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“The true delight is in the finding out
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ABSTRACT

Forthcoming 5G networks promise a myriad of new and improved applications such as

autonomous driving and smart cities, which impose a drastic shift in how mobile telecom-

munications must operate. In order to comply with the new requirements, an umbrella of

technologies must come together, and solutions based on Network Function Virtualization

(NFV) and network slicing, for example, must be carried out. Regarding NFV in partic-

ular, the trend towards pulverizing the monolithic software in a microservices-based one

carries network management challenges to operators. While traditionally a network func-

tion was virtualized through a single monolithic software, the microservices paradigm

converts the same function in a number of smaller services that must cooperate to deliver

the same functionalities. Thus, the management challenge in the deployment and integra-

tion of one or more network management software with the managed microservices is as

important as it is delicate, as stringent requirements of 5G applications must be respected.

This master’s dissertation proposes SWEETEN, the aSsistant for netWork managEmEnT

of microsErvices-based VNFs, as a solution for automating the deployment and trans-

parently integrating network management into microservices-based network slices. By

enriching their function stack with high-level annotation of the management features they

desire, users can easily deploy an augmented stack with both network and management

functions. SWEETEN considers the users specification when mapping a solution, which

is done through the mapping of requested management features into tools and configura-

tions. The system’s usability is demonstrated through two case studies, where SWEETEN

is shown to transparently provide monitoring and security solutions for complete network

slices, enabling compliance with privacy requirements through minimal low-level inter-

ventions from the network slice tenant. The results show how SWEETEN integration of

monitoring and security disciplines can assist users in guaranteeing the correct operation

of their deployments regardless of the underlying software solutions used.

Keywords: Network management. microservices. NFV. Network Slices.



Automatizando Gerência de Rede em 5G para Slices de Rede Baseados em

Microserviços

RESUMO

Os novos sistemas 5G prometem uma miríade de novas e melhoradas aplicações tais como

carros autônomos e cidades inteligentes, o que impõe uma mudança drástica em como

as redes de telecomunicação devem operar. Para atender com os novos requisitos, um

guarda-chuva de tecnologias devem ser reunidas, e soluções baseadas em Virtualização

de Funções de Rede (NFV, do inglês Network Function Virtualization) e Slicing de rede,

por exemplo, precisam ser realizadas. A respeito especificamente de NFV, a tendência de

pulverizar-se o software monolítico em um baseado em microserviços traz muitos desa-

fios aos operadores. Enquanto tradicionalmente uma função de rede era virtualizada em

um único software monolítico, o paradigma de microserviços converte a mesma função

em vários serviços menores que precisam cooperar para entregarem as mesmas funcio-

nalidades. Desta forma, o desafio de gerência em implantar-se e integrar-se um ou mais

software de gerência de rede com o microserviço gerenciado é tão importante quanto é

delicado, já que os rigorosos requisitos de aplicações 5G devem ser respeitados. Esta dis-

sertação de mestrado propõe o SWEETEN, um assistente para gerenciamento de rede de

VNFs baseadas em microserviços, como uma solução para automatizar a implantação e

a integração transparente de soluções de gerência de rede em slices de rede baseados em

microserviços. Através do enriquecimento de suas especificações de serviços com anota-

ções de alto nível das funcionalidades de gerência requeridas, usuários podem facilmente

implantar um stack aumentado com tanto as funções de rede quanto as de gerência. O

SWEETEN considera a especificação do usuário quando mapeia uma solução, o que é

feito através do mapeamento das funcionalidades requeridas em ferramentas e configu-

rações. A usabilidade do sistema é demonstrada através de dois estudos de caso, onde

o SWEETEN demonstra prover de forma transparente soluções de monitoramento e se-

gurança para slices de rede completos, possibilitando a conformidade com requisitos de

privacidade e com mínima intervenção de baixo nível do inquilino do slice. Os resultados

demonstram como a integração das disciplinas de monitoramento e segurança pode aju-

dar usuários a garantirem a correta operação de suas implantações, independentemente da

escolha de software subjacentes para a solução.

Palavras-chave: Gerência de Redes. Microserviços. Slices de Rede..
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1 INTRODUCTION

Conventional computer networks are relatively static in terms of physical struc-

ture with respect to network topology, functionality, and protocols (HAKIRI et al., 2014).

These conventional networks extensively employ physical middleboxes (BRIM; CAR-

PENTER, 2002) to perform network functions, such as routing, firewalling, and load

balancing. The administration of conventional networks typically relies on traditional net-

work management solutions based, for instance, on SNMP (Simple Network Management

Protocol) (FEDOR et al., 1990), NETconf (Network Configuration Protocol) (FEDOR

et al., 1990), and Netflow (CLAISE, 2004). These management solutions implement dis-

tributed architectures, following the static structure of the underlying managed network.

The addition of new middleboxes in a network naturally increases the overall number of

devices to be managed, and because middleboxes are implemented with proprietary hard-

ware, the inclusion of new network functions, including their proper configuration and

maintenance, often requires a manual and costly effort from the network operator.

To address the effect of intrinsically inflexible middleboxes (leading to additional

costs), Network Functions Virtualization (NFV), which is an emerging technology, re-

lies on virtualization to implement and deploy Virtual Network Functions (VNFs) (ETSI,

2013). By decoupling the proprietary hardware from the associated software, NFV en-

ables functions to be run on top of commodity hardware, reducing operational costs

and increasing network dynamicity and scalability. Because of its advantages, NFV has

quickly became a staple paradigm in the networking field (ZHANG et al., 2019). NFV is

often realized with Virtual Machines (VMs), or, recently, with lightweight virtualization

technologies based on containers (CZIVA; PEZAROS, 2017). When compared to VMs,

VNFs materialized through container virtualization can be deployed faster and more ef-

ficiently (FELTER et al., 2015). Containers can create and replicate customized environ-

ments, offering isolation for running applications. Because of its enhanced performance,

Docker (MERKEL, 2014) has been largely adopted in industry and academia. As net-

work services provisioned by VNFs are vital for the networks’ health, properly managing

and monitoring Virtualized Network Functions (VNFs) become a mandatory concern in

assuring its proper operation.

In another field, i.e., cloud computing, the microservices paradigm advocates to-

wards breaking down applications and end-services in small self-contained functional

modules as a solution to the problems faced by monolithic software (DRAGONI et al.,
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2017; MARTINS et al., 2020c). While monolithic software is developed and deployed

as a single atomic service, microservice-based solutions provide the same high-level ser-

vice through the cooperation of multiple independent modules. In this case, each module

should provide a specific function and runs in a virtual host, and the communication

between modules is used to combine the necessary functions and deliver the service cor-

rectly. Some possible benefits enjoyed by applications designed with the microservice

paradigm includes fine-grained scaling of a service, since only the overloaded modules

need to be scaled up (e.g., increasing their computational resources) or out (e.g., repli-

cating the modules over additional hosts), and continuous development and integration,

since only the updated modules must be upgraded.

Microservices-based NFV and other novel concepts can emerge as an important

mean for new networks to reach their envisioned potential. In this sense, 5G mobile net-

works exemplify such a case. Unlike previous mobile generations, 5G promises not only

to improve data transmission rates but also to enable the coexistence of a myriad of ap-

plications with distinct requirements. To achieve that, network slicing of the underlying

infrastructure enables several tenants to seamlessly share resources and achieve distinct

(potentially conflicting) objectives. The overall system’s health relies on the harmonic

coexistence of tenants sharing the same infrastructure (SLAMNIK-KRIJEšTORAC et al.,

2020). NFV can assist in the provisioning of slices for tenants, but each slice must be in-

dividually managed and monitored to guarantee that the tenant’s application requirements

are being met. Cloud-based monitoring tools often require extensive privileges on the un-

derlying infrastructure to work, which is not wanted or even feasible from the viewpoint

of the infrastructure provider. Being designed for higher-level services, these solutions

often introduce network overhead because of the additional hop per microservice in a

flow, and can hinder their adoption depending on applications requirements1. Extreme

cases such as edge applications could even suffer from the computational overhead from

the additional containers deployed. Moreover, infrastructure owners and tenants may re-

quire not only monitoring, but also other network management features (e.g., security and

configuration) transparently.

Considering that 5G networks are envisioned to support upcoming mission-critical

applications, security becomes a primary concern. Targets can range from governments

and industries to ordinary citizens. For example, eavesdropping e-health devices can

leak confidential information regarding their users, and thus impose an important security

1<https://medium.com/@pklinker/performance-impacts-of-an-istio-service-mesh-63957a0000b>

https://medium.com/@pklinker/performance-impacts-of-an-istio-service-mesh-63957a0000b
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requirement for the setup (ZHANG; WANG; ZHOU, 2019). Additionally, battery limita-

tions from these devices can result in minimal computational overhead being acceptable

for management solutions. A different application with similar security challenges that

runs in the cloud, conversely, could make use of more robust management artifacts that

would incur in greater overhead overall. Since applications and resulting requirements

can vary significantly, and because there is an increasing number of management tools

offered for various contexts, correctly choosing and configuring a set of tools for each

scenario becomes a challenging task even for experts.

This master dissertation proposes SWEETEN (aSsistant for netWork managEmEnT

of microsErvices-based VNFs), a system designed to assist 5G service providers and ten-

ants with configuration and deployment of network management tools along a network

slice. By adding high-level management features annotations to their original services

stack, SWEETEN can map the necessary tools and configuration to realize the desired

features with no hassle for the operator. Available features include monitoring, managing,

and securing one or multiple microservices. Because the system is targeted towards VNF

management, it is designed to incur in the least overhead possible regarding network and

computational resources. Moreover, Natural Language Processing (NLP) is employed

to extract meaningful tags from users deployment descriptions. The generated tags are

then used to provide tailored solutions for each deployment, so that more robust solu-

tions can be produced for more resourceful deployments, while solutions that prioritize

low overhead can be produced for resource-constrained deployments. Additionally, when

deemed necessary, operators can specify as many configuration parameters as needed and

the system will process them to deliver a solution as aligned as possible with the informed

options.

A prototype implementation of SWEETEN is also presented, which is evaluated

in two separate case studies. The first case study revolves around a dynamic cloud Radio

Access Network (C-RAN) scenario. In this case study, LTE radio functions are split in five

containers, as described by Wubben et al. (WUBBEN et al., 2014). The prototype is used

to manage each function and monitor them assuring the radio requirements are being met.

Since the stack for the virtualized radio functions does not need to be altered prior to being

fed to the system, continuous development and integration of the virtualized functions is

not an impediment for our system, as the updated functions and their respective network

management tools are updated transparently.
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The second case study focuses on a complete network slice for an intelligent

healthcare service. In this service, patients can be monitored by a number of resource-

constrained Internet of Things (IoT) health monitors and other resourceful devices in

real-time, enhancing quality of human life through the automated execution of mundane

tasks (WANG et al., 2018). To achieve that, data collected by said devices is sent to a

deep learning module hosted in the cloud, which processes the data from a patient and

triggers alarms when events happen. Due to the sensitive nature of the traffic exchanges

by the healthcare devices, security in the terms of privacy is a foremost concern for all

communication. It should be noted that, since these devices can be resource-constrained,

solutions should balance the defensive mechanism effectiveness and the overhead they

produce. Moreover, IoT devices in this use case utilize Narrowband IoT (NB-IoT) for

their radio-access technology as it offers improved coverage and efficiency in terms of

cost and power consumption (XU et al., 2018). Cloud radio access network (C-RAN) is

used to deliver connectivity to the application’s devices, imposing stringent latency and

data rate requirements that must be met throughout the deployment life-cycle and thus

implying the need for careful monitoring.

SWEETEN is evaluated through the prototype, and results for both case studies

indicate that acceptable overhead is added to the deployment time of the complete solu-

tion for different management disciplines. Since the deployment overhead is a one-time

cost for the operator, we argue that the observed values are acceptable for the benefits

offered by the system. The results also show that the inclusion of monitoring features

incur in negligible computational and network overhead throughout the remainder of the

lifecycle, while security features incur in greater network overhead. Since network and

computational overhead from monitoring solutions were negligible throughout the ser-

vices lifecycle, including when it is under heavy-stress, operators can quickly diagnose

malfunctions and bottlenecks for under-performing services, making it a valuable ally in

assuring that services requirements are being met. Notwithstanding, the overhead is much

more due to the included management entities themselves and not due to SWEETEN us-

age, and would thus also be present if a similar management solution were to be manually

included by the user, therefore presenting a net gain for the user.

The remainder of the dissertation is organized as follows. In Chapter II, the back-

ground and related work are discussed. Chapter III introduces SWEETEN’s architecture,

discussing its components and main features. Then, in Chapter IV, a prototype implemen-

tation for SWEETEN is detailed. Chapter V then presents two case studies: the first one
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of a 5G application scenario featuring a microservice-oriented software radio design split

into five containers; the second one of a network slice for a intelligent healthcare service.

The experiments performed and obtained results when evaluating SWEETEN prototype

are discussed in Chapter VI. Finally, Chapter VII presents the concluding remarks and

perspectives of future work.
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2 BACKGROUND AND RELATED WORK

This chapter presents the related work on the main investigated subjects. First,

a background on virtualization technologies, NFV and other important concepts in this

study are provided in Section 2.1. The differences and the importance of this thesis pro-

posal when compared to the related work are underlined in Section 2.2.

2.1 Background

Monolithic software can be defined as a software composed by modules that can-

not be executed independently (FRANCESCO; LAGO; MALAVOLTA, 2018). Software

design has generally followed a monolithic paradigm in which an indivisible software is

responsible for realizing a complex service in an integrated manner. Monolithic software

still can and should be designed through a composition of specialized modules. How-

ever, the different modules in a software following the monolithic paradigm still rely on

resource sharing (e.g., memory, CPU) for running in the same machine, which tightly

ties all the components as one atomic application. While the monolithic architecture is

viable for many applications, recent off-premise and distributed computing offered by

cloud services impose the need for a more flexible paradigm in software design.

In the microservices paradigm, systems are designed through independent com-

ponents called microservices, which provide a system with cohesive and well-defined

functionalities (DRAGONI et al., 2017). Context sharing between microservices is done

through network messaging, allowing microservices to be deployed along a distributed

infrastructure, as well as completely decoupling implementation details and choices (e.g.,

programming languages) between modules. Microservices introduce many benefits re-

garding continuous integration and delivery, for example, as updates for individual mi-

croservices may be gradually rolled out, and fine-grained scaling of a service, since only

the overloaded modules need to be scaled up or out. However, the design also imposes

new management challenges in relation to team organization, development practices and

infrastructure (MAYER; WEINREICH, 2017), and therefore the correct operation of each

microservice must be asserted, and must be that of the composed software as a whole.

Designing and developing software through the microservice paradigm can quickly

become hard to manage as complex connection schemes are required among hundreds of

microservices. Service meshes recently emerged as a solution for that through the auto-
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matic management for microservices connections, as reviewed in the study by Li et al. (LI

et al., 2019). Among their benefits, service meshes can provide service discovery for the

microservices and load balancing among different containers (even using different soft-

ware versions). On the implementation side, these solutions usually employ an array of

lightweight network proxies, which are deployed alongside the application containers and

can provide an interface for all incoming and outgoing connections. Some specific sce-

narios that are much relevant to 5G, such as multi-tenancy, can however present specific

challenges that were not part of service meshes design. We argue that the proper man-

agement for VNFs and network slices with various requirements, such as the minimal

computational and network overhead for IoT applications, must be featured in the man-

agement design of a high-level manager. This way, the appropriate management services

and configuration can be provided based on the user specification and requirements.

A microservice needs a virtual host to run on, which is typically realized through

container virtualization. Containers offer a lighter alternative to Virtual Machines (VMs),

since they can run directly on the host system without requiring virtualization layers for an

Operating System (OS) that introduces overhead in the process (MARTINS et al., 2020a).

In this case, the host system’s kernel offers resource isolation features that restrain each

container to their own environment. On Linux, these features are mostly achieved through

cgroups and namespaces features. Container orchestrators can be used to deploy and man-

age complex applications (e.g., composed of multiple containers, deployed over multiple

hosts). Docker is an example of a platform for lightweight container virtualization, and

studies have shown that running multiple microservices in containers is a viable deploy-

ment option, with performance comparable to baseline (JHA et al., 2018). Regarding con-

tainer orchestration, Kubernetes currently stands out as one of the most widely used plat-

form (BERNSTEIN, 2014). Management tools, such as Prometheus (PROMETHEUS,

2017) and Dynatrace1, have emerged in this context, offering monitoring solutions to

the cloud environment and applications following the microservices paradigm. These

tools allow monitoring of cloud systems in varying scales, from a single module to an

inter-cloud distributed application. Particularly large applications can leverage service

mesh solutions to manage connectivity (and the management concerns that comes with

it) among the microservices it comprises (LI et al., 2019). Moreover, machine learning-

based scheduling strategies for microservices architecture can leverage monitoring infor-

1<https://www.dynatrace.com/>

https://www.dynatrace.com/
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mation and quickly scale an overworked service, significantly saving time in comparison

to traditional algorithms (JINGZE; MINGCHANG; YANG, 2019).

NFV, as defined by ETSI in the Management and Orchestration (MANO) spec-

ification (ETSI, 2014), can potentially benefit from the adoption of the microservices

paradigm. Modularizing the VNFs forming a Service Function Chaining (SFC) can offer

similar benefits to those enjoyed by higher-level distributed cloud applications (CHOWD-

HURY et al., 2019). Moreover, ETSI’s NFV specifications also define that sub-sets of

VNF’s functionality are implemented by atomic VNF components (VNFC), which them-

selves can also be designed following the same principles, further benefiting the com-

pound VNFs. However, monitoring and management solutions tailored for cloud appli-

cations may not be directly applied to NFV scenarios due to their specificities.

2.2 Related Work

Ciuffoletti (CIUFFOLETTI, 2015) investigates the specification and automation of

monitoring infrastructures in a container-based distributed system. The author employs

an architecture for monitoring that is comprised of two entities: a sensor, that produces

and delivers measurements, and a collector, that specializes the management of those

measurements. A simple model that interfaces the user and the container management

system is defined, and a prototype implementation that showcases the applicability of the

proposal is provided. The work thus focuses solely on the monitoring aspect, while our

proposal also covers other management disciplines (e.g., security). Additionally, Ciuffo-

letti’s work considers that the user application and the sensor for the monitoring system

run in the same container, which violates the microservices paradigm and can hinder the

module development and deployment. Our solution, instead, always considers the appli-

cation and management microservices as separated containers, even when context sharing

is needed, and thus does not breach microservices standards unnecessarily.

The work of Jaramillo et al. (JARAMILLO; NGUYEN; SMART, 2016) discusses

how Docker can effectively leverage the microservices paradigm through a case study

based on a real working model. The authors pose a list with six challenges faced when

building a microservice architecture and that contrasts with the multiple advantages of-

fered by microservices design. Specifically, the work highlights the necessity of im-

provements regarding scalability, automation, and observability. SWEETEN is designed

with these challenges in mind, providing automated observability (i.e., a way to visual-
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ize health status of microservices to quickly locate and respond to occurring problems)

and scalability (e.g., dynamic configuration for multiple microservices), features meeting

operators needs.

