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ABSTRACT

This work deals with the image-based feedback control of a camera, providing an
optimization-based control design method for a controller that positions the projection of
an external point (feature) at a specified display coordinate. Working with a Differential-
Algebraic Representation (DAR) of the camera dynamics modeled in terms of quater-
nions, a static output feedback (SOF) controller that uses the error between the desired
and current image is determined to generate a torque input for the system. From the
Lyapunov method for stability analysis, the problem is converted into an optimization
problem subject to constraints in the form of Bilinear Matrix Inequalities (BMI), which
is solved through an iterative process. The results with DAR are compared to a similar
process using a Quasi-Linear Parameter-Varying (Quasi-LPV) representation, which is
developed in parallel along the text. Numerical results are provided to demonstrate the
practicability of the method and show that a feasible solution achieves the objective of
making the error asymptotically approach zero.

Keywords: Nonlinear Systems, Visual-Based Rotation Control, Differential Alge-
braic Representation, Linear Matrix Inequalities, Static Output Feedback.



RESUMO

Este trabalho lida com controle baseado em realimentação da imagem de uma câmera,
fornecendo um método de projeto de controlador baseado em otimização, para um con-
trolador que posiciona a projeção de um ponto externo em uma coordenada de exibição
especificada. Trabalhando com uma Representação Diferencial Algébrica (DAR) da dinâ-
mica da câmera modelada em termos de quaternions, um controlador com realimentação
estática de saída (SOF) que usa o erro entre a imagem desejada e a atual é determinado
para gerar uma entrada de torque para o sistema. A partir do método de análise de es-
tabilidade de Lyapunov, o problema é convertido em um problema de otimização sujeito
a restrições sob a forma de Desigualdades Matriciais Bilineares (BMI), o qual é resol-
vido através de um processo iterativo. Os resultados com DAR são comparados a um
processo semelhante usando uma representação de Variação Paramétrica Quase Linear
(Quasi-LPV), a qual é desenvolvida em paralelo ao longo do texto. Resultados numéricos
são fornecidos para demonstrar a praticidade do método e mostrar que uma solução viável
atinge o objetivo de fazer com que o erro se aproxime assintoticamente a zero.

Palavras-chave: Sistemas não lineares, Controle de Rotação Baseado em Visão, Re-
presentação Algébrica Diferencial, Desigualdades Matriciais Lineares, Realimenta-
ção Estática de Saída.
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1 INTRODUCTION

1.1 Motivation and Literature Review

The rigid-body rotational control is a research topic highly motivated by the aerospace
sector for the attitude control of aircraft, quadrotors and spacecraft (CHATURVEDI;
SANYAL; MCCLAMROCH, 2011), with some of the works making use of the quater-

nion angular representation (MAYHEW; SANFELICE; TEEL, 2011; LEE, 2011; SALTON
et al., 2017). Nevertheless, several other applications can be made possible with the de-
velopment of strategies focused on solving this control problem, such as robotic manipu-
lators (SARAIVA, 2019) or even for the entertainment sector, with virtual reality motion
simulators. Having this context in mind, another wide field of study relates to camera
orientation control (HU et al., 2009; GLEICHER; WITKIN, 1992; MAHONY; HAMEL,
2005), having applications from sports events broadcasting to public security.

The present work aims at developing a vision-based control for the rotation of a cam-
era, with the objective of positioning the image projection of light emitting points (called
features) on a desired coordinate of the display. For that, the pinhole camera model is
used for image formation (MA et al., 2004; HU et al., 2009) and the control strategy is
intended to find an optimal static output feedback (SOF) gain for the closed-loop system.

The nonlinear nature of the system’s dynamics enhances the complexity of the prob-
lem, requiring an adequate representation of its differential equations. For that, Quasi-

Linear Parameter-Varying (Quasi-LPV) (HUANG; JADBABAIE, 1999; ROBLES; SALA;
BERNAL, 2019) and Differential Algebraic Representation (DAR) (COUTINHO et al.,
2004; TROFINO; DEZUO, 2014) are used. To tackle the problem effectively, both state
feedback (SARAIVA, 2019; SALTON et al., 2017) and output feedback (CASTRO, 2019)
control strategies for dynamic nonlinear systems were reviewed and served as a basis for
the development of this work.

