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Resumo. Neste trabalho estudamos propriedades espectrais e estatisticas de passeios quanticos abertos
em termos de polindmios ortogonais com coeficientes matriciais. Relembramos o problema de existéncia de
medidas matriciais em conjunto com calculos concretos de conceitos estatisticos bésicos dos passeios, tais como
probabilidades de transigao e recorréncia de vértices. Concentramos a discussao no modelo de cadeias de Markov
quanticas introduzido por S. Gudder, na classe particular de passeios quinticos abertos(OQWSs), introduzidos
por S. Attal et al., e numa versao continua de OQWs (denotada por CTOQWS) introduzida por Bardet et. al.
Por fim, generalizamos a equivaléncia entre recorréncia de cadeias de Markov a tempo-continuo e sua cadeia de
saltos através de um CTOQW especial.

Palavras-chave: mecanica quantica; passeios quanticos; operadores positivos; polindémios ortogonais ma-
triciais; recorréncia.

Abstract. In this work we study spectral and statistical properties of open quantum walks in terms
of matrix-valued orthogonal polynomials. We recall the problem of the existence of matrix-valued measures
together with concrete calculations of basic statistics of the walk, such as probability transitions and site
recurrence. The discussion concentrates on the models of quantum Markov chains, due to S. Gudder, on the
particular class of open quantum walks (OQWs), due to S. Attal et al., and on a continuous-time version
of OQWs introduced by Bardet et. al. To finish, we generalize the equivalence between the recurrence of
continuous-time Markov chains with its jump chain through a special CTOQW.

Keywords: quantum mechanics; quantum walks; positive operators; matrix-valued orthogonal polynomials;
recurrence.
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Introduction

In the classical theory, discrete-time birth-death chains on Z>¢ are described by a transition probability matrix
of the form

To Po 0 0
@ mnopr 0 -
P=10 ¢ r p | To+tpo<1l, pptrnt+g.=1 n=1L
The case po+7o < 1 can be identified as having an extra vertex v(say vertex v = —1), then v is an absorbing

barrier for the chain, thus the walk never leaves v after it was hit for the first time.

Let {@n(x)}n>0 be the sequence of polynomials defined by the three-term recurrence relation

Qo(r) =1, Q-1(z) =0,
xQn(m) = ann+1(‘r) + TnQn(x) + annfl(‘r)a n 2 Oa

that is, zQ(r) = PQ(x), where Q(x) = (Qo(x),Q1(x),...)T. Then we have z"Q = P"Q, i.e.
2"Qi(x) =Y PhQx(z), i>0. (0.0.1)
k=0

For a birth-death chain with transition probabilities py, 7y, ¢ni1,n > 0, Favard’s Theorem [15] (see also [29])
assures the existence of a probability measure i supported on [—1,1] such that the polynomials {Q(z)}n>0
are orthogonal with respect to ¥. Multiplying both sides of the equation by @Q;(x) and integrating with
respect to ¢, we obtain the Karlin-McGregor formula [29], which gives the probability of reaching vertex j in n
steps, given that the process started at vertex i¢. This formula is given by

/ 7" Qi(2)Q;(x)dy(x)
PTL — _ .

j

/ 11 QX () dv(x)

From a theoretical point of view, it is interesting to ask whether such classical constructions can be adapted
so that one can also study quantum systems [8 [I6] as well. This has been studied in the case of unitary
quantum walks, where the relevant orthogonal polynomials are described in terms of the theory of CMV matrices
[10] [I1]. Regarding the setting of open quantum dynamics, the problem of studying orthogonal polynomials
and associated measures is an interesting one as well, although we would have to consider operators which are
no longer unitary.

The main purpose of this thesis is to explore the basic theory of matrix-valued orthogonal polynomials
applied to an open quantum setting by providing results on weight matrices and describing several exampleﬂ7
hopefully encouraging the communities of quantum dynamics and orthogonal polynomials to attempt further
developments on this line of research. A first step in this direction has been discussed in [28], where a procedure
for obtaining weight matrices associated with open quantum walks (OQWS) [4] on the half-line was described,
this being in terms of a well-known result due to Durédn [21].

The setting we will consider in the first chapter concerns the class of quantum Markov chains (QMCs) on the
line, as defined by S. Gudder [25]. This model is revised in detail in Section[1.1] The main difference with OQWs

2Those examples were computed with the software Maple 15.



is that the transition maps are not only given by conjugations of the form X — VXV™*, but, instead, the effect
transitions can be chosen to be any completely positive map. This larger class of examples expands the potential
applicability of the theory and also makes it easier to find evolutions which are distinct from classical dynamics.
With an improved understanding of weight matrices, one is now able to present basic results on recurrence and
positive recurrence of QMCs, as we will see in Sections [I.:2] and [I.3] The use of the Stieltjes transform allows us
to further extend recent results on homogeneous OQWs on the line regarding criteria for site-recurrence [27].
Sections and illustrate the theory with examples on finite segments and on the half-line, while Section
explains how to consider QMCs acting on the integer line, further extending the applicability of the theory.
Finally, by a proper variation of the Karlin-McGregor formula for weight matrices, we are able to discuss weight
matrices which are not necessarily symmetric. This has been examined by Zygmunt [37, [38], and such theory
leads to interesting examples of QMCs, as described in Section [1.7]

The setting of the second chapter concerns the class of continuous-time open quantum walks (CTOQWs)
on the line. This model is revised in detail in Section Analogous to the discrete-time model, an improved
understanding of weight matrices allows us to present basic results on recurrence and positive recurrence of
CTOQWs, as we will see in Section [2.3] Section [2.4] illustrates the theory with examples on finite segments,
on the half-line and on the real line. Section [2. illustrates some rates of CTOQWSs concerning its quantum
trajectories, allowing us to describe the quantum jump chain of a class of CTOQWSs and recurrence properties
in Section



Chapter 1

Quantum Markov chains

In this chapter we present the notion of quantum Markov chains [25] and open quantum walks [4]. We remark
that part of the exposition presented here consist of joint collaboration with M. D. de la Iglesia and can be seen
in the preprint [20].

1.1 Preliminaries

Let ‘H be a separable Hilbert space with inner product (-|-), whose closed subspaces will be referred to as
subspaces for short. The superscript * will denote the adjoint operator. The Banach algebra B(#) of bounded
linear operators on H is the topological dual of its ideal Z(#) of trace-class operators with trace norm

ol =Tx(lpl), ol = Vo*p,
through the duality [2 Lec. 6]
(p, X) = Tr(pX), pEI(H), X € B(H). (1.1.1)

If dim#H = k < oo, then B(H) = Z(H) is identified with the set of square matrices of order k, denoted by
M, (C). The duality (1.1.1]) yields a useful characterization of the positivity of an operator p € Z(H):

pEI(H): p>0 & Tr(pX)>0, VX eB(H), X>0,

and similarly for the positivity of X € B(H).

In this work, we assume that we have a quantum particle acting either on the integer line, the integer
half-line, or on a finite segment, that is, we have that the set of vertices V is labeled by Z, Z>( or a finite set
{0,1,..., N}, respectively. In this work, vertices are also called sites. The state of the system is described by a
column vector

P1
p=|p| . PEIM), pi=0, > Tr(p)=1 (1.1.2)

After one time step, the system evolves to the state ®(p) given by ®(p); = >_,cy Pij(p;), where

®gp Po1  Po2
p— [P0 P Ppo
Dy Doy Do

is called a Quantum Markov Chain (QMC) [25]: this means that the ®;; are completely positive (CP) maps
on Z(H) and the column sums } ;,, ®;; are trace-preserving (TP) (the summations are assumed to converge
in the strong operator topology), see Figure 1. A density p of the form will be called a QMC density.
The set of density operators acting on a subspace K of H will be denoted by D(K).
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An important particular class of CP maps is given by the ones of the form

®;;(p) = BijpBj;, B €B(M), > BiBy=1 VijeV. (1.1.3)
keV

The summation above must be understood in the strong sense, and the corresponding identity is the trace-
preserving condition for the columns of the QMC ®. We will say that B;; is the effect matrix of transitioning
from vertex j to vertex i. QMCs for which ®;; can be written in the form are called Open Quantum
Random Walks (OQWs), following the terminology established by S. Attal et al. [4]. Explicitly, OQWs are
QMCs of the form

®(p)=> | Y BipiBjy | @1i)il, (1.1.4)

i€V \jeV

and, as any QMC, they may be alternatively seen as CP-TP maps on Z(H ® V).

Dy

Figure 1.1: Schematic illustration of QMCs. The walk is realized on a graph with a set of vertices denoted by
i,7,k,1,... and each operator ®;; is a completely positive map describing a transformation in the internal degree
of freedom of the particle during the transition from vertex j to vertex i. For simplicity of illustration some
edges are not labeled. In the particular case that all maps are conjugations, i.e., for every i, j, ®;; = B;j - B;
for certain matrices B;; the QMC is called an open quantum walk. In this work, the graphs considered will be
either a line segment, the half-line, or the integer line.

The vector representation vec(A4) of A € M (C), given by stacking together its rows, will be a useful tool.
For instance,

aiil
ail a2 ai2
A= = wvec(4) :=
a21 a22 a21
a22

The vec mapping satisfies vec(AX BT) = (A® B) vec(X) [26] for any square matrices A, B, X, with ® denoting
the Kronecker product. In particular, vec(BX B*) = vec(BXET) = (B® B)vec(X), from which we can obtain
the matrix representation ® for a CP map ) . B;- B; when the underlying Hilbert space # is finite-dimensional:

©=>[B]], [B]:=B®B.

Here the operators B; are identified with some matrix representation. We have that [B]* = [B*], where B*
denotes the Hermitian transpose of a matrix B. Then, the vector and matrix representation of states and CP
maps may be easily adapted to QMCs. In fact, since any element of Zy (H) is block diagonal, when dim H < oo,
it may be represented by combining the vector representations of the finite diagonal blocks,

vec(pr)

p=Y meli)il = 7= |vecle)

eV
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Then, the OQW (|1.1.4)) admits the block matrix representation
d(p)=dp, &= |[Bwl [Bul

and analogously for QMCs. We will often identify ® with its block matrix representation and omit the hat,
as the usage of such object will be clear from the context. Also, we will sometimes write X instead of [X| in
contexts where no confusion arises.

Although the above definitions concern QMCs on general graphs, we remark that in this work we will deal
exclusively with the one-dimensional situation, more specifically, with the nearest neighbor QMC or quantum
birth-death chain, e.g.,

By C
Ay Bi Cy
® = A By Cs ; (1.1.5)

for certain operators A;, B;, C;, and the remaining ones being equal to zero.

1.1.1 The calculation of probabilities for QMCs
By letting p ® |)(i| be an initial density matrix concentrated at site |i), we can describe n iterations of the
-»

QMC By setting p(®) = p @ |i){i|, Tr(p) = 1, we write (assume Cj = 0)
o (p@ [i)(i]) = > pi” @ k) (k = Crp" VO + Bip" VB + Anpl" M AL, n=1,2,...
k>0

Then, the probability of reaching site |j) at the n-th step, given that we started at site |¢) with initial density
p concentrated at 7 is given by

Piin(n) = pu(p @ [i) = 1)) 1= Te(pf") = Tr (vec™ [(@") jivec(p)] )

where (<I>”) i is the (j,7)-th block of the block matrix ®", the n-th power of the block representation ®.
Following [5], [T4], we say that vertex i is recurrent Wlth respect to p, or simply p-recurrent, if

> piip(n) = oc. (1.1.6)
n=0

Otherwise, we say that vertex i is transient with respect to p, or p-transient. We say that, with respect to
a fixed QMC, vertex i is recurrent if it is p-recurrent with respect to every density p concentrated in i, and
transient if it is p-transient with respect to every density in i. Finally, we say that a QMC @ is recurrent if
every site is recurrent, and we define transient QMCs analogously.

The series appearing in equation denotes the mean number of returns to vertex 4, given that the walk
started with initial density operator p, thus, when this number is infinite, the mean number of returns to vertex
1 is infinite.

Remark 1.1. We note that in the setting of QMCs, one can also consider the notion of monitored recurrence,
see e.g. [3,123,[27]. For simplicity, we will not consider such definition in this work, and we refer the reader to
the references for a detailed discussion on such matter.

Finally, we will be able to discuss expected return times to sites of QMCs in terms of the following notion.
Let T denote a positive map (that is, such that if X > 0 then T'(X) > 0) acting on the space Z(H) of trace-class
operators of a Hilbert space H. We say that T is irreducible if the only orthogonal projections P such that
T(PZ(H)P) C PZL(H)P, are P = 0 and P = I, see [12] [I3] for more on this. Then, we say that a QMC & is
positive recurrent if it is irreducible and if it admits an invariant distribution. We note that by [[5], Thm.
4.3 and 4.5] for positive recurrent OQWs, we have finite expected return times for every density and site, and
the same reasoning provides the analogous result in the case of QMCs.
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1.1.2 Auxilliary notation: compact form

In some of the examples we study in this work we will use the following algebraic simplification. We know that
the matrix representation of the conjugation map induced by an order 2 matrix M = (m,;) is given by

2 —_— 2 7
\m11| mi1mi2  M11M12 |m12| a b b c
7 miimez1  MMi11Mm22  M12M21 112122 d e
(M) =M@M= """ i miz iz L
miimsez1 Mi2M21  M11M22 1112722 d f e g
2 —_— —_— 2 . -
|mo1|®  meiTioz Marmaoz  |mag| h 7 5 k

Let us consider the setting for which all of the above coefficients are real, and acting on positive semidefinite
matrices with real entries. Then

a b b c| |z ax + 2by + cz

d e [ gl |y dz + (e + f)y + gz Ty
M = = .
[Mlveelp) = | f e g| |y dr+(e+ fly+gz|’ y oz

h j J k| |z hx + 2jy + kz

In this particular setting we note that the above computation can be codified in a more economic way, namely,
via the correspondence

} a 2b c| |z a+2by + cz
[Mvec(p) + Mp:=|d e+ f g| |y| =|de+(e+ fly+gz]|. (1.1.7)
h 25 k| |z hx +2jy + kz

We call the map M the compact form of the conjugation induced by M, or simply the compact form of M.
It is clear that many calculations coming from quantum mechanical models can be written in terms of real
numbers only and, even though the real coefficient assumption often precludes us from complete generality, we
are still able to learn useful information about 1-qubit quantum channels.

The following properties of the compact form are proven by a routine calculation:
1. (MR) = MR for any matrices, resembling the matrix representation property [MR] = [M][R].

2. The compact form preserves the computation of product of conjugations acting on positive definite ma-
trices. That is, if M and R are matrices then [M][R|vec(p) corresponds to M Rp.

1.2 Weight matrices

Let W be a weight matrix, i.e. a N x N matrix of measures supported in the real line such that dW (y) —dW (x) >
0 (positive semidefinite) for x < y. We also allow the case of discrete measures, those appearing naturally in
the case of walks acting on a finite number of vertices. Define the matrix-valued inner product given by

(P,Q) := /RP*(ac)dW(x)Q(:c). (1.2.1)

Also regarding positive semidefiniteness, we recall that (P,P) > 0, (P,P) > 0 whenever det(P) # 0 and
(P,P) =0 if and only if P = 0. Let {Q,(z)},>0 denote a sequence of matrix-valued orthogonal polynomials
with respect to such product, with nonsingular leading coefficients. Then

/R Q2 ()W (2) Q) = [ Q2.

The set of polynomials will be called orthonormal if ||Qy > = (Qn,Qn) = I,n > 0. It is well-known that any
family of matrix-valued orthogonal polynomials satisfies a three-term recurrence relation of the form

2Qn(x) = Qni1(2)An + Qn(2)Bn + Qn_1(2)Cry, n>0, Qo(z)=1, Q_1(z)=0, (1.2.2)

for certain A,, B,,Cypt+1,n > 0, square matrices. This gives rise to a block tridiagonal Jacobi matrix of the
form

By (i 0
Ay B (O

P A B G , (1.2.3)
0 ) . .
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so that (1.2.2)) can be written as xQ(z) = Q(x)P, where Q(z) = (Qo(z), Q1(x),...). Let us now see the inverse
problem, i.e. under what conditions we can guarantee the existence of a weight matrix given a block tridiagonal

matrix of the form ([1.2.3). As discussed previously, namely, whenever the weight matrix exists, the (4, 7)-th
block of the block matrix P™ can be written as

(P55 = @) i) ([ @i @aw@)a;(2)).

However, unlike the one-dimensional case, a system of matrix-valued polynomials {Q,(z)},>0 satisfying such
recurrence relation is not necessarily orthogonal with respect to an inner product induced by a weight matrix.
In view of this, Dette et al. describe an existence criterion.

Let ¥ be a d? x d? weight matrix and denote by
S = /xde(m), k=0,1,...

the corresponding moments. The block Hankel matrices are defined by
So - Sm
: : m > 0.

) ju

ﬂ2m = . .

Sm o S27n
Theorem 1.2. ([I8, Theorem 2.1]) Assume that the matrices Ay, Cpy1,n > 0, in the one-step block tridiagonal
transition matriz (1.2.3) are nonsingular. There exists a weight matric W supported on the real line with positive

definite Hankel matrices H,,,(m € Z>¢ such that the polynomials defined by (1.2.2) are orthogonal with respect
to the measure dW (z) if and only if there exists a sequence of nonsingular matrices { Ry, }n>0 such that

1. R,B, R, is Hermitian, Vn=10,1,2,....
2. RiR, = (A5 A%_ ) " (R§R))Cy--Cy, ¥n=1,2,....
Following the idea of [28], a nearest neighbour QMC has a block tridiagonal matrix of the form

By 0
~ Ay B G
o = A, By Cs . (1.2.4)
0 e

In order to find the corresponding weight matrix associated to QB, we need to find nonsingular matrices { R, }»>0
such that
M, :=R:R, = (A}--- A7) 'TIeC,---C,, and 11,,B, = BIl,, n=1,2,...

Finally, we note that we have a version of the Karlin-McGregor formula for QMCs, in close analogy with
the result seen in [28, Theorem 1.2]:

Theorem 1.3. (Karlin-McGregor formula for QMCs). Let & in (1.2.4) be the matriz representation of a QMC
®. Assume that there exists a weight matriz W associated with ®. Then we have

i) =T (vee ™ |(@,(0). @) ([ Q3@ (2)@i(0) ) vect)] ).

where p = p;®|1)(i| is a density matriz concentrated on vertex i and {Qn(x)}n>0 are the matriz-valued orthogonal

polynomials defined by (|1.2.2)).

Remark 1.4. The inner product introduced in (1.2.1) is different from the one used in many papers on this
subject (see for instance [18, (21, (22, (28, [38, [37] and references therein). The standard inner product used is
called left inner product

(P.Q)L = / P(2)dW (2)Q" (),

which is different from the one defined by (1.2.1)), which sometimes is called right inner product (see [35]). We
obviously have (P,Q) = (P*,Q*)y.
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1.3 Recurrence and first passage

Consider the Stieltjes transform of a weight matrix W with support on the real line given by

B(z; W) :_/Rdw(x), 2 € C\R. (1.3.1)

zZ—T

Let N € {1,2,...} and ® be a QMC described by

By C)
Ay B1 (O

e = Ay B, Cj : (1.3:2)

where A, By, Cpi1 € My2(C), n > 0. Assume there exists a weight matrix W such that
of) =11 [ Q@i m). 133)
R

where IT; = ([, Qf(m)dW(m)Qi(x))_l. Now let us define a generating function associated with hitting proba-
bilities from j to ¢ with respect to the QMC @, i.e.

Bii(s) =Y @s", ol = PonP, (1.3.4)

n=0

where Pj is the projection map onto the space generated by the state |k) on Z>o. We will start with the
following result concerning p-recurrence.

Theorem 1.5. Let p be some density. A vertex i € V is p-recurrent if and only if

lin T [vecl (Hi /R : _lsxQf(x)dW(x)Qi(x)vec(p))} ~ .

As a consequence, vertex |0) is p-recurrent if and only if

lzlirll’ﬁ [ vec™ (B(z; W)vec(p))] = oo, (1.3.5)

where B(z; W) is defined by (1.3.1)).

Proof. By Fubini’s Theorem and for |sz| < co we have

D;i(s) = Z s"<I>§-?) = Z II; /R(sac)”Q;k(x)dW(x)Ql(x)
n=0 n=0

. (1.3.6)
1
=11 [ S Q@aw @Qia) =11 [ = Qi@ ()Qute)
Then - -
1:%111 Tr (vec™" (@i (s)vec(p))) = 1&1%111 n:O’I‘r (vec—l (an);.?)vec(p)>) = T;Jpji;p(n).
By taking s = 1/z, we obtain .
O

In a similar way we can prove that an irreducible OQW @ with associated weight matrix W is recurrent
with respect to some density p if and only if

. dW(z) \
131?11Tr</ 1x5p> -

Regarding positive recurrence in terms of the spectral matrix W, we have the following:
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Proposition 1.6. For an irreducible OQW ® (1.3.2)) admitting a weight matriz W, the walk is positive recurrent
if and only if the weight matriz W has a finite jump at x = 1.

Proof. An irreducible, positive recurrent OQW always admits a faithful (strictly positive), invariant distri-
bution by [30, Theorem 5.8]. Therefore, we conclude, by [13, Corollary 5.4], that

lim Tr(Po®>"Pyp) > 0.

n—oo
Since 22" — 0 monotonically in x € (—1,1), from Theorem we see that the limit is positive if the spectral
measure has positive jumps at = 1 or at * = —1. However, there cannot be a jump at x = —1 since, otherwise,
the size of the jump would be

1
- li_>m Tr (vec_1 [/ x2"+1dW(x)Vec(p)}) =— li_>m Tr(Py®?" ' Pyp) < 0.
n—o00 1 n—oo

But this quantity must be positive, so there is no jump at x = —1, for any choice of density p. Therefore, the
OQW is positive recurrent if and only if there is a jump at z = 1.

