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Resumo

Apresentamos um modelo integrável de quatro poços que descreve a interação e o tunelamento
quântico de bósons em uma plaqueta quadrada. Esse modelo apresenta quatro quantidades conser-
vadas e independentes, das quais duas podem ser empregadas para derivar um Hamiltoniano efetivo.
Com isso, é possível derivar fórmulas analíticas para a dinâmica quântica, contanto que a energia
do sistema esteja em uma região de formação de bandas (o que chamamos “regime ressonante”).
Empregando o Hamiltoniano efetivo, pode-se prever analiticamente tanto a atividade interferométrica
do sistema, com a possibilidade de alcançar sensitividade de Heisenberg, quanto o uso do sistema
como um gerador de estados NOON com codificação arbitrária de fase (através de quebra de in-
tegrabilidade). Então, calculamos os parâmetros do Hamiltoniano, demonstrando a equivalência
entre esse modelo e o já conhecido Hamiltoniano de Bose-Hubbard extendido, quando este satisfaz
uma condição especial entre o termo de interação interna a um poço e o termo de interação entre
poços diagonais. Assim, providenciamos um possível design para o sistema de forma a demonstrar
sua viabilidade experimental. Com os parâmetros calculados, nós mostramos que, sob condições
ideais, o sistema pode alcançar altas fidelidades na geração do estado NOON e alta correspondência
nas probabilidades dos procedimentos de leitura dos estados, comparando os valores numéricos
obtidos com o Hamiltoniano de Bose-Hubbard extendido e as expressões analíticas obtidos com o
Hamiltoniano efetivo. Espera-se que os resultados apresentados aqui abram novos caminhos na
interação entre integrabilidade e atomotrônica.



Abstract

We present an integrable four-well model that describes the interaction and quantum tunneling
of bosons in a square plaquette. This model possesses four conserved and independent quantities,
of which two can be employed to derive an effective Hamiltonian. This allows for the derivation
of analytical formulae for the quantum dynamics, provided that the system’s energy is in a band-
formation region (which we call “resonant regime”). By employing the effective hamiltonian, we
analytically predict both the interferometric activity of the system, with the possibility of achieving
Heisenberg sensitivity, and the employment of the system as a NOON state generator with arbitrary
phase-encoding (through breaking of integrability). Then, we calculate the hamiltonian parameters,
demonstrating the equivalency between this model and the already known extended Bose-Hubbard
hamiltonian, when the latter satisfies a special condition between its onsite and second-nearest-
neighbors interaction terms. Thus, we provide a possible design for the system to demonstrate its
experimental feasibility. With the calculated parameters, we show that, under ideal conditions, the
system can achieve high fidelities in the NOON state generation and high probability-matching in the
read-out procedures, by comparing the numerical results obtained with the Extended Bose-Hubbard
hamiltonian and the analytical results obtained with the effective hamiltonian. The findings presented
here are expected to open new avenues in the interplay between integrability and atomtronics.



Press release

Os dispositivos que utilizamos - desktops, notebooks, celulares etc. - tiverem seu desenvolvimento
baseado nas leis da Mecânica Quântica. Com a sua formulação, foi possível descrever o comporta-
mento conjunto de vários elétrons em um sólido. No caso de um material semicondutor (como é o caso
do silício), é possível manipular o comportamento destes elétrons e criar os chamados “transistores”,
que têm a função de relacionar uma corrente elétrica na placa do computador com uma unidade de
informação - 0 ou 1. Este desenvolvimento tecnológico culminou na “primeira revolução quântica”:
embora a descrição e manipulação do material em questão dependa do conhecimento acerca das leis
da Mecânica Quântica, a informação que é gerada, armazenada e transmitida é totalmente “clássica” -
isto é, não quântica.

A “segunda revolução quântica”, momento que estamos vivendo atualmente, surgiu como uma
forma de tentar realizar cálculos, processos de medida e transmissão de informação de forma com-
pletamente “quântica”. A ideia por trás disso está na noção de “superposição de estados” - o que
significa que um dado sistema apresenta duas ou mais configurações simultâneas. Ao realizar uma
medida sobre o sistema, este adquire uma das configurações possíveis. Estas propriedades permitem
que dispositivos quânticos sensíveis sejam desenvolvidos, como, por exemplo, detectores de campo
magnéticos e interferômetros. Diferente do que foi feito na “primeira revolução quântica”, outras
plataformas (além de placas de silício) estão sendo investigadas para a construção destes dispositivos.
Entre elas, destaca-se a “atomotrônica”, que busca utilizar os átomos (ao invés de elétrons) para
compor a unidade fundamental da informação.

Átomos - em conjunto ou individualmente - podem ser desacelerados e aprisionados com potentes
lasers, formando um sistema composto do que chamamos de “átomos ultrafrios”. Ao fazer isso, pro-
priedades que vão desde desde a estrutura interna destes até o seu movimento tornam-se acessíveis
e manipuláveis em laboratório. Dentre as configurações em que pode-se colocar o feixe de laser
encontra-se a “rede ótica”, que é formada quando um laser é direcionado em um espelho de forma
completamente perpendicular a este, o que gera uma estrutura cristalina feita de luz, permitindo um
alto controle sobre o movimento e a interação dos átomos. Com isso, pode-se construir dispositivos
atomotrônicos com propriedades semelhantes aos dispositivos eletrônicos, mas com maior grau de
controle e sensibilidade. Entre estes dispositivos, destaca-se o “interferômetro”.



A técnica de interferometria consiste em verificar interferências construtivas e destrutivas em uma
onda resultante da soma de duas ondas. Geralmente, esta onda é eletromagnética, já que os interfer-
ômetros costumam ser feitos de luz (como por exemplo o LIGO, que detecta ondas gravitacionais
através deste método). Entretanto, de acordo com a Mecânica Quântica, toda a matéria possui, em
certo grau, comportamento ondulatório. Tal propriedade permite que átomos também sejam utilizados,
o que pode ser muito vantajoso. Diferentemente de fótons - as partículas associadas à luz -, átomos
possuem massa, o que os tornam mais sensíveis a certos efeitos (por exemplo, em medidas de campos
gravitacionais fracos).

Neste trabalho, exploramos possibilidades de se realizar interferometria com sistemas atomotrôni-
cos com a maior sensibilidade permitida pela natureza - limitada pelo Princípio da Incerteza de
Heisenberg. Para isto, estudamos um modelo quântico que descreve o movimento e a interação de
átomos bosônicos entre quatro poços. Este modelo também apresenta a propriedade de “integrabili-
dade”, que permite que equações analíticas para a dinâmica quântica dos átomos sejam desenvolvidas.
Ao final, apresentamos uma possível realização experimental para o modelo, conectando o modelo
estudado com o aprisionamento via feixes de laser e calculando explicitamente os valores resultantes
para a intensidade com que os átomos se movimentam e interagem entre si.



Press release

The devices we use - desktops, laptops, cell phones, etc. - had their development based on the
laws of Quantum Mechanics. Due to its formulation, it was possible to describe the group behavior of
several electrons in a solid. In the case of a semiconductor (silicon, for example), one can manipulate
the behavior of these electrons and create the so-called “transistors”, whose function is to relate an
electric current on the computer circuit with a unit of information - 1 or 0. This technological develop-
ment culminated in the “first quantum revolution”: although the description and manipulation of a
given material depend on the knowledge regarding the laws of Quantum Mechanics, the information
that is generated, stored and transmitted is totally “classical” - i.e., not quantum.

The “second quantum revolution” that we are currently living emerged as a way to engage on
calculations, measurement processes, and information transmission on a completely “quantum” basis.
The idea behind it relies on the notion of “state superposition” - which means that a given system
simultaneously presents two or more different configurations. When an attempt to measure the system
is made, it acquires one of the possible configurations. These properties allow for the development of
sensitive quantum devices, as, for example, magnetic-field detectors and interferometers. Differently
from what happened in the “first quantum revolution”, other platforms (besides the silicon wafers)
are being investigated for the construction of such devices. Amongst them, we highlight the “atom-
tronics”, which intends to use atoms (instead of electrons) for making-up the fundamental unit of
information.

Atoms - individually or as an ensamble - can be slowed down and trapped with powerful laser
beams, resulting in a system composed of what we call “ultracold atoms”. At this point, properties
beyond their internal structure become accessible and manipulable in the lab. One of the configu-
rations in which a laser beam can be employed is the “optical lattice”, which is generated when a
beam is directed towards a mirror, arriving perpendicularly to its surface, giving raise to a crystal-like
structure made up of light, allowing for a high level of control on the movement and interaction of
the atoms. This allows for the construction of atomtronic devices that present similar properties to
electronics, but with a higher degree of control and sensitivity. Amongst these devices, we highlight
the “interferometer”.



Interferometry is a technique that consists of the verification of constructive and destructive in-
terferences on a wave that results from the sum of other two waves. Usually, this wave is of the
electromagnetic kind, since the interferometers tend to work with light (as, for example, the LIGO,
which detects gravitational waves with this method). However, according to Quantum Mechanics, all
matter possesses, up to a certain degree, wave-like behavior. Such property enables atoms to be used
on interferometry, too, which comes with certain advantages. Differently that photons - the particles
associated with light -, atoms have mass, making them more sensitive to certain effects (for example,
in measurements of weak gravitational fields).

In this work, we explore possibilities of realizing interferometry on atomtronics systems with the
highest sensitivity allowed by nature - limited by the Heisenberg’s Uncertainty Principle itself. For this,
we study a quantum model that describes the movement and interaction of bosonic atoms between
four wells. This model also presents the property of “integrability”, which allows for the development
of analytical equations for the system’s quantum dynamics. In the end, we present a possible
experimental realization of the model, linking it with a laser-trapped atomic configurations and
calculating the resulting values explicitly for the intensities of the atomic movement and interaction.



“(...) et ex Patre natum ante omnia sæcula.”
Symbolum Nicænum
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Chapter 1

Introduction

Se a meta principal de um capitão fosse preservar seu barco,
ele o conservaria no porto para sempre.

– São Tomás de Aquino

In research labs around the world, hadrons are daily smashed against each other on high-energy
processes and atoms and molecules are spatially trapped and cooled down to highly denegerate
configurations. Although contrasting at first, these pictures exemplify the ability of Quantum Mechan-
ics, one of the most specifically tested theories in the history of science, in describing nature (in the
low-mass regime) down to the (sub)atomic level.

Among the predictions made by the quantum theory, the ones from Bose [1] and Einstein [2]
are within the most prominent ones for the investigation of several properties of light, matter and
information. Being a consequence of the statistical distribution of bosons (particles with integer spin,
whose complete wavefunction has even parity), the Bose-Einstein Condensate (BEC) is expected to
occur from a phase-transition when all the particles go to the same ground-state of a given potential.
In the context of a grand-canonical statistical description, this means that the temperature T of the
sample should approach 0K. Although relatively simple in conceptualization, it was not until roughly
seventy years after their prediction that the first BEC’s were experimentally confirmed in Boulder,
by Cornell and Wieman [3], and in the MIT, by Ketterle [4], for which they ended up winning the
2001 Physics Nobel Prize. To achieve this, previously-developed laser-cooling systems and trapping
schemes had to be employed in order to reach the low temperatures required (∼ 170 nK for 87Rb).
Some of these developments had already resulted in Cohen-Tannoudji, Chu and Phillips winning the
Physics Nobel Prize in 1997.

Since their first observation, a complete new range of experiments with BECs have been realized.
Amongst them, we highlight an experiment from the group of Oberthaler in Heidelberg [5], where a
bosonic Josephson-junction and the nonlinear self-trapping regime were observed for the first time
on a system composed of two BECs on a double-well potential. These effects are qualitatively well
described by a Bose-Hubbard (BH) model [6, 7, 8] of two sites. Such a model has been thoroughly
used to describe certain features in experiments of cold atoms in optical lattices - such as the phase-
transition from superfluid to Mott Insulator (SF to MI) [9] and matter-wave dynamical collapses [10].

1



Chapter 1. Introduction

However, another interesting characteristics of the BH model is the fact that it is integrable in the
two-site configuration.

The first notions of quantum integrability seem to have originated with Schrödinger’s first papers
[11, 12] on “his” Wave Mechanics. In these works, Schrödinger treats the quantization as an eigenvalue
problem and exactly solves the just-demonstrated wave equation for several different potentials -
amongst which the non-relativistic hydrogen atom. The studied examples were all (approximately)
composed of one particle in the presence of a potential - therefore constituting one-body systems.
When it comes to several particles, however, it is much harder to come up with exact solutions that
describe the systems. The Heisenberg model encounters itself within the ones that allow for such
treatment. Especially important for studies on magnetism, this model describes a system of interacting
spins in the presence of a magnetic field, having been employed, for example, in the investigation
of quantum phase-transitions at finite temperature [13] and criticality [14]. Such a many-body con-
figuration was shown by Bethe to be exactly solvable [15] and, since then, the “Bethe ansatz” has
been employed in order to obtain the eigenstates and eigenvalues of a Bethe-ansatz-solvable model,
constituting a self-consistent category of integrable models. Motivated by such a breakthrough, other
researchers [16, 17, 18, 19] engaged in the development of the field of exactly-solved models, which
nowadays spans different areas of physics - from statistical mechanics [19] and field theory [20, 21] to
condensed-matter physics [22, 23] and ultracold atoms [24], among others.

In atomic, molecular and optical (AMO) physics, the so-called “Quantum inverse scattering
method” (QISM) has been employed to solve the two-site Bose-Hubbard model in terms of its eigen-
states and energies [25, 26], with the predicted phase-transitions being associated with the anomalous
behavior of the Bethe-ansatz equations’ (BAE) solutions [27] 1. Since the BH model is not integrable
in the configuration with n > 2 sites, a new family of models was proposed to study the dynamics
between multiple wells [31]. This required an extension of the QISM in order for all the system’s
energies to be found, and also enabled the model’s completeness through the obtention of the whole
set of independent conserved quantities. Within these models, one particular example is the one
describing the quantum tunneling between three wells [32], which was shown to work as a switching
device with analogical control [33], indicating integrability as a benefical approach for prototyping
atom-based quantum devices.

The advent of quantum mechanics enabled the development of accurate and reliable modelling of
technological components, which allowed for the emergence of devices such as transistors [34] and
lasers [35], culminating into a technological revolution in the twentieth century. The technologies
that came forth, however, would still rely on the classical use of information [36], therefore not fully
harnessing the power of quantum mechanics. Nowadays, we are living the first stages of the second
quantum revolution, with the aim of building actual quantum technologies [37]. Although not yet com-
pletely understood, its potential applications vary from faster algorithms on quantum computations
[38] to simulating many-body quantum systems themselves [39]. Ultracold-atomic systems have been
shown to potentially realize such applications [40, 41], accounting for a milestone in the advancement

1We observe that integrable models for atomic-molecular BECs have also been solved in this context, see for instance
[28, 29, 30]

2



Chapter 1. Introduction

of technology towards a quantum-equivalent to classical systems. This constitutes the idea behind
the so-called atomtronics, a field emerged from investigations of atom analogs for electronic devices
[42] that is currently regarded as a suitable platform for a diverse range of applications [43, 44, 45]
- as atomic SQUIDs (superconducting quantum interference devices) [46] and gravimeters [47], for
example.

By going further in the merging of integrability and atomtronics [33], in this Dissertation we
present two interferometric-related quantum-device applications for an integrable four-well model
[48]. The Dissertation is divided in the following structure:

• Chapter 2 briefly reviews some concepts of classical and quantum integrability and introduces
the model and its properties;

• Chapter 3 introduces the possible applications of the model as a quantum device, with analytical
descriptions and numerical verifications on the fidelities and probabilities of the generated
quantum states;

• Chapter 4 develops the entanglement-entropy properties of the four-well system;

• Chapter 5 presents the extended Bose-Hubbard Hamiltonian and, by comparing it with the
integrable model, arrives at the conditions for integrability;

• Chapter 6 develops an idea for possible experimental realization of the quantum device based
on existing experiments and for a specific atomic species, and the proposed setup is employed
for the calculation of the Hamiltonian parameters;

• Chapter 7 presents some experimental results on beam-displacement at the Fourier plane with a
Digital Micromirror Device, which is related to the nondestructive measurement proposed in
Chapter 6;

• Chapter 8 synthetizes the main results and conclusions of this Dissertation.

3



Chapter 2

Four-well integrable model

The four-well integrable model, obtained by an extension of the Quantum Inverse Scattering
Method, allows for analytical results of the system’s quantum dynamics to be found. In this chapter,
the model is introduced as we discuss its independent and conserved quantitites and the role they play
on the quantum dynamics. The numerical evaluation of quantities related to the system’s dynamics
was performed using the Python package “cfwell”1 developed by myself.

2.1 INTEGRABILITY OVERVIEW

Classical integrability has had a clear definition since the 19th Century, when Poisson and Liouville
(in 1837 and 1840, respectively) specifically demonstrated that a hamiltonian system, having two
degrees of freedom, should also posess two constants of motion in involution, such that the equations
of motion for the system should be solvable through the method of Quadratures. Such a framework is
widely accepted, since its axiomatization proves it unequivocal.

Classical and Quantum physics, however, have some profound differences. The own Hamiltonian
structure, completely different when comparing classical and quantum algebra, imposes contrasts
between the two descriptions - although a (semi)classical treatment of expected values may give raise
to possibilities of control [33] and even reveal features such as quantum phase-transitions [49, 50].
Differently than what happens in Classical physics, Quantum Integrability is a subject without a
unique definition. With this, different definitions of quantum integrability happened to appear in the
course of time [51].

In this work, we make use of the definition that we think most resembles the classical axioms
imposed by the Liouville Theorem - which states that a system with n degrees of freedom is integrable
if it has the same amount n of independent conserved quantities.

1https://github.com/danielsgrun/cfwell
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Chapter 2. Four-well integrable model

Figure 2.1: Four-well integrable model. The particles are restricted to four different sites (or
“wells”), depicted as the four enumerated spheres. Sites “1 and 3” constitute “Class A”, whereas
sites “2 and 4” constitute “Class B”. The solid lines connecting the wells represent the hopping
terms of the Hamiltonian of Eq. 2.2.2. There is no direct hopping between sites of the same class.

2.2 INTEGRABLE HAMILTONIAN

The four-well integrable model [48] is part of a larger family of multi-well quantum tunneling
integrable models [31, 52], that describes the interaction and tunneling of bosons between n + m wells.
The Hamiltonian has a generalized bipartite structure: NA atoms are distributed in n sites that belong
to a specific set (class A), while NB atoms are distributed in m sites of class B. The atoms do not tunnel
(as a first-order state transition) within a class. The Equation 2.2.1 summarizes it while considering
that the system has isotropic tunneling and a constant total number of particles N.

H =−U(NA − NB)
2 − J

2

n

∑
i=1

m

∑
j=1

(a†
i bj + aib†

j ). (2.2.1)

Above, U is the interaction parameter, NA = ∑n
i=1 Na,i and NB = ∑m

j=1 Nb,j, where Na,i and Nb,j are,
respectively, the number operator for the i-th site of class A and j-th site of class B. The term J/2
represents the hopping coupling, with ai,b†

j being, respectively, the annihilation operator for the i-th
site of class A and the creation operator for the j-th site of class B. Through different choices of n and
m, one may recover the Hamiltonians of known models, such as the two-well [8, 53, 54] (n = m = 1)
and three-well [33] (n = 2, m = 1) models. By setting n = m = 2, we arrive with the (closed) four-well
model:

H =−U(N1 + N3 − N2 − N4)
2 − J

2
[
(a†

1 + a†
3)(a2 + a4) + (a1 + a3)(a†

2 + a†
4)
]

, (2.2.2)

Fig. 2.1 illustrates the model.
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Chapter 2. Four-well integrable model

2.2.1 Conserved quantities

From an extension of the Quantum Inverse Scattering Method (see, for instance, [48]), it is possible
to find the four conserved and independent quantities of the four-well integrable model. Besides the
two trivial ones - the hamiltonian H and the total number of particles N -, the system also has two
“extra” conserved quantities - Q1 and Q2 -, called “conserved charges”, whose expressions are given
by:

Q1 =
1
2
[
N1 + N3 − a†

1a3 − a1a†
3
]

;

Q2 =
1
2
[
N2 + N4 − a†

2a4 − a2a†
4
]

, (2.2.3)

where they satisfy

[H, Qi] = [N, Qj] = [Qi, Qj] = 0, (2.2.4)

such that the system has four conserved quantities that commute among themselves, which character-
izes the quantum equivalence of the classical involution demanded by Liouville’s theorem.

An analysis of Eq. 2.2.3 reveals a tunneling structure that is different than the one expected from
the Hamiltonian of Eq. 2.2.2. This leads to the physical interpretation of the charges as dynamically
equivalent to the system’s Hamiltonian (depending on the choice of parameters and initial state for
the system). This will be thoroughly explored in the Section 2.3.

2.2.2 Resonant regime

By varying both the interaction (U) and the hopping (J) terms, the four-well integrable model is able
to achieve different dynamical regimes. Such regimes are related to the model’s energy distribution
due to the formation of energy bands when the hamiltonian’s eigenvalues are varied by changing U
(keeping J constant). Here, we will pay special attention to the condition UN/J� 1. In this case, the
expected values 〈N1 + N3〉 and 〈N2 + N4〉 do not change in time due to second-order tunneling (a
demonstration in terms of semiclassical analysis can be found in [32, 33, 55]), and the energies coalesce
into well-defined bands that correspond to the possible values of N1 + N3 and N2 + N4 on the initial
state.

Hereby, the definitions 〈N1(0) + N3(0)〉 ≡M and 〈N2(0) + N4(0)〉 ≡ P are made, making it possi-
ble to analyze the system in the context of resonant tunneling in a convenient manner. Figure 2.2 (a)
demonstrates the band formation in the system with N = 15 and J = 70, for U in the interval [0,120].
By analyzing the figure, one realizes that the energies start to coalesce into bands with the increase of
the ratio χ≡U/J, up to the point (U/J ≈ 0.5) where the energies split into (N + 1)/2 regions. These
correspond ultimately to the 8 possible initial distributions of bosons between the classes “A” and “B”
that effectively change the interaction energy of the hamiltonian of Eq. 2.2.2.
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Chapter 2. Four-well integrable model

(a) (b)

(c)

Figure 2.2: Energies of the four-well integrable model for N = 15, J = 70 and U varying from 0 to
120. For each value of U, the hamiltonian’s eigenvalues were evaluated from direct diagonalization.
The cyan energy-band depicts the energies for the initial state |Ψ0〉 = |4,11,0,0〉. On panel (a),
one sees the full picture of the system’s energy band formation, with the dotted dashed grey
line characterizing the usual choice of parameters U/J ≈ 1.42. One can easily notice that the
energies coalesce into eight different regions, accounting for each possible pure initial state |Ψ0〉
related to different values of 〈Ψ0|H|Ψ0〉. The most negative energy is obtained with NA(0) = 15 or
NB(0) = 15, whereas the less negative energy (and the one with a broader, in-formation band) is
obtained with NA(0) = 8, NB(0) = 7 (or vice-versa). On panel (b), the same figure is shown zoomed
within a smaller region around U/J = 0.5. Here, one sees that the eight-region-energy-splitting
fully starts taking place at ∼ U/J = 0.5 (dashed gray line, region II). (c) Comparison between
numerically-calculated quantum dynamics of 〈n13(t)〉 ≡ 1/N 〈(N1 − N3)(t)〉 and the analytical
predictions of Eq. 2.4.4 for |Ψ0〉 = |M, P,0,0〉, with M = 4, P = 11, at the three different regions
highlighted in panel (b).
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Chapter 2. Four-well integrable model

2.3 EFFECTIVE HAMILTONIAN

Similarly to the three-well case [56], the conserved charges of the four-well model also function as
an effective hamiltonian when the system is on the resonant regime. For generalization, we may write
the effective hamiltonian He f f as:

He f f = λ1Q1 + λ2Q2 + λ12Q1Q2. (2.3.1)

The coefficients λ1, λ2 and λ12 depend ultimately on the hamiltonian parameters and the initial
state and can be obtained through time-dependent perturbation theory (TDPT) treatment of the model.
The charges Q1 and Q2 account, respectively, for the resonant transition of one particle between
the sites of classes “A” or “B”, respectively, while the term ∝ Q1Q2 is related to the simultaneous
resonant tunneling between sites 1↔ 3 and 2↔ 4. Therefore, it is necessary to take three different
state-transitions into account:

|M− l, P− k, l,k〉 → |M− l − 1, P− k, l + 1,k〉
|M− l, P− k, l,k〉 → |M− l, P− k− 1, l,k + 1〉
|M− l, P− k, l,k〉 → |M− l − 1, P− k− 1, l + 1,k + 1〉

(2.3.2)

We notice that, for any of the aformentioned state-transitions, the first order TDPT with the hamiltonian
H (Eq. 2.2.2) vanishes, while it is nonzero for the effective hamiltonian He f f (Eq. 2.3.1). Therefore, in
order to compare the lowest nonzero orders of perturbation of both hamiltonians, we consider that,
in the resonant regime, the second-order transition of H must be equal to the first-order transition
of He f f for the state-transitions given by Eq. 2.3.2. Such calculation demands a few lines of algebra,
which is thoroughly presented in [57]. This results in analytical expressions for the coefficients λ1, λ2

and λ12, given by:

λ1 = λ2 = (N + 1)Ω,

λ12 =−2Ω,

where Ω is defined as follows:

Ω≡ J2

4U [(M− P)2 − 1]
. (2.3.3)

By analyzing Eq. 2.3.3, one sees that the expression for Ω depends both on the hamiltonian
parameters U, J and also on the initial distribution of bosons in classes A (M) and B (P). Now, we will
show that it is possible to come up with analytical formulae for the system’s quantum dynamics based
on the expressions presented for the effective hamiltonian.
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Chapter 2. Four-well integrable model

2.4 QUANTUM DYNAMICS

In this section, we demonstrate how to obtain analytical formulae for the quantum dynamics of
the integrable four-well model. These are always obtained by employing the effective hamiltonian
He f f , which is dynamically equivalent to the “original” hamiltonian H when the system is on the
resonant regime. For this, we will make use of the eigenbasis of the conserved charges Q1 and Q2 for
our analysis. Denoting it by {|M, P,q1,q2}}, we write these states in terms of the sites Fock states as:

|M, P,q1,q2}=
C
2N

(
a†

1 + a†
3
)M−q1 (a†

1 − a†
3
)q1 (a†

2 + a†
4
)P−q2 (a†

2 − a†
4
)q2 |0〉 , (2.4.1)

such that C = 1√
q1!(M−q1)!q2!(P−q2)!

is the normalization factor, and He f f |M, P,q1,q2}= eq1,q2 |M, P,q1,q2},
where the energy eigenvalues of the effective hamiltonian are given by:

eq1,q2 = (N + 1)Ω(q1 + q2)− 2Ωq1q2. (2.4.2)

With this, we can calculate analytically the system’s quantum dynamics. Only the main intermediate
results of the demonstration will be shown in this subsection, and more details can be found in
Appendix A.1.

We begin by evaluating the expressions of (N1 − N3)(t), (N2 − N4)(t) and their square. This will
serve as a starting point for calculating both the quantum dynamics and the variance of the imbalances
(N1 − N3) and (N2 − N4). By decomposing the effective hamiltonian in terms of its eigenvectors and
eigenvalues, the aforementioned expressions can be evaluated within the Heisenberg Picture:

(N1 − N3)(t) = e−iHe f f t/h̄(N1 − N3)eiHe f f t/h̄

=
M

∑
q1=0

P

∑
q2=0

(
e−i(eq1,q2−eq1−1,q2 )t/h̄

√
q1(M− q1 + 1)|N, P,q1 − 1,q2}

+ e−i(eq1,q2−eq1+1,q2 )t/h̄
√
(M− q1)(q1 + 1)|N, p,q1 + 1,q2}

)
{N, P,q1,q2|,

(2.4.3)

where the same holds for the population imbalance between sites 2 and 4 through the exchange
M↔ P. Then, supposing an initial state given by |Ψ0〉= |M, P,0,0〉, the quantum dynamics can be
calculated through 〈N1 − N3〉 (t) = 〈Ψ0|(N1 − N3)(t)|Ψ0〉. Using the expression from Eq. 2.4.3 and its
equivalent for (N2 − N4)(t), we obtain:
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Chapter 2. Four-well integrable model

〈N1 − N3〉 (t) =M cos
[
(M + 1)

(
Ωt
h̄

)][
cos
(

Ωt
h̄

)]P

〈N2 − N4〉 (t) =Pcos
[
(P + 1)

(
Ωt
h̄

)][
cos
(

Ωt
h̄

)]M

.
(2.4.4)

In panel (c) of Fig. 2.2, it is possible to see that, as (U/J) approaches a region with band-coalescing
energies for an initial state given by |Ψ0〉= |M, P,0,0〉, with M = 4 and P = 11, the analytical dynamics
from Eq. 2.4.4 and the numerical dynamics using the hamiltonian H of Eq. 2.2.2 start to become similar,
which characterizes a resonant tunneling regime. Now, considering an entangled initial state given by
|Ψ0〉= 1√

2
[|M, P,0,0〉+ exp(iφ) |M,0,0, P〉], we calculate the expressions for quantum dynamics and

fluctuations of the population imbalances. Defining ni ≡ Ni/N, we obtain:

〈n1 − n3〉 (t)≡ 〈n13(t)〉=
M
N

cos[(M + 1)Ωt/h̄][cos(Ωt/h̄)]P

+
M
N

cos(φ)[sin(Ωt/h̄)]P cos
[
(M + 1)Ωt/h̄ +

Pπ

2

]
;

(2.4.5)

〈(n1 − n3)
2(t)〉 ≡ 〈n2

13(t)〉=
M

2N2 {(M + 1) + (M− 1)cos [2(M + 1)Ωt/h̄] [cos(2Ωt/h̄)]P}

+
M(M− 1)

2N2 cos
[
2(M + 1)Ωt/h̄ +

π

2
P
]
[sin(2Ωt/h̄)]P cosφ.

(2.4.6)

As we will see in Chapter 3, the expressions of Equations 2.4.5 and 2.4.6 are of huge importance to
characterize the interferometric sensitivity contained in the four-well integrable model. By choosing
U/h̄ = 100 Hz, J/h̄ = 70 Hz (such that U/J ≈ 1.42), M = 4, P = 11 and φ = π/4, it is possible to show
that the numerical dynamics and fluctuations obtained with hamiltonian H become similar to the
analytical ones, for an initial state given by |Ψ0〉= 1/

√
2 [|M, P,0,0〉+ exp(iφ) |M,0,0, P〉]. Figure 2.3

shows the general picture of the system’s behavior for this initial state, and compares the results
obtained numerically with H with the ones obtained analytically, where we notice that they agree
with each other (in principle, these results should agree for any initial state and set of parameters that
satisfy the condition for resonance).