1.2 Dissertation Contribution

The main objective and contribution of this dissertation is to provide a systematic
method for finding a static output feedback control law that stabilizes, using the image
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output and the rotation speed, a closed-loop rigid-body dynamic system with quaternions

representing the rotation of a camera, with the purpose of displaying a feature on a desired
position of the projected image.

To achieve this objective, state-space models have been obtained using a differential
algebraic representation (DAR), containing adequate output equations for output feed-
back purposes. A Quasi-LPV representation of the same system has also been obtained
in order to compare both the accomplishment of the objective and some performance
characteristics using one representation or the other.

Using the image error as feedback for the SOF control design, combined with the
angular velocity, eliminates the need for having to sense the angular position directly,
which is desirable considering it would be an additional quantity to be measured, one that
could increase significantly the complexity of the control. The angular velocity, however,
can usually be measured more efficiently with less complexity regarding implementation.

While guaranteeing closed-loop stability, it was necessary to design a controller that
also maximizes the region of attraction estimate of the system states’ initial conditions,
based on a predefined maximum desired domain. With the static output feedback con-
troller design resulting in a non-convex optimization problem subject to BMI restrictions,
an iterative optimization technique has been applied so it was possible to transform it in
a convex optimization problem with LMI restrictions. Performance constraints for expo-
nential decay rate and oscillation reduction have also been added and evaluated in both
representations as an extension of the main problem solution.

The research developed and presented in this dissertation has originated the following
paper, submitted to the Brazilian Symposium on Automation Intelligence (SBAI) 2021:

• RICHTER, M. S.; SALTON, A. T. Static output feedback control for the rotation
of a 2-DOF differential-algebraic quaternion camera.

1.3 Text Outline

The dissertation is organized as follows. In Chapter 2 some background concepts and
definitions are presented, including rotation in terms of quaternions, the image forma-
tion process for the projection of external points and stability analysis based on matrix
inequalities, as well as important mathematical tools that are used throughout the text. In
Chapter 3, a rigid-body dynamic rotation model using quaternions is presented in terms
of differential equations, where the output of the system is also defined adequately for
the proposed work. Quasi-LPV and DAR state-space representations for the system are
then defined, whose resulting matrices are applied to the closed-loop analysis. In Chapter
4, the control design problem is addressed as an optimization problem to be solved con-
sidering both model representations, Quasi-LPV and DAR, for a predefined domain of
interest. A polytopic approach that serves as a basis for the BMI/LMI stability conditions
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is presented for addressing varying parameters inside state-space matrices. The solutions
developed considering performance extensions for decay rate and reduced oscillation are
also explained. In Chapter 5, simulation results are presented and analyzed to verify the
achieved solution methods. Finally, in Chapter 6, concluding remarks and suggestions for
future works are presented.
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2 PRELIMINARIES

2.1 Quaternions and Inertial Frames

The orientation of a rigid body can be expressed in terms of quaternions (MAY-
HEW; SANFELICE; TEEL, 2011; SPRING, 1986; DE FARIA et al., 2016), which are
hypercomplex numbers, or quadruples of real numbers q = (η, εx, εy, εz) forming a four-
dimensional real vector space H (named after their creator William Hamilton) (KRISH-
NASWAMI; SACHDEV, 2016).

The quaternions can, then, be written as q = η + εxî + εy ĵ + εzk̂ = η + ~ε, where
η is called the "scalar" part and ~ε = ε the "vectorial" part of q (KRISHNASWAMI;
SACHDEV, 2016). Considering a unit quaternion has norm equal to 1 (DAM; KOCH;
LILLHOLM, 1998), it is possible to establish the relationship between η and ε according
to equation (1).

η2 + εᵀε = 1 (1)

In addition to that, according to (KRISHNASWAMI; SACHDEV, 2016), similarly to
Euler’s formula eiψ = cos(ψ) + i sin(ψ) for unit complex numbers, unit quaternions can
be expressed by (2).

q = cos(ψ/2) + ~r sin(ψ/2) (2)

From that, it is possible to represent the quaternions as follows:

q =

[
cos(ψ

2
)

~r sin(ψ
2
)

]
=

[
η

ε

]
=


η

εx

εy

εz

 (3)

where η ∈ R, ε ∈ R3, ψ ∈ R is the rotation angle [rad] and ~r ∈ R3 describes the rotation
axis and its direction (by using the right-hand rule).

To establish the references for the angular movement of the camera, two Inertial
Frames are defined:



15

• Reference frame F̄ : representing the desired orientation of the camera, in which the
Z̄ axis points to where the camera should point so that the feature would be at the
desired position on the projected image. Supposing one is "looking" towards Z̄, X̄
and Ȳ are orthogonal axes, pointing to the right and up, respectively.