Li et al. (LI et al., 2019) reviewed the state-of-the-art and the challenges for service

meshes. Service meshes are emerging solutions that create a dedicated infrastructure layer

for handling communication between microservices. Service meshes can offer multiple

features such as service discovery, load balancing, and access control. Implementations

for service meshes typically rely on deploying an array of network proxies alongside pri-

mary containers, intercepting all its connections to provide the features. As pointed out by

the authors, edge computing environments and 5G scenarios (e.g., multi-tenancy) incur

in specificities that service meshes are not designed to cope with. SWEETEN is designed

to work with VNFs with different requirements (e.g., minimal overhead for edge deploy-

ments), and management applications (and thus, overhead) are chosen and configured

according to high-level user requests and other deployment specifics.

Franco et al. (FRANCO; RODRIGUES; STILLER, 2019) introduced a support

tool for cybersecurity that focuses on the recommendation of protection services. The

authors argue that although a vast number of protections services are offered to network

operators and users, the choice for one or more is not trivial for neither. Like SWEETEN,

the proposed system can operate with different demands from the user, and recommend

protection tools (in their case) for different scenarios. Notably, the proposal is limited in

scope to the security discipline, while SWEETEN is designed to consider other network

management disciplines.

Chowdhury et al. (CHOWDHURY et al., 2019) highlighted the importance for the

NFV ecosystem to have VNFs designed through a microservice architecture. In Service

Function Chains (SFCs), for example, having monolithic VNFs incurs in unnecessary

processing overhead from redundant functionalities. Instead, the redesign of these func-

tions through microservices enable fine-grained resource allocation and independently

scalable components, as elements for the orchestration of VNFs in an SFC become also

present for the VNF-Components (VNF-C) for any VNF. Among the research challenges

documented in the literature, the adequate monitoring of these functions is underlined, as

well as questions pertaining performance profiling and overhead trade-offs, all occurring

topics in our present research.

Slamnik-Kriještorac et al. (SLAMNIK-KRIJEšTORAC et al., 2020) presented an

extensive survey on the distributed and heterogeneous resource sharing that is taking place
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in 5G networks. The sharing model for 5G and other networks proposed by the authors is

classified in three distinct models: technical, business, and geographic. Specifically, the

technical model is structured in three layers: infrastructure, orchestration, and service. Al-

though some management concerns for network slices are discussed, they primarily focus

on the infrastructure layer, while the examples for service (e.g., Healthcare) and orches-

tration (e.g., Kubernetes) are left for each layer and case to solve individually. Our study,

in contrast, proposes that the network management should consider all layers jointly, and

also that this management is a complex task that operators should be assisted with when

deploying new network slices.

Kist et al. (KIST et al., 2020) proposed a virtualization scheme that allows tech-

nologies and instances for different Radio Access Networks (RANs) to be provided as

services for network slice tenants. The proposal offers programmability and adaptabil-

ity for service providers while maintaining isolation between tenants and their slices.

An experimental scenario evaluated by the authors comprised of LTE and NarrowBand-

IoT (NB-IoT) clients showcases how the proposed system allows the provisioning and

management for virtual RANs (vRANs) for providers’ network slices. The management

aspect is however limited to the RAN infrastructure, and any additional required manage-

ment aspects (e.g., regarding the application, or other VNFs included in the slice) are left

to be determined and deployed by the slice owner.

Coelho et al. (COELHO et al., 2020) looked into formally defining the network

slice designing problem, proposing a framework that considers nested slices and network

functions decomposed in smaller services and models the relationship between radio split-

ting, control and data planes isolation, and core network function placement. Leveraging

the reusability of smaller network function services and network slices subnets, a variety

of sharing policies that range from total isolation to flat sharing can be used to realize

5G services of any class, and fulfilling the stringent requirements each of them impose.

The study therefore focuses on producing a network slice, including necessary network

functions, their split and placement, to deliver the demands posed by a number of ser-

vices. The slice management itself, including the appropriate monitoring of the deployed

network functions, is not covered by the slice design and thus is left for the operator to

manually determine, configure and deploy the appropriate solutions.
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3 SYSTEM DESIGN

Because NFV is critical for upcoming networks, and since the paradigm shift from

monolithic VNFs to microservices-based ones is imminent (CHOWDHURY et al., 2019),

the burden has increased for network operators. The applications that run on top of a

VNF or an SFC can pose stringent requirements for the functions, and the underlying

infrastructure can also determine how functions should be managed. The proposed system

should reflect the specificities of each scenario in order to properly select and configure

the necessary management tools.

This chapter discusses SWEETEN’s architecture and design choices. An overview

of SWEETEN is presented in Figure 3.1. The remainder of this chapter presents the sys-

tem progressively. General aspects and user input are discussed in Section 3.1. SWEETEN

pre-processing is discussed in Section 3.2. The system’s mapping of management tools

and configurations is explained in Section 3.3. Finally, Section 3.4 discusses instantiable

templates, an important part for the system as they determine how the management tools

should be deployed by SWEETEN.

Figure 3.1: SWEETEN architecture (MARTINS et al., 2020b).
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3.1 General Aspects and User Input

SWEETEN can be viewed as an automated assistant intended to help tenants of 5G

slices to meet management requirements for their slice components. In particular, when

these components are designed following the microservices architecture, network man-

agement must be thought of while respecting the modularity and isolation envisioned in

this architecture. Moreover, a slice can span over thousands of microservices (JAMSHIDI

et al., 2018), which makes automated management not only a benefit but a necessity.

The user input in the designed system consists of a specification for user contain-

ers, which is augmented by the user to contain requests for management features. These

management features can be of multiple disciplines, namely security, monitoring, and

administration. Some examples for each discipline are found in Table 3.1.

The existence of multiple tools when mapping a single feature is resolved by the

system based on additional user input and deployment information. A single tool can also

realize multiple features (e.g., SNMP, for monitoring as well as for administration), which

SWEETEN takes into account when selecting the appropriate tools for a deployment.

Support for new features (and through different tools) can be added to the system by an

expert. The user can adopt varying specification levels when requiring the management

features for each service (e.g., choosing to only monitor TCP connections on certain ports,

or determining what tool should be used). The system interprets the requested features

and maps the appropriate tools and configurations to fulfil all requests.

Table 3.1: Network features and respective tools listings.
Monitoring Security Administration

Flows sFlow, NetFlow,
Prometheus

Snort (for IDS),
OSSEC -

Traffic Prometheus,
iPerf, SNMP

iptables,
nftables Linux tc

Latency
SmokePing,

OWAMP,
TWAMP

- Linux tc

Device Kubelet
(Kubernetes native)

syslog,
antivirus utilities

NETCONF,
SNMP

With respect to the classification for network management features, three disci-

plines are considered, as presented in Table 3.1. The monitoring discipline encompasses

all measurements that can be done to assert a network and its components are behaving as

expected (LEE; LEVANTI; KIM, 2014). These measurements can be either passive (e.g.,
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observing flows in a given interface) or active (e.g., probing a link to check latency and

throughput available). The security discipline involves all sensitive aspects in a network,

including privacy and resilience requirements and the means to guarantee them at a certain

level (STALLINGS, 2006). The administration discipline is comprised of management

tasks and applications that actively alter the network behaviour for one or more device.

For example, Netconf protocol can be utilized to reconfigure switches and routers in a net-

work, altering its behavior dynamically (ENNS et al., 2011). Currently supported features

are latency and flows, for monitoring; traffic, for security; and device, for administration.

3.2 User Images Pre-processing

The user input is received by SWEETEN through the Features Acquirer module.

This module is responsible for retrieving information on all microservices defined in the

user specification as well as the management features requested for each microservice.

In addition to the nature of the management desired, requirements for the produced so-

lution can be derived from requirements tags. To achieve that, each microservice with a

management annotation undergoes three steps:

1. Management feature retrieval, where the requested features and options are ex-

tracted from the user specification;

2. Description enrichment, where the information about the user service is augmented;

3. Service tagging, where tags that better describe the service requirements are ap-

pended to the specification.

Each requested feature obviously can be realized by a number of tools. In order

to allow the best possible match for tools selection and configuration in a later stage

within SWEETEN, user’s microservices undergoes a tagging process composed by the

description enrichment and service tagging processes previously mentioned. For each

component in the user input for which a feature is requested, SWEETEN appends tags

that can provide some insight about the type of service and its requirements. Tags are

later used to differentiate the tools and configuration choices for monitoring a cloud-

hosted service from an IoT one; for example, while the former can leverage network and

processing resources to employ a robust solution, the later must realize the management

necessities with minimal overhead.
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To alleviate the burden for the user, SWEETEN can automatically derive tags from

the user specification alone without any additional user input. To achieve that, the descrip-

tion for each container that composes a service is processed in the service tagging step.

This description is rarely present and descriptive for most containers, so the description

is enriched before tags are derived through Natural Language Processing (NLP), as ex-

plained more in-depth in the following chapter. NLP is an area of computer science that

employs algorithms for learning, understanding, and producing of human language con-

tent (HIRSCHBERG; MANNING, 2015). NLP has lately been a tool in various areas

with promising results, for example, by providing enterprises with network security in-

sights and suggesting solutions when paired with a neural network model (FRANCO et

al., 2020).

3.3 Management Tools and Templates Mappings

Management features required by the users must be realized by a set of manage-

ment tools. The Tool Mapper module thus is the first one to make selections based on the

Features Acquirer output. For each feature required by the user, this module maps to one

or more tools that are capable of realizing such features. The listing for these mappings is

provided through a Tools Catalogue, which has been already pre-populated by an expert.

In the event that more than one tool fits a certain request, tags are considered so that the

best fit can be provided. The algorithm for matching the tags to the available tools is a

greedy one, so the solution that matches the most tags from the user input is selected each

time. The selection algorithm is further explained in the next chapter.

Additionally, each tool must be configured and deployed so that it can perform

the intended task correctly. For example, a firewall must be placed in front of a targeted

back-end service, while an active latency monitor must be placed alongside the moni-

tored microservice. Moreover, the previously appended tags must be considered when

determining the configuration parameters for a given network management tool. A sec-

ond stage for selection is thus performed by the Template Mapper. A template represents

the configuration required by a management tool to be deployed, both with respect to the

tools internal configurations and with any necessary cluster definition (MARTINS et al.,

2020c). The configuration aspect is also covered by the tags appended to the user input,

in a process analogous to the one described for the tools matching.
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Occasionally, the correct configuration for some management tool might require

some breaching of microservices architectural design during execution. For example,

monitoring the active connections for a microservice requires for the the management tool

not only to be placed alongside the managed service, but to share its network context too.

This is achieved by namespace sharing (PAHL, 2015) between managed and management

services, but which is only performed when necessary. In this way, microservices design

can be maintained for all applications, and specificities are configured and treated with

templates designed for such cases.

3.4 Management Mappings through Instantiable Templates

Network management is a discipline that includes, for example, network configu-

ration, fault analysis, performance monitoring, and security assurance. The management

of complex networks is thus not to be solved by a single tool but rather by the careful se-

lection and combination of network management software. Their diverse purpose means

that network management tools greatly differ with respect to their computational and ar-

chitectural requirements, e.g., a misplaced firewall is a useless firewall. A typical network

management architecture is composed by management agents, that interact directly with

managed devices to collect management information and oftentimes set configuration pa-

rameters, and a central management entity (e.g. an SNMP manager) that monitors and

acts on the data collected by agents. Being a distributed application itself, the network

management architecture can also be organized as a set of micro-services.

To fulfill user expectations regarding network management features, the appropri-

ate set of tools must be chosen. Since requirements for management tools differ from

each other, careful thought is required in their deployment. In this context, our archi-

tecture introduces instantiable templates for network management architectures. An in-

stantiable template contains the information required so that management containers can

be deployed alongside the user application containers, their positioning, and any other

configuration needed to realize the management function correctly. Experts can develop

new templates as needed, and the new templates can be fed to the architecture’s template

catalogue.

To illustrate the different template compositions, consider the following 4 common

network management tasks that our system can realize (Figure 3.2):
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Figure 3.2: Set of instantiable templates, from least to most intrusive.
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(a) Monitoring the latency between two containers of the user application: for latency

sensitive applications, deploying instances of a tool such as OWAMP, one at each

of the hosts where the application containers reside, and connecting them through

the same local network as their application counterparts can be enough to provide

the intended latency measures. Complete isolation between management and user

application is maintained, in this situation.

(b) Securing an application through the use of a firewall: the incoming traffic must be

routed through the firewall. Only the firewall position in the network is relevant

to the deployment of this solution, and thus containers remain isolated. However,

traffic must be rerouted and potentially modified through the new firewall function,

which could affect the application performance.

(c) Monitoring all network traffic between two containers of an application: NetFlow

or similar tools can be used to realize the desired monitoring. However, deploying

the containerized agent tool in its own network namespace would be useless, since

it would be only monitoring itself. Instead, they must be deployed in the same net-

work namespaces (and host, therefore) of the user applications, so it can correctly

perform the desired function. A collector that centralizes monitoring agents data

must also be included in the template, as illustrated by the container “Mgmt 3” in

Figure 3.1c, but does not require any special isolation or positioning configuration

relative to the application containers.
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(d) Monitoring and configuring parameters of two containers of an application: this

can be done through SNMP, for example, implicating a more intrusive namespace

sharing between containers, since SNMP must access network, mount, and other

information that would otherwise be isolated. Both application and management

containers thus reside in the same set of namespaces, isolated from other systems

but not from each other.
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4 PROTOTYPE IMPLEMENTATION

While last chapter discussed the architectural design for SWEETEN, this chapter

delves into the implementation details for the prototype. Section 4.1 discusses general

aspects regarding implementation choices and user input. Section 4.2 explores the process

of acquiring the required features. The process of deploying the mapped solution and

returning a customized dashboard to the user is discussed in Section 4.3.

4.1 Implementation overview

The prototype was implemented using Python v2.7.17 for the main components

in the architecture. Each component (i.e., Features Acquirer, Tool Mapper, Template

Mapper, Deployer) was developed as an independent module, and Kubernetes v1.18.5

was used without modifications as the Container Orchestrator. Some minor functions

(e.g., getting nodes information for a Kubernetes cluster) were implemented through shell

scripts. Python library PyYAML v5.3.11 was used to read the user input specification,

which is then parsed by the Features Acquirer module, and to later write the solution

specification that is deployed with Kubernetes. The Tools Catalogue and the Template

Catalogue are both materialized through YAML configuration files. That is due to two

main reasons. First, the format’s readability facilitates the inclusion of new items by ex-

perts. Second, it simplifies the generation of a deployable specification from the templates

since the language is used by the deployment specification itself. Publicly available Dock-

erHub repository2 was used as the Container Image Catalogue, and Grafana v7.13 is used

to produce the customized users dashboard for monitoring functions. An open-source for

the prototype is available at <https://github.com/ComputerNetworks-UFRGS/sweeten>.

Docker containers orchestrated by Kubernetes have for the past few years emerged

as the most prominent combination for running such complex applications (JAWARNEH

et al., 2019), even more so with the discontinued support for alternatives like Docker

Swarm4, and therefore constitute the main container platforms for SWEETEN. The rich

ecosystem and widely adoption from industry and academia alike favours both the sys-

tem’s development and its adoption by the wide public (BERNSTEIN, 2014).

1<https://pyyaml.org/>
2DockerHub can be acessed at <https://hub.docker.com/>
3Grafana monitoring platform can be found at <https://grafana.com/>
4<https://www.mirantis.com/blog/mirantis-acquires-docker-enterprise-platform-business/>

https://github.com/ComputerNetworks-UFRGS/sweeten
https://pyyaml.org/
https://hub.docker.com/
https://grafana.com/
https://www.mirantis.com/blog/mirantis-acquires-docker-enterprise-platform-business/
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In the Kubernetes architecture, containerized microservices run in entities known

as pods. Pods serve as a logical host for containers, sharing storage and network, and

being scheduled and deployed together. Pods primary motivation is to support helper

programs (e.g., loggers, managers) for the primary container, thus offering a compromise

between the microservice paradigm (e.g., decoupled dependencies for each container) and

the monolithic benefits (e.g., shared context for monitoring). When mapping SWEETEN

architecture templates into Kubernetes, management containers are deployed in the same

pods as the managed containers whenever network context sharing is mandatory for the

management tool to perform appropriately.

In Kubernetes, the deployment specification is typically realized by one or more

YAML configuration files (BEN-KIKI; EVANS; INGERSON, 2009) that specify how the

service is composed. For each microservice defined, operators add tags for the manage-

ment features they expect to attain. As discussed in the previous chapter, operators can

employ different abstraction levels when requesting for management features. In that way,

an experienced user can go into lower-level configuration specification for how the fea-

tures should be realized, while a novice user can be less specific and still obtain a proper

management solution. An example for the latter is presented in Listing 4.1, where the de-

ployment specification simply determines that flow monitoring and security features must

be included for that deployment. The system interprets the requested feature and maps

the appropriate tools and configurations to fulfil the request. In this example, the request

would be mapped to a template using sFlow (PANCHEN; MCKEE; PHAAL, 2001), even

if Prometheus and other equivalent monitoring tools could also fulfil the same feature

request, depending on the deployment requirements.

apiVersion: apps/v1

kind: Deployment

metadata:

management:

monitoring:

- flows

security:

- cryptography

...

Listing 4.1: Excerpt for a simplified user management service with requirement for

management features.
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While novice users can request high-level management features more easily, ad-

vanced users can specify lower-level configuration parameters that must be observed in

the provided solution. This enables operators to promote network management capabil-

ities from a high-level perspective, while also being able to traverse through lower-level

configuration parameters when necessary. An example for a more deterministic specifi-

cation that an experienced user could request is presented in Listing 4.2. Similarly to the

previous example (for the novice user), monitoring features are requested. However, un-

like the previous example, the user is much more specific in the requests. In this example,

the monitoring tool has been specified (i.e., Prometheus), including the need for a specific

version. The scrape_interval is specified to be set at five seconds. Finally, rather than

using the default expression browser for visualization, the user uses nesting specification

that Grafana should be used for visualization and that its dashboard must listen in the

3030 port (instead of the default 3000). SWEETEN processes the entire user request and

adjusts the tools and templates mappings accordingly.

apiVersion: apps/v1

kind: Deployment

metadata:

management:

- monitoring: flows

protocol: TCP

tool: Prometheus

version: 2.18.0

scrape_interval: 5s

dashboard:

- tool: Grafana

http_port: 3030

...

Listing 4.2: Excerpt for a feature request that includes lower-level configuration parame-

ters specification

4.2 Tagging

As mentioned in the previous chapter, SWEETEN can utilize tags associated to

microservices and features to optimize the selection of tools and configurations when

deploying a solution. Because these tags are seldom provided, SWEETEN applies an
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enrichment process for each container declared in the user specification. For the purpose

of our proof-of-concept, the description enrichment process is obtained through a simple

Google web search query that is automatically requested by the system. This query is

composed of the words "define" and the container image name, and the text for the first

result is considered by the system. The service tagging process can then run the enriched

description through a NLP sub-module to extract the aforementioned tags, as described

next.

Among the many available algorithms for NLP, an important aspect that differenti-

ates them is whether they require supervised learning or not. In SWEETEN’s case, since

we want not only to include current management features but also to allow the system

to easily evolve and include new ones, unsupervised learning is preferred. Our model

of choice is based on Latent Dirlecht-Allocation (LDA) (BLEI; NG; JORDAN, 2003),

an unsupervised machine-learning algorithm that can help find common topics between

multiple text documents. In this way, we initialize a database with enriched descriptions

for three of the top containers for each category in DockerHub, and stipulate seven dif-

ferent topics to be found. Each topic will contain a weighted list of words that indicates

the prevalence of the main words for each topic. For a new document, i.e., the enriched

description for the user microservice that is being processed, LDA associates a percentage

for each pre-determined topic.

