

Conectando vidas Construindo conhecimento

XXXIII SIC SALÃO INICIAÇÃO CIENTÍFICA

Evento	Salão UFRGS 2021: SIC - XXXIII SALÃO DE INICIAÇÃO
	CIENTÍFICA DA UFRGS
Ano	2021
Local	Virtual
Título	Modelo Epidemológico SEIR, algumas propriedades
	matemáticas
Autor	JANDERSON MACEDO SILVANO
Orientador	PAULO RICARDO DE AVILA ZINGANO

Modelo Epidemológico SEIR, algumas propriedades Matemáticas

Orientando: Janderson Macedo Silvano Orientador: Prof. Paulo Ricardo de Ávila Zingano

25 de agosto de 2021

Justificativa-Dada a possibilidade real de ocorrerem surtos de doenças infecciosas (que, nos casos mais graves, dão origem a epidemias locais ou globais), em qualquer momento e em qualquer lugar, e dado o fato que a evolução da população afetada segue padrões matemáticos razoavelmente previsíveis, é importante estudar a matemática dos modelos utilizados para o seu monitoramento e acompanhamento, desde modelos simples (pouco estratificados) a modelos mais complexos (altamente estratificados). Objetivos-Queremos estudar a teoria matemática de modelos determinísticos de tipo SEIR em populações homogêneas e investigar a aplicação desses modelos para a presente epidemia de Covid-19. Metodologia-Utilização da teoria matemática de sistemas de equações diferenciais ordinárias e técnicas de análise real. Resultados (parciais)-Observamos que surtos ou epidemias têm um ciclo finito, com uma parte da população suscetível não sendo infectada; os números de reprodução tendem (ao final da epidemia) a um valor limite positivo e menor que 1; medidas de contenção não farmacológica, se corretamente implementadas e obedecidas, reduzem as taxas de transmissão, levando a números de reprodução menores; ao final da epidemia, o número de indivíduos infectados é nulo. No presente trabalho iremos discutir de forma sucinta sobre algumas das propriedades matemáticas do modelo SEIR com taxas de transmissão $\beta(t)$, infectividade $\delta(t)$, de recuperação $\gamma(t)$ e de letalidade r(t) não necessariamente constantes, algo que geralmente não vemos na literatura da área. Além disso vamos estudar o comportamento limítrofe da solução do respectivo sistema de equações diferenciais ordinárias não linear de primeira ordem.