−1(−dP0e)}−1,

where Ri = I4 for every Ri appearing on Theorem 2.4 of [17] is a consequence of dP0e = dP0eT and dP1e = dP1eT .
The known matrices of the equality are all diagonal, thus we assume that

B(z, Σ̃) = diag
(
f̃1(z), f̃2(z), f̃3(z), f̃4(z)

)
,

and then each f̃k(z) is a solution of

f̃k(z) = {z − g̃k −m0,k{z − g̃k −m1,kfk(z)m1,k}−1m0,k}−1,

where G = diag(g̃1, g̃2, g̃3, g̃4), dPje = diag(mj,1,mj,2,mj,3,mj,4), j = 0, 1. Some algebra gives

m2
1,k(z − g̃k)f̃k(z)2 + (m2

0,k −m2
1,k − (z − g̃k)2)f̃k(z) + (z − g̃k) = 0.

Therefore

f̃k(z) =
m2

1,k −m2
0,k + (z − g̃k)2 −

√(
m2

0,k −m2
1,k − (z − g̃k)2

)2

− 4(z − g̃k)2m2
1,k

2m2
1,k(z − g̃k)

.
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As usually, the next step is to obtain the Stieltjes transform of dΣ, the weight matrix associated to J. By
equation (2.20) of [17], we have

B(z,Σ) =
(
B(z, Σ̃)−1 + (G0 −G)

)−1

= diag(f1(z), f2(z), f3(z), f4(z)),

where

fk(z) =
1

2

ψk(z)m1,k −m1,k

√
ψk(z)2 + 4γk(z)2 − 2g̃kγk(z) + 2gkγk(z)

m2
1,kγk(z)− g̃2

kγk(z)− g2
kγk(z) + 2g̃kgkγk(z)−m1,kgkψk(z) +m1,kg̃kψk(z)

,

and we have put G0 = diag(g1, g2, g3, g4, ) ψk(z) = −(z + gk)2 +m2
1,k −m2

0,k, γk(z) = (z + gk)m1,k.

Now, we are able to consider an antidiagonal transition in the following terms: consider a CTOQW on Z+

whose generator is of the form

L̂ =


G0 dCe
dAe G dCe

dAe G dCe
. . .

. . .
. . .

 , A =

[
0 a1

a2 0

]
, C =

[
0 c1
c2 0

]
,

G0 = −


a2

2 0 0 0

0
a21+a22

2 0 0

0 0
a21+a22

2 0
0 0 0 a2

1

 , G = −


a2

2 + c22 0 0 0

0
a21+a22+c21+c22

2 0 0

0 0
a21+a22+c21+c22

2 0
0 0 0 a2

1 + c21

 .
We have the symmetrization

J = R(−L̂)R−1 =



−G0 dP0e
dP0e −G dP1e

dP1e −G dP0e
dP0e −G dP1e

dP1e −G dP0e
. . .

. . .
. . .


, R = diag(dR0e, dR1e, . . .),

where

R2k =


(
c2
a1

) k
2
(
c1
a2

) k−2
2

0

0

(
c2
a1

) k−2
2
(
c1
a2

) k
2

 , R2k+1 =

(
c1c2
a1a2

) k
2
[
0 1
1 0

]
, k = 0, 1, 2, . . . ,

and P0 and P1 are the ones given above. Thus J and L̂ have the same associated weight matrix and we obtain,
for dΣ(x) given above that

lim
z↑0

Tr (B(z,Σ)ρ) = lim
z↑0

(f1(z)a+ f4(z)(1− a)),

where ρ =

[
a b
b∗ 1− a

]
. After some calculus we obtain that

lim
z↑0

f1(z) =∞ ⇔ a1 =

√
2c42 − a2

2c
2
1 + a4

2 + 3a2
2c

2
2

a2
2 + 2c22

, 2c42 + a4
2 + 3a2

2c
2
2 > a2

2c
2
1,

lim
z↑0

f4(z) =∞ ⇔ a2 =

√
2c41 − a2

1c
2
2 + a4

1 + 3a2
1c

2
1

a2
1 + 2c21

, 2c41 + a4
1 + 3a2

1c
2
1 > a2

1c
2
2,

giving the following conclusion (see Corollary 2.14):

� a1 =
√

2c42−a22c21+a42+3a22c
2
2

a22+2c22
and a2 =

√
2c41−a21c22+a41+3a21c

2
1

a21+2c21
⇒ vertex |0〉 is recurrent;
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� a1 =
√

2c42−a22c21+a42+3a22c
2
2

a22+2c22
and a2 6=

√
2c41−a21c22+a41+3a21c

2
1

a21+2c21
⇒ vertex |0〉 is ρ-transient when a = 0 and

ρ-recurrent when a > 0;

� a1 6=
√

2c42−a22c21+a42+3a22c
2
2

a22+2c22
and a2 =

√
2c41−a21c22+a41+3a21c

2
1

a21+2c21
⇒ vertex |0〉 is ρ-transient when a = 1 and

ρ-recurrent when a < 1;

� a1 6=
√

2c42−a22c21+a42+3a22c
2
2

a22+2c22
and a2 6=

√
2c41−a21c22+a41+3a21c

2
1

a21+2c21
⇒ vertex |0〉 is transient.

The last example of this section will consider CTOQWs with non-null Hamiltonian part.

Example 2.22. Let us consider r, s > 0 such that rs = 1. We set the matrices

A = rI2, C = sI2, H0 =

[
v u
u v

]
, B =

[
1 ui
ui 1

]
, u, v ∈ R.

The CTOQW with V = {0, 1}: we consider the case H1 = H0 and let

Gα0 =


−r2 − u2 0 0 u2

0 −r2 − u2 u2 0
0 u2 −r2 − u2 0
u2 0 0 −r2 − u2

 , Gα1 =


−s2 − u2 0 0 u2

0 −s2 − u2 u2 0
0 u2 −s2 − u2 0
u2 0 0 −s2 − u2

 .
On this case,

L̂ =

[
Gα0 + dBe dCe
dAe Gα1 + dBe

]
,

thus the semigroup preserves trace. Also, the eigenvalues of L̂ are

λ1 = 0, λ2 = −1 + r4

r2
, λ3 = −1 + 2u2r2 + r4

r2
, λ4 = −2u2,

and the corresponding weights are

W1 =
1

2(1 + r4)


1 0 0 1
0 1 1 0
0 1 1 0
1 0 0 1

 , W2 = r4W1, W3 =
r4

2(1 + r4)


1 0 0 −1
0 1 −1 0
0 −1 1 0
−1 0 0 1

 , W4 =
1

r4
W3.