Together with the results from Eqs. 2.4.5 and 2.4.6, it is possible to notice, by analyzing Panels
(a) and (c) from Fig. 2.3, that the phase φ of the initial state causes an oscillation on the population
imbalance dynamics (at t = π/(2Ω)≡ tm ∼ 6.15 s) and fluctuations (at t = tm/2 and t = 3tm/2). In the
next chapter, we will explore these features and demonstrate that they are the underlying mechanism
that allows the integrable four-well system to function as both a Heisenberg-sensitive interferometer
and a NOON state generator.
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Chapter 2. Four-well integrable model

Figure 2.3: Quantum dynamics and fluctuations of the population imbalance. The calculations
were made considering the hamiltonian parameters U/h̄ = 100 Hz, J/h̄ = 70 Hz and an initial
state given by |Ψ0〉 = 2−1/2 (|M, P,0,0〉+ exp(iφ) |M,0,0, P〉), with M = 4 and P = 11. Panels
(a) and (c) show, respectively, the behavior of 〈n13(t)〉 and 〈n2

13(t)〉 as function of t and φ, from
the expressions of Equations 2.4.5 and 2.4.6. The solid lines depict the variation of 〈n13(t)〉 and
〈n2

13(t)〉 with respect to time, for a fixed φ, whereas the dashed lines show the behavior of 〈n13(t′)〉
and 〈n2

13(t
′)〉 as a function of φ, for a fixed t′. Panels (b) and (d) depict the comparison between

the analytically-predicted behavior of Equations 2.4.5 and 2.4.6 and the numerically-evaluated
dynamics and fluctuations with the integrable hamiltonian H. These calculations were performed
with φ = π/4, and correspond to the blue (thick) curves of the figures depicted in panels (a) and
(c).
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Chapter 3

Quantum device applications

In this Chapter, the applications of the four-well integrable model as quantum devices will be
presented. While the first section is be devoted to interferometry (employing both classical and
quantum states), Sections 3.2 and 3.3 are devoted, respectively, to the applications of the model as a
quantum interferometer and a NOON state generator.

3.1 INTERFEROMETRY

Interferometry is a technique that consists on the verification of constructive and destructive
interferences on a wave pattern that results from two contributions. Such an effect has several practi-
cal applications - amongst which path length measurements [58] and rotation sensing [59], and an
improved version of the Michelson-type interferometer is currently being used by LIGO [60, 61] to
measure gravitational waves.

According to [62, 63], a classical interferometer has a phase-sensitivity ∆ϑSN that is limited by the
“shot-noise”. In order to provide a simple explanation for this, we will consider the interferometric
setup depicted on Fig. 3.1. In the single-photon limit, the photon state after the beam-splitter (BS) can
be written as:

|γ〉= 1√
2

[
|L〉+ eiϑ |R〉

]
, (3.1.1)

where |L〉 and |R〉 are related, respectively, to the left and right paths, and eiϑ is the phase-difference
acquired between the interferometer’s arms. Then, the photon detector can be represented as [64]
D = |L〉 〈R|+ |R〉 〈L|, which yields the “classical” interference pattern given by

〈γ|D|γ〉= cosϑ. (3.1.2)

Then, W repetitions of the same experiment, with the same phase-difference between the arms, leads to
an interference pattern statistics given by:

〈γW | 〈γW−1| ... 〈γ1|
W⊕

i=1

Di

︸ ︷︷ ︸
≡DW

|γ1〉 ... |γW−1〉 |γW〉= W cosϑ. (3.1.3)
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Figure 3.1: Interferometric scheme. The photons are sent from the input through the interferometric
arms L and R. A 50/50 mirror works as a beam-splitter (BS), separating the photons between the
two arms (with the same probability), which generates the state |γ〉 (see main text for more details).
A phase-difference of eiϑ is acquired between the paths of the interferometer’s arms (which can
be caused by transmitting the light through a sample, a difference in length etc.), leading to an
interference pattern in the detector D, whose behavior differs for classical (Eq. 3.1.3) and quantum
(Eq. 3.1.7) states of light.

We notice that D2 = 12, implying D2
W = 12W , where 1j refers to the identity operator of dimension j.

The variance of DW can then be calculated as: (∆DW)2 = W sin2 ϑ. Therefore, following the estimation
theory [63], we evaluate the phase-sensitivity ∆ϑ through:

∆ϑ =
∆DW

| d〈DW〉
dϑ |

=

√
W sinϑ

W sinϑ
=

1√
W
≡ ∆ϑSN . (3.1.4)

The phase-sensitivity derived in Eq. 3.1.4 is the so-called “shot-noise limit”. It immediately follows
from its expression that, in order to make ∆ϑSN twice as small, one should increase W by a factor of
four. Later on, it was demonstrated that quantum mechanics could improve the sensitivity limit of an
interferometer by employing a specific class of entangled states - called NOON states.

Being an “all-and-nothing” superposition, NOON states are a very special type of entangled states
that take the form:

|NOON〉= 1√
2
[|W,0〉+ |0,W〉] , (3.1.5)

where W is the number of photons/particles, which can be in one of two modes of a given system
(usually a 1/2-spin system, a two-level atomic system etc.). According to [65, 66], the employment
of NOON states for interferometry leads to a new limit for phase-sensitivity (called “Heisenberg
sensitivity”), which is governed by the quantum-mechanical uncertainty.

We will assume the same interferometric scheme of Fig. 3.1, with the difference that, now, the
photons at the input are in a NOON state. Specifically in this case, we write the multi-photon quantum
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state |γW〉 as:

|γW〉=
1√
2

[
|W〉R |0〉L + eiWϑ |0〉R |W〉L

]
, (3.1.6)

where the phase-argument was now multiplied by the total number of photons W (since each one
of them must acquire a phase-difference). With the equivalence |W〉 ↔ |0〉1 |0〉2 ... |0〉W and |L〉 ↔
|1〉1 |1〉2 ... |1〉W , the detector can be expressed as D = |W〉 〈0|+ |0〉 〈W|, and the interference pattern
reads:

〈γW |D|γW〉= cosWϑ. (3.1.7)

Now, the variance will be given by (∆D)2 = sin2 Wϑ, and the phase-sensitivity can be calculated
in a similar way to Eq. 3.1.4, which leads to:

∆ϑ =
∆D
| d〈D〉dϑ |

=
sinWϑ

W sinWϑ
=

1
W
≡ ∆ϑHL, (3.1.8)

which corresponds to an improvement of the shot-noise limit by a factor of W. This tells us basically
that, for making ∆ϑHL twice as small, one should increase W by two (instead of four, as in the classical
interferometer).

In the next two sections, we demonstrate two applications of the four-well integrable model that
are related to the interferometry results demonstrated here.

3.2 HEISENBERG-LIMITED INTERFEROMETER

The previously-demonstrated interferometric results take into account a photonic state. However,
due to the wave-like behavior of matter, similar arguments can be employed to construct a matter-
wave interferometer [67, 68, 69, 70] (also called atom-interferometer). Besides constituting (another)
proof-of-principle of quantum-mechanical behavior, these systems can also be helpful for tests such as
microgravity [71] and precision measurements [72].

In this section, we analyze the four-well integrable model in the context of Heisenberg-sensitive
interferometry. As mentioned before, such sensitivity is usually achieved by considering a NOON-like
state. Therefore, in our analysis, we will consider an initial state given by

|Ψ0〉=
1√
2
[|M, P,0,0〉+ exp(iPθ) |M,0,0, P〉] , (3.2.1)

Assuming that the four-well system works as a black-box interferometer, let us assign the function
of “detector” (normalized with respect to the total number of particles) to the measurement operator
n13 = (N1 − N3)/N. In the resonant regime, the expected value of this operator is given by the
quantum dynamics of Eq. 2.4.5 with the identification φ→ Pθ. To calculate the phase-sensitivity ∆θ,
we need to first evaluate the variance (∆n13(t))2 = 〈n2

13〉 − 〈n13〉2. By setting t = tm on Eqs. 2.4.5 and
2.4.6, we arrive with:
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〈n13(tm)〉=
M
N

cos(Pθ)(−1)(N+1)/2, 〈n2
13(tm)〉=

M2

N2 ,

such that (∆n13)
2 can be evaluated, at t = tm, as:

∆n13 =
√
〈n2

13〉 − 〈n13〉2 =
M
N
|sin(Pθ)|. (3.2.2)

Therefore, the phase-sensitivity ∆θ can be calculated as:

∆θ =
M
N |sin(Pθ)|

| − M
N P Psin(Pθ)| =

1
P

, (3.2.3)

indicating that, if the measurements of the interferometric results are done at t = tm, the four-well
integrable model works as a Heisenberg-sensitive interferometer [73], provided that the conditions
that lead to Eq. 2.4.5 are satisfied (refer to Sec. 2.4).

3.2.1 Interferometric task

Here, we analyze how the system behaves on a simple interferometric task. Starting with an initial
state given by |Ψ0〉= 1√

2
(|M, P,0,0〉+ exp(iφ) |M,0,0, P〉), with N ≡M + P odd, it is possible to show

that the state at time t = tm, as predicted by the effective Hamiltonian, will be (see Appendix A.2 for
more details):

|Ψ(tm)〉= e−
iHe f f tm

h̄ |Ψ(0)〉

=
1 + βeiφ

2
√

2
[β |M, P,0,0〉+ |M,0,0, P〉] + 1− βeiφ

2
√

2
[|0, P, M,0〉 − β |0,0, M, P〉] , (3.2.4)

where β≡ (−1)(N+1)/2. By analyzing Eq. 3.2.4, we conclude that an initial phase-difference converts
into a population imbalance after t = tm (Fig. 3.2 illustrates the working device). In the limiting cases,
no atom (M atoms) is (are) expected to be found on “site 3” if the phase-difference on the initial
NOON state is φ = 0 (φ = π), for β = 1, and the oposite way around for β = −1. Such a result is
also in agreement with Eq. 2.4.5. It is also worth noticing that, after the measurement procedure, the
state will collapse again in a NOON state across “Sites 2 and 4”, but without the phase-difference
eiφ factor. This allows us to probe the interferometric capabilities of the system in a very simple manner.

By employing the hamiltonian H, the state |Φ(tm)〉 is numerically calculated from the initial
NOON state |Ψ0〉 previously defined, with U/h̄ = 100 Hz, J/h̄ = 70 Hz, M = 4 and P = 11, for
different values of Pθ. Then, at t = tm, the probabilities of measuring different number of atoms
at “Site 3” are evaluated. Differently than the ideal case, however, the probabilities of measuring
N3 = r 6= 0, M will not be necessarily zero at t = tm - although they will be typically very small. Then, it
is possible to take into account the possibility of generating NOON states for different atom numbers
measured at “Site 3”. The following states are now defined:
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Figure 3.2: Interferometer. The spheres represent the wells and the thick lines depict the tunneling
between them, and the dashed circle (displaced from the sphere center) represents a phase-
difference on the respective site. The populations of 0, M and P atoms are illustrated, respectively, in
white, cyan and blue. The initial state |Ψ0〉=

(
|M, P,0,0〉+ eiφ |M,0,0, P〉

)
/
√

2 (left) becomes the
superposition of Eq. 3.2.4 after a time-evolution of tm (right); then, a locally-projective measurement
is performed in Site “3”.

|NOON(r)
1 〉= |M− r,r〉A ⊗

NOON state definition︷ ︸︸ ︷
1√
2
(|P,0〉B + β |0, P〉B);

|NOON(r)
2 〉= |M− r,r〉A ⊗

1√
2
(|P,0〉B − β |0, P〉B)

︸ ︷︷ ︸
NOON state definition

, (3.2.5)

where |a,b〉X means that there are “a” atoms in site 1 and “b” atoms in site 3, if X = A (i.e. class
A), or “a” atoms in site 2 and “b” atoms in site 4, if X = B (i.e. class B). Then, the fidelities between
the resulting numerical states |Φ(tm)N3=r〉 after the collapse (after measuring N3 = r) and both the
predicted states of Eq. 3.2.5 are calculated, for r = 0,1, ...M.

As can be seen in Fig. 3.3, a high fidelity F1(2)(r) ≡ |〈NOON(r)
1(2)|Φ(tm)N3=r〉 | is obtained for

r = 0, M, even in the cases where the probability of measuring r = 0, M, for a given φ, is very low (but
not theoretically zero). The reason behind this is the renormalization that occurs during the collapse
of the system’s state after a measurement procedure. By expanding the quantum state of Eq. 3.2.4 in
the ket-state basis - with a constant total atom number - we get:

|Ψ(tm)〉=
N

∑
i=0

N−i

∑
j=0

N−i−j

∑
k=0

cijk(tm) |i, j,k, N − i− j− k〉 , (3.2.6)

where ∑N
i=0 ∑N−i

j=0 ∑
N−i−j
k=0 |cijk|2 = 1. Then, the probability of measuring N3 = r will be given by:

P(r) =
N

∑
i=0

N−i

∑
j=0

N−i−j

∑
k=0
|cijk(tm)|2δkr

=
N

∑
i=0

N−i

∑
j=0
|cijr(tm)|2.

(3.2.7)
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The resulting collapsed state after the measurement, |Ψ(tm)N3=r〉, can be written as:

|Ψ(tm)N3=r〉=
1√
P(r)

N

∑
i=0

N−i

∑
j=0

cijr(tm) |i, j,r, N − i− j− r〉 , (3.2.8)

such that 〈Ψ(tm)N3=r|Ψ(tm)N3=r〉= 1. Here, one can also perform an identification between the states
of Eqs. 3.2.5 and 3.2.8, yielding |Ψ(tm)N3=0(M)〉= |NOON(0(M))

1(2) 〉.

Figure 3.3: Probabilities and fidelities of the quantum interferometer. For the calculations, we
consider U/h̄ = 100 Hz, J/h̄ = 70 Hz and M, P = 4,11, with an initial state given by |Ψ0〉 =
2−1/2 (|M, P,0,0〉+ exp(iφ) |M,0,0, P〉). On the three panels, we vary r from 0 to M and φ from
0 to π. Panel (a) shows the probabilities of measuring N3 = r at t = tm for the different r and
φ. Panels (b) and (c) depict, respectively, the fidelities F1(r) and F2(r) between the resulting
collapsed state and |NOON(r)

1 〉 and |NOON(r)
2 〉, for different r and φ.

3.3 NOON STATE PROCESSOR

As shown in the previous section, the Four-well integrable model is able to function as a Heisenberg-
sensitive interferometer, which requires the use of a special entangled state - called “NOON state”.
As seen before, a measurement procedure at t = tm, for an initial NOON state, keeps the system
in this configuration. It is still necessary, however, to be able to generate such state from an initial
“Fock state” of the kind |N1, N2, N3, N4〉, which is, in principle, feasible with the current technology
[74, 75]. Here, we disclose that this model also predicts the natural generation of the NOON states [76]
throughout the system’s quantum dynamics, provided that some conditions are taken into account
when preparing the initial state.

In order to work as a NOON state generator, it is necessary for the system to be on the resonant
regime and for the interaction between the charges Q1, Q2 in the effective hamiltonian of equation
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2.3.1 to be nonzero, which translates into two conditions. The first one would be λ12 6= 0 =⇒ Ω 6= 0,
which can be always achieved by choosing appropriate parameters while still on the resonant regime.
The second one is Q1Q2 6= 0, such that neither Q1 nor Q2 can be zero. Since Q1 (Q2) algebraically
depends on the number of particles in sites of class A (B) and the tunneling of particles between those
sites, this implies that the initial state should contain bosons on at least one site of each class.

Considering an initial state given by |Ψ0〉= |M, P,0,0〉, we evaluate its time-evolution |Ψ(t)〉 with
the effective hamiltonian as |Ψ(t)〉 = e−iHe f f t |Ψ0〉. By employing the eigenbasis of the conserved
charges as defined in Equation 2.4.1 and supposing that the total number of particles N = M + P is
odd, we obtain, for the time tm [73] (more details on Appendix A.2):

|Ψ(tm)〉=
1
2
[β |M, P,0,0〉+ |M,0,0, P〉+ |0, P, M,0〉 − β |0,0, M, P〉]

=
1√
2

(
β |NOON(0)

1 〉+ |NOON(M)
2 〉

)
.

≡ |uNOON〉 .

(3.3.1)

From the quantum state of Equation 3.3.1, we propose that either |NOON1〉 or |NOON2〉may be
obtained by means of a measurement protocol, arbitrarily considering that the number of bosons in
site 3 should be measured. Therefore, for each preparation of an initial state |Ψ0〉= |M, P,0,0〉, both
the probabilities of measuring N3 = 0 and N3 = M (denoted P(0) and P(M), respectively) are equal
to 0.5. However, since we are considering the analytical state of Equation 3.3.1, this result is only
strictly valid for the effective Hamiltonian (Equation 2.3.1). Therefore, in order to evaluate that such
NOON states could also be obtained from reasonable parameters {U, J}, we compare the NOON
states obtained numerically with H with the ones of Eq. 3.3.1 (obtained with He f f ) in a similar way to
what was done on previous section.

By considering U/h̄ = 100 Hz, J/h̄ = 70 Hz and |Ψ0〉 = |M, P,0,0〉, with M = 4, P = 11, and
defining |Φ(t)〉 = exp(−iHt/h̄) |Ψ0〉, we evaluate the probability P(r) of measuring N3 = r, r =

0,1...M, from |Φ(tm)〉, and the fidelities F1(2)(r) of the collapsed state with respect to |NOON(r)
1 〉 and

|NOON(r)
2 〉. The results are shown in Table 3.1. In Figure 3.4, the contribution of every Fock-basis

state is depicted, showing four clear peaks related to the the four states predicted in the superposition
of Equation 3.3.1.

r P(r) F1(r) F2(r)
0 0.4978 0.9874 0.0099
1 0.0051 0.0883 0.0313
2 0.0028 0.0200 0.0158
3 0.0074 0.0105 0.1018
4 0.4799 0.0019 0.9961

Table 3.1: Probabilities of measuring N3 = r on |Φ(tm)〉 and fidelities of the collapsed state with
respect to |NOON(r)

1 〉 and |NOON(r)
2 〉 (F1(r) and F2(r), respectively).
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Figure 3.4: Fock-basis state coefficient distribution of |Φ(tm)〉, for U/h̄ = 100 Hz, J/h̄ = 70 Hz,
M = 4 and P = 11. As expected from Eq. 3.3.1, there are four major contributions whose coefficient
ci are such that ci ∈R, |ci|= 0.5. In the employed matrix representation, the first coefficient refers
to the state |0,0, M, P〉, whereas the other three are related to |0, P, M,0〉, |M,0,0, P〉 and |M, P,0,0〉,
in order. The noisy background is due to the fact that the system is not perfectly resonant - so that
states other than the four major contributions are also present in the superposition of |Φ(tm)〉.

Since N = M + P = 15 leads to β = 1, it is possible to relate the NOON states generated by this
procedure with: 2−1/2 (|P,0〉+ exp(iφ) |0, P〉), such that φ = 0 for N3 = 0 (|NOON1〉) or φ = π for
N3 = M (|NOON2〉). Although limited in this sense, we emphasize here that the NOON states - or the
superposition of both possibilities - are generated in a natural way, such that, for odd N, it is enough
to just choose an appropriate set of parameters and let the system evolve up to the time t = tm. Now,
we ought to come up with a procedure for generating NOON states with arbitrary phase-encoding.
As is shown in the next Subsection, this is done by simply considering small periods within the time
evolution in which the system evolves with a controllable breaking of integrability.

3.3.1 Phase-encoding

As shown before, the integrable time-evolution of a system of described by H may result, on a time
tm, in the superposition of two NOON states, as described by Equation 3.3.1, where each of the NOON
states is related to a phase-difference of either φ = 0 or φ = π. In order to extend this procedure such
as to include arbitrary possibilities of phase-encoding, two protocols are proposed, taking breakings
of integrability into account. Following [33], we choose the breaking of integrability that acts on two
sites of the same class, causing the particles to stop (resonantly) tunneling between those sites. Such
situation can be achieved through the introduction of the terms ν(N1 − N3) and µ(N2 − N4), which
induce the breaking of integrability on classes A and B, respectively. The action of one of those terms
in the state of Eq. 3.3.1 during a time tµ(tν) results in:
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exp

(
− iνtν

h̄
(N1 − N3)

)
|uNOON〉

=
1√
2

[
β |M, P,0,0〉+ |M,0,0, P〉+ eiMϕ |0, P, M,0〉 − βeiMϕ |0,0, M, P〉

]
;

exp

(
− iµtµ

h̄
(N2 − N4)

)
|uNOON〉

=
1√
2

[
β |M, P,0,0〉+ eiPθ |M,0,0, P〉+ |0, P, M,0〉 − βeiPθ |0,0, M, P〉

]
,

(3.3.2)

where θ = 2µtµ/h̄ and ϕ = 2νtν/h̄. However, it is strictly not possible to act only those terms on
|Ψ(tm)〉. Rather, one has to take the full hamiltonian into account, plus the breaking-of-integrability
terms, for a physically meaningful phase-encoding protocol. We define a generalized time-evolution
operator as

U (t,µ,ν) = exp
[
− it

h̄
(H+ µ(N2 − N4) + ν(N1 − N3))

]
, (3.3.3)

which should replace the operators of Eq. 3.3.2 as U (t‘,0,ν) and U (t‘,µ,0). In the previous equation,
H is the hamiltonian (which can be either H or He f f ). Now, since both the system’s hamiltonian
and the phase-encoding operators will take place simultaneously, one has to take some sort of
“synchronization” into account, such that both the |uNOON〉 formation and the phase-enconding
occur approximately at the same time. One may notice that, forH= He f f , |uNOON〉= U (tm, 0,0) |Ψ0〉,
where |Ψ0〉 = |M, P,0,0〉. By considering a small displacement on tm → tm − ∆t, our total time-
evolution operator for the case where µ 6= 0, ν = 0 will be:

U (tµ,µ,0)U (tm − ∆t,0,0) = exp
[
−iHe f f

tµ

h̄
− iµ(N2 − N4)

tµ

h̄

]
exp

[
−iHe f f

(tm − ∆t)
h̄

]

= exp
[
−i(He f f + µ(N2 − N4))

tµ

h̄

]
exp

[
−iHe f f

(tm − ∆t)
h̄

]

= exp
[
−i(He f f + µ(N2 − N4))

tµ

h̄

]
exp

[
iHe f f

∆t
h̄

]

︸ ︷︷ ︸
≡Z

exp
[
−iHe f f

tm

h̄

]
.

By employing the Baker–Campbell–Hausdorff’s formula on the first two exponentials (= Z), we
get, for small tµ and ∆t:

Z≈ exp
[
−iHe f f

(tµ − ∆t)
h̄

− iµ(N2 − N4)
tµ

h̄

]
.

Hence, we notice that, by choosing ∆t = tµ, it is possible to obtain a final time-evolution opera-
tor which approximately decouples the integrable time-evolution and the breaking-of-integrability
operator - i.e. decouples the formation of |uNOON〉 and its phase-encoding -, ending up with:
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U (tµ,µ,0)U (tm − tµ,0,0)≈ exp
[
−iµ(N2 − N4)

tµ

h̄

]
exp

[
−iHe f f

tm

h̄

]
, for tµ� tm. (3.3.4)

Two things should be highlighted here. The first one is that the same analysis can be done for the
case where µ = 0 and ν 6= 0. And finally, tµ should not be thought of as a fixed value. Rather, the pur-
pose of this protocol is to allow the encoding of arbitrary phases on |uNOON〉 (and, by consequence,
on |NOON1〉 and |NOON2〉) by varying either µ (ν) or tµ. Once |uNOON〉 is generated and has a
phase encoded, the same procedure described in Section 3.3 follows for obtaining either |NOON1〉 or
|NOON2〉 with the desired phase encoded. Henceforward, it will be always considered a NOON state
with phases of the kind eiPθ encoded. The justification for this choice is simply the fact that, as the
system may also work as a Heisenberg-sensitive interferometer (as shown in Section 3.2), it makes
sense to encode phases which produce the most sensitive result for the phase-sensitivity (Eq. 3.2.3).
As we will be considering P = 11 and M = 4 in every calculation, a phase-encoding that envolves Pθ

will be more sensitive than one using Mϕ.

3.3.1.1 Protocols

Now, two protocols are presented for the generation of NOON states with arbitrary phase encoding.
The first one - Protocol I - relies on the same measurement procedure previously presented. Therefore,
it can be divided in three steps. Using He f f on the time-evolution operator:

(i) |ΨI
1〉= U (tm − tµ,0,0) |Ψ0〉;

(ii) |ΨI
2〉= U (tµ,µ,0) |ΨI

1〉;

(iii) |ΨI
3〉=M|ΨI

2〉.

In step (i), the integrable time-evolution approximately generates the uber-NOON state (exactly,
if tµ→ 0), given by Eq. 3.3.1. The arbitrary phase-encoding occurs in step (ii), which results in the
same state as the one obtained with the µ-breaking in Eq. 3.3.2. A measurement procedure of site 3
takes place in step 3. The outcomes of either 0 or M will result in a collapsed state |ΨI

3〉 given by either
|NOON(0)

1 〉 or |NOON(M)
2 〉 of Eq. 3.2.5.

It is important to remember that these results are obtained by employing the effective hamiltonian
(ensuring perfect resonant tunneling regime) and by considering tµ→ 0 (leading to a complete de-
coupling between the integrable time-evolution and the phase-encoding). We define |ΦI

3〉 as the state
obtained numerically, by calculating all the steps with H. Therefore, in order to quantify how well
the hamiltonian H is able to reproduce this protocol, we evaluate the fidelity FI ≡ |〈ΦI

3|ΨI
3〉 |, for tµ

varying between 0 and h̄π/(2Pµ) (hence varying Pθ between 0 and π). These results are shown in
Fig. 3.6 (a), where we used U/h̄ = 100 Hz, J/h̄ = 70 Hz, M = 4, P = 11 and µ/h̄ = 30 Hz.

On the other hand, site-selective measurement, although already a reality in some experimental
procedures [74, 75, 77], is somewhat still difficult to achieve, since it relies on a very precise Zeeman-
splitting scheme, hence requiring the employment of extremely controllable and low-noise magnetic
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field. Therefore, we also present another protocol for generating NOON states (with arbitrary phases)
without the need of a measurement protocol. To achieve this, we propose that, in Protocol II, both
breakings-of-integrability act on the system nonsimultaneously. Similarly to what was presented for
Protocol I, here we split the procedure in five steps:

(i) |ΨI I
1 〉= U (tm − tν,0,0) |Ψ0〉;

(ii) |ΨI I
2 〉= U (tν,0,ν) |ΨI I

1 〉;

(iii) |ΨI I
3 〉= U (tm − tµ,0,0) |ΨI I

2 〉.

(iv) |ΨI I
4 〉= U (tµ,µ,0) |ΨI I

3 〉.

In step (i), the integrable time-evolution approximately generates the uber-NOON state (exactly, if
tµ→ 0), given by Eq. 3.3.1. In step (ii), the arbitrary phase-encoding occurs results in the same state
as the one obtained with the ν-breaking in Eq. 3.3.2. Then, differently from the proposed scheme
for Protocol I, we let the system once again time-evolve under the integrable hamiltonian for a time
tm − tµ, which results in:

|ΨI I
3 〉= cos

(
Mϕ

2

)
|M, P,0,0〉 − iβsin

(
Mϕ

2

)
|M,0,0, P〉 . (3.3.5)

Although the state of Eq. 3.3.5 is not a NOON state, this can be easily achieved by “transforming”
both the cos(...) and sin(...) into 1/

√
2. Therefore, for any value of ν, we fix tν = h̄π/(4Mν), such that

cos (Mϕ/2) = sin (Mϕ/2) = 1/
√

2. Then, the final phase-encoding is effectively achieved in step (iv),
resulting in:

|ΨI I
4 〉=

1√
2

[
|M, P,0,0〉+ βei(Pθ−π/2) |M,0,0, P〉

]
, (3.3.6)

where the displacement −π/2 in the phase is due to the incorporation of i. We define |ΦI I
4 〉 the

state obtained at step (iv) by performing all the steps numerically, with H. Then, similarly to the
previous case, we evaluate the fidelities FI I ≡ |〈ΦI I

4 |ΨI I
4 〉 | for Pθ varying between 0 and π (through

the variation of tµ). The results are depicted in Fig. 3.6 (b), and an illustration of both protocols is
presented in Fig. 3.5.
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Figure 3.5: Protocols for NOON state generation. The spheres represent the wells and the thick
lines depict the tunneling between them. The populations of 0, M and P atoms are illustrated,
respectively, in white, cyan and blue, and the dashed circle (displaced from the sphere center)
represents a phase-difference on the respective site. On Panel (a), the Protocol I for NOON state
generation is shown. Starting from a pure state |Ψ0〉 = |M, P,0,0〉, a time-evolution of t = tm
yields the formation of the u-NOON state, followed by a phase-encoding through a breaking of
integrability across sites “2-4” during tµ. Afterwards, a local projective measurementM selects
one of the two possible NOON states. With the same initial state, Protocol II (Panel (b)) does not
depend on the measurement procedure. Instead, after the u-NOON formation, the breaking of
integrability ν is turned-on during a time tν = h̄π/(4Mν), imprinting a phase-difference of π/2
between sites “1-3”. Then, a NOON state across sites “2-4” is created after another time-evolution
during tm, with the final phase-encoding being done through a breaking of integrability across
sites “2-4” during tµ.
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Figure 3.6: Fidelities of the generated NOON states through Protocols I (a) and II (b), for different
phases Pθ encoded. The calculations were performed by considering an initial state |Ψ0〉 =
|M, P,0,0〉, with M = 4 and P = 11, U/h̄ = 100 Hz, J/h̄ = 70 Hz and breaking-of-integrability
parameters µ/h̄ = ν/h̄ = 30 Hz. By varying tµ between 0 and h̄π/(2Pµ)(∼ 4.8 ms), we numerically
generate the NOON states employing H on the time-evolution operator, with Pθ ranging from 0 to
π. In (b), the time-interval tν was kept constant at tν = h̄π/(4Mν)∼ 6.5 ms in order to generate a
balanced superposition, which results in a NOON state (see text for more details).