• Body frame F : representing the camera frame, with the Z axis along a line on the
direction the camera is pointing to, X to the right of the camera and Y pointing up.

Since this work does not deal with any camera translation, the body frame is consid-
ered to be positioned at the origin of the reference frame.

In this context, a rotation matrix in terms of a quaternion can be derived relating one
frame to the other. The rotation matrix defined as R(q), which is equivalent to a set of 3
subsequent Euler angle rotations, will then represent the necessary rotation for the camera
to have the desired orientation, i.e., to rotate the body through an angle ψ about the unit
vector ~r (SPRING, 1986).

By introducing the half-angle trigonometric functions to the rotating operator (us-
ing Rodrigues formula) (SHAH, 1997; MAYHEW; SANFELICE; TEEL, 2011; KRISH-
NASWAMI; SACHDEV, 2016), the matrix in terms of quaternions representing a rota-
tion ψ about the ~r axis and relating the body frame to the reference frame can finally be
obtained in (4) (MARKLEY; CRASSIDIS, 2014).

R(q) = I − 2ηS(ε) + 2S(ε)2 (4)

where R(q) ∈ SO(3) (group of all rotations about the origin of the 3D Euclidean space)
and S(·) represents the cross-product in matrix form1.

2.2 Image Formation

To begin with, the pinhole camera model is presented, which is used in this work as
a basis for the image projection calculations. The main aspect of this model is that it
considers the aperture of a thin lens as an infinitesimal hole through which all light rays
are forced to pass, remaining therefore undeflected (MA et al., 2004). Due to that, the
only external light emitting points that contribute to the projection of each {x̂, ŷ} position
on the display lie on a line going through the center of the lens and reaching the image
plane behind it.

Spatially, this relation between an external point {µx, µy, µz} and the position where
the line intersects the image plane can be seen in figure 1 and represented mathematically

1In matrix form, the cross-product ~v × ~w can be expressed by:

S(~v)~w =

 0 −v3 v2

v3 0 −v1
−v2 v1 0


w1

w2

w3

 (5)
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through equation (6) (MA et al., 2004; SHAH, 1997). Note, however, that the original
equation has a minus sign in front of f , which is, instead, hereby assumed to be positive.
This is done to eliminate the image flipping effect, meaning therefore that the image plane
is considered to be in front of the lens ("frontal" pinhole model), inverting the direction
of the axis perpendicular to it (MA et al., 2004).

xdist = f
µx
µz

ydist = f
µy
µz

(6)

where f is the focal length of the camera in units of distance.

Figure 1 – "Frontal" pinhole imaging model.

Source: adapted from MA et al, 2004

To provide a sufficient description of the imaging process using the pinhole model
and how the equations that derive from it are applied to the problem in scope, it is useful
at this point to briefly explain the homogeneous coordinates. Following, the definition,
taken from (GRAUSTEIN, 1930):

Definition 2.1. Homogeneous Coordinates (p1, p2, p3) of the finite point (z1, z2) are any

three numbers p1, p2, p3 for which

p1

p3

= z1,
p2

p3

= z2 (7)

Taking that into account, a point has an infinite set of homogenous coordinates pro-
portional to the third coordinate, being represented by {λz1, λz2, λ}, where λ can assume
any value. Analogously to the illustration in figure 1 for the image plane, a 2D point can
be seen as the intersection of a line from the origin to the infinity with a plane spaced λ
from the origin. A particular case is for instance when the depth λ = 1, which makes, as a
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reference to (7), p1 = z1 and p2 = z2. Additionally, extending this definition to n dimen-
sions, every set of coordinates can be represented by an (n+ 1) number of homogeneous
coordinates.

This system of coordinates also provides a useful representation for points at infinity
{z1, z2, 0} (GRAUSTEIN, 1930) as well as facilitates some transformations (e.g., trans-
lation, rotation and scaling) to be done using operations with matrices (MA et al., 2004;
SHAH, 1997).

From (6) and considering the pixel scaling and translation to the principal point of the
display, the image projection of a point can be calculated according to (HU et al., 2009;
MA et al., 2004):

m =

fx fθ ox

0 fy oy

0 0 1


︸ ︷︷ ︸

Kc

µn (8)

where m = [x̂ ŷ 1]ᵀ establishes the image projection coordinates, µn ∈ R3 is the
normalized point in relation to the body (camera) frame, in homogeneous coordinates,
and Kc ∈ R3×3 is the intrinsic parameters matrix.

