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ABSTRACT

A key challenge when deploying reinforcement learning (RL) algorithms in robotics set-

tings is the large number of interactions between the agent and its environment that are

necessary for an optimal behavior to be learned. An alternative to training a robot in the

real world is to execute the training process in a simulator. However, for an RL agent to

be successfully deployed in real-life, one needs to guarantee that the characteristics of the

environment where it will operate are accurately modeled by the simulator. This might be

difficult to ensure and, as a result, the robot may have to—when deployed in real-life—

interact with environments whose dynamics are different than those experienced during

training in simulation. This typically results in policies that were optimal in simulation

but that perform poorly in the real world.

In this work we investigate how to design learning agents that are robust to settings such

as this—i.e., settings where the agent may have to interact with different types of envi-

ronments, and where it is not capable of directly identifying with which environment it

is interacting. This corresponds to the setting where the agent’s state (which stores all

information collected by its sensors) might not be sufficiently complete or powerful to

characterize all properties of the environment (or task) being tackled by the agent. In par-

ticular, we wish to design novel training algorithms that result in control policies that are

robust despite latent changes to the dynamics of the environment with which the agent is

interacting at any given moment in time.

Our proposed method is capable of (i) learning a model capable of mapping trajectories

collected from a given environment (with some type of unknown/unobservable dynam-

ics) to a representation of said environment; (ii) using the estimated representation of the

current environment to augment the agent’s state, thus allowing the agent to learn a single

policy that generalizes across many different tasks; and (iii) actively training the above-

mentioned models. In other words, we introduce a technique by which the agent can

autonomously decide (in simulation) with which types of environments/tasks/dynamics it

wishes to interact to more rapidly learn a generalizable policy. After introducing the for-

malism that underlies our novel method, we evaluate its behavior and performance when

tasked with learning a single policy that generalizes across a family of continuous control

tasks.

Keywords: Reinforcement Learning. Generalizable Policies. Active Learning.



Seleção Ativa de Tarefas de Treinamento Contínuas para Construção de Políticas

Generalizáveis

RESUMO

Um dos principais desafios de se utilizar técnicas de aprendizado por reforço (RL) em

problemas de robótica diz respeito ao grande número de interações entre o robô e o seu

ambiente, necessárias para que um comportamento ótimo possa ser aprendido. Uma al-

ternativa à ideia de treinar o robô diretamente no mundo real é treiná-lo, primeiro, em

um simulador. Infelizmente, para que isso resulte em comportamentos eficazes, o proje-

tista do sistema precisa garantir que todas as características relevantes do ambiente sejam

modeladas de forma precisa no simulador. Isso é, via de regra, difícil de garantir. Como

resultado, o robô pode ter que—ao ser posto em uso no mundo real—interagir com am-

bientes cuja dinâmica difere daquelas vivenciadas durante o processo de treinamento em

simulação. Isso tipicamente faz com que políticas que eram ótimas em simulações tenham

performance sub-ótima quando executas em um ambiente real.

Nesse trabalho, nós propomos uma técnica para treinar agentes de RL que sejam robus-

tos a problemas desse tipo—i.e., problemas nos quais um agente precisa interagir com

diferentes tipos de ambientes, e nos quais o agente não é capaz de diretamente inferir ou

estimar com qual ambiente ele está atualmente interagindo. Isso corresponde a um setting

no qual o estado do agente (o qual armazena toda informação coletada por seus sensores)

não é completo ou expressivo suficiente a fim de caracterizar todas as propriedades do

ambiente (ou tarefa) sendo observada atualmente pelo agente. Tendo isso em vista, nosso

objetivo, em particular, é desenvolver um novo algoritmo de treinamento que permita a

construção de políticas de controle que sejam robustas mesmo na presença de mudanças

não-observáveis na dinâmica do ambiente.

Nosso método é capaz de (i) aprender um modelo capaz de mapear trajetórias colectadas

em um ambiente (com algum tipo de dinâmica desconhecida e não-observável) para uma

representação de tal ambiente; (ii) utilizar a representação estimada do ambiente a fim de

estender o estado do agente, dessa forma permitindo com que ele aprenda uma política

única capaz de generalizar para vários tipos de tarefas; e (iii) treinar de forma ativa os

modelos mencionados acima. Em outras palavras, isso implica em uma nova técnica

através da qual o agente pode autonomamente decidir (em simulação) com quais tipos de

ambientes/tarefas/tipos de dinâmica deseja interagir, a fim de mais rapidamente aprender



uma política generalizável. Após introduzirmos o formalismo sob o qual nosso método é

construído, iremos avaliar o seu comportamento e performance quando utilizado em um

problema no qual o agente precisa aprender uma política generalizável única, capaz de

lidar com uma família de tarefas de controle contínuas—cada qual com um tipo diferente

de dinâmica.

Palavras-chave: Aprendizado por Reforço. Políticas Generalizáveis. Aprendizado Ativo..
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1 INTRODUCTION

Among the many current applications of reinforcement learning (RL), one of the

most popular and promising ones is robotics control. A key challenge in this setting

is the large number of interactions between the agent/robot and its environment that are

necessary for an optimal behavior (or policy) to be identified. This often makes the cost of

training physical robots prohibitive. Furthermore, executing a suboptimal policy (which

may be evaluated by an RL algorithm during training) on a physical agent may result in

exploratory behaviors that could jeopardize the robot’s integrity—causing, e.g., collisions

with objects or wear-and-tear of expensive parts.

An alternative to training a robot directly in the real world—and motivated by the

desire to avoid risks such as the ones described above—is to execute the training process

in a simulator. A key challenge here, however, is that for an RL agent to be successfully

deployed in real-life, one needs to guarantee that the characteristics of the environment

where the robot will operate are correctly and accurately modeled by the simulator. This

may be difficult to ensure. Consider, for instance, that many latent/unobserved elements

of the real-world, such as the friction floor, might be hard to be accurately estimated

and modeled in a simulator. As a result, the robot may have to—when deployed in real-

life—interact with an environment whose dynamics are different than those experienced

while it was trained in simulation. This typically results in policies that were optimal in

simulation to perform poorly in the real world.

In this work we investigate how to design learning agents that are robust to settings

such as this—i.e., settings where the agent may have to interact with different types of

environments, and where it is not capable of directly identifying with which environment

it is interacting. This corresponds to the setting where the agent’s state (which stores all

information collected by its sensors) might not be sufficiently complete or powerful to

characterize all properties of the environment (or task) being tackled by the agent. By

doing so, even if the robot does not have, say, a sensor to identify the friction floor, it

should nonetheless be capable of adapting its behavior/policy accordingly, as it moves

from a room with a low friction coefficient to a room with a high friction coefficient. In

other words, we wish to design novel training algorithms that result in control policies

that are robust despite latent changes to the dynamics of the environment with which the

agent is interacting at any given moment in time.