Although we predicted the the model’s ability to generate and encode phases on NOON states,
its performance is directly related to the “level of resonance” in which the model is found (i.e. if the
energies, for a given set of parameters and initial condition, are approximately equally spaced in one
energy band of Fig. 2.2). Therefore, since both the band formation and the integrable time-evolution
tm depend on the parameters {U, J}, the existance of a trade-off between protocol time and fidelity
becomes natural.

3.3.1.2 Fidelity vs protocol-time trade-off

In order to see how the fidelities FI and FI I change with the protocol time, we vary U/h̄ between
0 Hz and 140 Hz. Supposing an initial state |Ψ0〉 = |M, P,0,0〉, with M = 4, P = 11 and fixing
µ/h̄ = ν/h̄ = 30 Hz and J/h̄ = 70 Hz, tm becomes a parametrization of U, and varies accordingly
between 0 s and 8.62 s. The results are shown in Figure 3.7.
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Figure 3.7: Fidelities of the NOON states obtained in Protocols I and II as a function of tm. By
employing the initial state |Ψ0〉 = |M, P,0,0〉, with M = 4 and P = 11, we evaluate the fidelities
for U/h̄ varying between 0 Hz and 140 Hz, while keeping J/h̄ = 70 Hz, µ/h̄ = ν/h̄ = 30 Hz,
tν = h̄π/(4Mν)∼ 6.5 ms and tµ = h̄π/(4Pµ)∼ 2.4 ms (Pθ = π/2) fixed. The dotted lines highlight
the lowest value of tm for which the fidelities FI(0(M)) and FI I are all above 0.9 - approx. 4.044 s.
Since the parametrization is done with a fixed J, this results in U/h̄∼ 65 Hz as the lowest value for
the interaction parameter that enables the system to produce NOON states with high fidelities.

By analyzing Fig. 3.7, it is noticeable that, for tm = 0 (U = 0), FI(0) = FI I = 1/
√

2. This is due
to the fact that, when employing the protocols with tm = 0, the system effectively barely performs
a time-evolution, remaining at the initial state |M, P,0,0〉. Since this is one of the two states in the
superpositions of |NOON(0)

1 〉 and |ΨI I
4 〉, the only nonzero component of the fidelity evaluation will be

1/
√

2.

3.3.2 Phase read-out

One of the advantages of the proposed quantum device is the ability to check the reliability of the
interferometer and the phase-encoding protocols on a self-consistent way, within the same system (in
what we call “phase read-out”). This is done exactly by employing the interferometric capability of
the four-well model at the end of Protocols I and II.

Protocol I ends with either |NOON(0)
1 〉 or |NOON(M)

2 〉 being generated (in case an outcome other
than 0 or M is obtained at “step 3”, this can just be discarted by post-selection). Then, in order to verify
the phases encoded, we let the system evolve during another time-interval of t = tm. This results
(analytically) either in |ΨI(0)

RO 〉 or |ΨI(M)
RO 〉, which read:

|ΨI,(0)
RO 〉=

c(θ)√
2
(|M, P,0,0〉+ β |M,0,0, P〉) + is(θ)√

2
(β |0, P, M,0〉 − |0,0, M, P〉), r = 0,

|ΨI,(M)
RO 〉= c(θ)√

2
(|M, P,0,0〉 − β |M,0,0, P〉)− is(θ)√

2
(β |0, P, M,0〉 − |0,0, M, P〉), r = M,

(3.3.7)

where c(θ)≡ cos(Pθ/2) and s(θ)≡ sin(Pθ/2) and r stands for the measurement outcome at “step 3”.
Then, the complete set of measurements on Protocol I PI(r, s) (state generation, readout) is expected
to follow:
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Figure 3.8: Readout procedure. Comparison between analytical expressions of Eqs. 3.3.8 and
3.3.10 and the respective numerically-obtained results with H. Panel (a) depicts the composed
readout probabilities for Protocol I, and panel (b) shows the readout probabilities of Protocol II.
The solid lines represent the analytical results on both cases. For the calculations, we considered
the hamiltonian parameters U/h̄ = 100 Hz, J/h̄ = 70 Hz and µ/h̄ = ν/h̄ = 30 Hz, with an initial
state given by |M, P,0,0〉, with M = 4 and P = 11.

PI(0,0) = PI(M,0) =
1
2

cos2
(

Pθ

2

)
;

PI(0, M) = PI(M, M) =
1
2

sin2
(

Pθ

2

)
.

(3.3.8)

These results are shown alongside with the numerical ones on Panel (a) of Fig. 3.8. Protocol II, on
the other hand, predicts the generation of only one possible NOON state. By letting |ΨI I

4 〉 also evolve
during tm, one obtains:

|ΨI I
RO〉=

1√
2

c
(

θ − π

2P

)
(|M, P,0,0〉+ β |M,0,0, P〉)

− i√
2

s
(

θ − π

2P

)
(β |0, P, M,0〉 − |0,0, M, P〉) ,

(3.3.9)

such that the two final possible outcomes - 0 and M - are expected with probabilities PI I given by:

PI I(0) = cos2
(

Pθ

2
− π

4

)
, PI I(M) = sin2

(
Pθ

2
− π

4

)
. (3.3.10)

A comparison between these results and the numerical calculations with H are shown on Panel (b)
of Fig. 3.8. By looking at the comparison for both Protocols I and II, it is clear that the predicted curves
are usually slightly higher than the ones obtained numerically with H. This is, once again, an effect of
the non-perfect resonant regime in which the system is with the employed hamiltonian parameters,
such that contributions from other states are also present. As we will see on next Chapter, a similar
feature occurs due to the same reason on the quantification of the system’s entanglement.
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Entanglement

One of the most important features of the NOON state relies on the fact that it is an “all-or-nothing”
superposition. Such characteristics enables it to be employed for interferometric purposes with a sen-
sitivity limited by the Heisenberg Principle. An immediate consequence for this kind of superposition
is that the state also presents a high level of entanglement. Although being in the core of the new
developing quantum technologies, entanglement, only by itself, does not guarantee the usefulness of
a given quantum state.

In this Chapter, we discuss the entanglement generated by the Four-well integrable system in the
context of its two previously-addressed applications as a quantum device.

4.1 VON-NEUMANN ENTROPY

Among several methods to quantify the “degree of entanglement” present on a given quantum
system, one of the most employed ones is the so-called Von-Neumann entropy S. This method is
based on the idea of diving the quantum system in two “partitions” - e.g. X and Y - and evaluating
the entanglement between them.

If a given system is described by the density operator ρ, it is possible to obtain the operator ρX that
describes its X partition by taking the partial trace of ρ over Y: ρX = trY ρ. Then, the entanglement
between these partitions - S(ρX) = S(ρY) - is given by:

S(ρX) =−tr {ρX log2 ρX}. (4.1.1)

The minimum value for S(ρX) = S(ρY) will is achieved when ρX (and, consequently, ρY) is a pure
state, such that it can be decomposed as ρX = |ΨX〉 〈ΨX|. In this case, ρ can be completely represented
in the basis of |ΨX〉 as a 1x1 matrix, Γ(ρX), and S(ρX) = 0. Its maximum value, on the other hand,
occurs when ρX is a maximally-mixed state, reading ρX = 1

dX
∑i |ψi〉 〈ψi|, dX being the dimension of

the X-partition Hilbert Space. This results in S(ρX) = log2 dX. The next section contains an analysis of
the Von-Neumann entropy for the four-well integrable model.
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4.2 ENTANGLEMENT PRODUCTION OF THE SYSTEM

In this section, the production of entanglement by the four-well model is analyzed in the frame
of the Von-Neumann entropy. Both the entanglement between classes A and B (“interclass entangle-
ment”) and the entanglement within one class (“intraclass entanglement”) will be explored in the
context of the NOON state generation and readout by the four-well system.

4.2.1 Entropy of interferometric states

As demonstrated in Sec. 3.2, when the initial state is given by a NOON state, the system works as
a Heisenberg-sensitive interferometer, with the state obtained after a time-evolution up to t = tm given
by Eq. 3.2.4 and a corresponding density operator ρ(tm) = |Ψ(tm)〉 〈Ψ(tm)|. It is possible to show that
the reduced operator ρA(tm) will be:

ρA(φ) = trB ρ(φ) = tr24 ρ(φ)

=
N

∑
u=0

N−u

∑
w=0
〈u,w|ρ(φ)|u,w〉2,4

=
1 + βcosφ

2
|M,0〉 〈M,0|+ 1− βcosφ

2
|0, M〉 〈0, M| ,

(4.2.1)

where 〈x,y|A|x,y〉a,b means that the state |x,y〉 is related to sites a and b. Since ρA(φ) is already
decomposed in terms of an eigenbasis, the related Von-Neumann entropy S(ρA(φ)) will be simply
given by:

S(ρA(φ)) =−cos2 φ

2
log2

(
cos2 φ

2

)
− sin2 φ

2
log2

(
sin2 φ

2

)
. (4.2.2)

By looking at the expression of Eq. 4.2.2, it is possible to see that S(ρA(φ)) is π-periodic, being
bounded between 0 and 1 for φ (accordingly) between 0 and π/2. This demonstrates that the entan-
glement production by the interferometric activity at t = tm (prior to measurement) depends on the
phase φ initially encoded in the NOON state. This is as expected, since the working principle of the
interferometer is the conversion φ from a phase-difference to a population-imbalance, which is directly
related to different coefficients for the superposition of Eq. 4.2.2, yielding different values for S(ρA(φ)).

After the measurement procedure is employed (as defined in Subsec. 3.2.1), the state will collapse
to either of the two NOON states of Eq. 3.2.5, ideally with r = 0 or r = M. Taking |NOON(0)

1 〉 as an
example, the equivalent density operator - ρ(0) - will read:

ρ(0) =
1
2
|M,0〉 ⊗

[
|P,0〉 〈P,0|+ |P,0〉 〈0, P|+ |0, P〉 〈P,0|+ |0, P〉 〈0, P|

]
⊗ 〈M,0| . (4.2.3)

Then, reduced density operator will be simply given by ρ
(0)
A = |M,0〉 〈M,0|. From this, we see
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immediatly that the entanglement entropy between classes “A” and “B” is S(ρ(0)A ) = 0, which means
that there is no remaining on the entanglement between classes. However, such a result does not
quantify the entanglement within a given class (i.e. the “intraclass” entanglement). To evaluate it for
both classes “A” and “B”, it is necessary to consider, respectively, the reduced matrices ρ

(0)
1 = tr3 ρ

(0)
A

and ρ
(0)
2 = tr4 ρ

(0)
B . Their calculation can be carried out in a similar that was done in Eq. 4.2.1 (with the

necessary changes for ρB(φ)), resulting in:

ρ
(0)
1 = |M〉 〈M| ;

ρ
(0)
2 =

1
2
(|P〉 〈P|+ |0〉 〈0|) .

(4.2.4)

The evaluation of the Von-Neumann entropy for the previous density operators leads to S(ρ(0)1 ) = 0
and S(ρ(0)2 ) = 1. From these results, it is possible to conclude that, employed on Site “3”, the measure-
ment procedure on the state of Eq. 3.2.4 breaks both the entanglement between classes “A” and “B”
and the entanglement within class “A”, leaving intact the entanglement within class “B”. This agrees to
the fact that the collapsed state after measuring N3 = r is also a NOON state across sites 2-4 (class “B”).

A similar development could be done for the u-NOON state generated at t = tm with |Ψ0〉 =
|M, P,0,0〉. This would result in an equivalent representation of ρA(tm) as the one of Eq. 4.2.1 with
φ = π/2, resulting in a Von-Neumann Entropy for the u-NOON of S(ρA(tm)) = 1. The supression of
such development was done to avoid repeatedness.

4.2.2 Entanglement dynamics: analytical results

For |Ψ0〉 = 2−1/2 (|M, P,0,0〉+ exp(iφ) |M,0,0, P〉), it is possible to write |Ψ(t)〉 in terms of the
basis |M, P,q1,q2} defined in Eq. 2.4.1, resulting in:

|Ψ(t)〉= e−iHe f f t |Ψ0〉

=
1√
2

M

∑
q1=0

P

∑
q2=0

e−itεq1,q2 |M, P,q1,q2}

√
CM

q1
CP

q2

2N (1 + (−1)q2 eiφ),
(4.2.5)

where Cm
n = m!

n!(m−n)! , if n ∈ {0, ...m}, and Cm
n = 0 otherwise. Here, we will consider h̄ = 1 for simplicity.

Then, the reduced density operator ρA(t) will be given by (see Appendix A.3 for more details):
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ρA(t) = trB |Ψ(t)〉 〈Ψ(t)|

=
N

∑
m,n=0

〈m,n|Ψ(t)〉 〈Ψ(t)|m,n〉

=
1

2N+1

M

∑
q1,p1=0

e2itΩ[N]+(p1−q1)
√

CM
q1

CM
p1

[
1 + e−2itΩ(p1−q1)

]P
|χ(q1)〉 〈χ(p1)| ,

+
cosφ

2N+1

M

∑
q1,p1=0

e2itΩ[N]+(p1−q1)
√

CM
q1

CM
p1

[
1− e−2itΩ(p1−q1)

]P
|χ(q1)〉 〈χ(p1)|

(4.2.6)

with the definition |χ(q)〉 = 1√
(M−q)!q!

(
a†

1+a†
3

2

)M−q( a†
1−a†

3√
2

)q
|0〉A. Finally, for t = tm = π/(2Ω), the

reduced density operator reads:

ρA(tm) =
1 + cosφ

2
|Ψ+〉 〈Ψ+|+

1− cosφ

2
|Ψ−〉 〈Ψ−| , (4.2.7)

where |Ψ±〉 = 2−M/2 ∑M
q=0 e∓iqπ[N]±

√
CM

q |χ(q)〉, with [N]± ≡ (N ± 1)/2. These states are orthonor-
malized, since:

(i) 〈Ψ±|Ψ±〉=
1

2M

M

∑
p,q=0

e−iqπ[N]±eipπ[N]±
√

CM
q CM

p 〈χ(p)|χ(q)〉︸ ︷︷ ︸
δp,q

=
1

2M

M

∑
q=0

CM
q = 1;

(ii) 〈Ψ+|Ψ−〉=
1

2M

M

∑
p,q=0

e−iqπ[N]+eipπ[N]−
√

CM
q CM

p 〈χ(p)|χ(q)〉︸ ︷︷ ︸
δp,q

=
1

2M

M

∑
q=0

CM
q (−1)q = 0,

and hence may constitute a basis on Eq. 4.2.7. With this, it is possible to represent ρA(tm) of Eq.
4.2.7 as 1

2 12, where 12 is the identity matrix o dimension 2. Then, the Von-Neumann entropy in this
case will be simply given by S(ρA(tm)) = −cos2 φ log2 cos2 φ− sin2 φ log2 sin2 φ. Through a similar
development, it can be demonstrated that the same expression of Eq. 4.2.7 results for ρB(tm), with the
exchange M→ P on |Ψ±〉 expressions, which is in agreement with the bipartite-system equivalency
S(ρA) = S(ρB).

The results above are independent from the total number of particles, and just require the system
to be in the band-formation regime (resonant regime), with an initial state with atoms on both classes
A and B. This is quite surprising when one takes into account the results of the previous Subsection
regarding the Von-Neumann entropy for the (u)NOON states. As shown on Sec. 3.2, the prediction of
(u)NOON state formation is directly linked to the total number of atoms N in the system, being gener-
ated only if N is odd. The results shown previously seem to contradict it, as the prediction of S(ρA(tm))
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occurs with the same value for both N odd and even. What it suggests, however, is that the generation
of entanglement per se is not at all necessarily useful, and one should investigate beyond such quantifi-
cation in order to prepare quantum states that are interesting for a desired application (as noted in [78]).

To quantify the entanglement between one site - for example, “3” - and the other three, it is
necessary to first evaluate the reduced operator ρ3. Such an operator has a simplified expression given
by:

ρ3(tm) =
N

∑
j=0
P3(j) |j〉 〈j| , (4.2.8)

where P3(l) is the probability of measuring l particles at site “3”, at t = tm. The generalized expression
for the P3(l) can be obtained by calculating P3(l) = 〈M− l, l|ρ3(tm)|M− l, l〉. The previous expression
can be decomposed into two inner products, whose development can be found in Appendix A.3,
leading to:

P3(l) =
1
2

bM,l(sin2(π[N]+/2)) +
1
2

bM,l(sin2(π[N]−/2)). (4.2.9)

with bW,r being the Bernstein polynomials, given by bW,r(x) = CW
r xr(1 − x)W−r. Contrary to the

numerical values for S(ρA(tm)) (and S(ρB(tm))), the measurement probabilities are not the same for
N odd and even, leading to:

P3(l) =
1
2

δ0,l +
1
2

δM,l , for N odd,

P3(l) =
CM

l
2M , for N even.

(4.2.10)

The probability distribution for N odd implies on probabilities of 1/2 both for measuring N3 = 0
and N3 = M. This is in accordance with the u-NOON formation at t = tm (Eq. 3.3.1). The different
behavior in the case of N even is due to the fact that a u-NOON state is not generated at t = tm, leading
to a different distribution of measurement probabilities with more than two possible outcomes after
measuring N3.

4.2.3 Entanglement dynamics: numerical evaluation

At a time t, the system’s density operator can be written as:

ρ(t) = |Φ(t)〉 〈Φ(t)|
= ∑

i1,i2
∑
j1,j2

∑
k1,k2

ci1,j1,k1(t)(ci2,j2,k2(t))
∗ |i1, j1,k1, N − i1 − j1 − k1〉 〈i2, j2,k2, N − i2 − j2 − k2| , (4.2.11)

where the following definitions were made:

• ∑i1,i2 ≡∑N
i1=0 ∑N

i2=0;

• ∑j1,j2 ≡∑N−i1
j1=0 ∑N−i2

j2=0 ;
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• ∑k1,k2
≡∑

N−i1−j1
k1=0 ∑

N−i2−j2
k2=0 .

Then, the calculation of ρB(t′) = trA ρ(t′) reads:

ρB(t) =
N

∑
s=0

N−s

∑
p=0
〈s, p|ρ(t)|s, p〉

=
N

∑
s=0

N−s

∑
p=0

N−s−p

∑
j1,j2=0

cs,j1,p(t)(cs,j2,p(t))∗ |j1, N − s− j1 − p〉 〈j2, N − s− j2 − p|
(4.2.12)

Now, by rearranging the summations ∑N
s=0 ∑N−s

p=0 →∑N
p=0 ∑

p
s=0, we can rewrite Eq. 4.2.12 as:

ρB(t) =
N

∑
p=0

N−p

∑
j1,j2=0

p

∑
s=0

cj1,s,N−p−j1(cj2,s,N−p−j2)
∗ |j1, N − j1 − p〉 〈j2, N − j2 − p|

=
N

∑
p=0

ρB,p

(4.2.13)

with ρB,p ≡ ∑
N−p
j1,j2=0 ∑

p
s=0 cj1,s,N−p−j1(cj2,s,N−p−j2)

∗ |j1, N − j1 − p〉 〈j2, N − j2 − p| being a square matrix
with dimensions (N − p). A representation Γ(ρB(t)) can be written in terms of the direct sum of the
representations of ρB,p,

Γ(ρB(t)) =
N⊕

p=0

Γ(ρB,p(t)), (4.2.14)

from which it is easy to see that S(ρB(t)) = −∑N
p=0 tr {ρB,p(t) log2 ρB,p(t)}. Figure 4.1 depicts the

numerically-evaluated Von-Neumann entropies S(ρB(tm)) for both H and He f f in comparison with
analytical results, for N even (M = 3, P = 11) and odd (M = 4, P = 11).
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Figure 4.1: Von-Neumann entropy. The panels on the left ((a), (c)) and right ((b), (d)) cor-
respond, respectively, to the atom-number distributions {M = 3, P = 11} (N even) and
{M = 4, P = 11} (N odd). On top panels ((a), (b)), we present the results (ρB(t)) for an
initial state given by |Ψ0〉 = |M, P,0,0〉, while on the bottom panels ((c), (d)) we consider
|Ψ0〉= 2−1/2 (|M, P,0,0〉+ exp(iφ) |M,0,0, P〉), and S(ρB(tm)) is depicted for φ ranging between
[0,π]. The data in purple (blue) was evaluated with the Hamiltonian He f f (H). On panels (c)-(d),
the black, solid line illustrates the analytical results of Eq. 4.2.2.
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Extended Bose-Hubbard model

In this chapter, we begin by discussing the fact that the traditional Bose-Hubbard hamiltonian
does not allow for a particular integrable set of couplings. Then, we show that this is possible by
employing an extension of this model - called Extended Bose-Hubbard (EBH) hamiltonian -, which
results in a specific integrability condition that must be fulfilled. We also develop expressions for the
tunneling and interaction parameters for an (almost) arbitrary trapping potential.

5.1 DERIVATION AND CONSIDERATIONS

The Bose-Hubbard model describes the physics of ultracold bosonic atoms trapped in different
sites or wells. It was demonstrated to be naturally integrable in the limits of two-sites and inifinite-sites
systems, but not for an arbitrary number of wells different that those two. Its hamiltonian is generally
given by

H =
U0

2 ∑
i

Ni(Ni − 1)− jt ∑
〈i,j〉

a†
i aj − µ∑

i
Ni,

where U0 is the contact interaction between atoms at the same site, jt represents the hopping ampli-
tude between different nearest-neighbors sites - as stated by the 〈i, j〉 notation - and µ stands for the
chemical potential. Also, Ni is the number operator, a†

i is the creation operator for site i and aj is the
annihilation operator for site j. In the case of a fixed total number of particles, the last term becomes a
global constant and can therefore be ignored for quantum dynamics.

The Hamiltonian above does not present long-range interactions and, therefore, it is not possible to
connect it with the integrable four-well model. Hence, we must consider the system as made up with
atoms that present the kind of interactions necessary to achieve an integrable point. By supposing that
the system is composed of dipolar bosonic atoms in an ultracold regime, the Gross-Pitaevskii Energy
Functional may be employed as a starting point for the model hamiltonian deduction. The functional
is given by:

E[Φ(r)] =
∫

dr Φ∗(r)
[
− h̄2

2m
∇2 + Vtrap(r) +

1
2

∫
dr’ Φ∗(r’)V(r− r’)Φ(r’)

]
Φ(r), (5.1.1)
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where we have already considered a fixed total number of particles N. There, Φ(r) is the collective
wavefunction of the atoms, m is the atom’s mass, Vtrap(r) is the potential generated by the trapping
apparatus and depends on its physical realization, and V(r− r’) = Vsr(r− r’) + Vdd(r− r’) is the
interaction potential between the atoms, such that Vsr(r− r’) and Vdd(r− r’) stand, respectively, for
the short-range contact interaction and the dipole-dipole interaction (D.D.I). To discretize the system
in different sites, we perform a second-quantization procedure:

Φ(r)→Ψ(r),

Φ∗(r)→Ψ†(r),
(5.1.2)

where Ψ(r) and Ψ†(r) are, respectively, the bosonic annihilation and creation field operators. By con-
sidering localized wavefunctions for the atoms, we perform the four-site expansion Ψ(r) = ∑4

i=1 φi(r)ai,
where φi(r) is the wavefunction of a single boson in site i, defined as the ground-state of Vtrap(r) in
harmonic approximation. Hence, φi(r) must be a gaussian function, which means φi(r) = φ∗i (r). This
approximation is already driven by the assumption that the trapping potential for the atoms presents
minima on four different spatial region - the corresponding potential for the experimental scheme
proposed in the Dissertation will behave accordingly, as demonstrated in the next Chapter (see Eq.
6.3.1). By inserting it into Eq. 5.1.1, we obtain:

H =−∑
ij

Jija†
i aj + ∑

ij

Uijkl

2
a†

i a†
j akal , (5.1.3)

with Jij and Uijkl being, respectively, the hopping and interaction couplings between atoms of different
sites, whose expressions are given by:

Jij =
∫

dr φi(r)
[

h̄2∇2

2m
−Vtrap(r)

]
φj(r);

Uijkl =
∫

dr
∫

dr’ φi(r’)φj(r) V(r− r’) φk(r)φl(r’).
(5.1.4)

The expression for Jij can be expanded as Jij + εi, where Jij now implicitly means i 6= j and is
related to the particle hopping between sites, while εi ≡ Jii represents a difference in the trapping
energy in each site. If every site experiences the same trapping potential, then εi = εj ∀ i 6= j, which
means ∑i εia†

i ai = ∑i εiNi ∝ N is a global constant, an can be ignored on the Hamiltonian. As will be
shown later, such symmetry is not conserved anymore when one introduces a breaking of integrability
in the system.

The interaction potential V(r− r’) is given by:

V(r− r’) = gδ(r− r’)︸ ︷︷ ︸
VSR

+
Cdd

4π

1− 3cos2 θP

|r− r’|3︸ ︷︷ ︸
VDD

.

In the contact interaction (VSR), g = 4πh̄2a
m , where a is the s-wave scattering length, which can be

positive or negative - yielding, respectively, a repulsive and attractive contact interaction -, and whose
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values can be tuned through a magnetic field via a process called “Feshbach Resonance” [79]. In the
DDI (VDD), Cdd = µ0µ2, where µ0 = 4π × 10−7N/A2 is the vacuum magnetic permeability, µ is the
atom’s magnetic dipole moment and θP is the angle between the dipole orientation and the direction
of r− r’. Now, we simplify the expressions for Jij and Uijkl through a few assumptions. First, let us
suppose that the atoms are well confined, such that:

∫
dr φi(r)φj(r) is nonzero only for i = j and i, j first-neighbors;

∫
dr φi(r)φj(r)φk(r)φl(r) is nonzero only for i = j = k = l;

∫
dr
∫

dr’φi(r’)φj(r)φk(r)φl(r’)|r− r’|−3 is nonzero only for i = l and j = k.

Also, Considering that the distance between each nearest-neighbor site is the same, we immediately
obtain Jij = Jji. Hence, we rewrite the interaction term as Uijkl = Usrδij + Uijδilδjk, where:

Usr = g
∫

dr φ4(r);

Uij =
Cdd

4π

∫
dr
∫

dr’φ2
i (r)φ

2
j (r’)

1− 3cos2 θP

|r− r’|3 .,
(5.1.5)

and the hamiltonian of Equation 5.1.3 becomes

H =
U0

2 ∑
i

Ni(Ni − 1) + ∑
i 6=j

Uij

2
NiNj −∑

〈i,j〉
Jija†

i aj, (5.1.6)

which is the EBH hamiltonian [80] for the case where [H, N] = ∑i[H, Ni] = 0. The parameter Uij on
Equation 5.1.6 stands for the D.D.I between bosons at different sites, while U0 comprehends both the
contact interaction and the D.D.I between bosons at the same site. Here, we highlight that, in the case
of DDI→ 0, the hamiltonian of Eq. 5.1.6 becomes the Bose-Hubbard hamiltonian.

5.2 (SEMI-)ANALYTICAL EXPRESSIONS

In harmonic approximation, the trapping potential around a minimum can be written as:

V(h)
trap(r) =

1
2

m(ω2
xx2 + ω2

yy2 + ω2
z z2).

For the reasons that will become clearer in the next Chapter, we will consider that trapping
potential is symmetric on x − y, such that ωx = ωy ≡ ωr, where ωr is called the “radial trapping
frequency”. Then, we can rewrite the above expression as:

V(h)
trap(r) =

1
2

mω2
r (x2 + y2) +

1
2

mω2
z z2. (5.2.1)

We assume that the single-atom wavefunction is localized in one of the potential minima, describ-
ing the ground-state of the hamiltonianH(h)

0 =− h̄2

2m∇2 + V(h)
trap(r). We then assume a gaussian ansatz

of the form
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φ(x,y,z) =
[

23κ2η3

π3

]1/4

exp
[
−η(x2 + y2 + κ2z2)

]
, (5.2.2)

where κ2 was included to take into account the difference between ωr and ωz. By inserting the
expression of Eq. 5.2.2 on the time-independent Schrödinger Equation with the hamiltonian given
by H(h)

0 , one obtains the equivalences η = mωr/(2h̄) and κ2η = mωz/(2h̄), such that κ2 = ωz/ωr,
being called the “trap aspect ratio”. In the following subsections, we analyze the expressions of the
interaction and hopping parameters with the single-particle wavefunction just defined.