O

Let us now derive an expression for first passage probabilities of QMCs in terms of matrix-valued polynomials
only. The following discussion is inspired by the classical reasoning presented in [I9], with the main result
being formula presented below, which allows us to obtain first visit probabilities in terms of matrix
polynomials in a simple manner. For k > 0, consider the QMC ® with matrix representation

- By c, .
Ay By Oy

o= A1 By | Crpa
Ak | Bey1 Cry2
Apy1 Birye Cires

where B,,, A,,,Cpi1 € Mn(C), n > 0. As usual, we recursively define the following matrix-valued polynomials,

Qo(z) =1In, Q_1(x)=0
2Qn (%) = Qny1(2) A + Qn(2) By + Qn1(z)Ch,

that is, zQ(x) = Q(z)®, where Q(x) = (Qo(x), Q1(x),...). Suppose that ® satisfies the conditions of Theorem
so the polynomials defined by are orthogonal with respect to a weight matrix W and I1® = $*II,
where II = diag(Il,II;,...) and II; = RiRj,j > 0. Analogously to the classical case, we define the k-th
associated polynomials

(1.3.7)

nglk) () = Opk + Qi’lﬂ(w)fln + ngk) (z) By + lek—)l(x)cn'

Note that Q%k)(x) =01if 0 <n <k and deg( (&) (x)) =n—k—11if n > k. Consider the generating function
®(s) associated with ® defined by (1.3.4). Assuming ||s®|| < 1, ®;;(s) converges for every ¢, j, thus

D (s®)M(I — 5®) = I = O(s) — D(s)(sP) = I.

n=0

Therefore, we have the equation
D(s) =1+ (s)(sP),

which can be rewritten by blocks as

®jo(s) = 650 + Pjo(s)Bo + Pj1(s)Ag, >0

1.3.8
<I>ji(s) = (Sji + <I>j7i_1(s)Ci + (I)jﬂ‘(S)Bi + (I)j,i-i-l (S)Ai, 1> 1,j > 0. ( )

10
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A particular solution of (1.3.8)) is given by
2;i(s) = 57'Q (57,
On the other hand, the general solution of ®(s) = ®(s)(s®P), which is
©ji(s) = g;(s)Qi(s™)

gives
Dji(s) = Pji-1(5)Ci + @5, (8)Bi + Pj,i11(s) A,

and consequently, the general solution of (1.3.8]) is
ji(s) = s7'QP (7)) + g (£)Qi(s 7).

Since QY = 0 and Qo = 1, one has ®,o(s) = g;(s)Qo(s1) = g;(s). Moreover, since <I>(") H]-_1<I>Z(?)*H¢, we
have

Z "I 0TIy = 1T @, (5) T,
so we obtain the general solution for g;(s) :
9;(5) = ®jo(s) = 115 ®j0(s) Tl
=115 (571 (571 + 90(9)Qs(571)) Tho =115 (571Q (571 + Boo(5)@s (571)) T
Therefore the general solution for ®;;(s) is given by
D50(5) = 571QV (™) + I (571Q1(57) + Do (5)Q(571)) ToQu(s™). (1.3.9)
If we assume i < j, then Qz(»j) =0 and becomes

@ji(s) =T (571N (™) + Boo()Q; (s7) ) ToQils™). (1.3.10)
Now consider the first passage time operator F'(s) satisfying

F(s) = [Fji(s)]j.i=0,1.2,...

(1.3.11)
Fji(s) = ®j;(s)” (‘I) i(s) = 051),

that is, with definition given by
F(z) = 2P®(I — Q@) 7", (1.3.12)

where P and Q = I — P are bounded projections from H onto supplementary closed subspaces of H. Further,
we denote by Py, the projection map onto the space generated by the state |k) on Z>¢ and Q := I —P. In this
way, we are able to calculate the probability of every reaching vertex j, given that we have started at vertex i
and density p, by writing

plp@ i) = 1) = lim T (Fyi(2)p) = lim Tr (P, ®(1 — 2Q;2) ' p),

where P; is the j-th block entry of P and Q; is the j-th block entry of Q.

By [24], F(s) defined as above indeed satisfies equation ([1.3.11). So, let ¢ < j and p € My(C), then by
equation (|1.3.10))

Fji(s) = ®j5(s) " ®i(s)
= Q™) (7@ 6+ @u9)@is )
X Hj_l (8_1625'0)(5_1) + ‘I)OO(S)Qj(S_l))* MoQi(s™ ") = Qi(s™) ' Qi(s™).

11
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Therefore, by (|1.3.11), we obtain
Fii(s) = Q;(s7H)™'Qi(s™), i<y (1.3.13)
In particular, the condition @y = I gives
1 -1
Fl()(S) = Q1(571)71 = |:<SI - Bo) A51:| = SAQ(I - SBo)il. (1314)

Example 1.7. Let ® be the representation matriz of an OQW on V. ={0,1,2} of the form

P = [Eﬂ EJ (%’1 , A:;hl \%}7 (j:;[ll _ﬂ.

Since A*A < I, the walk has an absorbing barrier in the frontier. Also, we have

L X 0 S1ov2v2 2 T 5 o
4 s |1 0 —vV2 0 sl V2 0 0
o) o v ol A1 =vZ 0o o' T4l 0 V2 o0
4 1 0 0 0 -1 =2 V2 -2
and
1 0 0 0
- B i S -1 -2 0 0
Fio(s) = sP1®(I — sQ;®) H”o—4 1 0 —v2 0
1 V2 V2 o2

The first two associated polynomials are given by

2 0 0
Qo(z) = Iy, Qi(x):=2x _g _(\)/i 0
1 1

B
1

= o O O

from which we can calculate the product Q1(s~1)1Qo(s™1), which equals Fio(s) as expected. Then, for p =

a b .
{b* 1_ a} , we obtain

Plp@10) = |1)) = lim Tr(Fuo(s)p)

)

_ 1+V2Re(b) |2-V2 2+2
- 2 < 4 7 4

since Re(b) € [-1/2,1/2].

O
Example 1.8. Let v € R and k, = 2+ 2% and ® be the representation matriz of an OQW of the form
[Bo] [Ch]
o [Ao]  [B1] [Ch] B L [-1 v, 1 [V2y 1
= [Ai]  [Bz] [Cs] AR/~ I S T N/l I B

We notice that Fio(s) does not depend on the blocks Ay, By, Cy for k = 1,2,3,..., thus such blocks can be
chosen arbitrarily so that A} Ay + BBy + C;C, =1 for k > 1. Then, equation (1.3.12) gives

2 V27(29%542-27%—s)  V29(27%54+2-2v2—5)  s+4y2s+ayts+24242

2’}/ 2+5+272 2+5+272 2+s5+27v2
s \/5 _297%s 272 42-29%5—s V2v(142+?)
FlO(S) = 7 2 2+S+22v2 2+S+%’Y2 2+S+2’Y22
2+ 2,}/2 — s \/57 29 +2—27"s5—s __2¥7s V2v(142~?) ’
2+5+272 2454272 2+5+272
1 o V2vs _ \V2vs 2725
2+s+2~2 2+s5+272 2+s5+272

12
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and, as expected, this is the same matriz obtained by formula (1.3.14). For p = [

a} , we obtain, for
every p, that

a
b 1-—

p(p@10) — 1)) lsigllTr(Flo(S)p)

. dy*(as — a — s) +4yv2(s — 1)Re(b)(v2 + 1) + 29%(2as — 35 —2a — 1) — 2 — s
= lim
st (24 s+ 292)(—24 s — 292)

=1

We note that, in principle, we are able to obtain probabilities regarding vertices which are arbitrarily distant
from one another but, as the distance between them increases, the task of performing explicit calculations may
become unpractical. In such cases, it may be preferable to use the generating function .

1.4 A QMC on a finite number of vertices

Let us first consider a walk induced by the block matrix on the N + 1 nodes indexed as {0,1,..., N},

B rl
tI B rI
tI B rl
¢ = S ;o 0<rt <1,
tI B rl
tI B

where if B = [®g], g =Vi*- Vi + V5 - Vo, with

N A R e T

a

We can write

1—b2 ab ab b?
B—s ab 1—2a%—b2 b2 —ab
ab b? 1—2a2—-b> —ab
b? —ab —ab 1— b2

For simplicity we assume 0 < a,b,s < 1, a® + b*> < 1. In this way we have that Tr(®(X)) = sTr(X), so we
suppose that r + s+t = 1 in order to have that ® is trace-preserving, with the exception of the first and last
nodes (we remark that another restriction on r, s, ¢ will be needed, see below).

By the classical symmetrization

i—1
R:diag(RO,Rh...,RN), R,=< :;) I4, Z'Zl,...,]\/v7 RO:I47
we obtain ~ _
B kI
kI B kI
kI B kI
J=ROR! = o . k=t
kI B kI
I kI B |

The matrix-valued polynomials {Qy },>0 defined by

Qo(z) =1, Q-1(z)=0,
zQo(z) = Qo(x)B + kQ1(x),
1Qi(x) = kQi—1(2) + Qi(2) B + kQiy1(2), i=1,...,N—1,

13
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can be identified with the Chebyshev polynomials of the second kind {U,, },>0. Indeed, it is possible to see that
Qn(z) =U, ((x — B)/2k),n > 0. Now, if we define

Ryyi(x) = Qn(z)(x — B) — kQn—-1(x),

we have that the zeros of det(Ry1(z)) coincide with the eigenvalues of J = R®R L. A simple calculation
shows that

- B
RN+1($) = kUN+1 (1:2k> B

We would like to solve the equation det(Ry41(x)) = 0. Recalling the representation

()1 (2o ()

we obtain, for the matrix-valued case at hand,

det(Ru 1 (x)) = kdet (Uya (=2 ) ) = kdet ]ﬁl B g (2T )1
(§ N+1\T)) = (§ N+1 o = (§) L COS N2 4

j=1

Nt zl, — B i
_ g4 4~
=k ]I:ll det [(k — 2cos <N n 2> I4>] .

Noting that the eigenvalues of B are s and s(1 — 2a? — 2b?) (both with multiplicity 2) we have

xly — B g
det |:<k‘ — 2cos <]\H—2> I4):|

T—s g
= 2 cos (N+2)

0 -5 —2cos (1512)
= det %‘12—%2)_2@03@\?“2)
+
z—s(1—2a°—2b%) ey
—— - 2 cos (m>
r-s j *Ta—s(1 — 2a% — 2% 5 Jm ’
= — 2cos —2cos | ——
k N +2 k N+2

Hence,

det(R ())_k4Nﬁ1 z-s Jm 2 x—s(1—2a2—2b2)72 Jm 2 b — it
et(Ry4+1(z)) = 1 : cos | %5 : cos | 75 , =Vrt,

which is a polynomial of degree 4(N + 1) having 2(N + 1) distinct roots (all of multiplicity 2). Therefore, the
roots are of the form

j+1
xjs+2kcos(7rzjvj_2), j=0,...,N,

)+ 1
y; = s(1 — 2a* — 2b%) + 2k cos (7‘(‘]{[—:2), j=0,...,N,

all being of multiplicity 2, except in the case where the collection of zeros xy and yy overlap, so the multiplicity
changes accordingly (see the example below). The expressions on the roots also make clear that we must have
further restrictions on the values of 7, s and t (recall k = /rt) so that x;,y; € [~1,1], for all j =0,..., N. For
instance, by imposing 0 < k < 1/4 we obtain a corresponding restriction on s (we omit the details).

The above root calculation should be compared with the classical case with a translation of s units, for
which the roots of Ry are

i+ 1
a:j:3+2\/r7tcos(7rjjvil>, j=0,...,N,

14
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once again regarding a random walk with a proper restriction on r,s,t so that ; € [-1,1], for all j.

Now we compute the matrix weights on the zeros above. Such calculation needs to take in consideration
the fact that each root is double (we omit the discussion for the case of larger multiplicities). In this case the
residue calculation gives us that

W, =g5(A), gi(A) i= =\ = X*(J = A)gg, Aj =595, §=0,...,N, (1.4.1)

an expression which can be deduced from (see [22])

(J = AD);;' =
k=0
and noting that this corresponds to the Laurent sum of the operator on the left-hand side except for the sign

change A\, — A = —(A—\g). With formula (1.4.1)), a calculation shows that for every N we have a corresponding
set of multiples of the matrices given by

202+ ab ab b? b2 —ab —ab —b?
W . 1 ab b2 b? —ab W . 1 —ab b + 2a? —b? ab
b1 9@+ b2) | ab v —ab |0 TP @24 82) |—ab b b2 +24%  ab
b2 —ab —ab 2a® +b? —b? ab ab b2
More precisely, we have a collection of 4(IN + 1) roots with weights
. 9 Jj+1 .
N — 3 . =0,...,N
1/)(1‘]) N 19 S (T‘-N I 2) Wa,b,ly J Oa AR
2 J+1 )
¢(ZUJ) N +2 S (TrN i 2) Wa,b,27 ] 07 ’
This should be compared with the classical setting, recalling that in such case,
. 9 Jj+1 1 2 )
N = = 4dpq — x% =0,...,N. 1.4.2
IJZJ(ZL‘J) N_|_2Sln <7TN+2) 2pq(N+2)( pq x])a ] 07 ) ( )

We note a few basic properties of W, .1 and W, p,2. First, both are positive semidefinite matrices with eigenval-
ues 0 and 1 (multiplicity 2). Moreover, seen as linear maps, W, 5.1 is trace-preserving, whereas W, p.2 transforms
densities into traceless matrices. Also W, 1.1 admits the following Kraus representation

b

3
— 1 a b a
Wapa = W} W, Wi=— Wy=—s—ly, Wi=_——l
,b;1 i ® 7 1 2 ’ 2 2( 3 2(a2+b2) 25

Pt (a2 +02) [b —a a+b%) "

from which we conclude that such weight represents a completely positive map. However, W, ;.2 does not
represent a positive map in general, as illustrated by an inspection with certain density examples.

For a specific instance of the above take N = 4 (5 sites), so we have 20 roots, with weights

1 1
gWa,b;ly gWa,b;Qy
associated with zeros s and s(1 — 2a? — 2b%) respectively; weights
1 1
ZWa,b;la ZWa,b;Qy
associated with zeros s = k, s(1 — 2a® — 2b%) + k respectively; and weights
1 1
—Wap, —Wab
192 a,b;1, 12 a,b;2,

associated with zeros s & v/3k, and s(1 — 2a% — 2b?) & V/3k respectively. If, moreover, s =a =b=k = 1/2, we

have
V3 1 13 -V3+1 1 V3+1
{z;}j=0..a= —7»—57(),5,7 » {yjtj=0..4 = — 5,17 5 ;

each with multiplicity 2 except for 0 and 1/2 with multiplicity 4 (noting that in this case, 1 — 2a? — 2b% = 0).
This should be compared with the classical setting, see (1.4.2]).

0,

15
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1.5 An example of a QMC on Z>

Consider the walk induced by the block matrix on Z> given by
0

0 C
A0 C
A 0 C : (1.5.1)

b =
0

where A and C are the compact forms (see (I.1.7)) of Ry ® Ry + Ry ® Ry and Ly ® Ly + Ly ® Lo, respectively,
and

L= /o2l L= (1p)/2[(1) é] Rl\/qTQB _OJ Ry = (1q)/2{(1) (ﬂ

Observe that R Ry + R5Rs + LiLy + L3 Loy = I5. Therefore,

1 q 0 1—gq 1 p 0 1—-p
A:5 0 1-2 0 |, C=5| 0 1 0
1—¢q 0 q 1-p 0 p

The matrices A and B are simultaneously diagonalizable, i.e.,
1/2 1/2 1
A=U 1/2—¢q us, Cc=u 1/2 us, U=—
q—1/2 p—1/2 V2
Choosing
_ (1—29)"
II, = 1-2¢\"|"
1—-2p

we can symmetrize the operator (1.5.1)), getting that each of the nonzero blocks are given by

1
1
51/{ \/1—2q L{*
(1—-2p)(1—2q)

The Stieltjes transform associated with (|1.5.1)) is given by

z—Vz22 -1
z—+/22—(1—2q)
B(z W) =2U 1—2q ur. (1.5.3)
z—+/22 = (1-2p)(1 - 2q)
(1—2p)(1 - 29)

Therefore, we get an absolutely continuous weight matrix given by

dW(z) = %L{D(z)u*daj,

where

where

wi(z) =V1—122, we(zx)= Vi-29-a? ws(z) = V(I —2p)1 - 2¢) - x2. (1.5.4)

T 1-2¢ (1—2p)(1—2q)

16
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Here we are using the notation [f(z)], = f(z) if f(x) > 0 and 0 otherwise. Similar results can be obtained if
we do not consider the compact form.

Now consider the same walk as before in (1.5.1)), but adding a matrix B at the upper-left corner, i.e.

B C 0

~ A 0 C

=" 4 0 ¢ , (15.5)
0

where B is a matrix which we assume it can be written as
1!
B=-U b u*, (1.5.6)
2 by

with U defined by (1.5.2). According to Theorem 2.6 of [I8], the Stieltjes transform B(z; W) associated with
1.5.5) can be written as B(z; W) = (B(z;W)~! — B)~!. Since we are assuming (.5.6) and taking in mind
1.5.3]), we obtain

-1

N 1-2
B(z W) =2U z—\/zQ—(qli—Qq)il)Q U
(1—2p)(1—2q) B
z—/22 = (1-2p)(1 - 29)

After rationalization and some computations we obtain

[ 2+ b+ V22— 1
201z —1— b2
B(z W) =2U —ztb =y = (1-29) ur.
2byz — 14 2¢ — b3
—z+bg+ /22— (1-2p)(1 —29)
I 203z — (1= 2p)(1 —2q) = b3 |
(1.5.7)

Therefore the weight matrix is given by W= Wac + Wd, where the absolutely continuous part is given by

V= i

1 + b% — 2b11’
N 9 [\/1 —2q—x2}
dWoe(z) = =U + U*dz.
@ 1—2q+ b3 — 2bo

VT2 -] |
(1—2p)(1 —2q) + b3 — 2bzx

Observe that the denominators are always nonnegative in the range of the definition of each square root. The
discrete part Wy is given by three Dirac deltas located at the poles of the Stieltjes transform (1.5.7)), i.e.

- W({z}) ., (z)
Wa(z) =U W ({z2}) 6z () us,
W ({z3}) 024 ()
where
. _1+b% ; ~1—2q+ b3 B ~ (1—2p)(1 —2q) + b3
V7o, 0 T Ty, 0 T 203 ’

17
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and
— 21
W ({z}) = Tl{b§>1}7

= b3 — (1 —2q)
W ({22}) = 2b721{”3>1’2q}’
2

5 b5 — (1—2p)(1 — 29)
W ({z}) = = 2 Lg>a-200-20}
3

Observe that in principle by, by and bs can be taken as any real numbers, but we are interested in finding under
what conditions the points z1, 22 and z3 are located inside the interval [—1,1] (so that all the support of W is
inside the interval [—1,1]). By the definition it is possible to see that |z1| < 1,]z2] < 1,]|z3] < 1, if and only if
by = 1, and

by € [-1 —/2¢,—1+/2q] U [1 — /2¢,1 + \/24],
bs € [-1—/2(p+q—2pq), —1 + /2(p+q — 2pq)] U [L — v/2(p + ¢ — 2pq), 1 + \/2(p + q — 2pq)].-

Joining this with the conditions under we have positive jumps, we have that W ({z1}) = 0 and W ({22}), W ({23})
are positive if

by € [-1—+/2¢,—/1—2q) U (/1 —2¢,1 + /24|,
b € [—1 — v/2(p+q— 2pq), —/(1 — 2p)(1 — 2¢)) U (v/(1 — 2p)(1 — 2¢), 1 + /2(p + q — 2pq)].

The particular case where B = A is given by by = 1,by = 1 —2q,b3 = 2q — 1. Therefore z; = 1,20 =
1—¢,z3=p+qg—1, W{z}) =W ({22}) =0 and

W () = 22010,

The weight matrix is then given by W = Wac + Wd, where

T -
1—=x
— 1 1 —2q— 22
AW o) = ~U { i L U*da. (1.5.8)
T (1-2¢)(1—q—x)
V=212 "] |
L (1-2¢)(1-p—q+z)
and
N bq 1 0 -1
Wd(l’) = ﬁl{p>q} 0 0 0 5p+q—1(1')- (159)
q -1 0 1

Observe that in this situation, as expected, the support of W is inside the interval [-1,1].

Let us now study recurrence of this QMC in terms of the corresponding weight matrices. Note that the QMC
determined by is such that vertex 0 admits a transition to an absorbing state, so we have the transience
of this walk with respect to such site. Let us prove this in terms of the associated measure. First, recall that
the trace is invariant by the change of coordinates U which, on its turn, does not depend on x. Therefore, we
need only to examine the behavior of w; and ws in . Regarding wq, a calculation gives that

. L1 =22 . w22 =14+ V1 —22)

lim ——dr =lim =,

21 )1 1 —2zx 211 221 — 22
so the above limit is finite. Regarding ws, note that since 0 < p,q < 1, we have a := (1 — 2p)(1 — 2¢) > 0 if and
only if both p and ¢ are greater than 1/2 or both are less than 1/2. If this is the case, we have that ws(z) >0
if z € (—y/a,/a). If we write ¢ = p+ € (with € € (3 —p,1 —p) if £ < p < 1), we obtain

. va o2
lim —d

A1 J_ & 1—zx

z=m(1—/4p(1 — p) + 2¢(1 — 2p)), (1.5.10)
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which is also a finite number (as expected, the term inside the root is always positive under the above restric-
tions). A similar reasoning holds in the case 0 < p < %7 where we write ¢ = p + €, with € € (—p,% —p). In
the case that w3 does not have a positive part, the trace computation is determined by w;. Since U*p is also a
density matrix we conclude that, in every case, site 0 is transient with respect to any initial density.

Now considering ((1.5.5) with B = A (see (1.5.8) and (1.5.9))), we have, regarding @y, that
o 1+ m(l+2z—+v1-—22)

lim dr = lim = 00

A ) 4 1—z2zV1—2 211 21 — 22
Regardind &3, we note that the denominator is positive if z € (—+/a, v/a), which can be seen as in the transient
walk above (i.e., consider the cases for which p,q € (0,3) or p,q € (3,1)). But then the limit to be examined

is the same as for the transient walk, namely, eq. (1.5.10)), which is finite. We have concluded that recurrence
of site 0 depends on the initial choice of density matrix. For instance, the densities

po=ly o] @00L pa=|o 1] e 00l

are such that site 0 is recurrent with respect to p, but transient with respect to pg. More generally, site 0 will
be recurrent with respect to any density matrix p ® |0)(0| for which p;; > 0. It would be interesting to find
examples of matrices B at the block position (0,0) for which the resulting walks are irreducible (if this is in
fact possible, a guess would be to obtain a change of coordinates V distinct from Uf).

Remark 1.9. If B in (1.5.6) is not simultaneously diagonalizable with A and C, it is possible to derive again
the weight matriz assuming that B = %Vdiag{bl, ba, b3 }V*, where V is unitary. The corresponding weight matriz
will be also unitarily diagonalizable.

