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ABSTRACT

Resonant controllers are introduced to fulfil the increased demand for controllers ca-
pable to follow or reject periodic signals with superior performance than conventional
PID ones. The main characteristic of these controllers is the infinite gain in the frequency
of interest, which can lead to stability problems and makes their tuning more complex.
This work presents the computation of resonant controllers parameters based on a fre-
quency response method, using stability margins and sensitivity functions as indicators of
performance and stability for the controlled system. In addition, the combination with a
phase-lead compensator is proposed to allow better performance in an augmented band-
width. The method is extended for multiple frequency modes in order to deal with higher
harmonic content, resulting in the multi-resonant controller. The proposed method is tested
using different classes of processes found in typical control problems in order to illustrate
its wide applicability.

Keywords: Resonant controllers, frequency response, periodic signals, phase-lead
compensators, proportional resonant controllers, proportional multi-resonant con-
trollers.



RESUMO

Controladores ressonantes são introduzidos para atender à demanda crescente por
controladores capazes de seguir ou rejeitar sinais periódicos com desempenho superior ao
dos controladores PID convencionais. A principal característica destes controladores é o
ganho infinito na frequência de interesse, o que pode levar a problemas de estabilidade e
torna o seu projeto e sintonia mais complexos. Este trabalho apresenta um método para a
sintonia dos parâmetros de controladores ressonantes baseada em um método de resposta
em frequência, usando as margens de estabilidade e as funções sensibilidade como indica-
dores de desempenho e estabilidade para o sistema controlado. Além disso, a combinação
com um compensador de avanço de fase é proposta para possibilitar desempenho superior
em uma maior largura de banda. O método é então estendido para múltiplos modos de
frequência a fim de considerar sinais de referência ou perturbação com maior conteúdo
harmônico, resultando no controlador multirressonante. O método proposto é testado
usando diferentes classes de processos encontrados em problemas típicos de controle para
demonstrar sua vasta aplicabilidade.

Palavras-chave: controlador ressonante, resposta em frequência, sinais periódicos,
compensador de avanço de fase, controlador proporcional ressonante, controlador
proporcional multirressonante.



LIST OF FIGURES

Figure 1 – Block diagram of the closed-loop system . . . . . . . . . . . . . . . 21
Figure 2 – Bode plot of transfer function Gr(s). . . . . . . . . . . . . . . . . . 23
Figure 3 – Bode plot of a multi-resonant controller with ωr = 1 rad/s and its

odd multiples up to N = 11. . . . . . . . . . . . . . . . . . . . . . . 24
Figure 4 – Graphical interpretation of the value of Ms . . . . . . . . . . . . . . 27
Figure 5 – Bode plots of processes G1(s). . . . . . . . . . . . . . . . . . . . . . 29
Figure 6 – Bode plots of processes G2(s). . . . . . . . . . . . . . . . . . . . . . 29
Figure 7 – Bode plots of processes G3(s). . . . . . . . . . . . . . . . . . . . . . 30
Figure 8 – Bode plots of processes G4(s). . . . . . . . . . . . . . . . . . . . . . 30
Figure 9 – Bode plots of processes G5(s). . . . . . . . . . . . . . . . . . . . . . 31
Figure 10 – Bode plots of processes G6(s). . . . . . . . . . . . . . . . . . . . . . 31
Figure 11 – Bode plot of the controller CPR(s) with ωr = 0.43 rad/s and kp =

0.3888 for different values of kr1 . . . . . . . . . . . . . . . . . . . . 35
Figure 12 – Bode plot of the controller CPR(s) with ωr = 5 rad/s and kp = 1 and

kr1 = 2.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Figure 13 – Closed-loop normalized output signal for process G1(s) with n = 3. . 40
Figure 14 – Closed-loop normalized output signal for process G2(s) with T = 0.1. 41
Figure 15 – Closed-loop normalized output signal for process G3(s) with α = 0.1. 42
Figure 16 – Closed-loop normalized output signal for process G4(s) with α = 0.1. 43
Figure 17 – Closed-loop normalized output signal for process G5(s) with α = 0.1. 44
Figure 18 – Closed-loop normalized output signal for process G6(s) with α = 0.1. 45
Figure 19 – Bode plot of phase-lead compensator Clead(s) with maximum phase

contribution φm = 55◦ at frequency ωm = 1.73rad/s. . . . . . . . . 48
Figure 20 – Bode plot of CPR(s)G3(s) and CPR+lead(s)G3(s) with φm = 55◦ at

frequency ωu for ωr = 0.5ωu. . . . . . . . . . . . . . . . . . . . . . 50
Figure 21 – Closed-loop normalized output signal for process G1(s) with n = 3,

for PR+lead compensator. . . . . . . . . . . . . . . . . . . . . . . . 52
Figure 22 – Closed-loop normalized output signal for process G2(s) with T = 0.1,

for PR+lead compensator. . . . . . . . . . . . . . . . . . . . . . . . 53
Figure 23 – Closed-loop normalized output signal for process G3(s) with α = 0.1,

for PR+lead compensator. . . . . . . . . . . . . . . . . . . . . . . . 54
Figure 24 – Closed-loop normalized output signal for process G5(s) with α = 0.9,

for PR+lead compensator. . . . . . . . . . . . . . . . . . . . . . . . 54
Figure 25 – Closed-loop normalized output signal for process G6(s) with α = 0.1,

for PR+lead compensator. . . . . . . . . . . . . . . . . . . . . . . . 55
Figure 26 – Normalized signals r(t) and d(t). . . . . . . . . . . . . . . . . . . . 58



Figure 27 – Comparison of normalized output signals of process G1(s) with n = 3
subject to disturbance d(t) for ωr = 0.1ωu using PR and PR+lead
controllers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Figure 28 – Comparison of normalized output signals of process G2(s) with T =
0.1 subject to disturbance d(t) for ωr = 0.1ωu using PR and PR+lead
controllers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Figure 29 – Comparison of normalized output signals of process G3(s) with α =
0.1 subject to disturbance d(t) for ωr = 0.1ωu using PR and PR+lead
controllers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Figure 30 – Bode plot of series and parallel topologies of PMR controllerCPMR(jω)
with kpmr = 1, ωr = 1 rad/s, φωr1 = −30◦, φωrm = −5◦ and odd
harmonic frequency modes up to N = 11. . . . . . . . . . . . . . . . 62

Figure 31 – Block diagram of the series topology of the PMR controller. . . . . . 62
Figure 32 – Block diagram of the parallel topology of the PMR controller. . . . . 62
Figure 33 – Normalized signals r(t) and d(t) consideringH = {1, 3, 5, 7, 9, 11}. . 69
Figure 34 – Bode plots of the pre-compensated system Clead(s)G1(s) with n = 3,

for which ωuc = 3.88 rad/s and Muc = −40.8 dB, and of the system
CPMRs(s)Clead(s)G1(s). . . . . . . . . . . . . . . . . . . . . . . . . 70

Figure 35 – Closed-loop normalized output signal for process G1(s) with n = 3,
for the series topology of the PMR controller with odd multiples of ωr

up to 11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Figure 36 – Closed-loop normalized output signal for process G2(s) with T = 0.1,

for the series topology of the PMR controller with odd multiples of ωr

up to 11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Figure 37 – Closed-loop normalized output signal for process G3(s) with α = 0.1,

for the series topology of the PMR controller with odd multiples of ωr

up to 11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Figure 38 – Closed-loop normalized output signal for process G4(s) with α = 0.1,

for the series topology of the PMR controller with odd multiples of ωr

up to 11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Figure 39 – Closed-loop normalized output signal for process G5(s) with α = 0.1,

for the series topology of the PMR controller with odd multiples of ωr

up to 11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Figure 40 – Closed-loop normalized output signal for process G6(s) with α = 0.1,

for the series topology of the PMR controller with odd multiples of ωr

up to 11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Figure 41 – Bode plots of the pre-compensated system Clead(s)G1(s) with n = 3,

for which ωuc = 3.88 rad/s and Muc = −40.8 dB, and of the system
CPMRp(s)Clead(s)G1(s). . . . . . . . . . . . . . . . . . . . . . . . . 78

Figure 42 – Closed-loop normalized output signal for process G1(s) with n = 3,
for the parallel topology of the PMR controller with odd multiples of
ωr up to 11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Figure 43 – Closed-loop normalized output signal for process G2(s) with T = 0.1,
for the parallel topology of the PMR controller with odd multiples of
ωr up to 11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Figure 44 – Closed-loop normalized output signal for process G3(s) with α = 0.1,
for the parallel topology of the PMR controller with odd multiples of
ωr up to 11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82



Figure 45 – Closed-loop normalized output signal for process G4(s) with α = 0.1,
for the parallel topology of the PMR controller with odd multiples of
ωr up to 11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Figure 46 – Closed-loop normalized output signal for process G5(s) with α = 0.1,
for the parallel topology of the PMR controller with odd multiples of
ωr up to 11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Figure 47 – Closed-loop normalized output signal for process G6(s) with α = 0.1,
for the parallel topology of the PMR controller with odd multiples of
ωr up to 11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Figure 48 – Normalized signals r(t) and d(t). . . . . . . . . . . . . . . . . . . . 87
Figure 49 – Comparison of normalized output signals of process G1(s) with n = 3

subject to disturbance d(t) for PMR controller with odd multiples of
ωr up to m. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Figure 50 – Comparison of normalized output signals of process G2(s) with T =
0.1 subject to disturbance d(t) for PMR controller with odd multiples
of ωr up to m. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Figure 51 – Comparison of normalized output signals of process G3(s) with α =
0.1 subject to disturbance d(t) for PMR controller with odd multiples
of ωr up to m. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90



LIST OF TABLES

Table 1 – Tuning parameters and performance indicators for the closed-loop
system of G1(s) with n = 3 and different values of ωr. . . . . . . . . 40

Table 2 – Tuning parameters and performance indicators for the closed-loop
system of G2(s) with T = 0.1 and different values of ωr. . . . . . . . 41

Table 3 – Tuning parameters and performance indicators for the closed-loop
system of G3(s) with α = 0.1 and different values of ωr. . . . . . . . 42

Table 4 – Tuning parameters and performance indicators for the closed-loop
system of G4(s) with α = 0.1 and different values of ωr. . . . . . . . 43

Table 5 – Tuning parameters and performance indicators for the closed-loop
system of G5(s) with α = 0.1 and different values of ωr. . . . . . . . 44

Table 6 – Tuning parameters and performance indicators for the closed-loop
system of G6(s) with α = 0.1 and different values of ωr. . . . . . . . 45

Table 7 – Tuning parameters and performance indicators for the closed-loop
system of G1(s) with n = 3 and different values of ωr for PR+lead
compensator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Table 8 – Tuning parameters and performance indicators for the closed-loop
system of G2(s) with T = 0.1 and different values of ωr for PR+lead
compensator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Table 9 – Tuning parameters and performance indicators for the closed-loop
system of G3(s) with α = 0.1 and different values of ωr for PR+lead
compensator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Table 10 – Tuning parameters and performance indicators for the closed-loop
system of G5(s) with α = 0.9 and different values of ωr for PR+lead
compensator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Table 11 – Tuning parameters and performance indicators for the closed-loop
system of G6(s) with α = 0.1 and different values of ωr for PR+lead
compensator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Table 12 – Performance indicators for the closed-loop system of G1(s) with
n = 3 and different values of ωr subject to disturbance d(t) . . . . . . 57

Table 13 – Performance indicators for the closed-loop system of G2(s) with
T = 0.1 and different values of ωr subject to disturbance d(t) . . . . 57

Table 14 – Performance indicators for the closed-loop system of G3(s) with
α = 0.1 and different values of ωr subject to disturbance d(t) . . . . 59

Table 15 – Tuning parameters kr1m and kr2m for the process G1(s) with n = 3
and the series topology of PMR controller with frequency modes up
to N = 11. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71



Table 16 – Tuning parameters and performance indicators for the closed-loop
system of G1(s) with n = 3 and odd multiples of ωr up to N for the
series topology of the PMR controller. . . . . . . . . . . . . . . . . . 72

Table 17 – Tuning parameters and performance indicators for the closed-loop
system of G2(s) with T = 0.1 and odd multiples of ωr up to N for
the series topology of the PMR controller. . . . . . . . . . . . . . . . 73

Table 18 – Tuning parameters and performance indicators for the closed-loop
system of G3(s) with α = 0.1 and odd multiples of ωr up to N for the
series topology of the PMR controller. . . . . . . . . . . . . . . . . . 74

Table 19 – Tuning parameters and performance indicators for the closed-loop
system of G4(s) with α = 0.1 and odd multiples of ωr up to N for the
series topology of the PMR controller. . . . . . . . . . . . . . . . . . 75

Table 20 – Tuning parameters and performance indicators for the closed-loop
system of G5(s) with α = 0.1 and odd multiples of ωr up to N for the
series topology of the PMR controller. . . . . . . . . . . . . . . . . . 76

Table 21 – Tuning parameters and performance indicators for the closed-loop
system of G6(s) with α = 0.1 and odd multiples of ωr up to N for the
series topology of the PMR controller. . . . . . . . . . . . . . . . . . 77

Table 22 – Tuning parameters kr1m for the process G1(s) with n = 3 and the
parallel topology of PMR controller with frequency modes up toN = 11. 79

Table 23 – Tuning parameters and performance indicators for the closed-loop
system of G1(s) with n = 3 and odd multiples of ωr up to N for the
parallel topology of the PMR controller. . . . . . . . . . . . . . . . . 80

Table 24 – Tuning parameters and performance indicators for the closed-loop
system of G2(s) with T = 0.1 and odd multiples of ωr up to N for
the parallel topology of the PMR controller. . . . . . . . . . . . . . . 81

Table 25 – Tuning parameters and performance indicators for the closed-loop
system of G3(s) with α = 0.1 and odd multiples of ωr up to N for the
parallel topology of the PMR controller. . . . . . . . . . . . . . . . . 82

Table 26 – Tuning parameters and performance indicators for the closed-loop
system of G4(s) with α = 0.1 and odd multiples of ωr up to N for the
parallel topology of the PMR controller. . . . . . . . . . . . . . . . . 83

Table 27 – Tuning parameters and performance indicators for the closed-loop
system of G5(s) with α = 0.1 and odd multiples of ωr up to N for the
parallel topology of the PMR controller. . . . . . . . . . . . . . . . . 84

Table 28 – Tuning parameters and performance indicators for the closed-loop
system of G6(s) with α = 0.1 and odd multiples of ωr up to N for the
parallel topology of the PMR controller. . . . . . . . . . . . . . . . . 85

Table 29 – Performance indicators for the closed-loop system of G1(s) with
n = 3 and different orders of the PMR controller subject to disturbance
d(t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Table 30 – Performance indicators for the closed-loop system of G2(s) with T =
0.1 and different orders of the PMR controller subject to disturbance
d(t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Table 31 – Performance indicators for the closed-loop system of G3(s) with α =
0.1 and different orders of the PMR controller subject to disturbance
d(t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89



LIST OF ABBREVIATIONS

ABNT Associação Brasileira de Normas Técnicas

AC Alternate Current

BIBO Bounded Input - Bounded Output

DC Direct Current

IMP Internal Model Principle

LMI Linear Matrix Inequality

PID Proportional-Integral-Derivative

PMR Proportional Multi-Resonant

PPGEE Programa de Pós-Graduação em Engenharia Elétrica

PR Proportional Resonant

RMS Root Mean Square

THD Total Harmonic Distortion

UFRGS Universidade Federal do Rio Grande do Sul

UPS Uninterruptible Power Supply



LIST OF SYMBOLS

∑
Sum

j Imaginary unit number
√
−1

kp Proportional gain of the controller

kr Resonant gain of the controller

ω Angular frequency variable

ωr Fundamental frequency of interest

ωmr Multiple m of the fundamental frequency

ωm Centre frequency of phase-lead compensator, at which the maximum amount of
phase is added

ωu Ultimate frequency, i.e. the frequency for which the phase of the system crosses
−180◦

ε Tolerance value for the steady-state error

Ms Peak of sensitivity function

Mt Peak of complementary sensitivity function

Mu Plant magnitude gain at the ultimate frequency ωu

Mr Plant magnitude at the fundamental frequency ωr

MO% Maximum percent overshoot

ns Settling time in number of cycles

ts Settling time

φωr Phase contribution of the controller at frequency ωr

φωrm Phase contribution of the controller at frequencies ωmr

φωm Maximum phase contribution of the phase-lead compensator that occurs at fre-
quency ωm

PM Phase margin

GM Gain margin

S(s) Sensitivity function

T (s) Complementary sensitivity function



CPR PR controller

Clead Phase-lead Compensator

CPMR PMR controller

G Plant or process to be controlled

s Complex frequency variable

r(t) Reference signal

y(t) Output signal

u(t) Control signal

d(t) Disturbance signal

A Amplitude of the reference signal



CONTENTS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.1 Dissertation Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.2 Publication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.3 Dissertation Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2 FUNDAMENTAL CONCEPTS . . . . . . . . . . . . . . . . . . . . . . . 21
2.1 Resonant Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2 Performance Indices for Periodic Signals . . . . . . . . . . . . . . . . . . 24
2.3 Stability and Performance Measures . . . . . . . . . . . . . . . . . . . . 25
2.4 Classes of Processes for Performance Assessment . . . . . . . . . . . . . 28
2.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3 PROPORTIONAL RESONANT CONTROLLER . . . . . . . . . . . . . 33
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2 The Proportional Resonant Structure . . . . . . . . . . . . . . . . . . . 33
3.3 Tuning of PR Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3.1 Plants with Ultimate Frequency . . . . . . . . . . . . . . . . . . . . . . . 36
3.3.2 Plants without Ultimate Frequency . . . . . . . . . . . . . . . . . . . . . 37
3.4 Simulation Results for PR Controller . . . . . . . . . . . . . . . . . . . . 39
3.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4 PR+LEAD COMPENSATOR . . . . . . . . . . . . . . . . . . . . . . . . 47
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2 Phase-lead Compensator . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.3 Tuning of PR+Lead Compensator . . . . . . . . . . . . . . . . . . . . . 49
4.3.1 Plants with Ultimate Frequency . . . . . . . . . . . . . . . . . . . . . . . 49
4.3.2 Plants without Ultimate Frequency . . . . . . . . . . . . . . . . . . . . . 49
4.4 Simulation Results for PR+Lead Compensator . . . . . . . . . . . . . . 51
4.5 Disturbance Rejection Analysis . . . . . . . . . . . . . . . . . . . . . . . 56
4.6 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5 PMR CONTROLLER . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.2 The Proportional Multi-Resonant Structure . . . . . . . . . . . . . . . . 61
5.3 Tuning of PMR Controller . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.3.1 Series Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.3.2 Parallel Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.4 Simulation Results for PMR Controller . . . . . . . . . . . . . . . . . . 68



5.4.1 Series Topology Simulation Results . . . . . . . . . . . . . . . . . . . . 70
5.4.2 Parallel Topology Simulation Results . . . . . . . . . . . . . . . . . . . . 78
5.5 Disturbance Rejection Analysis with PMR controller . . . . . . . . . . . 86
5.6 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

APPENDIX A ADDITIONAL SIMULATION RESULTS . . . . . . . . . . . 97
A.1 More Examples for the PR Controller . . . . . . . . . . . . . . . . . . . 97
A.2 More Examples for the PR+Lead Compensator . . . . . . . . . . . . . . 104
A.3 More Examples for the Parallel Topology of the PMR Controller . . . . 107
A.4 More Examples for the Disturbance Rejection with PMR controller . . 113



17

1 INTRODUCTION

The increasing demand for renewable energy sources and distributed power generation
with grid-connected converters leads to new challenges for control system engineers to
comply with strict power quality standards. Due to the intermittent nature of renewable
sources, energy storage systems are critical in order to allow higher penetration of re-
newable energy in typical power systems. Moreover, the presence of DC power sources
such as photovoltaic, fuel cells and energy storage systems demands efficient and reliable
DC/AC power converters (NEJABATKHAH; LI, 2014). Once the power grid networks are
typically designed for sinusoidal voltage signals, the devices connecting energy sources to
the grid must use controllers that are able to track and reject periodic signals with high
harmonic content. For instance, one of the main concerns is the presence of current har-
monics in the network, due to the very stringent limits imposed by power quality standards
(TIMBUS et al., 2009). Furthermore, as the cables of power systems are not ideal, the
voltage drop caused by the inherent resistance of cables leads to distortions of the voltage
signal. Nonlinear loads are a major cause of distortion in power grids and in the output of
uninterruptible power supplies (UPS). Therefore, controllers must be able to reject these
harmonic signals, as well as to track the signal of desired frequency (GRADY; SANTOSO,
2001) (FAROOQ; ZHOU; FARRAG, 2013).