For instance,

p00;ρ(t) =
1 + eλ2r4

1 + r4
,

for any density ρ ∈M2(C).
The CTOQW with V = Z≥0: we consider the case Hi = H0∀i ∈ V, then the trace-preserving case has

Gα0 =


−r2 − u2 0 0 u2

0 −r2 − u2 u2 0
0 u2 −r2 − u2 0
u2 0 0 −r2 − u2

 , Gαi = G :=


−2− u2 0 0 u2

0 −2− u2 u2 0
0 u2 −2− u2 0
u2 0 0 −2− u2

 , i ≥ 1.

By the technique of [21], the matrix weight associated to

L̃ =


G dCe
dAe G dCe

dAe G dCe
. . .

. . .
. . .


is given by

dW̃ (x) =

√
[4(xu2 − 2u2 − u4 + x)− x2]+ +

√
[4x− x2]+

4π


1 0 0 −1
0 1 −1 0
0 −1 1 0
−1 0 0 1

 .
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The Stieltjes transform of dΣ̃ is

B(z, Σ̃) =

√
−4(−zu2 + u2 + u4 − z) + z2 − 4 + 2z − 2u2 −

√
−4z + z2

4


1 0 0 −1
0 1 −1 0
0 −1 1 0
−1 0 0 1

 ,
thus an application of formula given by Equation 2.20 of [17] gives the Stieltjes transform B(z,Σ), where dΣ is
the matrix weight associated to the CTOQW whose generator is

L̂ =


Gα0 dCe
dAe G dCe

dAe G dCe
. . .

. . .
. . .

 .
After some calculus, we obtain

− lim
z↑0

Tr (B(z,Σ)ρ) =
1 + r4 + |1− r4|
1− r4 + |1− r4|

r2,

for any choice of ρ, which allows us to conclude that the CTOQW is recurrent if and only if r ≥ 1, that is,
r ≥ s. If r < s, then the walk is transient for every density ρ.

The CTOQW with V = Z: the Stieltjes transform of the matrix weight W11 associated to the walk on Z
is obtained by Equation (2.3.18) and we have

− lim
z↑0

Tr (B(z,W11)ρ) =
1 + r4 + |1− r4|

1− 2r4 + (r4 + 1)|1− r4|+ r8
r2,

which is finite if and only if r = s = 1. Therefore this CTOQW in Z is recurrent if and only if r = s and
transient for every density if and only if r 6= s.

2.5 Jumps and Holding Time

In this section we treat the recurrence of homogeneous CTOQW based on its jump chain. The probability
distribution of the jumps will appear as values bounded by CP maps defined on terms of Rij and Gi which
characterize the generator L. Before that, let us recall some properties of the discrete and continuous-time
Markov chains (DTMC and CTMC respectively) on the set of vertices V = Z.

Proposition 2.23 ([32]). Consider a CTMC on Z generated by a Q-matrix Q = (qij)i,j∈Z. A vertex i ∈ Z is
recurrent if and only if it is recurrent for its jump chain Π = (πij)i,j∈Z, which is a DTMC, where

πij =


qij/qii, if j 6= i and qii 6= 0

0, if j 6= i and qii = 0

0, if if j = i and qii 6= 0

1, if if j = i and qii = 0

.

If the CTMC is homogeneous with non-negative rates (qij > 0 for |j − i| = 1), then

Π =


. . .

. . .
. . .

λ 0 γ
λ 0 γ

. . .
. . .

. . .

 , λ =
q0,−1

q0,−1 + q0,1
, γ =

q0,1

q0,−1 + q0,1
, (2.5.1)

thus the walk is recurrent if and only if λ = γ.

For simplicity, we will assume Rii = 0 for all i ∈ V, in order to apply the results obtained on [5]. We follow
[5, 33] to discuss the quantum trajectory describing the indirect measurement of the position of a CTOQW Λ
of the more general form (2.2.1) in order to obtain probabilistic properties of Λ. So, let (Ω,F , (Ft)t≥0,P) be a
probability space where independent Poisson point processes N ij , i, j ∈, V, i 6= j on R2 are defined.
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Definition 2.24. Let Λ be a CTOQW with generator of the form (2.2.1) and an initial density operator
µ =

∑
i∈V ρ(i)⊗ |i〉 〈i| ∈ D. The quantum trajectory describing the indirect measurement of the position of the

CTOQW is the Markov chain described by the density operators (µt)t≥0 such that

µ0 = ρ0 ⊗ |X0〉 〈X0| ,

where X0 and ρ0 are random variables with distribution

P
(

(X0, ρ) =

(
i,

ρ(i)

Tr(ρ(i))

))
= Tr (ρ(i)) for all i ∈ V,

and such that µt =: ρt ⊗ |Xt〉 〈Xt| satisfies the stochastic differential equation

µt =µ0 +

∫ t

0

M(µs−)ds

+
∑
ij

∫ t

0

∫
R

(
Sji µs−S

j∗
i

Tr(SSj∗i µs−S
j∗
i )
− µs−

)
10<y<TrSjiµs−S

j∗
i )N

ij(dy, ds)

(2.5.2)

for all t ≥ 0, where

M(u) = L(u)−
∑
ij

(
Sji µS

j∗
i − µTr(Sji µS

j∗
i )
)
.

Hence, for a fixed µ =
∑
i ρ(i)⊗ |i〉 〈i| ∈ D,

M(µ) =
∑
i

(Giρ(i) + ρ(i)G∗i − ρ(i)Tr (Giρ(i) + ρ(i)G∗i ))⊗ |i〉 〈i| .

The evolution of the solution µt of (2.5.2) is described as follows: suppose X0 = i0 for some i0 ∈ V and fix
ρ0 ∈ V (hi0). For all t ≥ 0, consider the solution

ηt = ρ0 +

∫ t

0

(
Gi0ηs + ηsG

∗
i0 − ηsTr

(
Gi0ηs + ηsG

∗
i0

))
ds,

which is a density operator on acting on hi0 . For j 6= i0, define

T j1 = inf{t ≥ 0;N i0,j
(
u, y|0 ≤ u ≤ t, 0 ≤ y ≤ Tr(Rji0ηuR

j∗
i0

)
)
≥ 1}.

Since the random variables T j1 are mutually independent and nonatomic, we can define T1 = infj 6=i0{T
j
1 } once

there exists a unique j ∈ V such that T j1 = T1. The random variable T1 is said to be the first jump time of
the CTOQW conditional on X0 = i0.