1.6 Spectral analysis of QMCs on Z

In this section, we treat the case of tridiagonal QMCs on the real line, that is, the set of vertices V' will consist of
the integers, thus the walk will have one-step transition probabilities from |é) to |i — 1), i) or |¢ + 1) and there
are no barriers. Starting from a tridiagonal QMC ® on Z, where each of the blocks of the matrix representation
is of order N? x N2, we will construct a new tridiagonal QMC on Zx¢ x {1,2}, where each of the blocks of
the matrix representation is of dimension 2N? x 2N? with a possible barrier on site |0). This is what we call
the folding trick and was introduced for the first time in [6]. Finally, recurrence of this type of walks will be
discussed via an application of the Stieltjes transform.

Consider then the matrix representation for a tridiagonal QMC on Z, given by

B, (C_4
Ao B_1|Cy
P = A, | B, C; , (1.6.1)
Ay By Cs

A By Cs

where each block Ay, By, Ck is an N2 x N? matrix given by a summation

tr
X, =Y [¥,], Y, € My(C), [V,]=Y, Y,
r=1

and we assume that there exists a sequence of Hermitian matrices (E,,)nez € My2(C) and non-singular matrices
(Rn)nez € My2(C) such that

A:;,R:;+1Rn+l = R;Rncn_t,_]_, n Z 0
R* anflcfn = A*—nflRiann; n > 0,

—n—1

R.B, = E,R,, ncZ. (1.6.2)
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The previous conditions coincide with those of Theorem when we consider the first line with the walk
restricted to Z>o and the second line with the walk restricted to Z(. Let us define

Hj = R;Rj € Mp2 ((C), jEeZ.
Consider the two independent families of matrix-valued polynomials defined recursively from (1.6.1)) as
Qé(l’) = Ipn2, Q(Z)(z) =0,
QLi(z) =0, Q% (x)= Iy, (1.6.3)
rQy () = 2+1(x)An + Q0 (z)B, + Q5 _1(2)Cpy, a=1,2, neZ.

and the block vectors Q%*(x) = ( Q% (2), Q% (2), Q8 (x), QY (), Q% (x), . . ) , o = 1,2, are linearly indepen-
dent solutions, depending on the initial values at n = 0, of the eigenvalue equation zQ%(z) = Q*(z)®.
As in the classical case, we introduce the block tridiagonal matrix

Go N
y My Gi N
= M, Gs Ns ;

where each block entry is a 2N? x 2N? matrix, given by

By A_, Ap 0
= = >
GO CO B—l 5 Mn 0 O—n—l , n = 0,
By, 0 Cn 0
= = >
Gn 0 Bn1:| ’ Nn 0 A,n,1 , n=Z 1

The term folding trick comes from the transformation of the original walk ®, whose graph is represented in
Figure to the QMC described by ®, which is represented by the folded walk in Figure

B_, B_, B,

Figure 1.2: QMC @ on Z.

B By

Figure 1.3: Folded walk of ® on Z>¢ x {1,2} given by 3.

Note that @ is a block tridiagonal matrix on Zx>q, thereby we can apply all the properties we have seen in
previous sections. The following polynomials are defined in terms of (1.6.3)),

_ [Qua) QL. _1(2)
Qn(x)— Q%(x) Q%nq(x) €M2N2((C)7 n >0, (1~6-4)
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and these satisfy

zQo(x) =Q1(x) Mo + Qo(2)Go, Qo(x) = Ianz,
xQn(x) :QnJrl(x)Mn + Qn(x)Gn + anl(x)Nna n=12...

The leading coefficient of Q,,(z) is always a nonsingular matrix. Moreover, for

- R,  Op: y FEo RoA_ R™1 u E, Oy
= > = = >
Rn |:0N2 R—n—1:| , =2 07 EO R,]CORal Efl 5 E’n, , N 1

we see that the block matrices of ® satisfy the conditions (1.6.2)) for n > 0 :
M;R:;J,-lén-‘rl = RZRnNn-i-la RnGn = Enj%na

where matrices Rn are non-singular and E‘n are Hermitian for all n > 0. Defining

9 v

Il; :== RIR; € Man2(C), j=0,1,2,...,
the correspondence between f[j and II; is
= . H] 0N2
HJ T |:0N2 H]1:| ’
By [18] (see also (1.3.3)), there exists a weight matrix W leading to the Karlin-McGregor formula for & :
éy:méwq@mwmmy (1.6.5)

Once we have found the weight matrix appearing on (|1.6.5]), we can also obtain the blocks <I>§-?) of the original
walk ®. The key for this operation is the following proposition:

Proposition 1.10. Assume that ® is a QMC of the form (1.6.1). The relation between i)f?) and @g?) is

Z = é d#fkl , 1,7 € Z>o. (1.6.6)
7] 1,2 —j—1,—i—1

Proof. Since i)ji = 0g42 for |i — j| > 1, it is easy to see that (1.6.6) holds for n = 1. So, suppose that (1.6.6) is
valid for some n, then

< (nt1
CI)E? = Z (n)* D 1(I)J 11+(I)JJ(I)( +(I)]]+1(I)]+)11
k=0

= M;_10",, + G0V + N @l

j—1

By the induction hypothesis and the result above,

C (n41
oLty =
{Aj_l 0 } l@éj}z R [Bj 0 } et (cbg“lz :
0 o) oo e L0 mn] [e0d et
N |:C'j+1 0 ] ?5?)12 ?57)1)1 —im 1]
0 A_'_Q e ¢7‘] 2,—i—1
Ao +B@”+C o' Ao Bl 0ol
J—1%5-1, Jj+1 _]+lz -1 -1 j,—i—1 JHLI¥ 541, —i—1
C q)—nj)l_‘_B*J 1(1)( ]) 17.+A*J 2<I)( j) 2,1 C (I)n) —i— 1+B*J 1(1)( ) 1—1+A*j*2(1)—7;)—2,—i—1

(I)(n-l-l) (D("H)l
o) D

—j 1,7 —j—1,—i—1
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O

Note that we can evaluate <i>§7) by (1.6.5) and then extract the block @g?) as in (1.6.6). Further, for a
density operator p € My (C), we have

iali) = T (247 ):Trq@é?) 8} {SD :Trquz 8} R [Izgz 8] [gD

However, we would like to obtain the probability above avoiding the evaluation of @51) This can be done via a

generalization of the Karlin-McGregor formula on Z>. We proceed as follows: first, write the decomposition

dWa(z)  dWia(x)
AW (@) = [dwgi(x) dWéi(m)}

where dWoi (z) = dW{y(z), since dW () is positive definite. Then one has for ¢, j € Zxq,
o = /R Q5 (@) dW () Qs (x)

@59 [I; 0 o [Q@) QL () AW (z) dWia(2)] [QH(x) QY, ,(x)

B [O Hjl]/lR [Q%(‘T) Q2—j—1(£):| {dwl*z(@ dW22(95)] [Qf(m) Q2i 1(95)}

_ oy | W) @d W ()00 ) I [ Qg (@)dWas()Q”,_y(x) |
o o1 [ a" QY (2)dWap(2)Q) (x) TI_j_1 [p 2" Q%5 (2)dWap(2)Q”,_, ()

a,B=1
Joining equation above and Proposition we obtain the Karlin-McGregor formula for a QMC on Z, given
by

Z / 2" QS (2)dWap(2)QF (x), for any i,j € Z, n > 0. (1.6.7)
a,B=1

Conversely, if there exist weight matrices dWi1(x), dWi2(x), dWas(x) such that @;?) is of the form (1.6.7), then
ég? is of the form
B ~1, [ ")) (1)Qi (o).
R
The weight matrix

_ [Wii(x) Wia(w)
W(”“’)[Wé(m Wé(m)]’

is called the spectral block matrix of ®.

Remark 1.11. FEztending Theorem. to the QMC on Z, we observe that, since Q} = Q*, = In and Q3 =
Q' = O0n, we have

ZPOO;p(n) = ZTr [ 00 vec )} = P_}rr% Zz”Tr [Ho/Ran(l)*(fE)quQé(f)UeC(P)}
n=0 n=0

— ST [Ho /R (zm)"(x)qu(x)vec(p)} — lim Tr [no‘wvec(p)]

z—1
n=0

— ; -1 — 1 .
= ll_)rri z Tr [TgB(z~ 1 Wiy )vec(p)| = il_% Tr [Ty B(z; W11)vec(p)] ,
where B(z; W) is the Stieltjes transform of a weight matric W defined by (1.3.1]). Analogously,

Zp 1,-1;p(n) = hm Tr [I_1 B(z; Waz)vec(p)] .

Since we are assuming that Iy and I1_;1 are positive definite matrices, vertezx |0) is p-recurrent if and only if

lin Tr (B(z; Wir)vec(p)) = oo,

and vertex |—1) is p-recurrent if and only if

h?il Tr (B(z; Waz)vec(p)) = oo.
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Let us write the matrix ® in the form

0 0 A,
- O : : 0 0 0
b = |:A CI)+:|’ C= 0 0 0 , A= 0 0 0 |- (1.6.8)
Co 0 O
By Cy . .
Ay By Oy A, By Coy

ot = A B ’ o =
1 By Cs As B, O,
. . A B

Our goal now is to write the Stieltjes transforms associated with the weight matrices W3, a, 8 = 1,2, in terms
of the Stieltjes transforms associated with W, the weight matrices associated with ®*. For that we will need
the following lemma.

Lemma 1.12. [2]]] Let B be a Banach space and Ty : Dom(T1) — B and Ty : Dom(Ty) — B be linear operators

with block representations
A 0 A C
T1 = |:C D:| and T2 = |:O D:| s

respectively. If A and D are invertible, then Ty and Ty have inverses, given by

_ A1 0 ., [4Y —A-lcD?
T = [—D—ch—l D—l] and Ty = [ 0 D! } :

Denote by Py, P, and ]P’z the projection maps onto the space generated by site |k) on Z, Z.o and Z>o,
respectively, and Q = Iz — Py, Q, = Iz_, — P, , (@i =1Iz,, — Pz. Then, applying Lemma we obtain

[ C[I-20- —zc 17!
O = 2Q®) " = A q>+} { OZ z—zf@gw}
[@= C|[(I—207)"t 2(I—-207)"tC(I —ZQ+(I)+
| A oF 0 (I—-2Qf®*)~
(@~ (I —207)7" [2@~(1—207)" '+ 1] C(I-2Q50F)!
| A(I—207)71 A —297)7'C + @T)(I — Q5 @ 1) !

(1.6.9)

By the same arguments,

o e clfr-:0 - o 17"
Ol ~2Q1®) " = A <1>+} { i(%ﬁl I— 20+
[ ¢ (I—2Q-,0 )" 0
LA Ot [2(I —291)TTA(T - 2QC, @) (I —201) 7!
(@ 420 = 201) AT - 2Q-, @)t C(I —207)7!
T+ 20T = 20T) ) AL - 2QC, @) T (L — 20T) 7
and
_ I 0 -1 . .
C(I - 2Qyd")~! = 0O 0 0 --- [* *} =10 O
Coy 0 0 --- Cy O
Denoting
D (z) := Zz" (@)"'=(I—207)"", @T(2):= Zz" (@1)" = (I — 207!
n=0 n=0
we obtain
Foo(z) = 2Po®(I — 2Q®) 'Py

0 0
B {0 2P§ [2A(T — 227)71C(I — 2Qp@T) ™ + @T(1 — 2Qf @)~ Py |
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where the only non-null block equals

AT, o(z) A®D, 4 (2)

=Py 0 0 0 0 0 - ||P+Fh()
: Co 0 0
A_10” z)Cy O A_1®", _(2)Cy O
— 21[»(-)% 1 1O 1(2)Co 0 PJ+F(I)(): 2 1 1() 1(2)Co 0 —‘rF(;B(Z).

Note that Fyo(z) has only one non-null N2 x N? block, due to the projections multiplying on the left and on
the right-hand side. Without loss of generality, we will rewrite this kind of blocks as its only non-null block.
For instance, we have

Foo(Z) = ZQA_l(I):L_l(Z)OQ + FO—B(Z)

Applying twice the equation
Fji(s) = ®5;(s) " (®ju(s) — 641), (1.6.10)

for Foo(z) and Fj5(z), we obtain
I— q)oo(z)_l = ZQA_l‘I):L_l(Z)CO + I — (I)S_O(Z)_l,

and after some algebra, we get

Doo(z) = Po(2)(I — 22 A_197, 1 (2)Co®y(2)) (1.6.11)
Analogously,
Foy1(z) =2P2) [@7 (I —2Q_1®7) ' 4+ 2C(I — 207)TA(L — 2Qe® ™)' P,
= F:1,—1(Z) + ZQC(bgO(Z)A,l,
thus
Dy 1(z)=(I—F_1,1(2) ' =(I—-F, _,(z) — 22CO(2) A1) !
= <I>:17_1(z)(l - ZQCO(I)(J{O(Z)A%(I’:L—l(Z))_lv
that is,

Dy 1(2) =07, () - zQCoégo(z)A,lfbjlﬁl(z))*l. (1.6.12)
Now we use equation ([1.6.9)) to obtain

Fo—1(2) = 2PoA(I — 207 ) 'P_y = 24197, (),

which, together with equations ([1.6.10]) and (|1.6.11]), gives

Do, —1(2) = Poo(2)Fo,—1(2) = 2Py (2)(I — 22 A1 97, 1 (2)Co®y(2)) TA197, 4 (2). (1.6.13)

In the same way,
F_10(2) = 2C0®g(2),

gives
@,1’0(2) = (1)717,1(2)F7170(2) = z@:l’fl(z)(I - Z2COCI)O+O(Z)A,1(I),17,1(Z))_1C0q)go(z). (1614)
We notice that the block matrices of both @ and ®~ satisfy the conditions of equation (1.6.2)), thus there

are positive weight matrices W associated with ®*+ for which the associated polynomials are orthogonal. Then,
we can write

Har ::/dVVJr and IIZ; ::/dW, .
R R

Recalling that (see (1.3.4)))
1 *
Bi(s) =1, [ = Q@)W ()i (o),
R ST
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and Q}

= Q%) =1In2, Q3 = QY4

B(Zil; Wll) = zHal@og(z),
B(Zil; ng) = ZH:l(b_LO(Z),

= Opz, we obtain the following Stieltjes transforms relations

B(z71Wag) = 217 1@y 4 (2),
Bz Wa) = (1) &gy (),

B(z

“LWip) = ZH:%‘I)O,A(Z);
B(z"HWo) = z(H:1)71(I):1,—1(Z)-

Joining with the identities (1.6.11),(1.6.12)),(1.6.13)),(1.6.14)), the new Stieltjes transform identities are obtained:

o B(z; Wiy) = I B(z; W ) (I — A_y11-, B(z; W_)Coll B(z; W)™,
H_1B(2;Wag) =T1-, B(z; W_)(I — Coll§ B(2; W, )A_ 111~ B(z; W_))™*
Mo B(z; Wia) = U B(z; W) (I — A_11-, B(2; W_)Coll§ B(z; W,.)) A
11 B(2; Way) = 17, B(z; W_) (I — ColIf B(z; W4 )A_1T1-, B(z; W_)) "' Colld B(z; W,.).

1H7 B(Z W_ )

(1.6.15)

Sometimes the operators Hj and II; are equal to the identity operator. In this case, ((1.6.15]) are reduced to

o B(z; Wi1) = B(z; Wy ) (I — A1 B(z; W_)CoB(z; W,)) ™,
1 B(2;Way) = B(z; W_)(I — CoB(2;W)A_1B(z; W)™},
MoB(2;Wia) = B(z; W) (I — A_1B(2;W_)CoB(2; W,)) ' A 1B(z W_),
1 B(2;Wa1) = B(z; W_)(I — CoB(z; W )A_1B(z;W_)) " *CoB(z; W,).

(1.6.16)

The above results will be applied in the following examples so that one is able to conclude recurrence properties

of the walk.

Example 1.13. Let ® be a homogeneous OQW on S = Z with matrix representation

0 [L]
. [R] 0 | [L]
= R 0 1L
(Rl 0 [L]
(R0

o5
SIS

s =

In order to study recurrence or transience of the walk for each density operator on C?, we will apply the Stieltjes
transformation discussed above. The polynomials associated with ® are

Iy, Qf(x) =04
04, Q*1(2) =14
n1(@)[R]+ Q-

The weight matriz associated with ®T is

3427/?[ (4_ 2

9x2

],

2008 || (BevE - 3a) |

1(2)[ L],

+

a,f=1,2, neZ.

226 [\ [(Vaeva—a:%)

+

2(z?—14+v1—x2)

z2(1—x2)

and since the matrices are diagonal, it is easy to see that Wy (x) = W_(x). The weight matriz W11 (z) is obtained
by an application of the first formula of ((1.6.15]),

B(Z; Wu) =

25
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and then we apply the Perron-Stieltjes inversion formula to obtain the referred measure. After some calculus,

b } on C2,
—a

we have, for a density matriz p = [bci 1

;Poo;p(n) = ;)Tr (@éﬁ)vec(p)) = ll—% Tr (Poo(2)vec(p)) = ll_}H{ Tr (B(Wh1, z)vec(p))

i 129 6a(8v/22% +3v18 — 1622 —9v2)  foo, if a<1
=11 —22  (3v2+ V18 — 1622)(18 — 1622) 3/2, ifa=1"

Therefore site |0) is p-transient for p = Ll) 8} and p-recurrent otherwise.

¢

It is worth recalling that the weight matrix of the example above is a particular case of Proposition 1.3 of
[28].

Example 1.14. Consider a QMC ® induced by the block matriz on V =1{0,1,2,...} given by

B rI
tI B rl
P = tI B rl , O0<rt<l,

where B = [og], op = V- V1 + V5 - Vo, where Vi and Va are the same as in the example appearing in Section
m. For simplicity we assume 0 < a,b,s < 1, a? +Ab2 < 1. In this way we have that Tr(c(X)) = sTr(X), so we

T

suppose that r + s+t = 1 in order to have that ® is trace-preserving. The matrices R, = ( ;)n satisfy the
conditions of Equation (1.6.2), thus we denote

I, = R'R, = (7)"

By the classical symmetrization

i—1
Y = diag(Yo, V1, ...), m( :) I, i=0,1,...,

we obtain
B kI
kI B kI
J=Yyoy = I B kI . k=+rt

The matriz B is symmetric, thus we can apply the spectral theorem to get

1 0 0 0
) o1 0 0
B=UDU", D=s1y o 1 _9.2_ o2 0 :
0 0 0 1—2a% —2b°
where
1 a _ b _ ab
Va2+b2 V2a2+0b2 V2a24b2/a2+b2
b 2a b?
U= @ 0 Va2+b2 V2a2+b2 T V2a2102Va? +b?
2 0 b 0 V2a2+b2 ’
Va2+b2 X \/a"’bﬁ
L= Va2+0b2? V2a2+0b2 V2a24b2/a2+b2
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which gives

G L 0 0 0
0 o'y 0 0 .
H(z):=U 0 * 0 (8(172(12];22172)*1)2 _4 0 U,
20222 — )2
0 0 0 % _4
and then the associated weight matriz is ([21])
dW (z) ! X
)= —
drk(a? + b?)
20> +b%> ab  ab b? b? —ab —ab —b?
ab b? b? —ab —ab  2a® + b? —b? ab
R I S B O S (el (G o B S N A A
b? —ab  —ab 2a®+ b2 —b? ab ab b2
where
(s — x)? (s(1 —2a2 — 2b2) — x)?
wy(z) =1/4— TR wo(x) =1/4 — 2 .
Note that we can rewrite the weight matriz in terms of wy(x), ws(x) and B by
w () 2 2 1 wy(x) 1
dW(x) = —————F—((2 200 - 1)1, + +B ————— (l4s — B
@)= TR e (G0 i+ 3B) + e vy U2 5 P)
bwr (@) (1.6.17)
oy, (@], -
2km [wa ()], ’
[wa ()]
whose support is given by
1
R := supp(dW)={yeR: %(yLl — B) has an eigenvalue in [—2,2]} (1.6.18)
= [-2k + s(1 — 2a% — 2b%), s + 2K].
The Stieltjes transform of W is
wa ()
zZ—T
1 w1 (z)
B(z; W) = —U T U*d 1.6.19
(Zv ) /R 2% H;Z,(? L, ( )
w2(?)
where the integrals of the elements on the diagonal are
d
/ % = %(z — s —iy/4k? — (s — 2)2) := 2kwhy (2),
R Z—
(1.6.20)
d
/ wa(w)dr %(z — (1 — 2a% — 26%) — in/4k2 — (5(1 — 2a% — 20%) — 2)2) := 2kmha(2).
R R—X

The transience of this walk can be computed by using Theorem [1.5:

. - U v 1—s4++vs2—2s+1—4k
lzl?llTT [z vec ! <B(Z;W)’U60(|: . 1—u})>} = T
T4+t V2 —2rt+ 12
- 2rt
1/r, ift>r
{ 1/t, otherwise.
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Since this limit is valid for any density operator p = Lji 1 ﬁ u} € M(C?), we conclude that this QMC is

transient.

Let us extend the above QMC to the real line: now the set of vertices is V.= Z and the new QMC ® has
matrix representation

tI B rl

P = tI B rl
tI B rl

Take the splitting of equation (1.6.8)) applied to ® :

0 0 ¢I

> C Lo 0 0 O

(I):{A <1>+}7C: 0 00 | A= 00 0
I 0 0 -

The weight matriz associated with ®* is W = W, where W is given by and with support R given
by . We have II§ = 11-, = I, and the Stieltjes transform of W is given by @D and ,
The operators IIyp = RiRo and I1_; = R* |R_1 are the ones obtained by equation @ , giving Ilg = I and
n_, =4"1C= +1. For simplicity, assume s = 2k. Then, we apply formula to obtain

Bz W) =U h(z) v,

where
24k —2) =
hiz) = z2(z—4) l2(2) z2(4k —z)

and we evaluate

t
B(z;Was) = ;B(Z;Wu)

hi(2)l(2)
B(z; Wa1) = B(2; Wi2) = tB(z; Wi1) B(2; Wy ) = tU nEhE ha(2)l2(2) v

hQ(Z)IQ (Z)

where hi(z),1 = 1,2 are defined by (1.6.20). Applying [[19], eq. (1.10)] we obtain the spectral measure of P,

wa- ) )l 2

0 Ul |Diz2(x) fDll(:c) 0o U*
where
_ dia -1 ’ -1 ’ -1 ’ -1 7
Dui(z) = diag { x(4k — x)} s { x(4k — x)} . [\/—m(4k; + x)} . {\/—x(élk + x)} s
2k — x 2k — x —2k —x —2k—=x

Dia(z) = diag

27"[ x(4k—x)}+727’[ z(4kfx)}+’2r[\/m]+72r{ fx(4k+x)}+

The procedure to obtain the spectral measure for ® was inspired by the classical case. The reader can note that
the expressions appearing in are analogous to the classical reasoning. However, some of the transition
matrices do not commute, thus the order of the operators in such formulae has to be maintained.
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Now, for any density operator on C?, we have by Remark that

0o 1 .
1 ——, k<1/4,
g Poo:p(n) = lim1 Tr (I, ' B(z; Wi )vee(p)) = lim ——— = { i /
2=
n=0

z=1\/2(z — 4k) 00, if k=1/4.