Existing techniques address this problem in different ways. The problem described
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above is related to the setting of non-stationary RL, where the dynamics of the environ-

ment may change (from the point of view of the agent) due to unobserved changes to

properties of that environment. These methods typically learn a library of policies—one

per “type” of environment dynamics. In this work, by constrast, we propose:

1. To learn a model capable of mapping trajectories collected from a given environ-

ment (with some type of unknown/unobservable dynamics) to a representation of

said environment;

2. To use the estimated representation of the current environment with which the agent

is interacting in order to augment its state. This effectively results in a process

that learns to identify/estimate the current environment/task the agent is interacting

with, and that uses this learned representation to inform the agent about how to

adapt its behavior, so that it is more effective in that particular environment;

3. And, importantly, to perform the above training process in an active way. In partic-

ular, we will introduce a novel actively learning mechanism by which the agent can

autonomously decide (in simulation) with which types of environments/tasks/dynamics

it wishes to interact, in order to more rapidly learn a policy that can generalize to

novel and different environments or tasks. Another contribution is that our method,

unlike existing similar ones (ZHOU; PINTO; GUPTA, 2019) allows the agent to

select training tasks from a continuous family of tasks; some of the previous tech-

niques were only capable of dealing with a finite, discrete number of possible vari-

ations of an environment.

Effectively, the above components can be combined in a way that results in a

method by which the agent learns a robust policy that generalizes across many types of

tasks and environments. First, during a training phase, the agent actively selects with

which tasks or settings it wants to interact, in order to more rapidly acquire a model

capable of constructing/estimating a representation of a given environment, with some

unknown/unobservable type of dynamics. Once this model is trained, the agent can

later—when deployed on a series of unknown environments—estimate with which en-

vironment it is currently interacting, and augment its state with such information. This

effectively allows the agent to learn a policy over an augmented version of the state space

such that—by construction—the policy can determine appropriate behaviors, for different

tasks, on-the-fly.

Previous works that address this problem—the problem of learning policies that
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generalize to different environments, with different dynamics—have generally been stud-

ied within the context of Sim2Real techniques. We discuss these algorithms in more detail

in Section 3. We can summarize the main differences between our proposed method and

the existing techniques as follows: (i) our method does not require explicit access to

an identifier characterizing the current task with which the agent is interacting; (ii) our

method does not try to adjust a policy so that it can be fine-tuned to work on a novel

problem; instead, it learns a single policy that generalizes across many tasks; and (iii) our

method allows the agent to actively decide on which tasks or settings it wishes to train, in

order to more rapidly learn a policy that generalizes over many different problems (i.e.,

environments with different dynamics).

This work is organized as follows. In Chapter 2, we discuss the main mathemati-

cal frameworks upon which our method will be build. In Chapter 3, we discuss existing

related work and constrast them with our method. In Chapter 4, we introduce our pro-

posed approach for tackling this challenging learning setting. In Chapter 5, we present

experiments that allow us to evaluate the behavior and performance of our method when

tasked with learning a single policy that generalizes across a family of continuous control

tasks. Finally, in Chapter 6 we present our conclusions and discuss future work.
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2 BACKGROUND

In this chapter, we discuss the two main learning frameworks that will be nec-

essary to design our novel algorithm: Reinforcement Learning, and Gaussian Process

Regression.

2.1 Reinforcement Learning

Reinforcement Learning (RL) is a framework for learning how to act in complex

environments while maximizing a reward signal (SUTTON; BARTO, 2018). An RL agent

interacts with its environment in discrete time steps. At each time, it observes the current

state of the environment and selects an action. After executing an action, the agent ob-

serves the new state of the environment and receives a reward signal. RL problems are

typically modeled as Markov Decision Processes (MDP). An MDP is a tuple (S,A,R, T )

, where S is a set of environment states; A is a set of actions that the agent may choose to

execute; R : S × A → R is the expected reward function, mapping a state and an action

to a scalar reward signal, and T : S × A × S → [0, 1] is a transition function specifying

the probability of the agent transitioning to a state after taking an action in a given state.

The behavior of an agent is encoded by a policy π : S ×A→ [0, 1], that indicates

which action it should take in each state. The goal of an RL agent is to learn a policy

that allows it to accumulate as much reward as possible. In other words, solving an MDP

consists of finding an optimal policy π∗ that maximizes the agent’s expected return, given

by the expression
∑∞

i=0 γ
irt+i, where rt is the reward received at time t and γ is a discount

factor, indicating the extent to which the agent prefers immediate over delayed rewards.

2.2 Gaussian Processes

Different methods have been proposed in the literature in the context of performing

regression—within the broader problem of supervised learning. In this work, we empha-

size one particular regression algorithm known as Gaussian Process Regression (GPR).

This technique, which we will describe below, is relevant in the context of our research

project for three main reasons:

1. It is a non-parametric regression algorithm. Unlike, e.g., neural networks or linear
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Figure 2.1: An example of a Gaussian Process Regression model and a associated ac-
quisition function. Here, the acquisition function is designed in a way that it chooses to
query the unknown function being modeled (i.e., chooses to collect an additional training
point) at the location in which the current GPR model has maximal uncertainty regarding
its prediction.
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Source: Adapted from (ZHOU; PINTO; GUPTA, 2019).

regression models, GPR does not require the user to make design decisions such

as which features should be used, or how many layers or neurons a neural network

should have. Instead, the entire learning process itself is data-driven: predictions

are made based solely on observed training instances, and no model parameters

(such as neural network weights) need to be estimated directly. This is relevant

because it results in a domain-agnostic regression technique that requires less fine-

tuning, for example, regarding the most effective neural network architecture to

use in a particular application. The common downside of GPR models is that they

typically do not perform well when making predictions over high-dimensional input

data; this will not be the case in our work, though, as we will discuss in subsequent

chapters.

2. It results not only in a regression model capable of producing mean/expected pre-

dictions, y, for a given input, x, but it also estimates the uncertainty of the model

regarding such predictions. This is relevant in cases where the regression algo-

rithm is being used in an active learning setting, such as the one being tackled in

this work (for more details, see Section 4). Consider, for instance, that knowledge

about a model’s uncertainty regarding different types of inputs may be used to guide
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the agent’s decisions regarding which new training instances it should sample next,

in order to actively improve the model’s accuracy. The agent could, e.g., choose to

query the unknown function being modeled by GPR (f ), at a particular input loca-

tion (x), thus observing its associated output (y = f(x)). Here, x could be selected,

for example, because it corresponds to the input location for which the current GPR

regression model is maximally uncertain regarding its prediction.