The need of tracking or rejecting sinusoidal and periodic signals also appears in several
other practical applications, which include active filters (LASCU et al., 2008)(FUKUDA;
YODA, 2001), vibration control (HALIM; MOHEIMANI, 2001)(MOHEIMANI; VAU-
TIER, 2005), positioning systems (LING et al., 2019)(MAHMOOD; MOHEIMANI;
BHIKKAJI, 2008), atomic force microscopy (DAS; POTA; PETERSEN, 2014)(FAIR-
BAIRN; MOHEIMANI, 2012), induction heating system (NGUYEN et al., 2014), mag-
netically suspended fly-wheel (SU et al., 2016) and electric vehicles (SALEHIFAR et al.,
2014)(SETH; SINGH, 2020).

Although the proportional-integral-derivative (PID) controller has been extensively
used in applications with periodic signals due to its simple structure and widespread tuning
methods, this type of controller has several limitations in compensating harmonics and
tracking periodic signals (SHEN et al., 2010). Thus, the urge for new control techniques
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capable of tracking sinusoidal signals while rejecting periodic disturbances with superior
performance has become evident. In order to achieve these characteristics, other controllers
based on the internal model principle such as the resonant controller and the repetitive
controller stand out (SATO et al., 1998) (LORENZINI et al., 2018).

The main characteristic of the so-called resonant controllers is the infinite gain intro-
duced in the frequency of interest, which can lead to stability problems and makes its
design and tuning more complex. The proportional resonant (PR) controller can provide
zero steady-state error for the tracking or rejection of sinusoidal signals. However, the ab-
sence of a prevalent systematic tuning method for the general use of PR controllers restricts
its usage. Typically, this type of controller is tuned using trial and error procedures or its
parameters are selected based on simulation results, as presented in (TEODORESCU et al.,
2006), (TIMBUS et al., 2009), (YEPES et al., 2010), (SHEN et al., 2010) and (WU et al.,
2012). Some systematic methods can be found, as presented in (PEREIRA; BAZANELLA,
2015) and (LORENZINI; PEREIRA; BAZANELLA, 2020). Also, different systematic
procedures for specific applications can be found, as presented in (BAO et al., 2013)
and (LORENZINI et al., 2021), and other tuning approaches use advanced mathematical
tools, such as the convex optimization problem subject to linear matrix inequalities (LMI)
constraints presented in (PEREIRA et al., 2014), increasing the complexity of controller
design.

In this work, the proportional resonant controller topology is considered and a sys-
tematic procedure for the computation of the controller parameters based on a frequency
response method is proposed. Then, the control strategy is tested using different classes of
processes found in typical control problems. The method is extended by the introduction
of a phase-lead compensator in the control loop in order to allow better performance in
an augmented bandwidth. The proposed method for the PR controller associated with a
lead compensator is tested and previous results are compared for different frequencies of
interest. In order to improve the response subject to high harmonic content, the method is
revised to consider multiple frequency modes, resulting in the proportional multi-resonant
(PMR) controller. Finally, the proposed method for the PMR controller is tested for
different frequencies of interest.

1.1 Dissertation Objectives

The major aim of this research is to develop an easy to use, systematic procedure for
the computation of resonant controllers parameters based on a frequency response method.
The main objectives of the study can be summarized as follows:

• To investigate and demonstrate the benefits of combining a phase-lead compensator
with resonant controllers.
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• To investigate the contribution of multiple frequency modes to the performance of
resonant controllers.

• To develop a general, easy to use method based on frequency response characteristics
to tune the controllers, using a systematic approach analogous to the classic methods
of control theory.

1.2 Publication

Results from this work have been published as listed below:

1. MOSSMANN, B.H.; PEREIRA, L.F.A.; GOMES DA SILVA JR, J.M. "Síntese
de Parâmetros de Controladores Proporcionais-Ressonantes através do Método da
Resposta em Frequência" (in Portuguese), Proceedings of the XIV Brazilian Sym-
posium on Intelligent Automation, 2019 (MOSSMANN; PEREIRA; GOMES DA
SILVA JR, 2019).

2. MOSSMANN, B.H.; PEREIRA, L.F.A.; GOMES DA SILVA JR, J.M. "Tuning of
Proportional Resonant Controllers Combined with Phase-lead Compensators Based
on the Frequency Response", Journal of Control, Automation and Electrical
Systems, 2021 (MOSSMANN; PEREIRA; GOMES DA SILVA JR, 2021).

3. MOSSMANN, B.H.; PEREIRA, L.F.A.; GOMES DA SILVA JR, J.M. "Tuning of
Proportional Multi-Resonant Controllers Combined with Phase-lead Compensators
Based on the Frequency Response", [work in progress], 2021.

1.3 Dissertation Outline

This dissertation is organized as follows:

· Chapter 2: The fundamental concepts used throughout the dissertation are high-
lighted in this chapter. The general characteristics of resonant controllers are dis-
cussed. Performance indices used for the evaluation of results and the classes of
processes used for the performance assessment are presented.

· Chapter 3: This chapter introduces the PR controller and its parameters. The steps
for tuning the PR controller are demonstrated. Simulation results are presented for
different classes of processes.

· Chapter 4: This chapter considers the combination of a phase-lead compensator to
the PR controller, resulting in the PR+Lead compensator. The method is extended for
this topology and simulation results are presented for different classes of processes.
The disturbance rejection of PR controller and PR+Lead compensator is analysed
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and simulation results are presented and compared. A disturbance signal composed
by the fundamental and odd harmonics frequencies is considered to evaluate the
total harmonic distortion of the output signal.

· Chapter 5: This chapter extends the concepts discussed in previous chapters to the
case of multiple frequency modes, resulting in the PMR controller. The method is
revised for this structure and simulation results are presented for different classes of
processes.

· Chapter 6: A summary of the research is provided in this chapter along with the
conclusions of this study. A discussion about the future directions of the research
end the dissertation.
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2 FUNDAMENTAL CONCEPTS

In this chapter, the fundamental theoretical background and definitions used throughout
the entire dissertation are introduced and the classes of processes considered for the
performance assessment of the proposed methods are presented.

2.1 Resonant Controller

The tracking and rejection of periodic signals is an important topic with different
practical applications, from electrical power grids to atomic microscopy, as mentioned in
the Introduction. One possible approach to determine a suitable controller for working
with this type of signal is to consider the internal model principle (IMP).

For a stable closed-loop system as depicted in Figure 1, fundamentally, the IMP states
that, if the dynamic structure of the open-loop transfer function contains a model of the
dynamics that generate the signals of interest, then asymptotic reference tracking and
disturbance rejection with zero steady-state error are achieved.

Figure 1 – Block diagram of the closed-loop system

+ C(s) + G(s)
r(t)

d(t)
y(t)

−

Source: created by the author.

In order to demonstrate the IMP, consider the closed-loop system shown in Figure 1
with the controller C(s), the plant G(s) and the signals r(t), d(t) and y(t) that represent
the reference, the disturbance and the output signals respectively. Let R(s), D(s) and Y (s)

be the representation of these signals in the frequency domain. The transfer function from
the reference to the output Tr(s) and from the disturbance to the output Td(s) are given by

Tr(s) =
Y (s)

R(s)
=

C(s)G(s)

1 + C(s)G(s)
(1)
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Td(s) =
Y (s)

D(s)
=

G(s)

1 + C(s)G(s)
(2)

Now, consider the particular case of sinusoidal signals of frequency ωr. If the system
is closed-loop stable, the condition for the tracking of the reference signal with zero
steady-state error and for the disturbance rejection are as follows

|Tr(jωr)| =
∣∣∣∣ C(jωr)G(jωr)

1 + C(jωr)G(jωr)

∣∣∣∣ = 1 , ∠Tr(jωr) = 0 (3)

|Td(jωr)| =
∣∣∣∣ G(jωr)

1 + C(jωr)G(jωr)

∣∣∣∣ = 0 , ∠Td(jωr) = 0 (4)

One can notice that (3) and (4) are verified if |C(jωr)G(jωr)| = ∞. Thus, the
reference tracking with zero steady-state error and disturbance rejection for sinusoidal
signals with a given frequency ωr are ensured if the controller transfer function introduces
an infinite gain at the frequency of the signals to be tracked and rejected. In this particular
case, this is true if the controller contains a pair of complex-conjugate poles at frequency
ωr.

For example, PID controllers have a pole at the origin and hence present an infinite
peak gain in the open-loop transfer function for constant signals (i.e. for zero frequency).
Therefore, if the system is closed-loop stable, it allows to track references and reject
disturbances of constant nature. Similarly, also based on the IMP, the resonant controller
has an infinite peak gain in a given frequency, thus it allows to track sinusoidal references
and reject sinusoidal disturbances of that given frequency. Hence, once stability of the
closed-loop system is assured, zero steady-state error is achieved. A controller must
therefore stabilize the closed-loop system and contain a model of the signals of interest
(FRANCIS; WONHAM, 1976) (BENGTSSON, 1977).

In particular, to address the problem of tracking a sinusoidal reference with frequency
ωr, the system must have a pair of imaginary poles in this frequency, i.e., the poles must be
located on the imaginary axis at ±jωr. Therefore, in order to guarantee zero steady-state
error, the open-loop transfer function of the system must replicate the following term

Gr(s) =
1

s2 + ω2
r

(5)

Figure 2 presents the Bode plot for the transfer function (5). It illustrates the infinite
resonant peak at frequency ωr.

The working principle of a resonant control strategy consists in inserting the model
given by (5) in the loop transfer function C(s)G(s). Because of the marginally stable
poles of the transfer function (5), it can lead to stability problems. The infinite gain and the
abrupt decrease in phase make the design and tuning of resonant controllers a challenging
effort.
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Figure 2 – Bode plot of transfer function Gr(s).
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Source: created by the author.

Recall that periodic signals with frequency ωr can be written as the sum of sinusoidal
components known as the Fourier Series (OPPENHEIM; WILLSKY; NAWAB, 1997),
given by

r(t) = a0 +
+∞∑
n=1

(an cosnωrt+ bn sinnωrt) (6)

The lowest frequency component of the signal is called the fundamental frequency ωr

and its multiples are the so-called harmonics or harmonic frequencies. Thus, in order to
deal with generic periodic signals, it is necessary to consider their frequency composition.
Following that, the resonant controller can be extended to multiple frequency modes as
follows

Gmr(s) =
1

s2 + ω2
r

+
1

s2 + (2ωr)2
+

1

s2 + (3ωr)2
+ ...+

1

s2 + (Nωr)2
(7)

resulting in a multi-resonant controller. Figure 3 illustrates the multiple peaks of resonance
of a multi-resonant controller as defined in (7) with ωr = 1 rad/s and its odd multiples up
to N = 11.

In the next chapters, the application of different resonant controller topologies is
discussed. Stability and performance issues are addressed. A systematic method for the
tuning and application of this type of controller is proposed, considering general processes
for which frequency response characteristics are known or can be measured.
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Figure 3 – Bode plot of a multi-resonant controller with ωr = 1 rad/s and its odd multiples
up to N = 11.
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2.2 Performance Indices for Periodic Signals

In order to assess the performance of the controlled system for tracking sinusoidal
reference signals in a systematic and standard-compliant way, it is convenient to define
criteria compatible with these signals (PEREIRA; BAZANELLA, 2015). A sinusoidal
reference signal with frequency ωr is generically defined as{

r(t) = 0 , ∀t < 0

r(t) = A sinωrt , ∀t ≥ 0
(8)

The maximum overshoot expresses the ratio of maximum peak value of the output
signal y(t) in relation to the amplitude of input signal r(t). It is computed as follows

MO = max

(
M − A
A

, 0

)
(9)

where M is the maximum peak value of the output signal, given by

M = max
t
|y(t)| (10)

Thus, the percentage of maximum overshoot with respect to the reference amplitude is
given by

MO%
=MO × 100% (11)
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Let e(t) be the tracking error of the system, that expresses the difference between
output and input signals. The normalized tracking error in relation to the amplitude A of
the reference signal is defined as

en(t) =
e(t)

A
(12)

The settling time is defined as the smallest time at which the normalized tracking error
remains bellow a tolerance value ε, that is

ts = min
t1

: |en(t)| < ε , ∀t > t1 (13)

Typically, the value of ε is 2% or 5%. In this work, the settling time ts is determined
with tolerance ε = 2%.

For periodic signals, it is also convenient to represent the settling time as the number
of periods of the reference signal before settling. Hence, the number of cycles of the signal
elapsed before settling is then given by

ns =
tsωr

2π
(14)

2.3 Stability and Performance Measures

From the knowledge of the frequency response of the plant to be controlled, one
seeks to determine the parameters of the controller that deliver satisfactory performance,
appropriate stability margins and robustness for the closed-loop system. Consider the
closed-loop system structure depicted in Figure 1, where r(t), d(t) and y(t) are the
reference, disturbance and output signals, respectively, G(s) and C(s) are the process and
controller transfer functions, respectively. The loop transfer function L(s) represents the
forward path from the reference r(t) to the output y(t) and is given by

L(s) = C(s)G(s) (15)

The sensitivity and complementary sensitivity functions provide a good measure of
robustness for the system in terms of its stability and tolerance against variations in the
process (ASTRÖM; MURRAY, 2010). These functions are respectively given by S(s) and
T (s) defined as follows

S(s) =
1

1 + L(s)
(16)

T (s) =
L(s)

1 + L(s)
(17)

Notice that the relationship between the sensitivity function and the complementary
sensitivity function is given by
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S(s) + T (s) = 1 (18)

Examining the peak of the sensitivity function S(s) and of the complementary sen-
sitivity function T (s), given by Ms and Mt respectively, it is possible to deepen the
comprehension of the system dynamics provided by the stability margins.

Generally, for a control system with satisfactory performance, the values of Ms and
Mt fall between 1 and 2, or more precisely 1.2 < Ms < 2 and 1 < Mt < 1.5 (ASTRÖM;
MURRAY, 2010) (MORARI; ZAFIRIOU; ZAFIRIOU, 1989).

The effect of the value of Ms in the stability margins of the system can be better
understood from the Nyquist plot of the transfer function L(s) as shown in Figure 4. The
magnitude diagram of a sensitivity function S(s) for the system with loop function L(s) is
shown in Figure 4a. Figure 4b presents the Nyquist plot of the transfer function L(s).

Taking into account that

|1 + L(s)| = 1

|S(s)|
(19)

the value Ms is equal to the inverse of the smallest distance from the Nyquist plot of
function L(s) to the critical point −1 + j0. The magnitude of the sensitivity function
has module 1 at frequency ωsc. As depicted in Figure 4, frequencies smaller than ωsc

are attenuated by the feedback loop. Frequencies higher than ωsc are amplified by the
feedback loop and the highest amplification occurs for frequency ωms. Decreasing any of
the stability margins of the system, either gain or phase margin, leads the Nyquist plot of
the function L(s) towards the point −1 + j0, yielding a larger value for Ms.

Hence, the peak value of the sensitivity function Ms is a good guide to predict the
performance of the system regarding reference tracking and tolerance to disturbances. From
the relationship between Ms and stability margins, it is possible to compute estimated
values for phase margin (PM ) and gain margin (GM ) that result in a satisfactory behaviour
of the system (MORARI; ZAFIRIOU; ZAFIRIOU, 1989). This relationship is given by

GM ≥ Ms

Ms − 1
⇒Ms ≤

GM

GM − 1
(20)

PM ≥ 2 arcsin

(
1

2Ms

)
⇒Ms ≤

1

2 sin

(
PM

2

) (21)

As aforementioned, typically the value of Ms must be in the interval 1.2 ≤ Ms ≤ 2.
From the equations above, assuming Ms ≈ 1.2 yields PM ≥ 49.25◦ and GM ≥ 15.56dB.
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Figure 4 – Graphical interpretation of the value of Ms.

Source: ASTRÖM; MURRAY (2010)

(a)

Source: ASTRÖM; MURRAY (2010)

(b)



28

2.4 Classes of Processes for Performance Assessment

Following, the test batch of processes to assess the proposed method is presented. This
test batch represents typical transfer functions with and without ultimate frequency found
in control system problems and was selected from (BAZANELLA; PEREIRA; PARRAGA,
2017) and (ÅSTRÖM; HÄGGLUND, 2004).

These selected processes with ultimate frequency, i.e. for which the phase of G(jω)
crosses −180◦, G1(s), G2(s) and G3(s) are defined as follows

G1(s) =
1

(s+ 1)n
, n = [3 4 5] (22)

G2(s) =
1

(s+ 1)((sT )2 + 1.4Ts+ 1))
, T = [0.1 0.5 1] (23)

G3(s) =
1

(s+ 1)(1 + αs)(1 + α2s)(1 + α3s)
, α = [0.1 0.9 5] (24)

Figures 5, 6 and 7 show the Bode plots for processes with ultimate frequency defined
in (22), (23) and (24) respectively.

The selected processes without ultimate frequency G4(s), G5(s) and G6(s) are defined
as follows

G4(s) =
α

(s+ α)
, α = [0.1 0.9 5] (25)

G5(s) =
α

(s+ 1)(s+ α)
, α = [0.1 0.9 5] (26)

G6(s) =
1

s2 + 2αs+ 1
, α = [0.1 0.5 0.9] (27)

Figures 8, 9 and 10 show the Bode plots for processes without ultimate frequency
defined in (25), (26) and (27) respectively.
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Figure 5 – Bode plots of processes G1(s).
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Figure 6 – Bode plots of processes G2(s).
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Figure 7 – Bode plots of processes G3(s).
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Figure 8 – Bode plots of processes G4(s).
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Figure 9 – Bode plots of processes G5(s).
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Figure 10 – Bode plots of processes G6(s).
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2.5 Chapter Summary

This chapter has presented an overview on resonant controllers and the performance
indices for the tracking and rejection of periodic signals. The stability and performance
measures considered in the following chapters for the development of the proposed tuning
method have been discussed. In addition, the classes of processes used for the performance
assessment of the method developed in the next chapters have been introduced.
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3 PROPORTIONAL RESONANT CONTROLLER

3.1 Introduction

In the previous chapter, the motivation for the application of resonant controllers to work
with periodic signals is discussed based on the IMP. An overview of this type of controller
is presented and it follows that to address the problem of tracking a sinusoidal reference
with frequency ωr, the controller must have a pair of imaginary poles in this frequency,
i.e., the poles must be located on the imaginary axis in ±jωr. As aforementioned, the
infinite resonant peak and the abrupt decrease of phase at frequency ωr impose challenges
to the tuning of the controller parameters aiming at the stabilization and performance
requirements for the closed-loop system. In this chapter, the application of this control
strategy for the simplest periodic signal, a sinusoidal reference with frequency ωr, is
discussed.