The same process is also performed over the tools and configurations available in

the catalogue. When the user input is processed, the features requested are first matched

to the tools that can realize them. The matching of topics (and thus of words) between

user microservices and management alternatives will determine what is chosen in each

instance, by trying to match the highest percentage topic for the user microservice and

for the solutions alternatives. If no match can be found, the system defaults to the first

solution present in the system. It is important to notice that this work does not intend

to propose a new NLP method, neither argue that LDA can outperform other NLP al-

gorithms. Indeed, the choice is an opportunistic one that requires minimal intervention

from experts, and can be used to demonstrate how modern models can be integrated into

SWEETEN and assist the fine-tailored provisioning of management solutions.
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4.3 Solution Deployment and User Dashboard

The elements of the solution must be put together in a deployable specification.

Because we chose to use Kubernetes as the system’s container orchestrator, the result

is composed of two separate YAML (BEN-KIKI; EVANS; INGERSON, 2009) specifica-

tions: one for the user services that did not require management features, i.e., services that

were already part of the user specification, but that did not require any management fea-

ture; and one for the remainder of the user specification plus all the network management

tools included by SWEETEN.

During the slice lifecycle, the user can manage their services through a customized

dashboard. Based on the user input, SWEETEN can deploy dashboards from differ-

ent software. An example for a monitoring dashboard by Prometheus 5 provided by

SWEETEN for a novice is depicted in Figure 4.1, while for the experienced user a more

advanced and fine-tuned Grafana dashboard provided by SWEETEN is depicted in Fig-

ure 4.2. Non-visualizing features, such as cryptography introduced by security features,

are presented textually for the user’s knowledge. Additionally, the user can interact di-

rectly with the configured management container through a terminal, so they can still have

control after the deployment phase for their slice.

Figure 4.1: User dashboard generated from the novice user’s specification.

Source: Author

An important aspect that differentiates templates is with respect to container isola-

tion. Container isolation between user application and network management tools should
5Prometheus monitoring system can be found at <https://prometheus.io/>

https://prometheus.io/
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Figure 4.2: User dashboard generated from the experienced user’s specification.

Source: Author

be maintained whenever possible. This is realized by the definition of a complete and

exclusive set of namespaces for each container deployed, providing resource isolation be-

tween processes and containers running in a single system. Usually, in the micro-service

paradigm, complete isolation between containers is a welcome feature. However, by care-

fully breaching certain isolation aspects between specific management tools and the user

application they are expected to manage, we can leverage the benefits of the micro-service

paradigm while performing the network management deployment needed to realize users’

desired features. In this case, two or more containers will share a subset of namespaces,

allowing the network management tool to properly perform its function.

Other solutions such as service meshes typically work by appending a sidecar

proxy to all containers of interest, i.e., a separate container in the same pod that prox-

ies all connections to and from the primary container, adding management functionalities

as needed (LI et al., 2019). Contrarily to that, this master’s dissertation proposed sys-

tem only adds containers to the same pod (and intercepts connections) when the desired

management feature requires so (for example, security functionalities that must filter the

incoming/outgoing packets), and as indicated by the Management Template Catalogue.

When this requirement is not present, appended management functions can reside in the

same pod but not proxying the main container connections, or even reside in a separate
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pod altogether. An example of the former would be for some passive monitoring func-

tions, with the benefit of lessening the communication overhead from keeping the hop

count as low as possible. An example of the latter would be for some active monitoring

functions, such as determining the latency between containers located in separate nodes

in a cluster, and that thus can be monitored by having the management pods be placed

on the same nodes while keeping their context completely independent from the primary

container.
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5 CASE STUDIES

This chapter proposes two complementary case studies that are used to evalu-

ate SWEETEN’s effectiveness. The first study is presented in Section 5.1, and is cen-

tered around a 5G radio split for dynamic cloud Radio Access Network (C-RAN), where

SWEETEN must deliver management solutions for stringent VNFs requirements. The

second study is presented in Section 5.2, and considers a more complete 5G network slice.

The study is centered in an intelligent healthcare service, forcing SWEETEN to realize

management solutions across a range of elements throughout the network infrastructure.

5.1 5G Radio Split for Dynamic C-RAN

Traditionally, network mobile services have been provided by a mobile network

operator (MNO). Recently, mobile virtual network operators (MVNOs) have emerged as

an alternative for customers. The new virtual providers do not own the physical wireless

infrastructure, and must thus lease it from traditional MNOs. Mobile services in turn

can be delivered through cloud computing. The various strategies adopted by MNOs can

benefit customers and the provider alike (KAMIYAMA; NAKAO, 2019).

In this case study, an MVNO must allocate a number of virtualized Base Stations

(BSs) over a region. Being a dynamic C-RAN adopter, the provider makes use of Re-

mote Radio Heads (RRHs) that have their signals processed by Base-Band Units (BBUs).

Each BBU is comprised of five forwarding elements: I/Q, Subframe, RX Data, Soft-bit,

and MAC (WUBBEN et al., 2014). These elements have stringent requirements regard-

ing bandwidth between the elements and end-to-end latency, as shown in Figure 5.1. In

particular, latency requirements limit the maximum distance between an RRH and its

BBU, in a relationship that depends on the channel condition and the processing power

available (MAROTTA et al., 2018). To assert its compliance to the service terms, the

MVNO must properly monitor each BBU closely in order to avoid any violation, with the

monitoring overhead itself being kept at minimal levels.

In order to meet the demand for a certain region, the provider must instantiate 15

BSs in the region. To do so, the BBU functions must be allocated along with a central

cloud, a regional cloud, and a fog. To maximize the computational resources used both in

clouds and in the fog, and to minimize the front-haul data rate, the placement algorithm

prioritizes running all BBUs’ I/Q and Subframe functions as near to the fog as possible,
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Figure 5.1: Communication flow and bandwidth requirements for radio functions.
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since both functions are responsible for the majority of the front-haul data rate. The re-

mainder of the BBU functions should be placed on the regional and the central clouds,

prioritizing the latter due to its increased computational capacity, whenever latency per-

mits it. Additional functions (such as management entities) should run on the central

cloud whenever possible, as to not overload the fog and the regional cloud unnecessarily.

The resulting placement for the elements of the 15 BSs is shown in Table 5.1.

Table 5.1: Resulting distribution of BSs functions.
I/Q Subframe RX Data Soft-bit MAC

Fog 5 5 5 0 0
Regional

Cloud 5 5 5 5 0

Central
Cloud 5 5 5 10 15

Being the owner of the BS application, the service provider is capable of manag-

ing and monitoring each container appropriately. However, the network monitoring is less

trivial and it depends on external factors, and due to the stringent requirements, it needs

to be properly done. The provider uses our system by tagging the required management

features (i.e., the latency and traffic monitoring for all containers) in the deployment spec-

ification for the BSs, and SWEETEN deploys the complete solution which includes the

tools to realize the required management. The following section presents a separate case

study, while the results for both deployments are presented in the next chapter.
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5.2 Automated Network Management for Intelligent Healthcare

5G systems promise a series of disruptive advancements for a myriad of appli-

cations typically classified in three scenarios. Enhanced Mobile Broadband (eMBB)

addresses applications centered in multi-media content, services, and data; Ultra Reli-

able Low Latency Communications (URLLC) encompasses critical applications that pose

stringent requirements such as remote medical surgery; massive Machine Type Commu-

nications (mMTC) is characterized by a large number of low-cost devices that transmit a

low volume of data (SERIES, 2015). Some of the most technically challenging applica-

tions unite requirements from two or even all three scenarios. Healthcare applications can

exemplify such a case, where a multitude of health devices of different capabilities and

with distinct requirements are used to guarantee the well-being of patients. This use case

is depicted in Figure 5.2 and further expanded in the following.

Figure 5.2: Case Study for Intelligent Healthcare Application
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Heart rate, respiratory rate, and body temperature monitors are a small sample

from a large list of monitoring devices that can be utilized in a patient’s health monitoring.

The number of IoT devices employed in this scenario can grow significantly, providing

abundant data to track patients physiological characteristics but also requiring a more ex-

tensive analysis by physicians and other professionals. In this context, these applications

can be further benefited by the inclusion of intelligent algorithms to process and automate

decisions, triggering alarms and actions whenever abnormalities are detected (WANG et

al., 2018). Artificial intelligence (AI) techniques based on novel models such as big data

mining and deep learning can process large amount of data at real-time, and then predict

and automate tasks at a rate impossible before. While the monitoring part must be per-

formed on-premise, the burden of collecting and processing all the data can be effectively

run in the cloud.
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Because of the sensitive nature of the data monitored and transferred, security,

in particular by the means of privacy, is a foremost concern. As hardware solutions are

not always feasible and as new legislation advances the levels of privacy requirements

for these applications, guaranteeing a certain security level from a software perspective

is a necessity. In certain occasions, resourceful devices are used for patients’ monitor-

ing, such as 4K cameras that can record their movements, and paired with deep-learning

algorithms can detect facial expressions and gestures of patients and warn healthcare pro-

fessionals in the event of an anomaly (WANG et al., 2018). However, most monitoring

IoT devices are constrained in terms of computational power and battery, and so possible

security solutions should account for these limitations and prioritize lighter-weight solu-

tions whenever possible. Less constrained devices, in turn, can afford to employ more

advanced and intensive defensive mechanisms, and the provisioning for each case should

reflect these characteristics. As manually configuring each security mechanism for every

device is not scalable for complex 5G scenarios, automation is a key principle in securing

5G applications and networks (SUN et al., 2020).

In recent years, multiple Low Power Wide Area (LPWA) radio technologies have

emerged as options for delivering the scalability required by mMTC applications. From

the alternatives, NB-IoT has been shown to offer promising results for healthcare applica-

tions (MALIK et al., 2018). NB-IoT is fully compatible with Long Term Evolution (LTE),

and can be deployed inside a single LTE physical resource block (PRB) of 180 KHz or

inside an LTE guard band, potentially serving up to 50k end-devices per cell (RAZA;

KULKARNI; SOORIYABANDARA, 2017). The limited 250 kbps data rate is plenty for

heart rate and body temperature monitoring that require only 1 byte for payload every

5 minutes (MALIK et al., 2018), but it is impractical for streaming the video from the

deployed cameras. Devices as such that require extensive bandwidth must connect over

standard LTE-A network, which is capable of meeting their demands.

Metrics collected by all the devices are reported to an RRH, the radio antenna

responsible for communications to and from users’ devices. The signals must then be

processed by the network core, which is performed by the BBU in a Base Station (BS).

Previously, these functions would be performed exclusively by specific-purpose hard-

ware. With the recent advances in virtualization and the expansion of NFV architectures,

virtual base stations have been adopted by pioneering MVNOs. Such operators do not

own the required wireless physical infrastructure, but instead lease it from traditional

mobile network operators. Therefore, the processing modules for wireless services can
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be provided by software running in the cloud, enabling different strategies that benefit

customers (KAMIYAMA; NAKAO, 2019). In the NB-IoT case, low protocol stack pro-

cessing requirements and low latency-sensitivity make C-RAN an attractive alternative,

so all the BBU processing and higher-layer protocol stacks are implemented by software

that runs on the cloud (BEYENE et al., 2017).

A standard LTE-A BBU can be split in different functions (WUBBEN et al., 2014).

The different split options offer possibilities of alternating between dedicated hardware

and function virtualization, allowing the flexible adoption of functional split in time and

location. Noteworthy, 5G specifications pose stringent network requirements for their

communications, in particular with respect to data rate and latency. Regarding latency, a

maximum delay of around 3ms for transmitting and processing the signal is determined by

the Hybrid Automatic Repeat reQuest (HARQ) mechanism adopted in LTE (MAROTTA

et al., 2018). There is thus a stringent requirement (i.e., latency) that must be respected by

the network slice, and that must be properly monitored too. While the first case study (pre-

sented in Section 5.1) considered monitoring challenges for microservice-based VNFs in

5G networks, this second case study further advances the management scope by includ-

ing security concerns and measurements in the evaluated slice. Moreover, the complete

network slice itself is subject of study here, including different radio access technologies

and service applications, with new features and requirements that they come with. The

following chapter examines and discusses the results for both case studies presented in

the current chapter, highlighting the benefits and drawbacks operators can expect when

using SWEETEN.
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6 RESULTS AND DISCUSSION

This chapter presents the most important results for the two case studies presented

in the previous chapter. The setup and additional software used to achieve the results

are presented in Section 6.1. The results from both case studies are grouped and pre-

sented according to three dimensions: expressiveness, deployment overhead, and com-

putational and network overhead. The results regarding operators’ expressiveness gains

are presented in Section 6.2. The results for the deployment time needed for each solu-

tion are presented in Section 6.3. The results for computational and network overhead

are discussed in Section 6.4. Finally, the output visualized by the user is presented in

Section 6.5.

6.1 Experimental Setup and Software

For both experiments, the setup consists of four virtual machines (VMs) spread

across two physical hosts. Each VM has six CPUs and 16GB of RAM. To account for

the variance, each experiment was repeated 30 times. Results are presented with the aver-

age and standard deviation, which were calculated and plotted with R (R CORE TEAM,

2021), and specifically the package ggplot2 (WICKHAM, 2016). Memory usage was

measured through Linux utility program free 1, and likewise, top 2 was used for CPU us-

age measurements. The remainder software utilized comprises SWEETEN’s prototype,

as has been previously described in Chapter 4.

6.2 Expressiveness Gains

The first analysis regards the expressiveness gains for the operator. Because Ku-

bernetes does not intend to interpret high-level feature requests, the proposed system nat-

urally outperforms what would be required from the operator as manual input. In the

first case study, it takes the operator only four lines of high-level feature specification to

trigger the deployment of four additional management containers (plus two for each sub-

sequent microservice), as defined by their deployment templates. If the operator were to

do it manually, the operator would have to input an additional 157 new lines of specifica-

1<https://man7.org/linux/man-pages/man1/free.1.html>
2<https://man7.org/linux/man-pages/man1/top.1.html>

https://man7.org/linux/man-pages/man1/free.1.html
https://man7.org/linux/man-pages/man1/top.1.html
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tion for the first BS, plus 100 reoccurring lines for each subsequent BS. Even if Kuber-

netes specification is not designed for this purpose, it would be the available alternative

prior to SWEETEN. Being able to do more with less is a recurrent concern for opera-

tors (CURTIS-BLACK; WILLIG; GALSTER, 2019). Most importantly, the labour of

including these specification lines pales in comparison to the one of determining which

precise commands and configuration parameters should be in the lines in the first place.

Realistically, hours of work would be spent in finding the correct tools for the job, and

properly configuring them manually for the deployment at hand.

The results for the second case study follow a similar trend. About four lines

of high-level feature specification by the user translates to over 30 lines of management

deployment specification with respect to security (disregarding the cryptography keys

generated and used in the deployment, which have been manually generated prior to the

deployment processing). The result is even more prominent with respect to monitoring,

where four lines of specification are translated into over 100 lines of management spec-

ification that add the required monitoring features. These findings highlight the main

benefits offered by SWEETEN for multiple management disciplines.

6.3 Deployment Time

The second analysis regards the deployment overhead in utilizing SWEETEN. To

do so, for the first case study it is evaluated the time it takes to deploy the 15 BSs in their

initial minimalist state (i.e., with no added management features), and with the complete

solution produced by the system. In each case, experiments were run 30 times. The results

are presented in Figure 6.1.

On average, the complete deployment took 59.6% more (about 145 seconds) than

the minimalist deployment. The evolution of the experiment shows a similar linear pattern

for both cases in the earlier stages (i.e., less than 10 BSs). The latter stages shows a dis-

proportional increase in the complete solution in comparison to the minimalist approach.

The large number of pods and containers take their toll in the container orchestrator, high-

lighting the importance of considering the deployments specificities when determining the

correct management solutions. Moreover, virtually all of the overhead was due to the ad-

ditional containers Kubernetes had to deploy and launch, meaning users would still incur

in comparable costs if they were to produce a similar solution by other methods. Finally,
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Figure 6.1: Time taken to deploy up to 15 BSs in the first case study, with and without
using SWEETEN.
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this cost is regarding the deployment of all BSs from scratch, and therefore not a recurring

cost.

The analysis for the second case study highlights an important difference when

considering SWEETEN’s role in the increased overhead. That is because there are two

separate types of processing overhead that must be considered. The first one is the over-

head introduced by SWEETEN’s processing of the user input until the complete solution

is produced. The second one is the additional deployment overhead due to the inclusion of

the management services (realized by containers), that must be instantiated alongside the

original specification. A comparison for these times is presented in Figure 6.2. The sys-

tem’s scalability is evaluated through varying the number of replicas for each deployment

in the slice from one to ten.

The results show that SWEETEN’s overhead is approximately constant regard-

less of the replicas count, and it becomes negligible for larger deployments. Larger de-

ployments are precisely the ones that should benefit the most from SWEETEN, as the

inclusion of management features throughout a complex slice is burdensome in compari-

son to a more simplistic one. Most of the overhead is introduced by the inclusion of the

additional containers, with the complete solution taking on average 94% more time to be

deployed. Two noteworthy points here are that: (1) this is not a recurring cost, as fresh de-

ployments are less frequent than individual updates, which would present a much lighter

overhead; (2) the manual inclusion of management containers by an expert user would
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Figure 6.2: Deployment time overhead for varying replicas count in the second case study.

1 2 3 4 5 6 7 8 9 10

0

20

40

60

80

Number of replicas per deployment

T
im

e 
(s

) Deployment Step
Base
Complete
SWEETEN

Source: Author

incur in similar overhead for the deployment time. Users could minimize this overhead

by including the management software directly into their containers, but doing so would

breach the microservice architecture and possibly do more harm than good in the process.

6.4 Computational and Network Overhead

The third analysis focuses on the computational overhead for the remainder of the

deployment life-cycle. To assess the CPU usage by management entities included in the

deployment, the impact of scaling from one to four BSs in a single VM is evaluated. In

this analysis, having all the containers run in a single VM offers a fair comparison for the

overhead introduced by each management entity in the architecture. The results presented

in Figure 6.3 show how the management entities consume negligible processing for the

most part. The collector consumes approximately the same CPU as all the agents com-

bined, but still sits at just over 3.5% for four concurrent BSs. Moreover, since the collector

has no strict placement constraints (it only requires to be reachable by the agents), it can

be placed in the more resourceful nodes in a deployment with little impact on deployment

performance. Between the two types of monitoring agents, it is possible to note that traf-

fic monitoring consumes significantly more CPU than latency monitoring. Still, the sum

of all agents for each BS comes at approximately 1% CPU usage, thus the overhead is

largely negligible for distributed deployments along the cluster.

The results for memory usage and network overhead follow closely. An average

RAM usage of 1.54GB for running the user dashboard and metrics collector, plus 7.38MB
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Figure 6.3: CPU usage (in percent) for management containers for up to four concurrent
(same VM) base stations in the first case study.