3. Related to the point above, GPR models can be combined with acquisition func-

tions. Acquisition functions denote different criteria that a Gaussian Processes al-

gorithm may use when determining the most promising point, x, to sample next, in

order to improve (for example) the accuracy of the resulting regression model.

As an example, consider Figure 2.1. In the uppermost graph of this figure, we

see one possible GPR model trained over three data points. The blue curve shows the

mean prediction made by the model for different inputs, and the shaded blue region sur-

rounding the mean prediction indicates the model’s uncertainty regarding its predictions

at those locations. In the graph immediately below, we show the values produced by an

acquisition function used to determine which points the agent should sample next in order

to improve the accuracy to the GPR model. Here, the acquisition function is designed in

a way that it chooses to query the unknown function being modeled by GPR at the input

location in which the current GPR model has maximal uncertainty about its prediction.

This location is indicated as a vertical red line in the bottom graph, and it is aligned with

the input location of the regression model where the shaded blue region indicates highest

uncertainty. After collecting such new training instance, at the selected location, the data

point is added to the training set of the GPR model, the model is adjusted, and then the

acquisition function is queried once again to determine the next most promising point to

sample. Notice, therefore, that combining GPR and acquisition functions naturally results

in a Bayesian regression algorithm (Bayesian in the sense that it produces uncertainty es-

timates) that can be actively trained, online, thus allowing an agent to autonomously

construct its training set.

Mathematically, a Gaussian Process (GP) extends the idea of a Gaussian distribution—

a distribution over real numbers—to the idea of a distribution over functions. Concretely,

a GP models a distribution over the functions that may have generated the observed train-

ing points. We say that a GP is fully characterized by its prior mean predicted output,

µ(x), which describes the model’s predictions when little or no data is available; and a

kernel function, k(x, y), which quantifies how similar two given inputs (x and y) are to
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the regression model; if x and y are deemed similar, the GP model will tend to produce

similar outputs/predictions for such input points. Concretely, to fully specify a GP one

must define a mean function µ and a positive-definite kernel k:

µ(x) = E[f(x)]

k(x, y) = E[(f(x)− µ(x))(f(y))− µ(y))>],

where f is the unknown function being modeled by the Gaussian Process regression

model. A kernel specifies properties of f such as smoothness and periodicity.

Given k and a training set D = {(x1, f(x1), . . . , (xN , f(xN))}, the Gaussian Pro-

cess regression model can be constructed in a way that allows it to make mean predictions,

µ(x), associated with any new input point, x, as well as predictions about the model’s un-

certainty, σ2(x), regarding its predictions about f(x). Formally, the new GPR model will

be a function whose mean predictions and associated uncertainty values are given by

µ(x) = k>(CD + σ2I)−1yD (2.1)

σ2(x) = k(x, x) + σ2 − k>(CD + σ2I)−1k, (2.2)

with k = [k(x, x1) . . . k(x, xN)]
>, CD is an N × N matrix with entries (CD)ij =

k(xi, xj), yD = [f(x1) . . . f(xN)]
> and σ2 is the additive noise we assume affects mea-

surements of the outputs of f . One commonly-used kernel function is the exponential

kernel, k(x, y) = exp
(
− 1

2l2
||x − y||2

)
, where l regulates the width of the kernel; intu-

itively, larger values of l result in smoother (less “spiky”) regression models.
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3 RELATED WORK

The issue of deploying an agent in environments different from expected during

training is widely discussed in an area named Sim2Real. The problem is named Reality

Gap. Since simulations are usually imperfect representations of the real world, where

details and characteristics that could influence the environment’s response to a performed

action are disregarded. These inaccuracies can lead to failed attempts to deploy phisical

robots, since their policies were trained in a different environment. Simulation errors can

be related to an incorrect representation of the agent’s observations or in the simulation

of collisions and frictional dynamics. Works tackling both issues are discussed in the

sections that follow.

3.1 Imperfect simulation of observations

Mismatches in simulated observation frequently happen when the state includes

visual information. Since the computational and the design costs of high fidelity simula-

tions can be prohibitive, simplified and imperfect simulators are often used for pixel-to-

torque tasks, where controller’s input is an image.

In this scenario, Tzeng et al. (2015) proposes a supervised domain adaption ap-

proach to map objective environment states to a given imperfect simulation state. The

technique uses an adversarial approach to align the distribution of both source and tar-

get environments. This class of problems, known as domain confusion, uses a domain

classifier to predict the domain of a representation of a given image. At the same time,

a generator tries to find a representation able to trick the discriminator into classifying

both domains as being the same. This way, the learned representation is indistinguish-

able in the feature space, and both domains lie in the same general neighborhood in the

representation space.

However, the confusion loss may align domains in the same representation space,

but it does not guarantee that similar states have a close representation in the state space.

To tackle this, the authors also propose a pairwise loss to match labeled images from the

goal environment to the corresponding state in the simulator. Matching the representations

for the same state encourages the network to disregard domain-specific features in favor of

relevant features to the task. The pairs, which are weak labels, are matched automatically

by selecting the closest neighbor of the sampled images.



18

Viereck, Saenko and Jr. (2018) also use a pairwise loss to approximate the repre-

sentation of the same state of source and target environments. The authors use siamese

networks to predict the offset of a robotic gripper given the chosen action for the state of

a task where the claw must place a cap on its matching container. The gripper has a depth

sensor, and one of the networks receives the depth image of the target environment while

the other network’s input is the simulated depth image. The pairwise loss is calculated

from the intermediate representation extracted from the last pooling layer of both con-

volutional networks. Noise (different objects cluttered together with the task object) and

salt and pepper noise (sparse black and white pixels randomly distributed over the image),

can be added to the scene to increase the robustness of the final model. The disadvantage

of this strategy is that the labels need manual pairing and each paired image requires the

measurement of the gripper’s offset in the real-world setting.

Bonatti et al. (2019) also deal with simplified simulations for visual policies. Their

approach to mapping states to a common latent representation is closer to our work, even

though the embedded representation is reconstructed to be applied to visual mismatches

instead of dynamics variations. Bonatti et al. (2019) use an autoencoder to compress

the image into a vector, which deliberately causes loss of information. The goal is to

maintain only the necessary information, discarding details of distracting elements in the

background. This shrunk representation then passes through the decoder to reconstruct

the image with diminished noise and is finally fed to the policy.