5.2.1 Interaction

The contact interaction, described by Usr of Eq. 5.1.5, can be easily evaluated with the wavefunction
φ(r) of Eq. 5.2.2 as:

Usr = g
∫

dr φ4(r)

= g
[

23κ2η3

π3

]∫
dr exp

[
−4η(x2 + y2 + κ2z2)

]

= gκ
( η

π

)3/2
.

(5.2.3)

It is clear, from previous equation, that the signal of g immediately determines whether the contact
interaction will be attractive (Usr <0) or repulsive (Usr >0). The fact that the s-wave interaction inten-
sity grows with η3/2 also makes sense, since it would mean that the two atoms involved are more
closely-localized.

The evaluation of the dipole-dipole interaction yields a much more complicated scenario. The
anysotropic and long-range natures of the interaction make difficult the task to come up with an
analytical solution. However, as will shown now, it is still possible to reduce the dimensionality of the
original integral involved from 6 to 1 and make the calculation easier. Since Uij is a two-body effect, we
will consider two single-particle functions φi(r) and φj(r’), separated by a distance 2d. For simplicity,
we take the axes (x, y, z) such that y connects the central region of both gaussian distributions. We
also assume that both wavefunctions are centered at z = z′ = 0 and that all the dipoles are aligned to
the z-direction (see Fig. 5.1).

To evaluate integrals involving |r− r’|−3/2, it is usually convenient to go to Fourier space - this is
the case for Uij. Therefore, we first define n(r,d)≡ φ2(x,y + d,z), such that the Fourier transform of
n(r,0) will be given by:

ñ(q) =
∫

dq n(r,0)e−iq.r = exp
[
−q2

1 + q2
2

8η
− q2

3
8κ2η

]
. (5.2.4)

The Fourier transform of Vdd(r− r’) can be shown to be [81]:
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Figure 5.1: Illustration of the two-body, dipole-dipole interaction generically described by Uij of
Eq. 5.1.5. The apparent change of θP with both r and r’ makes the anysotropic character of Uij
easily noticeable.

Ṽdd(q) =
∫

dr Vdd(r− r’)e−iq.r = Cdd

(
cos2 α− 1

3

)
, (5.2.5)

where the dependence on r− r’ of Eq. 5.2.5 is reduced to a dependence on q. With this, the total
expression for Uij can be rewritten as:

Uij =
1

(2π)3

∫
dq Ṽdd(q) ñ2(q) e−2iq2d. (5.2.6)

In cylindrical coordinates, the above integral reduces to:

Uij =
Cdd

4π

∫ ∞

0
dr
[

4κ

3

√
η

π
− e

r2

4κ2η r erfc
(

r
2κ
√

η

)]
r e−

r2
4η J0(2rd), (5.2.7)

where erfc(x) = 1−erf(x) is the complementary error function and Jp(x) is the Bessel function of first
kind with index p. Here, it is valid to highlight that, for d→ 0 - i.e. the particles are located at the
same site - the expression of Eq. 5.2.7 reduces to:

Udip = lim
d→0

Uij =−
Cdd

3g
f (κ) Usr, (5.2.8)

where the function f (κ) associates the geometry of φ(r) with the dipolar interaction and is given by
[81]:

f (κ) =
1 + 2κ2

1− κ2 −
3κ2tanh−1√1− κ2

(1− κ2)3/2 .

The previous equation predicts some interesting limiting cases for f (κ). First, if κ = 1, f (κ) = 0.
This would be the equivalent to a completely-symmetric wavefunction φ(r), and a vanishing D.D.I
(Udip = 0). Second, if κ→ 0 (“cigar”), f (κ)→ 1, which results in a maximally atractive D.D.I. (Udip < 0).
Finally, for κ→∞ (“pancake”), f (κ)→−2, such that the D.D.I. is maximally repulsive (Udip > 0). Fig.
5.2 illustrates the D.D.I. operator of the EBH Hamiltonian (Eq. 5.1.6).

38



Chapter 5. Extended Bose-Hubbard model

Figure 5.2: Illustration of the dipole-dipole interaction of the EBH Hamiltonian (Eq. 5.1.6). Panel
(a) depicts a pancake-shaped trapping potential (κ2 > 1), which implies in a repulsive D.D.I.. Panel
(b) illustrates a symmetric (spherical) trapping potential (κ2 = 1), such that the resulting dipolar
interaction is zero. The case illustrated on panel (c) is related to a cigar-shaped trapping potential,
such that κ2 < 1, where the dipoles are in the so-called “head-to-tail” configuration, yielding an
overall attractive dipolar interaction. For all the cases, the blue spheres represent (classically) the
individual atoms on a potential minimum, with the yellow arrows being their permanent magnetic
dipole. These atoms are surrounded by a plot of the corresponding single-atom density function
φ2(r) (not necessarily in scale).

5.3 INTEGRABLE COUPLING

After an algebrical manipulation, the hamiltonian of Equation 5.1.6 can be rewritten as:

H =
U0 −U12

4
(N1 + N3 − N2 − N4)

2 − J
2
[(a1 + a3)(a†

2 + a†
4) + h.c.]

+ (U0 −U13)(N1N3 + N2N4)−
U12 + U0

4
N2. (5.3.1)

Since [H, N] = 0, the last term in the previous equation can be ignored, since it is constant and
would imply on a global phase to the system. Also, the hamiltonian of Equation 5.3.1 is the same as
the one of Equation 2.2.2, provided that:

U0 −U13 = 0. (5.3.2)

The Equation 5.3.2 states the “integrability condition” for the physical system, described by the
EBH hamiltonian, and is illustrated in Figure 5.3. Once fulfilled, the hamiltonian becomes the same
as the one of Equation 2.2.2, where U is defined as: U = 1

4 (U12 −U0). As demonstrated in the next
Chapter, by satisfying the condition stated on Equation 5.3.2 one also determines the required intensity
of the trapping scheme.
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Figure 5.3: Illustration of the integrability condition. The circles represent the four sites, and the
lines depict the nearest-neighbors tunneling. The onsite interaction (U0), composed of dipole-
dipole and contact interaction, is depicted in red; the dipolar interaction between diagonal sites
(U13) is depicted in orange. The system becomes integrable when U0 = U13 and J is recognized as
2Jij, with i, j nearest-neighbors. This can be done, in principle, by choosing a value for the s-wave
scattering length a and varying the trapping frequencies of the system up to the point where the
interaction energies U0 and U13 match. Such method is presented with more details on Sec. 6.3.

5.3.1 Breaking of integrability

The protocols for NOON-state generation proposed on Sec. 3.3 rely on the ability to perform
controllable breaks on the integrability. These are generated by introducing an imbalance in the
trapping potential (see Sec. 6.3) Vbreak(r) at specific times, “on purpose”, giving raise to terms

εi ≡
∫

dr φi(r)Vbreak(r)φi(r) (5.3.3)

that do not hold the same value for every i. This generates the operator Hb = ∑i εiNi that destroys
the symmetry of the integrable Hamiltonian H, effectively breaking the system’s integrability.1. The
numerical values of {εi} and their relation with the terms µ and ν employed in the previous protocols
are calculated on Sec. 6.3, taking into account a specific trapping scheme.

1We observe that the breaking of integrability has also been discussed in other physical scenarios (see, for instance
[82, 83, 84])
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Experimental feasibility

In this chapter, we present a possible way of achieving integrability - and, ultimately, making our
quantum device - on the lab. Based on the realization of ultracold atoms trapped in “optical lattices”,
we show how to fulfill the integrability condition by controlling the imbalance between contact and
dipolar atomic interactions, and how this is related to the usual controllable trapping parameters.
Finally, we also demonstrate specific calculations of the first-principles hamiltonian constants, whose
values are similar to the ones employed in the previous Chapters. Some of the developments presented
in this Chapter are based on private notes received from Prof. Leandro H Ymai.

6.1 OPTICAL DIPOLE TRAP

A usual sequence in experiments of ultracold atoms starts by cooling the atomic ensemble (which
ultimately means lowering its average kinectic energy) with resonant light. Through absorption
and (spontaneous) re-emission of light inciding on three perpendicular directions, the atoms on the
ensemble become, on average, slower (and therefore, colder). Such a process does not trap the atoms
at a specific region of space. Instead, it is usually employed as a preliminary step such that the atoms
are captured by the desired trapping mechanism with a high probability and efficiency (which would
not be the case with large velocities). The latter can be accomplished by different methods - including,
for example, Magnetic Traps [85, 86] and Atom Chips [87] -; however, in this section I will briefly
discuss a trapping scheme that is performed with off-resonant laser light.

The Optical Dipole Trap (ODT) [88] relies on the interaction between light (far from resonance)
and the atom’s electric dipole. The physics of the ODT is usually discussed in the context of the “AC
Stark effect”. In this case, the atom is thought to behave like an oscillator in the presence of radiation.
We start by writing the electric field E as:

E(r, t) =
[
Ẽ(r)e−iωt + Ẽ∗(r)eiωt] êL, (6.1.1)

where Ẽ(r) represents the amplitude of the electric field in space, ω is the oscillation frequency and
êL stands for the polarization vector. The atom-light coupling can then be described in terms of the
electric dipole interaction:
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Val =−d.E, (6.1.2)

where d stands for the atomic electric dipole operator. We consider that the atom is in the dressed-
state [89] |g〉, with energy Eg ± h̄ω. As mentioned before, this method is based on light with an
off-resonance frequency, such that no real transitions between the ground- and excited-states are
expected. Therefore, we employ a second-order time-independent perturbation theory to find the
energy shift δEg from the atomic ground-state energy. The generical expression reads:

δEg = ∑
e

[ 〈e|d.E∗|g〉 〈g|d.E|e〉
Eg − Ee − h̄ω

+
〈e|d.E|g〉 〈g|d.E∗|e〉

Eg − Ee + h̄ω

]

= ∑
e

[ | 〈e|d.eL|g〉 |2
Eg − Ee − h̄ω

+
| 〈e|d.eL|g〉 |2
Eg − Ee + h̄ω

]
|Ẽ(r)|2.

(6.1.3)

From equation above, one notices that the off-resonant light that interacts with the atom induces
virtual transitions between the ground-state |g〉 and the excited states |e〉, then decaying back to
the ground-state. This can be compared to the classical picture of the eletric field inducing a dipole
moment on the atom [90], which oscillates with the light intensity. The excited-state decaying rate is
not being taking into account on Eq. 6.1.3, but it should be. This can be done by adding an imaginary
energy related to the decay rate of the excited states. Considering Γe as the decaying rate from state |e〉,
the lifetime of the excited states can be considered in the calculation through the simple transformation
Ee→ Ee − ih̄Γe/2. Then, defining ωe ≡ (Ee − Eg)/h̄ as the frequency associated with the transition
between the states |g〉 and |e〉, we can rewrite Eq. 6.1.3 as:

δEg =−
1
h̄ ∑

e

[ | 〈e|d.eL|g〉 |2
ωe −ω− iΓe/2

+
| 〈e|d.eL|g〉 |2

ωe + ω− iΓe/2

]
|Ẽ(r)|2

=−α(ω)|Ẽ(r)|2,

(6.1.4)

where the complex polarizability of the atom (α(ω)) was introduced. We now divide the analysis
between the real and imaginary parts of the energy shift δEg. Defining VODT(r) as the conservative
potential generated by the atom-light interaction, we can related it with the real part of α(ω), reading:

VODT(r) =−
1

2ε0c
Re{α(ω)} I(r)

= ∑
e

3πc2

2ω3
e

(
Γe

ω−ωe
− Γe

ω + ωe

)
I(r),

≈∑
e

3πc2

2ω3
e

(
Γe

∆e

)
I(r),

(6.1.5)

where we defined I(r)≡ 2ε0c|Ẽ(r)|2 as the intensity of the electric field (and of the laser), ∆e ≡ω−ωe

as the detuning from resonance and we employed the rotating-wave approximation (∆e�ωe). Even
being off-resonant, the light field that interacts with the atom is still able to induce some photon
scattering by the atom, causing its heating and potential lost from the trap [90]. The scattering rate -
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Γsc(r) - is related to the imaginary part of δEg. With a similar calculation to the one employed at Eq.
6.1.5, one can arrive at:

Γsc(r)≈∑
e

3πc2

2h̄ω3
e

(
Γe

∆e

)2

I(r). (6.1.6)

When comparing Eqs. 6.1.5 and 6.1.6, one may notice that, while VODT(r) scales with ∑e I(r)/∆e, Γsc(r)
scales with ∑e I(r)/∆2

e , where ωe was omitted just to increase readability. This has two interesting
consequences. The first one is that VODT(r) is attractive (i.e. provides trapping) only for ∑e 1/∆e < 0.
By considering ω much closer to a given resonance ωe′ than the other ones, this would mean basically
that VODT(r) is attractive for ∆e′ < 0, which is usually called a “red-detuned” condition. The second
one is that, in order to increase VODT(r) while decreasing Γsc(r), one should increase simultaneously
I(r) and ∆e.

In the case of a gaussian beam propagating towards the z direction, the intensity I(r) is expressed
by:

I(r) =
2P

πw2
0

[
1 +

(
z

zR

)2
]exp


− 2

w2
0

r2

1 +
(

z
zR

)2


 ,

where P is the power of the laser beam, w0 is its minimum waist (see Figure 6.1 for more details),
zR = πw2

0/λ is the so-called “Rayleigth length” for which I(0,0, zR) =
I0
2 , where I0 ≡ 2P

πw2
0[1+(z2/z2

R)]
, and

λ is the beam’s wavelength. We may rewrite Equation 6.1.5 as:

VODT(r) =−
V0[

1 +
(

z
zR

)2
] exp


− 2

w2
0

1

1 +
(

z
zR

)2


 , (6.1.7)

where we define the trapping potential depth V0 in terms of the beam’s power and waist and the
atom’s transitions:

V0 =
3Pc2

w2
0

∑
e

1
ω3

e

(
Γe

ω−ωe
+

Γe

ωe + ω

)
. (6.1.8)

6.2 OPTICAL LATTICE

Due to the high levels of parameter control, “optical lattices” stand as one of the most prominent
ways of performing atom-trapping. Is this method, the interference pattern of two or more counter-
propagating laser beams generates an artificial “crystal of light”, where the atoms get trapped on the
potential minima (called “wells” or “sites”).

Considering two counterpropagating beams on the x direction with a very large waist (w� λ),
the laser field intensity can be written approximately as:
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Figure 6.1: Illustration of a gaussian beam. The beam’s waist, w0, is given by the radius of the
disk-section where the beam has the highest power, while zR refers to the “distance” between the
regions where the radius is w0 and

√
2w0.

Figure 6.2: Representation of the 3D optical lattice. Panel (a) depicts the three sets of counter-
propagating beams that cross each other at 90, where the silver cylinders represent the mirrors.
A zoomed region is shown on Panel (b), where the sine-like function the beam’s electric field
is drawn for the horizontal beams (for better visualization, this was not shown for the vertical
one). The region at which the three beams encounter is where the 3D optical-lattice is located, as
illustrated on Panel (c), where each “slice” represent a 2D lattice for a fixed z.
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I(x, t) =
(√

I0 cos(ωt− kx) +
√

I0 cos(ωt + kx)
)2

= I0
[
cos2(ωt− kx) + cos2(ωt + kx) + 2cos(ωt− kx)cos(ωt + kr)

]

= I0
[
cos2(ωt− kx) + cos2(ωt + kx) + cos(2ωt) + cos(2kx)

]
,

(6.2.1)

where k≡ 2π/λ is the wavevector, and λ is the beam’s wavelength. By performing a time-average of
the field I(x, t), we obtain:

I(x) =
ω

2π

∫ 2π/ω

0
I(x, t) = I0 [1 + cos (2kx)] . (6.2.2)

A 3D optical lattice is obtained when three sets of counterpropagating beams cross each other at
90. In real experiments, these beams are usually retrorreflected with precisely aligned mirrors. Fig.
6.2 illustrates this process and the resulting 3D lattice. For all beams with the same wavelength, the
potential VOL generated will be given by:

VOL(r) =−
V0

2
[3 + cos(2kx) + cos(2ky) + cos(2kz)]

= V0
[
sin2(kx) + sin2(ky) + sin2(kz)

]
. (6.2.3)

It necessary to highlight that the expression of Equation 6.2.3 is strictly valid only on the central
part of the optical lattice. This is due to the fact that the gaussian beam intensity varies along the
beam, even in the cases where w� λ. In the next subsection, a special kind of optical lattice (called
“superlattice”) is introduced.

6.2.1 2D Superlattice

Being already a reality on cold-atoms experiments, the superlattice scheme is generated by the
superposition of two optical lattices with wavelengths λ and 2λ - respectively refered to as “short”
and “long” lattice. Following a similar procedure to the one employed for the Optical Lattice, it is
possible to demonstrate that the trapping potential generated by a 2D superlattice is given by:

V2D
SL (r) =−Vs

[
sin2(kx) + sin2(ky)

]
+ Vl

[
sin2

(
kx
2

)
+ sin2

(
ky
2

)]
, (6.2.4)

where Vs and Vl are, respectively, the “short” and “long” lattice potential depths. On Fig. 6.3, it is
possible to see that the resulting structure resembles disconnected four-site plaquettes. This is very
adequate for experimentally realizing systems of four wells on a closed configuration [74, 75]. In the
next Section, a detailed proposal for an experimental setup will be provided along with the numerical
evaluation of the Hamiltonian parameters.
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Figure 6.3: 2D superlattice. The disconnected four-site square plaquettes are generated by su-
perimposing two complete, 2D optical lattices generated with beams with wavelengths λ and
2λ.

6.3 PHYSICAL DESIGN

The integrable model that describes our quantum device presents isotropic tunneling rates and
the same interaction-energy scaling on each of the four sites. Due to the lifetime of the atoms in
the lattice - and to increase usefulness for the proposed device applications -, one should consider
a trapping scheme that provides the highest control on the hamiltonian parameters together with
the lowest-possible values for the characteristic protocols time tm, which depends not only on the
initial number of atoms on classes “A” and “B” (respectively M and P), but also on the interaction and
tunneling parameters. Therefore, in order to decrease tm, it is necessary to simultaneously increase U
and J. This justifies the choice realization that provides really short distances between the sites, which
allows to enhance the D.D.I. and the tunneling rate simultaneously.

Hence, we propose that the four-well integrable model may be realized with the isotope 164Dy
of the highly magnetic atom Dysprosium [90], trapped in one of the square plaquettes generated by
a superlattice with Vs = Vl ≡ V0. The atom’s permanent magnetic moment is given by µ ∼ 9.93 µB,
where µB = 9.274× 10−24 J/T is the Bohr’s magneton. For the trapping scheme, the characteristic
wavelength used is λ = 532 nm, since both λ and 2λ had been already employed for optical-dipole
trapping the isotope [91]. Besides that, in order to provide both z-confinement and controllability
on the trap aspect ratio (and therefore in the system’s interactions), an aditional 1D lattice on the
z-direction with a wavelength 2λ is considered with a potential depth Vv given by Vv/V0 = 1.123,
implying κ2 ∼ 0.53 (cigar-shaped trap, see Fig. 5.2). Therefore, considered a single layer along z, we
may write the trapping potential as:

Vtrap(r) =−V0
[
sin2(kx) + sin2(ky)

]
+ V0

[
sin2

(
kx
2

)
+ sin2

(
ky
2

)]
+

1
2

mω2
z z2, (6.3.1)
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with ωz ≡ (Vvk2/(2m))1/2. The separation between the nearest-neighbors sites on a single plaquette is
given by l = λ/(2δ), where δ≡ (1− 1/(2π))−1 is a correction obtained when expanding the previous
equation in harmonic approximation, and causes the lattice sites within a plaquette to slightly approach
each other. Figure 6.4 depicts the complete trapping scheme considered for the next calculations.

Measurement procedure

As assumed in Chapter 3, the measurements are done on a localized (site “3”) and nondestructive
manner, such that no atom losses are induced. This imposes some difficulties, since direct measure-
ments on (super)lattice environments may easily induce the so-called photoassisted (PA) collisions,
which causes the release of atom-pairs from the trap. Although undesired for the measurements of
the proposed quantum devices, this effect can be used to selectively empty neighboring plaquettes to
the one of interest. This is done by having a gradient of the magnetic-field strength on the x-y plane,
causing a Zeeman-splitting that varies with the position of the atoms. Then, an adjustment of the laser
frequency is done such that it matches the (chosen) transition frequency only in the desired lattice site
[74, 75].

In order to avoid the PA effect, we propose that a off-resonant, Faraday Imaging is performed. This
method is based on the Faraday effect, which states that a linearly-polarized light undergoes a rotation
on the polarization direction when passing through a material with a magnetic field component
along the light propagation axis. According to [77], the polarization rotation of a single site can be
measured with linearly-polarized off-resonant light, and the allignment can be performed with a
Digital Micromirror Device (DMD) (see Chapter 7 for more details).

6.3.1 Integrability condition

On the previous Chapter, the EBH model was introduced as a requirement for the realization
of the integrable model with bosonic atoms. This is due to the fact that the model’s Hamiltonian
predicts interaction between atoms from different sites - as expressed in terms ∝ NiNj, with i 6= j. An
algebraic rearrangement of the Hamiltonian leads to the condition expressed on Eq. 5.3.2. As will be
demonstrated now, the satisfaction of this equation not only guarantees integrability to the system,
but also sets, automaticaly, the beams’ intensities (by means of the trapping frequencies ωr and ωz).

Although very simple (and not at all optimized), the “method” to solve Eq. 5.3.2 is divided in four
steps, in order to make the explanation clearer:

(i) set the value for the s-wave scattering length;

(ii) choose a value for the radial trapping frequency ωr (since κ2 ∼ 0.53, ωz is also set by this);

(iii) evaluate U13 and U0 for the previous parameters and using the single-particle wavefunctions
φi(r);

(iv) check if U13 = U0; if not, repeat steps (ii) and (iii).

As the example that approximately reproduces the values for U and J employed in the calculations
so far, we consider a = 32.5 a0, where a0 is the Bohr’s radius (∼ 52.9 pm). Following the steps
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Figure 6.4: Complete trapping scheme. Graphic representation of the potential Vtrap(r) of Eq.
6.3.1. Panel (a) depicts the four sets of retrorreflected beams, which effectively generate two
superimposed 2D optical lattices along x-y, with wavevectors k and k/2. The λ = 1064 nm and
λ = 532 nm beams are illustrated, respectively, in orange and green. The vertical beam represents
the 1D optical lattice along z. Panel (b) shows the general potential landscape generated in a single
layer of the vertical lattice. Only one of the square plaquettes is occupied and realizes the four-well
integrable model. On panel (c), the gray ellipsoids represent |φi(r)|2 for κ2 ∼ 0.53. The atoms and
their permanent magnetic dipole are alligned towards z and are depicted, respectively, as cyan
spheres and purple arrows. The whole picture of this panel characterizes a Fock state |4,3,0,0〉, an
onsite interaction given by U0 and a nearest-neighbors D.D.I. given by U12 (which is the same for
other nearest-neighbors). To keep readability, the diagonal D.D.I. was not depicted.

previously described, one obtains U0 and U13 with respect to ωr, which is depicted on Fig. 6.5. The
point at which the two curves touch corresponds to ωr ≈ 2π × 51.11 kHz. By employing Eqs. 5.2.3,
5.2.7 and 5.2.8, the EBH parameters are evaluated to U0/h̄ = U13/h̄≈ 244.41 Hz and U12/h̄≈ 663.79
Hz, which results in U/h̄≈ 104.85 Hz. The hopping parameter J can be calculated with the expression
for Jij on Eq. 5.1.4, recognizing J = 2Jij with any i, j nearest-neighbors. This yields J/h̄≈ 71.62 Hz.

6.3.2 Breaking of integrability

As described on Sec. 5.3, the controllable breaking of integrability can be generated by introducing
an imbalance on the trapping potential at specific times. Based on the literature [75], we propose that
this can be accomplished by means of a third, (much) weaker 2D optical lattice with a wavelength of
2λ. Calling Vb the depth of the potential generated by this third lattice, we can write its expression as:

Vbreak(r) = Vb

[
sin2

(
kx
2

+ ϕ

)
+ sin2

(
ky
2
± ϕ

)]
, (6.3.2)

where the signal on the second ϕ depends on whether the imbalance is created between sites “1” and
“3” or between sites “2” and “4”. In order to conserve (on average) the potential depth, we consider
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Figure 6.5: Fulfillment of integrability condition. After setting the s-wave scattering length a = 32.5
a0, the interaction parameters U0 (orange line) and U13 (cyan line) are evaluated for different values
of the radial trapping frequency ωr. The value for ωr that guarantees the system’s integrability is
extracted from the point where U0 = U13, and is given by ωr ≈ 2π × 51.11 kHz (dotted, black line).
The Hamiltonian parameters can then be calculated from this point, resulting in U/h̄ = 104.85 Hz
and J/h̄ = 71.62 Hz. See text for more details.

that Vl is lowered to Vl −Vb when the third lattice is turned on. The introduction of this lattice then
causes an effective imbalance of ∆ between sites “1-3” or “2-4”, where ∆≡ 2Vb sin(π/(2δ))sin(2θ).
This is illustrated in Fig. 6.6 (shown just for kxx). By introducing the expression above for Vbreak(r)
with −ϕ on Eq. 5.3.3, we can explicitly calculate the terms {εi}, which read:

ε1 = ε3 = C ε2 = C +
∆
2

e−
k2
8η ε4 = C− ∆

2
e−

k2
8η , (6.3.3)

where we defined C≡Vb

[
1− e−

k2
8η cos ( π

2δ )cos(2θ)

]
. Then, the Hamiltonian implementation of these

terms will be:

Hbreak = ∑
i

εiNi

= CN +
∆
2

e−
k2
8η

︸ ︷︷ ︸
≡µ

(N2 − N4) .
(6.3.4)

The first term leads to a global phase and, therefore, can be ignored. In the second term, we identify
µ ≡ ∆ e−k2/8η/2. By considering Vb = 10−3V0 and ϕ = 15 mrad [75], the numerical evaluation of µ

leads to µ/h̄≈ 30 Hz (the exact same procedure can be employed to evaluate ν).

6.3.3 Deviations from the integrability condition

The previousy-developed breaking of integrability comes from the introduction of an imbalance
in the system’s trapping potential on a controllable manner. There is, however, the possibility of the
system having its integrability broken on an unintended manner, which can reduce its coherence time
and mitigate its ability to perform interferometry and NOON-state generation with high fidelities
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Figure 6.6: Breaking of integrability in the superlattice. Panel (a) illustrates a single vertical layer
of the trapping potential Vtrap(r) generated by the superlattice along x. The potential of the long
and short lattices are represented, respectively, in green and blue, resulting in the total potential
given by the gray line. On panel (b), the contribution of a third, weaker and misaligned lattice
(orange, dashed) is taken into account, which effectively causes an imbalance between second-
nearest-neighbors corresponding to ∆. The plot on Panel (b) is done just for clarification purposes,
and the potential generated by the misaligned lattice, corresponding to Vb = 0.3V0, is different than
the one actually employed for calculations. See text for more details.

and probabilities. Besides the symmetric structure of the model’s Hamiltonian, the general condition
for integrability, as state on Eq. 5.3.2, relies on exactly matching the onsite (contact + dipole-dipole)
interaction with the D.D.I. between diagonal sites. Supposing that this is not the case and that there’s
a small difference (called “error”) ξ between the interaction energies, the integrability condition of Eq.
5.3.2 turns into a “mismatch condition”

U0 −U13 = ξ, (6.3.5)

and the system’s Hamiltonian becomes:

H′ = H + ξ(N1N3 + N2N4). (6.3.6)

In the expression above, H is the integrable hamiltonian with parameters U′, J′, µ′ = ν′ recalcu-
lated due to the mismatch ξ. Such an error is responsible for a fidelity drop on the quantum device’s
functionalities, as shown in Fig. 6.8. Following the exact same procedure as the one done for the
integrability condition, we now calculate the set of parameters {ξ±,U′(ξ±), J′(ξ±),µ′(ξ±) = ν′(ξ±)}
for errors ξ+/h̄ = −ξ−/h̄ ranging from 0 to 4 Hz (the equivalent of ∼ 4% of U). For each value of
ξ, one has to calculate the “mismatch condition” as in Eq. 6.3.5 to obtain the corresponding radial
frequency ω′r and then evaluate the set of parameters above. The results are shown in Fig. 6.7.

Robustness against errors

Now, a quantitative estimate is presented for the robustness of the quantum devices against
undesired perturbations, which will be done in terms of calculated fidelities between analytical
quantum states (obtained from the unperturbed He f f ) and the numerical ones obtained with different
values of ξ. Let us start by defining
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Figure 6.7: Hamiltonian parameters as a function of error ξ±. The “mismatch condition” was
employed for each value of ξ, and the resulting value for ω′r(ξ) was subsequently used to calculate
the numerical values of U′(ξ), J′(ξ) and µ′(ξ) = ν′(ξ), which are plotted in this picture divided by
their integrable counterparts.

U ′(t,µ′,ν′,ξ)≡ exp
(
− it

h̄

[
H′ + µ′(ξ)(N2 − N4) + ν′(ξ)(N1 − N3) + ξ(N1N3 + N2N4)

])
,

where H′ is the integrable Hamiltonian with U′(ξ) and J′(ξ). Then, the error is taken into account in
the following way:

(i) The precision on seting the trapping frequency is such that the values ω
(−)
r and ω

(+)
r are precisely

achieved, but the intermediate value ωr = 1/2(ω
(−)
r + ω

(+)
r ) is not;

(ii) The laser intensity oscillates between the two closest values to the one that generates ωr, which
induces an oscillation between ω

(−)
r and ω

(+)
r , which is then translated into an oscillation

between the respective errors generated ξ− and ξ+;

(iii) When evaluating the fidelity for a given error value ξ, the parameter is alternated between ξ−

and ξ+ during the time-evolution, together with the corresponding Hamiltonian couplings, if t∼
seconds (e.g. during the time-evolution with µ′ = ν′ = 0). During the phase-related evolutions
(µ 6= 0 or ν 6= 0), we consider a usual time-evolution with ξ = 0 and the average of the parameters
obtained with ξ− and ξ+: {Ū′, J̄′, µ̄′ = ν̄′}.