That is, the walk ® (for s = 2k) is recurrent only when k = 1/4 and this happens for t = r = 1/4. For the
general case we can follow the same steps to obtain

oo 1 )
> pooip(n) = lim ! _ Ve Ws#F L2k,
— ’ 21 /22 — 252 + §2 — 4k2 0, ifs=1-2k.

Since we are assuming v+ s+t =1 and k = Vrt, recurrence occurs when 0 =1 — 2\/rt +t = (V7 — \/275)27 that
is, when t = r.

¢

Remark 1.15. The example in Sectz’on is such that op +t*I < I, thus Z;io Pojip(n) <1 for some initial
density operator p. This case is interpreted as a walk with a vertex named |—1) , which is an absorbing vertex of
the QMC, giving the correction E?‘;flpoj;p(n) = 1. Now we point out the difference that an absorbing vertex
on the QMC can take: the QMC ® acting on Z>o has an absorbing vertex on site |0), and it is transient for
any choice of t,r,s,a,b. On the other hand, for a,b,s fired andt =r =1 — s, the extended QMC on the integer
line is always recurrent.

1.7 Non-symmetric weight matrices

As discussed previously, Theorem describes the fundamental conditions regarding the existence of a positive
weight matrix associated with a given QMC. Then, a natural question arises: is there anything that can be
done in the case of QMC that do not satisfy such conditions, perhaps involving a non symmetric matrix of
measures? Based on [37], we are in fact able to discuss a non-general Karlin-McGregor formula for ® by using a
different kind of polynomial orthogonality, where the term non-general means that we obtain the (7, j)-th block
entry of ®" only for ¢« = 0, which will allow us to obtain certain developments for the recurrence problems we
are interested in.

We will be mostly interested in homogeneous QMCs, that is, operators ® of the form (|1.3.2)), such that A, =
A B, =B,Chi1 =C, Yn=0,1,2,... for some A, B,C € Mpy2(C). For instance, if we have a homogeneous

OQW with
1 ({1 0 111 1
R R T A B

then AgCy is not Hermitian, consequently it is not possible to obtain a proper positive definite weight matrix
W that makes the corresponding matrix-valued polynomials orthogonal with respect to W. However, we may
consider another kind of orthogonality for the associated polynomials in terms of a reasoning seen in [37]. For a
homogeneous QMC, Theorem 3.4 of [37] assures the existence of a weight matrix W supported on some subspace
A of C such that the polynomials @, (z), defined recursively by

Qo(z) = In2, Q_1(x) =0p2,

xQn(ﬂf) = QyH—l(l‘)An —+ Qn(x)Bn + Qn—l(ﬂf)cn, (1.7.1)

satisfy
/ 2R AW (2)Qn () = 0, (1.7.2)
A

for all integers n > k > 0. Polynomials {Q,,(z)}»>o for which there exists a weight matrix W satisfying
are called semi-orthogonal polynomials with respect to W. Since this concept of orthogonality is weaker,
the Karlin-McGregor formula for non-symmetric QMCs will be weaker as well. Nevertheless, we will be able to
obtain an application of such construction for the problem of recurrence.
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For completeness, let us derive the Karlin-McGregor formula for non-symmetric weight matrices with
the necessary adaptations with respect to semi-orthogonality. We have 2"Q(z) = Q(x)®", where Q(x) =

(Qo(x),Q1(z), . ..). Component-wise,
2" Qq (x Z Qr(x)®,. (1.7.3)

Fix i,j € Zxo vertices. Fix a time parameter n with the extra condition n > i, then multiply Q;(z) on the
left-hand side of - with r = j 4+ i and integrate on A to obtain

/Ax”Q§( JAW (2)Qj+i(x Z/ Q: (2)dW (2)Qu (x )@,g”jﬂ-z/ Q} (x)dW (2)Qx(2) @), (1.7.4)

Hypothesis n < 4 in this situation would make the integral on the left-hand side of (1.7.4)) to vanish, by an
application of (1.7.2]). The same idea is applied to the right-hand side of (1.7.4)), where we want the sum of
integrals to become only one term, which happens for the particular case j = 0:

/ Q3 () AW () Qs () = / Qi () AW (2)Qo()3).
A A

Hence, we obtain the Karlin McGregor Formula for non-symmetric QMCs:

—1
o) = (/ dW(:E)) /xndW(x)Qi(m), i €Zso, n=0,1,2,... (1.7.5)
’ A A

This equation gives, for a fixed vertex i € Zxg, the (0,7)-th block entry of ®” for any time n > 0. The case n > ¢

follows from the construction above and, for n < i, @éfbi) = 042 since ® is block tridiagonal and the right-hand
side of equation (|1.7.5) vanishes by equation (|1.7.2]). Therefore, we can obtain the probability for the walker to
reach site |0), given that it started on site |¢) with initial state p € My (C), by

Poisp(n) = Tr (‘I’(()nl =Tr <</ dW (x ) / "dW(a:)QAx)p) , 1€ Z>0, n=0,1,2,... .

Regarding the case of a finite number of vertices V = {0, 1,2,..., N}, we proceed as expected: the eigenvalues
of ® are the roots of the determinant of

Ryii(z) = Qn(z)(2] — By) — Qn-1(x)Ch,

where {Q,,(x)})_, are the polynomials associated with ®. Suppose that ® describes a homogeneous QMC,
then {Q,,(z)}Y_, are semi-orthogonal with respect to the measure

Wi = lim (\x — 2) ([®] — ZI)OO )

that is,
D> NWQ; (M) =0,

for 7 > 4, where 7 is the number of eigenvalues of ® counting multiplicities. The Karlin-McGregor formula for
this kind of QMC is then

o) = ZA“WkQJ Ak)-

k=1
Example 1.16. Let ® be the homogeneous OQW with 3 vertices defined by

0 [C] 0 _1[1 1} 1 [1 0] (1.7.6)

T3
The polynomials associated with ® are

Qo(z) = L1, Qi(z) = 2[A]7", Q2() = 2Qu(x)[A] ™" ~ [C][A]7".
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Hence the eigenvalues of ® are precisely the roots of

Ry(z) = 2Q2(z) — Qu(x)[CT,

which are
V2 V2 V3 V3
AM=0, o=——, A3=—, Mq=—F, A5=—,
1 2 3 3 3 4 3 5 3
\ \/2\/6—3+,\/2\/6+3 \ V2vV6 -3 V/2V6+3
= - 1 9 - -1 )
6 6 6 7 6 6
2v6 -3 /26 +3 2v6 -3  V/2V6+3
Ag = — —1 , Ag = +1 R
6 6 6 6
A1 has multiplicity 4. Joining the results of [22] and [37)], we obtain
J 0 if Q>
) WeQ; (M) = ,
;Qz( B Wi () {Fij € M4(C), not necessarily null —if 1 <j
where
= i —2)([®] — z112) o0
Wi Zgglk()\k 2)([®] — 2112)09
= 1l (A ) ! X
s RN R TPV Y
6 4_9,2_ 241622 241622
_ 8lz +9zz 2222 27 Jgg 1 27 Jgg 1 72(922+5)
272446221 7292816225 54212242 2(81244272%—14) 212241
3z 2(922-2) 922 -2 3z
272446221 z(812*+272°—14) 7292816220 —542%— 2242 212241
3z 92222 2(92272) 3z
—2(92%2 +5) —72123;1 —72123;1 —2(8124 4+ 7)
Those values are
6 1 1 0 0 O 0 O 1 1 1 2
11-1 3 0 1 110 1 -1 0 1 /-1 -1 -1 =2
Wi=51-1 0 3 1= We=glg 1 1 o Wa=Ws=9 |1 1 -1 2|
0O -1 -1 0 0 O 0 O 2 2 2 4
r_3-iV/s _ 1 1 7—iv/15 ]
—90+63v/15 12 12 —30+18i/15
_ 1 5 5 —15-7i\/15
_ _ 12 30—6iv/15 30—6iv/15 —180+12iy/15
We = W7 = 1 5 5 —15—7iV/15_ | °
12 30—6iv15 30—6iv15 —180+12iV/15
7—i/15 15+7iv/15 154+-7iv/15 114-3iv/15
L —30418iv/15  —1804+12iv/15  —180+12i4/15  —30+18i+/15
r_—3—iV5 _ 1 _ 1 —7—iV/15 7]
—90+6iv15 12 12 —304+18i/15
_ 1 _ 5 _ 5 15—7i/15
_ _ 12 30—6iv/15 30—6iv15  —180+12iv/15
Ws =Wy = 1 . 5zr _ 5“ﬁ 157—;1‘\/11*(
12 30—6iv/15 30—6iv/15 —180+12iy/15
—7—i/15 —154+7iv/15 —154+7i\/15 —1143iv/15
L —30418iv/15  —1804+12iv/15  —180+12i1/15 30+18iv/15

A simple calculation shows that
9
AW (z) =Y Wi =1I4.
k=1

Therefore the Karlin-McGregor formula for this OQW is

—1 9
@3@>:</Advv(x)> /Az”dW(m)Qi(x)Z;AZWin(Ak), i=0,1,2, n>i.
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For instance, we have

63 —45 —45 54

(10) . 1 |—27 26 10 —45
0.2 _Z/\ WiQa(Ar) = 59049 |—27 10 26 —45|°

=1 90 —27 —27 63

which agrees with the corresponding block of ®1°. The probability of the walker to be on site |0) after 10 steps,
given that it started on site |2) with initial density operator p = [; b } 18

1-a
63 —45 —45 H4 a
PR | e
90 —27 —27 63| |1-a
Analogously,
Po2;p(2) = w, P02:p(3) = 0, p02;p(4)=%.

However, the general Karlin-McGregor formula does not apply for this OQW. Indeed, we have

0 0 0 1
@ _ 110 0 -1 1
%72_9 0 -1 0 1}’
1 -1 -1 1
and
15 37 37 82 .
1 |24 32 30 18 .
18 124 30 32 18 :<ZQ2(Ak)WkQ2(Ak)> (Z/\ Q5 (Ak) WkQQ(Ak))#‘I’S%.
25 29 29 6 k=1

The reason why this is happening is that Q2 and Qg are not orthogonal, since

-2 4 4 28

9
) 1|8 —21 -21 —62
D QW) =715 51—y g

k=1 4 18 18 68

Let us study now the case of a larger number of sites n. Consider

o= € My (C),
(Al 0 [C]
[Al 0

where A, C are defined by (1.7.6)). The compact form of ® is given by

0 C
A0 c 100 L2
D= : € M3, (C), A:§ -1 1 0}, ng 0 1 1
A 0 C 1 -2 1 0 0 1
A 0
If we evaluate the eigenvalues A1, ..., A3, of ® and put them on the complex plane, the outcome is a graph of

the form represented in Figure . Each dot represents an eigenvalue of ®.
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Figure 1.4: Eigenvalues of ® with 20 vertices.

Example 1.17. Let ® be a homogeneous QMC with 5 vertices defined by

[Bol [C1] + [C2] 0 0 0
[A1] + [Asz] [Bo]l [C1] + [C2] 0 0
¢ = [A1] + [A2] [Bo]| [C1] + [C2] 0 )
[A1] + [Az] [Bo] [C1] + [Ca]
[Ar] + [A2] [Bo]

where

n- £ an s fafl oan gL oun L)

In compact form, ® becomes

B C 0 0 O
A B C 0 0 1 0 0 0 1 2 0 0 1 1 00
ci>:0ABCo,Bzgooo,A:502o,C:5010.
0 0 A B C 0 0 1 2 0 2 0 0 2
0 0 0 A Bj
The eigenvalues of ® are given by
1 1 3 V2 V2
)\1_07 )‘2__57 >\3_g7 )‘4_57 )‘5__?7 )‘0_?7
6 6 1 2v3 1 23
>\7=—£7 Aszi, Ag:*—ia /\10=*+i,
5 5 5 5 5 5
where A1, A5, Ag, A7 and Ag have multiplicity 2. The weight matriz is given by
1/3 0 0 0 0 0 [0 0 0 0 0 O
Wi=1| 0 1/3 0|, Wy = 0 0 0|, Ws= 0 0 0|, Wy=1]0 0 0
2/11 0 0 -1/2 0 1/4 |—-8/15 0 1/3 1/6 0 1/4

1/4 0 0 1/4 0 0 1/12 0 0
Ws=| 0 1/4 0|, Weg=| 0 1/4 0|, wy= 0 1/12 0|,

10442 104—/2 17V6 67
23_2f 0 0 292\[ 0 i - 2\0[ 30 0 0
1/12 0 0 0 0 0 0 0 0
Wy = 0 1/12 0], Wy = 0 0 0 , Wig = 0 0 0 .
17V6 67 10529 | 30163 10529 _ 3016v/3
2\0[ 30 0 0 asis T 240\9f 0 1/12 4818 240\9[ 0 1/12
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The polynomials Q, () associated with ® (see (1.7.1)) satisfy (1.7.2)), that is,

10
S ONW(H)Qk(N) =0,
j=1

. . a b
for all integers n > k > 0. As an example, formula (L.7.5)) gives, for p = [b* 1_ a} , that
10 520 0
. 4632 + 608a
O =S NWEQs(M) = moe | 0 52 0 | = pogip(7) = ——
’ 78125 15625
k=1 907 0 579

¢

Let us now consider the case of infinite vertices. For that we recall that the Stieltjes transform B(z; W)
associated with a homogeneous QMC & with matrix representation

B C
A B C
¢ = A B C )
where A, C' € Mpy2(C) are non-singular, is given by
B(z;W) = (2 —B—-CB(z; W)A)~ L. (1.7.7)

Similarly, the Stieltjes transform B(z; W) associated with a QMC ® with matrix representation

By C
~ Ay B C
¢ = A B C )

where Ay, A,C € My2(C) are non-singular, is given by

B(z; W) = (z — By — CB(z; W) Ag) ™" (1.7.8)
Example 1.18. Take V = Z>o and matrices R = L = %12,
V51 0 V5[0 0 VET1 0 V51 0
31—5{0 Jv 32—5[0 Jv R1—5{—1 Jv 32—5[1 1}
We define a QMC on V whose compact form is
By C )
Ay 0 C
o= A 0 C ,30231+BQ,A0:R1+R2,CZL,A:R.
A 0 C
Denote by ®q the matriz
[0 C
B A 0 C
®o = A 0 C ;

and W, Wy the weight matrices associated with ® and ®¢, respectively. Using ([L.7.7) and (1.7.8) we obtain

Bz Wo)(2) = (22 + 2v/22 — 1)I5.
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and
- 2V/22 —1+32—1 0 0
BsW) =675 2 P 90/ —1+3z—1 0
ze — 0z 2((252°—202—1)v/22—-14+252°—-202°—132+8
( )522—18z+13 ) 0 2V/22-1+432-3

With the Stieltjes transform, we may obtain the associated weight matriz for ® by applying the Perron-Stieltjes
inversion formula. A simple calculation shows that the weight matrix W is given by

2v/1 — 22 0 0

5 0 2v/1 — 22 0
Wr)=— . zel-1,1]
@) = T Ge? —6s +5) 2(2502 — 20z — 1)V/I — 22 rel1
0 2v1 — 22
522 — 18z + 13

We now have

/_ Q@AW (2)Q;(x) =0, i

thus formula (1.7.5) holds.

Let us now analyze recurrence of the first vertex of both QMCs ® and ®y. By , we are able to conclude
whether the walk is recurrent just by considering the Stieltjes transform associated with the QMC, that is, we
do not need to obtain the explicit weight matriz associated with the referred QMC. Above, we determined the
weight matrixz for completeness, and in order to write the transitions probabilities of the walk described by ®
using the Karlin-McGregor formula.

Applying limits to the Stieltjes transform B(z; W) and B(z; W) associated with ®¢ and ®, respectively, we
obtain

lim1 Tr(B(z, Wy)p) = lim1 2242v22 —1=2,
z—r z—r

and using I’Hospital’s rule we get
hm1 Tr(B(z, W)p) = oo,
zZ—r

for any density operator p € My(C). Therefore, by (1.3.5)), the first vertex |0) is transient for ®o and recurrent
for ®.

O
Example 1.19. Take V = Z>q and matrices
1 [1 0 1 /1 0 1 [vV3 0
R =— , Ro=— , L1 =— . 1.7.9
e R I RV R K (7
We define a QMC on V whose compact form is
0 C
5 A 0 C . . .
o = A 0 C , A= R+ Ry, C=Ly.
The Stieltjes transform associated with ® satisfies
B(z;W)(zIs — CB(z; W)A) = I3,
for which a solution is
Tz —iv/—492%2 + 24 0 0
Bz W) = v 0 Tz —iv/—4922 + 24 0
T 12 | —3432% 4+ 1402 + (4922 — 8)v/4922 — 24
2+ 140z 4 (492" — 8)vd9: 0 Tz — i/ 1922 + 24
4922 — 32
(1.7.10)
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The weight matriz associated with ® is then

V24— 4927 0 0
W)= - 0 V24— 4927 0 e [_2\/6 2\/61
12| (4922 + 8)v/24 — 4922 ’ T
(4 Ig?? — o 0 V24 — 4927

The polynomials associated with ®, Q(x), satisfy

2

[2 x’dW(:L’)Qj(x) =0, i>j,

¥

3

6

\]‘

thus formula (1.7.5) holds. Finally, we conclude that vertex |0) is transient, since

S
ZpOO;p(n) = ;1311 Tr (B(Za W)p)
n=0

49z — 74/492% — 24 N Ta —34323 + 140z + (4922 — 8)v/4922 — 24 119+ Ta -
= - o0

12 12 4922 — 32 102

Example 1.20. Let us consider the QMC on V = Z>¢ whose compact form is

c C
a0 c L )
o = A 0 C ,A:Rl—FRQ,O:Ll,

where
L R A

This @MC'is similar to the one on Ezample with the difference that the first block is replaced by C. Now
O is trace preserving and the associated Stieltjes transform to ®, B(z; W), satisfies

B(z;W)(zI3 — C — CB(z;W)A) = I,

where B(z; W) is the associated Stieltjes transform to the QMC on Example . Thus, we obtain

7 72—64+/4922—24 0 0
6 5—7z
_ — 2_
B(z; W) = 0 % 7z+2;/\§}§;_/4;9z 24 0
34322 —1962% — 1262464+ (4922 —282—4)/4922—24 0 172—2+/4922—24
160—3842—2122458823 —3432% 2 1—2

Therefore,

00
Z pOO;p(n) = i% Tr (B(2;W)p)
n=0

7 (3432% + (492% — 20)v/492% — 24 — 182z)a | 17z — 2+ V492 —24

-3 34323 — 24522 — 224z + 160 2 1—=2 o

1 Ea} . Hence, this QMC' is recurrent.

for any density operator p = [bci
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Applying the folding trick to a nonpositive measure. It is worth noting that the folding trick can also
be applied to QMCs whose matrix representations are not symmetrizable, allowing us to examine the associated
recurrence problem. In fact, let us recall equation (|1.6.11]):

Doo(2) = Py (2)(I — 2 A1, _1(2)Co®iy(2)) "

In order to analyze recurrence of site |0) of a given QMC on Z, we have to calculate >~ poo;p(n) =
S Tr(@ég) p) for each density operator p. This can be done by using equation (1.6.11) in the following

n=0
way':

S ol = lim ®oo(2) = lim I} B(z; W) (I — A1, B(z; W_)CoIld B(z; W)™, (1.7.11)
n—0 z z

where the Stieltjes transform appearing on the right-hand side are obtained by applying (1.3.6)).
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Chapter 2

Continuous-time open quantum walks

2.1 General setting

In this work, we assume that we have a quantum particle acting either on the integer line, the integer half-line,
or on a finite segment, that is, we have that the set of vertices V is labeled by Z, Z> or a finite set {0,1,..., N},
respectively. We will also call vertices as sites. The state of the system is described by a column vector

P1
p=|p|, PEIM), pi=0, > Tr(p)=1 (2.1.1)

An operator semigroup 7 on a Hilbert space H is a family of bounded linear operators (T}) acting on H,
t > 0, such that
TTs =Tyys, s,teRY, Ty =1Iy.

If t — T; is continuous for the operator norm of #H, then 7T is said to be uniformly continuous. This class
of semigroups is characterized by the following result:

Theorem 2.1. [7], page 161] The following assertions are equivalent for a semigroup T on H :
1. T is uniformly continuous;
2. There exists a bounded operator L on H such that
T, =et, teRT.

Further, if the conditions are satisfied, then

The operator L is called the generator of T.

2.2 CTOQWs

A semigroup T := (T;)¢>0 of CPTP maps acting on Z; (), set of trace-class operators on H, is called a
Quantum Markov Semigroup (QMS) on Z;(H). When lim;_,¢||7; — Id|| = 0, then 7 has a generator
L = limy_,g+(T; — Id)/t (see [31]), which is a bounded operator on Z;(#), also known as Lindblad operator.

We consider a finite or countable set of vertices V' and then take the composite system

" =P,

1%
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where each h; denotes a separable Hilbert space. The label i € V is interpreted as being the position of the
walker and, when the walker is located at the vertex i € V, its internal state is encoded in the space b;, describing
the internal degrees of freedom of the particle when it is sitting at site ¢ € V. Since we will be considering only
examples with h; = b; for all 7,5 € V, we let h; = b for every i € V.