The first jump time to site |j〉 is then denoted by T j1 and has distribution

P(T j1 > ε) = e−
∫ ε
0

Tr(Rji0
ηuR

j∗
i0

)du,

thus
P(T1 ≤ ε) ≤ ε

∑
j 6=i0

‖Rj∗i0R
j
i0
‖.

The strongly convergence of
∑
ij S

j∗
i S

j
i implies that P(T1 > 0) = 1. Thereby, on [0, T1], we can define the

solution (Xt, ρt)t≥0 as

(Xt, ρt) = (i0, ηt) for t ∈ [0, T1) and

(XT1 , ρT1) =

(
j,

RjiηT1−R
j∗
i

Tr(RjiηT1−R
j∗
i )

)
if T1 = T j1 .

Now we solve

ηt = ρT1
+

∫ t

0

(
Gjηs + ηsG

∗
j − ηsTr

(
Gjηs + ηsG

∗
j

))
ds
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and then obtain the second jump time T2. So on we obtain an increasing sequence of jumps (Tn)n with
limn→∞ Tn = ∞ almost surely (see section 18.2.3 of [5] for more details). This means that the walk do
not explode, that is, Λ does not makes infinitely many jumps in a finite interval. For details concerned about
explosions in the classical case, see section 2.2 of [32].

Set τ
(0)
i = 0, then the time at which Xt reaches |i〉 for the n-th time is defined as

τ
(n)
i = inf{t > τ in−1 : Xt = i and Xt− 6= i}, n = 1, 2, 3, . . . , (2.5.3)

thus the holding time on the n-th step is given by

Sn =

{
τ

(n)
i − τ (n−1)

i , if τ
(n−1)
i <∞

0, otherwise.

The next result is obtained following the idea of Proposition 1.2.2 of [1].

Proposition 2.25. Let Λ be a CTOQW on a set of vertices V. Given i ∈ V and ρ ∈ S(hi), the following limit
exists

qi;ρ := lim
t↓0

1− pii;ρ(t)
t

.

Moreover, pii;ρ(t) = 1 for all t ≥ 0 if and only if qi;ρ = 0.

On the sequel, we will say that i is a ρ-absorbing vertex if qi;ρ = 0 (equivalently pii;ρ(t) = 1 for all t ≥ 0)
and absorbing if qi;ρ′ = 0 for every density operator ρ′ ∈ S(hi).

For instance, let λ be a CTOQW on V = {0, 1} such that its generator is L = Φ − I, Φ quantum channel
with Kraus operators

R0
0 =

[
1 0
0 0

]
, R0

1 =

[
0 0
0 1

]
, R1

0 =

[
1 0
0 1

]
, R1

1 =

[
0 0
0 0

]
.

We have for a density operator ρ =

[
a b
b∗ 1− a

]
on C2 the transition

p00;ρ(t) =
1 + a+ e−2t(1− a)

2
, t ∈ [0,∞).

Hence, i is ρ-absorbing if and only if a = 1, which happens only for ρ =

[
1 0
0 0

]
. Therefore the definition of

absorbing vertex indeed depends on the quantum states.
The existence of the limit qi;ρ is proved above. Now we will give an explicit expression for it directly from

the generator of Λ.

Proposition 2.26. The value qi;ρ obtained as the limit on Proposition 2.25 has the form

qi;ρ = lim
t↓0

1− pii;ρ(t)
t

= −Tr(PiLPiρ) = −Tr(Giρ+ ρG∗i ) =
∑
j 6=i

Tr(Rj∗i R
j
iρ). (2.5.4)

Moreover, for j 6= i,

qji;ρ := lim
t↓0

pji;ρ(t)

t
= Tr(PjLPiρ) = Tr(RjiρR

j∗
i ). (2.5.5)

2.6 The Gi = −qiI/2 case

In this section we will consider the special class of CTOQW with generator of the form

L(ρ) =
∑
i∈V

∑
j∈V

Rijρ(j)Ri∗j − qiρ(i)

⊗ |i〉 〈i| , (2.6.1)

that is, we are assuming that
∑
j∈V R

j∗
i R

j
i = qiI, qi ≥ 0 and H = 0, thus Gi = − qi2 I. In this case, the value

qi;ρ of Proposition 2.26 is just qi, since it does not depend on the density.
If qi > 0 for all i ∈ V, then the generator (2.6.1) is of the form L = Φ − Q, where Q = diag (qjI)j∈V and

thus ΦQ−1 is a quantum channel.
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Theorem 2.27. Let Λ be a CTOQW with generator of the form (2.6.1). Suppose that the chain starts on i ∈ V
with initial density operator ρ ∈ S(hi). Then, for j 6= i,

Pi,ρ(F1 = j) := Pi,ρ (first jump is to j) =

{
qji,ρ
qi
, if qi 6= 0

0, otherwise.
(2.6.2)

We already know the distribution of F1, in the sequel we present the distribution for all Fn, n = 1, 2, . . . .

Theorem 2.28. Let Λ be a CTOQW with generator of the form (2.6.1) starting on vertex |i〉 with initial density
operator ρ ∈ S(hi). The distribution

Pi,ρ (Fn = k) := Pi,ρ (the n-th jump is to k) (2.6.3)

is given by

Pi,ρ (Fn = k) =
∑

i1,...in∈V

Tr
(
Rkin . . . R

i2
i1
Ri1i ρR

i1∗
i Ri2∗i1 . . . Rk∗in

)
qi1 . . . qin

. (2.6.4)

We will call the discrete random variable {Fn, n ≥ 0} by quantum jump chain of the CTOQW Λ. Let us
describe this chain for the case where the generator is of the form (2.6.1). First we rewrite (2.6.1) by

L = Φ−Q, Φ(ρ) =
∑
i,j∈V

Bijρ(j)Bi∗j , B
i
j = Rij ⊗ |i〉 〈j| , (2.6.5)

where Q =
∑
k∈V qkIk ⊗ |k〉 〈k| , qk ≥ 0, and Ik is the identity matrix of hk.

On this case we put M j
i := 1√

qi
Rji , then

Pi,ρ (Fn = k) = Tr
(

Π
(n)
ki ρ

)
,

where Π is a discrete OQW given by

Π(ρ) =
∑
i,j∈V

M i
jρ(j)M i∗

j ⊗ |i〉 〈i| .