(iv) The relevant times tm, tµ and tν are always calculated with the averaged parameters {Ū′, J̄′, µ̄′ =
ν̄′}.

For example, for a time-evolution from t = 0 to t = tm with s oscilations, with µ′ = ν′ = 0, and
following the aforementioned procedure, one should consider an operator Us given by:

Us =
s

∏
i=1
U
(

tm

2s
,0,0,ξ−

)
U
(

tm

2s
,0,0,ξ+

)
. (6.3.7)
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Figure 6.8: Robustness of the NOON state generator against errors. The initial state is given by
|Ψ0〉 = |M, P,0,0〉, with M = 4, P = 11, and we consider a phase codification of Pθ = π/2. The
relative error ξ/U is taken into account by calculating the quantum dynamics with the Hamiltonian
H′ of Eq. 6.3.6, following the assumptions that lead to the time-evolution operator Us of Eq. 6.3.7.
Panels (a.I) and (a.II) depict the fidelities of the NOON states obtained with Protocol I when
measuring r = 0 and r = M bosons at site “3”, respectively. Panel (a.III) shows the fidelities of the
NOON state obtained with Protocol II. On all three panels, the solid line demarcates the regions
where the fidelity is higher than 0.9. The two lower panels illustrate the fidelities for both protocols
with respect to ξ/U, for s = 30 [(b.I)] and s = 120 [(b.II)].

On Fig. 6.8, the fidelities related to the NOON state generator device are plotted with respect to
the number of oscillations s and the relative error ξ/U. We notice that the solid line (corresponding to
fidelities higher than 0.9) separates the figure on two regions, characterizing the system as “robust”
(“not robust”) in the region of “high” (“low”) fidelities.
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Chapter 7

Digital Micromirror Device

The ability to manipulate and tailor laser light with control and precision is of great importance,
with applications that range from biomedical imaging [92] to probing the roton mode and supersolid
excitation spectrum on dipolar gases [93, 94]. In the reffered literature, the main component for light
tailoring is an instrument called Digital Micromirror Device (DMD).

In this Chapter, we discuss the working principles of a DMD, along with a possible application to
the theoretical proposals presented in previous chapters. The results presented here were obtained
during the time I was working as a visiting Master’s student in the Erbium Group of Prof. Francesca
Ferlaino, in the University of Innsbruck, and are part of the output of my fellowship (which resulted
in the Python package “pythonDMDapp”1).

7.1 WORKING PRINCIPLES

As the name suggests, the Digital Micromirror Device (DMD) is an equipment composed of an
arrange of small mirrors. For example, the model V9501 from Vialux 2 is composed of 1920× 1080
mirrors, each one of them being square and with an area of 10.8× 10.8 (µm)2 (Panel (b) of Fig. 7.1
illustrates the device and the mirror area). Since this is the model I worked with, I will assume these
physical characteristics henceforward.

The key aspect of the DMD is that each mirror can be individually controlled in two positions
(“on” and “off”), which enables the loading of an incredible variety of patterns into the DMD’s RAM
memory, allowing for their subsequent use. By inputting a partern into it, the DMD reflects the
incoming beam shaped by the on/off mirrors (which effectively “cut” the beam in the desired shape).
This is illustrated in Panel (a) of Fig. 7.1. However, due to aberrations on the reflection area (mainly
due to the DMD construction), such a beam is reflected with phase aberrations. For applications where
the reflected beam is employed after being focused down by a lens (such as the Faraday measurement
described in Chapter 6), such phase aberrations cause deformations on the beam when it arrives at
the lens’ focus [95]. In order to be able to correct these deformations (and, as will be shown later, to
effectively displace the beam’s position at focus), it is convenient to work with the so-called “Lee

1https://github.com/danielsgrun/pythonDMDapp
2https://vialux.de/en/superspeed-specification.html
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Figure 7.1: Working principles of the DMD. On panel (a), the incoming beam is reflected by the
DMD, “cut” by the pattern g{ f (x,y)}. Then, it is focused down by the first lens L, and the 1st-order
of diffraction is chosen on the focal point of L through an iris, and the resulting beam is collimated
back to its previous radius by the second lens L. Afterwards, the beam can be resized to an
“arbitrary” radius before being finally focused down by the final lens L f onto the atomic ensamble.
Panel (b) shows an illustration of the DMD. On a very simplified view, it is composed by an
electronic circuit (green) and a mirror region (gray). There is also the “motherboard”, that provides
energy and receives the array-inputs from the computer, which is not depicted here. Panel (c)
depicts a zoom into the mirror region, showing the individual mirrors on “on” (white) and “off”
(gray) states, following a simple “Lee hologram” as presented in Eq. 7.1.1, with σ(x,y) = 0.
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Holograms” [96]. This consists in considering an amplitude pattern f (x,y) across the mirror region,
given by:

f (x,y) =
1
2
[1 + cos(k(x− y)− σ(x,y))] , (7.1.1)

where k can be arbitrarily chosen and σ(x,y) is related to the local phase at each mirror on the DMD.
Since the state of each mirror is either “on” (255) or “off” (0), it is necessary to perform a binarization g
on the pattern f (x,y), which becomes g{ f (x,y)}, defined as:

g{ f (x,y)}= 255, if f (x,y)>1/2
0, otherwise

. (7.1.2)

The desired pattern should then be generated within the background of the grating structure of
previous equation. Panel (c) of Fig. 7.1 depicts an example of g{ f (x,y)} on the mirror region of the
DMD.

7.2 ZERNIKE POLYNOMIALS

Phase correction

As mentioned before, an incident beam at the DMD will be reflected with phase aberrations caused
by a range of factors (such as the own process of producing the instrument). In this case, the phase
correction of a DMD consists in using a phase-map σ(x,y) such that the beam shape at the final-lens’
focus is correct. Such a phase map can be extracted by different means. One of them consists on
varying mirror patches along the DMD mirror area, calculating the phase-difference between each
patch and a previously-chosen central patch (more details on this method can be found in [95]). The
other method - which I decided to work with - consists on generating a circular phase mask from
Zernike Polynomials Zj(ρ,φ) 1 [97] and optimizing the signal on the CCD by varying the phase mask
on a loop. The idea is as follows:

(i) a circular phase mask σ(x,y) is generated as σ(x,y) = ∑j cjZj(ρ,φ);

(ii) the full pattern g{ f (x,y)} is uploaded into the DMD, and a CCD captures the light in spot P (as
shown in Panel (a) of Fig. 7.1);

(iii) an algorithm looks for the brighest pixel count in the previously-captured image, and stores its
value;

(iv) for a fixed j 2, cj is varied until the brighest pixel is generated, and the whole process is repeated
for a different j 2.

Panel (a) of Fig. 7.2 shows a real example of the pattern g{ f (x,y)} corrected by the phase-map
σ(x,y) obtained from the phase correction procedure. There, the whole (elliptical) beam is within a
circular region of r = 400 px (mirrors) taken into account for the phase-correction. One may notice that
the phase-map σ(x,y) also acts on regions where no beam reaches - which therefore are not trustful for

1The single index “j” refers to the OSA/ANSI convention.
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Figure 7.2: Phase-correction. Panel (a): DMD hologram with the obtained σ(x,y) for phase
correction. The green slits represent the “on” mirrors on a binarized amplitude function g{ f (x,y)},
while the pattern in the middle represents the beam position on the DMD, called “intensity map”.
This map can be obtaining by considering different patches of 20× 20 mirrors and putting them
in the “on” position on an alternating manner, measuring the pixel counts at the CCD on each
step. The amplitude function g{ f (x,y)} is shown with the phase correction σ(x,y), which causes a
distortion in it that becomes more visible further from the beam, which implies a higher phase
deformation on the edges of the DMD (since the beam is somewhat centralized). Panel (b) shows
the beam detected by the CCD at the focus of a f = 75 mm lens, before (top) and after (bottom) the
phase correction of Panel (a).

further applications where such regions are used (and a new phase-map should be extracted taking
them into account). Panel (b) of Fig. 7.2 shows the obtained pixel counts for the beam by the CCD, at
the focus of a f = 75 mm lens, before and after the phase-correction shown in Panel (a).

Beam displacement

As commented on Chapter 6, the Faraday Imaging may be employed for single site measurement
with the use of a DMD, allowing for a controllable displacement and allignment of the focalized beam.
This can be done by constructing a phase map with the 1st- and 2nd-order Zernike polynomials and
using them in the amplitude function g{ f (x,y)}.

The first polynomial is given by Z0(ρ,φ) = 1 and, therefore, corresponds to a constant phase,
whereas Z1(ρ,φ) and Z2(ρ,φ), expressed as

Z1(ρ,φ) = 2ρ sinφ Z2(ρ,φ) = 2ρ cosφ, (7.2.1)

are related to linear phase-gradients on two perpendicular directions. It is precisely these phase-
gradients that cause the beam to suffer a displacement on the lens’ focus. Since the coefficients {cj}
may take any real value, such displacement can be performed in an almost continuous way. Therefore,
combined with an off-resonant beam for Faraday imaging, this may also constitute a useful method
for the technique. Fig. 7.3 shows the x-y displacement (at focus) of the beam reflected by the DMD
with a circular pattern with r = 1.62 mm.
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Figure 7.3: Beam displacement with Zernike Polynomials. The beam comes out of the DMD
in a circular shape with r = 1.62 mm. The constants cj refer to the coefficients of the respective
Zernike Polynomial Zj, which are employed as a circular phase-mask at the DMD, with r = 1.62
mm. The axes are in units of “pixel” (each pixel = 5.3 µm). The contributions of Z1 and Z2 can be
independently varied, and the beam’s displacement at focus can be arbitrarily chosen.
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Conclusion

In this work we have investigated the properties and possible applications of the four-well in-
tegrable model, which describes the quantum tunneling and the interaction of bosons in a square
plaquette. More specifically, on Chapter 2 we have studied its integrability, which means that if the
model is integrable, it possesses four conserved quantities - the total number of atoms N, the Hamilto-
nian H and the two “conserved charges” Q1 and Q2. In the so-called “resonant regime” - achieved
with a special choice for the Hamiltonian’s couplings and the initial state -, it is possible to employ the
conserved charges as an effective hamiltonian, enabling the development of analytical formulae for
the system’s quantum dynamics. These expressions proved to be helpful on the characterization of
possible applications of the system as a quantum device.

When a NOON state is employed as the initial state, we demonstrated that the system operates
interferometric activity with a sensitivity given by the Heisenberg uncertainty principle. Then, on
Chapter 3 we showed that, for an initial Fock state, the system generates a NOON state by itself
after a time-evolution depending on the Hamiltonian’s interaction and tunneling parameters. For the
specific Hamiltonian parameters employed, the characteristic time-scales are typically a few seconds.
When comparing the results from the effective and physical Hamiltonians, these device applications
demonstrated to have high values of fidelities and probabilities that are similar to the ones predicted.

On Chapter 4, the Von-Neumann entanglement entropy is evaluated for the proposed quantum
devices. There, a counter-intuitive result is shown: even though the devices only work for a total
number of particles N odd, the entanglement entropy between sites “1,3” and “2,4”, after the char-
acteristic time-evolution, is expected to reach the same numerical value regardless the parity of N.
Such a result is really impressive, as it demonstrates that, for a given reduction of the density operator,
two quantum states that are completely different may be related to the same Von-Neumann entropy,
which exemplifies that not all entangled states are useful for the same purposes.

The equivalence between the theoretical Hamiltonian parameters and a possible experimental
realization was estabilished through the extended Bose-Hubbard model. As shown in Chapter 5, for a
trapping scheme that realizes atoms with alligned dipoles on a square plaquette, the condition for
integrability comes from matching the eBH and the integrable Hamiltonians, which is accomplished
by making the onsite and diagonal interactions the same. A possible realization in terms of opti-
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cal superlattices is provided in Chapter 6, and the respective expression for the trapping potential
is employed in order to numerically-evaluate the Hamiltonian parameters. In order to probe the
system’s robustness against imperfections on the integrable coupling, we also undertake numerical
analysis by taking into account an error parameter. Supposing that it encompasses the instabilities
in the laser beam’s intensities, we consider that this parameter oscillates around zero. On this ap-
proach, the system demonstrates to be highly robust for errors up to a few percent of the interaction
parameter if the error oscillates at least around 150 times during the characteristic time-scales involved.

Therefore, we expect that the results demonstrated in this Dissertation help to boost advances
on the field of atomtronics. By stablishing a link between integrability and neutral-atom quantum
information processing, the output presented here increases the prospects of building quantum
machines with scalable and controllable characteristics enabled by property of integrability.
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Appendix A

Analytical calculations

In this Appendix, we demonstrate the main anlytical formulae used in the text. The material
presented here was based on private notes from Prof. Jon Links.

A.1 IMBALANCE QUANTUM DYNAMICS

A.1.1 Conserved charges and effective hamiltonian

The conserved charges of the Four-well Model, Q1 and Q2, are given by:

Q1 =
1
2
(N1 + N3)−

1
2
(a†

1a3 + a1a†
3)

Q1 =
1
2
(N2 + N4)−

1
2
(a†

2a4 + a2a†
4)

(A.1.1)

It has been shown that, if the system is in the resonant regime (i.e. with a choice of parameters
such that each different initial state corresponds to a different energy band), it’s quantum dynamics
may be completely described with an effective hamiltonian, He f f . Considering an initial condition of
the kind |M, P,0,0〉, with M≡ N − P, the effective hamiltonian takes the form:

He f f =
J2

16U

(
P

M− P + 1
− P + 2

M− P− 1

)
(M− 2Q1)

+
J2

16U

(
M + 2

M− P + 1
− M

M− P− 1

)
(M− 2Q2)

+
J2

16U

(
M + 2

M− P + 1
− M

M− P− 1

)
[MP + 4Q1Q2 − 2PQ1 − 2MQ2]

(A.1.2)

where U and J are, respectively, the interaction and hopping constants. The energy eigenvalues
associated with (A.1.2), eq1,q2 , are given by:

eq1,q2 =
J2

4U[(M− P)2 − 1]
[(N + 1)(q1 + q2)− 2q1q2] (A.1.3)
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A.1.2 Autobasis construction

To make the calculations easier, we shall construct an eigenbasis of {Q1, Q2}, which we will denote
as {|M, P,q1,q2}}, defined as:

|M, P,q1,q2}=
C√
2N

(a†
1 + a†

3)
M−q1(a†

1 − a†
3)

q1(a†
2 + a†

4)
P−q2(a†

2 − a4)
q2 |0〉 , (A.1.4)

such that He f f |M, P,q1,q2}= eq1,q2 |M, P,q1,q2}, and C = 1√
q1!(M−q1)!q2!(P−q2)!

. Since we intend to calcu-

late the time evolution of the imbalance between wells 1-3 and 2-4, we ought to look at how the states
defined in (A.1.4) transform under the operations of N1 − N3 and N2 − N4. First, we define:

b1 =
1√
2
(a1 + a3); b2 =

1√
2
(a1 − a3);

b3 =
1√
2
(a2 + a4); b4 =

1√
2
(a2 − a4),

(A.1.5)

such that (A.1.4) may be rewritten as:

|M, P,q1,q2}= C(b†
1)

M−q1(b†
2)

q1(b†
3)

P−q2(b†
4)

q2 |0〉 . (A.1.6)

The expressions of N1 − N3 and N2 − N4 in terms of bi, b†
i become:

N1 − N3 = b†
1b2 + b1b†

2 ;

N2 − N4 = b†
3b4 + b3b†

4 .
(A.1.7)

Then, defining M≡ N − P, the application of N1 − N3 on the state described by (A.1.6) will be:

(N1 − N3)|M, P,q1,q2}
= C

[
(b†

1)
M−q1+1b2(b†

2)
q1 + b1(b†

1)
M−q1(b†

2)
q1+1] (b†

3)
P−q2(b†

4)
q2 |0〉

= C
[
(b†

1)
M−(q1−1)q1(b†

2)
q1−1 + (N − P− q1)(b†

1)
M−(q1+1)(b†

2)
q1+1

]
(b†

3)
P−q2(b†

4)
q2 |0〉

=
√

q1(M− q1 + 1)|N, P,q1 − 1,q2}+
√
(M− q1)(q1 + 1)|N, P,q1 + 1,q2},

(A.1.8)

where we used the following properties: [bi, (b†
i )

j] = j(b†
i )

j−1, and bi |0〉 = 0. Similarly, by applying
(N2 − N4) into |M, P,q1,q2}, we have:

(N2 − N4)|M, P,q1,q2}=
√

q2(P− q2 + 1)|M, P,q1,q2 − 1}+
√
(P− q2)(q2 + 1)|M, P,q1,q2 + 1},

(A.1.9)
which is a property we will use later. It is possible to rewrite the state of (A.1.4) as:
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|M, P,q1,q2}=
C(−1)q1+q2

√
2N

M−q1

∑
i=0

q1

∑
j=0

(
M− q1

i

)(
q1

j

)
(−1)j(a†

1)
i(a†

3)
M−q1−i(a†

1)
j(a†

3)
q1−j

P−q2

∑
k=0

q2

∑
l=0

(
P− q2

k

)(
q2

l

)
(−1)l(a†

2)
k(a†

4)
P−q2−k(a†

2)
l(a†

4)
q2−l |0〉

=
C(−1)q1+q2

√
2N

M−q1

∑
i=0

q1

∑
j=0

(
M− q1

i

)(
q1

j

)
(−1)j+l(a†

1)
i+j(a†

3)
M−i−j

P−q2

∑
k=0

q2

∑
l=0

(
P− q2

k

)(
q2

l

)
(a†

2)
k+l(a†

4)
P−k−l |0〉

(A.1.10)

where we considered Newton’s Binomial expansion: (x + y)n = ∑n
i=0

(
n
i

)
xn−iyi. Therefore, using

(a†)r |0〉=
√

r! |r〉, we can calculate the useful relations:

〈M, P,0,0|M, P,q1,q2}=
C(−1)q1+q2

√
2N

M−q1

∑
i=0

q1

∑
j=0

(−1)j

(
M− q1

i

)(
q1

j

)√
(M− i− j)!(i + j)!δi+j,M

P−q2

∑
k=0

q2

∑
l=0

(−1)l

(
P− q2

k

)(
q2

l

)√
(P− k− l)!(k + l)!δk+l,P

Now we replace C by its expression and simplify the summations with the Kronecker delta,
obtaining:

〈M, P,0,0|M, P,q1,q2}=
√

M!P!
2Nq1!(M− q1)!q2!(P− q2)!

q1

∑
j=0

(−1)j

(
M− q1

M− j

)(
q1

j

)
q2

∑
l=0

(−1)l

(
P− q2

P− l

)(
q2

l

)

=

√
M!P!

2Nq1!(M− q1)!q2!(P− q2)!
,

(A.1.11)

where we used the Vandermonde Convolution: ∑n
j=0

(
n
j

)(
m

k− j

)
=

(
n + m

k

)
.

By considering a similar procedure, we can calculate 〈M, 0,0, P|N, P,q1,q2}; using the results from
(A.1.10), we get:

〈M,0,0, P|N, P,q1,q2}=
C(−1)q1+q2

√
2N

M−q1

∑
i=0

q1

∑
j=0

(−1)j+l

(
M− q1

i

)(
q1

j

)√
(M− i− j)!(i + j)!δi+j,0

P−q2

∑
k=0

q2

∑
l=0

(
P− q2

k

)(
q2

l

)√
(P− k− l)!(k + l)!δk+l,P.
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Using the definition of C and simplifying the summations with the Kroenecker Deltas, we obtain
the same result as (A.1.11), but with an extra (−1)q2 factor. Therefore:

〈M,0,0, P|N, P,q1,q2}= (−1)q2

√
M!P!

2Nq1!(M− q1)!q2!(P− q2)!
. (A.1.12)

69



Appendix A. Analytical calculations

A.1.3 Imbalance quantum dynamics

Using the effective hamiltonian He f f described in (A.1.2), we calculate the time evolution of the
operator (N1 − N3) as:

(N1 − N3)(t) = eiHe f f t(N1 − N3)e−iHe f f t

=
M

∑
p1=0

P

∑
p2=0

M

∑
q1=0

P

∑
q2=0

ei(ep1,p2−eq1,q2 )t

|N, P, p1, p2}{N, P, p1, p2|(N1 − N3)|M, P,q1,q2}{N, P,q1,q2|

=
M

∑
p1=0

P

∑
p2=0

M

∑
q1=0

P

∑
q2=0

ei(ep1,p2−eq1,q2 )t|N, P, p1, p2}{N, P, p1, p2|

(
√

q1(M− q1 + 1)|N, P,q1 − 1,q2}+
√
(M− q1)(q1 + 1)|N, P,q1 + 1,q2}){N, P,q1,q2|

=
M

∑
q1=0

P

∑
q2=0

(
e−i(eq1,q2−eq1−1,q2 )t

√
q1(M− q1 + 1)|N, P,q1 − 1,q2}

+ e−i(eq1,q2−eq1+1,q2 )t
√
(M− q1)(q1 + 1)|N, p,q1 + 1,q2}

)
{N, P,q1,q2|.

(A.1.13)

A.1.3.1 Simple initial state

The imbalance dynamics can be obtained by choosing an initial state |Ψ0〉, such that 〈N1 − N3〉 (t) =
〈Ψ0|(N1 − N3)(t)|Ψ0〉. Here, we consider |Ψ0〉 = |M, P,0,0〉. Defining ∆e+1 ≡ eq1,q2 − eq1+1,q2 and
∆e−1 ≡ eq1,q2 − eq1−1,q2 , we obtain:
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〈N1 − N3〉(t) =
P

∑
q2=0

(
M

∑
q1=1

e−i∆e−1 t
√

q1(M− q1 + 1)〈M, P,0,0|N, P,q1 − 1,q2}

+
M−1

∑
q1=0

e−i∆e+1 t
√
(M− q1)(q1 + 1)〈M, P,0,0|N, P,q1 + 1,q2}

)
{N, P,q1,q2|M, P,0,0〉.

=
M!P!
2N

P

∑
q2=0

1
q2!(P− q2)!

√
q1!(M− q1)!

(
M

∑
q1=1

e−i∆e−1 t

√
q1(M− q1 + 1)

(q1 − 1)!(M− q1 + 1)!

+
M−1

∑
q1=0

e−i∆e+1 t

√
(M− q1)(q1 + 1)

(q1 + 1)!(M− q1 − 1)!

)

=
M!P!
2N

P

∑
q2=0

1
q2!(P− q2)!

√
q1!(M− q1)!

(
M

∑
q1=1

e−i∆e−1 t
√

q1

(q1 − 1)!(M− q1)!

+
M−1

∑
q1=0

e−i∆e+1 t

√
M− q1

q1!(M− q1 − 1)!

)

=
M!P!
2N

P

∑
q2=0

1
q2!(P− q2)!

(
M

∑
q1=1

e−i∆e−1 t

(q− 1)!(M− q1)!
+

M−1

∑
q1=0

e−i∆e+1 t

q1!(M− q1 − 1)!

)

=
M!P!
2N

P

∑
q2=0

1
q2!(P− q2)!

M

∑
q1=1

1
(q1 − 1)!(M− q1)!

(
e−i∆e−1 t + ei∆e−1 t

)

=
M!P!
2N−1

P

∑
q2=0

1
q2!(P− q2)!

M

∑
q1=1

1
(q1 − 1)!(M− q1)!

cos (∆e−1 t)

(A.1.14)

To continue the calculation, we must explicitly calculate ∆e−1 . By using the expression derived in
(A.1.3), we get:

∆e−1 = eq1,q2 − eq1−1,q2

=
J2

4U[(M− P)2 − 1]
[(N + 1)(q1 + q2)− 2q1q2 − (N + 1)(q1 + q2 − 1) + 2(q1 − 1)q2]

=
J2

4U[(M− P)2 − 1]
[(N + 1)− 2q2] = Ω [(N + 1)− 2q2] ,

(A.1.15)

where we defined Ω≡ J2/[4U(M− P)2 − 1]. Now, using it in (A.1.14), we arrive with:
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〈N1 − N3〉 (t) =
M!P!
2N−1

P

∑
q2=0

cos ([N + 1− 2q2]Ωt)
q2!(P− q2)!

M

∑
q1=1

1
(q1 − 1)!(M− q1)!

=
P!

2N−1

P

∑
q2=0

cos ([N + 1− 2q2]Ωt)
q2!(P− q2)!

M−1

∑
q1=0

M(M− 1)!
q1![(M− 1)− q1]!

= M
P!
2P

P

∑
q2=0

cos ([N + 1− 2q2]Ωt)
q2!(P− q2)!

= M
P!

2P+1

P

∑
q2=0

ei(N+1−2q2)Ωt + e−i(N+1−2q2)Ωt

q2!(P− q2)!

= M
1

2P+1

(
ei(N+1)Ωt

P

∑
q2=0

P!
q2!(P− q2)!

e−2iΩtq2 + e−i(N+1)Ωt
P

∑
q2=0

P!
q2!(P− q2)!

e2iΩtq2

)

= M
1

2P+1

(
ei(N+1)Ωt [1 + e−2iΩt]P

+ e−i(N+1)Ωt [1 + e2iΩt]P
)

= M
1

2P+1

(
ei(N+1)Ωte−iPΩt + e−i(N+1)ΩteiPΩt

)
2P(cosΩt)P

=
M
2
(cosΩt)P

(
ei(M+1)Ωt + e−i(M+1)Ωt

)
.

Above, we used the relation ∑m
j=0

m!
j!(m−j)! x

j = (1 + x)m. Finally, by simplifying the last expression:

〈N1 − N3〉 (t) = M cos[(M + 1)Ωt][cos(Ωt)]P. (A.1.16)

Now, we can use the symmetry between M↔ P to find the analytical expressions of the quantum
dynamics for the imbalance between 2-4, such that:

〈N2 − N4〉 (t) = Pcos[(P + 1)Ωt][cos(Ωt)]M. (A.1.17)

It is possible to show that the same result is obtained if an initial state |Ψ0〉= |M,0,0, P〉 is consid-
ered.

A.1.3.2 Initial NOON state

Now, let us suppose an initial NOON state |Ψ0〉 =

|A〉︷ ︸︸ ︷
1√
2
|M, P,0,0〉+

|B〉︷ ︸︸ ︷
eiφ
√

2
|M,0,0, P〉. Defining

Nij(t)≡ (Ni − Nj)(t), we calculate 〈N1 − N3〉 (t) as:

〈N1 − N3〉 (t) = (〈A|+ 〈B|)N13(t)(|A〉+ |B〉)
= 〈A|N13(t)|A〉+ 〈A|N13(t)|B〉+ 〈B|N13(t)|A〉+ 〈B|N13(t)|B〉 ,

where we recognize
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〈A|N13(t)|A〉+ 〈B|N13(t)|B〉= M cos[(M + 1)Ωt][cos(Ωt)]P.

Hence, we must calculate 〈A|N13(t)|B〉 as follows:

〈A|N13(t)|B〉=
eiφ

2

P

∑
q2=0

(−1)q2

(
M

∑
q1=1

e−i∆e−1 t
√

q1(M− q1 + 1)〈M, P,0,0|N, P,q1 − 1,q2}

+
M−1

∑
q1=0

e−i∆e+1 t
√
(M− q1)(q1 + 1)〈M, P,0,0|N, P,q1 + 1,q2}

)
{N, P,q1,q2|M,0,0, P〉.

Considering the relation {N, P,q1,q2|M,0,0, P〉 = (−1)q2{N, P,q1,q2|M, P,0,0〉 and using some
previous results, we can rewrite last expression as:

〈A|N13(t)|B〉=
M

2P+1
eiφ

2

(
ei(N+1)Ωt

P

∑
q2=0

(−1)q2 P!
q2!(P− q2)!

e−2iΩtq2 + e−i(N+1)Ωt
P

∑
q2=0

(−1)q2 P!
q2!(P− q2)!

e2iΩtq2

)

=
M

2P+1
eiφ

2

(
ei(N+1)Ωt [1− e−2iΩt]P

+ e−i(N+1)Ωt [1− e2iΩt]P
)

=
M

2P+1
eiφ

2

(
ei(N+1)Ωte−iPΩt [iP]+ e−i(N+1)ΩteiPΩt [i−P])2P(sinΩt)P

=
M
2

eiφ

2
[sin(Ωt)]P

(
ei[(M+1)Ωt+Pπ/2] + e−i[(M+1)Ωt+Pπ/2]

)
.

= M
eiφ

2
[sin(Ωt)]P cos

[
(M + 1)Ωt +

Pπ

2

]
,

where we used the property: ix = eiπx/2. Now, since 〈B|N13(t)|A〉= 〈A|N13(t)|B〉∗, we obtain:

〈A|N13(t)|B〉+ 〈B|N13(t)|A〉= M cos(φ)[sin(Ωt)]P cos
[
(M + 1)Ωt +

Pπ

2

]
.

Therefore, the expression for 〈N1 − N3〉 (t) becomes:

〈N1 − N3〉 (t) = M cos[(M + 1)Ωt][cos(Ωt)]P

+ M cos(φ)[sin(Ωt)]P cos
[
(M + 1)Ωt +

Pπ

2

]
.