3.2 The Proportional Resonant Structure

Consider the transfer function for the resonant term presented in (5). In order to provide
more degrees of freedom and facilitate the closed-loop stabilization, two zeros are inserted
in the left half complex plane. The following equation presents the transfer function of the
resulting controller (PEREIRA et al., 2014).

CPR(s) =
δ2s

2 + δ1s+ δ0
s2 + ω2

r

(28)

An equivalent structure proposed in this work for the controller (28), which considers
explicitly a proportional and a resonant term, is as follows

CPR(s) = kp

(
1 +

s2 + 2kr1s+ kr2
s2 + ω2

r

)
=

= kp +
kps

2 + 2kpkr1s+ kpkr2
s2 + ω2

r

(29)

where ωr is the reference frequency and kp, kr1 and kr2 are parameters to be tuned.

The resonant part of the controller (29) is given by



34

CR(s) =
s2 + 2kr1s+ kr2

s2 + ω2
r

(30)

Knowledge on the phase contribution associated with zeros of the controller is important
to compute the phase margin necessary to ensure the stability of the system. Also, the
zeros shall be located in the left half of the s-plane. To analyse the zeros of the resulting
PR controller, the equations for CPR(s) given by (29) can be rewritten as follows

CPR(s) =

2kp

(
s2 + kr1s+

kr2 + ω2
r

2

)
s2 + ω2

r

(31)

Thus, the zeros of CPR(s) are given by

z1CPR
=
−kr1 +

√
k2r1 − 2(ω2

r + kr2)

2
,

z2CPR
=
−kr1 −

√
k2r1 − 2(ω2

r + kr2)

2

(32)

It can be noticed that the topology of CPR(s) makes the zeros of the controller indepen-
dent of kp. If the zeros are complex numbers, i.e. 2(ω2

r + kr2) > k2r1 , their corresponding
natural frequency ω0 is equal to their module and is given by

ω0CPR
=

√
ω2
r + kr2
2

(33)

To ensure that the zeros of the controller are placed in the left half complex plane, it is
sufficient to have kr1 > 0 and kr2 ≥ 0. From (33), considering ω0CPR

< ωr, the maximum
positive phase contribution of the zeros in the frequency ωr is obtained with kr2 = 0, as
this corresponds to the case which frequency ω0CPR

is farthest from frequency ωr. Thus,
from now on, it is assumed kr2 = 0. Furthermore, if k2r1 < 2ω2

r , i.e. kr1 <
√
2ωr, the zeros

are complex-conjugate and from (33) yields ω0CPR
=
√
2
2
ωr for the topology proposed in

(31).
Assume kp > 0. Then the magnitude of the controller (31) frequency response at a

given frequency ω is given by

|CPR(jω)| =
kp

|ω2
r − ω2|

√
(ω2

r − 2ω2)2 + 4k2r1ω
2 (34)

It can be noticed that for ω = 0 the gain of the controller is kp, for ω = ωr the gain
tends to infinity and for ω � ωr the gain tends to 2kp.

Moreover, considering kr1 <
√
2ωr, the phase contribution of the PR controller in a

frequency ω is given by

∠CPR(jω) =


arctan

(
2ω +

√
2ω2

r − k2r1
kr1

)
+ arctan

(
2ω −

√
2ω2

r − k2r1
kr1

)
, ω < ωr

−180◦ + φ1(ω) = arctan

(
2kr1ω

ω2
r − 2ω2

)
, ωr < ω

(35)
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where φ1(ω) represents the phase of the controller for ω < ωr.

Figure 11 presents the Bode plot for CPR(s) with ωr = 0.43 rad/s, kp = 0.3888 and
different values of kr1 . It illustrates that when choosing a different value for kr1 , the phase
of the controller changes whereas its magnitude remains virtually unaffected. Note that as
kr1 increases, the damping ratio of the zeros also increases, leading to a smoother phase
augmentation for ω < ωr. On the other hand, the maximum achieved phase is smaller.
In this case, as the phase decreases 180◦ abruptly at the frequency ω = ωr, the phase
introduced by the controller for ω > ωr tends to be smaller, which can make difficult the
stabilization of the closed-loop system or lead to small stability margins depending on the
plant characteristics.

In the following sections, it will be shown that the proposed topology for CPR(s)

simplifies the tuning process of the PR controller as it makes possible to choose kp and kr1
independently to fulfill gain and phase requirements of the system, respectively.

Figure 11 – Bode plot of the controller CPR(s) with ωr = 0.43 rad/s and kp = 0.3888 for
different values of kr1 .
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3.3 Tuning of PR Controller

3.3.1 Plants with Ultimate Frequency

This work aims to present a method for the design of PR controllers based on the
frequency response, providing satisfactory performance, considering the typical values
found for the peak of sensitivity Ms. In particular, in this section the focus is on processes
with ultimate frequency, (i.e. the phase of G(jω) crosses −180◦), for which it is possible
to adjust both phase and gain margins.

Let ωu be the ultimate frequency of the process (i.e. for which its phase crosses−180◦),
and let Mu = |G(jωu)| be the gain of the process at this frequency. The following value
of kp is proposed for the tuning of the controller

kp =
1

10

ω2
u − ω2

r

Mu(2ω2
u − ω2

r)
(36)

Applying the proposed value of kp to (34), assuming ωr < ωu, and computing
|CPR(jω)| for the ultimate frequency ωu yields to

|CPR(jωu)| =
1

10

ω2
u − ω2

r

Mu(2ω2
u − ω2

r)

√
(2ω2

u − ω2
r)

2 + 4k2r1ω
2
u

ω2
u − ω2

r

(37)

If 4k2r1ω
2
u � (2ω2

u − ω2
r)

2, it follows that

|CPR(jωu)| ≈
1

10Mu

(38)

Since |G(jωu)| =Mu, it yields that |CPR(jωu)G(jωu)| ≈ 1
10

, i.e., the gain margin is
approximately 20 dB.

On the other hand, from (35), it follows that the minimum phase contribution (i.e. the
most negative phase contribution) of the controller occurs at the resonant frequency ωr,
where there is a discontinuity, as it can be seen in Figure 11. Let φωr be the contribution
of phase at frequency ω → ω+

r required for the controller. Assigning ω = ωr in (35) for
ω > ωr to obtain ∠C(jωr) = φωr and isolating the parameter kr1 leads to the following
expression

kr1 = −
ωr

2
tan(φωr) (39)

As the minimum phase introduced by the controller occurs at frequency ω → ω+
r , note

that (see Fig. 11) for frequencies higher than ωr, the phase contribution of the controller is
larger than φωr .

Since the controller introduces an infinite gain at frequency ωr and gain margin is
adjusted nearly at 20 dB by choosing kp, there must be a frequency ωc such that ωr <

ωc < ωu and |CPR(jωc)G(jωc)| = 1. This frequency is the so-called crossover frequency
or 0 dB frequency. The phase margin of the system must be adjusted at this frequency.
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Because of the very high gain introduced by the controller at frequency ωr, the choice of
kp to obtain GM ≈ 20dB tends to approximate the frequency ωc towards ωr.

As previously stated, the controller introduces a minimum phase at frequency ω → ω+
r

and also leads ωc close to ωr. Because of such characteristics, it is reasonable to assume the
approximation ωc ≈ ωr and that the phase margin of CPR(jω)G(jω) could be adjusted at
frequency ωr. One can then calculate kr1 using (39) so that ∠CPR(jωr)G(jωr) ≈ −130◦,
i.e., ∠G(jωr) + φωr ≈ −130◦ or equivalently φωr ≈ −130◦ − ∠G(jωr). According to
(21), a phase margin of approximately 50◦ corresponds to Ms ≈ 1.2. Also, as previously
stated, the condition to have complex-conjugate zeros is kr1 <

√
2ωr. Thus, from (39),

tan (−φωr) < 2
√
2 or simply φωr ≥ −70.52◦.

Therefore, the choice of kr1 allows to adjust the phase of C(jω)G(jω) by a procedure
virtually independent of its gain, which is adjusted by determining kp. This feature of the
proposed topology simplifies the fine-tuning of the controller.

The method for tuning the PR controller for processes with ultimate frequency pro-
posed in this work can therefore be summarised as follows:

Algorithm:

Step 1. Determine kp from (36) to adjust the gain margin of the controlled system.

Step 2. From the frequency response of the process, determine the phase contribution that
the controller can introduce at frequency ωr with φωr ≈ −130◦ −∠G(jωr) , φωr ≥
−70.52◦.

Step 3. Determine kr1 from (39) using the value for φωr obtained in the previous step.

In order to evaluate the effectiveness of the tuning method, it is tested for different
classes of typical processes with ultimate frequency in Section 3.4.

3.3.2 Plants without Ultimate Frequency

In this section the focus is on processes without ultimate frequency, (i.e. the phase of
G(jω) does not cross −180◦), for which it is not possible to adjust the gain margin.

Recall from (34) that for ω = 0 the gain of the controller is kp, for ω = ωr the gain
tends to infinity and for ω � ωr the gain tends to 2kp. Moreover, it can be observed in
Figure 12 that at the vicinity of ωr the gain starts to increase until it peaks to infinity at ωr,
then starts to decrease to 2kp.

For a process without ultimate frequency, the gain margin of the system would be
infinite. Hence, the proportional gain of the controller can adjust the bandwidth of the
system without restriction. Let Mr = |G(jωr)| be the gain of the process at frequency ωr.
The following value of kp is proposed for the tuning of the controller
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Figure 12 – Bode plot of the controller CPR(s) with ωr = 5 rad/s and kp = 1 and
kr1 = 2.5.
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kp =
1

2Mr

(40)

Considering that the controller introduces an infinite gain at frequency ωr, there must
be a frequency ωc such that ωr < ωc and |CPR(jωc)G(jωc)| = 1. This frequency is the
so-called crossover frequency or 0 dB frequency. The phase margin of the system must be
adjusted at this frequency. For kp given by (40), this occurs at the vicinity of ωr once the
gain of the controller rapidly decreases to 2kp. Hence, the phase margin can be adjusted
at ωr analogously to the procedure for plants with ultimate frequency from the previous
section.

Therefore, following the reasoning from the previous section, kr1 can be adjusted to
limit the phase contribution of the controller φωr at frequency ω → ω+

r using the same
expression given by (39). Recall that the minimum phase introduced by the controller
occurs at frequency ω → ω+

r . For frequencies higher than ωr, the phase contribution of
the controller is larger than φωr . However, if the phase of the process at the vicinity of ωr

decreases abruptly, the phase contribution of the controller may compromise the stability
of the system if its phase crosses −180◦, limiting the gain margin that would be infinite
otherwise. Thus, one must compute kr1 using (39) so that ∠CPR(jωr)G(jωr) ≈ −130◦,
i.e., ∠G(jωr) + φωr ≈ −130◦ or equivalently φωr ≈ −130◦ − ∠G(jωr). In order to have
complex-conjugate zeros, φωr ≥ −70.52◦.
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For processes with relative degree 2 and with small damping ratio, the phase of the
process may decrease too abruptly at the vicinity of ωr and it is necessary to adopt a stricter
limit to the phase contribution of the controller, increasing φωr , so that phase and gain
margins are within the limits proposed in this work. Phase contribution of the controller at
any frequency ω can be verified from (35) to limit φωr accordingly.

The method for tuning the PR controller for processes without ultimate frequency
proposed in this work can therefore be summarised as follows:

Algorithm:

Step 1. Determine kp from (40).

Step 2. From the frequency response of the process, determine the phase contribution that
the controller can introduce at frequency ωr with φωr ≈ −130◦ −∠G(jωr) , φωr ≥
−70.52◦.

Step 3. Determine kr1 from (39) using the value for φωr obtained in the previous step.

In order to evaluate the effectiveness of the tuning method, it is tested for different
classes of typical processes without ultimate frequency in the next section. In the following
tests for processes without ultimate frequency, let ω−20dB represent the frequency at which
|G(jω−20dB)| = −20dB, i.e. the gain of the process at this frequency is 1

10
.

3.4 Simulation Results for PR Controller

Tables 1 to 3 summarise the results achieved for different ratios between ωr and ωu

for processes G1(s), G2(s) and G3(s). Tables 4 to 6 summarise the results achieved for
different ratios between ωr and ω−20dB for processes without ultimate frequency G4(s),
G5(s) and G6(s). For additional simulation results see Appendix A.1. These tables
present the obtained values for settling time ns, maximum percent overshoot MO%

, peak of
sensitivity function Ms, phase margin PM and gain margin GM of the controlled system,
as well as the phase of process G(jω) at frequency ωr. Figures 13 to 18 show the output
signal normalized with respect to the period of reference signal r(t) for the different values
of ωr. All simulation tests produced a stable response, despite the considerably higher
settling time for frequencies ωr close to the ultimate frequency ωu.

The parameters kp and kr1 were computed using the procedure proposed in the previous
section. When feasible (i.e. in the cases for which ∠G(jω) > −130◦), the parameter kr1
was selected such that the phase of the system CPR(jω)G(jω) at this frequency would be
approximately −130◦. In the cases for which ∠G(jω) < −130◦, the phase contribution
of the controller was bounded to φωr = −1◦. For processes with relative degree 2 and
damping ratio lower than

√
2
2

, the phase of the process tends to decrease abruptly, as it is
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Table 1 – Tuning parameters and performance indicators for the closed-loop system of
G1(s) with n = 3 and different values of ωr.

ωr kp kr1 ns MO%
Ms GM PM ∠G(jωr)

0.1ωu 0.40 0.24 1.22 0% 1.31 17.7dB 84.6◦ −29◦

0.25ωu 0.39 0.37 1.84 1.67% 1.52 15.8dB 47.1◦ −70◦

0.5ωu 0.34 0.03 8.23 3.31% 1.47 19.5dB 46.3◦ −123◦

0.75ωu 0.24 0.01 > 50 35.68% 3.01 19.7dB 19.6◦ −157◦

0.9ωu 0.13 0.01 > 50 71.99% 8.97 19.2dB 6.4◦ −172◦

Figure 13 – Closed-loop normalized output signal for process G1(s) with n = 3.
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Table 2 – Tuning parameters and performance indicators for the closed-loop system of
G2(s) with T = 0.1 and different values of ωr.

ωr kp kr1 ns MO%
Ms GM PM ∠G(jωr)

0.1ωu 0.80 1.47 0.78 0.17% 1.27 18.2dB 59.5◦ −55◦

0.25ωu 0.78 0.77 3.51 0% 1.25 19dB 60.4◦ −91◦

0.5ωu 0.69 0.05 10.67 2.55% 1.39 20dB 49◦ −126◦

0.75ωu 0.49 0.07 > 50 31.91% 2.74 19.8dB 21.5◦ −155◦

0.9ωu 0.26 0.08 > 50 69.03% 7.95 19.1dB 7.17◦ −171◦

Figure 14 – Closed-loop normalized output signal for process G2(s) with T = 0.1.
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Table 3 – Tuning parameters and performance indicators for the closed-loop system of
G3(s) with α = 0.1 and different values of ωr.

ωr kp kr1 ns MO%
Ms GM PM ∠G(jωr)

0.1ωu 5.45 0.91 1.34 10.99% 1.70 19.2dB 43.4◦ −92◦

0.25ωu 5.31 0.07 2.06 1.65% 1.69 20dB 40.3◦ −126◦

0.5ωu 4.70 0.14 16.77 31.17% 2.70 19.9dB 22◦ −154◦

0.75ωu 3.34 0.21 > 50 64.92% 6.65 19.6dB 8.66◦ −169◦

0.9ωu 1.75 0.25 > 50 88.42% 22.48 18.2dB 2.55◦ −176◦

Figure 15 – Closed-loop normalized output signal for process G3(s) with α = 0.1.
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Table 4 – Tuning parameters and performance indicators for the closed-loop system of
G4(s) with α = 0.1 and different values of ωr.

ωr kp kr1 ns MO%
Ms GM PM ∠G(jωr)

0.1ω−20dB 0.71 0.14 0.94 0% 1 ∞ 77.9◦ −45◦

0.25ω−20dB 1.35 0.22 1.40 0.39% 1 ∞ 69.6◦ −68.2◦

0.5ω−20dB 2.56 0.31 1.53 0.10% 1 ∞ 70.6◦ −78.7◦

0.75ω−20dB 3.79 0.40 1.92 0.04% 1 ∞ 70.8◦ −82.4◦

ω−20dB 5 0.50 1.95 0.03% 1 ∞ 70.8◦ −84.3◦

Figure 16 – Closed-loop normalized output signal for process G4(s) with α = 0.1.
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Table 5 – Tuning parameters and performance indicators for the closed-loop system of
G5(s) with α = 0.1 and different values of ωr.

ωr kp kr1 ns MO%
Ms GM PM ∠G(jωr)

0.1ω−20dB 0.64 0.11 0.67 0% 1.09 ∞ 77.8◦ −42.4◦

0.25ω−20dB 1.11 0.14 1.42 0.14% 1.18 ∞ 60.6◦ −73.8◦

0.5ω−20dB 2.16 0.13 1.58 0% 1.30 ∞ 54.3◦ −96.8◦

0.75ω−20dB 3.42 0.10 1.57 0.01% 1.42 ∞ 48.4◦ −111◦

ω−20dB 5 0.06 1.45 0.97% 1.54 ∞ 44◦ −121◦

Figure 17 – Closed-loop normalized output signal for process G5(s) with α = 0.1.
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Table 6 – Tuning parameters and performance indicators for the closed-loop system of
G6(s) with α = 0.1 and different values of ωr.

ωr kp kr1 ns MO%
Ms GM PM ∠G(jωr)

0.1ω−20dB 0.45 0.05 12.83 20.85% 3.98 ∞ 15.3◦ −4.25◦

0.25ω−20dB 0.18 0.12 10.83 19.97% 3.12 ∞ 20.4◦ −28◦

0.5ω−20dB 0.89 0.01 22.44 71.86% 8.76 ∞ 6.5◦ −169◦

0.75ω−20dB 2.62 0.02 36.65 90.79% 16.83 ∞ 3.4◦ −175◦

ω−20dB 5 0.03 > 50 100.81% 25.25 ∞ 2.3◦ −176◦

Figure 18 – Closed-loop normalized output signal for process G6(s) with α = 0.1.
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the case for G6(s) with α = 0.1 for instance. In such cases, from the knowledge of the
frequency response of the plant and the phase contribution of the controller, the value of
φωr was increased accordingly in order to avoid crossing −180◦ of phase.

From the obtained results, it can be noticed that, while the frequency ωr is such that
the phase response of the process at this frequency is higher than −130◦, it is possible
to choose kr1 to limit the phase of CPR(jωr)G(jωr) to −130◦. Thus, the resulting phase
margin is higher than 30◦ and the peak value Ms falls in the desired interval. In such cases,
small values for the maximum overshoot and settling time were achieved. In all cases, the
adjusted gain margins were as required. On the other hand, as the frequency ωr increases,
the phase margin decreases and the performance of the system degrades considerably.
Accordingly, even though it was possible to meet the requirements for the gain margin in
all cases, the performance degraded in the cases for which the required phase margin was
not achieved and the resulting peak value Ms was not in the desired interval.

