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Abstract— This paper presents the implementation of a soft
sensor for hand-grasping force by the sEMG (Surface Elec-
tromyography) collect from 6 different muscles in the ventral
regions of the forearm. This work is implemented in the enve-
lope of the signal from sEMG by a low-pass filter with a cut fre-
quency of 3Hz, which maintains the information of the energy
of the signal. An Artificial Neural Network (ANN) was applied
for the regression of the force and was done an online applica-
tion of the model as a soft sensor, and has as input the 6 chan-
nels of sEMG rectified and filtered. Four volunteers were tested
to see the viability of the regression, all of them showed high
Rsq for fitting the regression model, 0.99, 0.98, 0.98 and 0.97, re-
spectively proving the capability of the application. The online
performance demonstrated 16.66[N] of root mean square error,
approximately 3.14% of a MVC (Maximal Voluntary Contrac-
tion) threshold of volunteer 01.

Keywords— Soft sensor, ANN, low-pass filter, hand-grasping
force, sEMG.

I. INTRODUCTION

The surface Electromyography (sEMG) is widely used in
prosthesis control. Its adoption to control prosthesis, for in-
stance, increases the life quality and gives greater autonomy
to the user [1] [2] [3] [4]. As the signal is collected from the
skin, some influences from other groups of muscles are cap-
tured even though the electrodes are placed in specific places
as the central region of the targeted muscle [5]. The force ap-
plied by a prosthetic hand or by an exoskeleton is extremely
delicate, and some quotidian tasks as hold a glass needs a
force control to avoid harm to the user [1] [2] [6] [7] [8].
During the use of prostheses, the response must be fast to the
user, with a maximum delay of 300 [ms] so that the user does
not have the perception of delay [9].

The signal from sEMG contains some useful information
of the body movements and the amplitude of the signal is
directed linked with the force applied by the muscle [10]. The
signal has a stochastic nature and has an amplitude in the
range of 1-10 mV , and a frequency in the range of 15-500 Hz
[1].

The goal in this study is the implementation of a soft sen-
sor of grip-hand force in an online application, as [9] the

model should not introduce a delay that is perceivable by the
user.

To estimate the force made by the user, the sEMG signal
is acquired from specifics superficial muscles located on the
forearm. Then the signal is processed, rectified, enveloped
and the data is located on a database. Therefore the data is
processed and feeds an Artificial Neural Network (ANN), to
regress the force applied on a dynamometer.

In some previous works related is possible to see the im-
plementation of a force regression by the sEMG signal ap-
plied offline [11]. Where the regression was made by 6 chan-
nels of sEMG by the ELM (Extreme Learning Machine),
SVM (Support Vector Machine) algorithms had the minor
RMSE (Root Mean Square Error).

In [12] it is possible to see one application of the estima-
tion of hand force using ANN (Artificial Neural Network),
where the estimated force was tested online, with a different
approach of movement of the hand.

In the work [13], it is possible to see the application of
hand orthosis for an individual with Duchenne muscular dys-
trophy, to increase the maximum grasping force of the partic-
ipant’s, improving from 2.8 to 8N, controlled by sEMG.

In other previous works with a different approach [14] in
the lower limb, the application is similar, without the use of
an accelerometer to support the network.

Fig. 1: Differential electrode position on forearm

1743



Fig. 2: A (Left) - Raw Signal of sEMG / B (Right) - Rectified and Filtered Signal

II. PROTOCOL AND ACQUISITION SYSTEM

A. Protocol

All procedures performed in these studies involving hu-
man participants were in accordance with the ethical stan-
dards of the institutional research committee and with the
1964 Helsinki declaration and its later amendments or com-
parable ethical standards. This study was approved by the In-
stitutional Review Board of Federal University of Rio Grande
do Sul under the Certificate of Presentation for Ethical Ap-
preciation number: 11253312.8.0000.5347.

As examined in [11], the combination of the 6 channels
utilized revels the better regression of the force. Following
previous guidelines [11], 6 muscles were chosen to perform
the regression. They are superficial and can be captured from
sEMG [15], being them: brachioradialis (BR),flexor carpi ra-
dialis (FCR), flexor carpi ulnaris (FCU), extensor carpi radiali
(ECR), extensor carpi ulnaris (ECU), and extensor digitorum
(ED), the position is showed in figure 1, with the superficial
electrode fixed in the ventral muscle region on the skin.

To starts to acquire the signals, the volunteer is oriented to
follow the standard position, sitting comfortably in an upright
position, the arm should be pointing down and, the forearm
resting on the support of the chair projected 90 degrees for-
ward.