(A.1.18)

A similar development done for sites “2-4” results in 〈N2 − N4〉 (t) = 0.
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A.1.4 Variance

In order to calculate dynamical fluctuations, it is necessary to first evaluate (N1 − N3)2(t). Starting
with the expression on (A.1.7) and expanding it:

(N1 − N3)
2 = Nb1 + Nb2 + 2Nb1 Nb2 + (b†

1)
2(b2)

2 + (b1)
2(b†

2)
2 ≡ N2

13. (A.1.19)

By acting this operator into |M, P,q1,q2}, we obtain:

N2
13|M, P,q1,q2}= [M + 2q1(M− q1)]|M, P,q1,q2}

+
√
(q1 + 1)(q1 + 2)(M− q1)(M− q1 − 1)|N, P,q1 + 2,q2}

+
√

q1(q1 − 1)(M− q1 + 1)(M− q1 + 2)|N, P,q1 − 2,q2}.

Therefore, we may evaluate N2
13(t) as:

N2
13(t) =

M

∑
q1=0

P

∑
q2=0

(
e−i(eq1,q2−eq1−2,q2 )t

√
q1(q1 − 1)(M− q1 + 1)(M− q1 + 2)|N, P,q1 − 2,q2}

+ e−i(eq1,q2−eq1+2,q2 )t
√
(q1 + 1)(q1 + 2)(M− q1)(M− q1 − 1)|N, P,q1 + 2,q2}

+ [M + 2q1(M− q1)]|M, P,q1,q2}
)
{N, P,q1,q2|.

(A.1.20)

Considering an initial NOON state: |Ψ0〉 =

|A〉︷ ︸︸ ︷
1√
2
|M, P,0,0〉+

|B〉︷ ︸︸ ︷
eiφ
√

2
|M,0,0, P〉, we can calculate

〈(N1 − N3)2(t)〉, where:

〈N2
13(t)〉= 〈A|N2

13(t)|A〉+ 〈B|N2
13(t)|B〉+ 2 Re

(
〈A|N2

13(t)|B〉
)

.

It is enough to calculate 〈A|N2
13(t)|A〉 and 〈A|N2

13(t)|B〉, since 〈A|N2
13(t)|A〉= 〈B|N2

13(t)|B〉. Ex-
plicitly, we get:

2 〈A|N2
13(t)|A〉=

P

∑
q2=0

M!P!
2Nq2!(P− q2)!

(
M

∑
q1=2

e−i∆e−2 t 1
(q1 − 2)!(M− q1)!

+
M−2

∑
q1=0

e−i∆e+2 t 1
q1!(M− q1 − 2)!

+
M

∑
q1=0

M
q1!(M− q1)!

+ 2
M

∑
q1=0

1
(q1 − 1)!(M− q1 − 1)!

)
.

(A.1.21)

Expanding ∆e−2 = 2Ω[(N + 1)− 2q2] =−∆e+2 , substituting into equation (A.1.21) and simplifying
it, we arrive with:
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2 〈A|N2
13(t)|A〉=

M(M + 1)
2

+
M(M− 1)

2
[cos(2Ωt)]P cos [2Ω(M + 1)t] . (A.1.22)

The evaluation of 〈A|N2
13(t)|B〉 yields the same expression as Eq. A.1.21, with the correction

eiφ(−1)q2 . Explicitely:

2 〈A|N2
13(t)|B〉=

P

∑
q2=0

M!P!(−1)q2 eiφ

2Nq2!(P− q2)!

(
M

∑
q1=2

e−i∆e−2 t 1
(q1 − 2)!(M− q1)!

+
M−2

∑
q1=0

e−i∆e+2 t 1
q1!(M− q1 − 2)!

+
M

∑
q1=0

M
q1!(M− q1)!

+ 2
M

∑
q1=0

1
(q1 − 1)!(M− q1 − 1)!

)
.

=
M(M− 1)

2
eiφ cos

[
2Ω(M + 1)t +

Pπ

2

]
[sin(2Ωt)]P .

(A.1.23)

Therefore, the quadratic-imbalance quantum dynamics will be given by:

〈N2
13(t)〉=

M(M + 1)
2

+
M(M− 1)

2
[cos(2Ωt)]P cos [2Ω(M + 1)t]

+
M(M− 1)

2
cos
[

2Ω(M + 1)t +
Pπ

2

]
[sin(2Ωt)]P cosφ. (A.1.24)
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A.2 INTERFEROMETRIC STATES

Here, the generation of interferometric states by the model - at the resonant regime, with N odd -
will be analytically demonstrated.

A.2.1 Pure initial state

Considering |Ψ0〉= |M, P,0,0〉, M+ P = N odd, we calculate the projection of |Ψ(t)〉= e−iHe f f t |Ψ0〉
on the four simplest states that satisfy the resonant tunneling regime: |Ψa〉 ≡ |M, P,0,0〉 (= |Ψ0〉),
|Ψb〉 ≡ |M,0,0, P〉, |Ψc〉 ≡ |0, P, M,0〉 and |Ψd〉 ≡ |0,0, M, P〉. The full evaluation will be shown for
〈Ψb|Ψ(t)〉 as follows.

〈Ψb|Ψ(t)〉=
M

∑
q1,p1=0

P

∑
q2,p2=0

〈M,0,0, P|M, P,q1,q2}{M, P,q1,q2|e−iHe f f t|M, P, p1, p2},

× {M, P, p1, p2|M, P,0,0〉.

=
1

2N

M

∑
q1=0

P

∑
q2=0

(−1)q2 e−ieq1,q2 t M!P!
q1!(M− q1)!q2!(P− q2)!

=
1

2N

M

∑
q1=0

M!
q1!(M− q1)!

e−iΩ(N+1)q1t
P

∑
q2=0

P!
q2!(P− q2)!

[
e−it[Ω(N+1)−2Ωq1]

]q2
(−1)q2

=
1

2M e−i P
2 [Ω(N+1)t+π]

M

∑
q1=0

M!
q1!(M− q1)!

{e−iΩ(M+1)t}
q1

[
sin
[

Ωt
2
(2q1 − N − 1)

]]P

.

(A.2.1)

where the closure condition 1 = ∑M
q1=0 ∑P

q2=0 |M, P,q1,q2}{M, P,q1,q2| was employed. At time t = tm =

π/(2Ω), the projection becomes:

〈Ψb|Ψ(tm)〉=
1

2M e−i Pπ
2 [

N+1
2 +1]

M

∑
q1=0

M!
q1!(M− q1)!

{e−i(M+1)π/2}q1

[
sin
(

π

2

(
q1 −

N + 1
2

))]P

(A.2.2)

Remarkably, it is possible to demonstrate that the expression above does not depend on M, P or
N (although it must be odd). Rather, by considering different values for M and N and numerically
evaluating it, one arrives always at:

〈Ψb|Ψ(tm)〉=
1
2

. (A.2.3)

Following a similar procedure for the other three projections, it is possible to show that:

〈Ψa|Ψ(tm)〉=
β

2
〈Ψc|Ψ(tm)〉=

1
2

〈Ψd|Ψ(tm)〉=−
β

2
. (A.2.4)

From Eqs. A.2.3 and A.2.4, one infers that the state at t = tm, for |Ψ0〉= |M, P,0,0〉 and N = M + P
odd, is given by:

|Ψ(tm)〉=
1
2
[β |M, P,0,0〉+ |M,0,0, P〉+ |0, P, M,0〉 − β |0,0, M, P〉] . (A.2.5)
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A.2.2 Initial NOON state

We now repeat the same analysis as before, but with an initial state |Ψ0〉 = 1√
2
|M, P,0,0〉 +

eiφ√
2
|M,0,0, P〉. A simplification can be made by recognizing that

|Ψ(t)〉= e−iHe f f t |Ψ0〉=
1√
2

e−iHe f f t |M, P,0,0〉︸ ︷︷ ︸
|A(t)〉

+
eiφ
√

2
e−iHe f f t |M,0,0, P〉︸ ︷︷ ︸

|B〉(t)

,

where |A(tm)〉 is the same state of Eq. A.2.5. Now, the idea is to do the equivalent of what was done
to calculate |A〉. Explicitly expanding 〈Ψb|B(t)〉 in terms of the eigenbasis of He f f :

〈Ψb|B(t)〉=
1√
2

M

∑
q1,p1=0

P

∑
q2,p2=0

〈M, P,0,0|M, P,q1,q2}{M, P,q1,q2|e−iHe f f t|M, P, p1, p2}

× {M, P, p1, p2|M,0,0, P〉.

=
1

2N
√

2

M

∑
q1=0

P

∑
q2=0

e−eq1,q2 t M!P!
q1!(M− q1)!q2!(P− q2)!

=
1

2N
√

2

M

∑
q1=0

M!
q1!(M− q1)!

e−Ω(N+1)q1t
P

∑
q2=0

P!
q2!(P− q2)!

[
e−it[Ω(N+1)−2Ωq1]

]q2

=
1

2M
√

2
e−iΩ( N+1

2 )Pt
M

∑
q1=0

M!
q1!(M− q1)!

[
e−iΩ(M+1)t

]q1
[

cos
[

Ω
(

q1 −
N + 1

2

)
t
]]P

.

(A.2.6)

Once again, we are interested in the expression above for t = tm, which results in:

〈Ψb|B(tm)〉=
1

2M
√

2
e−i( N+1

4 )Pπ
M

∑
q1=0

M!
q1!(M− q1)!

[
e−i(M+1

2 )π
]q1
[

cos
(

π

2

(
q1 −

N + 1
2

))]P

. (A.2.7)

By considering different values for M and N and evaluating it, one obtains:

〈Ψb|B(tm)〉=
βeiφ

2
.

Repeating the procedure for the other projections, we get:

〈Ψa|B(tm)〉=
eiφ

2
〈Ψc|B(tm)〉=−

βeiφ

2
〈Ψd|B(tm)〉=

eiφ

2
,

which yields

|Ψ(tm)〉=
1 + βeiφ

2
√

2
[β |M, P,0,0〉+ |M,0,0, P〉] + 1− βeiφ

2
√

2
[|0, P, M,0〉 − β |0,0, M, P〉] . (A.2.8)

A.2.3 Phase-encoding

Here, a very simple proof of the phase-encoding operator e−iµ(N2−N4)tµ introduced in the main text
is presented. Considering the action of the above operator on the u-NOON state:
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e−iµ(N2−N4)tµ
1
2
[β |M, P,0,0〉+ |M,0,0, P〉+ |0, P, M,0〉 − β |0,0, M, P〉]

=
1
2
[
βe−iPµtµ |M, P,0,0〉+ eiPµtµ |M,0,0, P〉+ e−iPµtµ |0, P, M,0〉 − βeiPµtµ |0,0, M, P〉

]

=
e−iPµtµ

2
[
β |M, P,0,0〉+ e2iPµtµ |M,0,0, P〉+ |0, P, M,0〉 − βe2iPµtµ |0,0, M, P〉

]

=
e−iPθ/2

2
[
β |M, P,0,0〉+ eiPθ |M,0,0, P〉+ |0, P, M,0〉 − βeiPθ |0,0, M, P〉

]
,

(A.2.9)

where we defined θ ≡ 2µtµ. The same simple procedure can be employed in any other quantum state
discussed in the main text.
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A.3 VON-NEUMANN ENTROPY

Here, we demonstrate the main results regarding the Von-Neumann entropy used in Chapter 4. In
doing so, we will always consider the effective Hamiltonian He f f .

Starting from an initial state |Ψ0〉= 1√
2

(
|M, P,0,0〉+ eiφ |M,0,0, P〉

)
, we calculate its time evolution

as:

|Ψ(t)〉= e−iHe f f t |Ψ0〉

=
e−iHe f f t
√

2

(
|M, P,0,0〉+ eiφ |M,0,0, P〉

)

=
1√
2

(
∑

q1,q2

e−ieq1,q2 t

√
CM

q1
CP

q2

2N |M, P,q1,q2}
︸ ︷︷ ︸

|A(t)〉

+eiφ ∑
q1,q2

e−ieq1,q2 t(−1)q2

√
CM

q1
CP

q2

2N |M, P,q1,q2}
︸ ︷︷ ︸

|B(t)〉

)
,

where we employed the results from Eqs. A.1.11 and A.1.12. Then, the density operator ρ(t) will read:

ρ(t) = |Ψ(t)〉 〈Ψ(t)|

=
1
2
(
|A(t)〉 〈A(t)|+ |B(t)〉 〈B(t)|+ e−iφ |A(t)〉 〈B(t)|+ eiφ |B(t)〉 〈A(t)|

)
.

(A.3.1)

A.3.1 Entanglement between classes

In order to calculate S(ρA(t)), we first need to obtain the reduced operator ρA(t) = trB ρ(t).
Explicitly for |A(t)〉 〈A(t)|:

trB |A(t)〉 〈A(t)|=
N

∑
m,n=0

〈m,n|A(t)〉 〈A(t)|m,n〉 , (A.3.2)

where |m,n〉 act on wells “2” and “4”. The inner product on the previous equation is not trivially
calculated, since it must result on a “ket-bra” with half the degrees of freedom. To carefully evaluate
it, it is convenient to first write |M, P,q1,q2}= |χ(q1)〉 ⊗ |ζ(q2)〉, where:
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|χ(q1)〉 ≡
CM

q1√
M!

(
a†

1 + a†
3√

2

)M−q1( a†
1 − a†

3√
2

)q1

|0〉A

|ζ(q2)〉 ≡
CP

q2√
P!

(
a†

2 + a†
4√

2

)P−q2( a†
2 − a†

4√
2

)q2

|0〉B

=
P−q2

∑
k=0

q2

∑
l=0

CP−q2
k Cq2

l

√
(P− k− l)!(k + l)!

2P(P− q2)!q2!
(−1)l |P− k− l,k + l〉

=
P

∑
r=0

r

∑
k=0

CP−q2
k Cq2

r−k

√
(P− r)!r!

2P(P− q2)!q2!
(−1)r−k |P− r,r〉

=
P

∑
r=0

ar(q2, P) |P− r,r〉 .

(A.3.3)

In the equation above, we used ∑
P−q2
k=0 ∑

q2
l=0→∑P

r=0 ∑r
k=0. The term ar(q, P) employed is defined as:

ar(q, P)≡ 1√
2P

r

∑
k=0

√
CP

q

CP
r

CP−q
k Cq

r−k(−1)r−k.

Now, we continue the evaluation of Eq. A.3.2:

trB |A(t)〉 〈A(t)|=
N

∑
m,n=0

〈m,n|A(t)〉 〈A(t)|m,n〉

=
1

2N ∑
m,n

∑
q1,q2

∑
p1,p2

e−i(eq1,q2−ep1,p2 )t
√

CM
q1

CP
q2

CM
p1

CP
p2
〈m,n|M, P,q1,q2}{M, P, p1, p2|m,n〉

=
1

2N ∑
m,n

∑
q1,q2

∑
p1,p2

∑
r1,r2

e−i(eq1,q2−ep1,p2 )tar1(q2, P)ar2(p2, P)
√

CM
q1

CM
p1

CP
q2

CP
p2

〈m,n|P− r1,r1〉 〈P− r2,r2|m,n〉 |χ(q1)〉 〈χ(p1)|

=
1

2N ∑
q1,q2

∑
p1,p2

∑
r1,r2

e−i(eq1,q2−ep1,p2 )tar1(q2, P)ar2(p2, P)
√

CM
q1

CM
p1

CP
q2

CP
p2

〈P− r2,r2|∑
m,n
|m,n〉 〈m,n|

︸ ︷︷ ︸
1B

|P− r1,r1〉 |χ(q1)〉 〈χ(p1)|

=
1

2N ∑
q1,q2

∑
p1,p2

e−i(eq1,q2−ep1,p2 )t
√

CM
q1

CM
p1

CP
q2

CP
p2
|χ(q1)〉 〈χ(p1)|

P

∑
r=0

ar(q2, P)ar(p2, P).

(A.3.4)

Since 〈ζ(q2)|ζ(p2)〉= δq2,p2 , it implies that ∑P
r=0 ar(q2, P)ar(p2, P) = δq2,p2 . By expanding eq1,q2 − ep1,q2 =

Ω [(N + 1)(q1 − p1)− 2q2(q1 − p1)], we can rewrite the expression above as:
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trB |A(t)〉 〈A(t)|= 1
2N ∑

q2

∑
q1,p1

e−2iΩt([N]+(q1−p1)−q2(q1−p1))CP
q2

√
CM

q1
CM

p1
|χ(q1)〉 〈χ(p1)|

=
1

2N ∑
q1,p1

e−2iΩt[N]+(q1−p1)
√

CM
q1

CM
p1
|χ(q1)〉 〈χ(p1)|∑

q2

CP
q2

(
e2iΩ(q1−p1)t

)q2

=
1

2N ∑
q1,p1

e−2iΩt[N]+(q1−p1)
√

CM
q1

CM
p1

[
1 + e2iΩt(q1−p1)

]P
|χ(q1)〉 〈χ(p1)|

(A.3.5)

At t = tm = π/(2Ω), the above expression becomes:

trB |A(tm)〉 〈A(tm)|=
1

2N ∑
q1,p1

e−iπ[N]+(q1−p1)
√

CM
q1

CM
p1
[1 + (−1)q1−p1 ]

P |χ(q1)〉 〈χ(p1)| .

=
1

2M ∑
q1,p1

e−iπ[N]+(q1−p1)
√

CM
q1

CM
p1
|χ(q1)〉 〈χ(p1)| , if q1 − p1 is even

0, if q1 − p1 is odd.

(A.3.6)

Therefore, we can define the orthogonal states:

|Ψ±〉=
1√
2M

M

∑
q=0

e−iqπ[N]±
√

CM
q |χ(q)〉 , (A.3.7)

such that we may rewrite Eq. A.3.6 as:

trB |A(tm)〉 〈A(tm)|=
1
2
|Ψ+〉 〈Ψ+|+

1
2
|Ψ−〉 〈Ψ−| . (A.3.8)

It is worth noticing here that, had we considered a simple initial state given by |M, P,0,0〉, then its
time evolution would be |A(t)〉 and the expression above would be already ρA(tm). The calculation of
trB |B(t)〉 〈B(t)| can be performed in a similar way. Its equivalent of Eq. A.3.5 will be the exact same
expression with a term (−1)q2+p2 . Then, since ∑P

r=0 ar(q2, P)ar(p2, P) = δq2,p2 , (−1)q2+p2 = 1, and the
final result of trB |B(tm)〉 〈B(tm)| will be exactly the same as the one for trB |A(tm)〉 〈A(tm)|. Therefore,
the partial trace for the first two terms of Eq. A.3.1 can be written as:

trB
1
2
(|A(tm)〉 〈A(tm)|+ |B(tm)〉 〈B(tm)|) =

1
2

trB |A(tm)〉 〈A(tm)|+
1
2

trB |B(tm)〉 〈B(tm)|

=
1
2
|Ψ+〉 〈Ψ+|+

1
2
|Ψ−〉 〈Ψ−| .

(A.3.9)

When analyzing the individual expressions for |A(t)〉 and |B(t)〉, one notices that the only
difference relies on the term (−1)q2 , which is present only on |B(t)〉. Therefore, we realize that
|A(t)〉 〈B(t)|= |B(t)〉 〈A(t)|, and trB |A(t)〉 〈B(t)| can be written as an adaptation of Eq. A.3.5:
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trB |A(t)〉 〈B(t)|= 1
2N ∑

q2

∑
q1,p1

e−2iΩt([N]+(q1−p1)−q2(q1−p1))CP
q2

√
CM

q1
CM

p1
(−1)q2 |χ(q1)〉 〈χ(p1)|

=
1

2N ∑
q1,p1

e−2iΩt[N]+(q1−p1)
√

CM
q1

CM
p1
|χ(q1)〉 〈χ(p1)|∑

q2

(
−e2iΩ(q1−p1)t

)q2

=
1

2N ∑
q1,p1

e−2iΩt[N]+(q1−p1)
√

CM
q1

CM
p1

[
1− e2iΩt(q1−p1)

]P
|χ(q1)〉 〈χ(p1)| .

(A.3.10)

Once again, we are interested in the reduced density operator at t = tm = π/(2Ω), which then
becomes:

trB |A(tm)〉 〈B(tm)|=
1

2N ∑
q1,p1

e−iπ[N]+(q1−p1)
√

CM
q1

CM
p1
[1− (−1)q1−p1 ]

P |χ(q1)〉 〈χ(p1)| .

=
1

2M ∑
q1,p1

e−iπ[N]+(q1−p1)
√

CM
q1

CM
p1
|χ(q1)〉 〈χ(p1)| , if q1 − p1 is odd

0, if q1 − p1 is even.

(A.3.11)

It is possible to rewrite the previous equation in terms of the basis |Ψ±〉 such that it vanishes when
(q− p) is even. This is somehow the opposite behavior when comparing to trB |A(t)〉 〈A(t)|, and
leads to:

trB |A(t)〉 〈B(t)|= 1
2
|Ψ+〉 〈Ψ+| −

1
2
|Ψ−〉 〈Ψ−| . (A.3.12)

Finally, we can rewrite Eq. A.3.1 for t = tm as:

ρA(tm) = trB ρ(tm) = cos2 φ

2
|Ψ+〉 〈Ψ+|+ sin2 φ

2
|Ψ−〉 〈Ψ−| , (A.3.13)

and, therefore, the Von-Neumann Entropy S(ρB(tm)) will be given by:

S(ρB(tm)) =−cos2 φ

2
log2

(
cos2 φ

2

)
− sin2 φ

2
log2

(
sin2 φ

2

)
. (A.3.14)

A.3.2 Entanglement between one site and the others

Here, we will demonstrate how to calculate S(ρ3(tm)). A similar procedure can be employed for
evaluating the entanglement entropies for the other sites. Since the reduced density operator ρ3(t)
corresponds to only one the model’s degrees of freedom, it can be written as the mixed state:

ρ3(t) = ∑
i
Pt(N3 = i) |i〉 〈i| , (A.3.15)

where Pt(N3 = i) stands for the probability of measuring “i” particles at site 3, on a given time t. With
this, the Von-Neumann entropy is simply given by:

S(ρ3(t)) =−∑
i
Pt(N3 = i) log2 [Pt(N3 = i)] . (A.3.16)
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We may now employ the previous results for ρA(t) in order to evaluate the measurement probabil-
ities as Pt(N3 = i) = 〈M− i, i|ρA(t)|M− i, i〉. Explicitly for t = tm:

Ptm(N3 = i) = cos2 φ

2
| 〈M− i, i|Ψ+〉 |2 + sin2 φ

2
| 〈M− i, i|Ψ−〉 |2. (A.3.17)

We can calculate the inner products as:

〈M− i, i|Ψ±〉=
1√
2M

M

∑
q=0

e−iqπ[N]±
√

CM
q 〈M− i, i|χ(q)〉

=
1√
2M

M

∑
q=0

√
CM

q e−iqπ[N]±

(
M

∑
r=0

ar(q, M)δi,r

)

=
1√
2M

M

∑
q=0

√
CM

q aq(i, M)e−iqπ[N]±

=
M

∑
q=0

q

∑
k=0

√
CM

i

2M CM−i
k CM

q−k(−1)q−ke−iqπ[N]±

=

√
CM

i

2M

M−i

∑
k=0

i

∑
r=0

CM−i
k CM

r (−1)re−irπ[N]±e−isπ[N]±

=

√
CM

i

2M

(
M−i

∑
k=0

CM−i
k e−ikπ[N]±

)(
i

∑
r=0

CM
r (−1)re−irπ[N]±

)

=

√
CM

i

2M

(
1 + e−iπ[N]±

)M−i (
1− e−iπ[N]±

)i
.

Therefore, we have:

| 〈M− i|Ψ±〉 |2 =
CM

i
22M 2M(1 + cos(π[N]±))M−i(1− cos(π[N]±))i

= CM
i

(
cos2 π[N]±

2

)M−i(
sin2 π[N]±

2

)i

= bM,i

(
sin2 π[N]±

2

)
,

(A.3.18)

where we introduced the Bernstein polynomials bν,j(z) = Cj
ν zν(1− z)j−ν. With this, we may write the

probability Ptm(N3 = i) as:

Ptm(N3 = i) =
1
2

bM,i

(
sin2 π(N + 1)

4

)
+

1
2

bM,i

(
sin2 π(N − 1)

4

)

=
1
2

δi,0 +
1
2

δi,M, if N is odd;

=
1

2M CM
i , if N is even.

(A.3.19)

83



Appendix A. Analytical calculations

By looking at Eqs. A.3.16 and A.3.19, it is clear that, differently than what happened for S(ρA(tm)),
the behavior of the Von-Neumann entropy for ρ3(tm) is different in the scenarios of N odd and even.
These are given by:

S(ρ3(tm)) = 1, for N odd;

= M−∑
i

CM
i log2(C

M
i ), for N even. (A.3.20)
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High sensitivity quantum interferometry requires more than just access to entangled states. It
is achieved through deep understanding of quantum correlations in a system. Integrable models
offer the framework to develop this understanding. We communicate the design of interferometric
protocols for an integrable model that describes the interaction of bosons in a four-site configuration.
Analytic formulae for the quantum dynamics of certain observables are computed. These expose the
system’s functionality as both an interferometric identifier, and producer, of NOON states. Being
equivalent to a controlled-phase gate acting on two hybrid qudits, this system also highlights an
equivalence between Heisenberg-limited interferometry and quantum information. These results are
expected to open new avenues for integrability-enhanced atomtronic technologies.

Introduction.– Recent developments in the manipula-
tion of wave-like properties in matter are driving a raft of
atom-interferometric applications, in the vicinity of the
Heisenberg limit, within the field of quantum metrology
[1, 2]. It has long been recognized that the ability to
effectively and efficiently harness quantum interference
is equivalent to implementing certain tasks in quantum
computation [3]. Nowadays, ultracold quantum gases are
proving to be successful in enabling quantum simulations,
for phenomena such as quantum magnetism and topolog-
ical states of matter, beyond the capabilities of classical
supercomputers [4]. Through a confluence of these types
of investigations, there are several efforts to push research
towards designs for atomtronic devices [5–7], based on
circuits with atomic currents. These devices promise high
levels of control in the manipulation of many-body sys-
tems, leading to advanced sensitivity in metrology [8] and
other quantum technologies [9–13].

Around a decade ago [14] a class of models was iden-
tified for physical realization of an interferometer, using
dipolar atoms. The Hamiltonian governing the time evo-
lution of the system is a generalized Bose-Hubbard model
on four sites, with closed boundary conditions and long-
ranged interactions. We begin by pinpointing a set of in-
tegrable couplings for the Hamiltonian. That is, choices of
parameters for which there are four conserved operators,
equal to the number of degrees of freedom. The property
of integrability has two significant impacts: (i) integrable
systems have unique properties, such as Poisson distribu-
tion in energy level statistics [15], absence of chaotic be-
haviors [16], and non-standard thermal equilibration [17].
The quantum Newton cradle [18] provided experimental
verification of the latter; (ii) mathematically, integrabil-
ity facilitates tractable, closed-form formulae to describe
the physics.

In our study we utilize the conserved operators of the
integrable system to guide the design of measurement
protocols for interferometric tasks (see Fig. 1). Our re-
sults are applicable in a particular regime, designated
as resonant tunneling, whereby the energy levels sepa-
rate into distinct bands. Through an effective Hamilto-

nian approach, the entire energy spectrum and structure
of eigenstates becomes explicit for resonant tunneling.
Moreover, the behavior system is clear in quantum in-
formation theoretic terms. The interferometer is equiva-
lent to a system of two hybrid qudits [19], and the time-
evolution of states is equivalent to the operation of a
controlled-phase gate [20, 21]. We describe proof of prin-
ciple examples of high-fidelity measurement protocols to
identify and produce certain NOON states [1, 3, 22–24].

FIG. 1. Schematic representation of the interferometric cir-
cuit with tunneling between nearest neighbors. An initial
state is prepared with M particles in site 1, and P particles
in a (generally entangled) state across sites 2 and 4. After
Hamiltonian time-evolution, measurement of particle number
at site 3 is used to deduce information about the initial, or
post-measurement, state across sites 2 and 4.

The model.– An extended Bose-Hubbard Hamiltonian
on a square plaquette has the form [25, 26]

H =
U0

2

4∑

i=1

Ni(Ni − 1) +

4∑

i=1

4∑

j=1,j 6=i

Uij

2
NiNj

− J

2
[(a†1 + a†3)(a2 + a4) + (a†2 + a†4)(a1 + a3)].

(1)

where {aj , a†j : j = 1, 2, 3, 4} are canonical boson an-
nihilation and creation operators, U0 characterizes the
short-range interactions between bosons at the same site,
Uij = Uji accounts for long-range (e.g. dipole-dipole)
interactions between sites, and J represents the tun-
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neling strength between neighboring sites. The Hamil-
tonian commutes with the total particle number N =

N1 + N2 + N3 + N4 where Nj = a†jaj . Moreover, the
Hamiltonian is integrable when U13 = U24 = U0 and
U12 = U14 = U23 = U34. It acquires two additional con-
served operators

Q1 =
1

2
(N1 +N3 − a†1a3 − a†3a1),

Q2 =
1

2
(N2 +N4 − a†2a4 − a†4a2),

such that [Q1, Q2] = [Qj , H] = [Qj , N ] = 0, j = 1, 2.
Integrability results from derivation of the model through
the Quantum Inverse Scattering Method. It is intimately
related to exact solvability, due to the algebraic Bethe
Ansatz [27]. Hereafter we only consider the integrable
case.