Hansen et al. (2020) combine an encoder as a feature extractor and an forward

dynamics predictor — a neural network aiming to predict the action at that produced the

transition from st to st+1 — to be able to calibrate the policy without having rewards avail-

able in the deployment phase. At the training phase, the authors train a task policy and

the forward dynamics predictor, both receiving as input the image representation obtained

by the feature extractor. The policy is kept fixed at deployment, and the forward dynam-

ics predictor is updated over the goal environment, backpropagating the updates to the

encoder, thus calibrating the representation to match the new environment particularities.

3.2 Imperfect dynamics simulation

Approximation of physics rules, simplified collision models, and other implemen-

tation choices that reduce the computational cost of simulations incur in inaccuracies

regarding the dynamics of the real world. Several research fronts dedicate efforts to miti-
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gate quality drops on the deployment of policies learned in such simulators. A commonly

investigated approach focuses on adjusting the learned policy when the agent comes into

contact with the goal environment. Silver et al. (2018) augments the initial policy learning

with a residual function that maps a state to a function and can be learned like an MDP

over samples of the target environment, needing fewer samples than a policy trained from

scratch. The final policy sums the initial policy with the residual function to obtain an

action calibrated to suit the new environment.

Similarly, Higuera, Meger and Dudek (2017) uses an adjustment policy to cor-

rect the action chosen by the original policy. Unlike the residual function from Silver et

al. (2018), the adjustment policy receives the original action asource as input alongside

the state starget. The objective of the adjustment policy is to replicate in the target envi-

ronment trajectories from the source domain, which is achieved by learning an additive

change to asource. Christiano et al. (2016) maps asource to atarget with the help of forward

dynamics models. Instead of a policy that directly outputs an action, a history of observa-

tions in the target domain is passed to the source policy, which chooses a corresponding

action, asource. asource is passed to a model of the forward dynamics of the target do-

main, obtaining an estimated next state for the target environment. Having both the next

step estimate and the history of observations from the target, the forward dynamics model

trained over target predicts the final action, atarget.

An interesting alternative approach, presented in Cutler, Walsh and How (2015)

takes advantage of an array of available simulators, with varying degrees of accuracy,

to reduce the number of samples needed from slower, higher-fidelity environments. The

authors leverage the aspects of an environment that can be captured even by less complex

simulations, using the valuable information the agent can learn at a lower cost as a base for

the final policy. During training, the agent starts learning at the lowest fidelity simulator

and can choose whether execute the next step on a higher fidelity simulation or maintain

the training at the current simulator. Bidirectionally, it is also possible to go back a level

and learn new behaviors on simpler settings. As the agent incrementally explores the

simulations, it aims to use the highest-fidelity environments only to access states that

other simulators were unable to model.

As opposed to changing the policy to adapt to the target environment, some au-

thors argue that bringing the simulation closer to the target can also lead to a policy that

works as expected when deployed on the final environment. A requirement on that ap-

proach is to have parametrized simulators that can be changed to emulate the goal do-
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mains’ physics better. Hanna and Stone (2017) proposes an iterative approach to do the

simulation grounding – as the process of tweaking simulation parameters is named. A

policy trained on the simulator is used to collect trajectories with the physical robot. The

algorithm tries to find the set of simulation parameters that minimize the distance of the

collected trajectory to the same sequence of actions executed from the same initial state of

the simulator. The best set of parameters is applied to the simulator to train a set of can-

didate policies evaluated on the physical robot. The policy with the best performance is

chosen and used to collect trajectories to repeat the whole process until the stop criterion

is reached. After simulation grounding, the authors apply policy adjustment similarly as

Higuera, Meger and Dudek (2017).

Allevato et al. (2019) presents a one-shot version of simulation grounding that

is trained over pairs of observations of environments with known distinctive parameters.

The neural network predicts the difference of the two groups of parameters θ1 and θ2. For

the task policy, a single observation is collected from the target and it is used to obtain

Δθ of the matching source observation; this process requires that the simulation allows

reseting to a specific state. Δ is added to the original simulation parameters, and the agent

learns the final policy in the grounded simulation.

In Lopez-Guevara et al. (2017),Δ is given by the difference in the predicted liquid

spillage in a task where the agent must fill a container with water. The task is trained in a

fast simulator (frequently used in videogames) that approximates fluid dynamics by mov-

ing groups of particles according to the position of their neighbors. Simulation parameters

grounded byΔ aim to compensate for the mismatch of the fluid dynamics model. Golemo

et al. (2018) also learns the difference of matching states of each environment, butΔ rep-

resents the immediate difference of the observations, which, at each state, is predicted

again and applied simulation’s state at training time.

Another branch of research related to this work uses the idea that, instead of learn-

ing a unique policy to solve different environments, a policy should receive enough infor-

mation from the agent to perform different actions when it finds itself in the same state of

distinct environments.

Yu et al. (2017) uses system identification (SysID) to augment the policy input.

SysID is a technique used to identify the dynamics rules of a system using data collected

on it. Yu et al. (2017) learns to predict the explicit dynamics parameters of an environ-

ment by using sequences of state-action pairs (trajectories) collected on simulators with

known parameters. The task policy receives the parameters inferred by the SysID mod-
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ule and trains on various environments, pursuing a policy that generalizes accordingly to

the dynamics parameters. The system identification process continuously executes over

the most recent history of visited states and actions, inferring the dynamics parameters at

each step.

To learn a generalizable policy, Liang, Saxena and Kroemer (2020) trains an ex-

ploration policy exclusively to collect trajectories for system identification. As in Yu et

al. (2017), the task policy receives the explicit dynamics parameters as an extra input.

However, explicitly inferring the dynamics parameters requires all relevant param-

eters to be identified and modeled as outputs of the system identification (PENG et al.,

2018). Furthermore, as happens with simulators, the explicit set of parameters may not

capture all the elements that influence real-world dynamics. As an alternative, the ex-

plicit system identification can be replaced by an implicit representation of the domain

dynamics.

Peng et al. (2018) implements the policy as a recurrent neural network and aug-

ments the input with the last action taken. This way, they capture the sequence of states

and actions and implicitly learn to differentiate environments by their trajectories and

choose the action taking the dynamics into account.

In order to have more control over the representation of the dynamics, Zhou, Pinto

and Gupta (2019) augments the generalizable policy with an embedding of trajectories

rather than leaving the latent representation learning for the policy network. Alongside

the embedding, an environment probing interaction policy is dedicated to exploring the

environment and collecting trajectories, similar to Liang, Saxena and Kroemer (2020).