Source: Author

per microservice managed (totalling 36.94MB per BS). The dashboard and collector in-

creased cost are justifiable because they are a unique cost for the entire deployment, and

its independence means it can be deployed in the (resourceful) central cloud. In turn, the

computational overhead per BS due to management agents is mostly negligible, which not

only is imperative due to the stringent requirements of the BS functions but also highlights

the scalability of the solution. Regarding the network aspect, management agents intro-

duce an overhead of around 5KB/s for incoming and outgoing traffic per BS. Around 30%

of the overhead is due to the latency monitoring probes required for the active measure-

ments. The remainder is mostly due to the periodic reports from agents to the collector.

An advanced user could fine-tune parameters to their needs when requesting the features.

For example, by increasing reports’ scrape time, it is possible to further minimize the

communication overhead or decreasing it could allow one to monitor sub-second varia-

tions closely.

In the second case study, it is noteworthy that the IoT monitoring devices should

try to adopt solutions that incur in minimal overhead because of their resource-constrained

nature. Tools and configurations provided by experts to the system’s catalogues can there-

fore feature fine-tuned solutions for systems tagged as such. This way, a TLS configura-

tion using less resource-intensive ciphers can be used for IoT components3, while more

resourceful components can utilize a more robust solution4. For comparison purposes,

3<https://docs.aws.amazon.com/iot/latest/developerguide/transport-security.html>
4<https://www.acunetix.com/blog/articles/tls-ssl-cipher-hardening>

https://docs.aws.amazon.com/iot/latest/developerguide/transport-security.html
https://www.acunetix.com/blog/articles/tls-ssl-cipher-hardening
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normalized results for the different security options are presented in Figure 6.4 for mem-

ory footprint, and in Figure 6.5 for network overhead.

Figure 6.4: Computational overhead using different security options in the second case
study.
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Figure 6.5: Network overhead using different security options in the second case study.
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The results are in-line to what was obtained for the first case study, and indicate

that a small computational overhead is added with respect to memory footprint when

either the default or the IoT security solution is included. Albeit small, it is also noticeable

that the security option recommended for IoT outperforms the default option with respect

to overhead. Similar results are also found for network overhead. While it is clear that the

overhead is much more noticeable when comparing either security option (i.e., the default

one or the IoT one) to having no security deployed, the IoT configuration still leads to

lesser overhead in comparison to the default configuration. While the user should still
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be mindful that some overhead will be added whenever a security feature is requested,

these results show how experts knowledge integrated into the system through different

configuration options can be used to produce a more fine-tuned solution for each case.

6.5 System’s Output

Finally, the fourth analysis showcase the management dashboards and results that

the user would have access to. Figure 6.6 shows an excerpt for the customized dashboard

that the user for the first case study receives after the complete deployment. For simplic-

ity, the monitoring for a single BS is presented. The dashboard consolidates requested

monitoring metrics in a dynamic interface that allows the user easy access to the relevant

metrics. As explained previously, users can be more specific in their requests in order

to obtain a solution more fine-tuned to their needs. For presentation purposes, the mon-

itoring graphs for the results discussed in the following were re-plotted for specific BSs.

Figure 6.7 exemplifies the result for latency monitoring.

The latency result in Figure 6.7 shows the monitoring for two BSs prior and after

additional BSs are deployed. The first BS (in green) is deployed over fog (I/Q, Subframe,

and RX Data) and regional cloud (Softbit and MAC), while the second BS (in blue) is fully

deployed in the central cloud. Prior to the deployment of additional BSs (marked by the

vertical line), no latency violations (marked by the horizontal line) are detected for any of

the BS. After the deployment of two new BSs (over the three clusters), instability incurs

in several violations (four in the figure) for the first BS, while none are for the second

BS. The monitoring result alerts the operator that the new deployments are negatively

impacting the first BS, and corrective actions must be taken.

Similarly for the second case study an example for an excerpt of the dashboard

provided for monitoring the throughput is illustrated in Figure 6.8. Through this interface,

the user can easily monitor multiple services of their slice and quickly identify problems

as they occur. Different resources can be configured by the system with different parame-

ters in a transparent manner for the user. For instance, a resource-constrained device can

be configured with a lower sampling rate than a more resourceful device, thus introducing

less overhead. The user can also edit the graphics in the dashboard and add their own, so

they can fine-tune the solution to best fit their needs. The security aspect currently can not

be visualized through the dashboard, but the user can still access the service’s containers

directly and retrieve the solution’s logs and configuration files.
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Figure 6.6: Excerpt from user dashboard enabling the requested monitoring features.

Source: Author
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Figure 6.7: Latency monitoring result for two BSs’ RX to Softbit communication over a
30-second window (first case study).

Source: Author

Figure 6.8: Example dashboard for throughput monitoring of IoT devices, in the second
case study.

Source: Author
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7 CONCLUSION AND FUTURE WORK

5G networks are in the process of being rolled out around the world and will en-

able disruptive applications and services that were not previously feasible. To realize that,

advances presented by NFV, SDN, and network slicing, for example, must be carefully in-

tegrated by these networks. With the increasing number of devices and services, network

management plays a central role in delivering the resources and features required by each

component. For the same reason (i.e., the increasing number of networks components),

the configuration and management of all the pieces must be realized in an automated

manner.

This master’s dissertation proposes the assisted management of network slices

using SWEETEN. Initially proposed as a system to assist VNF operators, SWEETEN

has been demonstrated in this study as a tool capable of delivering management solutions

across a diverse network slice. Through high-level annotations in their slice specification,

users are able to effortlessly receive fine-tailored management solutions configured for

each of their applications and services. Using NLP, SWEETEN can extract information

from each service and use it to determine the best management solution for each case.

A prototype for SWEETEN is evaluated through two case studies. The first case

study investigates management challenges, specifically latency and throughput monitor-

ing, in a dynamic C-RAN. The second proposed case study demonstrates how a network

slice for intelligent healthcare can include monitoring and security features with ease,

even considering the different requirements for each application.

The results show that there is an important expressiveness gain for the user through

SWEETEN. Assisting the user in properly deploying complex network slices is a vital

point in achieving the dynamism expected from 5G networks. The overhead of SWEETEN

with respect to deployment time and computational and network overhead is also evalu-

ated. While the deployment time is noticeably affected by the additional management

services included by SWEETEN, it is not a recurring cost (i.e., the slice’s deployment)

and is easily offset by the management functionalities featured in the slice. In the same

way, computational overhead was non-negligible, but small enough that it is adequate for

the services included. Network overhead, however, was much higher when cryptography

solutions were included in the system, which, while expected, means users’ discretion is

needed to define whether the overhead is acceptable or not.
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As future work, the system can be further developed through the inclusion of ad-

ditional management disciplines and solutions. A myriad of different services are coming

with 5G, and their network requirements can be as varied as the services themselves. It

is thus important for a management assistant to be able to cover a variety of cases so that

its usefulness is not limited to a small subset of applications, but rather applicable to the

whole spectrum that 5G networks entail.

Another aspect that can be worked on the future is the evaluation of different

tagging mechanisms for the Features Acquirer module. NLP is a rapid-evolving field,

with new and improved algorithms being developed each day. An in-depth evaluation

of such algorithms can further improve the Features Acquirer module, in particular, so

that a more refined tagging system can help SWEETEN to further fine-tune solutions and

configurations for every service.
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APPENDIX A — RESUMO EXPANDIDO

As redes de computadores tradicionais são relativamente estáticas no que se refere

à topologia de rede, funcionalidades, e protocolos (HAKIRI et al., 2014). Estas redes

utilizam-se extensivamente de middleboxes físicos (BRIM; CARPENTER, 2002) para re-

alizarem funções de redes, tais como roteamento, funções de firewall, e de balanceamento

de carga. A administração destas redes tipicamente depende de soluções de gerência de

rede tradicionais baseados em protocolos como o SNMP(Simple Network Management

Protocol) (FEDOR et al., 1990), o NETconf (Network Configuration Protocol) (FEDOR

et al., 1990), e o Netflow (CLAISE, 2004). A adição de novos middleboxes a uma rede

naturalmente aumenta o número total de dispositivos gerenciados, e como os middle-

boxes são implementados por hardware proprietário, a inclusão de novas funções de rede,

incluindo a sua correta configuração e manutenção, em geral requer um esforço manual,

e portanto custoso, da parte do operador de rede.

Em outro campo de pesquisa, i.e., computação na nuvem, o paradigma de mi-

croserviços tem advogado pela divisão de aplicações e serviços em micro-modulos auto-

contidos, como uma solução aos problemas enfrentados por software monolítico (DRAG-

ONI et al., 2017; MARTINS et al., 2020c). Enquanto um software monolítico é de-

senvolvido e implantado como um único serviço atômico, soluções baseadas em mi-

croserviços provêm o mesmo serviço de alto nível através da cooperação de múltiplos

módulos independentes. Neste caso, cada módulo deve prover uma função específica,

e rodar em um host virtual, e a comunicação entre os módulos é utilizada para combi-

nar as funções necessárias e entregar o serviço de mais alto nível corretamente. Alguns

dos benefícios desfrutados por aplicações desenvolvidas utilizando-se do paradigma de

microserviços incluem a maior escalabilidade possível para um serviço, já que apenas

os módulos mais sobrecarregados precisam ser escalonados quando necessário (seja pelo

aumento dos recursos computacionais utilizados pelo módulo, seja pela replicação do mó-

dulo em hosts adicionais), e desenvolvimento e integração constantes, já que apenas os

módulos modificados precisam ser atualizados.

NFV baseada em microserviços e outros novos conceitos emergem como meios

importantes para novas redes atingirem seu potencial pretendido. Neste sentido, redes

móveis 5G exemplificam tais casos. Diferente das gerações anteriores, a 5G promete

não apenas aumentar a taxa de transmissão de dados dos dipositivos conectados, mas

também habilitar a coexistência de uma miríade de aplicações com requisitos distintos.
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Para alcançar este objetivo, o slicing de rede da infrastrutura física subjacente permite

que diversos inquilinos compartilhem os recursos e atinjam seus objetivos. O bem-estar

do sistema depende da coexistência harmoniosa entre os inquilinos que compartilham a

mesma infraestrutura (SLAMNIK-KRIJEšTORAC et al., 2020). NFV pode auxiliar no

provisionamento de slices para os inquilinos, mas cada slice precisa ser individualmente

gerenciado e monitorado para garantir-se que os requisitos da aplicação estão sendo aten-

didos. Soluções de monitoramento desenvolvidas para computação na nuvem frequente-

mente requerem privilégios extensivos à infrastrutura subjacente, o que não é sempre

factível do ponto de vista do provedor da infraestrutura. Desenvolvidas para serviços de

alto nível, tais soluções de gerência e monitoramento frequentemenete ocorrem em cus-

tos adicionais por conta de estrutura utilizada, e portanto podem ter sua adoção impedida

por aplicações com requisitos restritivos1. Casos mais extremos como de aplicações ro-

dando na edge da rede podem sofrer até mesmo do overhead causado pelo excedente de

containers isntanciados. Além disso, os donos da infraestrutura e seus inquilinos podem

requerer não somente monitoramento, mas também outras funções de gerência, tais como

segurança, de forma transparente.

A.1 Contribuições da Dissertação

A principal contribuição desta dissertação é o SWEETEN (aSsistant for netWork

managEmEnT of microsErvices-based VNFs), um sistema desenvolvido para auxiliar

provedores de 5G e inquilinos de slices de rede com a configuração e implantação de

ferramentas de gerência de rede junto aos seus slices de rede. Através da adição de an-

otações de alto nível, usuários podem requisitar features de gerência aos seus serviços,

e o SWEETEN pode mapear as ferramentas e configurações necessárias para realizar a

gerência pedida sem outras intervenções do operador. As features de gerência incluem

monitoramento, segurança, e gerência, que podem ser aplicados para um ou mais mi-

croserviços. Como o sistema é projeto para o gerenciamento de VNFs, ele foi desen-

volvido de forma a incorrer em um overhead tão pequeno quanto possível no que se

refere a recursos de rede e computacionais. Além disso, Processamento de Linguagem

Natural (NLP) é utilizado para extrair-se anotações descritivas dos serviços instanciados

pelo usuário. As anotações geradas são então utilizadas para gerarem soluções adaptadas

para cada implantação, de forma que soluções de gerência mais robustas possam ser uti-

1<https://medium.com/@pklinker/performance-impacts-of-an-istio-service-mesh-63957a0000b>

https://medium.com/@pklinker/performance-impacts-of-an-istio-service-mesh-63957a0000b
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lizadas para implantações mais robustas, enquanto soluções que priorizem baixo overhead

podem ser produzidas para implantações mais limitadas. Adicionalmente, quando jul-

gar necessário, um operador pode especificar parâmetros de configuração manualmente,

sendo processados pelo sistema e produzindo uma solução tão alinhada quanto possível

com as opções informadas.

A.2 Principais Resultados Alcançados

A eficiência da proposta é observada através de um protótipo, que é avaliado em

dois estudos de caso separados. O primeiro apresenta o cenário de uma dynamic C-RAN,

onde as funções de um split de rádio são monitoradas. O segundo estudo de caso foca

em um slice de rede para um serviço de healthcare inteligente, onde diversos dispostivos

precisam, além de serem monitorados, terem suas transmissões criptografadas por uma

questão de segurança e privacidade.

Os resultados obtidos mostram que existe um ganho de expressividade importante

ofertado ao usuário através do uso do SWEETEN. Assistir operadores em instanciar slices

de rede complexos é um ponto fundamental para se atingir o dinamismo esperado de redes

5G. Os overheads observado pelo uso do SWEETEN referente ao tempo de instanciação,

e overhead computacional e de rede também são avaliados. Enquanto o tempo de instan-

ciação é notávelmente afetado pelos serviços de gerência adicionados pelo SWEETEN,

este é um custo não-recorrente (i.e., a instanciação do slice), e portanto é justificável

considerando-se as features de gerência incluídas. Além disso, é um custo referente aos

containers adicionados, que também estaria presente em uma solução produzida manual-

mente pelo operador. O overhead computacional foi negligenciável ou suficientemente

pequeno para ser considerado aceitável para os serviços incluídos. No caso do overhead

de rede, por outro lado, a inclusão de soluções de criptografia incorrem em um custo bas-

tante significativo; neste caso, embora seja um resultado esperado (devido à criptografia

adicionada), fica a critério do usuário definir se o overhead é aceitável ou não, para cada

serviço.
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Abstract. Computer networks and their services have become increas-
ingly dynamic with the introduction of concepts such as Network Func-
tions Virtualization (NFV) and cloud computing. To understand and
configure such a complex network to their best interests, users must use
several management tools that they are not necessarily familiar with.
In this paper, we present an architecture that provides network man-
agement for distributed applications as easy-to-use micro-services. Our
solution is based on container virtualization technologies to offer, to the
user, the maximum benefit through minimal cost. We present a proof-of-
concept for our architecture through a use case. Our results show that
acceptable overhead is added when deploying a solution for a distributed
application, and negligible overhead is added by the management tools
when the user application is under heavy stress.

Keywords: Network Management · Micro-services

1 Introduction

Conventional computer networks are relatively static in terms of physical struc-
ture with respect to network topology, functionality, and protocols. These net-
works extensively employ physical middleboxes to perform key network func-
tions, such as routing, firewalling, and load balancing. The administration of such
networks relies on network management solutions, based for instance on SNMP,
NETconf, and Netflow, that are typically implemented through distributed ar-
chitectures, following the static structure of the underlying managed network.

The adoption of plentiful middleboxes in a network increases the overall num-
ber of devices to be managed, and because middleboxes are implemented with
proprietary hardware, the inclusion of new network functions, including their
proper configuration and maintenance, often requires a manual, thus costly, ef-
fort from the network operator. To address these middleboxes limitations, Net-
work Functions Virtualization (NFV) is an emerging technology that relies on
virtualization to implement and deploy Virtual Network Functions (VNFs) [5].
By decoupling the proprietary hardware from the associated software, NFV



enables functions to be run on top of commodity hardware, reducing opera-
tional costs and increasing network dynamicity and scalability. To achieve that,
NFV is often realized with Virtual Machines (VMs), or, recently, with emerging
lightweight virtualization technologies based on containers [3]. When compared
to VMs, VNFs materialized through container virtualization can be deployed
faster and more efficiently [6]. Containers can create and replicate customized
environments, offering isolation for running applications. Because of its enhanced
performance, Docker [13] has been largely adopted in industry and academia.
Nevertheless, the capacity to deploy, manage, and orchestrate NFV container-
based application in network environments that are heterogeneous and dynamic
remains an open challenge [15].

The dynamic nature of future networks and the ephemeral function virtual-
ization that follows along present new challenges and opportunities for network
management [7]. Likewise, the ever-growing infrastructures based on the cloud-
fog-edge paradigm is inherently dynamic with respect to hosted services [11].
Moreover, the distributed nature of the cloud paradigm can be leveraged by dis-
tributed applications [4]. Cloud applications can enjoy this synergy by being de-
signed through a micro-service paradigm, in which the application is decomposed
in smaller interconnected functions [1]. As of now, the burden to deploy, config-
ure, and monitor network management tools for any new application is on its
owner, usually, and is not a light one to carry out. Picking the right management
tools for each application and guaranteeing their correct functioning throughout
scaling events, for example, can become a more difficult task than providing the
application itself. Service providers, tenants, and end-users of cloud computing
could therefore benefit from the automation of these management tasks.

In this paper, we present an architecture designed to provide network man-
agement for distributed applications as micro-services. In our architecture, a
tenant or customer can pick network management tools for the network infras-
tructure serving one or more applications of interest when deploying those ap-
plications, and the desired tools are then deployed and configured automatically,
transparently to the user. By using container virtualization to deploy the desired
management tools, minimal overhead is added to the operation. To assess the
feasibility of our proposal, we present an use case for an implementation of our
architecture. Our results show that the deployment of a solution with the user
application and the necessary network management tools adds an acceptable
overhead when compared to the deployment of the user application by itself.
A performance analysis of the user application under stress also indicates that
negligible overhead is added by the management modules, thus being a valuable
tool to understand and manage distributed applications when it is most needed.

The remainder of the paper is organized as follows. In Section II, we present
the background and related work. Then, we describe the proposed architecture
in Section III. In Section IV, we explain how network management architectures
are mirrored in our solution templates. Then, we present a use case and discuss
the results regarding the architecture’s implementation in Section V. Finally, in
Section VII, we present our conclusions and future work.



2 Background and Related Work

The present article proposes micro-service based network management for dis-
tributed applications. Thus, it is necessary to present background on micro-
service and container as well as some particularities of the chosen implementa-
tion. Besides that, we discuss some related works.

Container is a set of one or more processes organized separately from the
system. All files required for the execution of such processes are provided by
a separate image. In practice, containers are portable and consistent through-
out the migration between development, testing and production environments.
The containers are light and start very quickly [14]. Docker is an example of
open platform for lightweight container virtualization platform which exploit
improvements in kernel-level namespace support in Linux. These namespaces
provide isolation between the host and the container as well as among different
containers. Docker is aided by a set of tools and workflows which can be used
by developers to deploy and manage containers [8].

Micro-service is an architectural style largely based on decoupled auton-
omous services that can be developed, deployed and operated independently
of each other. Micro-services lead to various challenges in relation to team or-
ganization, development practices and infrastructure [12]. In this context, the
container architecture proves to be a feasible implementation of micro-services.
This tendency to use micro-services architecture has been shown to be allied to
the structure of containers in at least 5 essential reasons [1]: to reduce complexity
using small services, to scale, remove and deploy parts of the system easily, to
improve the flexibility of using different structures and tools, to increase overall
scalability, and to improve the resilience of the system.