Resonant tunneling regime.– It is straightforward to
check that there are large energy degeneracies when
J = 0. From numerical diagonalization of (1), with N
particles and sufficiently small value of J , it is seen that
the low-energy levels coalesce into well-defined bands,
similar to that observed in an analogous integrable three-
site model [10, 28]. In this regime, an effective Hamilto-
nian Heff is obtained through consideration of second-
order tunneling processes. For an initial Fock state
|M− l, P −k, l, k〉, with total boson number N = M+P ,
the effective Hamiltonian is a simple function of the con-
served operators

Heff = (N + 1)Ω(Q1 +Q2)− 2ΩQ1Q2, (2)

where Ω = J2/(4U((M−P )2−1)) with U = (U12−U0)/4.
This result is valid for J � U(M − P ), which character-
izes the resonant tunneling regime. For time evolution
under Heff , both N1 + N3 = M and N2 + N4 = P are
constant. The respective (M + 1)-dimensional subspace
associated with sites 1 and 3 and (P + 1)-dimensional
subspace associated with sites 2 and 4 serve as two, cou-
pled, hybrid qudits [19], and provide the state space for
the relevant energy band (see Appendix A). This yields a
robust approximation for the dynamics under (1), which
we benchmark below. For later use we will designate the
qudit associated with sites 1 and 3 as qudit A, and that
associated with sites 2 and 4 as qudit B.

It is easily found, through Bogoliubov transformations,
that the spectrum of Heff is simply

Eeff = (N + 1)Ω(q1 + q2)− 2Ωq1q2

with q1 = 0, ...,M and q2 = 0, ..., P . Thus the time evo-
lution under Heff is recognized as a controlled-phase gate
[20, 21]. From here, several analytic results are accessi-
ble. For initial Fock state |M,P, 0, 0〉 it is found that the
expectation value of the number imbalance between sites
1 and 3 is (in units where ~ = 1)

〈N1 −N3〉 = M cos((M + 1)Ωt)[cos(Ωt)]P (3)

When P = 0, there are harmonic oscillations in the im-
balance. For non-zero P , interference leads to a collapse
and revival of oscillations. For comparison, results from
numerical diagonalization of (1) are shown in the upper
panels of Fig. 2

Other initial states can be studied, such as

|Φ(φ)〉 =
1√
2
|M,P, 0, 0〉+

exp (iφ)√
2
|M, 0, 0, P 〉 , (4)

which is a product of a number state for site 1, vacuum
for site 3 (qudit A), and a phase-dependent NOON state
[1, 3] across sites 2 and 4 (qudit B). We find the following
result for the imbalance between sites 1 and 3:

〈N1 −N3〉 = M cos((M + 1)Ωt) [cos(Ωt)]
P

(5)

+M cos(φ) cos((M + 1)Ωt+ πP/2)[sin(Ωt)]P .

This formula provides excellent agreement with numeri-
cal calculations using (1). Illustrative examples are pro-
vided, for choices φ = 0 and φ = π, in the lower panels
of Fig. 2.

-1

0

1

0 1500 3000
Jt

-1

0

1

〈N
1
-N

3
〉/

M

0 1500 3000
Jt

FIG. 2. Time evolution of expected fractional imbalance
〈N1 −N3〉 /M for the Hamiltonian (1) as a function of di-
mensionless time Jt, with U/J = 8 and different initial states.
Upper panels: Left: |15, 0, 0, 0〉. Right: |15, 10, 0, 0〉. Bottom
panels: (|15, 10, 0, 0〉 + exp (iφ) |15, 0, 0, 10〉)/

√
2 with φ = 0

on the left and φ = π on the right. The top panels display
agreement with the formula (3), while the bottom panels are
in agreement with (5).

NOON state identification and production.– The above
results are sufficient to demonstrate the efficacy of the
system to perform certain interferometric tasks. First
consider a black box processor P that outputs one of
two possible NOON states, either symmetric or anti-
symmetric. The output state, with particle number P , is
loaded into qudit B. With M particles in site 1 and zero
in site 3 of qudit A, this composite initial state is given
by (4) with either φ = 0 (symmetric) or φ = π (anti-
symmetric). Choose M such that N = M + P is odd,
let the system evolve for time tm = π/(2Ω), and then
measure the particle number at site 3. According to (5),
there are only two possible measurement outcomes. One
is to obtain the outcome zero, which occurs with proba-
bility 1 when φ = π. The other is to obtain the outcome
M , which occurs with probability 1 when φ = 0 (cf. the
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lower panels of Fig. 2, where the time of measurement
is tm ≈ 1206.37/J). Moreover, this measurement is non-
destructive and the NOON state in qudit B is preserved.
See Appendix B for details.

This analytic result is an excellent approximation for
the behavior governed by (1). From numerical results
using the parameters of Fig. 2, we find that the success
probability when φ = 0 is 0.98699, and it is 0.98708 when
φ = π. This delivers a proof of principle example to show
that the model (1) has capacity to perform interferometry
with high accuracy.

One of the counter-intuitive features of this theoretical
framework is the acute dependence on whether the total
particle number N = M + P is even or odd. To provide
an understanding of this phenomenon, we take the initial
state |M,P, 0, 0〉 and consider the time evolution of the
reduced density matrix ρ1,3(t) for qudit A

ρ1,3(t) = tr2,4 (|Ψ(t)〉〈Ψ(t)|)

where tr2,4 is the partial trace taken over the state space
for qudit B, and |Ψ(t)〉 = exp(−itHeff) |M,P, 0, 0〉 . We
then obtain

ρ1,3 (tm) =
1

2
|Ψ+〉〈Ψ+|+

1

2
|Ψ−〉〈Ψ−| (6)

where

|Ψ±〉 =
1√
2M

M∑

r=0

√(
M

r

)
exp

(
−i (N ± 1)rπ

2

)
|χ(r)〉 ,

|χ(r)〉 =
1√

2M (M − r)!r!
(a†1 + a†3)M−r(a†1 − a†3)r |0〉 .

The above results then allow for a calculation of the prob-
ability P(r) that, measurement of the number of particles
at site 3, when t = tm, yields the outcome r. The result
is

P(r) =
1

2
bM,r(sin2((N − 1)π/4))

+
1

2
bM,r(sin2((N + 1)π/4))

where bM,r(x) =

(
M

r

)
xr(1 − x)M−r, r = 1, ...,M, are

the Bernstein polynomials. When N is even,

P(r) =
1

2M

(
M

r

)
.

When N is odd,

P(r) =
1

2
δr,0 +

1

2
δr,M . (7)

The binomial distribution of the even case has maximal
support, in stark contrast to the double delta function
distribution of the odd case.

Remarkably, the earlier analysis on NOON state iden-
tification can now be inverted to show that the inter-
ferometer itself provides a high-fidelity simulation of the
black box processor P. For odd N it can be shown that

|Ψ (tm)〉 =
(−1)(N+1)/2

2
|M,P, 0, 0〉+

1

2
|M, 0, 0, P 〉 (8)

+
1

2
|0, P,M, 0〉+

(−1)(N−1)/2

2
|0, 0,M, P 〉 .

In accordance with the previous discussion, measurement
at site 3 produces one of only two possible outcomes. A
measurement outcome of M causes wavefunction collapse
such that the state of qudit B is the symmetric (anti-
symmetric) NOON state if (N+1)/2 is odd (even). Con-
versely, a measurement outcome of zero causes wavefunc-
tion collapse with an anti-symmetric (symmetric) NOON
state in qudit B if (N + 1)/2 is odd (even).

As before, it is useful to compare this result obtained
from (2) against the analogous predictions of (1). Nu-
merically, using the parameters of Fig. 2, we find that
the outcome fidelity of this processor simulation for (1)
is 0.99605 for outcome zero, and 0.99959 for outcome M ,
with respective probabilities of 0.497463 and 0.493898,
close to the predictions of Eq. (7). Probabilities and
fidelities for intermediate outcomes are provided in Ap-
pendix C.

Entanglement.– The ability to produce NOON states
as described above is clearly dependent on the ability to
create entanglement. More important is the ability to
create “useful” entanglement since, as emphasized in the
review article [1]: “Not all entangled states are useful for
quantum metrology”. See also [29]. Below we demon-
strate how this notion applies in the present context.

It is convenient for our study to use the entanglement
measure of linear entropy defined in terms of a density
matrix ρ as [30, 31]

E(ρ) = 1− tr(ρ2).

The linear entropy is bounded between 0 and 1 − 1/d,
where d is the dimension of the space on which the den-
sity matrix acts. It follows from (6) that E(ρ1,3(tm)) =
1/2. This result is independent of P . It asserts that im-
mediately prior to making measurement at site 3, at time
t = tm, the entanglement between qudits A and B is in-
dependent of whether N = M + P is even or odd.

Further, let ρ3(tm) = tr1(ρ1,3(tm)), which can be ex-
pressed compactly as

ρ3(tm) =
M∑

q=0

P(q) |q〉 〈q| .

The linear entropy of ρ3 quantifies the entanglement be-
tween the subsystems, sites 1 and 3, within qudit A.
Now we encounter a difference between the even and odd
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cases. When N is odd, E(ρ3(tm)) = 1/2. For even N

E(ρ3(tm)) = 1− 1

22M

(
2M

M

)

∼ 1− 1√
Mπ

where the second step invokes Stirling’s approximation.
By symmetry, the same conclusion can be drawn for qu-
dit B (with M replaced by P ). The curious observation
to make here is that in the odd case, which enables a pro-
tocol for NOON state production, the pre-measurement
entanglement within the qudits is less than that for the
even case. While number-parity effects are ubiquitous
in fermionic systems [32–36], they are less frequently en-
countered in bosonic models. The situation reported here
displays some features in common with the work of [37].

Heisenberg-limited interferometry.– Finally, we estab-
lish that the system is capable of interferometry with
sensitivity at the Heisenberg limit, through the archety-
pal example of parameter estimation through the phase
of a NOON state [1, 3]. Consider initial state (4) with
N = M + P odd, and φ = 0. A new phase ϕ is en-
coded into the bosons at site 4 through a transformation,

a†4 7→ exp(iϕ)a†4 (cf. [14]). This still corresponds to (4),
but now with φ = Pϕ, a phenomenon known as phase
super-resolution [23, 24].

Again for time interval t = tm, the imbalance between
sites 1 and 3 is obtained from (5) as

〈N1 −N3〉 = (−1)(N+1)/2M cos(Pϕ).

Fig. 3 shows the dependence of the fractional population
〈N1 − N3〉/M on parameters ϕ and the dimensionless
time Jt.

Next, it can be confirmed that 〈(N1 −N3)2〉 = M2, so

∆〈N1 −N3〉 =
√
〈(N1 −N3)2〉 − 〈N1 −N3〉2

= M | sin(Pϕ)|.

Using the standard estimation theory approach [1, 3], it is
found that the system achieves Heisenberg-limited phase
sensitivity since

∆ϕ =
∆〈N1 −N3〉
|d〈N1 −N3〉/dϕ|

=
1

P
.

This is an improvement on the classical shot-noise case
where ∆ϕ ∼ 1/

√
P [1, 3].

Conclusion.– We have provided an example of inte-
grable atomtronic interferometry, through an extended
Bose-Hubbard model, with four sites arranged in a closed
square. The integrable properties of the model furnished
the necessary tools to understand the dynamics of the
system in the resonant tunneling regime. It allowed for
the analytic calculation of dynamical expectation values.

This, in turn, informed the relevant time interval re-
quired to implement certain measurement protocols. The
probabilities for measurement outcomes were computed

ϕ

FIG. 3. Dependence of 〈N1 −N3〉 /M as a function of dimen-
sionless Jt and phase ϕ, for initial state (4) with M = 15,
P = 10, φ = Pϕ, and U/J = 8. Upper surface: The colors
range from light to dark blue, indicating lower and higher val-
ues for the imbalance population. The green color represents
the region where 〈N1〉 ≈ 〈N3〉. Lower plane: The effect on the
system’s dynamics is highlighted, specifically for the limiting
cases ϕ = 0 and ϕ = π/P , where it is seen that there is a
minimum-maximum inversion at tm ≈ 1206.373/J .

through the density matrix. We demonstrated proof of
principle examples that the integrable system functions
as an identifier of NOON states produced by a black box
processor, and as a simulator of such a processor.

Our study highlights the quantum information connec-
tions of the model by detailing its function as a hybrid
qudit system subjected to a controlled-phase gate oper-
ation. This description complements other qudit studies
in photonic [38–40] and NMR [41] settings, which are at-
tracting attention due to the promise of increasing quan-
tum computational capacity. It is anticipated that our
results, in an atomtronic framework, may be transferable
to these and other contexts.

In future research, we will undertake studies involving
other states which may be useful for metrological appli-
cations, such as coherent states and Dicke states. We will
examine the evolution of these input states, and investi-
gate the resulting generation of entanglement. Particular
emphasis will be given to the understanding of multipar-
tite entanglement generation, beyond the bipartite inves-
tigations reported here.
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APPENDIX

A. Energy bands and effective Hamiltonian

Here we give an overview of the origin for the effective
Hamiltonian (2). Recall that the integrability condition
is U13 = U24 = U0 and U12 = U23 = U34 = U14. When

FIG. 4. Dimensionless energy eigenvalues E/J as a function of
dimensionless coupling U/J , where U = (U12−U0)/4 and C =
0. Results are shown for N = 25, with M and P indicating
the dependence of (9) in the J → 0 limit. The orange vertical
line is U/J = 8, for which quantum dynamics is described in
Fig. 2, (except for the top left panel). The inset shows the
large J limit, in which the bands begin to merge.

J = 0, the Fock state |M − l, P − k, l, k〉 is eigenstate of
the Hamiltonian (1) with energy

E = C +
U0 − U12

4
(M − P )2 (9)

with C = (U0 + U12)N2/4− U0/2, independent of l and
k, indicating degeneracies. For small values of J , the
degeneracies are broken and lead to energy levels in well-
defined bands, each with 2(M + 1)(P + 1) energy levels,
except for N even, where the band with the highest en-
ergy, M = P , will have (M + 1)(P + 1) levels. The level
energy structure of the case we are analyzing, with N =
25, is shown in Fig. 4. In it, we highlight in red the band
with M = 15 and P = 10 (and vice versa).

An effective Hamiltonian for each band is obtained by
consideration of second-order processes. Associated to
labels M and P , such that N = M + P , we obtain

Heff =
J2

16U(M − P + 1)

(
a1a
†
3 + a3a

†
1

)(
a†2a2 + a†4a4

)

+
J2

16U(M − P + 1)

(
a1a
†
1 + a3a

†
3

)(
a†2a4 + a†4a2

)

− J2

16U(M − P − 1)

(
a2a
†
2 + a4a

†
4

)(
a†1a3 + a†3a1

)

− J2

16U(M − P − 1)

(
a2a
†
4 + a4a

†
2

)(
a†1a1 + a†3a3

)

+
J2

16U

(
1

M − P + 1
− 1

M − P − 1

)

×
(
a†1a2a3a

†
4 + a†1a

†
2a3a4 + a1a

†
2a
†
3a4 + a1a2a

†
3a
†
4

)
.

This expression is equivalent to (2), up to a constant.
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B. Non-destructive measurement

Here we show that the measurement protocol for
NOON state identification using the effective Hamilto-
nian (2) is non-destructive with respect to qudit B. To
establish this, it suffices to show that at measurement
time tm there is no entanglement between the qudits,
such that a measurement performed on qudit A does not
cause wavefunction collapse for qudit B.

From (4) define |Λ(t, φ)〉 = exp(−itHeff) |Φ(φ)〉. Gen-
eralizing Eq. (8) it is found that (recall N is chosen to
be odd)

|Λ(tm, 0)〉 =
K(N + 1, 0)

2
√

2
(|M,P, 0, 0〉+ |M, 0, 0, P 〉)

+
K(N − 1, 0)

2
√

2
(|0, 0,M, P 〉+ |0, P,M, 0〉),

|Λ(tm, π)〉 =
K(N + 1, π)

2
√

2
(|M,P, 0, 0〉 − |M, 0, 0, P 〉)

+
K(N − 1, π)

2
√

2
(|0, 0,M, P 〉 − |0, P,M, 0〉)

where K(m,φ) = (−1)m/2 + exp(iφ). Note that one of
K(N + 1, φ) and K(N − 1, φ) is necessarily zero for N
odd and φ = 0, π.

It is recognized from the above equations that the pos-
sible measurements of the number of particles at site 3
are either 0 or M , and always occur with probability 1.
Moreover, the post-measurement state of qudit B is a
NOON state with the same symmetry or antisymmet-
ric as the input NOON state for qudit B. That is, the
identification of the NOON state loaded into qudit B is
achieved without destruction of the NOON state.

C. Probabilities and fidelities

Here we provide benchmarks establishing the effective-
ness of Hamiltonian (1) in the simulation of the black box
processor P, through numerical calculation of probabil-
ities and outcome fidelities. A general N -particle state
can be expressed as

|Θ〉 =

N∑

j,k,l=0

cj,k,l|j, k, l, N − j − k − l〉

such that cj,k,l = 0 if j+k+l > N , and

N∑

j,k,l=0

|cj,k,l|2 = 1.

When a measurement is made at site 3, the probability
P(r) to obtain the measurement outcome r is

P(r) =
N∑

j,k=0

|cj,k,r|2 (10)

satisfying

N∑

r=0

P(r) = 1. After the measurement, the

wavefunction collapses to

|Θ(r)〉 =
1√
P(r)

N∑

j,k=0

cj,k,r|j, k, r,N − j − k − r〉

such that 〈Θ(r)|Θ(r)〉 = 1. Set

|Φ(r, φ)〉 =
1√
2
|M − r, P, r, 0〉+

exp (iφ)√
2
|M − r, 0, r, P 〉

and define the outcome fidelity F(r, φ) to be

F(r, φ) = |〈Φ(r, φ)|Θ(r)〉|. (11)

We take |Θ〉 = exp(−itmH) |15, 10, 0, 0〉 and use (1) with
U/J = 8 to numerically calculate the measurement prob-
abilities and outcome fidelities through (10,11). The re-
sults are given below in Table 1.

Measurement Probability Phase Fidelity
r P(r) φ F(r, φ)
15 0.493898 0 0.999593
14 0.002814 0 0.600630
13 0.000237 0 0.515582
12 0.000149 0 0.070958
11 0.000311 0 0.023097
10 0.001182 0 0.002501
9 0.000252 0 0.007847
8 0.000235 0 0.011905
7 0.000231 π 0.014797
6 0.000254 π 0.010138
5 0.000168 π 0.022435
4 0.000176 π 0.026081
3 0.000144 π 0.057712
2 0.000291 π 0.449405
1 0.001398 π 0.839876
0 0.497463 π 0.996048

TABLE I. Measurement probabilities and fidelities after evo-
lution under (1) until time tm. The initial state is |15, 10, 0, 0〉,
and U/J = 8 as used in Figs. 2, 3, 4. The calculations show
that the highest fidelity outcomes, close to 1, occur with the
highest probabilities, close to 1/2. This is in agreement with
the results predicted by the effective Hamiltonian (2).
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Abstract
The ability to reliably prepare non-classical states will play a major role in the realization of quantum technology.

NOON states, belonging to the class of Schrödinger cat states, have emerged as a leading candidate for several
applications. Starting from a model of dipolar bosons confined to a closed circuit of four sites, we show how to
generate NOON states. This is achieved by designing protocols to transform initial Fock states to NOON states
through use of time evolution, application of an external field, and local projective measurements. By variation of
the external field strength, we demonstrate how the system can be controlled to encode a phase into a NOON state.
We also discuss the physical feasibility, via an optical lattice setup. Our proposal illuminates the benefits of quantum
integrable systems in the design of atomtronic protocols.

Quantum systems are widely considered to be the most
promising foundation for the next generation of platforms
in computing, communication, measurement and simula-
tion. This is primarily due to the properties of state su-
perposition and entanglement. To realize the potential for
progress, it is necessary to establish protocols that are ca-
pable of generating important quantum states.

The NOON state is a fundamental example. It is an
“all and nothing” superposition of two different modes1,2.
For N particles, it has the form

|NOON〉 = 1√
2
(
|N, 0〉+ eiϕ|0, N〉

)
(1)

where the phase ϕ typically records information in appli-
cations. These include: in the fields of quantum metrology
and sensing, performing precision phase-interferometry at
the Heisenberg limit3 and overcoming diffraction limits in
quantum lithography4; in tests of fundamental physics,
NOON states are used to study Bell-type inequalities vi-
olation5; they offer promising applications in Quantum
Communication and Quantum Computing6, and their uti-
lization is expected to extend to areas such as chem-
istry and biology7. After an early success, using photon
pairs and Hong-Ou-Mandel (HOM) interferometry8, sev-
eral schemes have followed for the production and detec-
tion of photonic NOON states2,9–12. There are also pro-
posals using other architectures, such as circuit QED13,
trapped ions14, and Bose-Einstein condenstates15.

The atomtronic creation of Bose-atom NOON states
would enable new tests, using massive states, of the foun-
dations for quantum mechanics. One step in this direc-

tion is a proposal to demonstrate the matter-wave equiv-
alent of the HOM effect16. Prospects for creating Bose-
atom NOON states using a double-well potential were first
floated some time ago17. This early work considered an
attractive system, which is prone to instability. In prin-
ciple a more robust repulsive system can be prepared to
evolve to a high-fidelity approximation of a NOON state.
However, the drawback there is that the process is asso-
ciated with an extremely large time scale. Recently, new
studies of the double-well system have been undertaken to
reduce the time scale. One example proposes to adiabati-
cally vary the system parameters through an excited-state
phase transition during the process18. Another study em-
ploys periodic driving to lower the NOON-state evolution
time19. Nonetheless, the time to generate a NOON state
in these examples still, increasingly, scales with the total
number of particles.

Here we present an alternative to circumvent these is-
sues. Our approach adopts a closed-circuit of four sites,
with a Fock-state input of M particles in site 1, P parti-
cles in site 2, and no particles in sites 3 and 4, denoted
as |Ψ0〉 = |M,P, 0, 0〉. The initial step is to create an
uber-NOON state, with the general form

|u-NOON〉 = 1
2
(
|M,P, 0, 0〉+ eiϕ1 |M, 0, 0, P 〉

+eiϕ2 |0, P,M, 0〉+ eiϕ3 |0, 0,M, P 〉
)

for a set of phases {ϕ1, ϕ2, ϕ3}. This state may be viewed
as an embedding of NOON states (1) within two-site sub-
systems. We then describe two protocols to extract a
NOON state from an uber-NOON state, one through dy-
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Figure 1. NOON state generation scheme. The four circles on the left represent the initial state, with white indicating
an empty site, cyan and blue corresponding to M and P particles respectively. The solid lines connecting the circles
denote tunneling between nearest neighbor sites. Rectangles represent applied external fields to sites 1-3 and 2-4. In
Protocol I, the system initially evolves during a time of tm − tµ. Then, an applied field across sites 2-4 is switched on,
and a phase is encoded during the time tµ. Finally, the light blue halo portrays a projective measurement process at
site 3, denoted by M, resulting in two possible NOON states across sites 2-4. In Protocol II, the system first evolves
during a time of tm − tν . Then, an applied field to sites 1-3 is switched on for time tν . Next, the system evolves for
tm− tµ, after which the applied field to sites 2−4 is switched on. This results in a NOON state across sites 2-4 without
performing a measurement procedure.

namical evolution followed by local projective measure-
ment and post-selection, the other from dynamical evolu-
tion alone. The protocols are schematically presented in
Fig. 1.

The approach taken has the following properties: (i)
The system has long-ranged interactions, described by the
Extended Bose-Hubbard Model (EBHM)20. There exists
a choice of the coupling parameters for which this model
is integrable21. As in other physically realized integrable
systems22–29, this property facilitates several analytic cal-
culations for physical quantities. Here, integrability ex-
poses the protocols available for NOON state generation.
The execution time is found to be dependent on the dif-
ference between the two initially populated sites within
the four-site system. It is independent of total particle
number, offering an encouraging prospect for scalability.
(ii) The system can be controlled by breaking the inte-
grability over small time scales. Encoding of the phase
into a NOON state only requires breaking of integrabil-
ity over an interval that is several orders of magnitude
smaller than the entire execution time. This causes min-
imal loss in fidelity. (iii) With currently available tech-
nology, the system may be realized and controlled using
dipolar atoms (e.g. dysprosium or erbium) trapped in an

optical lattice30,31. In this setup, the evolution times that
we compute for NOON-state generation are of the order
of seconds.

For the four-site configuration, the EBHM Hamiltonian
is

H =U0
2

4∑

i=1
Ni(Ni − 1) +

4∑

i=1

4∑

j=1,j 6=i

Uij
2 NiNj

− J

2
[
(a†1 + a†3)(a2 + a4) + (a1 + a3)(a†2 + a†4)

]
,

(2)

where a†j , aj are the creation and annihilation operators
for site j, and Nj = a†jaj are the number operators. The
total number operator N = N1 + N2 + N3 + N4 is con-
served. Above, U0 characterizes the interaction between
bosons at the same site, Uij = Uji is related to the long-
range (e.g. dipole-dipole) interaction between bosons at
sites i and j, and J accounts for the tunneling strength
between different sites.

Below, we describe two protocols that enable the gen-
eration of NOON states, with fidelities greater than 0.9.
A physical setup to implement them, drawn on currently
available technology, is discussed.
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Results
Insights into the physical behaviour of Eq. (2) become ac-
cessible at integrable coupling. Setting U13 = U24 = U0,
the system acquires two additional conserved quantities,
Q1 and Q2, such that 2Q1 = N1 + N3 − a†1a3 − a1a

†
3 and

2Q2 = N2 + N4 − a†2a4 − a2a
†
4. Together with the to-

tal number of particles N and the Hamiltonian H, the
system possesses four independent, conserved quantities.
This is equal to the number of degrees of freedom, satisfy-
ing the criterion for integrability. Suppose that, initially,
there are M atoms in site 1 and P atoms in site 2. We
identify the resonant tunneling regime as being achieved
when U |M − P | � J (see Methods for details), where
U = (U12 − U0)/4. This regime is characterized by sets
of bands in the energy spectrum (see Supplementary Note
1). In this region, an effective Hamiltonian Heff enables
the derivation of analytic expressions for several physical
quantities.

In the settings discussed above, the system described
by Eq. (2) provides the framework to generate uber-
NOON states when N = M + P is odd32. To encode
phases, however, it is necessary to break the integrability
in a controllable fashion. Here, we introduce two idealized
protocols to produce NOON states with general phases
by breaking the system’s integrability with externally ap-
plied fields. We call the subsystem containing sites 1, 3 as
A, and the one containing sites 2, 4 as B. We denote three
time intervals: tm, tµ and tν . The first, corresponding
to integrable time evolution, is associated with evolution
to a particular uber-NOON state. The others, associated
with smaller scale non-integrable evolution, produce phase
encoding. Both protocols are built around a general time-
evolution operator

U(t, µ, ν) = exp
(
− it
~

[H + µ(N2 −N4) + ν(N1 −N3)]
)
,

where the applied field strengths µ, ν implement the break-
ing of integrability. It is convenient to introduce the phase
variable θ = 2µtµ/~, and to fix tν = ~π/(4Mν), with ~
the reduced Planck constant.

Protocol I
In this protocol we employ breaking of integrability
through an applied field to subsystem B and a measure-
ment process. The protocol consists of three sequential
steps, schematically depicted in Fig. 1:

(i) |ΨI
1〉 = U(tm − tµ, 0, 0) |Ψ0〉;

(ii) |ΨI
2〉 = U(tµ, µ, 0) |ΨI

1〉;

(iii) |ΨI
3〉 =M|ΨI

2〉,

where tm = ~π/(2Ω) (see Methods) and M represents a
projective measurement of the number of bosons at site 3
(which could be implemented, in principle, through Fara-
day rotation detection33,34). A measurement outcome of 0
or M heralds a high-fidelity NOON state in subsystem B.
For other measurement outcomes, the output is discarded
and the process repeated (post-selection).

Idealized limit

There is an idealized limit for which the above protocol
has perfect success probability and output fidelity. Taking
tµ → 0, µ → ∞ such that θ remains finite, and using the
effective Hamiltonian, provides explicit expressions for the
uber-NOON states that result at steps (i) and (ii)

|ΨI
1〉 = 1

2

(
β |M,P, 0, 0〉+ |M, 0, 0, P 〉

+ |0, P,M, 0〉 − β |0, 0,M, P 〉
)

|ΨI
2〉 = 1

2

(
β |M,P, 0, 0〉+ eiPθ |M, 0, 0, P 〉

+ |0, P,M, 0〉 − βeiPθ |0, 0,M, P 〉
)

(3)

Note that due to the conservation of N1 + N3 and N2 +
N4 under the effective Hamiltonian, Fock states such as
|M, 0, P, 0〉 and |0,M, 0, P 〉 do not appear in the above ex-
pression. Next, the two possible states at step (iii) depend
on the measurement outcome r at site 3:

|ΨI
3〉 =





1√
2
(
β |M,P, 0, 0〉+ eiPθ |M, 0, 0, P 〉

)
, r = 0,

1√
2
(
|0, P,M, 0〉 − βeiPθ |0, 0,M, P 〉

)
, r = M,

(4)
with β = (−1)(N+1)/2. These states are recognized as
products of a NOON state for subsystem B with Fock ba-
sis states for subsystem A.

In the non-ideal case with non-zero tµ and finite µ,
there is a small probability that the measurement outcome
r is neither 0 or M . Numerical benchmarks for the mea-
surement probabilities and NOON state output fidelities
are provided in a later section. Next, we describe a second
protocol.

Protocol II
Now we specify an alternative protocol that does not in-
volve measurements, so post-selection is not required. Em-
ploying the same initial state |Ψ0〉, the following sequence
of steps are implemented to arrive at a NOON state in
subsystem B (illustrated in Fig. 1):

(i) |ΨII
1 〉 = U(tm − tν , 0, 0) |Ψ0〉;

(ii) |ΨII
2 〉 = U(tν , 0, ν) |ΨII

1 〉;

3



(iii) |ΨII
3 〉 = U(tm − tµ, 0, 0) |ΨII

2 〉;

(iv) |ΨII
4 〉 = U(tµ, µ, 0) |ΨII

3 〉.