The authors defend that collecting trajectories with a random policy may not expose nu-

ances of the environment, and using the task policy for probing is not ideal as a good task

policy may not be a helpful policy to understand the environment. This work is strongly

based on Zhou, Pinto and Gupta (2019) and builds the methodology from the original

EPI.

3.3 Summary

We can summarize the main ways in which our proposed method differs with

respect to existing algorithms as follows:

1. Some existing algorithms assume, as a black box, that the agent has direct access to
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information precisely characterizing the current environment/task with which the

agent is interacting; we, by contrast, assume that the agent needs to learn such

representations;

2. Some existing techniques try to accelerate the process of adjusting/improving a

policy, so that it can be fine-tuned to work well on a novel environment; we, by

contrast, train a single policy that generalizes to different environments or tasks.

When a new environment is encountered (or a previously-visited environment is

revisited), the policy is capable of deploying effective behaviors directly, without

requiring a re-learning process to take place;

3. Some existing techniques make use of SysID algorithms, which try to estimate

previously-unknown values of some parameters of the environment (such as the la-

tent friction with the ground). We, by contrast, do not assume that the agent knows

which parameters are unobservable, in the first place. Instead, our method learns

abstract representations of different environments based solely on trajectories col-

lected by these environment with different dynamics;

4. Other techniques do try to learn abstract representations of the latent environment/dynamics,

but do so by collecting training data in a way that is completely random. That is,

the agent does not control with which types of environments or tasks it will interact

while trying to learn a generalizable policy. We, by contrast, allow for an active

learning strategy by which the agent can actively select the tasks on which it wants

to train in order to more rapidly learn a policy that is effective over many different

tasks or settings.

5. Our method, unlike existing similar techniques (ZHOU; PINTO; GUPTA, 2019),

allows the agent to select training tasks from a continuous family of tasks. Some

of the previous, such as the EPI algorithm, on which our work is based, were only

capable of dealing with a finite, discrete number of possible variations of an envi-

ronment.
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4 PROPOSED APPROACH

In this chapter, we introduce our proposed method—Active Learning via Environ-

ment Probing Interaction Policies, or AL-EPI. This method is built upon the EPI tech-

nique, discussed in Chapter 2 (ZHOU; PINTO; GUPTA, 2019). AL-EPI is a method for

constructing generalizable policies via active selection of training tasks. AL-EPI is di-

vided into two phases: (i) training a probing policy, responsible for collecting training

data (trajectories) to more rapidly learn a network capable of mapping such trajectories to

a representation of the environment with which the agent is interacting. This corresponds

to a process that learns to characterize the latent environment with which the agent is

interacting; and (ii) deploying this model to estimate the current environment/task being

tackled by the agent, and use such information to augment the agent’s state; this effec-

tively allows the agent to learn a single task policy—a policy that generalizes across many

different tasks or environments with different dynamics. This corresponds to a process

that learns a generalizable policy via augmented states.

4.1 Learning to Characterize the Latent Environment

During the first phase of AL-EPI, the agent interacts with its environment by fol-

lowing a given (fixed) probing policy. This policy is executed until the agent collects

trajectories of up to 10 steps, which will be used to try to characterize the current un-

known environment with which the agent is interacting. More precisely, these trajectories

are given as input to an embedding network: a network that maps trajectories of states,

actions, and next states, to a latent representation of the environment’s dynamics. Notice

that because we assume that the agent does not know with which environment it is inter-

acting, this embedding network cannot be trained in a supervised manner—the agent does

not know the ground-truth environment identifier that should be associated with a given

trajectory. In order to address this challenge, AL-EPI trains the embedding network using

a proxy objective function—one that assesses the quality of the learned embeddings.

Here, we define the quality of learned embeddings as a measure of how effec-

tive they are in characterizing the underlying (unknown, unobservable) dynamics of the

current environment. More precisely, we quantify:

1. whether a learned transition model (e.g., a forward dynamics model) is more ac-
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curate when estimating the next state (s′) based only on the current state (s) and

current action (a); or

2. whether a learned transition model is more accurate when estimating the next state

(s′) based on the current action (a) and based on augmented state information; i.e., s

concatenated with the agent’s estimated representation of the environment, as given

by the embeddding network.

If the embedding network is capable of producing effective representations of the

environment, then they should help the agent to determine more accurately how the en-

vironment’s state will evolve over time—after all, the learned representation of the envi-

ronment is built precisely in order to summarize all latent/non-observable properties of

the environment, which might be required to identify the possible next states. In order

to quantify the quality of a learned embedding network, thus, we learn forward dynamics

models using two types of models: one that only uses information about states and actions

as input, and one that uses information about actions and about the the augmented state,

as described above. The first model, f , is a traditional forward dynamics predictor: the

input is an action at and a state st, and f(st, at) is used to predict the next state, st+1. The

second model, fepi , receives as input the action at and the state, st, augmented with an

embedding produced by the embedding network—where the embedding network is given

as input a trajectory sampled from the current environment. The actions and states used

to train f and fepi are sampled from a dataset of transitions, Dtransitions, which is con-

structed offline, before training, by collecting annotated transition tuples from different

environments.

To compute the performance of a given embedding network, then, both prediction

models are given as input a same state-action pair, with fepi also receiving the trajectory

embedding information produced by the embedding network. Then, the next state pre-

dicted by each model is compared with the actual next state. This allows us to compute

the Mean Squared Error of each model—this will be the loss function we wish to mini-

mize. Finally, given the MSE loss of each model, we define the quality of an embedding

by quantifying how much better the performance of fepi (the predictor that received the

embedding information) is compared to f (the standard forward dynamics predictor that

only analyzes states and actions). The difference between the loss of the two predictors

indicates how helpful the embedding was in fully characterizing the dynamics of the (un-

known) environment. The difference between these losses—which can be seen as a type

of information gain resulting from the use of trajectory embeddings to estimate an ac-
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curate forward model—is then use to train the embedding network1. This is done using

standard backpropagation. The overall process is depicted in Figure 4.1.

Figure 4.1: Diagram depicting the process of training the embedding network.
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Notice, importantly, that for the embedding network to produce meaningful em-

beddings, it needs to be given trajectories that are representative of the current environ-

ment being tackled by the agent. These trajectories, as previously mentioned, are col-

lected by running a probing policy. We propose training this probing policy, so that it can

actively decide which actions to taken in a given environment, in order to collect trajec-

tories of states and actions that are more useful to characterize the current environment’s

dynamics. In order to train this policy, we define a reward function that corresponds to

the original reward function of the current task, but where we add the information gain

mentioned above—the quality of the current embeddings—as a type of reward bonus.