The set of diagonal density operator acting on A will be denoted by

Dz{Zp(n i) il = p(i) = p(i)*, p(i) >0, Zﬂ(p(z'»:l}-

eV eV

Definition 2.2. A Continuous-time Open Quantum Walk (CTOQW) is an uniformly continuous QMS
on Iy (H) with Lindblad operator of the form

£ZI1(H) — Il(H)
p = _i[Hap} + Z (Sszszj* - ;{Szj*szjﬂp})v (2‘2'1)

i,jEV

where, consistently with the notation, we write SJ RJ ®|4) (z] for bounded operators R{ € B(hi, h;). Moreover,
H and SJ are bounded operators on M of the form H = Y, .\, H; ® |i) (i|, H; is self-adjoint on b;, S} is a

bounded operator on H with Zz jev SJ S] converging in the strong sense. Also, [A,B] = AB — BA is the
commutator between A and B and {4, B} AB + BA is the anti-commutator between A and B.

Then, we have p = 37,y p(i) @ [i) (il € D, e*(p) = Ti(p) = Yjey pe(i) @ i) (il , ¥ > 0, with
jpt() —i[Hy, pr(D)] + > (Rzpt 7)R; ——{RJ* ,pt(i)}).
Jjev

An alternative way to rewrite is given by equation (18.7) in [5]:

Lp)=> | Gip(i) + p(i)G; + > Rip()Ry | @ i) (i, (2.2.2)

eV jev

where

. 1 g
Gi=—iH; -5 Y RI"R].

JjeEV
Note that we then have G; + G} = — 3,/ RI*RJ.

Starting the walk on site |i) with initial density operator p € S(b;) = >,y p(i) |4) (i] , the quantum mea-
surement of the position gives rise to a probability distribution pg on V, such that

po(i) = P(the quantum particle is in site |i)) = Tr(p(i))
and for evolution on time ¢ > 0,
p¢(1) = P(the quantum particle, at time ¢, is in site |i)) = Tr(p:(7)),

=S i) o i

i€V

where

The vector and matrix representation of states and CP maps may be easily adapted to CTOQWs. In fact,
since any element of Zy (H) is block diagonal, when dim H < oo, it may be represented by combining the vector
representations of the finite diagonal blocks,

vec(pr)

p=Y meli)il = 7= |veclr)

eV
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Then, the CTOQW (2.2.2) admits a block matrix representation

Gy [RY] [R3]
— ~ ~ R} G¢ Rl .
e“p) =€ 7, L= {R%} [Rlﬂ (ng o

where
oo

G?:—iHi®I—|—iI®E—52(R{*R{®I+I®R{*R{), i=0,1,2,....
j=0

—_

We will often identify £ with its block matrix representation and omit the hat, as the usage of such object
will be clear from context. Also, we will sometimes write X instead of [X] in contexts where no confusion
arises.

It is worth noting that although the above definitions concern CTOQWs on general graphs, in this work we
will deal exclusively with the one-dimensional situation which we may also call quantum birth-death process,
and represented by

By Ci
Ay B (O

L= A By Cs : (2.2.3)

for certain operators A;, B;, C;, and the remaining operators being equal to zero. The above representation is
for a quantum particle acting on the integer half-line Z>q, but we will also study examples acting on a finite
set {0,1,..., N} or the integer line Z.
The blocks of £ in (2.2.3]) are then
1
a , e L % i % i
Gy =—iHy®I+ileH—3 ) (R Ry @1+ 1@ R RY)
§=0
i o -
Gr=—ii@l+ileH—5 Y (RRI@I+ICRR]), i=12,...
j=i—1

Ai :|—R2+1-|7 B; = |—Rﬂv Cit1= (RZ:HL i=0,1,2,....
For simplicity, we will write
[A]=4,®4;, [B]=B®B; [Ci]=C&C,

and

— 1
Gf = —iH; @I +il ® H; — [(AjA; + BiB;+ C;C)) @ I + I ® (AjA; + BB, + C;C;) ] .

When G¢ is the same for all ¢, then we will write G* = G¥'.

2.2.1 Recurrence and transience for CTOQWs

Let us denote by X; the process that indicates the position of the walker and by p; the density operator at time
t, then, by [33], the process u; = (X4, pi) is a Markov process. Analogous to the classical walk, let us discretize
a CTOQW by a process {X(nd),n > 0}, where § > 0, having one-step transition probabilities pj;,,(0) (thus it
has n step transition probabilities pj;,,(nd)). This process is called J-skeleton of {X(t),t > 0}.

Let A be a CTOQW, i € V,p € S(h;) and § > 0. We say that a vertex 7 is

. p—recurrentﬂ if
/ Piisp(t)dt = oo.
0

Otherwise, 7 is said to be p-transient;

n the continuous-time version, the mean number of returns to some site is given by an integral. This integral should be

compared with the series (1.1.6]).

40



2.2. CTOQWS CHAPTER 2. CONTINUOUS-TIME OPEN QUANTUM WALKS

p-SJ K-recurrentﬂ on the d-skeleton if

Y piisp(nd) =
n=0

Otherwise, 7 is said to be p-SJK-transient on the J-skeleton;

e recurrent if ¢ is p—recurrent for all p € Sy,;

transient if ¢ is p—transient for some p € Sy,;
e SJK-recurrent if ¢ is p-SJK-recurrent on the d-skeleton for all p € Sy,;
e SJK-transient if ¢ is p-SJK-transient on the d-skeleton for some p € Sy, .

Remark 2.3. Further, in this section, we shall show that for a semi-finite CTOQW which are of our interest,
that a vertex is p-recurrent on the -skeleton if and only if it is p-recurrent on the &'-skeleton for any 6’ > 0.
So, the definitions of SJK -recurrence and SJK -transience are consistent.

Definition 2.4. A CTOQW is said to be:
e recurrent if every vertex is recurrent;
e transient if every vertex is transient;
e SJK-recurrent if every vertex is SJK-recurrent;

o SJK-transient if every vertex is SJK-transient.

Example 2.5. Let V = {1,2,3,4}, L = ® — I a generator of a CTOQW, ® a quantum channel with Kraus

operators
0 O 0 10
B11 T {1 O:| 7B21 T {0 0:| 312 |:O 0:| 9

0 1 0 1 1 0
B32 - |:0 0:| )B23 — |:_1 0:| )B24 = |:0 1:| )

Bj; = 0 for the remain blocks.
We take a density operator T = Z?Zl 7(4) @ |7) (i| to write the explicit form of the generator L by

L(r) = (=7(1) + Bup(1)Bi; + B2a1p(2)B3;) @ [1) (1
(=7(2) + Bi2p(1) B + B32p(3) B3y) @ [2) (2| + (=7(3) + B2sp(2) Byz) @ |3) (3|
(=7(4) + B2ap(2) B3,) @ [4) (4]

1 ifa =0
— e_t> + e_t] a=1b Ve ,

oo, a€(0,1]
0 0 , , . . .
0 1 and p'-recurrent for any p' # p, that is, vertex |3) is transient.
Similarly, we can also obtain that vertices |1) and |2) are recurrent and |4) is transient.

meaning that |3) is p-transient for p =

O

2The notion of SJK-recurrence in the discrete time unitary setting is described on [36]. SJK-recurrence is named after the
initials of the authors of the that work.
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By
By

Ba3 Bsa

Figure 2.1: CTOQW with two recurrent and two transient vertices.

2.2.2 Further properties on the transition probabilities

The following results gives some properties of the transition function which have a fundamental importance on
the next definitions and results, since it gives sufficient conditions to the transition functions be strictly positive
for t sufficient large.

Proposition 2.6. For any vertexr of a CTOQW,

Pjisp a + 5 ijk,ph(ﬁ) pkz,p(ﬂ) (224)
where P AP
’ kApIE 0
; =V > 0.
pk}z(ﬁ) TT(]P)ICA[S]P)'LP) y VA, B =

Since on the Markov process there is one only quantum state p = 1 € C, equation Chapman-Kolmogorov
Identity is a particular case of (2.2.4).

Remark 2.7. The classical Chapman-Kolmogorov does not apply for CTOQW. Indeed, consider the CTOQW

on example . For p= {8 ﬂ ,

F (e (3)-

) 2o
pOO;p \/?: - 3 )

therefore we can not consider p = pj,(B) on equation (2.2.4]) because

v (s (5) e (25

To get around this situation, in order to show equivalence between recurrence and SJK-recurrence, we show
that the function g(p, s) = pji,»(s) is jointly continuous under the variables s € [0,00) and p € Sy,.

(\/ge_@ — 2)2 ,

NeNie

however

Proposition 2.8. Let A, a CTOQW andi,j € V. Denote W; := Sy, x [0, +00), then the function g : W; — [0, 1]
defined by g(p,s) = pji,p(s) is jointly continuous on W;.

Proposition 2.9. Let L be the generator of a CTOQW and i € V. Then
1. For all p € Sy, and t > 0, pi;;,(t) > 0;

2. If pij.p(t) > 0 for some t > 0, then p;j;.,(s) > 0,Vs > t;
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3. If pii.p(t) =1 for some t > 0, then py.,(s) =1,Vs € [0,1];

4. If 6§ > 0, dim(h;) < oo and there exists 0 < ty < & such that pj;,(to) > 0, then the minimum Nj; =
min{pj;.,(s) : p € Sy, and s € [to, 0]} is attained on (0,1]. When j =i, we denote N;; = Nj.

A generalization from the classical case to the quantum model is presented below. As on the classical
model, the proof is based on the Mean Value Theorem for Integrals, with the addition in which convergence
and divergence of the integrals and the series are looked on the tail of the series. This is necessary because we
do not have the Levy Dichotomy E| on the quantum model, only the results on Proposition

Theorem 2.10. Let § > 0 and i,j € V wvertices of the graph on which a CTOQW is defined. If dim(h;) < oo,
then

oo oo
iji;p(n5) =t00 < / Pjisp(t) = +00.
n=0 0
Consequently, i is p-recurrent if, and only if, i is p-SJK-recurrent in the d-skeleton.

Now we have an equivalence among the CTOQW and its discretized random walk with n-step transition
probabilities on the d-skeleton. The next results associates the p-recurrence among faithful (p is non-singular
and therefore it is positive definite) and non-faithful (p is singular and therefore it is positive semidefinite)
densities for a vertex with finite internal degrees.

Proposition 2.11. Let A a CTOQW, i € V, dim(h;) = n < oo and p € S(h;) and suppose that i is p-recurrent.
1. For any faithful p € S(b;), i is p-recurrent;
2. If p € S(b;) and there exists § > 0 such that p;,;(0) is faithful, then i is p-recurrent;
3. If n > 2, there is a non-faithful density p on Sy, in which i is p-recurrent;
4. If n =2, then the non-faithful density p on item (3) is pure.

Remark 2.12. By contraposition, we get by the first item of the Proposition that if i € V, dim(h;) = n < oo
and p € 8(b;) faithful with i being p-transient, then i is p'-transient for any p'.

2.3 Weight Matrices

In this section we introduce the Karlin-McGregor Formula for CTOQW with set of vertices of the forms
V={0,1,2,...,N}and V =Z, = {0,1,2...}. Then we will be able to give a recurrence criterion for vertex
|0) based on the Stieltjes transform of the associated measure.

Following [I7], we pick d € {1,2,3,...}, (An)n>0, (Bn)n>0, and (Cp)n>1, such that the block tridiagonal
matrix

By
Ay B1 (O

L= A By G , (2.3.1)

represents a generator of a CTOQW A. A
Define recursively the associated matrix-valued polynomials from the matrix £ on (2.3.1]) by

Qo(x) =1z, Q_1(x) =04

~2Qn(2) =Qui1(x)An + Qu(@) By + Qu-1(x)Cpy n=0,1,2,..., (23.2)

that is, Q(z) = (Qo(z),Q1(x),...) are solutions of the equation —zQ(z) = Q(z)L. Here we denote I; and 0y
the identity and the null matrix of dimension d x d.
We recall property A} = LA;, where A; = e** and define the two-variable function

flz,t) = Q(x)A, x€C, te[0,00).

3The Levy Dichotomy asserts that, for a continuous Markov chain, for vertices i # j, we have pi;(t) > 0 for every t > 0 or
pij(t) = 0 for every t > 0.
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One has

D) — Qu)a = QLA = Q@) = ~af(w,1), J(2,0) = Qa),

whose solution is f(x,t) = e"**Q(x). Hence e~ *'Q(z) = Q(z)A;. Componentwise,

e " Qi(x ZQk YA (t (2.3.3)
where Ag;(t) is the (k,4)-th block of A(¢).

If there exists a weight matrix ¥ such that the matrix-valued polynomials {Q, ()}, >0 are orthogonal with
respect to X, in the following sense

[ @@ @i = ki, det(r) £0,
then multiplying on the left side of (2.3.3)) by Q}(z) and integrating with respect to > we obtain

/ e Q? (2)d8 (2)Qi(x) = / Q1 (@)dS(2)Q; (2)Au(h),
R R

therefore for any i, j € V, we have the Karlin-McGregor Formula for CTOQW:

0=(/ @;@)dz(x)c?j(x))l ([ema@ismam). (2.3.4)

A(t) = (Aji(t))),i=0,1,.... For more details about how to construct this formula see [17].

Sometimes we will write as
M) =15 ([ e Qs

=/ Q;<x>dz<x>@j<x>)l.

Therefore, the transition probabilities may be obtained by

where

o) =0 |11, [ Q5 @as@)Qute)]

Theorem 2.13. Let A be a tridiagonal CTOQW on Zso = {0,1,2,...} and X its associated weight matriz.
Vertex |j) is p-recurrent if and only if

piy 111, [ SO,

Proof. For each pair i,7 € V we have

—A
/0 Pjisp(t )dt_hgb o e M pjip(t)dt

= lim Ooe*MTr {Hj/eth;(x)dE(z)Qi(x)p} dt
0 C

A—0

~ lim Tr {nj / ( / e Mﬁdt) Q;(x)dE(x)Qi(m)p}

-y, [ GOCE0,)
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We recall the Stieltjes transform associated to X :
dy
B(z,%) = / ﬂ,
cR—T
thus we obtain the straightforward consequence of Theorem [2.13}

Corollary 2.14. Let A be a tridiagonal CTOQW on Z>o = {0,1,2,...} and ¥ its associated weight matric.
Vertex |0) is p-recurrent if and only if

— lim Tr[IIyB(z, X)p] = occ.
z—0

2.3.1 Some basic results

The following are basic results from the setting of matrix-valued orthogonal polynomials, which will be used in
this work.

1. Let ¥ be a d? x d? weight matrix and denote by
Sk = /xkdE(m), k=0,1,...

the corresponding moments. The block Hankel matrices are defined by

Sy - S
Sm A SZm

Theorem 2.15 (Theorem 2.1 of [17]). Consider the block matriz L given by Equation ([2-3.1)), assume that
A, Cri1, n > 0 are nonsingular matrices and B,, > 0 for all n. Now let {Q,(x)}n>0 be the sequence of
matriz-valued polynomials defined by . Then there exists a weight matriz ¥ with positive definite block
Hankel matrices H,,,,m > 0, such that the sequence of polynomials {Qn(z)}n>0 is orthogonal with respect to
Y if and only if there is a sequence of nonsingular matrices (Ry)n>0 such that

RanR;1 15 symmetric, n >0,

- (2.3.5)
RER, = (A5 A% )" 'RiRyCy -+ Cpy, 1> 0.

Moreover, So = (RiRo) ™.

2. Perturbation of Stieltjes transform:

Theorem 2.16 (Theorem 2.3 of [17]). Consider the block matriz L given by Equation [2.3.1)) and the matriz
L which is the same as L but with a perturbation on the first block, that is,

By Cy
Ay B (O

L= Ay By (s

If 3 is the weight matriz associated to L with positive definite block Hankel matrices such that ROBORgl 18
symmetric and such that (R, )n>0 is a sequence of matrices which satisfies condition , then there exists a
weight matriz X corresponding to L. If the weight matriz X and Y are determined by their moments, then the
Stieltjes transforms of the measures satisfy

B(z,%) = {B(z, ) e (BO - BO) }71 .
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3. Explicit weight matrix for a class of walks on the half-line. The following is a restatement of a result due
to A.J. Durédn: let A be positive definite and define

H(z) = A™Y*(B— 2I)A"Y(B — 2I) A~/ —4I.

Such matrix is diagonalizable except for at most finitely many complex numbers z’s, so that we can write
—H(2) = U(2)D(2)U~1(2), where D(z) is a diagonal matrix with diagonal entries {d;;(z)}. For z real, we have
that —H(z) is Hermitian, so it is unitarily diagonalizable, that is, we can have U such that U(z)U*(z) = I.
Also, D has real entries. With such matrices defined, we have:

Theorem 2.17. [2]] If A is positive definite and B Hermitian, the weight matriz for the matriz-valued poly-
nomials defined by

tU,(t) =Upi1(OVA+ U, () B+ U,—1(t)A, n>0, Up(t)=1, U_1(t) =0,
is the matriz of measures given by

dW (z) = %A’l/QU(m)(Dﬂz))l/zU*(x)A’l/zd:z:,

where DY (2) is a diagonal matriz with diagonal entries d;(z) = max{d;;(x),0}.

2.3.2 Walks on Z: the folding trick
Consider the generator of a tridiagonal CTOQW on Z, given by

G2 + [B_s] [C_1]
4 [A_2] G2+ [B-1] [Col
£ AT |G BT To] - (@36

[Ao] GY + [By] [Co]
[A1] G3 + [Bz] [C3]

We recall that [X] = X ® X, while the representation of G2 will be given later.
We assume that there exists a sequence of d? x d?> Hermitian matrices (E,)necz and non-singular matrices
(Ry)nez such that
|—An-|*R;kz+1Rn+1 =R,R, |—Cn+ﬂ7 n2>0

R*—n—lR*nfl [C—rﬂ = [Afnfl—l*R*_ann7 n > 07 ( [ —|) n ( )

Let us define
II; := R;Rj, jEeZ.

Consider the two independent families of matrix-valued polynomials defined recursively from (2.3.6)) as

Qo(z) = Lz, Qj(x) = Ogz,
QLi(x) =04, Q%(z) = Ip, (2.3.8)
—2Qy () = Qi1 (@) [An] + QR (2) (G + [Bnl) + Q1 (2)[Cr], =12, neZ,
where we have the block vector Q%(z) = (...,Q%,(x), Q% (), Q] (), Q¢ (x), QS (z),...), a = 1,2, satisfying
—2Q(z) = Q°(x)L.

As in the classical case, we introduce the block tridiagonal matrix

Dy Ny
N My Di N
L= M, Dy Nj ;
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where each block entry is a 2d? x 2d? matrix, given by

_ [Ge+[By] [A_1] A 0

* s [00(1301 o HSIJ R L )
n+ [Bn B :

Dn = O ng—l + |VB_7L—1“:| I’ Nn - 0 "A_n_1-| 5 n 2 ]_

The term folding trick comes from the transformation of the original generator L, whose graph is represented
in Figure 2.2 to the generator described by L, which is represented by the folded walk in Figure

By By

Cq

Figure 2.2: Generator £ of a CTOQW on Z.

By B, B,

Figure 2.3: Folded walk of £ on Z>o % {1,2} given by L.

Note that £ is a block tridiagonal matrix on Zx(, thereby we can apply all the properties we have seen in
previous sections. The following 2d? x 2d? matrix polynomials are defined in terms of (2.3.8)),

_ Q@) QL i (x)
Qn(z) = Q2 (z) QQ—n—i(x) , n=0, (2.3.9)

and these satisfy

xQo(x) =Q1(x) Moy + Qo(x)Do, Qo(x) = Izg2,
iL'Qn((E) :QnJrl(x)Mn + Qn(m)Dn + anl(x)Nnv n= 1; 27 s

The leading coefficient of Q, () is always a nonsingular matrix. Moreover, for

E, RO[A_l]Rj} y [En on]

= >
ColRy* E_ En 0 E_p |’ " L

i )

s | Ry 042
fin = {odz Rons

> Ey =

:| , 2 07 0 R71|—
we see that the block matrices of £ satisfy the conditions (2.3.7) for n >0 :
M;R:H-lén—i-l = R:;RnNn-&-la Rnl)n = Ean7

where matrices Rn are non-singular and E’n are Hermitian for all n > 0. Defining

9] v

II; == RiRj € Msg2(C), j=0,1,2,...,
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the correspondence between ij and II; is

7o [ O

By [18], there exists a weight matrix W leading to the Karlin-McGregor formula for A = etf

Rju() = 1, /R Q3 () dW () Qi (x). (2.3.10)

Once we have found the weight matrix appearing on ([2.3.10)), we can also obtain the blocks Aj;(t) of the original
walk generated by L. The key for this operation is the following proposition:

Proposition 2.18. Assume that L is the generator of a CTOQW of the form (2.3.6). The relation between
Aji(t) and Aji(t) is

Alt) = [A-Af’f?u) et f L 510

Proof. First we use Proposition (replace <I>( ") and <I>(") by E” and E" respectively) to obtain that

n n
Lri . L

—j—1,—i—1

o £n n
E?i:lA 7 E_ll ],i,jeZ>0, forall n=0,1,2,...,

hence we obtain for every i, j € Z>( the expression

oo

y o 1"
A = .
() z:: n! Z s LM Ajori(t) Ajo1—i-a(t)

£y, ;”ﬁ;i“}:[ Aji(t) Aj,mt)}

d

Note that we can evaluate ]\ji(t) by (2.3.10) and then extract the block Aj;(¢) as in (2.3.11). Further, for a
density operator p we have

=m0 Y)Yl )

However, we would like to obtain the probability above avoiding the evaluation of Ju\ji(t). This can be done via
a generalization of the Karlin-McGregor formula on Z>(. We proceed as follows: first, write the decomposition

AW (z) = [de(ﬂs) dW12(x):|

dWQl(I) dWQQ (I)

where dWa; (x) = dWi5(z), since dW (z) is positive definite. Then one has for i, j € Z>o,

Bt = 1 [ e Q@ar @)
E39) [Hj 0g2 } /emt[ j@) Qljl(x)r{dwn(x) dng(x)] [Qg(g;) ai_l(x)}
Oz H_j_1] Jp (33) Qz—j—l(x) dWiy(z)  dWas () Qf(m) 2—1‘—1(35)
[ ey () dWas (0)Q) () I fy e Q5 (@)dWas(@)Q,_y (@) ]

- 52: Ty fo Q% () dWan(D)QD () Ty Jy e Q% ()dWas(£)Q s (2)

Joining equation above and Proposition we obtain the Karlin-McGregor formula for a CTOQW on Z,
given by

Z / e QY (x)dWop(x )Q? (), for any i,j € Z, n > 0. (2.3.12)
a,f=1
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Conversely, if there exist weight matrices dW11(x),dWiz(x), dWaa(x) such that Aj;(t) is of the form (2.3.12)),
then Aj;(t) is of the form

B =11y [ Q)W ()i (o)

The weight matrix
Wu(at) ng(l’)
W(z) = ,
() [Wl*g(x) Was ()

is called the spectral block matrix of L.