Ciuffoletti [2] proposed the automated specification and implementation of a
monitoring infrastructure in a container-based distributed system. In this work,
a simple monitoring infrastructure model was defined to provide an interface be-
tween the user and the cloud management system. This model defined a monitor-
ing infrastructure, comprising multiple instances of two basic components, one
for measurement and one for data distribution. A proof of concept demonstra-
tion was described through the Docker hub, and consisted of two multi-threaded
Java applications that implement the two basic components. The reference ar-
chitecture of the monitoring subsystem is composed of two entities: one that
manages data, one type of proxy, another that produces data.

Jaramillo et al. [8] presented a case study to discuss how Docker can ef-
fectively help leverage the micro-services architecture with an actual working
model. Our work differs from the above by meeting the challenge of observabil-
ity, i.e., microservices architecture needs a way to visualize the health status of
all services in the system to quickly locate and respond to any problem that oc-
curs. The architecture we present, deploy containers with network management
tools associated with micro-services available in another set of containers where
the applications are installed. Thus, this scheme can monitor, register and man-
age the network of containers of the main applications avoiding their failures, or
even tracking the reason for failures through their records.



Jha et al. [9] carried a study on the performance evaluation of Docker con-
tainers that perform a heterogeneous set of micro-services at the same time. This
study concludes that running multiple micro-services within a container is also a
viable deployment option, as it gives comparable (sometimes better) performance
than the baseline, except for running multiple similar types of micro-services.

Lv et al. [10] proposed a machine learning-based container scheduling strat-
egy for micro-services architecture to adjust the number of containers accurately
and quickly in real time, specially when the service load suddenly fluctuates.
Data obtained from experiments are used to train a random forest regression
model for the prediction of the required service containers in the next time win-
dow. By adjusting the number of containers to balance the load pressure of the
services, the proposed algorithm saves significant time comparing to traditional
algorithms as well as other machine learning algorithms.

3 Network Management as a Micro-service

The aforementioned popularization of cloud computing services and similar dis-
tributed computing architectures has enabled the growth of distributed applica-
tions. Applications and macro-services can be modularized in lower-level inde-
pendent services, which are themselves interconnected in a way to provide the
application with high-level functionality. For example, the service for a Word-
press Web page can be split in a service running a Web server application and
another service running the required database; in another example, a critical ser-
vice can be replicated among several geo-distributed computing nodes, adding
load-balancing and fault-tolerance capabilities to the service with ease. Clients
of cloud computing services can then leverage the scalability and robustness of-
fered by the cloud infrastructure transparently, while maintaining their focus on
the application itself.

Troubleshooting distributed applications malfunctioning, however, is rarely
an easy task. In the previous Wordpress example, a slow response time from
the server could be due to a problem in the web server, in the database, or in
the communication between them. In this case, the application owner may be
well-equipped to monitor how each service is running, but understanding the
communication between them could require the installation and configuration
of additional network management tools. Similarly, other network management
features desired by the application owners, such as security in the form of a
firewall or a deep packet inspector, would have to be deployed and configured
on top of the application by its owner.

In order to aid application owners with little expertise in the network man-
agement discipline, we introduce an architecture that offers the deployment and
configuration of such management tools as a micro-service for the user. Our pro-
posal is that application owners should only specify the network management
features desired, in addition to the application itself, and would have the low-
level work performed by our architecture. Additionally, in order to comply with
containerization and micro-services paradigms, management tools should be de-



ployed by the platform only when required, and isolation between application
containers and management containers should be maintained whenever possible.
With these requirements in mind, we design an architecture that is able to pro-
vide network management as a micro-service for distributed application owners.
Our architecture and its functioning are presented in Figure 1.
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Fig. 1: Proposed architecture, including modules and their interaction.

The User of our architecture is the owner of a distributed application who
wants to add one or more network management features effortlessly. Their input
to the system is composed of a relationship of their regular application and
the management features they expect for each service. The user input is passed
through the Template Selector module.

The Template Selector is a module responsible for interpreting the user
expectation regarding network management, and translating them in a relation-
ship between the application modules and the required network management
tools, which is mapped through a template. The Template Selector can be im-
plemented to work with different abstraction levels, from low-level configuration
parameters to high-level intents. In this work, we implement this module to work
with low-level configuration parameters as a proof-of-concept, but the module
can be expanded to include different abstraction levels with no impact in the
remainder of the architecture. In our architecture, if a user’s application is com-
posed of a Web server and a database, for example, and they inform their need
to monitor the latency from the Web server to their database, the Template
Selector will map the request in a template that includes One-Way Ping (OW-
Ping) and OWAMP, client and server for determining one-way latency, to be de-
ployed and configured alongside the Web server and the database, respectively.
To achieve that, the Template Selector will query the Management Template
Catalogue for a template that fits these requirements. If such a template is
available in the catalogue, a complete deployment specification containing both
the user’s and the management’s applications will be provided. Additionally to
the management tools required, every available template is also composed of a
central monitoring container; when needed, this container also offers users an in-
terface to interact with the management features they previously asked for. The
following section covers network management templates specificities in-depth.



The Deployer receives the deployment specification and processes it, deter-
mining how containers should be distributed, which namespaces must be shared
(and by which containers), and any other network configuration needed for the
solution to be deployed. When the solution is produced, the Deployer queries the
Container Image Catalogue for the images needed. Users can provide their
own application images when needed, but images for some prominent network
management tools are already pre-configured in the system. When the solution
is ready to be instantiated, the Deployer triggers the Container Orchestrator
to deploy the containers. Open-source platforms such as Kubernetes and Docker
Swarm are example of container orchestrators, allowing the management and
orchestration of Docker Engine clusters. Any additional configuration necessary
is performed by the Deployer before returning a user interface to the user.

4 Network Management Architectures as Instantiable
Templates

Network management is a discipline that includes, for example, network con-
figuration, fault analysis, performance monitoring, and security assurance. The
management of complex networks is thus not to be solved by a single tool but
rather by the careful selection and combination of network management software.
Their diverse purpose means that network management tools greatly differ with
respect to their computational and architectural requirements, e.g., a misplaced
firewall is a useless firewall. A typical network management architecture is com-
posed by management agents, that interact directly with managed devices to col-
lect management information and oftentimes set configuration parameters, and
a central management entity (e.g. an SNMP manager) that monitors and acts on
the data collected by agents. Being a distributed application itself, the network
management architecture can also be organized as a set of micro-services.

To fulfill user expectations regarding network management features, the ap-
propriate set of tools must be chosen. Since requirements for management tools
differ from each other, careful thought is required in their deployment. In this
context, our architecture introduces instantiable templates for network manage-
ment architectures. An instantiable template contains the information required
so that management containers can be deployed alongside the user application
containers, their positioning, and any other configuration needed to realize the
management function correctly. Experts can develop new templates as needed,
and the new templates can be fed to the architecture’s template catalogue.

An important aspect that differentiate templates is with respect to container
isolation. Container isolation between user application and network management
tools should be maintained whenever possible. This is realized by the definition
of a complete and exclusive set of namespaces for each container deployed, pro-
viding resource isolation between processes and containers running in a single
system. Usually, in the micro-service paradigm, complete isolation between con-
tainers is a welcome feature. However, by carefully breaching certain isolation
aspects between specific management tools and the user application they are



expected to manage, we can leverage the benefits of the micro-service paradigm
while performing the network management deployment needed to realize users’
desired features. In this case, two or more containers will share a subset of names-
paces, allowing the network management tool to properly perform its function.

To illustrate the different template compositions, consider the following 4
common network management tasks that our system can realize (Figure 2):
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Fig. 2: Set of instantiable templates, from least to most intrusive.

(a) Monitoring the latency between two containers of the user application: for
latency sensitive applications, deploying instances of a tool such as OWAMP,
one at each of the hosts where the application containers reside, and connect-
ing them through the same local network as their application counterparts
can be enough to provide the intended latency measures. Complete isolation
between management and user application is maintained, in this situation.

(b) Securing an application through the use of a firewall: the incoming traffic
must be routed through the firewall. Only the firewall position in the network
is relevant to the deployment of this solution, and thus containers remain
isolated. However, traffic must be rerouted and potentially modified through
the new firewall function, which could affect the application performance.

(c) Monitoring all network traffic between two containers of an application: Net-
Flow or similar tools can be used to realize the desired monitoring. However,
deploying the containerized agent tool in its own network namespace would
be useless, since it would be only monitoring itself. Instead, they must be
deployed in the same network namespaces (and host, therefore) of the user
applications, so it can correctly perform the desired function. A collector
that centralizes monitoring agents data must also be included in the tem-
plate, but does not require any special isolation or positioning configuration
relative to the application containers.



(d) Monitoring and configuring parameters of two containers of an application:
this can be done through SNMP, for example, implicating a more intrusive
namespace sharing between containers, since SNMP must access network,
mount, and other information that would otherwise be isolated. Both appli-
cation and management containers thus reside in the same set of namespaces,
isolated from other systems but not from each other.

5 Use Case: Flow Monitoring for a Distributed
Application

In this section, we discuss a use case for a proof-of-concept of our architecture
and evaluate its results. The proposed scenario is described in Subsection 5.1
and results are discussed in Subsection 5.2.

5.1 Scenario Description

We consider the use case of a user that needs to run a simple Web application.
The back-end of their application is deployed in a distributed architecture, where
a Web server runs as a micro-service and responds to clients requests, and a
database runs as a separate micro-service, as shown in Figure 3a. When needed,
the Web server operates on the database over the network, since both services
do not necessarily run on the same host. We use a simple Wordpress instance
running over Apache for the Web server micro-service, and the database micro-
service is deployed with MySQL. In our scenario, the user informs their desire
to monitor existing network flows in both of their services.
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PHP

Server Side 
(backend)Container 1 Container 2

Local NetworkInternet

Client Side 
(frontend)

HTML, CSS, 
Javascript

(a) Web server and database running as
separate micro-services
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NetFlow Traffic

Monitored Flows
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2

(b) Proposed solution. NetFlow cap-
tures system traffic for each container

Fig. 3: Proposed use case, and solution realized by our architecture.

Our architecture interprets the user’s input, and identifies the need to deploy
a management architecture based on NetFlow to meet the user’s requirements.
Based on the selected template, three containers for management will be de-
ployed along the user application (Figure 3b). Two fprobe containers will each
monitor one of the user’s containers, and report their monitoring to a centralized
collector. As per the selected template, the network namespaces for the appli-
cation containers will be shared with the fprobe containers. The collector also



offers a processed list of network flows to the user; an experienced user can also
directly interact with the management tools and logs, and perform themselves
any in-depth analysis they so wish. The proposed solution is shown in Figure 3b.

5.2 Performance Evaluation

Our proof-of-concept is analyzed with respect to two performance aspects. First,
we measure the time elapsed to provision of network management containers and
their configuration, in comparison to having the user application being deployed
by itself. Some overhead here is thus expected, albeit acceptable, since this is
a one-time only cost over the life cycle of the application. Second, we must
measure the network and computational overhead for having the management
tools running alongside the user application. Since users are probably interested
in solving bottleneck issues in their system, minimal overhead must be added by
our solution for this bottleneck not to be any further narrowed.

Regarding the deployment time, the user application by itself and the com-
plete solution have been deployed 35 times each. To assess the scalability of
our solution, the experiment is extended to include an increasing number of
application replicas, i.e., multiple instances of the described application, which
could be used by an user for fault tolerance or load balancing, for example. Fig-
ure 4 presents the time results for all cases. In this test, images for both user
application and management solution are available in a local Container Image
Catalogue, thus minimizing the network bandwidth effect of having the Deployer
download remotely.
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Fig. 4: Deployment time for deploying user application by itself, and with man-
agement tools included by our solution.

The results presented in Figure 4 indicate that deploying the user application
by itself (i.e., without additional replicas) takes on average 7.41 s to be fulfilled,
whereas deploying the complete solution takes on average 12.99 s. Deploying
the complete solution therefore results in a 75.3% overhead to the deployment
time for a single replica, and proportionally less overhead is added when more
replicas are included (64.34% for 16 replicas). The almost imperceptible error
bars (for 95% confidence) also indicate the low variance observed throughout the



experiment. Although there is a noticeable overhead added, we argue that the
time for deployment is a one-time cost for the user, thus offset by the benefits
offered by our solution.

Another important analysis is regarding the overhead introduced for when
the user application is being stressed. In this case, to assess the network and
computational impact of management tools we instantiate an increasing number
of clients that perform requests to the Web server. In order to evaluate how
the system fares under different load levels, the number of concurrent clients
increases from 0 to 250, and the interval between each client requests are chosen
randomly from 0 to 2 seconds. We monitor the increase in CPU and RAM usage
by all containers in our deployment, and the total traffic generated by the user
application and by the management tools deployed.
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Fig. 5: Computational overhead for the system under increasing stress.

Figure 5a shows the results regarding the CPU usage. It is noticeable that the
CPU usage for the Web server container (wp wordpress) explodes from the start,
reaching its maximum from 50 concurrent clients onwards, and taking as much
CPU resource as possible in order to process all client requests. A similar trend is
observed for the database container (wp db), albeit the maximum CPU used by
it is closer to the 60% mark, and occurs at the 100 clients mark. The two results
are expected, since the increase in demand for the Web server will rapidly make
it consume all available resources; a fraction of these requests will also trigger
some operation to the database, thus resulting in an increase for it as well.
Most importantly, it is noticeable that the CPU usage by all the management
containers (collector, probe-db, probe-wordpress) remains negligible and stable
throughout the experiment. This result is important because it indicates that
the network management solution can be useful to the application owner when
they need it the most, without burdening the system performance itself.

Results with respect to the RAM usage are presented in Figure 5b. The
results show for the most part a similar trend to what was observed regarding
the CPU usage. RAM usage by the Web server container quickly outgrows all
the others combined in order to fulfill all the clients requests. The memory used



by the database in this case is stable throughout the experiment. As with the
CPU, the most important result is that the RAM usage by all the management
containers is negligible and stable, regardless the number of concurrent clients.
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Finally, we analyze the results with respect to the traffic generated in the sce-
nario, as presented in Figure 6. Network traffic has been divided in three groups
for this analysis: intra application, which is the traffic between the Web server
and the database; to/from users, which is the Web server communication with
the users requesting its service; and management, which is all traffic generated
or consumed by any of the three management containers. Results are shown in
terms of total traffic being exchanged by each group, and some values do not
start at 0 because traffic have been exchanged prior to the start of the experi-
ment. The increase in the traffic to/from users is the most prominent, which is a
straightforward result for the increase in clients throughout the experiment. As
a secondary result, Web server and database communication increases, although
not as much as in the clients case. Regarding the management overhead, it is
noticeable how little impact is added to the overall communication of the system,
with the traffic remaining close to 0 throughout the experiment. Paired with the
previous result regarding CPU and RAM, we can conclude that the system’s
performance (i.e., the user application) is not affected by the management tools
deployed even when under stress. Thus, our solution is fit to assist application
owners in dealing with malfunctions of their system.

6 Conclusions and Future Work

Network management plays an important role in the success of new, dynamic
network paradigms. Therefore, the need to automate management solutions and
offer them as an easy-to-use service to users is pivotal. In the case of distributed
applications, understanding how modules communicate over the network can be
the difference between making or breaking an application, but determining the
correct tools for each case requires some network knowledge one might not have.



In this paper, we presented an architecture that can easily deploy network
management tools for distributed applications. Through our architecture, appli-
cation owners can indicate what type of management features they expect for
each module of their application, and the selection and configuration of manage-
ment tools is performed automatically. Because our solution is designed using
the micro-service paradigm, negligible run-time overhead is added to the user
application, and a low-cost overhead in deployment time is offset by the benefits
our solution offers. In future work, we expect to further enrich our architecture,
with the development of the other modules, and the improvement of the ones
that are already in place.
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Abstract—Forthcoming 5G systems promise a myriad of
new and improved applications, relying on Network Functions
Virtualization (NFV) to realize some of 5G’s stringent
requirements. To guarantee that these requirements are met,
network monitoring and management must be deployed and
fine-tuned according each application’s specificity. As Virtual
Network Functions (VNFs) adhere to the microservice paradigm,
picking and configuring the right tools is not a trivial task
for users. In this paper, we present SWEETEN, a system that
assists user to operate a 5G network with the appropriate
management tools for the job, in a transparent manner to
the user. By enriching their function stack with high-level
annotation of the management features they desire, users can
easily deploy an augmented stack with both network and
management functions. A prototype is presented and evaluated
in a dynamic Cloud Radio Access Network (C-RAN) split case
study. The evaluation confirms that SWEETEN can assist users
in effortlessly deploying complex management solutions, while
incurring in acceptable deployment time overhead and negligible
computational overhead for throughout the functions life-cycle.

I. INTRODUCTION

Network Functions Virtualization (NFV) has quickly
become a staple paradigm in the networking field. By
virtualizing network functions – previously only offered
by hardware-specific middleboxes –, NFV can offer the
dynamism and scalability required by modern applications [1].
As networks service provisioned by such functions are vital
for networks’ health, properly managing and monitoring
Virtualized Network Functions (VNFs) become a mandatory
concern in assuring its proper operation.

In another field, i.e., cloud computing, the microservices
paradigm advocates towards breaking down applications and
end-services in small self-contained functional modules [2].
Management tools, such as Prometheus [3] and Dynatrace1,
have emerged in this context, offering monitoring solutions
to the cloud environment and applications following the
microservices paradigm. These tools allow monitoring of
cloud systems in varying scales, from a single module
to an inter-cloud distributed application. Particularly large

1https://www.dynatrace.com/

applications can leverage service mesh solutions to manage
connectivity (and the management concerns that comes with
it) among the microservices it comprises [4].

NFV, as defined by ETSI in the Management and
Orchestration (MANO) specification [5], can potentially
benefit from the adoption of the microservices paradigm.
Modularizing the VNFs forming a Service Function Chain
(SFC) can offer similar benefits to those enjoyed by higher-
level distributed cloud applications [6]. Moreover, ETSI’s NFV
specifications also define that sub-sets of VNF’s functionality
are implemented by atomic VNF components (VNFC), which
themselves can also be designed following the same principles,
further benefiting the compound VNFs. However, monitoring
and management solutions tailored for cloud applications
may not be directly applied to NFV scenarios due to their
specificities.

Forthcoming 5G communication systems exemplify some
of the specific scenarios that would require tailoring of the
aforementioned monitoring and management solutions. Unlike
previous mobile generations, 5G promises not only to improve
the data transmission rates but also to enable the coexistence
of a myriad of applications with distinct requirements. To
achieve that, network slicing of the underlying infrastructure
should allow several tenants to seamlessly share resources
and achieve distinct (potentially conflicting) objectives. The
overall system’s health relies on the harmonic coexistence
of tenants sharing the same infrastructure [7]. NFV can
assist in the provisioning of slices for tenants, but each slice
must be individually managed and monitored to guarantee
that the tenant’s application requirements are being met.
Previously cited cloud-based monitoring tools often require
extensive privileges on the underlying infrastructure to work,
which is not wanted or even feasible from the viewpoint
the infrastructure provider. Moreover, infrastructure owners
and tenants may require not only monitoring, but also other
network management features (e.g., security and configuration)
transparently.