3.5 Chapter Summary

This chapter has presented the method for the tuning of PR controllers based on the
frequency response characteristics of the plant for processes with and without ultimate
frequency. The performance of the method has been assessed for the classes of processes
introduced in Chapter 2. The results have demonstrated that when it is possible to meet the
requirements for gain and phase margins, the resulting peak value Ms falls in the desired
interval and the overall performance is satisfactory. On the other hand, the performance de-
graded in the cases for which the required phase margin was not achieved and the resulting
peak value Ms was not in the desired interval. In the next chapter, the combination of the
PR controller with a phase-lead compensator is proposed to overcome these limitations.
The results of this chapter have been published in (MOSSMANN; PEREIRA; GOMES DA
SILVA JR, 2019).



47

4 PR+LEAD COMPENSATOR

4.1 Introduction

In the previous chapter, the results have demonstrated that when it is possible to meet
the requirements for gain and phase margins, the resulting peak value Ms falls in the
desired interval and the overall performance is satisfactory. However, as the frequency
ωr increases, the phase margin decreases and the performance of the system degrades
considerably. In these cases, the required phase margin was not achieved and the resulting
peak value Ms was not in the desired interval. In order to overcome the limitations of the
proposed method to work with higher frequencies ωr, it is possible to combine the PR
controller with a phase-lead compensator.

4.2 Phase-lead Compensator

The phase-lead compensator adds positive phase to the system over a determined
frequency range (ASTRÖM; MURRAY, 2010). This class of compensator is generically
given by the following transfer function

Clead(s) =
s+

p

α
s+ p

(41)

where α > 1 and p > 0 are real constants to be determined.

The maximum phase contribution of the compensator is given by

φm = arcsin

(
α− 1

α + 1

)
(42)

This maximum amount of phase is added at the centre frequency ωm, which is calcu-
lated according to

ωm =
p√
α

(43)

The Bode plot of a phase-lead compensator designed to have maximum phase con-
tribution φm = 55◦ at centre frequency ωm = 1.73rad/s is shown in Figure 19. It can
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be noticed that this compensator decreases the gain at lower frequencies while increases
the phase of the system in a range of frequencies around ωm. Moreover, one can notice
that the compensator structure was selected such that |Clead(jω)| = 1 for ω →∞. As this
type of compensator is a high pass filter, in practice, usually it should provide up to 60◦ of
maximum phase contribution (MESSNER et al., 2007).

Figure 19 – Bode plot of phase-lead compensator Clead(s) with maximum phase contribu-
tion φm = 55◦ at frequency ωm = 1.73rad/s.
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Taking advantage of the features of phase-lead compensator, it may be convenient to
tune such compensator for maximum contribution at the ultimate frequency of the process
ωu. As stated in Chapter 3, the proposed method for the tuning of PR controller leads
to satisfactory results for frequencies of interest ωr such that CPR(jωr)G(jωr) has its
phase higher than −130◦. Thus, to achieve suitable results for frequencies ωr closer to the
ultimate frequency ωu, it is reasonable to consider a lead compensator designed to add
approximately 55◦ of phase at frequency ωu.

From (42), the corresponding value of α to get a maximum contribution φm ≈ 55◦ is
α = 10. Then, it follows from (43) that the value of p to make ωm = ωu is calculated by

p =
√
α ωu =

√
10 ωu (44)
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4.3 Tuning of PR+Lead Compensator

4.3.1 Plants with Ultimate Frequency

The method proposed in Chapter 3 for the PR controller must have its parameters
updated to work with the pre-compensated plant Clead(s)G(s). Let ωuc be the ultimate
frequency of the compensated plant (i.e. the frequency such that ∠Clead(jω)G(jω) =

−180◦), and let Muc = |Clead(jωuc)G(jωuc)| be the gain of the pre-compensated plant
at this frequency. Thus, following the reasoning made in Section 3.3, the value of kp is
revised to

kpc =
1

10

ω2
uc − ω2

r

Muc(2ω2
uc − ω2

r)
(45)

As stated in Section 3.3.1, for frequencies higher than ωr the phase introduced by the
PR controller is larger than φωr . The parameter kr1 has the same formulation from (39),
whereas the value of φωr must now consider the phase of the pre-compensated system, so
that ∠CPR(jωr)Clead(jωr)G(jωr) ≈ −130◦.

Figure 20 illustrates the association of the PR controller with a phase-lead compensator
by comparing the Bode plot of C(s)G3(s) for ωr = 0.5ωu with and without the pre-
compensation. One can notice that the gain margin is nearly unaffected, whereas the phase
margin is considerably increased with the phase-lead compensator.

The method for tuning the PR+lead compensator for processes with ultimate frequency
proposed in this work can therefore be summarised as follows:

Algorithm:

Step 1. Design the phase-lead compensator with α = 10 and p given by (44).

Step 2. Determine kpc from (45).

Step 3. From the frequency response of the pre-compensated system, determine the phase
contribution that the controller can introduce at frequency ωr with
φωr ≈ −130◦ − ∠Clead(jωr)G(jωr) , φωr ≥ −70.52◦, such that the phase of
CPR(jωr)Clead(jωr)G(jωr) at this frequency is approximately −130◦.

Step 4. Determine kr1 from (39) using the value for φωr obtained in the previous step.

In order to evaluate the effectiveness of the tuning method, it is tested for different
classes of typical processes with ultimate frequency in Section 4.4.

4.3.2 Plants without Ultimate Frequency

For plants without ultimate frequency, a phase-lead compensator can be used to increase
the phase of processes of relative degree 2 at higher frequencies, such that it is possible
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Figure 20 – Bode plot of CPR(s)G3(s) and CPR+lead(s)G3(s) with φm = 55◦ at frequency
ωu for ωr = 0.5ωu.

-200

-100

0

100

200

|C
(j
ω

)G
(j
ω

)| 
[d

B
]

CPR+lead(jω)G(jω) CPR(jω)G(jω)

10-2 100 102 104
-360

-180

0

180

C
(j
ω

)G
(j
ω

)
Bode Diagram

Frequency  (rad/s)

Source: created by the author.

to obtain ∠CPR(jωr)Clead(jωr)G(jωr) ≈ −130◦. In the simulations of the following
section, a phase-lead compensator was designed to have its maximum contribution at
frequency ωm = ω−20dB of processes G5(s) and G6(s), i.e. at the frequency for which the
gain of the process is 1

10
. Processes with relative degree 1, such as those of class G4(s) for

example, have phase higher than −90◦ and therefore the combination with a phase-lead
compensator is not considered for this type of process.

The value of kp has the same formulation from (40), whereas the value of Mr must
now consider the gain of the pre-compensated system Clead(jωr)G(jωr) at frequency ωr.

As stated in section 3.3.2, for frequencies higher than ωr the phase introduced by the
PR controller is larger than φωr . The parameter kr1 has the same formulation from (39),
whereas the value of φωr must now consider the phase of the pre-compensated system, so
that ∠CPR(jωr)Clead(jωr)G(jωr) ≈ −130◦.

The method for tuning the PR+lead compensator for processes without ultimate fre-
quency proposed in this work can therefore be summarised as follows:

Algorithm:

Step 1. Design the phase-lead compensator with α = 10 and p =
√
α ω−20dB.



51

Step 2. Determine kp from (40).

Step 3. From the frequency response of the pre-compensated system, determine the phase
contribution that the controller can introduce at frequency ωr with
φωr ≈ −130◦ − ∠Clead(jωr)G(jωr) , φωr ≥ −70.52◦, such that the phase of
CPR(jωr)Clead(jωr)G(jωr) at this frequency is approximately −130◦.

Step 4. Determine kr1 from (39) using the value for φωr obtained in the previous step.

In order to evaluate the effectiveness of the tuning method, it is tested for different
classes of typical processes without ultimate frequency in the next section.

4.4 Simulation Results for PR+Lead Compensator

To allow a comparison between the controllers proposed in this work for tracking
sinusoidal reference signals, the PR+Lead compensator controller is tested using the same
plants and criteria defined in the simulations for the PR controller in section 3.4. Also,
analogous tables and plots are presented to demonstrate the simulation results.

Tables 7 to 9 summarise the results achieved for different ratios between ωr and ωu

for processes G1(s), G2(s) and G3(s). Tables 10 to 11 summarise the results achieved
for different ratios between ωr and ω−20dB for processes G5(s) and G6(s). For additional
simulation results see Appendix A.2. These tables present the obtained values for settling
time ns, maximum percent overshoot MO%

, peak of sensitivity function Ms, phase margin
PM and gain margin GM of the final controlled system, as well as the original phase
margin of process G(jω) at the frequency of interest. Figures 21 to 25 show the output
signal normalized in relation to the period of reference signal r(t) for the different values
of ωr. All simulation tests produced a stable response.

Table 7 – Tuning parameters and performance indicators for the closed-loop system of
G1(s) with n = 3 and different values of ωr for PR+lead compensator.

ωr kp kr1 ns MO%
Ms GM PM ∠G(jωr)

0.5ωu 5.34 0.43 1.66 0% 1.47 17.7dB 54.8◦ −123◦

0.75ωu 5.16 0.17 3.02 0% 1.43 19.1dB 52.9◦ −157◦

0.9ωu 5.00 0.07 4.37 1.01% 1.45 19.7dB 49.3◦ −172◦

ωu 4.88 0.08 6.59 4.62% 1.56 19.6dB 43.1◦ −180◦
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Figure 21 – Closed-loop normalized output signal for process G1(s) with n = 3, for
PR+lead compensator.

Table 8 – Tuning parameters and performance indicators for the closed-loop system of
G2(s) with T = 0.1 and different values of ωr for PR+lead compensator.

ωr kp kr1 ns MO%
Ms GM PM ∠G(jωr)

0.5ωu 9.34 2.68 2.56 0% 1.40 17.5dB 59.5◦ −126◦

0.75ωu 8.94 2.34 4.22 2.58% 1.55 17.6dB 44.4◦ −156◦

0.9ωu 8.60 1.29 6.18 4.46% 1.58 18.6dB 42.7◦ −171◦

ωu 8.32 0.47 8.07 4.98% 1.57 19.5dB 42.9◦ −180◦
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Figure 22 – Closed-loop normalized output signal for process G2(s) with T = 0.1, for
PR+lead compensator.
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Table 9 – Tuning parameters and performance indicators for the closed-loop system of
G3(s) with α = 0.1 and different values of ωr for PR+lead compensator.

ωr kp kr1 ns MO%
Ms GM PM ∠G(jωr)

0.5ωu 84.62 4.56 1.54 0% 1.38 19.1dB 50.6◦ −154◦

0.75ωu 82.96 3.18 2.91 0.83% 1.42 19.4dB 48.3◦ −169◦

0.9ωu 81.60 1.24 3.88 0.87% 1.40 19.7dB 49.4◦ −176◦

ωu 80.54 1.38 4.80 2.50% 1.46 19.7dB 46◦ −180◦

Table 10 – Tuning parameters and performance indicators for the closed-loop system of
G5(s) with α = 0.9 and different values of ωr for PR+lead compensator.

ωr kp kr1 ns MO%
Ms GM PM ∠G(jωr)

0.5ω−20dB 8.79 1.59 0.95 0.88% 1.18 ∞ 59◦ −112◦

0.75ω−20dB 12.13 1.32 1.49 0.03% 1.20 ∞ 60◦ −132◦

ω−20dB 15.81 1.23 1.56 0% 1.25 ∞ 57.5◦ −143◦
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Figure 23 – Closed-loop normalized output signal for process G3(s) with α = 0.1, for
PR+lead compensator.
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Figure 24 – Closed-loop normalized output signal for process G5(s) with α = 0.9, for
PR+lead compensator.
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Table 11 – Tuning parameters and performance indicators for the closed-loop system of
G6(s) with α = 0.1 and different values of ωr for PR+lead compensator.

ωr kp kr1 ns MO%
Ms GM PM ∠G(jωr)

0.1ω−20dB 4.26 0.46 1.53 1.36% 1.41 ∞ 43.5◦ −4.25◦

0.25ω−20dB 1.35 0.72 4.40 10.83% 2.01 ∞ 30◦ −28◦

0.5ω−20dB 4.83 0.13 3.28 3.64% 1.21 ∞ 54.3◦ −169◦

0.75ω−20dB 10.45 0.20 2.91 3.52% 1.24 ∞ 54.1◦ −175◦

ω−20dB 15.81 0.26 2.38 2.86% 1.31 ∞ 51.7◦ −176◦

Figure 25 – Closed-loop normalized output signal for process G6(s) with α = 0.1, for
PR+lead compensator.
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The parameters kpc and kr1 were computed by the procedure described in the previous
section. Comparing the obtained results with those presented in section 3.4, one can notice
that the introduction of the phase-lead compensator considerably improved the performance
of the system for higher frequencies. For the range of frequencies tested, the resulting
phase margins are higher than 30◦ and the peak value Ms falls in the desired interval.
Hence, suitable values for the maximum overshoot and settling time were achieved.

4.5 Disturbance Rejection Analysis

In order to evaluate the performance of the proposed method for the closed-loop
system shown in the block diagram of Figure 1 subject to a disturbance composed by the
fundamental frequency ωr and its harmonic frequencies, this section explores the effects
of this type of disturbance in terms of the percent of Total Harmonic Distortion (THD%)
(IEEE, 1992) observed in the output of the system. Let d(t) represent a disturbance signal
with half of the amplitude A of reference signal r(t) and composed by frequency ωr and
its odd-multiples up to the 11th component, given by

d(t) =
A

2
(0.3337 cos (ωrt) + 0.287 cos (3ωrt) + 0.2076 cos (5ωrt)+

+0.1181 cos(7ωrt) + 0.0414 cos(9ωrt) + 0.0122 cos(11ωrt)) (46)

This signal is constructed to emulate, for instance, the type of distortion caused by
typical nonlinear devices connected to power systems, such as the switched mode power
supplies commonly used in many electronic devices, for which the input circuit is a
single-phase bridge rectifier with a capacitive filter (RODRÍGUEZ et al., 2005). Figure 26
presents the normalized reference and disturbance signals.

Tables 12, 13 and 14 summarise the results achieved for different ratios between ωr

and ωu. These tables present the obtained values for settling time ns, maximum percent
overshoot MO%

and percent of total harmonic distortion THD% of the final controlled
system with PR controller and PR+Lead compensator. Values for the peak of sensitivity
function Ms, phase margin PM and gain margin GM of the final controlled system, and
the original phase margin of process G(jω) at the frequency of interest are the same of
those in the previous sections for the corresponding design method and frequency ratio,
thus were omitted.

Comparing the obtained results with those presented in the Sections 3.4 and 4.4, one
can notice that the values for settling time ns and maximum percent overshoot MO% with
higher frequencies ωr are similar for the corresponding design method and frequency
ratio, in spite of the presence of a disturbance. Note that, although the controller was
not designed to reject components of higher frequency, the system acts as a low-pass
filter, significantly reducing the distortion caused by higher harmonic frequencies. For
frequencies ωr given by lower ratios of ωu, this characteristic was less evident and the
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Table 12 – Performance indicators for the closed-loop system of G1(s) with n = 3 and
different values of ωr subject to disturbance d(t)

PR PR+Lead

ωr ns MO%
THD% ns MO%

THD%

0.1ωu − 16.33% 11.68% − 8.59% 6.55%

0.25ωu − 6.89% 4.14% − 4.65% 3.85%

0.5ωu 8.72 3.69% 0.70% 2.08 0.00% 0.87%

0.75ωu > 50 36.90% 0.23% 3.05 0.00% 0.25%

0.9ωu > 50 73.52% 0.13% 4.36 0.94% 0.14%

ωu 6.22 4.66% 0.10%

Table 13 – Performance indicators for the closed-loop system of G2(s) with T = 0.1 and
different values of ωr subject to disturbance d(t)

PR PR+Lead

ωr ns MO%
THD% ns MO%

THD%

0.1ωu − 8.66% 5.77% − 4.29% 3.50%

0.25ωu − 1.44% 1.84% − 2.03% 1.78%

0.5ωu 10.72 2.56% 0.34% 2.57 0.00% 0.41%

0.75ωu > 50 32.13% 0.10% 4.24 2.61% 0.11%

0.9ωu > 50 69.19% 0.06% 6.18 4.51% 0.06%

ωu 7.69 5.02% 0.05%
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Figure 26 – Normalized signals r(t) and d(t).
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Figure 27 – Comparison of normalized output signals of process G1(s) with n = 3 subject
to disturbance d(t) for ωr = 0.1ωu using PR and PR+lead controllers.
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distortion caused by the disturbance has restrained the output error from settling below the
tolerance value ε < 2%. These cases are represented by "−" in the corresponding cells for
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Figure 28 – Comparison of normalized output signals of process G2(s) with T = 0.1

subject to disturbance d(t) for ωr = 0.1ωu using PR and PR+lead controllers.
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Table 14 – Performance indicators for the closed-loop system of G3(s) with α = 0.1 and
different values of ωr subject to disturbance d(t)

PR PR+Lead

ωr ns MO%
THD% ns MO%

THD%

0.1ωu − 11.68% 1.72% 0.52 2.37% 0.66%

0.25ωu 2.06 1.67% 0.28% 1.24 0.39% 0.28%

0.5ωu 17.19 31.39% 0.06% 1.54 0.00% 0.08%

0.75ωu > 50 65.17% 0.02% 2.91 0.82% 0.03%

0.9ωu > 50 88.42% 0.02% 3.88 0.86% 0.02%

ωu 4.80 2.50% 0.01%

the settling time ns. The design method for the PR+Lead compensator resulted in better
performance indices in comparison with the PR controller responses. Figures 27, 28 and
29 present the output of each system for frequency ratio ωr = 0.1ωu to illustrate the effect
of higher levels of THD in the output waveform.
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Figure 29 – Comparison of normalized output signals of process G3(s) with α = 0.1

subject to disturbance d(t) for ωr = 0.1ωu using PR and PR+lead controllers.
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4.6 Chapter Summary

This chapter has considered the combination of the PR controller with a phase-lead
compensator in order to allow better performance in an augmented bandwidth. The method
has been revised to deal with this new structure for processes with and without ultimate
frequency. The performance of the proposed method has been assessed for the classes
of processes introduced in Chapter 2. The overall performance of the system for higher
frequencies has greatly improved when compared with the results obtained in Chapter 3.

Finally, this chapter has analysed the performance of the proposed method for the PR
controller and the PR+Lead compensator with respect to harmonic disturbance rejection.
The results for each method have been compared and some concluding remarks based
on these results end the chapter. Despite the improvement of performance presented by
the PR+Lead compensator, in many cases the harmonic content of the disturbance has
restrained the output error from settling below its tolerance value. In the next chapter, the
controller topology is extended to multiple peaks of resonance, in order to obtain reference
tracking and disturbance rejection of a wider range of periodic signals. The results of this
chapter have been published in (MOSSMANN; PEREIRA; GOMES DA SILVA JR, 2021).
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5 PMR CONTROLLER

5.1 Introduction

In this chapter, the PR controller is extended to multiple peaks of resonance, in
order to obtain reference tracking and disturbance rejection of a wider range of periodic
signals. For signals with higher harmonic composition, a controller with multiple modes of
resonance can achieve better performance in reference tracking and disturbance rejection.
The resulting controller is a Proportional Multi-Resonant controller (PMR) (ABU-RUB;
MALINOWSKI; AL-HADDAD, 2014).