It is easy to see that the quantum jump chain of Λ with such a generator represents a discrete OQW, because
for each i ∈ V, ∑

j∈V
M j∗
i M

j
i =

∑
j∈V

Rj∗i√
qi

Rji√
qi

=
1

qi

∑
j∈V

Rj∗i R
j
i = Ij .

Lemma 2.29. Consider a CTOQW that starts the walk on site |i〉 with initial density operator ρ ∈ S(hi).
There exist r, s > 0 such that

r ≤ Ei,ρ′(T1) ≤ s, ∀i ∈ V, ∀ρ′ ∈ S(h). (2.6.6)

We recall that a vertex |i〉 is ρ-recurrent if∫ ∞
0

pii;ρ(t)dt = Ei,ρ(ni) =∞,

where ni is the time spent on site |i〉 , that is,

ni =

∫ ∞
0

1{Xt=i}dt.

Remark 2.30. Let us look to the graphic representation of a random walk on Z+, starting on vertex |2〉 ,
represented on Figure 2.6. The walker spends a time S1 on |2〉 before the first jump, which is to |3〉 . Then it
spends a time S2 on |3〉 before the second jump, which is to |5〉 , and goes on. Note that after 8 jumps, the walker
spent time on |2〉 three times, thus the walker occupied site |2〉 , until J8, for a time S1 + S4 + S7. Therefor the
time spent on any site |i〉 is

ni =

∫ ∞
0

1{Xt=i}dt = S1 +

∞∑
n=1

Sn+11{Fn=i},

that is, we sum the holding times Sn in which the n-th jump is to |i〉 .
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Figure 2.6: Holding Times of a right-continuous chain.

The following Theorem gives a complete recurrence criterion for a semifinite CTOQW based on its quantum
jump chain.

Theorem 2.31 (Recurrence Equivalence with the Quantum Jump Chain). Consider a CTOQW Λ with gen-
erator of the form (2.6.1). A vertex |i〉 is ρ-recurrent if and only if

∞∑
n=0

Pi,ρ (Fn = i) =∞.

Consider a CTOQW on a set V. For i, j ∈ V, the set of continuous-time trajectories going from vertex i to
vertex j in n jumps is defined by

Pn(i, j) = {ξ = (i0, . . . , in; t1, . . . , tn)|i0 = i, in = j}.

We set P(i, j) = ∪n∈NPn(i, j), then for ξ = (i0, . . . , in; t1, . . . , tn) ∈ P(i, j), define the operator Tt : hi → hj
by

Tt(ξ) = e(t−tn)GinRjin−1
e(tn−tn−1)Gin−1 . . . e(t2−t1)Gi1Ri1i e

t1Gi . (2.6.7)

This notation allows us to give an equivalent definition of irreducible CTOQWs. We say that a CTOQW
with generator L is irreducible when for all X ∈ I1(H) with X ≥ 0 and X 6= 0, there exists t > 0 such that
etL(X) > 0.

Proposition 2.32 ([5]). A CTOQW with generator (2.2.2) is irreducible if and only if, for every i, j ∈ V , and
for any φ ∈ hi \ {0}, the set

{Tt(ξ)φ, t ≥ 0, ξ ∈ P(i, j)}
is total in hj .

Proposition 2.33. A CTOQW with generator of the form (2.6.1) is irreducible if and only if its quantum jump
chain is irreducible.

Proof. By hypothesis, for each i ∈ V, there exists a qi ≥ 0 such that Gi = −qi/2, thus the operator Tt(ξ) in
equation (2.6.7) is

Tt(ξ) = e(t−tn)GinRjin−1
e(tn−tn−1)Gin−1 . . . e(t2−t1)Gi1Ri1i e

t1Gi

= e−(t−tn)qin/2−(tn−tn−1)qin−1/2
−...−t1qi/2 R

j
in−1√
qin−1

. . .
Ri1i√
qi
.

Thus, for φ ∈ hi \ {0}, the set
{Tt(ξ)φ, t ≥ 0, ξ ∈ P(i, j)}
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is total in hj if and only if the set {Lπφ|π ∈ P(i, j)} is total in hj , where

Lπ = Lin,in−1
. . . Li1,i0

is the set of paths from i to j for the quantum jump chain.

�

The CTOQWs of our interest on this work will be defined now: a CTOQW is called homogeneous if there
exist matrices A,B and C such that Ri+1,i = A, Ri,i = B and Ri,i+1 = C for all i ∈ V. When B = 0, as we are
assuming (Rii = 0) , then we say that the walk Λ is induced by a coin (C,A).

We notice that the generator of a CTOQW induced by a coin (C,A) satisfying A∗A + C∗C = qI, q > 0, is
given by

L

(∑
i∈V

ρ(i)⊗ |i〉 〈i|

)
=
∑
i∈V

(Aρ(i− 1)A∗ + Cρ(i+ 1)C∗ − qρ(i))⊗ |i〉 〈i| . (2.6.8)

A CTOQW with a generator of the form (2.6.8) will be called a CTOQW induced by a trace-preserving
coin (C,A).

Corollary 2.34 (Recurrence criteria for a trace-preserving coin of dimension n). Consider a CTOQW with
dim(h) = n and generator of the form (2.6.5). Then a vertex |i〉 ∈ V is ρ-recurrent for the CTOQW if and only
if it is ρ-recurrent for its quantum jump chain (which is an OQW).

This corollary gives a complete criteria for the site recurrence of a CTOQW induced by a trace-preserving
coin of dimension 2. In the sequel we expand the generator of CTOQWs induced by coins of dimension 2 where
the coin is not necessarily trace-preserving.

Example 2.35. Consider a CTOQW Λ with generator of the form (2.6.5) on V = Z, with Ri+1
i = E and

Rii+1 = F for every i ∈ Z,

E =
1

9

[ √
3 + 2

√
6 −

√
6 + 2

√
3

−
√

6 + 2
√

3 2
√

3 +
√

6

]
, F =

1

9

[
2
√

3 +
√

6 −2
√

3 +
√

6

−2
√

3 +
√

6
√

3 + 2
√

6

]
.

The quantum jump chain of Λ is then the OQW induced by the coin (E,F ).

♦

Proposition 2.36. A CTOQW induced by a coin with generator of the form (2.6.1) is irreducible if and only
if the operators CA and AC have no common eigenvectors.

Proof. By proposition 2.33, the CTOQW is irreducible if and only if its quantum jump chain is irreducible.
The quantum jump chain is the OQW induced by the coin (C/

√
q, A/

√
q), where q > 0, which is irreducible if

and only if the operators CA/q and AC/q have no common eigenvectors, by Proposition 7.3 of [12].