Due to the necessity of synchronization, one stimulus was
shown to the volunteers 5 seconds before the analog gauge
started to climb from zero to Maximal Voluntary Contrac-
tion (MVC). During the force application cycle, the user is
induced to control his or her force, ramping until the MVC.
Right after that, the slow release of the dynamometer is in-

duced. The entirety of the cycle interval is 8 seconds, divided
in 4 seconds of force application until the MVC and 4 sec-
onds of slow-release until the relaxed state.

The interval between each press is 30 seconds and the
movement is done repeatedly for 10 times each test. The
database is composed of 4 volunteers and each one did 8 tests.
Therefore, each volunteer has 80 press movements. The inter-
val between tests is more than 5 minutes.

B. Acquisition

The acquisition of the sEMG was done by a Data Ac-
quisition (DAQ) NI UBS-6289 from NATIONAL INSTRU-
MENTS (A/D of 18 bits), with a sample acquisition of 2kHz
combined with a system acquisition SAS1000 V8 from EMG
System do Brasil. The signal of force was collected by a dy-
namometer from EMG System do Brasil, and acquired by
a DAQ-mx 6009 from NATIONAL INSTRUMENT with a
sample acquisition of 2kHz, which was characterized. The
signal from one accelerometer was captured together for fu-
ture implementations. All the signals were acquired by a rou-
tine in the software LabView, where was performed by a com-
puter with 8 GB of RAM, processor i5.

III. METHOD

Due to the nondeterministic and stochastic nature of the
sEMG, it is hard to regress the signal. Then it is common
to this area of study to work with the features of the signal,
as RMS and medium frequency. However, this work has an
intent to run online, then no feature that requires processing
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Fig. 3: A (Left) - Model regression of one movement of volunteer 02 / B (Right) - Response of the soft sensor in validation tests of volunteer 01

signal as frequency-domain is proper to efficiency. The goal
is to use less processing as possible.

A. Dynamometer Characterization

The dynamometer used to capture the signal was charac-
terized by the introduction of standard weights at the input
and output voltage measurements, as shown in table 1, and
the system’s output and input function was regressed by iter-
ations.

Table 1: Data collected from the dynamometer for characterization.

Weight [kg f ] Output [V]

0.0000 0,105622

0.2582 0,112208

0.4582 0,123458

0.6582 0,129756

1.2582 0,157926

1.4582 0,167134

1.6582 0,177304

B. Data processing

The first treatment of the signal was the rectified since the
important feature for this work is the energy in the signal,
which is linear and proportional by the force applied [11].

The exploration of envelope techniques for the sEMG sig-
nal exhibit that the use of RMS of the signal is common to en-

velop the signal of sEMG [10] [11], but thinking in an online
application that requires a low process demand, was studied
one low-pass filter that provides a possibility of a hardware
application, using fewer computational resources. The filter
applied to this work was a low-pass Butterworth of 4th order
with a cut frequency of 3 Hz and yet remaining the energy of
the signal.

C. Regression

The data of each volunteer was separated into 6 of 8 trials
to training the model and 2 of 8 to test the model of regres-
sion. The model used in this work is ANN, where the input
layer is formed by 6 neurons equivalent to each channel of
the sEMG processed with the implemented filter, The model
used in this work is ANN, where the input layer is formed by
6 neurons equivalent to each channel of the sEMG processed
with the implemented filter.

The hidden layer has 100 neurons defined by a sweep
from 40 till 100. With hyperbolic tangent sigmoid activa-
tion transfer function on each neuron and the method of
back-propagation of the error was tested with the Levemberg-
Marquart and the Bayesian regularization method. Lastly, the
output neuron has a linear function.

Then for the validation, a network pre-trained with the vol-
unteer’s data and Bayesian back-propagation method is im-
plemented in the LabView by the MatLab block. Letting all
processes run in LabView software with MatLab in a back
run.
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IV. RESULTS

A. Dynamometer Characterization

The curve fitting of the data collected on the Table 1 into
a linear equation result in the transfer function observed in
equation 1 where x is weight in kg f , and f (x) is voltage, with
a Rsq of 0.9961.

fx = 0.04409x+0.1028 (1)

B. Data processing

The result of the data processing to envelope the signal and
keep the energy proved to be promising, and the rectifier and
filter can be applied to hardware to consume less processing
power of the machine. The resulting signal is observed in fig-
ure 2.