In other words: if the probing policy is producing experiences/trajectories that help the

embedding network to better characterize the environment, then the probing policy’s be-

havior is rewarded more strongly. This results, effectively, in an adaptive probing policy

that better determines how the agent should interact with a given novel, unknown envi-

ronment, in order to more rapidly characterize its dynamics. The training process—which

adapts both the embedding network and the probing policy—continues until the probing

policy and the embedding encoder converge. The overall process of using the predic-

1To ensure that the embeddings associated with different environments are sufficiently spaced apart—
i.e., that the trajectories from environments with different dynamics are mapped to sufficiently different
embeddings, the embedding network has a regularization-separation loss. This loss penalizes the network
whenever it produces similar embeddings for trajectories arising from different tasks/environments.
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tion model losses to augment the reward of the probing policy, thus resulting in a more

effective/informative trajectory-collecting mechanism, is depicted in Figure 4.2.

Figure 4.2: Diagram depicting the process of training the probing policy.Research Interests
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4.2 Actively Learning a Generalizable Policy via Augmented States

In the second phase of AL-EPI, a task policy is trained—a single policy that gen-

eralizes across many tasks. The forward dynamics predictors are discarded, and we keep

only the embedding network and the learned probing policy. In order to learn a task pol-

icy, the agent will select a task/environment on which to train; execute the probing policy

to collect a trajectory from the environment; provide that trajectory as input to the embed-

ding network; and use this embedding to augment the state provided to the task policy,

so that the agent can make decisions based not only on usual state information, but also

based on its learned representation of the latent environment2. This process is depicted in

Figure 4.3.

In order to reduce the number of interactions with the environment that are needed

2Notice that this same process is used after the task policy is learned in simulation, and when it gets
deployed in the real world. In that case, when the task policy is deployed in order to solve a novel, unknown
task, the agent—as usual—executes its probing policy to collect a sample trajectory from the unknown en-
vironment; the resulting trajectory is passed to the embedding network to infer the environment’s represen-
tation; and this representation is used to augment the state information given to the previously-learned task
policy. Notice, then, that during deployment time, the only additional step that is required to run generaliz-
able policy it to collect a small trajectory from the new environment, in order to estimate its representation
as given by the embedding network.
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Figure 4.3: Diagram depicting the use of a trained embedding network to compute outputs
(representations/estimates of the current environment/task being tackled by the agent) in
order to augment the state given to the generalizable policy over tasks.
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to learn the probing policy, AL-EPI modifies the training to allow the agent to make in-

formed decisions about which environment to explore next. We hypothesize that actively

deciding on which tasks to train at each moment in time, to more rapidly learn a policy that

generalizes well, is a more effective strategy than randomly selecting training tasks—as

was done in the original EPI method (ZHOU; PINTO; GUPTA, 2019).

We model this as an active learning problem. Here, the agent first constructs a

model of expected performance of the probing policy across different tasks, along with

its uncertainty about those predictions. Then, it chooses to train next on the task with the

lowest predicted performance. This is determined by computing a lower confidence bound

on the expected performance of the probing policy over the possible tasks. Intuitively, this

results in a mechanism that incentivizes the agent to practice on tasks for which its task

policy—the policy that generalizes across different problems—does not yet perform well.

In order to construct a model of expected performance of the probing policy across

different tasks, we use Gaussian Process Regression (GPR; see Section 2 for more details).

The inputs to GPR correspond to the parameters of a given candidate task on which the

agent may choose to practice. The output of the GPR model corresponds to the prediction

of the mean performance of the probing policy on each task, along with the uncertainty

associated with those predictions. Recall that the performance of the probing policy on

a given problem is defined as the original reward produced by the environment (which

we refer to as task reward), plus a bonus reward reflecting how useful the trajectories

collected by that policy were in terms of properly characterizing the unknown environ-

ment dynamics. In other words: the model above can be used to quantify how “useful”

each candidate task is for the agent, in terms of the information it provides for improving

the agent’s representation of the dynamics of the different tasks it may face. By actively
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selecting tasks this way, the agent effectively learns better representations of different en-

vironments, and, thus, better augmented state representations to provide to the task policy.

When provided with this more complete information about the state and the current envi-

ronment, the task policy becomes more capable of selecting an appropriate behaviors that

take into account not only the current state of the agent, but also on the agent’s learned

representation of the current (unknown) environment it is facing. This helps the agent

to more rapidly acquire a policy that is effective in generalizing across diferent tasks, or

environments with different dynamics.

As previously mentioned, we construct the model of expected performance of the

probing policy across different tasks using Gaussian Process Regression. The uncertainty

estimates provided by GPR are useful because they indicate regions of the task space that

have not yet been properly explored by the agent. When a new task is selected (and the

agent trains on that task), its uncertainty about the probing policy’s performance on that

environment—and on surrounding environment, with similar dynamics–is reduced. This

allows the agent to dynamically explore regions of the task space based on how informa-

tive they are to the construction of an effective input representation for the generalizable

policy.

Notice that the original EPI method was only capable of operating over discrete

task spaces. Since GPR performs regression over functions with continuous inputs (i.e.,

tasks described by continuous parameters, in the context of our work), our method can

naturally deal with the actively learning problem even when the agent might face an in-

finite number of possible environments3. This—combined with the active task selection

mechanisitself—is an important contribution of our method over the originally-proposed

EPI technique.

By constructing AL-EPI in a way that supports the active selection of tasks de-

scribed by continuous parameters, applying GPR becomes possible. At each iteration,

AL-EPI selects a task to practice (more details on the acquisition function used in this

step are provided later). It then collects sample trajectories from this task, by execut-

3In order to adapt the previously-mentioned separation loss to the case of infinite tasks, a few adaptations
are needed. Informally, we discretize task parameters and assign tasks to discrete bins in order to ensure
proper embedding separation. Notice that this discretization process is only needed to regularize the training
process of the embedding network; it does not affect the capability of the agent of searching over an infinite
space of candidate tasks to select the most promissing one on which to train next. Other minor changes
to the way EPI works are needed to support the new setting where an infinite number of tasks exist. For
instance, in the original EPI, a transitions dataset was collected offline, prior to the training process. This is
no longer possible now since the agent is actively selecting tasks on-the-fly—and thus collecting trajectories
from those tasks online, on-demand.
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ing the probing policy; the probing policy is updated based on the augmented reward

function described previously. Recall that the objective of GPR, in this case, it to model

the performance of the probing policy across different tasks. Notice, however, that as

the agent’s generalizable policy improves, the performance of the probing policy also

changes—which means that the GPR model will need to track/model a non-stationary

performance function. Different strategies have been proposed to adapt GPR to settings

where the function being modeled is non-stationary. In this work, we simply apply a slid-

ing window over the training set used by the Gaussian Process. Recent performance data

about the probing policy is maintained, and all observations older than a given threshold

are discarded in a FIFO order.