The intrinsic parameters concatenated in matrix Kc are parameters dependent on the
camera, based only on its calibration or physical characteristics, being those (HU et al.,
2009; MA et al., 2004):

• ox, oy ∈ R - pixel coordinates of the principal point (image center);
• fx ∈ R : fx = ρx - where ρx is the size of unit length in horizontal pixels;
• fy ∈ R : fy = ρy

sin(θ)
- where ρy is the size of unit length in vertical pixels and θ is

the skew angle between camera axes;
• fθ ∈ R : fθ = −ρx cot(θ) - where ρx is the size of unit length in horizontal pixels

and θ is the skew angle between camera axes.
Considering also the rotation of the point in matrix form (no translation treated), to

modify the reference of µ from the body frame to the reference frame, the image projec-
tion equation becomes (MA et al., 2004):

λm = KcR(q)µ0 (9)

where µ0 ∈ R is the point in relation to the reference frame, in homogeneous coordinates
and λ ∈ R is the depth of the rotated point in relation to the camera frame.

2.2.1 Features

The light emitting points which are projected on the camera image are called features.
It is important to mention that the control applied on the camera is based on the relative
orientation between the orientation of the camera and the feature. The feature’s spatial
coordinates {µx, µy, µz} in relation to the body frame correspond to the current image
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being displayed when the rotation matrix is the Identity, i.e., with no rotation applied.
The feature µ can, then, be represented by equation (10):

µ =
[
µx µy µz

]ᵀ
→ µn =

[
µx/µz µy/µz 1

]ᵀ
(10)

Note that the point coordinates were normalized so that the third term (Z̄ axis) is equal
to 1. This is due to the fact that for the projected image, the original and the normalized
coordinates are equivalent (see the definition of homogeneous coordinates in section 2.2),
but the output of the image formation equation only represents the exact pixel coordinates
on the screen in case this "depth" term is 1 (see equation (9)).

2.3 Lyapunov Stability using Matrix Inequalities

The study of stability of equilibrium points is a matter of huge interest when dealing
with the design of nonlinear control systems, and this is no different in the scope of this
work. Considering that, the concept of Lyapunov stability turns out to be useful in this
context, providing criteria to analyze objectively such characteristic. As explained in
(KHALIL, 2002), "Lyapunov stability theorems give sufficient conditions for stability,
asymptotic stability, and so on."

In light of this, the following definition taken from (KHALIL, 2002) is presented, pre-
cisely defining stability for an equilibrium point at the origin, which can be extended to
all equilibrium points with no loss of generality:

Definition 2.2. Consider the autonomous system

ẋ = f(x) (11)

where f : X → Rn is a local Lipschitz map from a domain X ⊂ Rn into Rn.

Suppose x̄ ∈ X is an equilibrium point of (11) at the origin of Rn, i.e., f(x̄) = 0.

Then, the equilibrium point x̄ = 0 is

• stable if, for each ε > 0, there is a δ = δ(ε) > 0 such that

‖x(0)‖ < δ ⇒ ‖x(t)‖ < ε, ∀t ≥ 0 (12)

• unstable if it is not stable.

• asymptotically stable if it is stable and δ can be chosen such that

‖x(0)‖ < δ ⇒ lim
t→∞

x(t) = 0 (13)

More specifically, the stability problem for rational nonlinear systems in a differential-
algebraic representation is addressed by (COUTINHO et al., 2004) and (TROFINO;
DEZUO, 2014) (which treats also uncertain parameters in the modelling), presenting
sufficient LMI conditions that assure stability of the equilibrium points by applying the
Lyapunov theory.
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Such matrix inequalities conditions are extensively used in this work, coming as a
result of the stability analysis for the control design proposed. However, as it can be
verified in the following chapters, the static output feedback applied brings with it an
additional problem: considering the way that the matrix inequalities variables become
structured, it is not trivial to recover the feedback gain with a simple substitution of vari-
ables. Therefore, it becomes necessary to solve directly the BMI that follows from the
stability analysis.