5.2 The Proportional Multi-Resonant Structure

Recall the resonant part of the controller given by (30) in Chapter 3. It can be expressed
for each harmonic m as follows

CRm(s) =
s2 + 2kr1ms+ kr2m

s2 + (mωr)2
, m = 1, 2, 3, 4, ..., N (47)

The PR controller can be extended for multiple modes of resonance by inserting the
corresponding resonant part of each frequency mode in the loop transfer function. This
extension can be arranged in series or in parallel connection. For the series connection, the
PMR controller can be expressed as follows

CPMRs(s) = kpmr (1 + CR1) CR2 ... CRN
(48)

For the parallel connection, the PMR controller can be expressed as follows

CPMRp(s) = kpmr (1 + CR1 + CR2 + ...+ CRN
) (49)

Figure 30 presents the Bode plot for series and parallel topologies of CPMR(jω) with
kpmr = 1, ωr = 1 rad/s, φωr1 = −30◦, φωrm = −5◦ and odd harmonic frequency modes
up to N = 11. Notice the peaks of resonance at each frequency mode mωr and the
phase contribution of the PMR controller. Starting from the knowledge and assumptions
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Figure 30 – Bode plot of series and parallel topologies of PMR controller CPMR(jω) with
kpmr = 1, ωr = 1 rad/s, φωr1 = −30◦, φωrm = −5◦ and odd harmonic frequency modes
up to N = 11.
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developed in previous chapters, a systematic method for the tuning and application of the
PMR controller is proposed in this chapter.

Following the reasoning presented in Chapter 4, a phase-lead compensator can be
used to increase the system bandwidth and/or to improve the phase margin of the system.
Figure 31 illustrates the resulting controller with series structure. Figure 32 illustrates the
resulting controller with parallel structure.

Figure 31 – Block diagram of the series topology of the PMR controller.

+ kpmr + CR2
CRN−1 CRN Clead + G

r
d

CR1

y

−

y

−

CPMR

Source: created by the author.

Figure 32 – Block diagram of the parallel topology of the PMR controller.

+ kpmr + Clead + G

+

+

+

r
d

CR1

CR2

CRN−1

CRN

y

−

y

−

CPMR

Source: created by the author.



63

In the next sections, based on an extension of the reasoning performed in Chapters 3
and 4, a systematic procedure for the computation of the parameters of each topology of
the PMR controller is proposed.

5.3 Tuning of PMR Controller

Consider that the PMR controller not necessarily has to deal with all frequency modes
from the fundamental frequency ωr up to Nωr. Hence, let H = {1, ... , N} be a set of
integers whose elements represent the frequency modes present in the PMR controller.
Let No be the total number of elements inH and N be the highest element in the set. For
example, the setH = {1, 3, 7, 11} has N = 11 and No = 4.

5.3.1 Series Topology

In this section, the procedure for the computation of parameters for the series topology
of the PMR controller is proposed. In the series topology, the resulting controller is the
product of each harmonic frequency mode transfer function. Thus, considering the resonant
mode of each harmonic m ≥ 2 given by (47), the magnitude contribution of each mode is
given by

|CRm(jω)| =

√
k2r2m + 2(2k2r1m − kr2m)ω

2 + ω4

|(mωr)2 − ω2|
, m ≥ 2, m ∈ H (50)

Notice that for ω = 0 the gain contribution of each mode is kr2m
(mωr)2

, for ω = mωr the
gain tends to infinity and for ω � ωr the gain tends to 1.

Moreover, the phase contribution of each mode in a frequency ω > mωr is given by

∠CRm(jω) = arctan

(
2kr1mω

kr2m − ω2

)
, m ≥ 2, m ∈ H (51)

In order to adjust the gain contribution of each mode, let kr2m be given by

kr2m = β(mωr)
2 , m ≥ 2, m ∈ H and 0 < β < 1 (52)

Thus, from (50) with ω = 0, |CRm(0)| = β.

Let φωrm be the contribution of phase at frequency ω → mω+
r required for the

corresponding mode. Assigning ω = mωr and kr2m = β(mωr)
2 in (51) to obtain

∠CRm(jmωr) = φωrm and isolating the parameter kr1m leads to the following expres-
sion

kr1m = −mωr(1− β)
2

tan(φωrm) , m ≥ 2, m ∈ H (53)

From (47), for each frequency mode the corresponding zeros are given by



64

z1CRm
= −kr1m +

√
k2r1m − kr2m ,

z2CRm
= −kr1m −

√
k2r1m − kr2m

(54)

If k2r1m < kr2m , i.e. kr1m <
√
kr2m , the zeros are complex-conjugate and their

corresponding natural frequency ω0CRm
is equal to their module. From (47) and considering

kr2m = β(mωr)
2 and kr1m as defined in (53), this frequency is given by

ω0CRm
=
√
kr2m = mωr

√
β , m ≥ 2, m ∈ H (55)

To ensure that the zeros of the controller are placed in the left half complex plane, it
is sufficient to have kr1m > 0 and kr2m ≥ 0. Let γ represent the ratio between the natural
frequency of the zeros given by (54) and frequency mode mωr. Thus,

γ =
ω0CRm

mωr

=
√
β (56)

Therefore, the parameter β determines the gain contribution of each frequency mode at
lower frequencies and the ratio determined by γ. Thus, there is a compromise between the
gain at lower frequencies and the natural frequency of the zeros. Considering 0 < β < 1,
if β is close to 1 the natural frequency of the zeros ω0CRm

is located almost at the same
frequency of its corresponding poles mωr and the resonant effect deteriorates. Also, if β is
closer to 1 it results in a neutral gain contribution at lower frequencies. Thus, heuristically,
it is reasonable to propose β = 0.81, which yields to γ = 0.9.

From the formulation developed for the fundamental frequency in the previous Chapters
and considering that usually this frequency presents the highest energy in the spectrum of
the signal, the tuning of the parameters kpmr and kr11 follows the same procedure proposed
in Chapter 4 for plants with and without ultimate frequency accordingly. It is reasonable to
make kr11 < ωr and hence from (39), assume φωr ≥ −63.43◦.

The total phase contribution of the series topology of the PMR controller corresponds
to the sum of the phase contribution of each frequency mode. Therefore, the phase
contribution at each frequency mode mωr corresponds to the value of φωrm plus the sum
of a residual phase contribution from every other frequency mode. Intermediate frequency
modes m ≥ 2 ∈ H perceive negative residual phase contribution from lower modes and
positive residual phase contribution from higher modes. For the highest frequency mode,
only negative residual phase from lower modes is perceived. These observations can
be noticed in Figure 30 for the series topology of the PMR controller, where the phase
contribution at the highest frequency mode is lower than for the intermediate frequency
modes.

The value of kr1m must be computed from (53) to limit the phase contribution of the
controller, φωrm , at each harmonic frequency. Recall that the relationship between the
peak of the sensitivity function Ms and the phase margin PM given by (21), from which
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it follows that if Ms ≈ 2 the phase margin should be greater than 28.96◦. Based on this
relationship and considering the infinite peak gain that occurs at each harmonic component
found in CPMR(s), it is reasonable to have kr1m such that the phase of the pre-compensated
system ∠Clead(jNωr)G(jNωr) at the highest harmonic can be larger than −145◦, i.e., at
this point there is at least 35◦ above the critical phase −180◦ and it is possible to satisfy
PM ≥ 28.96◦. Thus, the value for kr1m is chosen to limit the phase contribution of each
frequency mode, φωrm and the negative residual phase contribution between frequency
modes. Hence, it is reasonable to choose φωrm = −5◦ at each harmonic frequency mωr

for m ≥ 2 ∈ H.

The method for tuning the series topology of PMR controller proposed in this work
can therefore be summarised as follows:

Algorithm:

Step 1. Design the PR+lead compensator for the fundamental frequency ωr using the method
proposed in Chapter 4, assuming φωr ≥ −63.43◦.

Step 2. Determine kr2m = β(mωr)
2 with β = 0.81 for each m ≥ 2, m ∈ H.

Step 3. Determine kr1m from (53) with β = 0.81 and φωrm = −5◦ for each m ≥ 2, m ∈ H.

In order to evaluate the effectiveness of the tuning method, it is tested for different
classes of typical processes with and without ultimate frequency in Section 5.4.

5.3.2 Parallel Topology

In this section, the procedure for the computation of parameters for the parallel topology
of the PMR controller is proposed. Notice that the expression for this topology in (49) can
be rearranged as follows

CPMRp(s) = kpmr

(
1

No
+ CR1

)
+ kpmr

(
1

No
+ CR2

)
+ ...+ kpmr

(
1

No
+ CRN

)
(57)

where No is the total number of multiple frequency modes mωr in the PMR controller.

This is equivalent to a sum of PR controllers as presented in Chapter 3. Assigning the
corresponding structure from (47) to each term and considering kr2m = 0, this equation
can be rearranged as follows

CPMRp(s) =
∑
m∈H

(
(No + 1)kpmrs

2 + 2Nokpmrkr1ms+ kpmr(mωr)
2

No(s2 + (mωr)2)

)
(58)

Notice from (58) that for ω = 0 the gain of the controller is kpmr, for ω = mωr the
gain tends to infinity and for ω � ωr the gain tends to (No + 1)kpmr. Applying the least
common multiple in (58) and rearranging its terms, it can be expressed as follows
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CPMRp(s) =
kpmr

No

∏
n∈H

1

s2 + (nωr)2
∑

m∈H

((No + 1)s2 + 2Nokr1ms+ (mωr)
2
)∏
n∈H
n6=m

(
s2 + (nωr)

2
)

(59)

From (59), it can be noticed that at each frequency modemωr the product
∏

(s2 + (nωr)
2)

makes the numerator equals to zero for every n 6= m. Hence, at any frequency mωr the
only term that is not null is its corresponding term from (57) given by

CPMRp(s ≈ mjωr) = kpmr

(
1

No
+ CRm

)
=
kpmr

No

(
(No + 1)s2 + 2Nokr1ms+ (mωr)

2

s2 + (mωr)2

)
(60)

which is similar to the PR controller presented in Chapter 3.

5.3.2.1 Plants with Ultimate Frequency

In this section, the procedure for the computation of parameters for the parallel topology
of the PMR controller for processes with ultimate frequency is proposed. The procedure
for the PR+lead compensator should have its parameters revised to work with the com-
pensated system Clead(s)G(s) and multiple modes of resonance. Recall that ωuc is the
ultimate frequency of the pre-compensated system, for which its phase crosses −180◦, and
Muc = |Clead(jωuc)G(jωuc)| is the gain of the system at this frequency. Following similar
reasoning as presented in Chapter 4, the value of kp must be revised to adjust the gain
margin.

As previously stated, with the parallel topology, for ω � ωr the gain tends to (No +

1)kpmr. In order to limit the gain introduced by the PMR controller at high frequencies, it
is reasonable to consider a factor κ in the denominator, with 1 ≤ κ ≤ (No + 1). Hence,
the value of kp is revised to

kpmr =
1

10κ

ω2
uc − ω2

r

Muc(2ω2
uc − ω2

r)
(61)

Recall that in Chapters 3 and 4, κ = 1 and No = 1 and the gain tends to 2kp for
ω � ωr, as expected. If κ = 1, kpmr has the same formulation from previous chapters and
the gain at high frequencies can become too high. On the other hand, if κ = (No + 1) the
gain at low frequencies, which tends to kpmr, can be too low and the system response can
potentially become too slow. Thus, considering that No ≤ 9 must be sufficient for most
applications, it is reasonable to adjust κ = 2. Fine adjustments can be made iteratively if
needed.

Let φωrm be the phase contribution of the controller at frequency ω → mω+
r required

for the controller at each frequency mωr. Following similar reasoning presented in Chapter
3 to obtain (39), the value proposed for kr1m is given by



67

kr1m = −mωr

2
tan(φωrm) , m ∈ H (62)

Analogously to the procedure proposed in Section 5.3.1, the value of kr11 is computed
from (62) for the phase of CPMR(jωr)Clead(jωr)G(jωr) at this frequency to be approx-
imately −130◦. As previously stated, the condition to have complex-conjugate zeros is
kr11 <

√
2ωr and from (62), φωr ≥ −70.52◦. It is reasonable to make kr11 < ωr and hence

from (62), φωr ≥ −63.43◦.
Following the reasoning presented in Section 5.3.1, the value of kr1m must be computed

from (62) to limit the phase contribution of the controller, φωrm , at each harmonic frequency.
Thus, the value for kr1m is chosen to limit the phase contribution of the controller, φωrm , to
−5◦ at each harmonic frequency mωr for m ≥ 2.

The method for tuning the PMR controller for processes with ultimate frequency pro-
posed in this work can therefore be summarised as follows:

Algorithm:

Step 1. Design the phase-lead compensator with α = 10 and p given by (44).

Step 2. Determine kpmr from (61).

Step 3. From the frequency response of the pre-compensated system, determine the phase
contribution that the controller can introduce at frequency ωr with
φωr1 ≈ −130◦ − ∠Clead(jωr)G(jωr) , φωr1 ≥ −63.43◦, such that the phase of
CPMR(jωr)Clead(jωr)G(jωr) at this frequency is approximately −130◦.

Step 4. Determine kr11 from (62) using the value for φωr1 obtained in the previous step.

Step 5. Determine kr1m from (62) with φωrm = −5◦ for each m ≥ 2, m ∈ H.

In order to evaluate the effectiveness of the tuning method, it is tested for different
classes of typical processes with ultimate frequency in Section 5.4.

5.3.2.2 Plants without Ultimate Frequency

In this section, the procedure for the computation of parameters for the parallel topology
of the PMR controller for processes without ultimate frequency is proposed. Analogously
to the procedure for plants with ultimate frequency, a factor κ is considered in order to
reduce the high frequency gain introduced by the PMR controller. The value of kp is
revised to

kpmr =
1

2κMr

(63)

As previously stated, considering that No ≤ 9 must be sufficient for most applications, it is
reasonable to adjust κ = 2 and fine adjustments can be made iteratively if needed.
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Following the reasoning from the previous section, kr1m can be adjusted to limit the
phase contribution of the controller φωrm at frequencies ω → mω+

r using the same expres-
sion given by (62). One must compute kr11 using (62) so that ∠CPMR(jωr)Clead(jωr)G(jωr)

≈ −130◦, i.e., ∠Clead(jωr)G(jωr) + φωr1 ≈ −130◦ or equivalently φωr1 ≈ −130◦ −
∠Clead(jωr)G(jωr). As described in the previous section, in order to have kr11 < ωr, then
φωr ≥ −63.43◦.

As stated in Chapter 3, if the phase of the process at the vicinity of ωr decreases
abruptly, the phase contribution of the controller may compromise the stability of the
system if its phase crosses−180◦, limiting the gain margin that would be infinite otherwise.
For processes with relative degree 2 and with small damping ratio, the phase of the process
may decrease too abruptly at the vicinity of ωr and it is necessary to adopt a stricter limit
to the phase contribution of the controller, increasing φωr1 so that phase and gain margins
are within the limits proposed in this work.

The method for tuning the PMR controller for processes without ultimate frequency
proposed in this work can therefore be summarised as follows:

Algorithm:

Step 1. For processes with relative degree 2, design the phase-lead compensator with α = 10

and p =
√
α ω−20dB.

Step 2. Determine kpmr from (63).

Step 3. From the frequency response of the pre-compensated system, determine the phase
contribution that the controller can introduce at frequency ωr with
φωr1 ≈ −130◦ − ∠Clead(jωr)G(jωr) , φωr1 ≥ −63.43◦, such that the phase of
CPMR(jωr)Clead(jωr)G(jωr) at this frequency is approximately −130◦.

Step 4. Determine kr11 from (62) using the value for φωr1 obtained in the previous step.

Step 5. Determine kr1m from (62) with φωrm = −5◦ for each m ≥ 2, m ∈ H.

In order to evaluate the effectiveness of the tuning method, it is tested for different
classes of typical processes without ultimate frequency in the next section.

5.4 Simulation Results for PMR Controller

Let d(t) represent the disturbance with frequency content composed by the odd mul-
tiples of ωr. This signal is bounded to the same maximum amplitude A of the reference
signal r(t) and its equation for the odd multiple integers of the fundamental frequency ωr

is as follows:
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· For N = 11 andH = {1, 3, 5, 7, 9, 11}, the signal d(t) is given by

d(t) = A

(
1

2
sin
(
3ωrt+

π

6

)
+

4

20
sin
(
5ωrt+

π

4

)
+

3

20
sin(7ωrt) +

2

20
sin(9ωrt) +

1

20
sin(11ωrt)

)
(64)

· For N = 9 andH = {1, 3, 5, 7, 9}, the signal d(t) is given by

d(t) = A

(
1

2
sin
(
3ωrt+

π

6

)
+

4

20
sin
(
5ωrt+

π

4

)
+

3

20
sin(7ωrt) +

3

20
sin(9ωrt)

)
(65)

· For N = 7 andH = {1, 3, 5, 7}, the signal d(t) is given by

d(t) = A

(
1

2
sin
(
3ωrt+

π

6

)
+

4

20
sin
(
5ωrt+

π

4

)
+

6

20
sin(7ωrt)

)
(66)

· For N = 5 andH = {1, 3, 5}, the signal d(t) is given by

d(t) = A

(
1

2
sin
(
3ωrt+

π

6

)
+

1

2
sin
(
5ωrt+

π

4

))
(67)

· For N = 3 andH = {1, 3}, the signal d(t) is given by

d(t) = A sin
(
3ωrt+

π

6

)
(68)

Figure 33 presents the normalized disturbance and reference signals consideringH =

{1, 3, 5, 7, 9, 11}.

Figure 33 – Normalized signals r(t) and d(t) consideringH = {1, 3, 5, 7, 9, 11}.
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In order to assess the performance of the proposed method for the systems shown in
Figures 31 and 32 subject to the disturbance defined by (64) to (68), the PMR controller is
tested using the same plants and criteria defined in Chapter 2. Also, analogous tables and
plots are presented to demonstrate the simulation results. For the class of processes G4(s),
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ωr is such that |Clead(jNωr)G(jNωr)| = −20dB in each case. For all other classes of
processes, ωr is such that ∠Clead(jNωr)G(jNωr) = −145◦ in each case and it is possible
to obtain a phase margin of 28.96◦. In every test, d(t) is bounded to the same maximum
amplitude A of the reference signal r(t) and N is the same of the PMR controller.

5.4.1 Series Topology Simulation Results

In order to illustrate the application of the method for the series topology of the PMR
controller, consider the process G1(s) with n = 3 for which ωu = 1.73 rad/s. To improve
the bandwidth of the process, begin by designing the phase-lead compensator with p

given by (44). Thus, p =
√
10 ωu = 5.47. Figure 34 presents the Bode plot for the pre-

compensated system Clead(s)G1(s), for which ωuc = 3.88 rad/s and Muc = −40.8 dB.

Figure 34 – Bode plots of the pre-compensated systemClead(s)G1(s) with n = 3, for which
ωuc = 3.88 rad/s and Muc = −40.8 dB, and of the system CPMRs(s)Clead(s)G1(s).
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Recall that the disturbance signal is composed by the odd multiple integers of the
fundamental frequency ωr up to N . For testing purposes, consider the case for which
frequency ωr is such that ∠Clead(jNωr)G(jNωr) = −145◦ and therefore it is chal-
lenging, though possible, to obtain a phase margin greater than 28.96◦. Otherwise, if
∠Clead(jNωr)G(jNωr) < −145◦, then the phase should be compensated in order to
make it possible to accomplish the required phase margin. For the pre-compensated sys-
tem Clead(s)G1(s) shown in Figure 34, ∠Clead(jNωr)G(jNωr) = −145◦ corresponds
to ωr ≈ 2.27

N
rad/s, e.g. for N = 11 then ωr = 0.21 rad/s and for N = 9 then

ωr = 0.25 rad/s.