In this paper, we propose SWEETEN (aSsistant for
netWork managEmEnT of microsErvices-based VNFs),
a system designed to assist 5G service providers and978-3-903176-31-7 © 2020 IFIP



tenants with configuration and deployment of network
management tools along a network slice. By adding high-
level management features annotations to their original
services stack, SWEETEN can map the necessary tools and
configuration to realize the desired features with no hassle
for the operator. Because the system is targeted towards VNF
management, it is designed to incur in the least overhead
possible regarding network and computational resources.
Available features include monitoring, managing, and securing
one or multiple microservices. When deemed necessary,
operators can specify as many configuration parameters as
needed and the system will process them to deliver a solution
as aligned as possible with the informed options.

We also present a prototype implementation of SWEETEN,
which is evaluated in a dynamic cloud Radio Access Network
(C-RAN) case study. In this case study, LTE radio functions
are split in five containers, as described by Wubben et al. [8].
The prototype is used to manage each function and monitor
them assuring the radio requirements are being met. Since
the stack for the virtualized radio functions does not need
to be altered prior to being fed to the system, continuous
development and integration of the virtualized functions is
not an impediment for our system, as the updated functions
and their respective network management tools are updated
transparently. We evaluate our system through the prototype,
which indicates that acceptable overhead is added to the
deployment time of the complete solution, and negligible
computational and network overhead is added throughout the
remainder of the lifecycle.

The remainder of the paper is organized as follows. In
Section II, we present some background information on
microservices and container-based virtualization and discuss
related work. In Section III, we introduce SWEETEN’s
architecture discussing its main features and detailing our
prototype implementation. Then, in Section IV, we present
a case study of a 5G application scenario featuring a
microservice-oriented software radio design split into five
containers. We discuss the experiments performed and
obtained results when evaluating our system prototype in
Section V. Finally, in Section VI, we present concluding
remarks and perspectives of future work.

II. BACKGROUND & RELATED WORK

The microservice paradigm has emerged in the context
of cloud computing as a solution to the problems faced
by monolithic software [9]. While monolithic software
is developed and deployed as a single atomic service,
microservice-based solutions provide the same high-level
service through the cooperation of multiple independent
modules. In this case, each module should provide a specific
function and runs in a virtual host, and the communication
between modules is used to combine the necessary functions
and deliver the service correctly. Some possible benefits
enjoyed by applications designed with the microservice
paradigm includes fine-grained scaling of a service, since
only the overloaded modules need to be scaled up or out,

and continuous development and integration, since only the
updated modules must be upgraded.

A microservice needs a virtual host to run on, which is
typically realized through container virtualization. Containers
offer a lighter alternative to Virtual Machines (VMs), since
they can run directly on the host system without requiring
virtualization layers for an Operating System (OS) that
introduces overhead in the process [10]. In this case, the host
system’s kernel offers resource isolation features that restrain
each container to their own environment. In Linux, these
features are mostly achieved through cgroups and namespaces
features. Containers orchestrators can be used to deploy and
manage complex applications (e.g., composed of multiple
containers, deployed over multiple hosts). Docker is an
example of a platform for lightweight container virtualization,
while Kubernetes currently stands out as one of the most
widely used container orchestration platforms [11].

Ciuffoletti [12] investigates the specification and automation
of monitoring infrastructures in a container-based distributed
system. The author employs an architecture for monitoring
that is comprised of two entities: a sensor, that produces
and delivers measurements, and a collector, that specializes
the management of those measurements. A simple model
that interfaces the user and the container management system
is defined, and a prototype implementation that showcases
the applicability of the proposal is provided. The work thus
focuses solely on the monitoring aspect, while our proposal
also covers other management disciplines (e.g., security).
Additionally, Ciuffoletti’s work considers that the user
application and the sensor for the monitoring system run in
the same container, which violates the microservices paradigm
and can hinder the module development and deployment.
Our solution, instead, always considers the application and
management microservices as separated containers, even
when context sharing is needed, and thus does not breach
microservices standards unnecessarily.

The work of Jaramillo et al. [13] discusses how Docker
can effectively leverage the microservices paradigm through
a case study based on a real working model. The authors
pose a list with six challenges faced when building a
microservice architecture and that contrasts with the multiple
advantages offered by microservices design. Specifically, the
work highlights the necessity of improvements regarding
scalability, automation, and observability. SWEETEN is
designed with these challenges in mind, providing automated
observability (i.e., a way to visualize health status of
microservices to quickly locate and respond to occurring
problems) and scalability (e.g., dynamic configuration for
multiple microservices), features meeting operators needs.

Li et al. [4] reviewed the state-of-the-art and the challenges
for service meshes. Service meshes are emerging solutions
that create a dedicated infrastructure layer for handling
communication between microservices. Service meshes can
offer multiple features such as service discovery, load
balancing, and access control. Implementations for service
meshes typically rely on deploying an array of network proxies



alongside primary containers, intercepting all its connections
to provide the features. As pointed out by the authors,
edge computing environments and 5G scenarios (e.g., multi-
tenancy) incur in specificities that service meshes are not
designed to cope with. SWEETEN is designed to work with
VNFs with different requirements (e.g., minimal overhead for
edge deployments), and management applications (and thus,
overhead) are chosen and configured according to high-level
user requests and other deployment specifics.

Franco et al. [14] introduced a support tool for cybersecurity
that focuses on the recommendation of protection services.
The authors argue that although a vast number of protections
services are offered to network operators and users, the choice
for one or more is not trivial for neither. Like SWEETEN,
the proposed system can operate with different demands from
the user, and recommends protection tools (in their case) for
different scenarios. Notably, the proposal is limited in scope
to the security discipline, while SWEETEN is designed to
consider other network management disciplines.

III. SYSTEM DESIGN AND IMPLEMENTATION

In this section, we discuss the system architecture and our
design choices. SWEETEN’s architecture is an evolution of
the one previously proposed [2], but in this case specifically
shifting the system target towards different users and use
cases, namely from cloud applications to containerized VNFs
and their operators, incurring in important system choices as
described in the following.

Because NFV is critical for upcoming networks, and since
the paradigm shift from monolithic VNFs to microservices-
based ones is imminent [6], the burden has increased for
network operators. The applications that run on top of a VNF
or an SFC can pose stringent requirements for the functions,
and the underlying infrastructure can also determine how
functions should be managed. The proposed system should
reflect the specificities of each scenario in order to properly
select and configure the necessary management tools. The
system architecture targets minimizing the operator effort in
specifying the tools and configurations necessary, while still
allowing them to be manually specified when needed.
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Fig. 1. SWEETEN architecture.

SWEETEN architecture is presented in Figure 1. The
user is a VNF operator that augments his/her initial
deployment definition (i.e., the containers that compose
the VNFs) with specification for the management features
expected to attain. Management features are specified in three
categories: monitoring, security, and administration. Each
category provides a list of features that users can specify
in their requirements. A non-exhaustive list of features and
respective tool selection is presented in Table I.

The existence of multiple tools when mapping a single
feature is resolved by the system based on additional user input
and deployment information. A single tool can also realize
multiple features (e.g., SNMP, for monitoring as well as for
administration), which SWEETEN takes into account when
selecting the appropriate tools for a deployment. Currently
supported features are latency and flows, for monitoring;
traffic, for security; and device, for administration. Support for
new features (and through different tools) can be added to the
system by an expert. The user can adopt varying specification
levels when requiring the management features for each
service (e.g., choosing to only monitor TCP connections on
certain ports, or determining what tool should be used).
The system interprets the requested features and maps the
appropriate tools and configurations to fulfil all requests.

TABLE I
NETWORK FEATURES AND RESPECTIVE TOOLS LISTINGS.

Monitoring Security Administration

Flows sFlow, NetFlow,
Prometheus

Snort (for IDS),
OSSEC -

Traffic Prometheus,
iPerf, SNMP

iptables,
nftables Linux tc

Latency
SmokePing,

OWAMP,
TWAMP

- Linux tc

Device Kubelet
(Kubernetes native)

syslog,
antivirus utilities

NETCONF,
SNMP

First, the Features Acquirer parses the input specification,
determining what management features are required by
each service. The features definition is passed on to the
Tool Mapper, which determines what tools are required
so that the required features can be materialized. As
aforementioned, operators can employ varying abstraction
levels when requesting management features, specifying tools,
and even configuration parameters when necessary. In this
case, the Tool Mapper fixes the selections accordingly.

Determining the non-specified tools and configurations is
achieved by querying the Tools Catalogue, which provides the
options of management tools sets that are able to realize the
features specification. Each tool may also provide additional
information with respect to its operation (e.g., overhead,
scalability). From these tools options, the Tool Mapper selects
the appropriate set of tools considering the remaining of
the user specification and other deployment specificities. For
example, edge deployments may require minimal overhead,
and thus the tool selection must reflect that; conversely,
complex cloud deployments may prioritize more sophisticated



tools that can provide higher-level utilities, incurring in a
different tool selection.

The selected tools along with the remainder of the
specification input are passed on to the Template Mapper,
which maps the tools to instantiable templates from a
Template Catalogue. This step is necessary to provide a
deployment template based on a tool’s architecture, and that
later can be deployed on top of the user’s application. In the
sFlow example, its architecture determines that agents must
be deployed with monitored entities, and a collector must be
deployed to aggregate agents’ metrics. Each agent therefore
strongly depends on the entity it must monitor, including the
need of sharing network context with the monitored entity. The
collector, however, does not have such requirement, and thus
its deployment is much more flexible. A deployment template
is thus generated with an specification on how to deploy the
selected tools along with the user’s application, and passed on
to the Deployer.

The Deployer is responsible for piercing together
the deployment specification based on the determined
management templates and the user application. While the
previous components extract the management information
from the initial input and provide a template for deploying
the necessary tools, the Deployer composes a deployable
specification with all the containers for application and
network management. A central management container
running a customized dashboard for the user is also deployed
for the user’s convenience. Images for the required containers
are fetched from the Container Image Catalogue, and the
complete solution is then fed to a Container Orchestrator,
such as Kubernetes, and the resulting deployment (in the form
of a customized user dashboard) is returned to the user.

A. Prototype’s software choices

Microservices typically run inside lightweight containers.
Docker containers orchestrated by Kubernetes have for the
past few years emerged as the most prominent combination
for running such complex applications [15], even more so with
the discontinued support for alternatives like Docker Swarm 2,
and therefore constitute the main container platforms for our
system. The rich ecosystem and widely adoption from industry
and academia alike, on the one hand, favours the system’s
development, and on the other hand, favours its adoption by
the wide public.

In the Kubernetes architecture, containerized microservices
run in entities known as pods. Pods serve as a logical host for
containers, having them shared storage and network, and being
scheduled and deployed together. Pods primary motivation is
to support helper programs (e.g., loggers, managers) for the
primary container, thus offering a compromise between the
microservice paradigm (e.g., decoupled dependencies for each
container) and the monolithic benefits (e.g., shared context for
monitoring). When mapping our architecture templates into

2https://www.mirantis.com/blog/mirantis-acquires-docker-enterprise-
platform-business/

Kubernetes, management containers are deployed in the same
pods as the managed containers whenever network context
sharing is mandatory for the management tool to perform
appropriately.

In Kubernetes, the deployment specification is typically
realized by one or more YAML configuration files [16] that
specify how the service is composed. For each microservice
defined, operators add tags for the management features they
expect to attain. As previously discussed, operators can employ
different abstraction levels when requesting for management
features. In that way, an experienced user can go into lower-
level configuration specification for how the features should
be realized, while a novice user can be less specific and
still obtain a proper management solution. An example for
the latter is presented in Listing 1, where the deployment
specification simply determines that TCP flow monitoring
must be included for that deployment. The system interprets
the requested feature and maps the appropriate tools and
configurations to fulfil the request. In this example, the
request would be mapped to a template using sFlow [17],
even if Prometheus and other equivalent monitoring tools
could also fulfil the same feature request, depending on
the deployment requirements. The deployment produced by
SWEETEN returns a simplified user dashboard, as exemplified
in Figure 2.

a p i V e r s i o n : apps / v1
k ind : Deployment
m e t a d a t a :

management :
m o n i t o r i n g :
− f l o w s : TCP

. . .
Listing 1. Summarized example of feature request through annotations
by a novice user.

Fig. 2. User dashboard generated from the novice user’s specification.

An example for a more deterministic specification that an
experienced user could request is presented in Listing 2.
Similarly to the previous example (for the novice user),
monitoring features are requested. However, unlike the
previous example, the user is much more specific in the
requests. In this example, the monitoring tool has been
specified (i.e., Prometheus), including the need for a specific



version. The scrape interval is specified to be set at five
seconds. Finally, rather than using the default expression
browser for visualization, the user uses nesting specification
that Grafana should be used for visualization and that its
dashboard must listen in the 3030 port (instead of the default
3000). SWEETEN processes the entire user request and adjusts
the tools and templates mappings accordingly, resulting in a
more fine-tuned user dashboard, as exemplified by Figure 3.

a p i V e r s i o n : apps / v1
k ind : Deployment
m e t a d a t a :

management :
m o n i t o r i n g :
− f l o w s : TCP

t o o l : P rometheus
v e r s i o n : 2 . 1 8 . 0
s c r a p e i n t e r v a l : 5 s
d a s h b o a r d :
− t o o l : Gra fana

h t t p p o r t : 3030
. . .

Listing 2. Summarized example of feature request through annotations by an
experienced user.

Fig. 3. User dashboard generated from the experienced user’s specification.

Other solutions such as service meshes typically work
by appending a sidecar proxy to all containers of interest,
i.e., a separate container in the same pod that proxies
all connections to and from the primary container, adding
management functionalities as needed [4]. Contrarily to that,
our system only adds containers to the same pod (and
intercepts connections) when the desired management features
require so (for example, security functionalities that must
filter the incoming/outgoing packets), and as indicated by the
Management Template Catalogue. When this requirement is
not present, appended management functions can reside in the
same pod but not proxying the main container connections,
or even reside in a separate pod altogether. An example of
the former would be for some passive monitoring functions,
with the benefit of lessening the communication overhead from

keeping the hop count as low as possible. An example of the
latter would be for some active monitoring functions, such as
determining the latency between containers located in separate
nodes in a cluster, and that thus can be monitored by having
the management pods be placed on the same nodes while
keeping their context completely independent from the primary
container.

Our prototype was implemented using Python v2.7.17 for
the main components in the architecture. Each component
(i.e., Features Acquirer, Tool Mapper, Template Mapper,
Deployer) was developed as an independent module, and
Kubernetes v1.18.5 was used without modifications as the
Container Orchestrator. Some minor functions (e.g., getting
nodes information for a Kubernetes cluster) were implemented
through shell scripts. Python library PyYAML v5.3.1 3 was
used to read the user input specification, which is then
parsed by the Features Acquirer module, and to later write
the solution specification that is deployed with Kubernetes.
The Tools Catalogue and the Template Catalogue are both
materialized through YAML configuration files. That is so
because, on the one hand, the format’s readability facilitates
the inclusion of new items by experts, and on the other hand,
it simplifies the generation of a deployable specification from
the templates, since the language is used by the deployment
specification itself. Publicly available dockerhub repository 4

was used as the Container Image Catalogue, and Grafana
v7.1 5 is used to produce the customized users dashboard for
monitoring functions.

IV. CASE STUDY: 5G RADIO SPLIT

Traditionally, network mobile services have been provided
by a mobile network operator (MNO). Recently, mobile virtual
network operators (MVNOs) have emerged as an alternative
for customers. The new providers do not own the physical
wireless infrastructure, and must thus lease it from traditional
MNOs. Mobile services in turn can be delivered through
cloud computing. The various strategies adopted by MNOs
can benefit customers and the provider alike [18].

In this case study, an MVNO must allocate a number
of virtualized Base Stations (BSs) over a region. Being a
dynamic C-RAN adopter, the provider makes use of Remote
Radio Heads (RRHs) that have their signals processed by
Base-Band Units (BBUs). Each BBU is comprised of five
forwarding elements: I/Q, Subframe, RX Data, Soft-bit,
and MAC [8]. These elements have stringent requirements
regarding bandwidth between the elements and end-to-end
latency, as shown in Figure 4. In particular, delay requirements
limit the maximum distance between an RRH and its BBU, in
a relationship that depends on the channel condition and the
processing power available [19]. To assert its compliance to the
service terms, the provider must properly monitor each BBU
closely in order to avoid any violation, with the monitoring
overhead itself being kept at minimal levels.

3https://pyyaml.org/
4https://hub.docker.com/
5https://grafana.com/
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Fig. 4. Communication flow and bandwidth requirements for radio functions.

The provider must instantiate 15 BSs for a region. To
do so, the BBU functions must be allocated along with a
central cloud, a regional cloud, and a fog. To maximize
the computational resources used both in clouds and in the
fog, and to minimize the front-haul data rate, the placement
algorithm prioritizes running all BBUs’ I/Q and Subframe
functions as near to the fog as possible, since both functions
are responsible for the majority of the front-haul data rate.
The remainder of the BBU functions should be placed on the
regional and the central clouds, prioritizing the latter due to
its increased computational capacity, whenever latency permits
it. Additional functions (such as management entities) should
run on the central cloud whenever possible, as to not overload
the fog and the regional cloud unnecessarily. The resulting
placement for the elements of the 15 BSs is shown in Table II.

TABLE II
RESULTING DISTRIBUTION OF BSS FUNCTIONS.

I/Q Subframe RX Data Soft-bit MAC
Fog 5 5 5 0 0

Regional
Cloud 5 5 5 5 0

Central
Cloud 5 5 5 10 15

Being the owner of the BS application, the service provider
is capable of managing and monitoring each container
appropriately. However, the network monitoring is less trivial
and it depends on external factors, and due to the stringent
requirements, it needs to be properly done. The provider uses
our system by tagging the required management features (i.e.,
the latency and traffic monitoring for all containers) in the
deployment specification for the BSs, and SWEETEN deploys
the complete solution which includes the tools to realize the
required management.

V. EXPERIMENT AND DISCUSSION OF RESULTS

We assert SWEETEN qualities through the proposed use
case in two aspects: the management benefits offered and the

overhead introduced. It is noteworthy that 5G applications
can require diverse management features, and thus results for
different use cases can incur varied benefits and overhead.
For example, an e-health application can pose stringent
requirements regarding availability and mobility [20], and
therefore must be reflected on the network management
solutions selected and configured by SWEETEN.

Our first analysis regards the expressiveness gains for the
operator. Because Kubernetes does not intend to interpret
high-level feature requests, our system naturally outperforms
what would be required from the operator manually. In
this case study, it takes the operator only four lines of
high-level feature specification to trigger the deployment of
four additional management containers (plus two for each
subsequent microservice), as defined by their deployment
templates. If the operator were to do it manually, the
operator would have to input an additional 157 new lines
of specification for the first BS, plus 100 reoccurring lines
for each subsequent BS. Even if Kubernetes specification
is not designed for this purpose, it would be the available
alternative prior to our system. Being able to do more with
less is a recurrent concern for operators [21]. Most important,
the labour of including these specification lines pales in
comparison to the one of determining what should be in the
lines in the first place. Realistically, hours of work would be
spent in finding the correct tools for the job, and properly
configuring them manually for the deployment at hand.