�

We define the auxiliary map T : Mn(C)→Mn(C) of the CTOQW induced by a coin (C,A) as

T (ρ) = CρC∗ +AρA∗.

When ρ is a density satisfying T (ρ) = qρ, then ρ is said to be q-invariant for T .
The following consequence of Theorem 2.31 is obtained with Theorem 17 of [27]:

Corollary 2.37 (Recurrence criteria for trace-preserving coins of dimension 2). Consider a CTOQW on Z
induced by a coin (C,A) of dimension 2 such that A∗A+ C∗C = qI, q > 0.

(1) If C and A have at most one common eigenvector, let ρ∞ be the unique invariant density of the auxiliary
map. Then, we have

Tr(C∗Cρ∞) 6= q

2
⇒ (C,A) is transient,

Tr(C∗Cρ∞) =
q

2
⇒ (C,A) is recurrent.
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(2) If C and A have two linearly independent eigenvectors in common, let u1 be one of them and let u2 be
a norm one vector such that u2⊥u1. Also let σ1 = |u1〉 〈u1| and σ2 = |u2〉 〈u2| . Then we have

Tr(C∗Cσ1) =
q

2
and Tr(C∗Cσ2) =

q

2
⇒ (C,A) is recurrent,

Tr(C∗Cσ1) 6= q

2
and Tr(C∗Cσ2) 6= q

2
⇒ (C,A) is transient,

Tr(C∗Cσ1) 6= q

2
and Tr(C∗Cσ2) =

q

2
⇒ (C,A) is transient with respect to σi and it is

recurrent with respect to all densities but σ1,

for (i, j = (1, 2) or (i, j = (2, 1).

2.7 Appendices

Proof of Proposition 2.6. Let i, j ∈ V and α, β ≥ 0. As Λt is a semigroup and
∑
k Pk = I,

pji;ρ(α+ β) = Tr (PjΛα+βPiρ) =
∑
k

Tr (PjΛαPkΛβPiρ)

=
∑
k

Tr (PjΛαPkΛβPiρ)
Tr(PkΛβPiρ)

Tr(PkΛβPiρ)

=
∑
k

Tr

(
PjΛαPk

PkΛβPiρ
Tr(PkΛβPiρ)

)
Tr(PkΛβPiρ)

=
∑
k

pjk;ρ′ki(β)(α)pki;ρ(β). (2.7.1)

Proof of Proposition 2.8. Define the function g : Wi → [0, 1] by g(ρ, s) = pji;ρ(s). Since etL is uniformly
continuous, g is continuous on [0,+∞) for a fixed ρ ∈ Shi . By definition, for t ∈ [0,+∞), given ε > 0, there is
an α > 0 such that |t− s| < α implies |g(ρ, t)− g(ρ, s)| < ε/2.

For β := min(α, ε/2), if |t− s| < β and ‖ρ− ρ′‖1 < β, where ‖ · ‖1 is the trace norm in hi, we have

|g(ρ, t)− g(ρ′, s)| ≤ |g(ρ, t)− g(ρ, s)|+ |g(ρ, s)− g(ρ′, s)|

<
ε

2
+ |Tr (PjΛsPi(ρ− ρ′)) |

≤ ε

2
+ |Tr (ΛsPi(ρ− ρ′)) |

=
ε

2
+ |Tr (Pi(ρ− ρ′)) |

=
ε

2
+ |Tr (ρ− ρ′) |

=
ε

2
+ ‖ρ− ρ′‖1

< ε.

This concludes the proof.

Proof of Proposition 2.9. (1)By contradiction, suppose that there exists k > 0 with pii;ρ(k) = 0. Since
pii;ρ(t) is jointly continuous on (t, ρ) ∈ ([0,∞)× Shi) and pii;ρ(0) = 1, we can assume k = min{s > 0 : pii;ρ(s) =
0}. Moreover, there exists ε > 0 such that, for t < k,

k − t < ε and ‖ρ− ρ̃‖ < ε⇒ pii;ρ̃(t) > 0. (2.7.2)

Now, note that

ρ′ii(k/n) =
PiΛk/nPiρ

Tr(PiΛk/nPiρ)

n→∞−→ PiIPiρ
Tr(PiIPiρ)

=
Piρ

Tr(Piρ)
= Piρ.

Now, take n such that k
n < ε and ‖Piρ− ρ′ii(k/n)‖ < ε, then pii;ρ′ii(k/n)((kn− k)/n) > 0, thus

pii;ρ(k) ≥ pii;ρ′ii(k/n)((kn− k)/n)pii;ρ(k/n) > 0,
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which is a contradiction.
For item (2), let x ≥ 0, then item (1) gives

pij;ρ(t+ x) ≥ pii;ρ′ij(t)(x)pij;ρ(t) > 0.

Suppose pii;ρ(t) = 1 for some t > 0. If we had pji;ρ(s) > 0 for some j 6= i and s ∈ [0, t], then

0 =
∑
k 6=i

pki;ρ(t) ≥ pji;ρ(t− s+ s) ≥ pii;ρ′ji(s)(t− s)pji;ρ(s) > 0,

which is a contradiction. This shows item (3).
To proof item (4), note that for fixed 0 ≤ t0 < δ, W (i, δ) := Shi×[t0, δ] is a compact set in Wi = Shi×[0,+∞).

Hence, by the jointly continuity, Nji is attained on (0, 1].

Proof of Theorem 2.10. If pji;ρ(t) = 0 for all t, then the result is obvious. Thus suppose pji;ρ(t) > 0, for
some t ≥ 0. The second item of Proposition 2.9 assures the existence of Nδ ∈ N such that pji;ρ(nδ) > 0,∀n ≥ N.