Now, given ωr = 0.21 rad/s, consider the case withN = 11. The corresponding set of
harmonic frequencies isH = {1, 3, 5, 7, 9, 11} and No = 6. From the frequency response
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of the pre-compensated system shown in Figure 34, then ∠Clead(j11ωr)G(j11ωr) =

−145◦. The phase of the pre-compensated system at frequency ωr is ∠Clead(jωr)G(jωr) =

−16.8◦.
Hence, for ωr = 0.21rad/s, kpmr is computed from (45) as follows

kpmr =
1

10

ω2
uc − ω2

r

Muc(2ω2
uc − ω2

r)
= 5.47 (69)

The phase contribution that the controller can introduce at the fundamental frequency
ωr is given by φωr ≈ −130◦ − ∠Clead(jωr)G(jωr) = −130◦ + 16.8◦ = −113.2◦ with
φωr ≥ −63.43◦. Hence, assuming φωr = −60◦, kr11 is computed from (39) as follows

kr11 = −
ωr

2
tan(φωr) = −

0.21

2
tan(−60◦) = 0.18 (70)

The parameters kr1m and kr2m are given by (53) and (52), respectively. Assuming
β = 0.81 and φωrm = −5◦, the obtained values are presented in Table 15.

Table 15 – Tuning parameters kr1m and kr2m for the process G1(s) with n = 3 and the
series topology of PMR controller with frequency modes up to N = 11.

m 3 5 7 9 11

kr1m 0.0052 0.0087 0.0122 0.0157 0.0192

kr2m 0.32 0.89 1.75 2.89 4.32

The results achieved for process G1(s) with the controller designed with these parame-
ters are summarised in the line for ωr = 0.21rad/s and N = 11 of Table 16. Figure 34
presents the Bode plot of the system CPMRs(s)Clead(s)G1(s). The output signal normal-
ized in relation to the period of reference signal r(t) for this case is shown in Figure 35.
Also, the root mean square (RMS) value of the output signal, yRMS(t), and the portion of
the output signal due to the disturbance are shown in this figure. The same procedure is
repeated accordingly for every case of each different process and the results are presented
bellow.

Tables 16 to 18 summarise the results achieved for processes G1(s), G2(s) and G3(s)

with reference signal r(t) subject to disturbance d(t) composed by harmonic components
odd multiples of the fundamental frequency ωr up to N as described from (64) to (68).
Tables 19 to 21 summarise the results achieved for processes G4(s), G5(s) and G6(s).
The tables present the obtained values for settling time ns, maximum percent overshoot
MO%

, peak of sensitivity function Ms, phase margin PM and gain margin GM of the final
controlled system. Figures 35 to 40 show the output signal normalized in relation to the
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period of reference signal r(t) for the system subject to a disturbance d(t) with harmonic
content up to the 11th multiple of ωr given by (64) (i.e. with the harmonic content up to
the 11th multiple of ωr), the root mean square (RMS) value of the output signal, yRMS(t),
and the portion of the output signal due to the disturbance, yd(t).

Table 16 – Tuning parameters and performance indicators for the closed-loop system of
G1(s) with n = 3 and odd multiples of ωr up to N for the series topology of the PMR
controller.

ωr N kpmr kr11 ns MO%
Ms GM PM

0.76 rad/s 3 5.37 0.66 9.53 7.05% 4.71 14.2dB 12.3◦

0.45 rad/s 5 5.44 0.39 3.39 0.57% 3.07 16.1dB 19.1◦

0.32 rad/s 7 5.46 0.28 3.34 0% 2.77 16.5dB 21.2◦

0.25 rad/s 9 5.47 0.22 4.39 0% 2.75 16.4dB 21.4◦

0.21 rad/s 11 5.47 0.18 5.90 0.01% 3.00 16.1dB 19.6◦

Figure 35 – Closed-loop normalized output signal for process G1(s) with n = 3, for the
series topology of the PMR controller with odd multiples of ωr up to 11.
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Table 17 – Tuning parameters and performance indicators for the closed-loop system of
G2(s) with T = 0.1 and odd multiples of ωr up to N for the series topology of the PMR
controller.

ωr N kpmr kr11 ns MO%
Ms GM PM

4.50 rad/s 3 9.43 3.74 8.74 6.35% 4.62 13.9dB 12.5◦

2.70 rad/s 5 9.56 2.34 3.89 0.67% 3.28 15.6dB 17.8◦

1.93 rad/s 7 9.60 1.67 3.03 0.54% 2.99 15.9dB 19.6◦

1.50 rad/s 9 9.61 1.30 3.52 0.11% 2.92 15.9dB 20.1◦

1.23 rad/s 11 9.62 1.06 4.53 0.14% 2.97 15.7dB 19.8◦

Figure 36 – Closed-loop normalized output signal for process G2(s) with T = 0.1, for the
series topology of the PMR controller with odd multiples of ωr up to 11.
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Table 18 – Tuning parameters and performance indicators for the closed-loop system of
G3(s) with α = 0.1 and odd multiples of ωr up to N for the series topology of the PMR
controller.

ωr N kpmr kr11 ns MO%
Ms GM PM

16.72 rad/s 3 84.46 3.55 4.04 3.06% 2.34 18.4dB 25.4◦

10.03 rad/s 5 85.38 3.26 2.92 1.52% 2.37 18.1dB 25◦

7.16 rad/s 7 85.64 3.00 2.90 0.85% 2.42 17.9dB 24.5◦

5.57 rad/s 9 85.74 2.60 2.45 1.87% 2.47 17.6dB 24.1◦

4.56 rad/s 11 85.79 2.44 2.94 1.79% 2.52 17.3dB 23.3◦

Figure 37 – Closed-loop normalized output signal for process G3(s) with α = 0.1, for the
series topology of the PMR controller with odd multiples of ωr up to 11.
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Table 19 – Tuning parameters and performance indicators for the closed-loop system of
G4(s) with α = 0.1 and odd multiples of ωr up to N for the series topology of the PMR
controller.

ωr N kpmr kr11 ns MO%
Ms GM PM

0.33 rad/s 3 1.73 0.25 3.13 5.21% 1 ∞ 77.7◦

0.2 rad/s 5 1.12 0.17 3.96 5.03% 1 ∞ 81.1◦

0.14 rad/s 7 0.87 0.12 4.98 4.07% 1 ∞ 82.5◦

0.11 rad/s 9 0.75 0.10 6.48 3.84% 1 ∞ 83.8◦

0.09 rad/s 11 0.67 0.08 7.99 3.83% 1 ∞ 84◦

Figure 38 – Closed-loop normalized output signal for process G4(s) with α = 0.1, for the
series topology of the PMR controller with odd multiples of ωr up to 11.
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Table 20 – Tuning parameters and performance indicators for the closed-loop system of
G5(s) with α = 0.1 and odd multiples of ωr up to N for the series topology of the PMR
controller.

ωr N kpmr kr11 ns MO%
Ms GM PM

1.69 rad/s 3 29.10 0.51 4.73 3.93% 2.39 ∞ 24.7◦

1.01 rad/s 5 18.36 0.69 5.05 5.52% 2.66 ∞ 22◦

0.72 rad/s 7 15.10 0.63 4.94 2.41% 2.65 ∞ 22.1◦

0.56 rad/s 9 13.46 0.49 4.95 0.71% 2.56 ∞ 22.8◦

0.46 rad/s 11 12.42 0.40 5.46 0.08% 2.56 ∞ 22.9◦

Figure 39 – Closed-loop normalized output signal for process G5(s) with α = 0.1, for the
series topology of the PMR controller with odd multiples of ωr up to 11.
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Table 21 – Tuning parameters and performance indicators for the closed-loop system of
G6(s) with α = 0.1 and odd multiples of ωr up to N for the series topology of the PMR
controller.

ωr N kpmr kr11 ns MO%
Ms GM PM

4.33 rad/s 3 22.59 0.27 3.92 4.19% 2.04 ∞ 29.4◦

2.60 rad/s 5 11.07 0.21 5.56 4.09% 2.08 ∞ 28.7◦

1.86 rad/s 7 6.22 0.15 5.47 4.24% 2.13 ∞ 28◦

1.44 rad/s 9 3.30 0.14 8.90 4.36% 2.16 ∞ 27.3◦

1.18 rad/s 11 1.51 0.26 20.51 6.84% 2.29 ∞ 25.7◦

Figure 40 – Closed-loop normalized output signal for process G6(s) with α = 0.1, for the
series topology of the PMR controller with odd multiples of ωr up to 11.
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The parameters kpmr and kr11 for the fundamental frequency were determined using
the same procedure proposed in Chapter 4 for plants with and without ultimate frequency.
Parameters kr1m and kr2m were determined by (53) and (52) respectively, considering
φωrm = −5◦ and β = 0.81.

From the results shown in Tables 16 to 21, for the range of frequencies tested, it can
be observed that the resulting phase margins are close to the value of 28.96◦ and the gain
margin is higher than 15 dB in most cases. This corresponds to the high limit for the peak
value Ms, which falls nearly into the desired interval in most cases. However, in some
cases it can be observed that the peak value Ms is higher than the proposed interval. Hence,
suitable values for the maximum overshoot and settling time were achieved for most cases.
In Figures 35 to 40, it can be observed that in all cases the signal yd(t) tends to zero and
the signal yRMS(t) rapidly converges to its steady-state value. In the next section, these
results are compared with those for the parallel topology of the PMR controller.

5.4.2 Parallel Topology Simulation Results

In order to illustrate the application of the method for the parallel topology of the PMR
controller, consider again the process G1(s) with n = 3 for which ωu = 1.73 rad/s. To
improve the bandwidth of the process, begin by designing the phase-lead compensator
with p given by (44). Thus, p =

√
10 ωu = 5.47. Recall that for the pre-compensated

system Clead(s)G1(s), ωuc = 3.88 rad/s and Muc = −40.8 dB.

Figure 41 – Bode plots of the pre-compensated systemClead(s)G1(s) with n = 3, for which
ωuc = 3.88 rad/s and Muc = −40.8 dB, and of the system CPMRp(s)Clead(s)G1(s).

10
-3

10
-2

10
-1

10
0

10
1

10
2

-200

0

200

400

Cpmr(s)Clead(s)G1(s) Clead(s)G1(s)

10
-3

10
-2

10
-1

10
0

10
1

10
2

-270

-180

0

180

Source: created by the author.

Now, given ωr = 0.21 rad/s, consider the case withN = 11. The corresponding set of
harmonic frequencies isH = {1, 3, 5, 7, 9, 11}and No = 6. From the frequency response
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of the pre-compensated system shown in Figure 41, then ∠Clead(j11ωr)G(j11ωr) =

−145◦. The phase of the pre-compensated system at frequency ωr is ∠Clead(jωr)G(jωr) =

−16.8◦.
Hence, assuming κ = 2, kpmr is computed from (61) as follows

kpmr =
1

10κ

ω2
uc − ω2

r

Muc(2ω2
uc − ω2

r)
= 2.74 (71)

The phase contribution that the controller can introduce at the fundamental frequency
ωr is given by φωr1

≈ −130◦ − ∠Clead(jωr)G(jωr) = −130◦ + 16.8◦ = −113.2◦ with
φωr1

≥ −63.43◦. Hence, assuming φωr1
= −60◦, kr11 is computed from (62) as follows

kr11 = −
mωr

2
tan(φωrm) = −

0.21

2
tan(−60◦) = 0.18 (72)

The parameters kr1m for m ≥ 2 are also given by (62). Assuming φωrm = −5◦ for
each m ≥ 2 ∈ H, the obtained values are presented in Table 22.

Table 22 – Tuning parameters kr1m for the process G1(s) with n = 3 and the parallel
topology of PMR controller with frequency modes up to N = 11.

m 3 5 7 9 11

kr1m 0.0276 0.0459 0.0643 0.0827 0.1010

The results achieved for process G1(s) with the controller designed with these parame-
ters are summarised in the line for ωr = 0.21rad/s and N = 11 of Table 23. Figure 41
presents the Bode plot of the system CPMRp(s)Clead(s)G1(s). The output signal normal-
ized in relation to the period of reference signal r(t) for this case is shown in Figure 42.
Also, the root mean square (RMS) value of the output signal, yRMS(t), and the portion
of the output signal due to the disturbance are shown in this plot. The same procedure is
repeated accordingly for every case of each different process and the results are presented
bellow.

Tables 23 to 25 summarise the results achieved for processes G1(s), G2(s) and G3(s)

with reference signal r(t) subject to disturbance d(t) composed by harmonic components
odd multiples of the fundamental frequency ωr up to N . Tables 26 to 28 summarise
the results achieved for processes G4(s), G5(s) and G6(s). For additional simulation
results see Appendix A.3. The tables present the obtained values for settling time ns,
maximum percent overshoot MO%

, peak of sensitivity function Ms, phase margin PM and
gain margin GM of the final controlled system. Figures 42 to 47 show the output signal
normalized in relation to the period of reference signal r(t) for the system subject to a
disturbance d(t) with harmonic content up to the 11th multiple of ωr, the root mean square
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(RMS) value of the output signal yRMS(t) and the portion of the output signal due to the
disturbance yd(t).

Table 23 – Tuning parameters and performance indicators for the closed-loop system of
G1(s) with n = 3 and odd multiples of ωr up to N for the parallel topology of the PMR
controller.

ωr N kpmr kr11 ns MO%
Ms GM PM

0.76 rad/s 3 2.69 0.66 4.08 5.06% 2.35 18.3dB 25.8◦

0.45 rad/s 5 2.72 0.39 2.79 0.09% 2.21 17.2dB 27.4◦

0.32 rad/s 7 2.73 0.28 2.73 0.03% 2.19 15.8dB 27.9◦

0.25 rad/s 9 2.74 0.22 2.77 0.24% 2.23 14.4dB 27.4◦

0.21 rad/s 11 2.74 0.18 3.26 0.87% 2.40 13.0dB 25.5◦

Figure 42 – Closed-loop normalized output signal for process G1(s) with n = 3, for the
parallel topology of the PMR controller with odd multiples of ωr up to 11.

0 1 2 3 4 5

t/Ts

-1.5

-1

-0.5

0

0.5

1

1.5

r(t) d(t) y(t) yRMS(t) yd(t)

Source: created by the author.



81

Table 24 – Tuning parameters and performance indicators for the closed-loop system of
G2(s) with T = 0.1 and odd multiples of ωr up to N for the parallel topology of the PMR
controller.

ωr N kpmr kr11 ns MO%
Ms GM PM

4.50 rad/s 3 4.71 3.74 5.04 4.27% 2.36 18.0dB 25.6◦

2.70 rad/s 5 4.78 2.34 3.41 0.26% 2.30 16.9dB 26.3◦

1.93 rad/s 7 4.80 1.67 2.57 0% 2.30 15.4dB 26.4◦

1.50 rad/s 9 4.81 1.30 2.55 0% 2.32 14.1dB 26.3◦

1.23 rad/s 11 4.81 1.06 2.12 0.01% 2.37 12.9dB 25.9◦

Figure 43 – Closed-loop normalized output signal for process G2(s) with T = 0.1, for the
parallel topology of the PMR controller with odd multiples of ωr up to 11.
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Table 25 – Tuning parameters and performance indicators for the closed-loop system of
G3(s) with α = 0.1 and odd multiples of ωr up to N for the parallel topology of the PMR
controller.

ωr N kpmr kr11 ns MO%
Ms GM PM

16.72 rad/s 3 42.23 3.55 5.31 2.03% 2.13 20.6dB 28.3◦

10.03 rad/s 5 42.69 3.26 2.89 0.13% 2.13 18.2dB 28.4◦

7.16 rad/s 7 42.82 3.00 1.93 0.14% 2.12 16.4dB 28.3◦

5.57 rad/s 9 42.87 2.60 1.45 0.56% 2.16 14.8dB 28.2◦

4.56 rad/s 11 42.90 2.44 1.07 5.56% 2.20 13.5dB 27.8◦

Figure 44 – Closed-loop normalized output signal for process G3(s) with α = 0.1, for the
parallel topology of the PMR controller with odd multiples of ωr up to 11.
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Table 26 – Tuning parameters and performance indicators for the closed-loop system of
G4(s) with α = 0.1 and odd multiples of ωr up to N for the parallel topology of the PMR
controller.

ωr N kpmr kr11 ns MO%
Ms GM PM

0.33 rad/s 3 0.87 0.25 3.68 3.03% 1.08 ∞ 89.1◦

0.2 rad/s 5 0.56 0.17 3.13 2.80% 1.07 ∞ 90.3◦

0.14 rad/s 7 0.44 0.12 3.01 0.80% 1.08 ∞ 90.8◦

0.11 rad/s 9 0.37 0.10 3.03 0% 1.09 ∞ 91◦

0.09 rad/s 11 0.34 0.08 3.04 0% 1.11 ∞ 91.1◦

Figure 45 – Closed-loop normalized output signal for process G4(s) with α = 0.1, for the
parallel topology of the PMR controller with odd multiples of ωr up to 11.
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Table 27 – Tuning parameters and performance indicators for the closed-loop system of
G5(s) with α = 0.1 and odd multiples of ωr up to N for the parallel topology of the PMR
controller.

ωr N kpmr kr11 ns MO%
Ms GM PM

1.69 rad/s 3 14.55 0.51 5.08 4.36% 2.03 ∞ 29.6◦

1.01 rad/s 5 9.18 0.69 4.06 4.97% 2.00 ∞ 30◦

0.72 rad/s 7 7.55 0.63 3.05 1.72% 1.99 ∞ 30.1◦

0.56 rad/s 9 6.73 0.49 2.97 0.21% 1.98 ∞ 30.3◦

0.46 rad/s 11 6.21 0.40 2.97 0.27% 1.97 ∞ 30.4◦

Figure 46 – Closed-loop normalized output signal for process G5(s) with α = 0.1, for the
parallel topology of the PMR controller with odd multiples of ωr up to 11.
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Table 28 – Tuning parameters and performance indicators for the closed-loop system of
G6(s) with α = 0.1 and odd multiples of ωr up to N for the parallel topology of the PMR
controller.

ωr N kpmr kr11 ns MO%
Ms GM PM

4.33 rad/s 3 11.30 0.27 5.56 4.37% 2.00 ∞ 30◦

2.60 rad/s 5 5.53 0.21 5.58 4.44% 1.99 ∞ 30.2◦

1.86 rad/s 7 3.11 0.15 7.03 4.54% 1.98 ∞ 30.3◦

1.44 rad/s 9 1.65 0.14 7.04 4.69% 1.98 ∞ 30.3◦

1.18 rad/s 11 0.76 0.26 10.48 12.97% 1.99 ∞ 30.2◦

Figure 47 – Closed-loop normalized output signal for process G6(s) with α = 0.1, for the
parallel topology of the PMR controller with odd multiples of ωr up to 11.
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The parameter kpmr was determined by (61) for processes G1(s), G2(s) and G3(s)

and by (63) for processes G4(s), G5(s) and G6(s) considering κ = 2. The parameter
kr11 was computed using (39) to limit phase contribution of the controller at frequency ωr

such that the phase of the system CPMR(jω)Clead(jω)G(jω) at this frequency would be
approximately −130◦. Parameters kr11 for m ≥ 2 were determined by (62) considering
φωrm = −5◦.

From the results shown in Tables 23 to 28, for the range of frequencies tested, it can be
observed that the resulting phase margins are close to the value of 28.96◦ corresponding to
the high limit for the peak value Ms, which falls nearly into the desired interval. Hence,
suitable values for the maximum overshoot and settling time were achieved. In Figures
42 to 47, it can be observed that in all cases the signal yd(t) tends to zero and the signal
yRMS(t) rapidly converges to its steady-state value.