The problem of checking the solvability of BMIs is classified as NP-hard (i.e., non-
deterministic polynomial-hard), as shown in (TOKER; OZBAY, 1995). This classifica-
tion comes from the P versus NP problem, an important problem in computer science
concerned with the limits of feasible computation (COOK, 2003). The impact, as it is
explained in (SADABADI; PEAUCELLE, 2016), is that although BMI solvers exist, they
most often fail to provide a solution for SOF problems with BMI restrictions, requiring
other indirect methods to be used, such as with iterative LMI heuristics. This is the case
of the P-K algorithm used (EL GHAOUI; BALAKRISHNAN, 1994), serving as a suc-
cessful tool to help finding a feedback gain that satisfies the Lyapunov stability conditions
mentioned above.

2.4 Background Mathematical Techniques

Some useful mathematical and algebraic techniques which were taken from (BRIAT,
2015; BOYD; VANDENBERGHE, 2004) are highlighted in this section, serving as im-
portant tools to the development of this work.

Lemma 2.1. (Schur complement) Consider matrices A ∈ Sn1 , C ∈ Sn2 and B ∈ Rn1×n2 .

Then, the following inequalities are equivalent:

i [
A B

Bᵀ C

]
� 0 (14)

ii

A � 0 and C −BᵀA−1B � 0 (15)

iii

C � 0 and A−BC−1Bᵀ � 0 (16)

Proof can be obtained in (BOYD; VANDENBERGHE, 2004).

Lemma 2.2. (S-procedure) Consider symmetric matrices P0, P1, . . . , Pm ∈ Rn×n where

X =
{
x ∈ Rn : xᵀPix ≤ 0, i = 1, . . . ,m

}
(17)
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If there exist scalars τ1, . . . , τm ≥ 0 such that

P0 −
m∑
i=1

τiPi ≤ 0 (18)

then xᵀP0x ≤ 0 ∀ x ∈ X , x 6= 0.

Proof can be obtained in (BOYD; VANDENBERGHE, 2004).

Lemma 2.3. (Finsler’s Lemma) Consider a symmetric matrix M ∈ Rn and a full-rank

matrix B ∈ Rm×n,m < n. Then, the following statements are equivalent:

i The inequality xᵀMx < 0 holds for all x ∈ X where

X := {x ∈ Rn : Bx = 0, x 6= 0}. (19)

ii There exists a symmetric matrix C ∈ Sm such that the inequality

M −BᵀCB � 0 (20)

holds.

iii There exists a matrix L ∈ Rm×n such that the inequality

M + LᵀB +BᵀL � 0 (21)

holds.

Proof can be obtained in (BOYD et al., 1994).



21

3 MODELS

3.1 Rigid-Body Dynamic Rotational Model using Quaternions

3.1.1 Differential equation model

The rigid-body dynamic model with rotation angle expressed in terms of quaternions

is described by the set of equations in (22) (CHATURVEDI; SANYAL; MCCLAM-
ROCH, 2011; MARKLEY; CRASSIDIS, 2014):


η̇ = −1

2
εᵀω

ε̇ = 1
2

(
ηI3 + S(ε)

)
ω

Jω̇ = −S(ω)Jω + τ

(22)

where ω ∈ R3 is the angular velocity [rad/s], J ∈ R3x3 is a diagonal matrix representing
the body moment of inertia around each axis [kg ·m2], τ ∈ R3 is the input torque [N ·m]
and S(·) represents the cross-product in matrix form.

The open-loop equilibrium points of this system are any η and ε representing the
quaternion with angular velocity ω = 0.

As described in (SALTON et al., 2017), when imposing ε to a certain value, η is con-
sequently a result of equation (1). By that, it is possible to eliminate η dynamic behavior
equation from the model.

The resulting model to be used is, then, defined by (23).{
ε̇ = 1

2

(
ηI3 + S(ε)

)
ω

Jω̇ = −S(ω)Jω + τ
(23)

where, as it is shown on the sections devoted to the state-space modeling of the system,
the states will be chosen as ε and ω. And, considering η will still appear on the state-space
matrices, it will therefore be treated as a time-varying parameter with predefined limits.

3.1.2 Output Definition

Recalling the image formation process described in chapter 2.2, it is straightforward
that the output of a camera will be related to its image. Therefore, in order to provide



22

an adequate signal to serve as a feedback to the system and considering the desired ori-
entation of the camera is such that the feature is projected at a specified position on the
display, then the image error is taken as an output of the system.

The image error is defined as the difference between the current or "real" image and
the desired image, in terms of pixels along each axis of the display.