Our second analysis regards the deployment overhead in
utilizing our solution. To do so, we evaluate the time it takes to
deploy the 15 BSs in their initial minimalist state (i.e., with no
added management features), and with the complete solution
produced by our system. In each case, experiments were run
30 times. The results are presented in Figure 5.
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Fig. 5. Time taken to deploy up to 15 BSs, with and without using our
system.

On average, the complete deployment took 59.6% more
(about 145 seconds) than the minimalist deployment. The



evolution of the experiment shows a similar linear pattern
for both cases in the earlier stages (i.e., less than 10 BSs).
The latter stages shows a disproportional increase in the
complete solution in comparison to the minimalist approach.
The large number of pods and containers take their toll
in the container orchestrator, highlighting the importance of
considering the deployments specificities when determining
the correct management solutions. Moreover, virtually all of
the overhead was due to the additional containers Kubernetes
had to deploy and launch, meaning users would still incur in
comparable costs if they were to produce a similar solution by
other methods. Finally, this cost is regarding the deployment
of all BSs from scratch, and therefore not a recurring cost.

Next, our third analysis focuses on the computational
overhead for the remainder of the deployment life-cycle. To
assess the CPU usage by management entities included in our
deployment, we evaluate the impact of scaling from one to
four BSs in a single VM. In this analysis, having all the
containers run in a single VM offers a fair comparison for
the overhead introduced by each management entity in the
architecture. The results presented in Figure 6 show how the
management entities consume negligible processing for the
most part. The collector consumes approximately the same
CPU as all the agents combined, but still sits at just over 3.5%
for four concurrent BSs. Moreover, since the collector has no
strict placement constraints (it only requires to be reachable by
the agents), it can be placed in the more resourceful nodes in
a deployment with little impact on deployment performance.
Between the two types of monitoring agents, it is possible
to note that traffic monitoring consumes significantly more
CPU than latency monitoring. Still, the sum of all agents
for each BS comes at approximately 1% CPU usage, thus
the overhead is largely negligible for distributed deployments
along the cluster.

The results for memory usage and network overhead follow
closely. An average RAM usage of 1.54GB for running
the user dashboard and metrics collector, plus 7.38MB per
microservice managed (totalling 36.94MB per BS). The
dashboard and collector increased cost are justifiable because
they are a unique cost for the entire deployment, and its
independence means it can be deployed in the (resourceful)
central cloud. In turn, the computational overhead per BS
due to management agents is mostly negligible, which not
only is imperative due to the stringent requirements of the BS
functions but also highlights the scalability of the solution.
Regarding the network aspect, management agents introduce
an overhead of around 5KB/s for incoming and outgoing traffic
per BS. Around 30% of the overhead is due to the latency
monitoring probes required for the active measurements. The
remainder is mostly due to the periodic reports from agents
to the collector. An advanced user could fine-tune parameters
to their needs when requesting the features. For example,
by increasing reports’ scrape time, it is possible to further
minimize the communication overhead or decreasing it could
allow one to monitor sub-second variations closely.

Fig. 6. CPU usage (in percent) for management containers for up to four
concurrent (same VM) base stations.

Finally, our fourth analysis showcase the monitoring results
that would assist the operator in detecting network issues when
they occur. Figure 7 shows an excerpt for the customized
dashboard that the user receives after a complete deployment.
For simplicity, the monitoring for a single BS is presented.
The dashboard consolidates requested monitoring metrics in
a dynamic interface that allows the user easy access to the
relevant metrics. As explained previously, the user can be
more specific in their requests in order to obtain a solution
more fine-tuned to their needs. For presentation purposes, the
monitoring graphs for the results discussed in the following
were re-plotted for specific BSs. Figure 8 exemplifies the result
for latency monitoring, while Figure 9 does the same for the
traffic monitoring.

The latency result in Figure 8 shows the monitoring for two
BSs prior and after additional BSs are deployed. The first BS
(in green) is deployed over fog (I/Q, Subframe, and RX Data)
and regional cloud (Softbit and MAC), while the second BS
(in blue) is fully deployed in the central cloud. Prior to the
deployment of additional BSs (marked by the vertical line), no
latency violations (marked by the horizontal line) are detected
for any of the BS. After the deployment of two new BSs
(over the three clusters), instability incurs in several violations
(four in the figure) for the first BS, while none are for the
second BS. The monitoring result alerts the operator that the
new deployments are negatively impacting the first BS, and
corrective actions must be taken.

Figure 9 shows the result for the traffic monitoring for a
BS I/Q data rate in two moments, for a total period of 300
seconds. In a first moment, three other BSs are deployed, and
the monitoring results indicate that achieved data rates are
in accordance with the function’s requirements. In a second
moment (by the 160 seconds mark), eight new BSs are
deployed over the same regions as the monitored BS (vertical
dashed line in the graph). The monitoring shows how the I/Q



Fig. 7. Excerpt from user dashboard enabling the requested monitoring
features.

Fig. 8. Latency monitoring result for two BSs’ RX to Softbit communication
over a 30-second window.

throughput for the BS declines as a result. In this case, the
operator can pinpoint the BS malfunctioning to the bottleneck
created by the additional BSs deployed, and that pushed the
infrastructure beyond its limits.

VI. CONCLUSIONS AND FUTURE WORK

NFV plays a major role in new networks such as 5G,
and thus it is imperative that they are properly managed.
The diverse requirements that VNFs can present, their
redesign following microservice paradigm, and the different
scenarios that must be contemplated, makes choosing and
configuring the right management tools appropriately a
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Fig. 9. Data rate result for monitoring a BS’s IQ prior and after new BSs
deployment.

non-trivial task to their users. We propose SWEETEN, a
system designed to assist microservices-based VNFs users in
including network management features to their deployments.
Users augment their deployment specification with high-level
annotations, which SWEETEN architecture maps into tools
and configurations that complies to deployments specificities,
producing a deployable specification that materializes the
user’s management needs.

We evaluate SWEETEN with a prototype in a dynamic
C-RAN case study. Primarily, the results show that effort
from the operator to configure and deploy management tools
appropriately is greatly reduced. Our results also indicate that
non-negligible overhead is added to the deployment time of the
complete solution, but since new deployments are infrequent
the added overhead is considered acceptable. Additionally,
negligible computational overhead is added throughout the
remainder of the services life-cycle, which is imperative due
to the stringent requirements of the functions deployed. The
management features added are shown to assist the operator
in monitoring the correct functioning of their deployments.

As future work, we intend to continue developing the system
with the support for new network management features and
the development of the accompanying templates. Due to the
diversity of management features and tools, and the ubiquity
of Kubernetes in different environments, covering distinct use
cases (e.g., IoT devices and edge deployments) can enrich the
system and its usefulness to a wider audience.
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1. Introduction

Telecommunications have been undergoing massive evolution in the last
years with the specification and launch of 5G networks. While previous
generations mostly focused on improving customers data rate, 5G networks
cover a wide range of applications with diverse requirements by offering
disruptive improvements in reliability, device density, and coverage, to cite a
few. In order to comply with such requirements, 5G networks must employ
modern techniques for network slicing and Network Function Virtualization
(NFV) [1].

Since its inception, NFV has drawn attention from academia and
industry because of the benefits it offers in comparison to traditional
middlebox appliances (e.g., firewalls, deep packet inspectors (DPIs)). NFV
decouples the proprietary hardware from the associated software, enabling
the network functions to run on top of commodity hardware [2]. This
shift enables dynamism and scalability much needed for 5G networks,
all the while reducing operational costs for mobile carriers. In turn,
these virtual appliances represented by Virtual Network Functions (VNFs)
present their own challenges, in particular when a function is pulverized in
multiple microservices that must cooperate to deliver the network service
appropriately [3]. In this case, the 5G application’s requirements must be
carefully considered by the VNF manager, for the VNF as a whole and for
the individual microservices comprising it.

Network management is a complex process that can include disciplines
such as monitoring, securing, and configuring network devices. With the
virtualization of network functions and further with the shift from monolithic
software to microservices-based ones, networks become increasingly reliant
on proper management of their components [4]. More then ever, individual
pieces of the network must be properly managed so that the myriad of
applications that 5G enables can be truly experienced by the end user.
Newer well-rounded management solutions such as service meshes can
provide a variety of network management capabilities to multiple applications
interconnected through microservices. These technologies often rely on
deploying a separate container with every microservice for the managed
applications, which interfaces all connections from and to the application
container, and therefore are known as sidecar proxies [5]. Such solutions,
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however, are mostly fit for complex deployments, and often introduce network
overhead (due to the additional hop per microservice in a flow) that can
hinder their adoption depending on applications requirements1. Extreme
cases such as edge applications could even suffer from the computational
overhead from the additional containers deployed. Specific requirements
for each application must therefore be considered when provisioning the
network management capabilities, as there is no one-size-fits-all solution for
all different applications thus far.

Considering that 5G networks are envisioned to support upcoming
mission-critical applications, security becomes a primary concern. Targets
can range from governments and industries to ordinary citizens. For example,
eavesdropping e-health devices can leak confidential information regarding
their users, and thus impose an important security requirement for the
setup [6]. Additionally, battery limitations from these devices can result in
minimal computational overhead being acceptable for management solutions.
A different application with similar security challenges that runs in the
cloud, conversely, could make use of more robust management artifacts that
would incur in greater overhead overall. Since applications and resulting
requirements can vary significantly, and because there is an increasing
number of management tools offered for various contexts, correctly choosing
and configuring a set of tools for each scenario becomes a challenging task
even for experts.

In this paper, we present how SWEETEN (aSsistant for netWork
managEmEnT of microsErvices-based VNFs) can help VNF operators
and network slice tenants by including management features from multiple
disciplines (e.g., monitoring and security) in operators’ and tenants’
deployments in a transparent manner. This work is a direct evolution on
our previous one [7], where managed entities were limited to VNFs and only
monitoring was implemented as a management discipline. Now complete
network slices are covered by SWEETEN, which is also able to provide
both security and monitoring solutions. By augmenting their deployment
specification with high-level management features request, tenants can
enrich their deployed entities with automatically chosen and configured
management tools and have their management needs fulfilled. When deemed

1https://medium.com/@pklinker/performance-impacts-of-an-istio-service-

mesh-63957a0000b
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necessary, the user can specify lower-level configuration parameters in order
to fine-tune how the complete solution should be put together by SWEETEN.
Natural language processing (NLP) is employed to extract meaningful tags
from users deployment descriptions, which are then used to provide tailored
solutions for each deployment. After the deployment phase, the system
provides the user with an integrated dashboard and an API that allows
the operator to manage their VNFs and network slice from a high-level
perspective, regardless of the specific management tools selection and their
interfaces at the lower-level. In this respect, SWEETEN’s main contributions
presented in this paper are:

• Automated configuration and deployment of network management
tools following user’s high-level specification, offering management
solutions for novice users with ease;

• Varying abstraction levels in the specification are allowed, enabling
fine-tuning of the solution by advanced users;

• Integrated dashboard, allowing transparent management for all entities
of interest regardless of underlying software configured to realize the
network management required.

We implemented a prototype to evaluate SWEETEN in terms of
providing management capabilities to an intelligent healthcare use case. In
this use case, patients can be monitored by a number of resource-constrained
Internet of Things (IoT) health monitors and other resourceful devices in
real-time, enhancing quality of human life through the automated execution
of mundane tasks [8]. To achieve that, data collected by said devices is sent to
a deep learning module hosted in the cloud, which processes the data from a
patient and triggers alarms when events happen. Due to the sensitive nature
of the traffic exchanges by the healthcare devices, security in the terms of
privacy is a foremost concern for all communication. It should be noted that,
since these devices can be resource-constrained, solutions should balance the
defensive mechanism effectiveness and the overhead they produce. Moreover,
IoT devices in this use case utilize Narrowband IoT (NB-IoT) for their radio-
access technology as it offers improved coverage and efficiency in terms of cost
and power consumption [9]. Cloud radio access network (C-RAN) is used to
deliver connectivity to the application’s devices, imposing stringent latency
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and data rate requirements that must be met throughout the deployment
life-cycle and thus implying the need for careful monitoring.

By using SWEETEN, the results show that operators can request
management features and come up with solutions from a high-level
perspective, with no need for expertise in specific tools and configurations
that would typically constitute a burdensome work for experts. Through
the inclusion of annotations to their specification, users receive management
solutions configured for their needs. The additional management entities
deployed represent a significant overhead regarding the deployment time,
but considered acceptable for the benefits offered and due to its infrequent
occurrence. Minimal computational overhead was also perceived for when
the solution is deployed, while a much more prominent overhead is present
regarding network overhead. Notwithstanding, the overhead is much
more due to the included management entities themselves and not due to
SWEETEN usage, and would thus also be present if a similar management
solution were to be manually included by the user, therefore presenting a net
gain for the user.

The remainder of this paper is organized as follows. In Section II,
we present background and related work. Then, we describe a proposed
architecture in Section III. In Section IV, we present a use case that
illustrates management challenges faced by novel applications in 5G networks
management. Then, we evaluate our proposal with the use case, discussing
the results in Section V. Finally, we present our conclusions and future work
in Section VI.

2. Background & Related Work

Because this study spans over a few non-trivial concepts, contextualizing
each of them and how they relate to each other is necessary. To this
end, Subsection 2.1 presents the main characteristics of the microservices
paradigm and current efforts towards managing software that follows such
paradigm. Network slicing as a technique for delivering 5G use cases is
discussed in Subsection 2.2.

2.1. Microservices

Monolithic software can be defined as a software composed by modules
that cannot be executed independently [10]. Software design has generally
followed a monolithic paradigm in which an indivisible software is responsible
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for realizing a complex service in an integrated manner. Monolithic software
still can and should be designed through a composition of specialized
modules. However, the different modules in a software following the
monolithic paradigm still rely on resource sharing (e.g., memory, CPU) for
running in the same machine, which tightly ties all the components as one
atomic application. While the monolithic architecture is viable for many
applications, recent off-premise and distributed computing offered by cloud
services impose the need for a more flexible paradigm in software design.
In the microservices paradigm, systems are designed through independent
components called microservices, which provide a system with cohesive and
well-defined functionalities [4]. Context sharing between microservices is
done through network messaging, allowing microservices to be deployed along
a distributed infrastructure, as well as completely decoupling implementation
details and choices (e.g., programming languages) between modules.
Microservices introduce many benefits regarding continuous integration and
delivery, for example, as updates for individual microservices may be
gradually rolled out. However, the design also imposes new management
challenges that must assert the correct operation of each microservice, and
of the composed software as a whole.

Designing and developing software through the microservice paradigm
can quickly become hard to manage as complex connection schemes are
required among hundreds of microservices. Service meshes recently emerged
as a solution for that through the automatic management for microservices
connections, as reviewed in the study by Li et al. [5]. Among their benefits,
service meshes can provide service discovery for the microservices and load
balancing among different containers (even using different software versions).
On the implementation side, these solutions usually employ an array of
lightweight network proxies, which are deployed alongside the application
containers and can provide an interface for all incoming and outgoing
connections. Some specific scenarios that are much relevant to 5G, such
as multi-tenancy, can however present specific challenges that were not part
of service meshes design. SWEETEN is designed to provide management for
VNFs and network slices with various requirements, such as the minimal
computational and network overhead for IoT applications, and thus can
provide the appropriate management services and configuration based on
the user specification and high-level feature annotations.

Chowdhury et al. [3] highlighted the importance for the NFV ecosystem to
have VNFs designed through a microservice architecture. In Service Function
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Chains (SFCs), for example, having monolithic VNFs incurs in unnecessary
processing overhead from redundant functionalities. Instead, the redesign of
these functions through microservices enable fine-grained resource allocation
and independently scalable components, as elements for the orchestration of
VNFs in an SFC become also present for the VNF-Components (VNF-C)
for any VNF. Among the research challenges documented in the literature,
the adequate monitoring of these functions is underlined, as well as questions
pertaining performance profiling and overhead trade-offs, all occurring topics
in our present research.

2.2. Network Slicing

Network slicing has emerged as a cornerstone for evolving 5G networks.
While 4G and previous generation relied on a one-fits-all architecture to
serve mobile network costumers, 5G covers a plethora of services with
diverse requirements, and so the system itself must be customized to
meet each customer’s needs. With network slicing, the common network
infrastructure can be harmoniously shared among multiple tenants, allowing
their diverse requirements to be met while providing isolation between
slices. End-to-end network slices can span over various network layers and
heterogeneous technologies (e.g., RAN, core, and cloud), and can facilitate
service delivery to customers while also enabling efficient networking and
service convergence [11]. Network slicing helps providing the much needed
dynamism and scalability in 5G networks, as customized end-to-end slices
can be created on-demand and thus provide a cost-efficient manner to serve
customers.

Slamnik-Kriještorac et al. [12] presented an extensive survey on the
distributed and heterogeneous resource sharing that is taking place in 5G
networks. The sharing model for 5G and other networks proposed by
the authors is classified in three distinct models: technical, business, and
geographic. Specifically, the technical model is structured in three layers:
infrastructure, orchestration, and service. Although some management
concerns for network slices are discussed, they primarily focus on the
infrastructure layer, while the examples for service (e.g., Healthcare) and
orchestration (e.g., Kubernetes) are left for each layer and case to solve
individually. Our study, in contrast, proposes that the network management
should consider all layers jointly, and also that this management is a complex
task that operators should be assisted with when deploying new network
slices.
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Kist et al. [13] proposed a virtualization scheme that allows technologies
and instances for different Radio Access Networks (RANs) to be provided
as services for network slice tenants. The proposal offers programmability
and adaptability for service providers while maintaining isolation between
tenants and their slices. An experimental scenario evaluated by the authors
comprised of LTE and NarrowBand-IoT (NB-IoT) clients showcases how the
proposed system allows the provisioning and management for virtual RANs
(vRANs) for providers’ network slices. The management aspect is however
limited to the RAN infrastructure, and any additional required management
aspects (e.g., regarding the application, or other VNFs included in the slice)
are left to be determined and deployed by the slice owner.

Coelho et al. [14] looked into formally defining the network slice designing
problem, proposing a framework that considers nested slices and network
functions decomposed in smaller services and models the relationship between
radio splitting, control and data planes isolation, and core network function
placement. Leveraging the reusability of smaller network function services
and network slices subnets, a variety of sharing policies that range from total
isolation to flat sharing can be used to realize 5G services of any class, and
fulfilling the stringent requirements each of them impose. The study therefore
focuses on producing a network slice, including necessary network functions,
their split and placement, to deliver the demands posed by a number of
services. The slice management itself, including the appropriate monitoring
of the deployed network functions, is not covered by the slice design and
thus is left for the operator to manually determine, configure and deploy the
appropriate solutions.

3. SWEETEN design and implementation

In this section, we review SWEETEN design, which has been previously
introduced and evaluated in the context of network monitoring [7]. Moreover,
additional implementation details are now presented in-depth for all the
architectural components that comprise the system. An overview of
SWEETEN is presented in Figure 1. The remainder of this section presents
the system progressively. General aspects and user input are discussed in
Subsection 3.1. SWEETEN pre-processing is discussed in Subsection 3.2.
The system’s mapping of management tools and configurations is explained
in Subsection 3.3. Finally, the process of deploying the mapped solution and
returning a customized dashboard to the user is discussed in Subsection 3.4.
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Figure 1: SWEETEN architecture [7].