Comparing the obtained results with those presented in Subsection 5.4.1, one can
notice that for the parallel topology of the PMR controller the results for the gain and
phase margins are more consistent and the values of Ms are lower than those for the
series topology of the PMR controller for the same processes. This is due to the fact
that for the parallel topology, the transfer function of the controller at each frequency
mωr is reduced to its corresponding term shown in (60), which is similar to the structure
thoroughly discussed in previous chapters and to which analogous reasoning applies. On
the other hand, with the series topology, the phase contribution of the controller at the
highest harmonic frequency depends also on a sum of residual phase contribution from
previous modes. This characteristic can degrade the phase margin of the system and
prevent the peak value Ms from falling into the desired interval. Moreover, for the series
topology more parameters need to be computed. Hence, for further analysis in the next
Sections, only the method for the parallel topology of the PMR controller is considered.

5.5 Disturbance Rejection Analysis with PMR controller

This section aims to evaluate the effects of a harmonic disturbance in terms of the
percent of Total Harmonic Distortion (THD%) (IEEE, 1992) observed in the output of the
system with the parallel topology of the PMR controller. Now, consider d(t) given in (46)
with the same amplitude A of reference signal r(t). Figure 48 presents the normalized
disturbance and reference signals.

Tables 29 to 31 summarise the results achieved for different orders of the PMR con-
troller. For additional simulation results see Appendix A.4. For each process, the funda-
mental frequency ωr is selected such that the phase of the pre-compensated system is equal
to −145◦ at the 11th harmonic frequency and it is possible to obtain a phase margin of
28.96◦. These tables present the obtained values for settling time ns, maximum percent
overshoot MO%

and percent of total harmonic distortion THD% of the final controlled
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Figure 48 – Normalized signals r(t) and d(t).
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system. Figures 49 to 51 show the output signal normalized in relation to the period of
reference signal r(t) for the system subject to a disturbance with harmonic content up to
the 11th multiple of ωr and different orders of the PMR controller.

Table 29 – Performance indicators for the closed-loop system of G1(s) with n = 3 and
different orders of the PMR controller subject to disturbance d(t)

N kpmr kr11 ns MO%
Ms GM PM THD%

1 2.74 0.18 − 22.65% 1.15 25.2dB 118◦ 15.36%

3 2.74 0.18 − 8.64% 1.49 21.8dB 102◦ 6.40%

5 2.74 0.18 − 2.40% 1.49 19.2dB 73.2◦ 2.38%

7 2.74 0.18 3.13 1.44% 1.48 17dB 53.5◦ 0.63%

9 2.74 0.18 2.98 1.90% 1.75 15.1dB 38.6◦ 0.14%

11 2.74 0.18 2.98 3.31% 2.31 13.1dB 26.6◦ 0%
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Figure 49 – Comparison of normalized output signals of process G1(s) with n = 3 subject
to disturbance d(t) for PMR controller with odd multiples of ωr up to m.
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Table 30 – Performance indicators for the closed-loop system of G2(s) with T = 0.1 and
different orders of the PMR controller subject to disturbance d(t)

N kpmr kr11 ns MO%
Ms GM PM THD%

1 4.81 1.06 − 10.4% 1.13 25.1dB 91.4◦ 7.36%

3 4.81 1.06 − 3.45% 1.22 21.8dB 103◦ 3.05%

5 4.81 1.06 2.99 0.49% 1.31 19.1dB 81.8◦ 1.18%

7 4.81 1.06 2.53 0% 1.46 16.9dB 58.7◦ 0.33%

9 4.81 1.06 2.53 0% 1.72 14.9dB 40.3◦ 0.07%

11 4.81 1.06 2.52 0.01% 2.37 12.9dB 25.9◦ 0%
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Figure 50 – Comparison of normalized output signals of process G2(s) with T = 0.1

subject to disturbance d(t) for PMR controller with odd multiples of ωr up to m.
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Table 31 – Performance indicators for the closed-loop system of G3(s) with α = 0.1 and
different orders of the PMR controller subject to disturbance d(t)

N kpmr kr11 ns MO%
Ms GM PM THD%

1 42.9 2.44 1.49 1.71% 1.16 25.6dB 68.5◦ 1.35%

3 42.9 2.44 1.49 7.32% 1.24 22.1dB 65.8◦ 0.42%

5 42.9 2.44 1.04 9.82% 1.34 19.4dB 56.1◦ 0.14%

7 42.9 2.44 1.04 9.97% 1.49 17.3dB 46.2◦ 0.03%

9 42.9 2.44 1.07 9.42% 1.75 15.3dB 36.8◦ 0.01%

11 42.9 2.44 1.07 8.96% 2.19 13.5dB 28◦ 0%

From the results presented, one can notice how the order of the PMR controller affects
the resulting THD% in the output. For lower orders of the PMR controller, for which not
all harmonic components are considered by the controller, the distortion caused by the
disturbance could restrain the output error from settling below the tolerance value ε < 2%.
These cases are represented by "−" in the corresponding cells for the settling time ns.
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Figure 51 – Comparison of normalized output signals of process G3(s) with α = 0.1

subject to disturbance d(t) for PMR controller with odd multiples of ωr up to m.
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5.6 Chapter Summary

This chapter has extended the method for the tuning of PR+Lead compensator with
multiple modes of resonance for processes with and without ultimate frequency using
series and parallel connections of the resonant modes. The new structures have been
presented and discussed. The performance of the proposed method has been assessed for
the classes of processes introduced in Chapter 2 for both series and parallel topologies.
The results for the parallel topology of the PMR controller have shown more consistent
values for the gain and phase margins and lower values for Ms with all classes of processes
tested. The method has been evaluated with respect to harmonic disturbance rejection
and the resulting total harmonic distortion. As expected, the results demonstrated that
the THD% in the output decreases as the order of the PMR controller increases, then
it is able to deal with more harmonic frequency modes of the disturbance signal. The
performance of the system in terms of the THD% has greatly improved when compared
with the results obtained in Section 4.5, even when considering a disturbance signal with
the same amplitude of the reference signal.
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6 CONCLUSION

This work proposed a systematic approach to determine the parameters of resonant
controllers based on the knowledge of the plant frequency response, similar to the frequency
response method for phase-lead and lag compensators. This approach enables to suitably
employ the resonant controllers for reference tracking or disturbance rejection of periodic
signals. The procedure allows to compute the controller parameters based on the process
frequency response characteristics and tune each of them through a virtually independent
process. In order to use the method, the knowledge of magnitude and phase at a limited
number of points of the process frequency response suffice, essentially at the reference
frequency ωr, at its multiple harmonic modes mωr and at the ultimate frequency ωu.
The method presented differs from other techniques found in the control literature as
it introduces a systematic methodology to compute the controller parameters with low
computational effort, analogous to the classic methods of control theory for the tuning of
phase lead-lag compensators, for instance.

Considering the stability margins and peak of sensitivity functions as indicators of
closed-loop system performance, expressions for computation of the PR controller tuning
parameters were developed. Via simple mathematical operations, it is possible to directly
obtain a suitable set of parameters kp and kr1 to adjust the phase and gain margins virtually
independently. Simulations with classes of processes found in typical control system
problems shown that the method accomplished satisfactory results for frequencies of
interest ωr such that phase margin of the controlled system was higher than 30◦. For the
plants in the test batch this was achieved if the phase of the process at frequency ωr was
higher than −130◦ and one could choose kr1 such that CPR(jωr)G(jωr) > −130◦.

In order to improve the performance in an augmented bandwidth, the combination of
the PR controller with a phase-lead compensator was proposed. The initial method was
revised to obtain a new set of parameters that match the needs for the pre-compensated
system. New simulations were carried out for the test batch and the obtained results were
compared with those of the previous section. It was shown that the method accomplished
satisfactory results for higher frequencies of interest ωr, up to the ultimate frequency of the
plants ωu. The performance was greatly improved when compared to the results obtained
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with a standard PR controller.
The performance of the method has been analysed regarding harmonic disturbance

rejection in terms of the percent of total harmonic distortion in the output. The results
for the PR controller and the PR+lead compensator were compared and the performance
of the PR+lead compensator surpasses that of PR controller for the performance indices
criteria analysed. However, as expected, the distortion of the output signal accentuates for
disturbance signals with high harmonic content.

Finally, in order to cope with reference tracking and/or disturbance rejection of periodic
signals with high harmonic content, the method has been extended to consider controllers
with multiple peaks of resonance. The structure of the PR controller was revisited and series
and parallel connections of resonant modes were considered. Expressions for computation
of the PMR controller tuning parameters were developed for both series and parallel
topologies. New simulations were carried out for the test batch. The results for the parallel
topology of the PMR controller have shown more consistent values for the gain and phase
margins and lower values for the peak value Ms than for the series topology. Also, the
parallel topology is simpler to apply considering that it has less parameters to compute. The
performance of the method for the PMR controller has been analysed regarding harmonic
disturbance rejection in terms of the percent of total harmonic distortion in the output. It
was shown, as expected, that the method accomplished satisfactory results in cases for
which most of the harmonic modes of the disturbance is present in the dynamics of the
PMR controller.

In future works, the performance of the method can be assessed for the implementation
with actual systems. Compliance of the output signals to performance standards can be
analysed and documented. Different processes, disturbance and reference signals can be
used to evaluate the obtained performance. The proposed method can be thoroughly com-
pared with other approaches for the tuning of resonant controllers in terms of computational
effort, overall performance and concerns such as saturation of control signal.
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APPENDIX A ADDITIONAL SIMULATION RESULTS

A.1 More Examples for the PR Controller

Tables 32 to 37 summarise the results achieved for different ratios between ωr and ωu

for processes G1(s), G2(s) and G3(s). Tables 38 to 43 summarise the results achieved for
different ratios between ωr and ω−20dB for processesG4(s), G5(s) andG6(s). These tables
present the obtained values for settling time ns, maximum percent overshoot MO%

, peak of
sensitivity function Ms, phase margin PM and gain margin GM of the controlled system,
as well as the phase of process G(jω) at frequency ωr. All simulation tests produced a
stable response, despite the considerably higher settling time for frequencies ωr close to
the ultimate frequency ωu.

Table 32 – Tuning parameters and performance indicators for the closed-loop system of
G1(s) with n = 4 and different values of ωr.

ωr kp kr1 ns MO%
Ms GM PM ∠G(jωr)

0.1ωu 0.20 0.14 2.24 0% 1.19 18.7dB 95.1◦ −23◦

0.25ωu 0.19 0.34 2.35 1.72% 1.37 15.8dB 51.8◦ −56.2◦

0.5ωu 0.17 0.11 11.21 3.64% 1.41 18.5dB 47.2◦ −106◦

0.75ωu 0.12 0.01 46.56 20.51% 2.11 19.9dB 28.7◦ −148◦

0.9ωu 0.06 0.01 > 50 59.6% 5.79 19.5dB 9.96◦ −169◦
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Table 33 – Tuning parameters and performance indicators for the closed-loop system of
G1(s) with n = 5 and different values of ωr.

ωr kp kr1 ns MO%
Ms GM PM ∠G(jωr)

0.1ωu 0.14 0.1 3.20 0% 1.15 19.0dB 95.8◦ −28◦

0.25ωu 0.14 0.25 3.34 0.74% 1.25 16.8dB 58◦ −51.6◦

0.5ωu 0.12 0.1 13.2 3.42% 1.37 18.5dB 48.5◦ −100◦

0.75ωu 0.09 0.005 44.22 15.21% 1.85 19.9dB 33.2◦ −143◦

0.9ωu 0.05 0.006 > 50 54.16% 4.91 19.5dB 11.8◦ −166◦

Table 34 – Tuning parameters and performance indicators for the closed-loop system of
G2(s) with T = 0.5 and different values of ωr.

ωr kp kr1 ns MO%
Ms GM PM ∠G(jωr)

0.1ωu 0.27 0.36 1.73 0% 1.23 18.2dB 93.4◦ −25.2◦

0.25ωu 0.26 0.9 1.80 3.12% 1.52 14.4dB 46.2◦ −60.2◦

0.5ωu 0.23 0.22 9.22 3.32% 1.44 18.5dB 46.7◦ −111◦

0.75ωu 0.17 0.02 48.82 26.08% 2.39 19.8dB 24.9◦ −151◦

0.9ωu 0.09 0.02 > 50 65.68% 7.12 19.3dB 8.09◦ −170◦
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Table 35 – Tuning parameters and performance indicators for the closed-loop system of
G2(s) with T = 1 and different values of ωr.

ωr kp kr1 ns MO%
Ms GM PM ∠G(jωr)

0.1ωu 0.24 0.21 1.79 0% 1.24 18dB 98.3◦ −21.4◦

0.25ωu 0.23 0.53 1.83 0.48% 1.49 14dB 51.7◦ −53.9◦

0.5ωu 0.21 0.16 8.63 3.55% 1.48 18dB 45.7◦ −108◦

0.75ωu 0.15 0.01 47.8 26.82% 2.44 19.7dB 24.5◦ −151◦

0.9ωu 0.08 0.01 > 50 66.6% 7.29 19.2dB 7.82◦ −171◦

Table 36 – Tuning parameters and performance indicators for the closed-loop system of
G3(s) with α = 0.9 and different values of ωr.

ωr kp kr1 ns MO%
Ms GM PM ∠G(jωr)

0.1ωu 0.20 0.16 2.23 0% 1.19 18.6dB 96◦ −23◦

0.25ωu 0.20 0.40 2.34 1.79% 1.38 15.7dB 51.4◦ −56.5◦

0.5ωu 0.17 0.13 11.18 3.76% 1.42 18.5dB 46.9◦ −106◦

0.75ωu 0.12 0.008 46.52 20.67% 2.12 19.8dB 28.6◦ −148◦

0.9ωu 0.07 0.009 > 50 59.51% 5.77 19.5dB 9.99◦ −167◦
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Table 37 – Tuning parameters and performance indicators for the closed-loop system of
G3(s) with α = 5 and different values of ωr.

ωr kp kr1 ns MO%
Ms GM PM ∠G(jωr)

0.1ωu 1.50 0.01 0.56 6.38% 1.61 17.5dB 45.8◦ −64◦

0.25ωu 1.46 0.005 1.92 0.08% 1.54 18.9dB 45.6◦ −107◦

0.5ωu 1.29 3.90× 10−4 12.28 15.87% 1.95 19.9dB 31.7◦ −143◦

0.75ωu 0.92 5.85× 10−4 > 50 51.69% 4.5 19.7dB 12.9◦ −165◦

0.9ωu 0.48 7.02× 10−4 > 50 81.33% 13.95 18.8dB 4.1◦ −175◦

Table 38 – Tuning parameters and performance indicators for the closed-loop system of
G4(s) with α = 0.9 and different values of ωr.

ωr kp kr1 ns MO%
Ms GM PM ∠G(jωr)

0.1ω−20dB 0.70 1.23 0.94 0% 1 ∞ 77.9◦ −45◦

0.25ω−20dB 1.35 2.02 1.40 0.38% 1 ∞ 69.7◦ −68.2◦

0.5ω−20dB 2.56 2.78 1.53 0.10% 1 ∞ 70.6◦ −78.7◦

0.75ω−20dB 3.79 3.62 1.92 0.04% 1 ∞ 70.8◦ −82.4◦

ω−20dB 5 4.5 1.95 0.03% 1 ∞ 70.8◦ −84.3◦
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Table 39 – Tuning parameters and performance indicators for the closed-loop system of
G4(s) with α = 5 and different values of ωr.

ωr kp kr1 ns MO%
Ms GM PM ∠G(jωr)

0.1ω−20dB 0.70 6.87 0.94 0% 1 ∞ 77.9◦ −45◦

0.25ω−20dB 1.35 11.27 1.40 0.38% 1 ∞ 69.7◦ −68.2◦

0.5ω−20dB 2.56 15.44 1.53 0.10% 1 ∞ 70.6◦ −78.7◦

0.75ω−20dB 3.79 20.11 1.92 0.04% 1 ∞ 70.8◦ −82.4◦

ω−20dB 5 25 1.95 0.03% 1 ∞ 70.8◦ −84.3◦

Table 40 – Tuning parameters and performance indicators for the closed-loop system of
G5(s) with α = 0.9 and different values of ωr.

ωr kp kr1 ns MO%
Ms GM PM ∠G(jωr)

0.1ω−20dB 0.54 0.39 0.76 0% 1.21 ∞ 77.7◦ −33.4◦

0.25ω−20dB 0.78 0.53 1.01 0.06% 1.42 ∞ 50◦ −73.7◦

0.5ω−20dB 1.62 0.23 1.46 0.68% 1.57 ∞ 42.9◦ −112◦

0.75ω−20dB 3.01 0.02 2.57 6.99% 1.78 ∞ 36.5◦ −132◦

ω−20dB 5 0.02 3.64 19.05% 2.21 ∞ 27.8◦ −143◦
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Table 41 – Tuning parameters and performance indicators for the closed-loop system of
G5(s) with α = 5 and different values of ωr.

ωr kp kr1 ns MO%
Ms GM PM ∠G(jωr)

0.1ω−20dB 0.59 0.85 0.70 0% 1.14 ∞ 76.5◦ −39.1◦

0.25ω−20dB 0.96 1.11 1.41 0.05% 1.26 ∞ 56.6◦ −74.3◦

0.5ω−20dB 1.92 0.76 1.56 0% 1.42 ∞ 48.7◦ −104◦

0.75ω−20dB 3.27 0.37 2.02 1.30% 1.80 ∞ 42.7◦ −121◦

ω−20dB 5 0.05 2.53 6.12% 1.75 ∞ 37.3◦ −132◦

Table 42 – Tuning parameters and performance indicators for the closed-loop system of
G6(s) with α = 0.5 and different values of ωr.

ωr kp kr1 ns MO%
Ms GM PM ∠G(jωr)

0.1ω−20dB 0.48 0.44 1.23 0.08% 1.58 ∞ 58.2◦ −20◦

0.25ω−20dB 0.44 0.76 2.57 20.04% 2.46 ∞ 26.3◦ −67.4◦

0.5ω−20dB 1.14 0.01 4.04 14.25% 2.03 ∞ 31.2◦ −135◦

0.75ω−20dB 2.72 0.02 6.31 36.81% 3.14 ∞ 18.9◦ −153◦

ω−20dB 5 0.03 7.89 51.96% 4.30 ∞ 13.6◦ −161◦
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Table 43 – Tuning parameters and performance indicators for the closed-loop system of
G6(s) with α = 0.9 and different values of ωr.

ωr kp kr1 ns MO%
Ms GM PM ∠G(jωr)

0.1ω−20dB 0.53 0.42 0.77 0% 1.24 ∞ 77.6◦ −31.3◦

0.25ω−20dB 0.72 0.59 0.96 0.96% 1.49 ∞ 46.7◦ −73◦

0.5ω−20dB 1.54 0.19 2.02 1.47% 1.62 ∞ 41.5◦ −116◦

0.75ω−20dB 2.98 0.02 2.57 10.98% 1.92 ∞ 33.1◦ −136◦

ω−20dB 5 0.03 3.92 24.17% 2.44 ∞ 25◦ −147◦
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A.2 More Examples for the PR+Lead Compensator

Tables 44 to 49 summarise the results achieved for different ratios between ωr and ωu

for processes G1(s), G2(s) and G3(s). Tables 50 and 51 summarise the results achieved
for different ratios between ωr and ω−20dB for process G6(s). These tables present the
obtained values for settling time ns, maximum percent overshoot MO%

, peak of sensitivity
function Ms, phase margin PM and gain margin GM of the final controlled system,
as well as the original phase margin of process G(jω) at the frequency of interest. All
simulation tests produced a stable response.

Table 44 – Tuning parameters and performance indicators for the closed-loop system of
G1(s) with n = 4 and different values of ωr for PR+lead compensator.