Remark 2.19. Extending Theorem to the CTOQW on Z, we observe that, since Q = Q> = I; and
Q2 = QY =04, we obtain

[ee]
/ Poo;p(t)dt = liﬁ)l Tr [ B(z; Wh1)vee(p)] -
0 z
where B(z; W) is the Stieltjes transform of a weight matriz W. Analogously,
/ P—1,—1;p(t)dt = li%l Tr [I1_1 B(z; Wag)vec(p)] .
0 z

Since we are assuming that Iy and I1_1 are positive definite matrices, we apply Corollary to verify that
vertezx |0) is p-recurrent if and only if

o0,

li% Tr (B(z; Wi1)vec(p))

and vertex |—1) is p-recurrent if and only if

li% Tr (B(z; Waz)vec(p)) = oo.

Let us write the matrix £ in the form

0 0 [A]
y A— : Do 0 0 0
ﬁ:{EA gi_},CZ 0o 00 ... A= 0 0 0 J
[Col 0 0
G§ + [Bol [C1]
. [Ao] GY + [Bi1] [Cy]
LT = [Aq1] GS + [Ba2]  [Cs] ’
= | ALl Gu+[Bal (O]
[A_3] G% + [B_2] [C_1]

’VA_Q—I G(il + [B—ﬂ

Our goal now is to write the Stieltjes transforms associated with the weight matrices Wy, a, 8 = 1,2, in terms
of the Stieltjes transforms associated with W, the weight matrices associated with £F.
We introduce the generating function of £

O(s) := i s"L"
n=0

to obtain an explicit form for the Laplace Transform of A(t) on the following way:

n > —xt — * —xtxn An = t/;l An — ‘CA;LZ (I)j’i(t_l)
Aji(t) = ; e "Aji(x)dr = Z ; e Hﬁjida@ = Z Eﬁji = Z P
n=0

n=0 n=0
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Using equations (1.6.11]),(1.6.12)),(1.6.13) and (1.6.14) applied to ®;;(s~!) = sAj;(s), we obtain

(2) = Ay = [ALAT, 4(2)[ColAd(2) " (2.3.13)
S1(z) = AT ()T = [ColAdy(2)[A11AT, ()" (2.3.14)
Ko, 1(2) = 2'AGR)I = [ATAZ, _(2)[ColAdy(2) A1 TAZ, 4 (2). (2.3.15)
Aio(z) = z7'AT, ()T = [ColAdy()[A1TA 1 1 (2) " [ColAG (2). (2.3.16)

AOO z

z

z
We notice that the block matrices of both £+ and £~ satisfy the conditions of equation (2.3.7), thus there

are positive weight matrices W associated with L£* for which the associated polynomials are orthogonal Then,
we can write

Hé” ::/dW+ and IIZ; ::/dW_ .
R R

The Laplace Transform of Aj;(t) can be associated to the Stieltjes transform using that

A= [ et [T e ([ g <, [ ST,

s > 0, that is,
= T
/Q ())5<0’
T —S

thereby we recall that Q} = Q% = Iz, Q2 = Q1, = 042 in order to obtain the relations

B(Z7 Wll) H Aoo( ) B(Z, WQQ) = H:%K_}J_l(—z), B(Zil; ng) = H:iK()’_i(*Z),
B(zWa1) =TZ{A 10(—2), Bz Wy) = (I5) 7 Ady(=2), Bz W-) = (IZ,)7'AZ, _(—2).

Joining with the identities (2.3.13]),(2.3.14]),(2.3.15)),(2.3.16)), the new Stieltjes transform identities are obtained:

B(z; W) = 1§ B(z; W) (I — [A1 I B2 W-) [ColTTg B(z; W4)) ™,
M1 B(2;Wag) = 1", B(z; W_)(I — [CoTI§ B(z; W) [A_JT1-, B(z; W_))~ 1, (23.17)
o B(2; Wha) = I B(z; W) (I — [A_ 1T, B(2; W_) [Co T B(2; W4.))~ 1(A,11H:IB(Z;W,), o
1 B(2;War) = 12, B(z; W-)(I — [ColI§ B(2; Wi )[A1 12 B(z; W-)) ™ [Co 15 B(z; We).

Sometimes the operators H and IT;” are equal to the identity operator. In this case, (2.3.17)) are reduced to

B(ziWi1) = B(=: Wi ) (1~ Ay 1Bl Wo)[Col Bz W)™,

B Waa) = B W-) (I = [Col Bz W) A B W-) 251s)
B(z:Wia) = B(=: W) (1 ~ [ A1 B(: Wo)[Col B(=: W)™ [A 1Bz W),

Bzt War) = B( Wo)(I = [Col Bz W) [A B W-)) ™ [Co Bz W),

Equations (2.3.17) and (2.3.18)) allow us to obtain the Stieltjes transform of the CTOQW with V = Z
when we know the Stieltjes transform associated to the walks on Z>0 and Z<0. Since we are interested on the
recurrence and transience of the CTOQWSs, those equations are enough to obtain this information as it will be
seen on the next section.

Remark 2.20. A sufficient condition for H;" =1II; =1 is to have A, = C};, | and B, = B}, for everyn € Z,
since we will always have G, = G}, for all n € Z in this case and therefore we can take R; = I for all i € Z
(see Equation ) On the other hand, those conditions are not necessary, since we can find examples with
R, being any unitary matrices for each n.

2.4 Examples

In this section we present examples of matrix weights associated to tridiagonal CTOQWs and then we evaluate
statistics properties of the random walks with finite and infinite number of vertices.
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2.4.1 Diagonal and simultaneously diagonalizable transitions

First, we will consider a homogeneous CTOQW, with R! = 0 for each site, whose generator £ on the N + 1
nodes indexed as {0,1,..., N} is given by

(G [C]
. [Cj:] gj [C]
A ap 0 cg 0
L= . s A|:01 (L2:|, O|:01 02]; a17a2762702>07
[A] - G* [C]
[A] G~

Note that there are absorbing barriers on sites 0 and N. The classical symmetrization

i—1

R:diag(Ro,Rl,...,RN), RZ:K?' s izl,...,N, R():Ll7

where K = [V AC| = diag (alcl, Vaiciascz, \/aiciazcs, (1262) , gives

(G K
K G K
J=RLR ' = KoK
K G K
K G°

The matrix-valued polynomials {Q,,}»>0 are recursively defined by
QO(I) = 17 Q—l(x) = Oa
—2Qo(z) = Qo(7)G* + Q1(z) K,
—le(SU) = Q2+1($)K + Ql‘(l‘)Ga + Qi,1($)K, i=1,...,N —1,
which can be identified with the Chebyshev polynomials of the second kind {U, },,>0. Indeed, we have

(xi“ﬂfl),

n > 0.

Q) =0,

Now, if we define
Byii(2) = Qn(z) (-2 — G%) = Qn a1 (2) K,
we have that the zeros of det(Ry+1(z)) coincide with the eigenvalues of —J. A simple calculation shows that

(—z — Ga)Kl> «

Ryi1(z) =Uniga ( 5

We would like to solve the equation det(Ryy1(x)) = 0. Recalling the representation
2\ 1T (= — 2c0s (97—
U, (2) = H <z 2cos <n—|—1>> ,
j=1
we obtain, for the matrix-valued case at hand,

det(Ry41(z)) = det (UN+1 <(_‘”_§Q)K1> K) = det Iﬁl <(xI4 — G)K~! — 2cos (Nji 2)) K|,

j=1

thus

det(Ry41(x)) = kik3ks Jﬁl ﬁ [(_xk;gm) - 2cos (NJIQH ’

j=1 m=1
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where we have put G = —diag(g1, 92, 93,94) and K = —diag(k1, ke, ks, ks). Since go = g3 and ko = ks,
det(Rn+1(z)) is a polynomial of degree 4(N + 1) having 3(N + 1) distinct roots, which are of the form

4+ 1 4+ 1
x; = — g1 — 2k; cos <7r]‘<[—:_2> :a%Jrc% — 2aqc¢q cos <7r]]\7—:_2>,

4+ 1 4+ 1
yj = — g2 — 2ky cos <7T]j\/'j- 2> = \Jaiciascy — (a3 + ¢§ + a3 + c3) cos (77]]\712> )

4+ 1 4+ 1
zj:—g4—2k4cos<7r]jv_:_2>=a§+c§—2a262005<7rjjv_:_2>, 7=0,...,N,

each y; being of multiplicity 2. There can be cases of eigenvalues with a greater multiplicity, which happens
when the collection of zeros xn,yny and zy overlap, so the multiplicity changes accordingly.
Let us compute the weight matrixs on the zeros above. We have

Wj = g;-(/\j), gj(/\) = —(/\j — A)Q(—J — )\I)aol, /\j =Tj5,Yj5,%5, ] = O, N .,N, (241)

an expression which can be deduced from (see [22])

)\k WkP (/\k)
(—J =Dt = Z v :

and noting that this corresponds to the Laurent sum of the operator on the left-hand side except for the sign
change A\, — A = —(A—\g). With formula (2.4.1)), a calculation shows that for every N we have a corresponding
set of multiples of the matrices given by

1 00 0 000 0 00 0 0
00 0 0 000 0 0100
Wika=10 0 0 o/ "*2=10 0 0 o/""&3= 1|0 0 1 0
000 0 00 0 1 0000

More precisely, we have a collection of 3(N + 1) roots with weights

Y(x;) = Nj— 5 sin? (wi}ié) Wka, j=0,...,N,
W(y;) = Ni_Qsm < J+l )Wm, j=0,... N
1/’(Zj):NL+23 2( Xﬁ;;) j=0,...,N.
For a specific instance of the above take N = 2 (3 sites), so we have 9 roots, with weights
%WK;L EWK;Z, EWK;S

associated with zeros a? +c? —2ayjcy, /aiciascs — (a3 +c2+a3+c2) and a2 +c3 —2asca respectively; weights

1 1 1
~Wk. ~Wk. —Wk.:
WK WK, WK
associated with zeros a%—l—c%—\/ialcl, ,/alclaQCQ—\/i(a%—i—c%—&—a%—kc%)/Q and a§+c§—\/§a202 respectively;

and weights

! W, ! w, ! 1%

4 K;1, 4 K;2; 4 K;3
associated with zeros a? + ¢2, \/aiciazcy and a3 + c3 respectively.

Now, let us consider the walk on the half-line.

52



2.4. EXAMPLES CHAPTER 2. CONTINUOUS-TIME OPEN QUANTUM WALKS

The matrix

. Efj [GCJ [C] G*= —3(A"A+CC)@ L+ @ (A*A+C*C))
L= o ,
A G FC} . Gf= —3((A"A)® L+ Lo (A" A))

is a valid generator of a CTOQW. Also,

al +ct 0 0 0
Ga — 0 a?+0§;—ag+cg 2 20 2 2 0
0 0 a1+01;—a2+02 0 ’
0 0 0 a3 + c3
a2 0 0 0
w0 4 o g
0 0 0 a?

If we take K := [(AC)]'/? then we obtain the symmetrization
-G K
N K -G K
J=R(-L)R™" = K -G* K ;

where K is positive definite,

R = diag(Ro, R1,...,Rn), Ri=[AT'CT"', i=1,2,3,...,N, Ry=1,.

Let us obtain the weight matrix associated to J,

-G* K
- K -G K
J =

K -G K )

using the results of A.J. Duran ([21]).
Since G* and K commute it is easy to see that the matrix H4 p(z) given by [2I] is

H(l‘) :($I+ GDL)QK*Q _ 4]4 — (.II—FGQ)Q I'AC-|71 _4]4

femap=d)’ _y 0 0 0
afc
(g:_ “%*C%Jr’l%*‘:% )2
0 e 4 0 0
B PR I I
0 0 _—2 1 0
ajazcica (m_a2_(2)2
0 0 0 —h -4
2%2
The associated weight matrix to J is
dy (z) 0 0 0
- R 1 0 do(x) 0 0
d¥(z) = gK Vdiag(hy, ho, hs, hy) = =1 o 0 dy(x) 0 de, (2.4.2)
0 0 0 dy(x)
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where h; represents the j-th diagonal entry of the diagonal appearing on the representation of H(z) and

VAaRE (o = af =2

d - d =
1) T -
2
[\/4&10,26102 - (x — 4a%+0%;a§+03> ]
dz(!L') =d3(£L‘) - 2a1a20162 : '

Here we are using the notation [f(z)]+ = f(z) if f(z) > 0 and 0 otherwise.
We are interested on the transitions of the CTOQW, thus only d;(x) and d4(z) contribute for the calculus
of the trace when we evaluate

di(z) 0 0 0
0 dy(z) O 0
Tr 0 0 dy(w) o |ve]
0 0 0 du(2)

thereby we will avoid the massive calculations using terms as do(z) and ds(z) appearing on the sequel of this
section.
The Stieltjes transform is

wi(2) 0 0 0
S - - 0 0 0
B(2,%) = K~'\/diag(hy, ha, ha, hy) = 0 wzo(z) wal2) o | (2.4.3)
0 0 0 wa(2)

where wy(z) = ws(2) is a function that does not vanish and

_z- a? — c? —iv/4a3c} — (z — a3 — c3)?
2a3c?
_Z- a3 — ¢ —i\/4a3ct — (2 — a3 — c3)?

2.2
2a5¢5

w1 (2)

wy(2)

Since the measure is obtained on the terms of [2I], we must have Il = I, then we use equation (2.20) of
[I7] to obtain the Stieltjes transform of the weight matrix associated to J:

oi(z) 00 O
= -1 0 = 0 0
. —1 o « _
B(z:Y) = (BED T HGE-67) = o 0. o |
0 0 0 o2(2)
where
24 .2 2.2 24 2
) z—aj+cj+\/f4ajcj+(z+aj+cj) 1
0i(z) = = :
/ 2c32 .
It is a simple calculation to verify that lim,4o0;(2) = o0 < a; < c¢;, thus, given a density operator
=2 b e have
P= b 1—qf WO

lzi% Tr [vec™ 'l (B(z, Z)vec(p))] = 121%1 (mo1(2z)a + meo2(2)(1 — a)),

where 1,7 > 0. Therefore, if {|eg),|e1)} is the canonical basis of C2, then an application of Corollary m
shows that

e a1 < ¢ and ay < ¢g = vertex |0) is recurrent;

e a1 < ¢ and ag > co = vertex |0) is |e1) (e1]-transient and p-recurrent for p # |e1) (e1];
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e a1 > cq and ag < ca = vertex |0) is |eg) (ep|-transient and p-recurrent for p # |eg) (eo|;
e a1 > ¢y and ag > co = vertex |0) is transient.

The Perron-Stieltjes inversion formula (Proposition 1.1 of [I9]) gives

4a2c?2—(x—a?—c?)2
1-1 2&%1‘ 1 1) :|+ 0 0 0
1 0 * 0
dX(z) = - 0 0 x 0 dzx,
0 0 0 { 4‘13032&;“3%)1
+

thus an application of the Karlin-McGregor formula for CTOQWsSs gives for p = [a b } ,

b* 1—a

4 — 2 22 A — 2 22

Pooip(t) = a/ l\/ ajct 2: aj — ¢j) ] dz + (1 — a)/ [\/ a3cs 2: a; — ¢3) 1 da.
0 17 . 0 2% 4
Moreover, assume that r := a; = ¢ and s := ay = c¢o, then the weight matrix d¥(x) is
MEEEE 0 o 0
! +
_ 1 0 Wy, s () 0 0
d¥(z) = - 0 0 wps () 0 dx
0 0 0 |:\/—:c2;-4:cs2:|
2s%x +

where

w. (2 2\/ ((r+s)2—z)(x—(r—2s)?) (r+s)(r—s) 2 Nz :(r+s)2(r—s)2
r,s( ) [ ( +s ) (7“2—82)2 ‘| +< r2 4+ g2 ) 5%@( )7 0 2(T2+52) —.

Finally, we describe the associated walk on the integer line.

Let us consider the homogeneous CTOQW on Z with

R;:+1_A_[‘61 C?J R;I—l_c_[col COJ,WEZ, ai,az,ci,ca > 0.

In this case we have

al 4¢3 0 0 0
ar"+c2+¢12—0—c2
Gz — _ 0 %H 2 20 5. o 0 i1 €7
0 0 aj+cy ;a2+c2 0 ’
0 0 0 a% + 2

Using the first equation on (2.3.18) with A_; = A and Cy = C, we obtain

(z—af—cf)?—dajc}

(z—a3—c?)2—4a3c? 00 0
0 * 0 0
B(z;Wh1) = 0 0 0 ;
0 0 0 v (z— a%—('2)2 —4a3c3

(z—a3—c3)?— 4‘12‘2

where we used dW, = dW_ = d%(x), d¥(z) being the weight matrix given by (2.4.2).
It is easily seen that

\/z—ak 4aici b 1.9

lim =00 & a = Cg, ,2,

=10 (2 —aj — ck) —4aici

therefore, for p = [bgi 1 E a} , we obtain that
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e a1 = c1 and as = ¢y implies that the walk is recurrent;
e a; # c¢1 and ag # co implies that the walk is transient;
e a1 = c¢1 and as # ¢y implies that the walk is p-transient for a = 0 and p-recurrent for a > 0;
e ay # ¢1 and ag = ¢ implies that the walk is p-transient for a = 1 and p-recurrent for a < 1.

Moreover, the measure dWW7; is obtained by applications of the Perron-Stieltjes inversion formula:

(:ifaffcf)gfzm%c% 00 0

0 £ 0 0

AWn(z) = 0 0 * 0
o=@ —ida
0 0 o |V

The case of simultaneous unitarily diagonalizable transitions. The above analysis can be applied
to the simultaneous unitary diagonalizable coins, that is, we can take an unitary matrix U and coins given by

C1 0
0 C2

aq 0

A:U|:O ag

:|Uv*7 C:U|: :|U*, ai,ag,c1,co >0

to obtain analogous conclusions about the recurrence of vertex |0) . In this case, we have
e a1 < ¢ and ag < ¢a = vertex |0) is recurrent;
e a; <c¢; and ag > c2 = vertex [0) is U |e1) {e1]| U*-transient and p-recurrent for p # U |e1) (e1| U*;
e a1 > cq and ag < cp = vertex |0) is U |eg) (eg| U*-transient and p-recurrent for p # U |eg) (eo| U™;
e a1 > cp and ag > ca = vertex |0) is transient.

Let us describe an example of this and, in addition, let us consider a perturbation on the first vertex. In
this case, the walk can be represented by Figure where By represents the rate of jumping from vertex |0) to
itself. Moreover, since we are taking By as the operator containing the rate of remaining on site |0) , one may

By

e ) e ) e ) i
C C C C
Figure 2.4: A slight modification on the first vertex.

think that By # 0 should increase the probability of recurrence on site |0) , however the exactly opposite may
happen as the following example illustrates.

Example 2.21. Let U = % {_11 ﬂ and consider the CTOQW with generator

Go+ [Bol [C]

. [A] G [C] 2 0 bi b
L= A=C=U U*, By=U |, 2| U
46 o[ | [o J - Bo {bz bJ ’
b € R, k=1,2,3, G=—-Udiag(8,5,5,2)U* and
8 + 252 bg(bg — bl) bg(b3 — bl) —Qb%
G — oy |02(03 = 1) 5+ (b1 — b3)? + 203 —2b3 ba(br —b3) | ;v
0 by(bs — by) —2b3 54 (by —b3)% +2b3 bo(by —b3) |7
—2b3 b2 (b1 — b3) ba(by — b3) 2 + 2b3
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where U = U @ U.

We remark that the matriz By is a multiplication By = UTU*, where T is Hermitian, therefore unitary
diagonalizable. In this case we have By = UV DV*U*, where D is diagonal and V is unitary, however we
preserve the representation By = UTU* in order to preserve the products involving the coins and to assure that
the transitions of the walk do not have a diagonal dynamics when bs # 0.

The Stieltjes transform of the weight matriz associated to L (ﬁ with Go + [By| switched by G) is then, by

equation ([2.4.3)),

} 1 wlo(z) w (ZZ) 8 8 wi(z) = 8—2z—4/2(2 —16)
B(z,%) = —U 2 U*, wy(z) = ws(z) =20 —42 —4V22 =102 +9 . (2.4.4)
N 0 wlz) O — 32162 —16v2% —4z
0 0 0 wa(z) wy(z) = — 16z — 22 — 4z

The Stieltjes transform of —L is obtained by

B(z3) = (B(2,£) ™" + (Go+ [Bo] - G))

4 -2 4w ba (b1 —b3) ba (b1 —b3) 2 -t
32 2 2
bo(by—bs3) 5—b7—b2—b3+2b1bs 4 wa(z) b2 bo(by—b3)
=U 2 2 32 2 32 32 2 2 u*
b (b1 —b3) 2 5t —b3—bi+2b1by | ws(2) ba (b1 —bs)
2 2 32 2
2 ba (b1 —b3) ba (b1 —b3) 12 wy(z)
b3 B s =03+ =53

After some calculus using the limit given in Corollary[2.1], we obtain the following results:
e by =0 and by ¢ {b3 +3v/2/2,b3 — 3v/2/2,b3} = vertex |0) is recurrent;

e by =0 and by € {bs +3v/2/2,b3 — 3v/2/2,1} = vertex |0) is p-recurrent if and only if p = i [_11 11} ;

o by # 0= vertex |0) is transient.

Now we point out that the choice by = 0 keeps some recurrence properties of site |0) , however a non-null b
assures that vertex |0) is transient for any choice of p.

A perturbation on the vertex |0) fot the CTOQW on Z : We consider CTOQW on Z with the same
transitions as above with a perturbation on vertex |0), that is, the we are taking the walk given by Figure
where

0 1 -1 1

9 0] . by bg} . | [1 1]
A=C=U U*, Bo=U U, U= — . b1,ba,bs € R.
{ } 0 { V2 b

by by

Figure 2.5: Generator £ of a CTOQW on Z with a perturbation on vertex |0).