Based on the feature image projection process described in (HU et al., 2009), let the
vectors µF and µ̄F̄ represent the current and desired feature’s Euclidean coordinates in re-
lation to the body frame F and reference frame F̄ , respectively (inertial frames presented
in section 2.1), so that,

µF ,
[
xµ yµ zµ

]ᵀ
µ̄F̄ ,

[
x̄µ̄ ȳµ̄ z̄µ̄

]ᵀ (24)

where µF ∈ R3, µ̄F̄ ∈ R3, xµ, yµ, zµ ∈ R and x̄µ̄, ȳµ̄, z̄µ̄ ∈ R.
Then, taking into account there is no translation from F to F̄ (as explained in section

2.1, both frames are positioned at the origin), the geometric relationship between these
points can be given by (HU et al., 2009):

µF = R(q)µ̄F̄ (25)

where R(q) ∈ SO(3) represents the orientation of F̄ in relation to F , rotated by ψ as
shown in figure 2 (see equation (3)). Note that when the body frame is aligned with the
reference frame, R(q) = I3.

Figure 2 – Rotation from body frame to reference frame.

Source: adapted from MA et al, 2004

The feature coordinates are normalized so their depth is set as 1, similarly to homoge-
nous coordinates, being defined as:

µc ,
µF
zµ

=
[
xµ
zµ

yµ
zµ

1
]ᵀ
⇔ µF = zµµc

µ̄ , µ̄F̄
z̄µ̄

=
[
x̄µ̄
z̄µ̄

x̄µ̄
z̄µ̄

1
]ᵀ

,
[
a b 1

]ᵀ
⇔ µ̄F̄ = z̄µ̄µ̄

(26)
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which combined with (25) results in the following rotational relationship, adapted from
(HU et al., 2009):

µc =
z̄µ̄
zµ
R(q)µ̄ = γR(q)µ̄ (27)

where γ ∈ R is a scaling term based on the actual features’ coordinates, interpreted as a
depth ratio between them.

Since the feedback control law applied in this work is based on the image error, the
scaling term γ in (27) is intentionally γ = 1 without loss of generality (MA et al.,
2004), avoiding unnecessary additional complexity in the image projection error state-
space models.

The current and desired feature projections are defined by the vectors:

m ,

x̂mŷm
1

 m̄ ,

x̄m̄ȳm̄
1

 (28)

where m, m̄ ∈ R3 are the image projections given by the pinhole camera model (MA
et al., 2004; HU et al., 2009) as a result of:

m = Kcµc = KcR(q)µ̄

m̄ = Kcµ̄
(29)

where Kc ∈ R3×3 is the camera intrinsic parameters’ matrix described in section 2.2 and,
taking into account (27), the current image projection is calculated in terms of the desired
feature coordinates and the quaternion rotation between frames.

This brings the image error to be defined as:

e = m− m̄ = Kc(R(q)− I3)µ̄ = Kc(−2ηS(ε) + 2S(ε)2)µ̄ (30)

Another output of the system is the rotation speed ω, which also corresponds to one
of the system states. Thinking of ω as a predicted information2 of the future error (by
extrapolation), using it as an additional feedback signal tends to impose to the system
an extra – anticipated – control action that can reduce the deviation from the set point, in
other words, the overshoot and oscillation. In addition to this, angular velocity sensors are
generally low-cost and have a fairly low-complexity on their implementation, as opposed
to direct angular position sensing.

Finally, the output of the system can be defined as:

y =

[
e

ω

]
(31)

where y ∈ R6 is the output of the system, e ∈ R3 is the image error and ω ∈ R3 is the
rotation speed.

2Other signals could have been used for that purpose, e.g. the derivative of the error, but that would
bring to the system an undesired complexity, by adding more non-linearity in the feedback loop.
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3.2 3D Dynamic Models

Considering the nonlinear nature of the rigid-body rotation dynamics and image pro-
jection on the output, in order to address a control design focused on acquiring a stable
closed-loop system via matrix inequalities optimization, two state-space representations
were used for system modeling: Quasi-LPV and DAR. Through the imposition of further
restrictions to the problem, the stabilization problem as well as some performance goals
can be addressed by means of linear or bilinear matrix inequalities (LMI/BMI) with both
modeling techniques (ROBLES; SALA; BERNAL, 2019; SARAIVA, 2019).