By the Mean Value Theorem for Integrals, we have∫ ∞
0

pji;ρ(t)dt =

∞∑
n=0

∫ (n+1)δ

nδ

pji;ρ(t)dt =

∞∑
n=0

δpji;ρ(nδ + sn),

where (sn)∞n=0 is a sequence in [0, δ].
By Proposition 2.6,

pji;ρ(nδ + sn) ≥ pji;ρ(nδ)pjj;ρ′ji(nδ)(sn),∀n ≥ N, (2.7.3)

and
pji;ρ(nδ + δ) = pji;ρ(nδ + sn + δ − sn) ≥ pjj;ρ′ji(nδ+sn)(δ − sn)pji;ρ(nδ + sn),∀n ≥ N, (2.7.4)

so that for any fixed ρ,

∫ ∞
0

pji;ρ(t)dt = δ

∞∑
n=0

pji;ρ(nδ + sn)dt

≥ δ

∞∑
n=N

pji;ρ(nδ + sn)dt

(2.7.3)

≥ δ

∞∑
n=N

pji;ρ(nδ)pjj;ρ′ji(nδ)(sn)

≥ δNj

∞∑
n=N

pji;ρ(nδ) (2.7.5)

and

∞∑
n=0

pji;ρ(nδ + δ)
(2.7.4)

≥
∞∑
n=0

pjj;ρ′ji(nδ+sn)(δ − sn)pji;ρ(nδ + sn)

≥
∞∑
n=N

pjj;ρ′ji(nδ+sn)(δ − sn)pji;ρ(nδ + sn)

≥ Nj

∞∑
n=N

pji;ρ(nδ + sn)

=
Nj
δ

∞∑
n=N

δpji;ρ(nδ + sn)

=
Nj
δ

∞∑
n=0

δpji;ρ(nδ + sn)− Nj
δ

N−1∑
n=0

δpji;ρ(nδ + sn)

=
Nj
δ

∫ ∞
0

pji;ρ(t)dt−
Nj
δ

N−1∑
n=0

δpji;ρ(nδ + sn). (2.7.6)
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Whence, for a state ρ, the divergence of the series in (2.7.5) implies the divergence of the integral on the
left. Also, if we suppose the integral on (2.7.6) diverges, then the series on the left diverges, since the series on
the right hand is finite.

Proof of Proposition 2.11. 1. Since ρ is faithful, there exists α > 0 such that ρ ≥ αρ̃, thus∫ ∞
0

pii;ρ(t)dt =

∫ ∞
0

Tr(PiΛPiρ)dt ≥ α
∫ ∞

0

Tr(PiΛPiρ̃)dt = α

∫ ∞
0

pii;ρ̃(t)dt >∞.

2. Suppose ρ′ii(δ) is faithful for some δ ≥ 0. The item 1 gives that i is ρ′ii(δ)-recurrent, therefore,∫ ∞
0

pii;ρ(t)dt ≥
∫ ∞

0

pii;ρ(t+ δ)dt ≥
∫ ∞

0

pii;ρ(δ)pii;ρ′ii(δ)(t)dt = pii;ρ(δ)

∫ ∞
0

pii;ρ′ii(δ)(t)dt =∞.

3. Let ρ ∈ Shi . By the Spectral Theorem, ρ can be written as

ρ =

n∑
x=1

λx |x〉 〈x| , (2.7.7)

where the vectors |x〉s are the eigenvectors of ρ with eigenvalues λxs. Since ρ is non-faithful, there is at least
one null eigenvalue and the remainder eigenvalues are positive summing 1. Thus, (2.7.7) can be rewritten as

ρ =
∑
x∈S

λx |x〉 〈x| , S  {1, . . . , n}. (2.7.8)

Take a sequence of positive numbers (αr)r∈R, where R := {1, . . . , n}/S 6= ∅, whose sum is 1.
Defining

ρX =
∑
x∈S

λx
2
|x〉 〈x|+

∑
x∈R

αx
2
|x〉 〈x| =

n∑
x=1

α̃x
2
|x〉 〈x| , α̃x =

{
λx, if x ∈ S
αx, if x ∈ R

,

we get by the first item that i is ρX -recurrent, since ρX is faithful.
Now, define

ρY =
∑
x∈R

αx |x〉 〈x| ,

which is a non-faithful density operator and then we get 2ρX = ρ+ ρY . This leads us to∫ ∞
0

pii;ρ(t)dt+

∫ ∞
0

pii;ρY (t)dt =

∫ ∞
0

(pii;ρ(t) + pii;ρY (t)) dt

=

∫ ∞
0

(Tr(PiΛtPiρ) + Tr(PiΛtPiρY )) dt

=

∫ ∞
0

Tr (PiΛtPi(ρ+ ρY ))

= 2

∫ ∞
0

Tr(PiΛtPi(ρX))

= 2

∫ ∞
0

pii;ρX (t)dt.

The integral on the right hand diverges once i is ρX -recurrent, this implies that at least one of the integrals
on the left hand side diverges. Therefore, i is ρ-recurrent or ρY -recurrent.

4. By item (3), vertex i is ρ-recurrent with respect to some non-faithful ρ. Since n = 2, the eigenvalues of ρ
are 0 and 1, thus there exists a unit vector |v〉 ∈ C2 such that ρ = |v〉 〈v| , that is, ρ is pure.

Proof of Proposition 2.25. The case pii;ρ(t) = 1 for all t ≥ 0 is trivial, giving qi;ρ = 0. If pii;ρ(t) < 1 for
some t > 0, we still have that pii;ρ(t) never vanishes (item 1 of Proposition 2.9). Let ψ(t) = − log pii;ρ(t) and

q = supt>0
ψ(t)
t . We claim that

lim
t↓0

ψ(t)

t
= q.

Since we have lim supt>0
ψ(t)
t ≤ q, showing that lim inft>0

ψ(t)
t ≥ q will prove the claim.
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Thus let q′ < q and take s > 0 such that ψ(s)
s ≥ q′. For each t > 0, there exists a natural n and h ∈ [0, t)

such that s = nt+ h. Analogous to the proof of Proposition 2.6, we have

pii;ρ(nt+ h) =
∑

k1,...,kn−1∈V

Tr
(
PiΛtPk1ΛtPk2 . . .ΛtPkn−1

ΛhPiρ
)

=
∑

k1,...,kn−1∈V

[
Tr

(
PiΛtPk1

Pk1ΛtPk2 . . .ΛtPkn−1
ΛhPiρ

Tr
(
Pk1ΛtPk2 . . .ΛtPkn−1ΛhPiρ

))×
Tr

(
Pk1ΛtPk2

Pk2ΛtPk3 . . .ΛtPkn−1ΛhPiρ
Tr
(
Pk2ΛtPk3 . . .ΛtPkn−1

ΛhPiρ
))× . . .×

Tr

(
Pkn−1

ΛhPiρ
Tr
(
Pkn−1ΛhPiρ

))Tr
(
Pkn−1

ΛhPiρ
)]
,

where we are considering, without loss of generality, only the traces which are non-null on the sum.
The positivity of the traces give the inequality

pii;ρ(nt+ h) ≥ Tr

(
PiΛtPi

PiΛtPi . . .ΛtPiΛhPiρ
Tr (PiΛtPi . . .ΛtPiΛhPiρ)

)
. . .Tr

(
PiΛhPiρ

Tr (PiΛhPiρ)

)
Tr (PiΛhPiρ)

=

n∏
k=1

pii;ρ′k(t)pii;ρ(h),

where

pii;ρ′k(t) =

k times︷ ︸︸ ︷
PiΛtPiΛt . . .PiΛt PiΛhPiρ

Tr(PiΛtPiΛt . . .PiΛt︸ ︷︷ ︸
k times

PiΛhPiρ)
.