We want to apply Equation (2.3.17)) to verify if vertex |0) is recurrent. To do this, we notice that

GG+ [Bol [C]

pr_ | Mgl | 4] e e

o , L=
A e el AR
4] Ge

where G* = —Udiag(8, 5,5, 2)U* and

1
§= 5 [(A"A+ BiBy + C*C) @ 1+ 1@ (A"A+ BBy +C*0).
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The Stieltjes transform of the weight matrix associated to EAA is given on Equation (|2 (smce A=20C)
while the Stieltjes transform of the weight matrix associated to L1 is

B(z,Wy) = (B(z,W_) ™ + (G§ + [Bo] = G*)) ™

, S;(Zg bz(b12—b3) bz(b12—b3) b bbz b
I L N B =)
- bz(blg—ba) b% $2(2) ba(bi—b3) .
b% bz(b12—bs) bz(blz—bs) s3(2)

where 81(2) — z2=V=z°—-16z \/222*162 —4— b%, 82(2) _ 5—2—(b1—b3)22+\/z2_102+9 . b%7 83(2’) —a=VEod b%.

Some calculus show that
—lim Tr (B(z, W11)p) = o0
210
for any choice of by, b2, b3 € R and p € My(C), therefore vertex |0) is always recurrent for this CTOQW.
The same can be done with vertex |—1) , however in this case we have to evaluate — lim 4o Tr (B(z, Waz)p) =
oo, which is always infinite for any choice of by, by,b3 € R and p € My (C), therefore vertex |—1) is also always
recurrent for this CTOQW.

2.4.2 Noncommuting transitions

Let
1 0 1 1
a=lp 4] e=lp 4
where
-4 1 1 0 21 1 0
1 -3 0 1 111 3 0 1
Gi==3L, Go=51 1 ¢ 3 1["@=73]1 0 3 1
0 1 1 -2 01 1 4

Consider the CTOQW with V' = {0, 1,2,3} induced by the generator

Go [C] 0 0

[A] G [C] 0
0 [A] G [C]
0 0 J[A] G

LA:

Note that this generator satisfies the conditions (2.3.5) with R,, = I), n = 0,1,2,3, thus there exists a
positive weight matrix associated to £, which will be evaluated now.
The eigenvalues of —L are

A1 =0, )\2:3—\/5, )\3:3—‘,—\/57 )\4:3—\/?, )\5:3+\/?

7—V17 7T+17 11 — /41 11 + V41
)\6: 4 7)\7: 4 7)\8:#7)\9:f7

(A1, A1, A5, A6, A7, As and Ag have multiplicity 2) with weights

3 -1 -1 2
1|-1 2 2 1 \/5 1 V5
W1 7270 _1 2 2 1 ,W <W1+20 >7W32<W120Y>,
2 1 1 3

W, = 114 ((14 +3VT)W; + \fy> Wy = %4 ((14 —3VT)W, — \fy> ,

1 V17 1 V17

Wi :% <1+M> (14—4W1),W9=i<1—421ﬁ> (Is — 4Wh).
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where

_ o o =
_— o O
e =)

For instance, we have for p = [bci 1 E a} )

9

pong(t) = 32N W = (7 =

k=1

67)\215 + 67A3t
8

— gt — A5t
_ - e +e
F(e Mt —e o) gy

where vy = ;/—5(1 —2a + 4Re(b)) and vy = \2/—8?(2 — a+ 2Re(b)).

2.4.3 Antidiagonal transitions: another approach

In this section we discuss an example with antidiagonal transitions, and we do this in terms of a preliminary
reasoning with a generator that have alternating matrices. More precisely, first we consider a block matrix of

the form ~ _
~Go [P
(Pl -G [P~
(Pl -G [R]
J = [Po] -G [P ’
(Pl -G [Pl
where )
Py = V421 0 P = V412 0 ai,as,c1,co >0
0 0 \/m ) 1 I 0 \/@ ) 1,42,€1,2 = U,
a2 0 0 0 [a3 + c3 0 0 0
. 0 @ 0 0 e 0 % 0 0
o o 4= 9 0 0 ateptata ¢
0 0 0 a 0 0 0 a3 + ¢}

We notice that J may not be a valid generator of a CTOQW, however this block matrix will be auxiliary
to obtain a weight matrix associated to a specific kind of generator later. Then, we use Theorem 2.4 of [I7] to
obtain the following equality associated to the Stieltjes transform of the weight matrix dX(z) associated to J,
which is the equivalent of J with Gy switched by G :

B(z,%) = {zls = G+ [Rol{zls = G + [P B(z, 2)(—[P])} (= [Po])}

where R; = I, for every R; appearing on Theorem 2.4 of [I7] is a consequence of [Py] = [Py] and [P] = [Py]T.

The known matrices of the equality are all diagonal, thus we assume that

B(=,%) = diag (fi(2). (=), fo(2). fi(2))

and then each f(z) is a solution of
Fe(2) = {z = Gk — mow{z — Ge — mafu(z)man} "mox} ™",

where G = diag(g1, §2, s, §4), [P;] = diag(m; 1, m;z2,mj3,m;j4), j =0,1. Some algebra gives

m3 (2 = Gi) fe(2)? + (M — mi = (2 — Gu)®) fu(2) + (2 — Gi) = 0.

Therefore

2

mi —mg, + (2= gr)? - \/(mgyk —mi,—(z— gk)2) —4(z — §)?m?,

Qm%k(z — Jk)

fr(2)

59



2.4. EXAMPLES CHAPTER 2. CONTINUOUS-TIME OPEN QUANTUM WALKS

As usually, the next step is to obtain the Stieltjes transform of d3, the weight matrix associated to J. By
equation (2.20) of [17], we have

B(:,%) = (BxD) " +(Go—G)) = diag(fi(2). 2(2). fo(2), fa(2));

where

1 Vi (2)man — ma e/ Pu(2)? + 4 (2)? — 206 (2) + 2017k (2)
2m3 vk (2) = Give(2) — gpve(2) + 20k9k7k(2) — M kgrn(2) + ma kgrtn(2)’

fu(2)

and we have put Go = diag(g1, 92,93, 9a,) Yr(2) = —(2 + gr)> +m7 , —mg 1, Ww(2) = (2 + ge)mi -

Now, we are able to consider an antidiagonal transition in the following terms: consider a CTOQW on Z
whose generator is of the form

Go [C]

~ |—A—‘ G |—01 0 a 0

L= (Al G [C] »A=L2 0]’02[@ 0}’
a2 0 0 0 a3 + c3 0 0 0

af+al aftaltcites
G():* 0 2 2_?_2 O ,G:* 0 2 2+2(_)~_‘2+,2 O

0 0 “F= 0 0 0 L s 0
0 0 0 a 0 0 0 ai + ¢}

We have the symmetrization

[—Go  [Po]

(Bl -G [P]

o Pl -G (R |
J = R(*E)R = |—P0-| -G ’—Pl-‘ , R= dzag((Ro], {Rﬂa .- ')a
[Pl -G Rl

where

[NE

Rop = k=2 k
&) (&)
0 - _—
ay as
and Py and P, are the ones given above. Thus J and £ have the same associated weight matrix and we obtain,
for d¥(x) given above that

1 0

() @) e
= |\ 2 , Rop1 = ( ! 2)

[0 1], k=0,1,2,...,

lin Tr (B(z, £)p) = lim(f1 () + fa(2)(1 = ),

210

where p = {a b

b1 — a] . After some calculus we obtain that

4 4202 4 4 2.2
2cy — azcy + ay + 3ascs
a3 + 2c3

4 4 2 2 2.2
, 2¢5 + a3 + 3asc; > ajcq,

lzi%lﬁ(z)zoo & alz\/

—a?c3 + a} + 3a3c?
2 2
ai + 2cy

4 4 2.2 2 2
, 2¢1 + a7 + 3ajcy > ajcs,

24
li%lﬁ;(z):oo & GQZ\/ il

giving the following conclusion (see Corollary [2.14)):

2¢t —a2c?24at+3a2c2 2c¢t—a2c2+at+3a3c? .
° — 2 271 2 272 — 1 1-2 1 1-1 .
ay = \/ T2 and agy = 22 = vertex |0) is recurrent;
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2ct—a2c?+a2+3a2c 2ct—a2c2+a*+3a?c? . .
e a; = 2 2 21+ 2; 22 and ay # 17010 F3456T o Gortex |0) is p-transient when a = 0 and
a2+202

a?+2c?
p-recurrent when a > 0;

e a2 Fal 13022 a2 ali3a2c2 . .
o ay # /222G FeING and ay = /2T UGTATUS o Vertex [0) is p-transient when @ = 1 and
a2+202

a§+20§
p-recurrent when a < 1;

2¢t —a2c?4-at+3a2c2 2c¢t—a2c2+at+3a2c? . .
e a # \/ 7 B and ay # L o1 = vertex |0) is transient.
2 -2 1 -1

The last example of this section will consider CTOQWSs with non-null Hamiltonian part.

Example 2.22. Let us consider r,s > 0 such that rs = 1. We set the matrices

A:TIQ, C:SIQ, H0|:Z Z:|, B|:’L:II:Z ’Ui’L:|7 U,’UGR.

The CTOQW with V ={0,1}: we consider the case Hy = Hy and let

—r2 —u? 0 0 u? —s2 —u? 0 0 u?

o 0 —r2 —u? u? 0 o 0 —s2 —u? u? 0

0~ 0 u? —r2 —¢? 0 ’ = 0 u? —s2 — 42 0
u? 0 0 —r2 — 42 u? 0 0 —s% —u?

On this case,
s_les+B 0]
(Al GY+I[B]]”

thus the semigroup preserves trace. Also, the eigenvalues ofﬁ are

1 4 1 2 2.2 4
)\1 = 0; )\2 = - +2r ) )‘3 = _+u—§—’_r; )\4 - _2u27
T r
and the corresponding weights are
1 0 0 1 1 0 0o -1
1 01 10 4 rd 0 1 -1 0 1
PTo0 gy jo 11 o) RTTER W Toa Ay o 11 0|0 AT AT
1 0 0 1 -1 0 0 1
For instance,
14 et2pt
() = —m8M8M—
pOO,p() 1+7"4 )

for any density p € My(C).
The CTOQW with V = Z>y: we consider the case H; = HoVi € V, then the trace-preserving case has

—r2 —q? 0 0 u? -2 —u? 0 0 u?
o 0 —r? —u? u? 0 GO — G 0 -2 —u? u? 0 }
0~ 0 u? —r2 — 2 0 ’ P 0 u? —2— 2 0 P =
u? 0 0 —r2 — 42 u? 0 0 -2 — 2

By the technique of [21)], the matriz weight associated to

G [C]
. |IAl G
L= (Al G [C]
is given by

y y 1 0 0 -1
- [4(zu? —2u? —ut + x) — 22?4 + /[dz — 22] 0o 1 -1 0
AW (w) = ra— “lo S1o1 o
-1 0 0 1
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The Stieltjes transform of dS is

1 0 0 -1

~ VA2 +u2 tut —2) + 22 —4+22 20 —V—4z+22 |0 1 -1 0
Bz %) = 1 0 -1 1 0]

-1 0 0 1

thus an application of formula given by Equation 2.20 of [T77] gives the Stieltjes transform B(z,X), where dX is
the matriz weight associated to the CTOQW whose generator is

Gy [C
a6 ¢
L= 4] G

[CT]

After some calculus, we obtain

. T+rt4+1—14 ,
—limTr (B(z,X)p) = ———F—
lim r(B(z, X)p) T
for any choice of p, which allows us to conclude that the CTOQW is recurrent if and only if r > 1, that is,
r > s. If r < s, then the walk is transient for every density p.
The CTOQW with V = Z: the Stieltjes transform of the matrix weight W11 associated to the walk on 7
1s obtained by Equation (2.3.18)) and we have

_ Lt 4 [1—r] 2
—lz%lTr(B(z,Wll)P) = 172r4+(r4+1)|17r4|+r8r ’

which is finite if and only if r = s = 1. Therefore this CTOQW in Z is recurrent if and only if r = s and
transient for every density if and only if r # s.

2.5 Jumps and Holding Time

In this section we treat the recurrence of homogeneous CTOQW based on its jump chain. The probability
distribution of the jumps will appear as values bounded by CP maps defined on terms of Rj- and G; which
characterize the generator L. Before that, let us recall some properties of the discrete and continuous-time
Markov chains (DTMC and CTMC respectively) on the set of vertices V = Z.

Proposition 2.23 ([32]). Consider a CTMC on Z generated by a Q-matric Q = (gij)i jez- A vertexi € Z is
recurrent if and only if it is recurrent for its jump chain II = (m;;); jez, which is a DTMC, where

Qij /i, fJ#1 and gy #0

o 0, ifj#i and g; =0
Yo, ififj=1i and q; #0°
1, ifif j=1i and ¢; =0

If the CTMC is homogeneous with non-negative rates (q;; > 0 for [j —i| = 1), then

A= qo,—1 . qo,1

= , y= — (2.5.1)
v Go,—1 + Qo1 qo,—1 + qo,1

thus the walk is recurrent if and only if A = 7.

For simplicity, we will assume R! = 0 for all i € V, in order to apply the results obtained on [5]. We follow
[5 B3] to discuss the quantum trajectory describing the indirect measurement of the position of a CTOQW A
of the more general form in order to obtain probabilistic properties of A. So, let (Q, F, (F;)¢>0,P) be a
probability space where independent Poisson point processes N/, i,j €,V, i # j on R? are defined.
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Definition 2.24. Let A be a CTOQW with generator of the form (2.2.1) and an initial density operator
p="> ey P(@) ®1i) (i| € D. The quantum trajectory describing the indirect measurement of the position of the
CTOQW is the Markov chain described by the density operators (p;)e>0 such that

o = po @ | Xo) (Xol,

where Xy and pg are random variables with distribution

P ((Xo,p) = (z TT’)((:()Z”» = Tr (p(3)) for alli €V,

and such that py =: pr ® | X¢) (X¢| satisfies the stochastic differential equation

t
fhe =Hio +/ M (s )ds
Sy 57 g
+Z/ / (TT‘ SJ*,UJS SJ*) _/'l/s> 10<y<TT‘Sgusfsg*)N”<dy7dS)

M(u) = £(u) = 3 (87u87" = pTr(S]us?))

ij

(2.5.2)
for all t > 0, where

Hence, for a fixed p =", p(i) ® |i) (i| € D,

M(u) =Y (Gipli) + p(i)G; = p(i) Tr(Gip(i) + p(i)GY)) @ i) (il -

The evolution of the solution p; of (2.5.2) is described as follows: suppose Xy = ig for some ig € V and fix
po € V(h;,). For all t > 0, consider the solution

t
ne = po+ / (Gigns +nsG5, — nsTr (Gigns +nsG5)) ds,
0
which is a density operator on acting on b;,. For j # iy, define
— . \%0,J J J*
= inf{t > 0; N9 (9]0 < w <,0 <y < Tr(R]mR])) > 1.

Since the random variables T/ are mutually independent and nonatomic, we can define Ty = inf;;, {77} once

there exists a unique j € V such that le = T1. The random variable T3 is said to be the first jump time of
the CTOQW conditional on Xy = ig. _
The first jump time to site |j) is then denoted by 77 and has distribution

BT > £) = o I T R

thus
P(Ty <e)<e Z IRI*R] |-
J#io0

The strongly convergence of Z SJ Sj implies that P(77 > 0) = 1. Thereby, on [0,7}], we can define the
solution (X, pt)i>0 as

(Xt,pt) = (io,me) for t € [0,T7) and
RJ ,R]*
(XT17PT1) = . 7?T1 y if Ty =
TI‘(R T, — R )

Now we solve

t
N = pr, + /0 (Gjns +nsG; — nsTr (Gyns +nsG5)) ds
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and then obtain the second jump time 7. So on we obtain an increasing sequence of jumps (7)), with
lim, 00 T, = oo almost surely (see section 18.2.3 of [5] for more details). This means that the walk do
not explode, that is, A does not makes infinitely many jumps in a finite interval. For details concerned about
explosions in the classical case, see section 2.2 of [32].

Set Ti(o) =0, then the time at which X; reaches |i) for the n-th time is defined as
rM—inf{t > X, =iand X, #i}, n=1,2,3,..., (2.5.3)

K2

thus the holding time on the n-th step is given by

5. = Ti(n) — Ti(n_l), if Ti(n_l) < 00
0, otherwise.

The next result is obtained following the idea of Proposition 1.2.2 of [I].

Proposition 2.25. Let A be a CTOQW on a set of vertices V. Given i € V and p € S(h;), the following limit
exists ) )
. — Diisp
iip = lim ——————=,
Gi;p tlﬁ)l P
Moreover, p;i.,(t) =1 for all t > 0 if and only if g;;, = 0.

On the sequel, we will say that ¢ is a p-absorbing vertex if ¢;., = 0 (equivalently p;;.,(t) = 1 for all ¢ > 0)
and absorbing if g;,,» = 0 for every density operator p’ € S(b;).
For instance, let A be a CTOQW on V = {0,1} such that its generator is £L = ® — I, & quantum channel

with Kraus operators
o |1 0 o_ |0 0 1|10 1100
G U R R R R P

We have for a density operator p = [ E a] on C? the transition

a
b* 1
l+a+e#(1—a)

Po0;p(t) = 5 , t €1]0,00).

Hence, i is p-absorbing if and only if @ = 1, which happens only for p = {0 8] . Therefore the definition of
absorbing vertex indeed depends on the quantum states.
The existence of the limit ¢;,, is proved above. Now we will give an explicit expression for it directly from

the generator of A.
Proposition 2.26. The value g;;, obtained as the limit on Proposition [2.25] has the form

L — piisp(t x j* g
Gisp = lim %p() = —Tr(P:iLP;p) = —Tr(Gip+ pG}) = > THRI"Rlp). (2.5.4)
J#i
Moreover, for j # i,
(¢ . )
Qjizp = ltiﬁ)lpﬂ,fp() = Tr(P;LP;p) = Tr(R!pRI™). (2.5.5)

2.6 The G; = —q;I/2 case

In this section we will consider the special class of CTOQW with generator of the form

Lp) =D | D Rip()Ry —aipli) | @ i) (il (2.6.1)

iev \jev

that is, we are assuming that Zjev Rg*Rf =ql, ¢ > 0and H =0, thus G; = —% 1. In this case, the value
gi;p of Proposition is just q;, since it does not depend on the density.
If ¢; > 0 for all ¢ € V, then the generator (2.6.1) is of the form £ = & — @, where Q = diag (qjl)jev and

thus ®Q ! is a quantum channel.
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Theorem 2.27. Let A be a CTOQW with generator of the form (2.6.1)). Suppose that the chain starts oni € V
with initial density operator p € S(b;). Then, for j # 1,

qz#a ZfQ'L#O

) (2.6.2)
0, otherwise.

P o (F1 = j) := P, , (first jump is to j) = {

We already know the distribution of Fj, in the sequel we present the distribution for all F;,, n=1,2,....

Theorem 2.28. Let A be a CTOQW with generator of the form (2.6.1) starting on vertex |i) with initial density
operator p € S(h;). The distribution

P; , (F, = k) :=1P; , (the n-th jump is to k) (2.6.3)

s given by o o
Tr(R} ...RZR}pRy"R?"...RI™)
Qi - - - 4i, )

(2.6.4)

11,...tn €V
We will call the discrete random variable {F},,,n > 0} by quantum jump chain of the CTOQW A. Let us
describe this chain for the case where the generator is of the form (2.6.1). First we rewrite (2.6.1]) by
L=0-Q, ®(p)= > Bip(j)B}", B; =R, i) (jl, (2.6.5)
i.jev

where Q =3, o qrlr ® k) (k|, qx > 0, and I} is the identity matrix of by.

On this case we put M := #R{, then

P, (F, = k) = Tr (H,ﬁg)p) :
where II is a discrete OQW given by

M(p) = Y Mip(j)M}* @|i) (i .
i,jEV
It is easy to see that the quantum jump chain of A with such a generator represents a discrete OQW, because
for each i € V, ‘ _
. . R RI 1 o
oMM =Y —o—L = —N"RI'RI =1,
jev e VEVE G

Lemma 2.29. Consider a CTOQW that starts the walk on site |i) with initial density operator p € S(b;).
There exist r,s > 0 such that

r<E;y(Th)<s, VieV, Vo' €S8(h). (2.6.6)

We recall that a vertex |i) is p-recurrent if

/ Piisp(t)dt = E; ,(n;) = oo,
0

where n; is the time spent on site |i), that is,

n; = / 1{Xt:i}dt-
0

Remark 2.30. Let us look to the graphic representation of a random walk on ZT, starting on vertex |2),
represented on Figure . The walker spends a time Sy on |2) before the first jump, which is to |3). Then it
spends a time So on |3) before the second jump, which is to |5) , and goes on. Note that after 8 jumps, the walker
spent time on |2) three times, thus the walker occupied site |2) , until Js, for a time Sy + Sy + S7. Therefor the
time spent on any site |i) is

00 e
n; = / lix,=ipdt = S1 + Z Snv1l{r, =i}
0

n=1

that is, we sum the holding times S, in which the n-th jump is to |i) .
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Xy
° —s°
L O3
+ o ®--oommnoe
3 *—-0 ; *—0 *—-0
L S2 0 C % 1 Ss
2 Qpm—() : =0 : | e ® |
S‘]I [ |S4l | | S?l I
| | |  e— I |
1 : : L S5 : : :
® o— o o ® o—o ®
0 J Jo J3 J, Js Jo 35 Jg t

Figure 2.6: Holding Times of a right-continuous chain.

The following Theorem gives a complete recurrence criterion for a semifinite CTOQW based on its quantum
jump chain.

Theorem 2.31 (Recurrence Equivalence with the Quantum Jump Chain). Consider a CTOQW A with gen-
erator of the form (2.6.1)). A vertex |i) is p-recurrent if and only if

Consider a CTOQW on a set V. For i,j € V, the set of continuous-time trajectories going from vertex i to
vertex j in n jumps is defined by

Pn(l,j) = {f = (io, .. .,in;t17 e ,tn)|i0 = i7in = ]}
We set P(i, ) = UnenP™(4,7), then for £ = (ig, ..., in;t1,...,t,) € P(i, ), define the operator T; : h; — b;

by
Tt(f) _ e(t_tn)Gin RJ e(tn—tn—l)Gin_1 L. e(t2_t1)Gi1 R;letlci_ (267)

Tn—1
This notation allows us to give an equivalent definition of irreducible CTOQWs. We say that a CTOQW
with generator £ is irreducible when for all X € Z;(H) with X > 0 and X # 0, there exists ¢ > 0 such that
etf(X) > 0.
Proposition 2.32 ([5]). A CTOQW with generator is irreducible if and only if, for every i,j € V, and
for any ¢ € b; \ {0}, the set

is total in b;.