The Quasi-Linear Parameter-Varying representation is derived from the LPV mod-
eling, in which the state-space matrices that compose the system are functions of time-
varying parameters (KWIATKOWSKI; BOLL; WERNER, 2006). More specifically, the
Quasi-LPV approach is characterized by state-space equations in which the system ma-
trices are state-dependent (HUANG; JADBABAIE, 1999; ROBLES; SALA; BERNAL,
2019). This variation on the parameters requires a validity region to be defined for the
state variables, which in this case consists of {ε ∈ (−1, 1), ω ∈ R}, implying local stabil-
ity conditions for the analysis.

Another approach to model rational and polynomial nonlinear systems is the Differ-

ential Algebraic Representation, which as described in (TROFINO; DEZUO, 2014) can
be helpful in providing sufficient LMI conditions to design a controller acquiring closed-
loop asymptotic stability in a system. As opposed to the quasi-LPV modeling, the DAR
succinctly consists in mapping the nonlinearities of a rational function in an additional
vector, whose terms are second or higher order groups of the states (TROFINO, 2000;
COUTINHO et al., 2004; SALTON et al., 2017; CASTRO, 2019; SARAIVA, 2019). In
this representation, an algebraic expression relates the state vector with the nonlinear vec-
tor, being that used for both the dynamic of the states and the output if applicable.

Note that to avoid discontinuities in η = 0, in both model representations the validity
region for this variable will be considered {η ∈ (0, 1]}.

3.2.1 Quasi-LPV 3D Model

The quasi-LPV 3D model is defined by

{
ẋ = A(x, η)x+Bτ

y = C(x, η)x
(32)

where x ∈ R6 is the system state vector and y ∈ R6 is the output vector. Note that
the matrix B is not state-dependent: this is a result of the system modeling and not a
characteristic of the representation.
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As explained in section 3.1.1, the system states and inputs are characterized by:

x =



εx

εy

εz

ωx

ωy

ωz


τ =

τxτy
τz

 (33)

The resulting matrices for the 3D Quasi-LPV representation (which is not unique) are
expressed as follows, with A(x, η) and B matrices given by

A =



0 1
2
ωz −1

2
ωy

−1
2
ωz 0 1

2
ωx

1
2
ωy −1

2
ωx 0

0 0 0

0 0 0

0 0 0

1
2
η 0 0

0 1
2
η 0

0 0 1
2
η

0 j−1
x (jy − jz)wz 0

j−1
y (jz − jx)wz 0 0

j−1
z (jx − jy)wy 0 0


B =


03x3

j−1
x 0 0

0 j−1
y 0

0 0 j−1
z

 ,

(34)
while by rewriting the error in equation (30) and the rotation speed ω as

e =

fx fθ ox

0 fy oy

0 0 1


︸ ︷︷ ︸

Kc

 −2ε2y − 2ε2z 2εxεy + 2ηεz 2εxεz − 2ηεy

2εxεy − 2ηεz −2ε2x − 2ε2z 2εyεz + 2ηεx

2εxεz + 2ηεy 2εyεz − 2ηεx −2ε2x − 2ε2y


︸ ︷︷ ︸

(−2ηS(ε)+2S(ε)2)

ab
1


︸︷︷︸
µ̄

ω =

1 0 0

0 1 0

0 0 1


ωxωy
ωz


(35)

and considering the output y =
[
e ω

]ᵀ
as in (31), matrix C(x, η) can be obtained after

an algebraic manipulation with {ε, ω} variables in evidence3.

By that, it can be seen that: A(x, η) depends on the rotation speed ω, η and the in-
ertia matrix J (assumed to be constant), B depends only on the inertia matrix J and
C(x, η), which contains the image-related information, depends on the intrinsic parame-
ters {fx, fy, fθ, ox, oy}, the desired feature coordinates {a, b} and the quaternion {η, ε}.

It should be also noted that, in the trivial scenario where the moment of inertia in J is
equal for the three axis, i.e. jx = jy = jz, then A(x, η) is no longer dependent on the ω
cross-product, since the bottom-right terms of the matrix are cancelled.

3Due to the size of matrix C(x, η) and the space limitation, it was chosen to omit the complete matrix.
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3.2.2 DAR 3D Model

In accordance with the description given, the DAR 3D model is given by


ẋ = A1(η)x+ A2ξ +B1τ

0 = Ω1(x)x+ Ω2ξ

y = C1(η)x+ C2π

0 = Π1(x)x+ Π2π

(36)

where x ∈ R6 is the system state vector, y ∈ R6 is the output vector, ξ ∈ R9 is the
nonlinear vector for the rigid-body dynamics and π ∈ R6 is the nonlinear vector for the
output dynamics.