Two final design decisions need to be made when using GPR in our setting.

The first decision is regarding which kernel function to use. This is a key decision

because the kernel function encodes the mechanism that quantifies how similar differ-

ent tasks/environments are based on their parameters. The GPR model will predict that

the probing policy’s performance will be similar in case environments are deemed to be

similar—consider, e.g., a robot learning to balance under two similar values of gravity.

The GP kernel of choice for the domain we explore in Chapter 5 is the RBF kernel. This

is a Gaussian kernel that has been empirically shown to be appropriate over a wide range

of practical problems. It has hyper-parameters that allow a designer to control, e.g., the

smoothness of the function being estimated.

The second design decision that needs to be made when using GPR in our setting

relates to which acquisition function to use when actively sampling tasks on which to

practice. This choice will inform the sampling and exploration strategy employed by the

agent, while learning a policy that generalizes across different tasks. In this work, we

used a Lower Confidence Bound acquisition function. This function analyzes the mean

performance predicted by the GPR model for different tasks, as well as its uncertainty

about said predictions, and identifies the task with the lowest confidence bound on its

performance. Intuitively, this results in a mechanism that incentivizes the agent to practice

on tasks for which its task policy—the policy that generalizes across different problems—

does not yet perform well. Fig. 4.4 shows the acquisition function, alongside the trained

Gaussian Process Regression model, evolving over time as the agent actively selects tasks

to train on. Here, the dashed green line represents the mean predicted performance of the

probing policy across different tasks. The shaded green region represents the uncertainty

of the GPR model about those predictions. Red points indicate tasks on which the agent
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has already practiced, and whose measured performances are used as training set for the

Gaussian Process. The Lower Confidence Bound acquisition function is shown as the

blue curve. Notice that the most promising point, at each iteration, as identified by the

acquisition function, corresponds to the task practiced by the agent at the subsequent

iteration of the algorithm. This demonstrates how AL-EPI uses the GPR model (and its

uncertainty estimates) to identify the most relevant tasks to practice on—thus resulting in

the above mentioned active learning process for collecting data to train a generalizable

policy.

Figure 4.4: A depiction of the GPR model being updated as the agent trains on different
tasks, as well as the corresponding acquisition function at each moment in time.

Source: The authors

Notice that the active learning process described above allows the agent to collect

data about one task/environment at a time—always the task that seems the most promising

according to the GPR acquisition function. If we were to sample multiple tasks at once

(i.e., by selecting the top N most promising tasks, and to practice them all in parallel), the

resulting behavior would approximate—for large values of N—a near-random selection

of training tasks. This would accelerate learning from a computational point of view, but

would hinder our objective of improving sampling efficiency in terms of the number of

interactions between the agent and the environment.

In this chapter we have described how AL-EPI can (i) learn a model capable of
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mapping trajectories collected from a given environment (with some type of unknown/unobservable

dynamics) to a representation of said environment; (ii) use the estimated representation of

the current environment to augment the agent’s state, thus allowing the agent to learn a sin-

gle policy that generalizes across many different tasks; and (iii) actively train the above-

mentioned models. In other words, we have introduce a technique by which the agent can

autonomously decide (in simulation) with which types of environments/tasks/dynamics

it wishes to interact to more rapidly learn a generalizable policy. In the next chapter,

we evaluate its behavior and performance when tasked with learning a single policy that

generalizes across a family of continuous control tasks.



32

5 EXPERIMENTS

This chapter discusses the experiments performed to compare and understand the

differences between the behavior of our proposed method (AL-EPI) and the original, dis-

cretized, passive-learner version of EPI.

5.1 Setting

All experiments were executed in the inverted pendulum environment from Ope-

nAI Gym (BROCKMAN et al., 2016). The pendulum domain is a toy problem modeling

motorized rod with one a fixed end, as shown in Figure 5.1. The goal is to swing the rod

to the upright position and maintain it balanced. The rod starts in a random state/position,

described by the pendulum angle and speed; actions correspond to the torques applied to

the rod, and are continuous values between [−2,+2].

Figure 5.1: The Pendulum domain.

Source: OpenAI Gym (BROCKMAN et al., 2016)

To evaluate the capability of EPI and AL-EPI to learn generalizable policies, we

defined a set of related but different tasks/environments within the pendulum setting, by

varying a single dynamics parameter: the length of the rod. This directly influences the

environment’s transition dynamics. An agent tasked with controlling a longer pendulum,

e.g., may have to learn to swing back and forth a few times to gain enough momentum,

prior to being able to reach the upright position. By contrast, an agent tasked with con-

trolling a short rod may be able to continuously apply torque in the same direction and

reach the upright position with a single continuous motion.
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5.2 Training Generalizable Policies Under a Budget

The pendulum domain has an important property. If the agent practices, first, on

a more challenging environment (say, on longer rods), its generalizable policy will most

likely be capable of controlling shorter pendulums. To make the learning problem more

challenging and properly emphasize the advantages of actively learning training tasks, we

modify the learning setting and add a budget—a maximum number of training iterations

during which the generalizable policy will be allowed to train on any one task. For the

following experiments, we set the budget in a way that the only way for the agent to

learn to control challenging pendulums is for it to deploy a carefully constructed learning

curriculum, where it first practices easier versions of the problem. If the agent were to

training tasks uniformly at random, by contrast, it could end up “wasting” time trying to

solve complex variations of the environment, while not having had previous experience

in simpler pendulum-control settings.

To calibrate the training budget, we trained the agent to learn (from scratch) to

control pendulums with different lengths. By observing the resulting learning curves, we

then defined the budget to be the average number of iterations required for the agent’s

policy to converge for the 2-meter pendulum. This ensures that if the agent were to train

tasks randomly (e.g., by selecting longer pendulums at first), it would fail often, since the

learning process would timeout. Thus, the agent would end up interacting many times

with the environment—thus incurring risks and various costs associated with training—

while not significantly improving its generalizable policy. This, as previously argued,

ensures that the only way for the agent to learn to control challenging pendulums is for

it to carefully and actively choose an appropriate order on which to practice tasks. In

particular, the agent will only master more complex versions of the pendulum control

domain if it first practices on easier versions of the problem.
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Figure 5.2: Learning curves used to identify a training budget. The horizontal axis shows
the number of training iterations and the vertical axis shows the cumulate reward of the
learned policy. The vertical dashed red line shows the identified budget/cutoff. This
is the number of iterations that allows the agent to learn effective policies for simpler
pendulums (with length equal to or smaller than 2 meters), but that is insufficient for the
agent to directly learn (from scratch) to solve more challenging varitions of this problem.