Proposition 2.33. A CTOQW with generator of the form (2.6.1) is irreducible if and only if its quantum jump
chain is irreducible.

Proof. By hypothesis, for each i € V| there exists a ¢; > 0 such that G; = —¢;/2, thus the operator T;(§) in

equation (2.6.7)) is

T,(&) = e(t=tn)Giy, Rikle(tn*tn—l)Gi,,L,l L elta—t1)Giy R;16t1Gi
] 21
—(t=tn)qiy /2= (tn—tn—1)qi, _ /2= —t1q:/2 R’n—l R;

T \/(Z

=e

Thus, for ¢ € b; \ {0}, the set
{Tt(£)¢, t> Oa g € P(Z,j)}
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is total in h; if and only if the set {L,¢|m € P(i,5)} is total in b;, where

L.=1L L

inyin—1 ** * Hi1,00

is the set of paths from ¢ to j for the quantum jump chain.

O

The CTOQWSs of our interest on this work will be defined now: a CTOQW is called homogeneous if there
exist matrices A, B and C such that R;+1; = A, R;; = B and R; ;41 = C for all i € V. When B = 0, as we are
assuming (R! = 0) , then we say that the walk A is induced by a coin (C, A).

We notice that the generator of a CTOQW induced by a coin (C, A) satisfying A*A+ C*C = ql,q > 0, is
given by

c (Z pli)  Ii <z'|> = 37 (Apli — A" + Cpli + 1)C* — gp(a)) @ i) il (2.6.8)
eV i€V

A CTOQW with a generator of the form ([2.6.8) will be called a CTOQW induced by a trace-preserving
coin (C, A).

Corollary 2.34 (Recurrence criteria for a trace-preserving coin of dimension n). Consider a CTOQW with
dim(h) = n and generator of the form (2.6.5)). Then a vertex |i) € V is p-recurrent for the CTOQW if and only
if it is p-recurrent for its quantum jump chain (which is an OQW).

This corollary gives a complete criteria for the site recurrence of a CTOQW induced by a trace-preserving
coin of dimension 2. In the sequel we expand the generator of CTOQWs induced by coins of dimension 2 where
the coin is not necessarily trace-preserving.

Example 2.35. Consider a CTOQW A with generator of the form (2.6.5) on V = Z, with Rﬁ“ = F and
RE_H = F for every i € Z,

p_l[V3+2v6 —V6+2V3 F_1[2\/§+\/6 —-2V3+6
T -V6+2v3 2v34+V6 0T T 9 [-2v3+V6 V3+2V6 |

The quantum jump chain of A is then the OQW induced by the coin (E, F).

¢

Proposition 2.36. A CTOQW induced by a coin with generator of the form (2.6.1) is irreducible if and only
if the operators CA and AC have no common eigenvectors.

Proof. By proposition the CTOQW is irreducible if and only if its quantum jump chain is irreducible.
The quantum jump chain is the OQW induced by the coin (C/\/q, A/\/q), where ¢ > 0, which is irreducible if
and only if the operators CA/q and AC'/q have no common eigenvectors, by Proposition 7.3 of [12].

U
We define the auxiliary map 7 : M, (C) — M, (C) of the CTOQW induced by a coin (C, A) as

T(p) = CpC* + ApA*.

When p is a density satisfying 7 (p) = ¢p, then p is said to be g-invariant for 7.
The following consequence of Theorem is obtained with Theorem 17 of [27]:

Corollary 2.37 (Recurrence criteria for trace-preserving coins of dimension 2). Consider a CTOQW on Z
induced by a coin (C, A) of dimension 2 such that A*A+ C*C = qlI, ¢ > 0.

(1) If C and A have at most one common eigenvector, let po be the unique invariant density of the auziliary
map. Then, we have

Tr(C*"Cps) # % = (C, A) is transient,

Tr(C*Cpo) =

NSRS

= (C, A) is recurrent.
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(2) If C and A have two linearly independent eigenvectors in common, let u; be one of them and let us be
a norm one vector such that ug Luy. Also let o1 = |uy) (u1| and oo = |uz) (us|. Then we have

Tr(C*Coy) = % and Tr(C*Coq) = g = (C,A) is recurrent,
Tr(C*Coy) # g and Tr(C*Coq) # g = (C,A) is transient,
Tr(C*Coy) # % and Tr(C*Coq) = % = (C, A) is transient with respect to o; and it is

recurrent with respect to all densities but o1,
for (Zaj = (132) or (Zaj = (271)

2.7 Appendices

Proof of Proposition Let i,j € V and o, 8 > 0. As A; is a semigroup and ), Py =1,

pjip(a+B) = Tr(PjhassPip) =Y Tr (P;AaPrAsPip)
k
= ) Tr(PjAPrAsPip)

k

]P)kAB]P)ip
E Tr <PJAaPk T’I"(]P’kAﬂ]P’ip) TT(Pk 5Pzp)

Tr(PrAsPip)
TT(PkA/BPZ‘p)

= Zpyk 0ls(8) (Q)Pris p(B)- (2.7.1)

Proof of Proposition Define the function g : W; — [0, 1] by g(p, s) = pji.»(s). Since e** is uniformly
continuous, g is continuous on [0, +00) for a fixed p € Sy,. By definition, for ¢ € [0, +00), given € > 0, there is
an « > 0 such that |t — s| < « implies |g(p,t) — g(p, s)| < /2.

For § := min(a,e/2), if |t — s| < B and ||p — p[[1 < B, where || - |1 is the trace norm in b;, we have

lg(pst) —g(p',s)l < lglp,t) —g(p,s) +g(p,s) — g(p',s)|
< ST (P APp — )

S+ (
=+ [Tr (AP — )|
%—HTT(

(

IA

ilo—=0")]
3

§+ITT p—1r")]

€ /
2+||P Pl
< e

This concludes the proof.

Proof of Proposition (1)By contradiction, suppose that there exists k > 0 with p;;;,(k) = 0. Since
Pii;p(t) is jointly continuous on (¢, p) € ([0, 00) X Sy,) and p;;;,(0) = 1, we can assume k = min{s > 0 : p;;,,(s) =
0}. Moreover, there exists € > 0 such that, for ¢ < k,

k—t<eand ||p—p| <e=piu;(t) >0. (2.7.2)
Now, note that
/” k —_ n n O K3 (] — K3 — ]P)l .
pis(k/m) Tr(PiAy/mPip) - Tr(PiIP;p)  Tr(Pip) g

Now, take n such that £ < e and ||P;p — pl;(k/n)|| < e, then p;, 0. (k/n) ((kn — k) /n) > 0, thus
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which is a contradiction.
For item (2), let « > 0, then item (1) gives

Pijip(t + ) > Piisp), (t) (2)pijip(t) > 0.
Suppose p;;;,(t) = 1 for some ¢t > 0. If we had pj;.,(s) > 0 for some j # ¢ and s € [0,¢], then
0= Zpki;p(t) > pji;p(t — s+ 3) > pii;p;i(s)(t - s)pji;p(s) > 07
ki

which is a contradiction. This shows item (3).

To proof item (4), note that for fixed 0 < tg < §, W (i,d) := Sy, x[to, §] is a compact set in W; = Sy, x[0, +00).
Hence, by the jointly continuity, N;; is attained on (0, 1].

Proof of Theorem If pji;p(t) = 0 for all ¢, then the result is obvious. Thus suppose pji.,(t) > 0, for
some t > 0. The second item of Proposition assures the existence of N5 € N such that pj;.,(nd) > 0,Vn > N.

By the Mean Value Theorem for Integrals, we have

00 00 (n+1)é o]
/ Pjisp(t)dt = Z /5 Pjizp(t)dt = Z 6pjisp(nd + sn),
0 n=0vM n=0

where (8,)52, is a sequence in [0, d].
By Proposition [2.6]

Djisp(nd + s5) > pji;p(né)pjj;p;i(m;)(sn),Vn > N, (2.7.3)
and
Djisp (6 4+ 0) = pjip(nd + s+ — 8,) > pjj;p;-i(né-s-sn)(‘s — Sp)Djizp(Nd + 85,),Yn > N, (2.7.4)
so that for any fixed p,
/ pﬁ;P(t)dt = d ijim(né + Sn)dt
0 n=0
> 6 pjisp(nd + sn)dt
n=N
2.7.3) °
> 0 Z pji;p(n(S)pjj;p;i(nt?)(Sn)
n=N
2 ON; Z Pjip(n6) (2.7.5)
n=N
and
i e =
Y piip+8) =Y pijp moten) (0 = $n)Pjip(nd + s5)
n=0 n=0
> Z pjj;pg.i(né—&-sn)(é - sn)pji;p(n6 + Sn)
n=N
> N Y pjisp(nd + sn)

n=N

Z Opji;p(nd + sn)

n=N

%) N, N-—1
Z 6pjizp(nd + 8n) — TJ Z 0pjisp(nd + sn)
n=0

n=0

>|Z

>|Z

N-1
N; [ N;
= TJ /0 Pjisp(t)dt — TJ ,;) Opjisp (16 + sn). (2.7.6)
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Whence, for a state p, the divergence of the series in (2.7.5) implies the divergence of the integral on the
left. Also, if we suppose the integral on (2.7.6]) diverges, then the series on the left diverges, since the series on
the right hand is finite.

Proof of Proposition 1. Since p is faithful, there exists o > 0 such that p > ap, thus
/OO Piisp(t)dt = /OO Tr(P;AP;p)dt > a/oo Tr(P;AP;p)dt = a/oo Piip(t)dt > 0.
0 0 0 0
2. Suppose p};(9) is faithful for some 6 > 0. The item 1 gives that i is p};(d)-recurrent, therefore,
/Ooopii;p(t)dt > /OC>O Diisp(t + 0)dt > /000 Pii;p(8)Piispr (5)(t)dt = Dii;p(0) /OOO Piisp,(5) (t)dt = oo.
3. Let p € Sp,. By the Spectral Theorem, p can be written as

p=3" Az} (al, (2.7.7)

where the vectors |z)s are the eigenvectors of p with eigenvalues A;s. Since p is non-faithful, there is at least
one null eigenvalue and the remainder eigenvalues are positive summing 1. Thus, (2.7.7) can be rewritten as

psz\I |z) (x|, S & {1,...,n}. (2.7.8)
zeS
Take a sequence of positive numbers («;),cgr, where R := {1,...,n}/S # 0, whose sum is 1.
Defining
Az Qg " a, . Ao, ifzeS
= o + 5 = P ) = . )
px =X e Gl = G e = 0 T2

we get by the first item that i is px-recurrent, since px is faithful.
Now, define

py =3 acle) (al,

TER

which is a non-faithful density operator and then we get 2px = p + py. This leads us to

[ pisaltdes [ pii 00 = [ iglt) + pisgn 0
0 0 0
0

= /0°° Tr (PiAtPi (P + PY))

0
= 2/ pii;px (t)dt
0

The integral on the right hand diverges once i is px-recurrent, this implies that at least one of the integrals
on the left hand side diverges. Therefore, i is p-recurrent or py-recurrent.

4. By item (3), vertex ¢ is p-recurrent with respect to some non-faithful p. Since n = 2, the eigenvalues of p
are 0 and 1, thus there exists a unit vector |[v) € C? such that p = |v) (v|, that is, p is pure.

Proof of Proposition m The case p;;;,(t) =1 for all ¢ > 0 is trivial, giving ¢;;, = 0. If p;;,,(¢) < 1 for
some ¢ > 0, we still have that py;;,(t) never vanishes (item 1 of Proposition 2.9). Let ¢ (t) = —log psi;,(t) and

q = Sup;~g @ We claim that
t
lim m =
tlo t
Since we have limsup, @ < ¢, showing that liminf;~q @ > ¢ will prove the claim.
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Thus let ¢’ < ¢ and take s > 0 such that @ > ¢'. For each t > 0, there exists a natural n and h € [0,1)
such that s = nt + h. Analogous to the proof of Proposition [2.6] we have

pip(nt +h) = > Tr (PihiPi, APy, . APy, AnPip)
ki,....;kn_1€V

- ¥

ki,...;kn—1€V

P APy, ... AP ALP;
Tr <IP’1-AtIP’k1Tr ko L7 Ry Gl e Ukl )x

(]Pkl At]P)k2 . Athn,lAhPiP)

Tr (Pkl Ath2 Tr

P, ApPip
T Tr (P APip) |,
r(Tr(PknlAhPm)> F (Pl p)]

where we are considering, without loss of generality, only the traces which are non-null on the sum.
The positivity of the traces give the inequality

Pi AP ... AP AR P p T P;AnPip
i LI m———/——

Pk2Ath3 . Athn_lAhPip % %
(szAthS . Athn,lAhPiP> o

p“‘;p(nt + h) Z Tr <P1Atﬁb ) Tr (PiAhPip)

= H DPii;pr, (t)pii;p(h)a
k=1

where
k times

——
(t) B PiAtPiAt e PlAt PzAhPlp
Dii;pp (V) = Tr(P AP Ay .. P A P AP )

k times

It is easy to see that

—log (H Diisp), (t)pii;p(h)>
o < V) _ 2108 piiy(s) _ —logpis(nt +h) i

S S S S

thus let ¢ | 0, then observe that nt/s — 1, h — 1 and py;,,; (t) — p to obtain

—log (H Diisp, (t)Pn‘;p(h)>

¢ < lim k=1 < lim —log (pii;p(t)" piisp(h))
tJ0 S 10 s
i O ) o nt p(t) | b(h)
10 s tlo st s

Therefore ¢’ < limy o @ for every ¢’ < ¢, completing the proof of the claim.

Note that ¢ > 0, otherwise we would have p;;,,(t) = 1 for all t > 0. This means that v (t) > 0 for t sufficiently
small, hence

, 1—e?® y(t) . 1—e¥® gt
lim . = lim lim
t10 t tlo  P(t) t tlo  P(t) to ¢t
and the proof is complete by putting g¢;;, = g.

Proof of Proposition Recall that semigroups operators satisfy

A, =LA, Ay =L,

=4q,

thus

Gip = lim 2~ Piplt) 2(t) = —lim r (PiAiPip) r(Pip) = —lim
’ t10 t tl0 t t}0 t

—Tr (P;A(Pip) = — ltlﬁ)l Tr (P, LP;p) .
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Let j # 4, then

Tr (P; AP, p) — Tr (P AgP; Tr (P; AP,
Tr(]P’j[:Pip) — lim I‘( FRLY zp) I‘( 7420 zp) — lim I‘( j4\t zp) — lim p]z,p(t)
tl0 t t10 t t10 t

=1 Gji;ps

thus the definition of this limit makes sense.

Proof of Theorem 2.271
Firstly we recall that

Tj = inf{t > 0; NioJ (u yo<u<t0<y< Tr(R{Unujo)) > 11,

where 7, is the solution of

t
= po+ /0 (Gigns + 115Gy — nsTr (Gigns + nsGF,) ) ds.

By assumption, we have G;,ns + 1sG; = —qins for any s, thus 7, is the solution of

t
M = po +/ (—qins — nsTr (—qins)) ds = p,
0

thus 1 = pg for every ¢t > 0.
By Proposition [2:26, we have

T{ = inf{t > 0; N7 (u,y|0 < u < 1,0 < y < gjipyp) > 1},

thus there is no dependence on the first variable of N%+/ thus the process are just usual independent Poisson
processes of intensity g;i,;,. Therefore, the first jump is to j with probability

iy p(X(T}) = j) = gt = D,
k 1K;%05p ¢

In a more rigorous way, suppose firstly that Tr (G;p + pG}) = 0, then we have Tr (R; pR;-*) = 0 for every j,
meaning that the walker never leaves i, thus P; ,(F1 = j) = 0 for every j # i. Now suppose ¢; # 0. Let j # ¢
and denote

Rjip(h) =Py, (X(t+ h) = j|X(t) =i, X(t + ) # i),

where we are assuming that ¢ is so small that there is no jump until ¢ + h. Hence

P; ,(X(T1) = j) = the probability of a transition from ¢ to j given that a transition
out of i does occur.

— )
hlg}) Rji;p(h)

A calculation gives, for t = 0,

lim Ry (1) = lim By, (X(h) = X (h) # i)
i Pan (X0 = 3. X (1) #1)
im
h—0 P; , (X(h) #1)
. Pip (X(h) =1)
= lim —~ -
h—0 P; , (X (h) # 1)
— hm pji§P(h)
h—0 1 — p“‘;p(h)
— lim Pjisp(h) h
h—0 h 1-— p“yp(h)
= lim pﬂ;p(h) lim h
h—=0  h  h—01—py,(h)
_Bip
disp
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Proof of Theorem Let us suppose that we start a CTOQW of the form (2.6.1) on (Xo, po) = (¢, p)
and it makes n jumps. We can then say that A has jumped at some trajectory (4,141, %2, ...,1,) for some vertices
i1,...,4n € V. The state on the n-th jump is then

in s
Rin—lpTinfl Tn—1

PT;,, = i iE N
’I‘T(R" OT; R )

tn—1 in—1" tn—1

We claim that, if the n-th jump is to j € V, then

R . RPERIpRMRP* ... R

Tn—1 Tn—1
. = Vn=1,2,...
S T n (R REREpRCRE . Re ) o
A e AL P L M

It is easy to see that the claim is true for n = 1. So suppose it is valid for some n > 1, then

in+1 In41%
P _ Ry, Ry
in41 - in+1 In1%
Tr(Rin pTinRin )
Tnt1 Pin io i1 i1 % Dok G Gn41%
R“FRin . RERIpRR2* .. R R

in
in+1 Din io il Q1% g s Gt 1x
T (R Ry RER] pRYRE Rl Ry

in
; , R ‘ ; -1
in+1 Din i i1 i1 % ig* . n41x
y ™ R'"TR" .. .RZR'pR' R ...R" R
Intl Pin io i1 i1% g . G 1x
Te (RFRl: . RERpRIRES R R
in41 Qo i1 i1% pig* in41
R .. RERURIR®...R
- . . . . . . b
In41 12 1 1% l2* In41
Tr (R RER) R RS R

proofing the claim.
By Law of Total Probability applied n times we obtain

]Pi,p (Fn+1 = in+1) = Z Pi,p (FnJrl = Z'77,Jr1|-Fn = Zn) Pi,p (Fn = ln)
in€V

Z Pi,p (Fn+1 :in+1|F :in)Pi,p (Fn :in|Fn—1 :in—l)“-]P)i,p (Fl :Zl)

iyein €V
= D Py (Fi=ins)Pi iy (Fr=in). Py, (Fr=i0)Pi, (Fr=i).
i1, i €V

The proof is finished by several applications of Theorem ([2.27)).0]
Proof of Lemma By [B], we have for all ¢ > 0 the identity

t
Pi7p(Tf > t) = exp {/ Tr ((G; + G )nf) ds| .
0

Also, Tr ((Gy + G})p) = —Tr (Z] Rg*Rgp) < =Y for some Y > 0, hence the compactness of S(h) and a

continuity argument allow us to evoke the Weierstrass Theorem to obtain m, M > 0 such that the following
bound is valid

¢
—mtﬁ/ Tr ((Gi +G)nf)ds < —tM, VYt >0.
0

Putting 7 = m~" and s = M ™!, the expected value E; » (T1) = [ P; p(T1 > t) satisfies
T § Ei’p/(Tl) S S

for every choice of i € V and p € S(h;). O
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Proof of Theorem Suppose that the CTOQW starts on site |¢) with initial density operator p € S(b;).
Remark and Fubini’s Theorem give

/0 Piisp(t)dt = E; p(n;) = E; (Z Sn+11{Fn—i}> => Eip (Snsrlim—-iy)-
n=0 n=0
Fix n € {1,2,3,...}. Then an application of the Strong Markov Property to the stopping time .S, results on
Eip (Sns1l(r =it) =Eip (Sni1|Fp = )Py (B, = i) =E; (Ei,py (51)) Py p (F =),

where pj" = p_em. Since Ty = S, we obtain the identity

/O Prisp (Bt = S By (B (T1)) iy (Fo = i)
n=0

thus we can use the boundaries obtained on Lemma to obtain constants r,s > 0 which result on the
inequalities

rS B, (Fu=i) < /O Prip(t)dt < 53 Pi (Fa = ).

n=0 n=0
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Chapter 3

Open questions

Below we state a few questions in connection with the results presented in this thesis.

¢ Recurrence criteria for discrete dynamics if a measure is available. In [27], recurrence criteria
has been presented for homogeneous OQWs on the line and this is done in terms of spectral properties
of the coin. On the other hand, the present work allows us to examine, in certain cases, recurrence of
QMCs in terms of a matrix measure. A natural question is to ask how the spectral criterion given in [27]
can be generalized to QMCs and how it this related with the existence of matrix measures. Is there a
simple recurrence criterion in the case that a measure is available? As a first attempt, this problem can be
broken into two parts, namely, a) the case for which the sides of the coin are diagonal or simultaneously
diagonalizable, and b) the case for which there is no simultaneous diagonalization, i.e., the sides do not
commute. On first sight, a central aspect of this problem seems to be a more thorough examination of
Dette’s criterion regarding the non-commuting case.

e Site-recurrence criteria for homogeneous nearest-walk CTOQWSs in 1 dimension in terms
of Lindblad generators. Given a valid Lindblad generator associated with a homogeneous tridiagonal
matrix, when is such walk site-recurrent? The question is analogous to the one for the discrete-time case
of OQWs studied in [27], where a complete criterion is obtained (both for the case of order 2 coins and
for the case of irreducible coins). Regarding the continuous-time case, the question can be restated as:
how to determine recurrence in terms of the entries (or spectra) of the transition effect matrices and
hamiltonians? In this work, we have obtained partial results on such direction, but a general solution is
unknown even for the case of order 2 effect matrices. Whenever one has simultaneous diagonalization of
the matrices, one has clear answers, but we have seen that as soon as one abandons such assumption, the
problem becomes more complicated.

e Lindblad generators versus matrix measures. If a matrix measure exists, one can resort to Karlin-
McGregor methods in order to determine certain statistics of the walk such as recurrence. But with the
above discussion in mind, this immediately raises the following questions: what conditions are imposed
on the effect matrices and hamiltonians of the Lindblad generator so that one is able to obtain positive
matrix measures? Is it possible to obtain matrix measures associated with Linbdblad generators with
nonzero hamiltonian parts? What about non-positive matrix measures?
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