It is easy to see that

q′ <
ψ(s)

s
=
− log pii;ρ(s)

s
=
− log pii;ρ(nt+ h)

s
≤
− log

(
n∏
k=1

pii;ρ′k(t)pii;ρ(h)

)
s

,

thus let t ↓ 0, then observe that nt/s→ 1, h→ 1 and pii;ρ′k(t)→ ρ to obtain

q′ < lim
t↓0

− log

(
n∏
k=1

pii;ρ′k(t)pii;ρ(h)

)
s

≤ lim
t↓0

− log (pii;ρ(t)
npii;ρ(h))

s

= lim
t↓0

nψ(t) + ψ(h)

s
= lim

t↓0

nt

s
.
ψ(t)

t
+
ψ(h)

s
.

Therefore q′ < limt↓0
ψ(t)
t for every q′ < q, completing the proof of the claim.

Note that q > 0, otherwise we would have pii;ρ(t) = 1 for all t ≥ 0. This means that ψ(t) > 0 for t sufficiently
small, hence

lim
t↓0

1− pii;ρ(t)
t

= lim
t↓0

1− eψ(t)

ψ(t)
.
ψ(t)

t
= lim

t↓0

1− eψ(t)

ψ(t)
. lim
t↓0

ψ(t)

t
= q,

and the proof is complete by putting qi;ρ = q.

Proof of Proposition 2.26. Recall that semigroups operators satisfy

Λ′t = LΛt, Λ′0 = L,

thus

qi;ρ = lim
t↓0

1− pii;ρ(t)
t

= − lim
t↓0

Tr (PiΛtPiρ)− Tr(Piρ)

t
= − lim

t↓0

Tr ((PiΛtPi − I)ρ)

t

= −Tr (PiΛ′0Piρ) = − lim
t↓0

Tr (PiLPiρ) .
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Let j 6= i, then

Tr(PjLPiρ) = lim
t↓0

Tr (PjΛtPiρ)− Tr(PjΛ0Piρ)

t
= lim

t↓0

Tr (PjΛtPiρ)

t
= lim

t↓0

pji;ρ(t)

t
=: qji;ρ,

thus the definition of this limit makes sense.

Proof of Theorem 2.27.
Firstly we recall that

T j1 = inf{t ≥ 0;N i0,j
(
u, y|0 ≤ u ≤ t, 0 ≤ y ≤ Tr(Rji0ηuR

j∗
i0

)
)
≥ 1},

where ηt is the solution of

ηt = ρ0 +

∫ t

0

(
Gi0ηs + ηsG

∗
i0 − ηsTr

(
Gi0ηs + ηsG

∗
i0

))
ds.

By assumption, we have Gi0ηs + ηsG
∗
i0

= −qiηs for any s, thus ηt is the solution of

ηt = ρ0 +

∫ t

0

(−qiηs − ηsTr (−qiηs)) ds = ρ,

thus ηt = ρ0 for every t ≥ 0.
By Proposition 2.26, we have

T j1 = inf{t ≥ 0;N i0,j (u, y|0 ≤ u ≤ t, 0 ≤ y ≤ qji0;ρ) ≥ 1},

thus there is no dependence on the first variable of N i0,j , thus the process are just usual independent Poisson
processes of intensity qji0;ρ. Therefore, the first jump is to j with probability

Pi0,ρ(X(T1) = j) =
qj,i0;ρ∑
k qk,i0;ρ

=
qj,i0;ρ

qi
.

In a more rigorous way, suppose firstly that Tr (Giρ+ ρG∗i ) = 0, then we have Tr
(
RijρR

i∗
j

)
= 0 for every j,

meaning that the walker never leaves i, thus Pi,ρ(F1 = j) = 0 for every j 6= i. Now suppose qi 6= 0. Let j 6= i
and denote

Rji;ρ(h) = Pi,ρ (X(t+ h) = j|X(t) = i,X(t+ h) 6= i) ,

where we are assuming that t is so small that there is no jump until t+ h. Hence

Pi,ρ(X(T1) = j) = the probability of a transition from i to j given that a transition

out of i does occur.

= lim
h→0

Rji;ρ(h).

A calculation gives, for t = 0,

lim
h→0

Rji;ρ(h) = lim
h→0

Pi,ρ (X(h) = j|X(h) 6= i)

= lim
h→0

Pi,ρ (X(h) = j,X(h) 6= i)

Pi,ρ (X(h) 6= i)

= lim
h→0

Pi,ρ (X(h) = j)

Pi,ρ (X(h) 6= i)

= lim
h→0

pji;ρ(h)

1− pii;ρ(h)

= lim
h→0

pji;ρ(h)

h
· h

1− pii;ρ(h)

= lim
h→0

pji;ρ(h)

h
lim
h→0

h

1− pii;ρ(h)

=
qji;ρ
qi;ρ

.
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Proof of Theorem 2.28. Let us suppose that we start a CTOQW of the form (2.6.1) on (X0, ρ0) = (i, ρ)
and it makes n jumps. We can then say that Λ has jumped at some trajectory (i, i1, i2, . . . , in) for some vertices
i1, . . . , in ∈ V. The state on the n-th jump is then

ρTin =
Rinin−1

ρTin−1
Rin∗in−1

Tr(Rinin−1
ρTin−1

Rin∗in−1
)
.

We claim that, if the n-th jump is to j ∈ V, then

ρTin =
Rinin−1

. . . Ri2i1R
i1
i ρR

i1∗
i Ri2∗i1 . . . Rinin−1

Tr
(
Rinin−1

. . . Ri2i1R
i1
i ρR

i1∗
i Ri2∗i1 . . . Rinin−1

) , ∀n = 1, 2, . . . .