Idealized limit

Similar to Protocol I, in the limit µ, ν → ∞, tµ, tν → 0,
and implementing U(t, µ, ν) with the effective Hamiltonian
produces

|ΨII
1 〉 = 1

2

(
β |M,P, 0, 0〉+ |M, 0, 0, P 〉

+ |0, P,M, 0〉 − β |0, 0,M, P 〉
)

;

|ΨII
2 〉 = 1

2

(
β |M,P, 0, 0〉+ |M, 0, 0, P 〉

+ i |0, P,M, 0〉 − iβ |0, 0,M, P 〉
)

;

|ΨII
3 〉 = 1√

2

(
|M,P, 0, 0〉+ βe−iπ/2 |M, 0, 0, P 〉

)
;

|ΨII
4 〉 = 1√

2

(
|M,P, 0, 0〉+ Υ |M, 0, 0, P 〉

)
(5)

where Υ = β exp(i(Pθ − π/2)).

Protocol fidelities
The analytic results provided above are obtained by em-
ploying the effective Hamiltonian in an extreme limit, with
divergent applied fields acting for infinitesimally small
times. Below we give numerical simulations of the proto-
cols to show that, for physically realistic settings where the
fields are applied for finite times, high-fidelity outcomes for
NOON state production persist.

Throughout this section, we use |Ψ〉 to denote an an-
alytic state, obtained in an idealized limit. We adopt |Φ〉
to denote a numerically calculated state, obtained by time
evolution with the EBHM Hamiltonian (2). Two sets of
parameters are chosen to illustrate the results (expressed
in Hz):

Set 1: {U/~ = 75.876, J/~ = 24.886, µ/~ = 20.870};
Set 2: {U/~ = 76.519, J/~ = 73.219, µ/~ = 15.168}.

For all numerical simulation results presented below, the
initial state is chosen as |Ψ0〉 = |4, 11, 0, 0〉, i.e. M = 4
and P = 11.

The fidelities of Protocols I and II are defined as35

FI = | 〈ΨI
3|ΦI

3〉 | and FII = | 〈ΨII
4 |ΦII

4 〉 |, respectively. This
is computed for Pθ ranging from 0 to π, achieved by vary-
ing tµ. In the case of Protocol II, we use ν = µ for both
sets of parameters. The systems considered here can, in
principle, be implemented using existing hardware – see
Physical proposal.

The results are presented in Fig. 2, where it is seen
that FII is lower than FI. This can be attributed to two
primary causes. The first is that, while Protocol I takes

τI ∼ tm to produce the final state, Protocol II requires
double the evolution time τII ∼ 2tm. The longer evolution
time contributes to a loss in fidelity. The second reason is
that, the measurement occurring in the final step of Pro-
tocol I has the effect of renormalizing the quantum state
after collapse, which increases the fidelity of the resulting
NOON state when a measurement of r = 0 or r = M is
obtained. However, there is a finite probability that the
measurement outcome is neither r = 0 nor r = M (see
Supplementary Note 2).

In summary, both protocols display high fidelity results
greater than 0.9. For Protocol I the outcomes are proba-
bilistic (See Supplementary Note 2 for data). By contrast,
the slightly lower fidelity results of Protocol II are deter-
ministic.
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Figure 2. Fidelities for Protocols I and II. Numerical cal-
culations of the fidelities FI (a and b) and FII (c and
d). To vary Pθ, µ is fixed and tµ is varied. a, c Set
1: U/~ = 75.876 Hz, J/~ = 24.886 Hz, µ/~ = 20.870
Hz, tm ∼ 36.950s, tν ∼ 0.009s and tµ varies from t = 0 to
t ' 0.007s, such that Pθ ∈ [0, π]. b, d Set 2: U/~ = 76.519
Hz, J/~ = 73.219 Hz, µ/~ = 15.168 Hz, tm ∼ 4.248s,
tν ∼ 0.013s, and tµ varies from t = 0 to t ' 0.009s, such
that Pθ ∈ [0, π]. The required times tm, 2tm to produce
the NOON states are comparable with typical lifetimes of
optical lattice traps, which can be as large as a few min-
utes36.

Readout statistics
A means to test the reliability of the system, through a
statistical analysis of local measurement outcomes, is di-
rectly built into the design. This results from the system’s
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capacity to function as an interferometer32. For both pro-
tocols, once the output state has been attained we can
continue to let the system evolve under U(tm, 0, 0). This
yields the readout states, denoted as |ΨI

RO〉, |ΨII
RO〉 respec-

tively for protocols I and II. In the idealized limits these
are

|ΨI
RO〉 =





c(θ)√
2

(|M,P, 0, 0〉+ β |M, 0, 0, P 〉)

+ is(θ)√
2

(β |0, P,M, 0〉 − |0, 0,M, P 〉), r = 0,

c(θ)√
2

(|M,P, 0, 0〉 − β |M, 0, 0, P 〉)

− is(θ)√
2

(β |0, P,M, 0〉 − |0, 0,M, P 〉), r = M,

|ΨII
RO〉 = 1√

2
s
(
θ − π

2P

)
(|M,P, 0, 0〉+ β |M, 0, 0, P 〉)

− i√
2
c
(
θ − π

2P

)
(β |0, P,M, 0〉 − |0, 0,M, P 〉) ,

where c(θ) ≡ cos (Pθ/2) and s(θ) ≡ sin (Pθ/2). For
|ΨI

RO〉, the measurement probabilities at site 3 are P(0) =
cos2 (Pθ/2) and P(M) = sin2 (Pθ/2). Combined with the
probability of measuring r = 0,M in step (iii), we obtain
four possibilities for the total probabilities as PI(0, 0) =
PI(M, 0) = 0.5 cos2 (Pθ/2) and PI(0,M) = PI(M,M) =
0.5 sin2 (Pθ/2). Meanwhile, for |ΨII

RO〉, the measurement
probabilities at site 3 are PII(0) = sin2 (Pθ/2− π/4) and
PII(M) = cos2 (Pθ/2− π/4). As a numerical check, we
consider the same sets of parameters from previous sec-
tion. Then, we numerically calculate the above probabil-
ities using the Hamiltonian (2), comparing the predicted
analytic results with the numerical ones, as shown in Fig.
3. See Supplementary Note 2 for numerical probabilities
of Protocol I, and related fidelity data. For results with
Set 2, see Supplementary Note 3.

Methods

Resonant tunneling regime

The Hamiltonian (2) has large energy degeneracies when
J = 0. Through numerical diagonalization of the inter-
gable Hamiltonian for sufficiently small values of J , it
is seen that the levels coalesce into well-defined bands,
similar to that observed in an analogous integrable three-
site model37,39. By examination of second-order tunneling
processes (see Supplementary Note 1) In this regime, an
effective Hamiltonian Heff is obtained for this regime.
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Figure 3. Readout probabilities for Protocols I and II.
Comparison between analytic and numerically-calculated
probabilities for parameters of Set 1 (as in Figure 2) for
different values of Pθ. a Results for Protocol I. The pink
dot and the blue “x” (green square and the blue “+”) de-
pict the probabilities of measuring r = 0 (r = M) during
the readout, having measured r = M or r = 0 in step
(iii) respectively. b Results for Protocol II. The probabil-
ities of measuring N3 = 0 (N3 = M) in the readout are
shown as green (orange) triangles. The dotted line depicts
the analytic predictions of the probabilities with respect
to Pθ. The insets show the accordance between predicted
and calculated probabilities in semilogarithmic scale.

For an initial Fock state |M − l, P − k, l, k〉, with total
boson number N = M + P , the effective Hamiltonian is a
simple function of the conserved operators with the form

Heff = (N + 1)Ω(Q1 +Q2)− 2ΩQ1Q2, (6)

where Ω = J2/(4U((M −P )2−1)) and U = (U12−U0)/4.
This result is valid for J � U |M−P |, and it is this inequal-
ity that we use to define the resonant tunneling regime.

A very significant feature is that, for time evolution un-
derHeff , bothN1+N3 = M andN2+N4 = P are constant.
The respective (M + 1)-dimensional subspace associated
with sites 1 and 3 and (P+1)-dimensional subspace associ-
ated with sites 2 and 4 provide the state space for the rele-
vant energy band (see Supplementary Note 1). Restricting
to these subspaces and using the effective Hamiltonian (6)
yields a robust approximation for (2).
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Physical proposal
We propose a physical construction, consisting of dyspro-
sium 164Dy atoms trapped in an optical lattice, to test the
theoretical results. The trapping is accomplished by em-
ploying two sets of counterpropagating laser beams with
wavelength λ = 0.532 µm and waist w0, with w0 � λ.
We consider each set of beams to cross with the other at
an angle of 90◦ (cyan beams in Fig. 5) , generating a
square, two-dimensional optical lattice, in which the dis-
tance between nearest wells is l = λ/2 = 266 nm. We
also consider a Gaussian beam propagating towards the
z-direction (blue beam in Fig. 5), with λ = 0.532 µm and
waist w1 = 1.0 µm, aligned to the center of a four-site
square plaquette, to isolate it from the rest of the lattice.
Then, to achieve a pancake-shaped trap, it is necessary to
include a set of two beams with λ = 0.532 µm and waist
w2 ∼ w0, whose orientations are disposed at an angle of
α = 60◦ from each other (orange beams in Fig. 5), in-
ducing a trapping aspect ratio of κ2 ≡ ωz/ωr = 1.464.
Together, they generate the potential V (r):

V (r) = 1
2mω

2(x2 + y2) + 1
2mω

2
zz

2

+ V0 sin2
[
k

(
x− l

2

)]
+ V0 sin2

[
k

(
y − l

2

)]
,

(7)

where m is the atom’s mass, ωr =

√
2
m

(
V0k2 + 2V1

w2
1

)

and

ωz =

√
2
m

(
π2V2
d2
sw

+ V1
R2

1

)
, Rk = πw2

k

λ

are, respectively, the radial and transverse trapping fre-
quencies. Above, ω =

√
4V1/(mw2

1) arises due to the iso-
lation of the four-well system from the optical lattice. The
values V1 = V0 and V2 = 9V0 are, respectively, the cen-
tral beam’s and the x-z crossing beam’s potential depths,
V0 is the 2D lattice potential depth, l is the distance be-
tween nearest sites, k = 2π/λ is the wave number, and
dsw = λ/ (2 sin (α/2)) is the distance between nearest wells
along the z-axis. Since we are considering α = 60°, the
minimum distance between the system’s horizontal layer
and the next upper (or lower) layer is dsw = 2l = λ, which
makes irrelevant the tunneling contributions between dif-
ferent horizontal layers.

To establish equivalency between V (r) and the Hamil-
tonian of Eq. (2), we employ the standard second-
quantization procedure. From this, we calculate the on-
site interaction parameter U0 as:

U0 = Ucontact + Udip

= κη3

π3

(
g − Cdd

3 f(κ)
)
, (8)

where κ is related to the trapping (pancake) shape as-
pect, η ≡ mωr/(2~), g ≡ 4π~2a/m, with a being the s-
wave scattering length (tunable via Feshbach Resonance),
Cdd ≡ µ0µ

2
1 is the coupling constant, where µ0 is the vac-

uum magnetic permeability, µ1 is the atomic magnetic mo-
ment, and f(κ) is a function that describes how the dipo-
lar interaction behaves for different geometries (encoded
in κ)38. Taking site 1 as the “starting point’, the param-
eter U1j, which accounts for the dipole-dipole interaction
between atoms at sites 1 and j, is expressed as:

U1j =Cdd
4π

∫ ∞

0
dr r exp

(
− r

2

4η

)
J0(rd1j)Z(r), (9)

Z(r) =
(

4
3

√
κ2η

π
− r exp

(
r2

4κ2η

)
erfc

(
r

2
√
κ2η

))
,

where J0 is the Bessel function of first kind, d1j = l/δ,
if j = 2, 4, and d1j = l

√
2/δ, if j = 3. Here, the on-site

dipolar interaction is given by Udip = lim
dij→0

U1j ∝ f(κ).

The term δ = 1 + 2V1/(V0k
2w2

1) arises when isolating the
four-site region from the rest of the lattice, which causes
the wells to slightly approach each other.

Integrability condition

The physical setup above is able to simulate the EBHM.
To achieve NOON-state generation, however, relies on the
particular case for which the EBHM is integrable; as ex-
plained previously, this can be accomplished by making
U0 = U13, which we call the “integrability condition”. The
approach is to first choose a value for the s-wave scat-
tering length via Feshbach Resonance. Then, from the
condition just stated, one has to adjust ωr by varying the
laser beams intensities40 such that, at some point, U0 be-
comes the same as U13. From this point every Hamiltonian
parameter is evaluated only after the integrability condi-
tion is satisfied, which sets the intensity of the trapping
scheme.

By considering a = −21 (−20.85) a0, the system be-
comes integrable at ωr ≈ 2π × 37.078 (2π × 31.610) kHz,
as is depicted in Fig. 4. This frequency implies on a
2D-lattice depth of V0 ≈ 18.495ER (13.443ER), where
ER/~ = ~(kπ)2/(2ml2) = 26.894 kHz is the recoil en-
ergy, which characterizes a deep lattice. This allows for a
higher stabilization of the system with a negative value for
the s-wave scattering length41. Then, by using this trap-
ping frequency to calculate the Hamiltonian parameters,
one finds U/~ ≈ 75.876 (76.519) Hz and J/~ ≈ 24.886
(73.219) Hz. It is also important to highlight that the
tunneling parameter J13 between diagonal sites (1-3 and
2-4), which is not included in the Hamiltonian (2), is very
small if compared to J . From this, one infers that the
tunneling between different horizontal layers of the opti-
cal lattice is even smaller, since the distance between these
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layers is bigger than the distance between diagonal sites
by a factor of

√
2.

Figure 4. Fulfillment of integrability condition. The s-
wave scattering length value is set, following by a variation
of the radial trapping frequency ωr up to the point at which
U0 = U13, corresponding to the frequency required for the
system to be integrable. The long dashed, short dashed
and solid lines depict U0 for a = −21 a0 and a = −20.85
a0 and U13, respectively, for different values of ωr. By set-
ting a = −21 a0 (−20.85 a0), we find ωr ≈ 2π × 37.078
kHz (31.610 kHz ) as the frequency for integrability, which
results in U0/~ = U13/~ ≈ 161.282 Hz (161.797 Hz). The
points where U0 = U13 and the corresponding frequencies
ωr are highlighted by the dotted lines. The system is ro-
bust for small deviations from the integrable point (see
Supplementary Note 4 for more details).

Breaking of integrability

To produce a controllable breaking of integrability, it is
sufficient to consider a second z-oriented Gaussian beam
(green beam in Fig. 5), weaker than the one used for the
region isolation, with waist wb ∼ 5 µm and wavelength
λ = 0.532 µm. This beam is displaced by ∆x and ∆y
(with |∆x|=|∆y|) from the center of the four-well system.
When the laser is turned on, it implements the terms

ν = 2Vbl

w2
bδ

(∆x+ ∆y), µ = 2Vbl

w2
bδ

(∆x−∆y), (10)

where Vb = 5 × 10−3V0 is the potential depth generated
by the second beam. For |∆x| = |∆y| = 0.2 µm and the
previously obtained radial trapping frequency, the param-
eters µ and ν can (non-simultaneously) assume the value
of 20.870 (15.168) Hz. Therefore, considering M = 4 and
P = 11, one should vary tµ from 0 to ∼ 0.007 (0.009)
s to encode Pθ from 0 to π. Also, from the condition
2νtν/~ = π/(2M), tν ∼ 0.009 (0.013)s.

An alternative physical setup is one designed to gener-
ate many copies of disconnected four-site plaquettes. This
can be realized by overlapping two square optical lattices,
each one with lattice spacing determined through differ-
ent wavelengths (λ and 2λ)42. By changing the relative
phase, the breaking of integrability can be simultaneously
controlled in all copies of the four-site plaquettes.

Discussion
We have offered new techniques to address the highly
challenging problem of designing a framework to facili-
tates NOON state creation. Our approach employs dipo-
lar atoms confined to four sites of an optical lattice. The
setup allows for the interactions to be tuned, and to fix
the couplings in such a way that the system is integrable.
At these couplings, and for controlled perturbative break-
ing of the integrability, the theoretical properties of the
system become very transparent.

The insights gained from integrability allowed us
to develop two protocols. Protocol I employs a local
measurement procedure to produce NOON states with
slightly higher fidelities, over a shorter time, than Proto-
col II. However Protocol I is probabilistic, requiring post-
selection on the measurement outcome. This is in contrast
to the deterministic approach of Protocol II. For both pro-
tocols, phase-encoding is performed by breaking the sys-
tem’s integrability, in a controllable fashion, at specific
moments during the time evolution. And in both protocols
the output states were shown to have high-fidelity in nu-
merical simulations. We also identifed a readout scheme,
by converting encoded phases into a population imbalance,
that allows verification of NOON state production through
measurement statistics.

The approaches we have described, that are based on
the formation of an uber-NOON state en route to the fi-
nal state, have two significant advantages. One is that
the evolution time does not scale with the total number of
particles. Instead, it is only dependent on the difference in
particle number of subsystem A and B in the Fock-state
input. The other advantage is that all measurements are
made in the local Fock-state basis.

We conducted an analysis of the feasibility of a physical
proposal. It was demonstrated that the long-range inter-
action between dipolar atoms allows for an integrable cou-
pling to be achieved, depending on the interplay between
contact and dipolar interactions. Through the second-
quantization procedure the values for the Hamiltonian pa-
rameters were provided, derived by numerical calculations.
These are seen to be realistic both in the context of optical-
lattice setups and in comparison to literature. We also out-
lined a procedure to improve the system’s robustness with
respect to error perturbation (see Supplementary Note 4
for a broader description).

Besides demonstrating the feasibility of NOON state
generation, the physical setup we provide can also be em-
ployed in the study of thermalization processes and other
many-body features of the EBHM. By establishing a link
between integrability and quantum technologies, this work
promotes advances in the field of neutral-atom quantum
information processing.

7



Figure 5. Representation of the trapping scheme. a Trapping scheme of the four-well model. In cyan, the two sets of
counterpropagating beams are represented, with each set crossing at 90° with the other, providing the two-dimensional
lattice trap. In orange, the two beams crossing at an angle of α = 60° are depicted, whose propagation occur in
opposite orientations as seen with respect to z-axis, resulting in the pancake-shaped potential. In blue, the single laser
beam is illustrated, whose waist value is at the typical size of the four-site system, isolating it from the rest of the
2D lattice. The external beam, used for breaking the system’s integrability, is depicted in green. b Zoom into the
region of the lattice which contains the four-well system. The blue beam represents the single laser beam isolating the
region of interest from the rest of the lattice. The green beam depicts the external beam, used to controllably break
the system’s integrability, and the four pancakes illustrate the four wells of the system. c The dashed square in the
x-y plane illustrates the square plaquette formed by the four-well system. The displacement of the central position of
the green beam with respect to the center of the four-well system is represented by ∆x and ∆y, which implement the
breaking of the system’s integrability. d The light grey background represents the trapping potential in the vicinities
of the four-well system. The four pancake-shaped wells, at a distance of l between nearest neighbors, are depicted in
blue, the cyan spheres illustrate the trapped atoms and the purple arrows represent the aligned dipoles, which induce
the dipole-dipole interaction.

Data availability
All relevant data are available on reasonable request from
the authors.
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Supplementary Note 1: Energy bands and
effective Hamiltonian

Here we give an overview of the origin for the effective
Hamiltonian. Recall that the integrability condition is
U13 = U24 = U0 and U12 = U23 = U34 = U14. When
J = 0, the Fock state |M − l, P − k, l, k〉 is eigenstate of
the Hamiltonian (2) with energy

E = C − U(M − P )2 (S.1)

where C = (U0 +U12)N2/4−U0/2. The result is indepen-
dent of l and k, indicating degeneracies. For small values
of J , the degeneracies are broken and lead to energy levels
in well-defined bands, each with 2(M + 1)(P + 1) energy
levels, except for N even, where the band with the highest
energy, M = P , will have (M + 1)(P + 1) levels. The
level energy structure of the case we are analyzing, with
N = 15, is shown in Supplementary Figure 1. In it, we
highlight in cyan the band with M = 4 and P = 11 (and
vice versa), while the vertical lines marks the two sets
of parameters pointed in the main text (repeated here,
expressed in Hz):

Set 1: {U/~ = 75.876, J/~ = 24.886, µ/~ = 20.870};
Set 2: {U/~ = 76.519, J/~ = 73.219, µ/~ = 15.168}.

0 1 2 3
U/J

-150

-100

-50

0

E
/

J

Supplementary Figure 1. Energy band formation. Di-
mensionless energy eigenvalues E/J as a function of di-
mensionless coupling U/J , where U = (U12 − U0)/4 and
considering C = 0 in (S.1). The dashed vertical line marks
U/J ∼ 3 (concerning parameter Set 1) and the dot-dashed
line marks (U/J ∼ 1) (concerning parameter Set 2), while
cyan depicts the band containing the expectation energy
of the initial state |Ψ0〉 = |4, 11, 0, 0〉. The formation of
the bands is due to the quadratic dependence of (M − P )
in the energy (S.1).

An effective Hamiltonian for each band is obtained by
consideration of second-order processes. Associated to la-

bels M and P , such that N = M + P , we obtain

Heff = J2

16U(M − P + 1)

(
a1a
†
3 + a3a

†
1

)(
a†2a2 + a†4a4

)

+ J2

16U(M − P + 1)

(
a1a
†
1 + a3a

†
3

)(
a†2a4 + a†4a2

)

− J2

16U(M − P − 1)

(
a2a
†
2 + a4a

†
4

)(
a†1a3 + a†3a1

)

− J2

16U(M − P − 1)

(
a2a
†
4 + a4a

†
2

)(
a†1a1 + a†3a3

)

+ J2

16U

(
1

M − P + 1 −
1

M − P − 1

)

×
(
a†1a2a3a

†
4 + a†1a

†
2a3a4 + a1a

†
2a
†
3a4 + a1a2a

†
3a
†
4

)
.

For a given initial Fock state, the resonant regime is
achieved when the expectation energy lies in a region char-
acterized by an energy band. There, the values of the
integrability-breaking parameters µ, ν may be as large as
the band-separation allows, which is depicted in Supple-
mentary Figure 2.

Supplementary Figure 2. Energy bands for broken in-
tegrability. Four-well model energy distribution for the
two sets of parameters U and J , as in the main text. a
Set 1: U/J ∼ 3 and b Set 2: U/J ∼ 1. The vertical lines
indicate the respective integrability-breaking parameters
µ/~ = 20.870 Hz (a) and µ/~ = 15.168 Hz (b). The cyan
lines represent the energy band associated to the initial
state |Ψ0〉 = |4, 11, 0, 0〉.
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Supplementary Note 2: Probabilities and
fidelities
Supplementary Table 1 shows the measurement probabil-
ities of Protocol I, as well as the fidelity of the resulting
state with the respective NOON state, for M = 4, P = 11
and the two aforementioned sets of parameters. The re-

sulting NOON state from Protocol I can be either symmet-
ric (r = 0) or antisymmetric (r = M). For intermediate
values for the outcome of measuring N3, we calculate the
fidelity of the resulting state with the symmetric NOON
state (r = 0, 1) or the antisymmetric state (r = 2, 3, 4),
respectively.

Protocol I:

Set 1
Phase (Pθ)

Measurement 0 π/6 π/4 π/3 π/2 π

r P(r) FI P(r) FI P(r) FI P(r) FI P(r) FI P(r) FI

0 0.5009 0.9977 0.5009 0.9977 0.5009 0.9978 0.5009 0.9978 0.5009 0.9977 0.5009 0.9978
1 0.0006 0.0488 0.0006 0.0489 0.0006 0.0494 0.0006 0.0499 0.0006 0.0501 0.0006 0.0512
2 0.0003 0.0164 0.0003 0.0160 0.0003 0.0155 0.0003 0.0162 0.0003 0.0169 0.0003 0.0155
3 0.0013 0.0447 0.0013 0.0450 0.0013 0.0452 0.0013 0.0453 0.0013 0.0454 0.0013 0.0463

M=4 0.4956 0.9996 0.4957 0.9996 0.4956 0.9996 0.4956 0.9996 0.4957 0.9996 0.4957 0.9996

Set 2
Phase (Pθ)

Measurement 0 π/6 π/4 π/3 π/2 π

r P(r) FI P(r) FI P(r) FI P(r) FI P(r) FI P(r) FI

0 0.4922 0.9642 0.4922 0.9643 0.4922 0.9644 0.4922 0.9644 0.4922 0.9645 0.4923 0.9649
1 0.0097 0.1219 0.0097 0.1221 0.0097 0.1219 0.0097 0.1214 0.0097 0.1221 0.0096 0.1214
2 0.0053 0.0400 0.0053 0.0384 0.0053 0.0378 0.0053 0.0375 0.0053 0.0363 0.0053 0.0320
3 0.0139 0.1336 0.0139 0.1338 0.0139 0.1333 0.0139 0.1332 0.0139 0.1332 0.0139 0.1325

M=4 0.4629 0.9886 0.4631 0.9886 0.4632 0.9887 0.4633 0.9887 0.4635 0.9887 0.4640 0.9888

Supplementary Table 1. Measurement probabilities and NOON state fidelities. Probability of measuring r particles
at site 3 of Protocol I, and fidelity of the resulting state with the symmetric NOON state (r = 0, 1) or the antisymmetric
NOON state (r = 2, 3, 4). In this calculation, we employed the parameters Set 1 and Set 2 and considered M = 4 and
P = 11.

Supplementary Note 3: Readout statistics

For less ideal choices of parameters, it is possible to per-
form a fitting on the readout probabilities amplitudes, such
that

Protocol I





P(0, 0) = P(M, 0) = c00
2 cos2

(
Pθ

2

)

P(0,M) = P(M,M) = cMM

2 sin2
(
Pθ

2

)

Protocol II





P(0) = c0 sin2
(
Pθ

2 −
π

4

)

P(M) = cM cos2
(
Pθ

2 −
π

4

)

where c00, cMM , c0 and cM are constants that are ob-
tained by fitting the numerically-evaluated data with the
analytic models. By choosing the parameters of Set 2, we
obtain the following constants from a least-squares fitting:
c00 = 0.938, cMM = 0.893, c0 = 0.954 and cM = 0.909.
The results are shown in Supplementary Figure 3.
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Supplementary Figure 3. Readout probabilities. Com-
parison between analytic and numerically-calculated prob-
abilities relating to the parameters of Set 2 with µ/~ =
ν/~ = 15.168 Hz, for different values of Pθ. a) Probabil-
ity distributions for measuring N3 = 0 (N3 = M) after
time evolution subsequent to Protocol I. b) Probability
distributions of measuring N3 = 0 (N3 = M) after time
evolution subsequent to Protocol II. In both cases, the dot-
ted lines refer to the analytic probabilities adjusted to the
numerical points according to the Eqs. (S.2). The coef-
ficients used were c00 = 0.938, cMM = 0.893, c0 = 0.954
and c = 0.909. The insets show the accordance between
predicted and calculated probabilities in semilogarithmic
scale.

Supplementary Note 4: Robustness
Here we analyze the system’s robustness in the presence
of a perturbation parameter, and outline a method to en-
hance performance. Supposing that the integrability con-
dition is subject to an error, denoted by ξ:

ξ = U0 − U13. (S.2)
We find that the fidelities for the parameters Set 1 are
above 0.9 for an error parameter ξ/J up to ∼ 0.01%, while
the parameter Set 2 is able to produce NOON state with
fidelities above 0.9 up to ξ/J ∼ 0.03%.

To enhance the fidelity, we propose a procedure that
consists of both positive (+ξ) and negative (−ξ) devia-
tions in Eq. (S.2). This can be done, for instance, by con-
sidering a sequence of pulses1. This is appropriate when
considering an error parameter in the physical setup: after
fixing the desired (approximate) s-wave scattering length,

the trapping frequency adjustment may not have the re-
quired precision, allowing for a minimum-error of ±ξ.

Considering perturbations H±(µ, ν) of the Hamilto-
nian, with the form

H±(µ, ν) = H(U±, J±) + µ±(N2 −N4)
+ ν±(N1 −N3)± ξ(N1N3 +N2N4),

set Ū , J̄ and µ̄ as the mean values for the two cases +ξ
and −ξ. We then calculate the times tm and tµ from these
mean values. Next, running a simulation that alternates
Nδt times between the extreme coupling values during the
integrable time evolution over tm− tµ leads to an increase
in the system’s tolerance to the error, as depicted in Sup-
plementary Figure 4.

0.4

0.6

0.8

1.0

F
I

a

Protocol I :

Set 1:
r = 0

r = M b

Set 2:
r = 0

r = M

0 0.01 0.02
ξ/J

0.4

0.6

0.8

1.0

F
II

c

Protocol II :

Set 1

0 0.01 0.02
ξ/J

d Set 2

Supplementary Figure 4. Robustness. NOON states
fidelities with respect to a perturbation parameter ξ, for
Protocols I (panels a and b) and II (panels c and d). Pan-
els a and c: Set 1. Panels b and d: Set 2. We considered
ν = µ in Protocol II evaluations. For every ξ, we evaluate
the fidelities, with Pθ = π/2, for the Hamiltonian param-
eters obtained by solving for ωr that corresponds to Eq.
(S.2) (cf. Figure 4 of the main text). With Nδt = 100 os-
cillations between +ξ and −ξ, NOON states are produced
with fidelities higher than 0.9 for ξ/J up to 1.2% on the
left, and more than 2.0% on the right.

.
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