

Conectando vidas Construindo conhecimento

XXXIII SIC SALÃO INICIAÇÃO CIENTÍFICA

Evento	Salão UFRGS 2021: SIC - XXXIII SALÃO DE INICIAÇÃO
	CIENTÍFICA DA UFRGS
Ano	2021
Local	Virtual
Título	Análise de Algoritmos de Busca em Espaços de Estados com
	Memória Limitada
Autor	FREDERICO MESSA SCHWARTZHAUPT
Orientador	ANDRÉ GRAHL PEREIRA

Análise de Algoritmos de Busca em Espaços de Estados com Memória Limitada

Bolsista: Frederico Messa Orientador: André G. Pereira Universidade Federal do Rio Grande do Sul

Resolver problemas de busca em espaço de estados é uma tarefa amplamente estudada e recorrente em aplicações. Uma abordagem popular é utilizar funções heurísticas como uma forma de guiar a busca. Isso evita expandir exaustivamente o espaço de estados na busca de um caminho de menor custo do estado inicial até um estado objetivo (a solução de um problema de busca em espaço de estados).

O algoritmo clássico A* parte do nodo raiz e sistematicamente expande os nodos mais promissores, descobrindo e armazenando os seus sucessores em uma fila de nodos a serem possivelmente expandidos futuramente, até encontrar um estado objetivo. Essa abordagem é eficiente em termos de nodos expandidos, no entanto possui a limitação de consumir uma quantidade de memória proporcional ao número de nodos gerados.

O algoritmo *Iterative deepening A** (IDA*) foi proposto para lidar com essa limitação. O IDA* expande apenas um caminho por vez e tem um consumo de memória proporcional ao custo da solução. Em troca IDA* é muito menos eficiente em termos de nodos expandidos, devido a sua incapacidade de detectar que múltiplos caminhos geram os mesmos nodos, algo que em geral não ocorre com o A*.

Diversos algoritmos foram propostos buscando consumir menos memória que o algoritmo A*, mas ser mais eficiente termos de nodos expandidos que o algoritmo IDA*. Dentre eles estão os algoritmos PEA* e A*+IDA*. O primeiro funciona como A*, mas evita armazenar todos os sucessores de nodos expandidos, enquanto que o segundo combina IDA* com A*, de tal modo que se a busca do A* estiver prestes a falhar por memória, o resto da busca será realizado utilizando IDA*.

Atualmente estamos realizando um estudo sobre algoritmos com memória limitada com os objetivos de 1. entender seu comportamento e 2. propor algoritmos mais eficientes em termos de nodos expandidos.