C. Model Regression

The 6 channels of the filtered signal from figure 2 and the
ANN model for regression has made by 6 neurons in the in-
put layer, 100 neurons in the hidden layer, the used method
of back-propagation error were Bayesian. The set of trials
1,2,3,4,5, and 7 was used to train the model, and the set of
trials 6 and 8 was used to validate the model. The signal was
segmented to 4 seconds before the movement, the movement,
and 4 seconds after the movement.

Table 2: Mean Square Error (MSE) of the test set and the R from regression
of each volunteer trained by the network model.

Volunteer Test set MSE Regression R

Volunteer 01 4.9910−4 R = 0.992627

Volunteer 02 2.2310−3 R = 0.989760

Volunteer 03 3.1010−3 R = 0.989372

Volunteer 04 3.2610−3 R = 0.97977

As the results of Mean Square Error (MSE) in table 2,
the regression of the force accomplishes by the sEMG signal
from the 6 selected group of muscles works, for exemplifi-
cation in figure 3.a is possible to observe the response of the
regression. The results of the volunteer 01 have the best fit
and the lower MSE.

D. Online Performance

As shown in figure 2, the force can be regressed by an
ANN with the 6 channels of sEMG, an ANN is implemented
in the LabView by a MatLab block pre-trained.

For the model validation, was performed 6 trials each with
10 moves only performed by the volunteer 01. The response
of the soft sensor in figure 3.b shows the possibilities to
regress the signal of sEMG into force. Thus, the soft sensor
shows the capabilities to measure the force applied to an ob-
ject without really measure the force. The maximum punctual
absolute error was 0.3163[V ], that can be applied to the sen-
sibility of equation 1 than the force is approximately 70.3[N],
that occur in the point of transition of the MVC to the release
of the dynamometer.

The Root Mean Square Error (RMSE) for all the 6 trial of
10 movements each, is 0.0283[V ] equivalent to 6.28[N], ap-
proximately 3.14% of the MVC. Beyond the use of the soft
sensor, with a threshold value of force, the system has the
capability of identifying the MVC, although each volunteer
has a different threshold [16], for the volunteer 01, was deter-
mined by visual inspection an MVC of 200[N].

V. DISCUSSION

The database is limited to the specific positioning from
which the data was collected. For greater robustness and use
of prostheses, the database should be expanded with varia-
tions of posture and grip position of the dynamometer for
better generalization of the model used in the soft sensor.

It is interesting to continue the database by introducing
volunteers who do not have forearm muscles or have a par-
tial amputation of the forearm, conducting the study of the
position of the electrodes, displacing, or adding electrodes in
the ventral regions of the chest muscles of the volunteer in
future work. Since humans also can adapt and learn with the
systems.

This kind of envelope is capable of being applied in hard-
ware, and that was the intent to use this kind of envelope of
the signal, that will require less software performer, and can
be scalable to a portable computer like a RaspBerry as [14].
Since the force regression doesn’t work with classes, it was a
smooth transition of the output signal.

VI. CONCLUSION

The biological signal was captured by electrodes as Fig-
ure 1, and as pre-processing was rectified than pass through
a low-pass filter with a cut frequency of 3Hz as displayed in
Figure 2, the energy of the signal was retained as the infor-
mation of the movement in the pre-processed signal by the
envelope technical applied.

As the results point, the regression of force to a soft sensor
implementation is possible, as the figure 3.b shows the re-
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sponse of the soft sensor in use. Also, until a subtle change in
the pattern of the position of the electrode or the hold position
of the dynamometer can influences the system [16], to pre-
vent that instability is recommended to in each trial refix the
electrodes to train the network with different positions always
targeting the ventral position of the muscle, as demonstrated
in [15].

The demonstrated RMSE is approximately 3.14% of the
MVC value of volunteer 01, clearly occurs with greater in-
tensity at the point of greatest volunteer effort, not least be-
cause several factors influence it, such as the presence of
small volunteer tremors in the execution of their maximum
strength. The database did not deal with trials of forces be-
low the MVC.

For future works, we recommend using haptic technolo-
gies to give feedback of force to the user in conjunction with
the soft sensor implemented in this work. The soft sensor
shows a promissory response to the sEMG signal, keeping
the morphology of the force applied into the dynamometer,
demonstrating the higher error just into the peak of force in
MVC. We also recommend the hardware application of the
filter with the purpose of the envelope the signal. This method
of the envelope is viable to use in online application orthosis
or prothesis and can be combined with some classified system
of movements as done in [1].
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