It is easy to see that the claim is true for n = 1. So suppose it is valid for some n ≥ 1, then

ρTin+1
=

R
in+1

in
ρTinR

in+1∗
in

Tr(R
in+1

in
ρTinR

in+1∗
in

)

=
R
in+1

in1
Rinin−1

. . . Ri2i1R
i1
i ρR

i1∗
i Ri2∗i1 . . . Rin∗in−1

R
in+1∗
in

Tr
(
R
in+1

in
Rinin−1

. . . Ri2i1R
i1
i ρR

i1∗
i Ri2∗i1 . . . Rin∗in−1

R
in+1∗
in

)
×

Tr

 R
in+1

in1
Rinin−1

. . . Ri2i1R
i1
i ρR

i1∗
i Ri2∗i1 . . . Rin∗in−1

R
in+1∗
in

Tr
(
R
in+1

in
Rinin−1

. . . Ri2i1R
i1
i ρR

i1∗
i Ri2∗i1 . . . Rin∗in−1

R
in+1∗
in

)
−1

=
R
in+1

in
. . . Ri2i1R

i1
i ρR

i1∗
i Ri2∗i1 . . . R

in+1

in

Tr
(
R
in+1

in
. . . Ri2i1R

i1
i ρR

i1∗
i Ri2∗i1 . . . R

in+1

in

) ,
proofing the claim.

By Law of Total Probability applied n times we obtain

Pi,ρ (Fn+1 = in+1) =
∑
in∈V

Pi,ρ (Fn+1 = in+1|Fn = in)Pi,ρ (Fn = in)

...

=
∑

i1,...in∈V
Pi,ρ (Fn+1 = in+1|Fn = in)Pi,ρ (Fn = in|Fn−1 = in−1) . . .Pi,ρ (F1 = i1)

=
∑

i1,...in∈V
Pin,ρTin (F1 = in+1)Pin−1,ρTin−1

(F1 = in) . . .Pi1,ρTi1 (F1 = i1)Pi,ρ (F1 = i1) .

(2.7.9)

The proof is finished by several applications of Theorem (2.27).�

Proof of Lemma 2.29. By [5], we have for all t > 0 the identity

Pi,ρ(T i1 > t) = exp

[∫ t

0

Tr ((Gi +G∗i )η
ρ
s ) ds

]
.

Also, Tr ((Gi +G∗i )ρ) = −Tr
(∑

j R
j∗
i R

j
iρ
)
< −Y for some Y > 0, hence the compactness of S(h) and a

continuity argument allow us to evoke the Weierstrass Theorem to obtain m,M > 0 such that the following
bound is valid

−mt ≤
∫ t

0

Tr ((Gi +G∗i )η
ρ
s ) ds ≤ −tM, ∀t ≥ 0.

Putting r = m−1 and s = M−1, the expected value Ei,ρ′(T1) =
∫∞

0
Pi,ρ′(T1 > t) satisfies

r ≤ Ei,ρ′(T1) ≤ s

for every choice of i ∈ V and ρ ∈ S(hi). �

73



2.7. APPENDICES CHAPTER 2. CONTINUOUS-TIME OPEN QUANTUM WALKS

Proof of Theorem 2.31. Suppose that the CTOQW starts on site |i〉 with initial density operator ρ ∈ S(hi).
Remark 2.30 and Fubini’s Theorem give∫ ∞

0

pii;ρ(t)dt = Ei,ρ(ni) = Ei,ρ

( ∞∑
n=0

Sn+11{Fn=i}

)
=

∞∑
n=0

Ei,ρ
(
Sn+11{Fn=i}

)
.

Fix n ∈ {1, 2, 3, . . .}. Then an application of the Strong Markov Property to the stopping time Sn results on

Ei,ρ
(
Sn+11{Fn=i}

)
= Ei,ρ (Sn+1|Fn = i)Pi,ρ (Fn = i) = Ei,ρ

(
Ei,ρni (S1)

)
Pi,ρ (Fn = i) ,

where ρni = ρ
τ
(n)
i
. Since T1 = S1, we obtain the identity

∫ ∞
0

pii;ρ(t)dt =

∞∑
n=0

Ei,ρ
(
Ei,ρni (T1)

)
Pi,ρ (Fn = i) ,

thus we can use the boundaries obtained on Lemma 2.29 to obtain constants r, s > 0 which result on the
inequalities

r

∞∑
n=0

Pi,ρ (Fn = i) ≤
∫ ∞

0

pii;ρ(t)dt ≤ s
∞∑
n=0

Pi,ρ (Fn = i) .
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Chapter 3

Open questions

Below we state a few questions in connection with the results presented in this thesis.

� Recurrence criteria for discrete dynamics if a measure is available. In [27], recurrence criteria
has been presented for homogeneous OQWs on the line and this is done in terms of spectral properties
of the coin. On the other hand, the present work allows us to examine, in certain cases, recurrence of
QMCs in terms of a matrix measure. A natural question is to ask how the spectral criterion given in [27]
can be generalized to QMCs and how it this related with the existence of matrix measures. Is there a
simple recurrence criterion in the case that a measure is available? As a first attempt, this problem can be
broken into two parts, namely, a) the case for which the sides of the coin are diagonal or simultaneously
diagonalizable, and b) the case for which there is no simultaneous diagonalization, i.e., the sides do not
commute. On first sight, a central aspect of this problem seems to be a more thorough examination of
Dette’s criterion regarding the non-commuting case.

� Site-recurrence criteria for homogeneous nearest-walk CTOQWs in 1 dimension in terms
of Lindblad generators. Given a valid Lindblad generator associated with a homogeneous tridiagonal
matrix, when is such walk site-recurrent? The question is analogous to the one for the discrete-time case
of OQWs studied in [27], where a complete criterion is obtained (both for the case of order 2 coins and
for the case of irreducible coins). Regarding the continuous-time case, the question can be restated as:
how to determine recurrence in terms of the entries (or spectra) of the transition effect matrices and
hamiltonians? In this work, we have obtained partial results on such direction, but a general solution is
unknown even for the case of order 2 effect matrices. Whenever one has simultaneous diagonalization of
the matrices, one has clear answers, but we have seen that as soon as one abandons such assumption, the
problem becomes more complicated.

� Lindblad generators versus matrix measures. If a matrix measure exists, one can resort to Karlin-
McGregor methods in order to determine certain statistics of the walk such as recurrence. But with the
above discussion in mind, this immediately raises the following questions: what conditions are imposed
on the effect matrices and hamiltonians of the Lindblad generator so that one is able to obtain positive
matrix measures? Is it possible to obtain matrix measures associated with Linbdblad generators with
nonzero hamiltonian parts? What about non-positive matrix measures?
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