ωr kp kr1 ns MO%
Ms GM PM ∠G(jωr)

0.5ωu 1.31 0.69 2.68 3.35% 1.56 13.9dB 45.2◦ −106◦

0.75ωu 1.21 0.26 8.71 2.89% 1.40 17.7dB 48.4◦ −148◦

0.9ωu 1.12 0.14 13.59 4.31% 1.45 18.7dB 45.8◦ −169◦

ωu 1.04 0.04 17.12 4.33% 1.43 19.6dB 46.3◦ −180◦

Table 45 – Tuning parameters and performance indicators for the closed-loop system of
G1(s) with n = 5 and different values of ωr for PR+lead compensator.

ωr kp kr1 ns MO%
Ms GM PM ∠G(jωr)

0.5ωu 0.72 0.50 4.29 0.91% 1.34 15.1dB 54.5◦ −100◦

0.75ωu 0.65 0.23 12.65 3.40% 1.37 17.6dB 48.5◦ −143◦

0.9ωu 0.59 0.11 19.17 3.92% 1.40 18.7dB 47.5◦ −166◦

ωu 0.53 0.03 25.12 4.81% 1.43 19.5dB 46◦ −180◦
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Table 46 – Tuning parameters and performance indicators for the closed-loop system of
G2(s) with T = 0.5 and different values of ωr for PR+lead compensator.

ωr kp kr1 ns MO%
Ms GM PM ∠G(jωr)

0.5ωu 3.47 1.40 1.34 7.32% 1.92 13.4dB 38.1◦ −111◦

0.75ωu 3.33 0.61 3.22 3.17% 1.63 17.3dB 42.7◦ −151◦

0.9ωu 3.20 0.31 5.58 5.10% 1.61 18.6dB 42◦ −170◦

ωu 3.10 0.11 7.14 5.74% 1.60 19.5dB 42◦ −180◦

Table 47 – Tuning parameters and performance indicators for the closed-loop system of
G2(s) with T = 1 and different values of ωr for PR+lead compensator.

ωr kp kr1 ns MO%
Ms GM PM ∠G(jωr)

0.5ωu 3.17 0.83 1.61 9.83% 1.98 13.5dB 36.3◦ −108◦

0.75ωu 3.04 0.36 3.12 3.97% 1.65 17.4dB 41.8◦ −151◦

0.9ωu 2.94 0.17 5.14 4.85% 1.60 18.8dB 42.4◦ −171◦

ωu 2.85 0.07 7.03 5.72% 1.60 19.5dB 41.9◦ −180◦

Table 48 – Tuning parameters and performance indicators for the closed-loop system of
G3(s) with α = 0.9 and different values of ωr for PR+lead compensator.

ωr kp kr1 ns MO%
Ms GM PM ∠G(jωr)

0.5ωu 1.32 0.80 2.68 3.49% 1.57 13.9dB 45◦ −106◦

0.75ωu 1.22 0.32 8.69 3.34% 1.41 17.6dB 47.4◦ −148◦

0.9ωu 1.13 0.16 13.17 4.28% 1.45 18.7dB 45.9◦ −167◦

ωu 1.06 0.05 17.13 4.73% 1.46 19.6dB 45.5◦ −180◦
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Table 49 – Tuning parameters and performance indicators for the closed-loop system of
G3(s) with α = 5 and different values of ωr for PR+lead compensator.

ωr kp kr1 ns MO%
Ms GM PM ∠G(jωr)

0.5ωu 17.13 0.016 2.47 0.14% 1.33 18.9dB 54.2◦ −143◦

0.75ωu 16.60 0.012 4.71 1.63% 1.39 19.1dB 48.7◦ −165◦

0.9ωu 16.16 0.007 6.24 2.60% 1.43 19.4dB 47◦ −175◦

ωu 15.81 0.004 7.68 3.44% 1.46 19.7dB 45.9◦ −180◦

Table 50 – Tuning parameters and performance indicators for the closed-loop system of
G6(s) with α = 0.5 and different values of ωr for PR+lead compensator.

ωr kp kr1 ns MO%
Ms GM PM ∠G(jωr)

0.1ω−20dB 4.51 0.45 1.40 0.39% 1.08 ∞ 84.6◦ −20◦

0.25ω−20dB 3.46 1.11 0.96 0.30% 1.23 ∞ 56.6◦ −67.4◦

0.5ω−20dB 6.22 0.76 1.83 0.73% 1.17 ∞ 57.9◦ −135◦

0.75ω−20dB 10.94 0.70 1.91 0.11% 1.21 ∞ 57.3◦ −153◦

ω−20dB 15.81 0.72 1.91 0.02% 1.27 ∞ 54.4◦ −161◦

Table 51 – Tuning parameters and performance indicators for the closed-loop system of
G6(s) with α = 0.9 and different values of ωr for PR+lead compensator.

ωr kp kr1 ns MO%
Ms GM PM ∠G(jωr)

0.5ω−20dB 8.30 1.43 1.23 0.54% 1.17 ∞ 59.9◦ −116◦

0.75ω−20dB 11.86 1.27 1.50 0.05% 1.20 ∞ 59.1◦ −136◦

ω−20dB 15.81 1.19 1.56 0% 1.24 ∞ 56.8◦ −147◦
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A.3 More Examples for the Parallel Topology of the PMR Controller

Tables 52 to 57 summarise the results achieved for processes G1(s), G2(s) and G3(s)

with reference signal r(t) subject to disturbance d(t) composed by harmonic components
odd multiples of the fundamental frequency ωr up to N . Tables 58 to 63 summarise the
results achieved for processes G4(s), G5(s) and G6(s). The tables present the obtained
values for settling time ns, maximum percent overshoot MO%

, peak of sensitivity function
Ms, phase margin PM and gain margin GM of the final controlled system. All simulation
tests produced a stable response.

Table 52 – Tuning parameters and performance indicators for the closed-loop system of
G1(s) with n = 4 and odd multiples of ωr up to N for PMR controller.

ωr N kpmr kr11 ns MO%
Ms GM PM

0.40 rad/s 3 0.66 0.54 10.53 4.82% 2.38 16.2dB 25.1◦

0.24 rad/s 5 0.68 0.33 6.59 0.07% 2.31 15.6dB 26.1◦

0.17 rad/s 7 0.68 0.23 6.67 0.01% 2.29 14.3dB 26.4◦

0.13 rad/s 9 0.68 0.18 7.73 0.58% 2.28 13.1dB 26.6◦

0.11 rad/s 11 0.68 0.15 9.76 1.96% 2.29 11.9dB 26.5◦

Table 53 – Tuning parameters and performance indicators for the closed-loop system of
G1(s) with n = 5 and odd multiples of ωr up to N for PMR controller.

ωr N kpmr kr11 ns MO%
Ms GM PM

0.28 rad/s 3 0.37 0.38 14.84 4.51% 2.31 16.0dB 26.3◦

0.17 rad/s 5 0.38 0.23 10.24 0% 2.26 15.2dB 26.8◦

0.12 rad/s 7 0.38 0.16 11.71 0.04% 2.22 13.9dB 27.4◦

0.09 rad/s 9 0.38 0.13 14.24 1.01% 2.27 12.6dB 26.7◦

0.08 rad/s 11 0.38 0.10 17.81 3.00% 2.27 11.4dB 26.8◦
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Table 54 – Tuning parameters and performance indicators for the closed-loop system of
G2(s) with T = 0.5 and odd multiples of ωr up to N for PMR controller.

ωr N kpmr kr11 ns MO%
Ms GM PM

1.09 rad/s 3 1.75 1.50 5.19 4.68% 2.49 16.3dB 24.2◦

0.65 rad/s 5 1.77 0.90 2.80 0.15% 2.37 16.2dB 25.6◦

0.47 rad/s 7 1.78 0.64 2.70 0.09% 2.35 15.1dB 25.9◦

0.36 rad/s 9 1.78 0.50 3.73 1.20% 2.37 13.9dB 25.9◦

0.30 rad/s 11 1.79 0.41 5.13 2.94% 2.42 12.7dB 25.5◦

Table 55 – Tuning parameters and performance indicators for the closed-loop system of
G2(s) with T = 1 and odd multiples of ωr up to N for PMR controller.

ωr N kpmr kr11 ns MO%
Ms GM PM

0.65 rad/s 3 1.60 0.90 5.19 4.62% 2.47 16.4dB 24.3◦

0.39 rad/s 5 1.62 0.54 2.82 0.18% 2.36 16.3dB 25.7◦

0.28 rad/s 7 1.62 0.38 3.20 0.34% 2.33 15.2dB 26.1◦

0.22 rad/s 9 1.63 0.30 4.30 2.47% 2.36 14.0dB 25.9◦

0.18 rad/s 11 1.63 0.24 6.76 5.80% 2.54 12.8dB 25.7◦
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Table 56 – Tuning parameters and performance indicators for the closed-loop system of
G3(s) with α = 0.9 and odd multiples of ωr up to N for PMR controller.

ωr N kpmr kr11 ns MO%
Ms GM PM

0.46 rad/s 3 0.67 0.64 10.36 4.68% 2.33 16.4dB 25.8◦

0.28 rad/s 5 0.69 0.38 6.12 0.06% 2.28 15.7dB 26.6◦

0.20 rad/s 7 0.69 0.27 6.67 0.01% 2.23 14.5dB 27.1◦

0.15 rad/s 9 0.69 0.21 7.72 0.57% 2.23 13.2dB 27.2◦

0.13 rad/s 11 0.69 0.17 9.27 1.94% 2.24 12.0dB 27.1◦

Table 57 – Tuning parameters and performance indicators for the closed-loop system of
G3(s) with α = 5 and odd multiples of ωr up to N for PMR controller.

ωr N kpmr kr11 ns MO%
Ms GM PM

0.042 rad/s 3 8.59 0.016 5.85 2.67% 2.15 19.9dB 28◦

0.025 rad/s 5 8.70 0.017 2.92 1.52% 2.16 17.6dB 28◦

0.018 rad/s 7 8.73 0.017 1.94 1.58% 2.16 15.8dB 27.9◦

0.014 rad/s 9 8.75 0.019 1.45 9.14% 2.20 14.3dB 27.6◦

0.012 rad/s 11 8.75 0.016 1.38 7.82% 2.20 13.1dB 27.8◦
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Table 58 – Tuning parameters and performance indicators for the closed-loop system of
G4(s) with α = 0.9 and odd multiples of ωr up to N for PMR controller.

ωr N kpmr kr11 ns MO%
Ms GM PM

3.00 rad/s 3 0.87 2.22 3.68 3.02% 1.08 ∞ 89.1◦

1.80 rad/s 5 0.56 1.56 3.13 2.80% 1.07 ∞ 90.3◦

1.28 rad/s 7 0.44 1.11 3.01 0.79% 1.08 ∞ 90.8◦

1.00 rad/s 9 0.37 0.86 3.03 0% 1.09 ∞ 91◦

0.82 rad/s 11 0.34 0.71 3.04 0% 1.11 ∞ 91.1◦

Table 59 – Tuning parameters and performance indicators for the closed-loop system of
G4(s) with α = 5 and odd multiples of ωr up to N for PMR controller.

ωr N kpmr kr11 ns MO%
Ms GM PM

16.67 rad/s 3 0.87 12.35 3.68 3.03% 1.08 ∞ 89.1◦

10 rad/s 5 0.56 8.66 3.13 2.80% 1.07 ∞ 90.3◦

7.14 rad/s 7 0.44 6.19 3.01 0.79% 1.08 ∞ 90.8◦

5.56 rad/s 9 0.37 4.81 3.03 0% 1.09 ∞ 91◦

4.55 rad/s 11 0.34 3.94 3.04 0% 1.11 ∞ 91.1◦
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Table 60 – Tuning parameters and performance indicators for the closed-loop system of
G5(s) with α = 0.9 and odd multiples of ωr up to N for PMR controller.

ωr N kpmr kr11 ns MO%
Ms GM PM

4.90 rad/s 3 14.06 1.04 5.55 3.86% 2.02 ∞ 29.7◦

2.94 rad/s 5 8.18 1.28 5.03 3.64% 2.00 ∞ 30◦

2.10 rad/s 7 5.93 1.34 4.53 3.24% 1.99 ∞ 30.2◦

1.63 rad/s 9 4.87 1.41 4.02 3.02% 1.99 ∞ 30.2◦

1.34 rad/s 11 4.20 1.16 3.52 0.33% 1.98 ∞ 30.3◦

Table 61 – Tuning parameters and performance indicators for the closed-loop system of
G5(s) with α = 5 and odd multiples of ωr up to N for PMR controller.

ωr N kpmr kr11 ns MO%
Ms GM PM

11.83 rad/s 3 14.55 3.01 5.08 3.98% 2.03 ∞ 29.7◦

7.10 rad/s 5 8.77 3.81 4.54 3.49% 2.01 ∞ 30◦

5.07 rad/s 7 6.89 4.39 3.55 4.53% 2.00 ∞ 30.1◦

3.94 rad/s 9 5.86 3.42 3.03 0.18% 1.98 ∞ 30.3◦

3.23 rad/s 11 5.28 2.79 2.98 0.35% 1.98 ∞ 30.4◦
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Table 62 – Tuning parameters and performance indicators for the closed-loop system of
G6(s) with α = 0.5 and odd multiples of ωr up to N for PMR controller.

ωr N kpmr kr11 ns MO%
Ms GM PM

4.83 rad/s 3 13.12 0.65 5.55 3.75% 2.02 ∞ 29.8◦

2.90 rad/s 5 6.88 0.71 5.54 3.07% 2.00 ∞ 30◦

2.07 rad/s 7 4.34 0.70 5.54 2.84% 1.99 ∞ 30.1◦

1.61 rad/s 9 3.08 0.78 5.53 3.58% 1.99 ∞ 30.2◦

1.32 rad/s 11 2.36 0.94 4.54 5.03% 1.99 ∞ 30.2◦

Table 63 – Tuning parameters and performance indicators for the closed-loop system of
G6(s) with α = 0.9 and odd multiples of ωr up to N for PMR controller.

ωr N kpmr kr11 ns MO%
Ms GM PM

5.13 rad/s 3 14.06 0.99 5.54 3.71% 2.03 ∞ 29.6◦

3.08 rad/s 5 8.00 1.20 5.04 3.35% 2.01 ∞ 29.9◦

2.20 rad/s 7 5.73 1.27 4.54 3.04% 2.00 ∞ 30◦

1.71 rad/s 9 4.55 1.37 4.03 3.17% 1.99 ∞ 30.1◦

1.40 rad/s 11 3.87 1.21 3.53 0.88% 1.99 ∞ 30.2◦
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A.4 More Examples for the Disturbance Rejection with PMR con-
troller

Tables 64 to 69 summarise the results achieved for different orders of the PMR con-
troller. For each process, The fundamental frequency ωr is selected such that the phase
of the pre-compensated system is equal to −145◦ at the 11th harmonic frequency. These
tables present the obtained values for settling time ns, maximum percent overshoot MO%

and percent of total harmonic distortion THD% of the final controlled system.

Table 64 – Performance indicators for the closed-loop system of G1(s) with n = 4 and
different orders of the PMR controller subject to disturbance d(t)

N kpmr kr11 ns MO%
Ms GM PM THD%

1 0.69 0.09 − 38.04% 1.08 25.5dB 117◦ 24.49%

3 0.69 0.09 − 17.22% 1.83 22dB 139◦ 12.08%

5 0.69 0.09 − 5.90% 1.84 19.2dB 106◦ 4.90%

7 0.69 0.09 12.56 1.38% 1.84 16.9dB 75.2◦ 1.34%

9 0.69 0.09 9.71 0.78% 1.83 14.6dB 48.8◦ 0.30%

11 0.69 0.09 9.72 0.94% 2.27 12dB 26.7◦ 0%

Table 65 – Performance indicators for the closed-loop system of G1(s) with n = 5 and
different orders of the PMR controller subject to disturbance d(t)

N kpmr kr11 ns MO%
Ms GM PM THD%

1 0.38 0.07 − 44.94% 1.07 25.6dB 117◦ 15.36%

3 0.38 0.07 − 22.18% 2.13 22dB 148◦ 6.40%

5 0.38 0.07 − 8.46% 2.12 19.3dB 118◦ 2.38%

7 0.38 0.07 − 2.50% 2.12 16.9dB 84.9◦ 0.63%

9 0.38 0.07 18.78 1.35% 2.11 14.4dB 54.3◦ 0.14%

11 0.38 0.07 17.27 1.49% 2.25 11.5dB 27◦ 0%
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Table 66 – Performance indicators for the closed-loop system of G2(s) with T = 0.5 and
different orders of the PMR controller subject to disturbance d(t)

N kpmr kr11 ns MO%
Ms GM PM THD%

1 1.79 0.41 − 29.34% 1.15 25.1dB 121◦ 19.14%

3 1.79 0.41 − 12.72% 1.81 21.7dB 123◦ 8.78%

5 1.79 0.41 − 4.27% 1.80 19.1dB 84.4◦ 3.48%

7 1.79 0.41 5.56 1.20% 1.79 16.9dB 57.9◦ 0.96%

9 1.79 0.41 4.70 1.08% 1.78 14.9dB 39.6◦ 0.22%

11 1.79 0.41 4.53 1.24% 2.39 12.9dB 25.8◦ 0%

Table 67 – Performance indicators for the closed-loop system of G2(s) with T = 1 and
different orders of the PMR controller subject to disturbance d(t)

N kpmr kr11 ns MO%
Ms GM PM THD%

1 1.63 0.15 − 33.92% 1.15 25.1dB 125◦ 21.76%

3 1.63 0.15 − 16.18% 2.15 21.8dB 124◦ 10.17%

5 1.63 0.15 − 6.29% 2.14 19.2dB 81.2◦ 4.01%

7 1.63 0.15 6.67 3.62% 2.13 17dB 56.4◦ 1.10%

9 1.63 0.15 5.78 2.39% 2.11 15dB 39.4◦ 0.25%

11 1.63 0.15 5.61 2.54% 2.36 13dB 26.3◦ 0%
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Table 68 – Performance indicators for the closed-loop system of G3(s) with α = 0.9 and
different orders of the PMR controller subject to disturbance d(t)

N kpmr kr11 ns MO%
Ms GM PM THD%

1 0.70 0.11 − 37.82% 1.08 25.5dB 117◦ 24.38%

3 0.70 0.11 − 17.07% 1.82 22dB 139◦ 12%

5 0.70 0.11 − 5.82% 1.83 19.3dB 106◦ 4.86%

7 0.70 0.11 12.55 1.34% 1.83 16.9dB 75.4◦ 1.33%

9 0.70 0.11 9.70 0.76% 1.82 14.7dB 49.2◦ 0.30%

11 0.70 0.11 9.24 0.92% 2.24 12.1dB 27.3◦ 0%

Table 69 – Performance indicators for the closed-loop system of G3(s) with α = 5 and
different orders of the PMR controller subject to disturbance d(t)

N kpmr kr11 ns MO%
Ms GM PM THD%

1 8.76 0.01 − 6.73% 1.13 25.3dB 78.9◦ 5.08%

3 8.76 0.01 − 6.39% 1.18 21.9dB 79.4◦ 1.75%

5 8.76 0.01 1.52 7.80% 1.28 19.3dB 64.8◦ 0.60%

7 8.76 0.01 1.51 7.55% 1.42 17.1dB 51.1◦ 0.15%

9 8.76 0.01 1.50 6.91% 1.68 15.1dB 38.7◦ 0.03%

11 8.76 0.01 1.48 6.82% 2.22 13.2dB 27.6◦ 0%