Source: The authors

After identifying a proper training budget, we proceeded to investigate how in-

formative the learned embeddings may be as a function of the number of interactions

between the agent and the environment. For this experiment, we set a series of sample

thresholds as checkpoints during the training of the probing policy and the embedding

network. The lowest amount of samples in figure 5.3 — 600 for AL-EPI and 7400 for

EPI — is given by the first checkpoint in which each method was able to save the models.

The original EPI method and our method (AL-EPI) differ only in the training pro-

cess of the probing policy and the embedding network—our method actively selects on

which task to practice at each iteration. After EPI and AL-EPI learn a probing policy and

an embedding network, both methods discard the learned transition dynamics predictors

(f and fepi ). Both methods, then, when tasked with tackling a novel and unknown en-

vironment, first collect sample trajectories from that environment; use them along with

the trained embedding network to construct/estimate a representation of the latent envi-

ronment; and use that representation/embedding to augment the state vector provided as
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Figure 5.3: Performance of the generalizable policy learned by EPI and AL-EPI as a
function of the number of samples.

Source: The authors

input to the task policy. Figure 5.3 shows the performance of the generalizable policy

learned by EPI and AL-EPI as a function of the number of samples; i.e., interactions be-

tween the agent and its environment. All learning curves overlapped unless for AL-EPI

with 600 samples, which was not enough for the generalizable policy to converge as with

the other embeddings. The generalizable policy trained using the embedding learned by

AL-EPI with 2700 samples already converged similarly to the embeddings with more

interactions with the environment.

5.3 Results

After using EPI and AL-EPI to learn a generalizable policy (i.e., a task policy),

we evaluated their performances when used to solve tasks corresponding to pendulums

whose rod lengths were drawn from three different ranges, as depicted in Table 5.1. The

goal of this experiment is to evaluate whether the embeddings learned by EPI (a method

that selects training tasks completely at random) and AL-EPI (our method, which actively

selects training tasks) would be effective in learning a task policy that could generalize

across pendulums of different difficulties.
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Table 5.1: Pendulum lengths used when evaluating the generalizable policies learned by
EPI and AL-EPI.

Short Medium Long

Length range (meters) 0.5 to 1.3 2.5 to 3.7 4.9 to 6

We show the results of this experiment in Figure 5.4. The horizontal axis shows

the number of samples (interactions between the agent and its environment), and the ver-

tical axis shows the performance of the learned generalizable policy over pendulums of

differents lenghts (short, medium, and long). Notice that we chose to compare the algo-

rithms’ performances as a function of the number of collected samples, instead of as a

function of the number of iterations. That was done because the meaning of “iteration”

is different for EPI and AL-EPI. While AL-EPI samples and explores only one selected

task/environment per iteration (thus collecting a small number of trajectories from it),

the original discretized EPI algorithm collects data—in parallel—from dozens of envi-

ronments at each iteration. As a result, EPI requires fewer iterations to explore many

different environments, but such a metric (number of iterations) masks the fact that, while

exploring a large number of environments, in parallel, during one iteration, EPI actually

requires a significantly larger number of agent-environment interactions than AL-EPI.

By analyzing Figure 5.4, one can observe the advantage of our method. In par-

ticular, notice that AL-EPI masters short pendulums (i.e., achieves a performance of ap-

proximately -1500 units of reward) after about 2000 samples. The original EPI algorithm,

by contrast, requires between 7400 and 12,400 samples to achieve the same level of per-

formance. Similar observations can be made when we evaluate the generalizable policies

learned by EPI and AL-EPI on medium and long pendulums. In particular, given a desired

level of performance (i.e., cumulative reward), AL-EPI is always capable of achieving it

by using approximately three times fewer samples than the original EPI algorithm. This

confirms our hypothesis that AL-EPI, coupled with GPR and an acquisition function, is

capable of carefully and actively selecting the most promising tasks to practice on, in

order to more rapidly learn a generalizable policy.
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Figure 5.4: Performance of the generalizable policy learned by EPI and AL-EPI on do-
mains corresponding to pendulum with different rod lengths.

Source: The authors
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6 CONCLUSION

In this work we introduced a new method (AL-EPI) for learning generalizable poli-

cies that are robust to variations in an environment’s dynamics. The proposed algorithm

is based on constructing a model capable of learning a representation that characterizes

the unknown dynamics of novel environments with which the agent may need to inter-

act. Such a representation is then used to augment the agent’s state, thus allowing it to

learn a single generalizable policy that encodes adjustable behaviors that depend not only

on the agent’s state, but also on its estimate of the latent dynamics of the environment

it is currently tackling. Our algorithm also extends the state-of-the-art by allowing the

agent to reason about which tasks to practice next by considering an infinite space of

candidate tasks, instead of finite, discrete tasks spaces, as done in previous techniques

(ZHOU; PINTO; GUPTA, 2019). Finally, our proposed method makes use of Gaussian

Process Regression and acquisition functions—used, here, to compute lower confidence

bounds on the performance of a policy across different tasks—in order to identify the

most promising tasks on which to practice next. These contributions allow AL-EPI to to

work on continuous domains and add an informed sampling component to actively direct

the domain randomization, thereby reducing the amount of data required to learn effective

generalizable policies.

There are many future search directions we find interesting. First, our proposed

method was tested in a toy environment. A next step would be to evaluate its perfor-

mance on different, more complex domains. Furthermore, we believe that other types of

kernel functions may be constructed for use with GPR, in the context of our method’s

objective, in order to exploit domain knowledge about how to quantify the similarity be-

tween tasks/MDPs. Similarly, we also believe that acquisition functions other than Lower

Confidence Bound may be used and would result in qualitatively different exploration

strategies. One promising acquisition function of interest, which has been explored in the

context of intrinsic motivation algorithms in RL, is the competence improvement acquisi-

tion function. This function would guide the agent not to practice on tasks on which its

policy does not yet perform well; instead, it would guide the agent to practice on tasks in

which it is making faster learning progress. Finally, we also highlight the challenge of

deploying GPR on non-stationary functions. In this work, we used a simple strategy for

disposing of old observations. A more principled approach may be able to retain older

(but still relevant) observations instead of “blindly” discarding all older experiences.
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