3.1. General Aspects and User Input

SWEETEN can be viewed as an automated assistant intended to help
tenants of 5G slices to meet management requirements for their slice
components. In particular, when these components are designed following
the microservices architecture, network management must be thought of
while respecting the modularity and isolation envisioned in this architecture.
Moreover, a slice can span over thousands of microservices [15], which makes
automated management not only a benefit but a necessity.

The user input in the designed system consists of a specification for
user containers, which is augmented by the user to contain requests for
management features. These management features can be of multiple
disciplines, namely security, monitoring, and administration. Some examples
for each discipline are found in Table 1.

With respect to the classification for network management features, three
disciplines are considered, as presented in Table 1. The monitoring discipline
encompasses all measurements that can be done to assert a network and its
components are behaving as expected [16]. These measurements can be either
passive (e.g., observing flows in a given interface) or active (e.g., probing a
link to check latency and throughput available). The security discipline
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Table 1: Network features and respective tools listings.

Monitoring Security Administration

Flows
sFlow, NetFlow,

Prometheus
Snort (for IDS),

OSSEC
-

Traffic
Prometheus,
iPerf, SNMP

iptables,
nftables

Linux tc

Latency
SmokePing,
OWAMP,
TWAMP

- Linux tc

Device
Kubelet

(Kubernetes native)
syslog,

antivirus utilities
NETCONF,

SNMP

involves all sensitive aspects in a network, including privacy and resilience
requirements and the means to guarantee them at a certain level [17]. The
administration discipline is comprised of management tasks and applications
that actively alter the network behaviour for one or more device. For
example, Netconf protocol can be utilized to reconfigure switches and routers
in a network, altering its behavior dynamically [18].

Having presented the user options for management features requests,
an excerpt from a user specification with requests for both monitoring
and security features is presented in Listing 1. While novice users can
request high-level management features more easily, advanced users can
specify lower-level configuration parameters that must be observed in the
provided solution. This enables operators to promote network management
capabilities from a high-level perspective, while also being able to traverse
through lower-level configuration parameters when necessary. An example
for such parameters addition is presented in Listing 2, where in addition to
specifying which tool should be used (i.e., Prometheus), configuration for the
measurement intervals and the dashboard are provided by the user.
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apiVersion: apps/v1

kind: Deployment

metadata:

management:

monitoring:

- flows

security:

- cryptography

...

Listing 1: Excerpt for a simplified user management service with requirement for
management features.

monitoring:

- flows: TCP

tool: Prometheus

scrape_interval: 1s

dashboard:

- tool: Grafana

http_port: 3333

...

Listing 2: Excerpt for a feature request that includes lower-level configuration parameters
specification

3.2. User Images Pre-processing

The user input is received by SWEETEN through the Features Acquirer
module. This module is responsible for retrieving information on all
microservices defined in the user specification as well as the management
features requested for each microservice.In addition to the nature of the
management desired, requirements for the produced solution can be derived
from requirements tags. To achieve that, each microservice with a
management annotation undergoes three steps:

1. Management feature retrieval, where the requested features and options
are extracted from the user specification.

2. Description enrichment, where the information about the user service
is augmented.

3. Service tagging, where tags that better describe the service
requirements are appended to the specification.

Each requested feature obviously can be realized by a number of tools. In
order to allow the best possible match for tools selection and configuration

11



in a later stage within SWEETEN, user’s microservices undergoes a
tagging process composed by the description enrichment and service tagging
processes previously mentioned. For each component in the user input for
which a feature is requested, SWEETEN appends tags that can provide some
insight about the type of service and its requirements. Tags are later used
to differentiate the tools and configuration choices for monitoring a cloud-
hosted service from an IoT one; for example, while the former can leverage
network and processing resources to employ a robust solution, the later must
realize the management necessities with minimal overhead.

To alleviate the burden for the user, SWEETEN can automatically derive
tags from the user specification alone without any additional user input.
To achieve that, the description for each container that composes a service
is processed in the service tagging step. This description is rarely present
and descriptive for most containers, so the description is enriched before
tags are derived. For the purpose of our proof-of-concept, the description
enrichment process is obtained through a simple Google web search query
that is automatically requested by the system. This query is composed of
the words ”define” and the container image name, and the text for the first
result is considered by the system. The service tagging process can then run
the enriched description through a Natural Language Processing sub-module
to extract the aforementioned tags, as described next.

Natural Language Processing (NLP) is an area of computer science
that employs algorithms for learning, understanding, and producing of
human language content [19]. NLP has lately been a tool in various areas
with promising results, for example, by providing enterprises with network
security insights and suggesting solutions when paired with a neural network
model [20].

Among the many available algorithms for NLP, an important aspect that
differentiates them is whether they require supervised learning or not. In
SWEETEN’s case, since we want not only to include current management
features but also to allow the system to easily evolve and include new ones,
unsupervised learning is preferred. Our model of choice is based on Latent
Dirlecht-Allocation (LDA) [21], an unsupervised machine-learning algorithm
that can help find common topics between multiple text documents. In
this way, we initialize a database with enriched descriptions for three of
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the top containers for each category in DockerHub 2, and stipulate seven
different topics to be found. Each topic will contain a weighted list of words
that indicates the prevalence of the main words for each topic. For a new
document, i.e., the enriched description for the user microservice that is being
processed, LDA associates a percentage for each pre-determined topic; later,
the relevant words for the selected topics (e.g., indicating the resourcefulness
of an object) are used to determine which solutions SWEETEN should
prioritize, as explained next.

3.3. Management Tools and Templates Mappings

Management features required by the users must be realized by a set of
management tools. The Tool Mapper module thus is the first one to make
selections based on the Features Acquirer output. For each feature required
by the user, this module maps to one or more tools that are capable of
realizing such features. The listing for these mappings are provided through
a Tools Catalogue, which has been already pre-populated by an expert. In
the event that more than one tool are fit for a certain request, tags are
considered so that the best fit can be provided. The algorithm for matching
the tags to the available tools is a greedy one, so the solution that matches
the most tags from the user input is selected each time.

Additionally, each tool must be configured and deployed so that it
can perform the intended task correctly. For example, a firewall must
be placed in front of a targeted back-end service, while an active latency
monitor must be placed alongside the monitored microservice. Moreover,
the previously appended tags must be considered when determining the
configuration parameters for a given network management tool. A second
stage for selection is thus performed by the Template Mapper. A template
represents the configuration required by a management tool to be deployed,
both with respect to the tools internal configurations and with any necessary
cluster definition [22]. The configuration aspect is also covered by the tags
appended to the user input, in a process analogous to the one described for
the tools matching.

Occasionally, the correct configuration for some management tool
might require some breaching of microservices architectural design during
execution. For example, monitoring the active connections for a microservice

2https://hub.docker.com/
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requires for the the management tool not only to be placed alongside the
managed service, but to share its network context too. This is achieved
by namespace [23] sharing between managed and management services, but
which is only performed when necessary. In this way, microservices design
can be maintained for all applications, and specificities are configured and
treated with templates designed for such cases.

3.4. Solution Deployment and User Dashboard

The elements of the solution must be put together in a deployable
specification. Because we chose to use Kubernetes as the system’s container
orchestrator, the result is composed of two separate YAML [24] specifications:
one for the user services that did not require management features, i.e.,
services that were already part of the user specification, but that did not
require any management feature; and one for the remainder of the user
specification plus all the network management tools included by SWEETEN.
We chose Kubernetes because it is the most widespread platform for
containers in industry and academia alike [25], which in the one hand offers
an active community and a rich environment, and the other hand enables
SWEETEN to be used by a wide audience.

Finally, during the slice lifecycle, the user can manage their services
through a customized dashboard. Based on the user input, SWEETEN can
deploy dashboards from different software. An example for a monitoring
dashboard by Prometheus [26] provided by SWEETEN for a novice user is
depicted in Figure 2, while a more advanced Grafana dashboard provided
by SWEETEN is depicted in Figure 3. Non-visualizing features, such as
cryptography introduced by security features, are presented textually for
the user’s knowledge. Additionally, the user can interact directly with the
configured management container through a terminal, so they can still have
control after the deployment phase for their slice.

4. Automated Network Management for an Intelligent Healthcare
Use Case

5G systems promise a series of disruptive advancements for a myriad
of applications typically classified in three scenarios. Enhanced Mobile
Broadband (eMBB) addresses applications centered in multi-media content,
services, and data; Ultra Reliable Low Latency Communications (URLLC)
encompasses critical applications that pose stringent requirements such as
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Figure 2: User dashboard generated from the novice user’s specification.

remote medical surgery; massive Machine Type Communications (mMTC)
is characterized by a large number of low-cost devices that transmit a low
volume of data [27]. Some of the most technically challenging applications
unite requirements from two or even all three scenarios. Healthcare
applications can exemplify such a case, where a multitude of health devices
of different capabilities and with distinct requirements are used to guarantee
the well-being of patients. This use case is depicted in Figure 4 and further
expanded in the following.

Heart rate, respiratory rate, and body temperature monitors are a small
sample from a large list of monitoring devices that can be utilized in a
patient’s health monitoring. The number of IoT devices employed in this
scenario can grow significantly, providing abundant data to track patients
physiological characteristics but also requiring a more extensive analysis by
physicians and other professionals. In this context, these applications can
be further benefited by the inclusion of intelligent algorithms to process and
automate decisions, triggering alarms and actions whenever abnormalities are
detected [8]. Artificial intelligence (AI) techniques based on novel models
such as big data mining and deep learning can process large amount of
data at real-time, and then predict and automate tasks at a rate impossible
before. While the monitoring part must be performed on-premise, i.e., in
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Figure 3: User dashboard generated from the experienced user’s specification.

the healthcare center where the patients are located, the burden of collecting
and processing all the data can be effectively run in the cloud.

Because of the sensitive nature of the data monitored and transferred,
security, in particular by the means of privacy, is a foremost concern. As
hardware solutions are not always feasible and as new legislation advances the
levels of privacy requirements for these applications, guaranteeing a certain
security level from a software perspective is a necessity. In certain occasions,
resourceful devices are used for patients’ monitoring, such as 4K cameras
that can record their movements, and paired with deep-learning algorithms
can detect facial expressions and gestures of patients and warn healthcare
professionals in the event of an anomaly [8]. However, most monitoring IoT
devices are constrained in terms of computational power and battery, and so
possible security solutions should account for these limitations and prioritize
lighter-weight solutions whenever possible. Less constrained devices, in turn,
can afford to employ more advanced and intensive defensive mechanisms,
and the provisioning for each case should reflect these characteristics. As a
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manual security approach is not feasible for complex 5G scenarios, security
automation is a key principle in securing 5G applications and networks [28].

In recent years, multiple Low Power Wide Area (LPWA) radio
technologies have emerged as options for delivering the scalability required
by mMTC applications. From the alternatives, NB-IoT has been shown
to offer promising results for healthcare applications [29]. NB-IoT is fully
compatible with Long Term Evolution (LTE), and can be deployed inside a
single LTE physical resource block (PRB) of 180 KHz or inside an LTE guard
band, potentially serving up to 50k end-devices per cell [30]. The limited 250
kbps data rate is plenty for hear rate and body temperature monitoring that
require only 1 byte for payload every 5 minutes [29], but it is impractical for
streaming the video from the deployed cameras. Devices as such that require
extensive bandwidth must connect over standard LTE-A network, which is
capable of meeting their demands.

Metrics collected by all the devices are reported to a Remote Radio
Head (RRH), the radio antenna responsible for communications to and
from users’ devices. The signals must then be processed by the network
core, which is performed by the Base-Band Unit (BBU) in a Base Station
(BS). Previously, these functions would be performed exclusively by specific-
purpose hardware. With the recent advances in virtualization and the
expansion of NFV architectures, virtual base stations have been adopted by
pioneering virtual mobile network operators. Such operators do not own the
required wireless physical infrastructure, but instead lease it from traditional
mobile network operators. The processing modules for wireless services, in
turn, can be provided by software running in the cloud, enabling different
strategies that benefit customers [31]. In the NB-IoT case, low protocol
stack processing requirements and low latency-sensitivity make C-RAN an
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attractive alternative, so all the BBU processing and higher-layer protocol
stacks are implemented by software that runs on the cloud[32].

A standard LTE-A BBU can be split in different functions [33]. The
different split options offer possibilities of alternating between dedicated
hardware and function virtualization, allowing the flexible adoption of
functional split in time and location. Noteworthy, 5G specifications pose
stringent network requirements for their communications, in particular with
respect to data rate and latency. Regarding latency, a maximum delay of
around 3ms for transmitting and processing the signal is determined by the
Hybrid Automatic Repeat reQuest (HARQ) mechanism adopted in LTE [34].
There is thus a stringent requirement (i.e., latency) that must be respected
by the network slice, and that must be properly monitored too. While
our previous work considered monitoring challenges for microservice-based
VNFs in 5G networks, the current study further advances the management
scope by including security concerns and measurements in the evaluated slice.
Moreover, the complete network slice itself is subject of study here, including
different radio access technologies and service applications, with new features
and requirements that they come with.

5. Results and Discussion

Although there are already some promising NB-IoT solution in
development [35, 32], for stability and reproducibility of our results we do not
utilize any specific implementation, and simply consider the traffic patterns
for these deployments. With respect to the security demanded in the user’s
specification, SWEETEN can leverage the previously populated catalogues
and produce different results for each requiring application. In the present
use case, it is noteworthy that the IoT monitoring devices should try to
adopt solutions that incur in minimal overhead because of their resource-
constrained nature. Tools and configurations provided by experts to the
system’s catalogues can therefore feature fine-tuned solutions for systems
tagged as such. This way, a TLS configuration using less resource-intensive
ciphers can be used for IoT components3, while more resourceful components
can utilize a more robust solution4. For comparison purposes, normalized

3https://docs.aws.amazon.com/iot/latest/developerguide/transport-

security.html
4https://www.acunetix.com/blog/articles/tls-ssl-cipher-hardening

18



results for the different security options are presented in Figure 5 for memory
footprint, and in Figure 6 for network overhead.

14

16

18

20

None TLS−Default TLS−IoT
Security deployed

R
A

M
 u

sa
ge

 (
M

iB
)

Security

None

TLS−Default

TLS−IoT

Figure 5: Computational overhead using different security options

The results indicate that a small computational overhead is added with
respect to memory footprint when either the default or the IoT security
solution is included. Albeit small, it is also noticeable that the security
option recommended for IoT outperforms the default option with respect
to overhead. Similar results are also found for network overhead. While it
is clear that the overhead is much more noticeable when comparing either
security option (i.e., the default one or the IoT one) to having no security
deployed, the IoT configuration still leads to lesser overhead in comparison
to the default configuration. While the user should still be mindful that some
overhead will be added whenever a security feature is requested, these results
show how experts knowledge integrated into the system through different
configuration options can be used to produce a more fine-tuned solution for
each case.

Another overhead aspect that we consider is the one added to the
deployment time of the slice specification. Here, there are two separate
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Figure 6: Network overhead using different security options

types of processing overhead that must be considered. The first one is the
overhead introduced by SWEETEN’s processing of the user input until the
complete solution is produced, as has been explained in-depth in Section 3.
The second one is the additional deployment overhead due to the inclusion of
the management services (realized by containers), that must be instantiated
alongside the original specification. A comparison for these times is presented
in Figure 7. We evaluate the system’s scalability through varying the number
of replicas for each deployment in the slice from one to ten.

The results show that SWEETEN’s overhead is approximately constant
regardless of the replicas count, and it becomes negligible for larger
deployments. Larger deployments are precisely the ones that should
benefit the most from SWEETEN, as the inclusion of management features
throughout a complex slice is burdensome in comparison to a more simplistic
slice. Most of the overhead is introduced by the inclusion of the additional
containers, with the complete solution taking on average 94% more time
to be deployed. Two noteworthy points here are that: (1) this is not a
recurring cost, as fresh deployments are less frequent than individual updates,
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which would present a much lighter overhead; (2) the manual inclusion of
management containers by an expert user would incur in similar overhead
for the deployment time. Users could minimize this overhead by including
the management software directly into their containers, but doing so would
breach the microservice architecture and possibly do more harm than good
in the process. The overhead results are also aligned to what we observed
previously for a different network slice where only monitoring management
was featured [7].
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Figure 7: Deployment time overhead for varying replicas count

We also illustrate how the user receives their monitoring information.
An example for an excerpt of the dashboard provided for monitoring the
throughput is illustrated in Figure 8. Through this interface, the user can
easily monitor multiple services of their slice and quickly identify problems as
they occur. Different resources can be configured by the system with different
parameters in a transparent manner for the user. For instance, a resource-
constrained device can be configured with a lower sampling rate than a more
resourceful device, thus introducing less overhead. The user can also edit
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the graphics in the dashboard and add their own, so they can fine-tune the
solution to best fit their needs.

Figure 8: Example dashboard for throughput monitoring

We also analyze the system performance with respect to the
expressiveness offered to the user. About four lines of high-level
feature specification by the user is translated to over 30 lines of
management deployment specification with respect to security (disregarding
the cryptography keys generated and used in the deployment). The result
is even more prominent with respect to monitoring, where four lines of
specification are translated into over 100 lines of management specification
that add the required monitoring features. These findings are inline with
what was reported in our previous work [7], further reinforcing the benefits
offered by SWEETEN for multiple management disciplines.

6. Conclusion and Future Work

5G networks are in the process of being rolled out around the world
and will enable disruptive applications and services that were not previously
feasible. To realize that, advances presented by NFV, SDN, and network
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slicing, for example, must be carefully integrated by these networks. With
the increasing number of devices and services, network management plays
a central role in delivering the resources and features required by each
component. For the same reason (i.e., the increasing number of networks
components), the configuration and management of all the pieces must be
realized in an automated manner.

In this work, we investigate the assisted management of network slices
through the use of SWEETEN. Initially proposed as a system to assist
VNF operators, SWEETEN has been demonstrated in this study as a tool
capable of delivering management solutions across a diverse network slice.
Through high-level annotations in their slice specification, users are able to
effortlessly receive fine-tailored management solutions configured for each
of their applications and services. The proposed use case demonstrates
how a network slice for intelligent healthcare can include monitoring and
security features with ease, even considering the different requirements for
each application.

Our results show that there is an important expressiveness gain for the
user through SWEETEN. Assisting the user in properly deploying complex
network slices is a vital point in achieving the dynamism expected from
5G networks. We also evaluated the overhead of SWEETEN with respect
to deployment time, and computational and network overhead. While the
deployment time is noticeably affected by the additional management services
included by SWEETEN, it is not a recurring cost (i.e., the slice’s deployment)
and is easily offset by the management functionalities featured in the slice. In
the same way, computational overhead was non-negligible, but small enough
that it is adequate for the services included. Network overhead, however,
was much higher when cryptography solutions were included in the system,
which, while expected, to users’ discretion is needed to define whether the
overhead is acceptable or not.

In the future, we plan to further develop the system through the inclusion
of additional management disciplines and solutions. A myriad of different
services are coming with 5G, and their network requirements can be as varied
as the services themselves. It is thus important for a management assistant to
be able to cover a variety of cases so that its usefulness is not limited to a small
subset of applications. Moreover, we also intend to evaluate different tagging
mechanisms for the Features Acquirer module, so that a more refined tagging
system can help SWEETEN to further fine-tune solutions and configurations
for every service.
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