The DAR will be regular if Ω2 and Π2 are nonsingular (and therefore invertible). In
this case, the original dynamics in (23) and (31) can be recovered by means of

ẋ =
(
A1(η)− A2Ω−1

2 Ω1(x)
)
x+B1τ

y =
(
C1(η)− C2Π−1

2 Π1(x)
)
x

(37)

Taking as a basis the DAR obtained in (SALTON et al., 2017) for state-feedback and
including the output nonlinear terms, the model vectors can be defined as follows:

x =



εx

εy

εz

ωx

ωy

ωz


ξ =



εxωy

εxωz

εyωx

εyωz

εzωx

εzωy

ωxωy

ωxωz

ωyωz


π =



ε2x

ε2y

ε2z

εxεy

εxεz

εyεz


τ =

τxτy
τz

 (38)

And the resulting matrices for the 3D DAR representation (which is also not unique)
are expressed by:

A1 =

03x3

1
2
η 0 0

0 1
2
η 0

0 0 1
2
η

03x3 03x3

 A2 =



0 0 0 1
2

0 −1
2

0 −1
2

0 0 1
2

0
1
2

0 −1
2

0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0

0 0 0

0 0 0

0 j−1
x (jy − jz) 0

j−1
y (jz − jx) 0 0

j−1
z (jx − jy) 0 0


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B1 =


03x3

j−1
x 0 0

0 j−1
y 0

0 0 j−1
z

 Ω1 =



−ωy 0 0 0 0 0

−ωz 0 0 0 0 0

0 −ωx 0 0 0 0

0 −ωz 0 0 0 0

0 0 −ωx 0 0 0

0 0 −ωy 0 0 0

0 0 0 −ωy 0 0

0 0 0 −ωz 0 0

0 0 0 0 −ωz 0


Ω2 = I9×9

C1 =



2(fθη − oxbη) 2(oxaη − fxη) 2(fxbη − fθaη) 0 0 0

2(fyη − oybη) 2oyaη −2fyaη 0 0 0

−2bη 2aη 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


(39)

C2 =



−2(ox − fθb) −2(ox − fxa) −2(fxa− fθb) 2(fθa+ fxb) 2(fx + oxa) 2(fθ + oxb)

−2(oy − fyb) −2oy −2fyb 2fya 2oya 2(fy + oyb)

−2 −2 0 0 2a 2b

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0



Π1 =



−εx 0 0 0 0 0

0 −εy 0 0 0 0

0 0 −εz 0 0 0

−εy 0 0 0 0 0

−εz 0 0 0 0 0

0 −εz 0 0 0 0


Π2 = I6×6

Recalling the quaternion, η is the scalar part, whose matrices dependencies will be
handled at a later stage. In addition to that, at the image formation process {fx, fy, fθ, ox, oy}
are the intrinsic parameters of the camera and {a, b} are the desired feature coordinates.

If the moment of inertia in J is equal for the three axis, i.e. jx = jy = jz, then the
bottom-right terms of A2 are cancelled and the model dynamics do not depend on the
interactions between the speed rotation in each axis, since the ω cross-product no longer
appears.



28

3.3 2D Dynamic Models

Considering the problem of setting one feature to a specified position on the projected
image by acting on the camera orientation through an input torque, as it is demonstrated
in chapter 4 a 2-dimensional dynamic model provides enough information of the system
dynamics to achieve this objective and stabilize the system.

This is somehow intuitive if one thinks that by rotating the camera only around the
X and Y axes ("looking" up/down and to the left/right), it is possible to make the cam-
era point at any direction. Eliminating the third degree of freedom forces the camera to
maintain a constant angle around the Z axis.

Therefore, having also in mind that the 2D model is considerably less complex (see
the following equations) than the 3D model, it is useful to develop the control synthesis
and optimization based on it.

This simplification is done by making the following assumptions: εz = 0, ωz = 0 and
τz = 0. Then, the model equations are refactored and redimensioned to eliminate the null
terms. The resulting Quasi-LPV and DAR 2D models follow.

3.3.1 Quasi-LPV 2D Model

To define the Quasi-LPV 2D model, the system states and inputs are described as
follows:

x =


εx

εy

ωx

ωy

 τ =

[
τx

τy

]
(40)

Being the resulting matrices for two dimensions are expressed by:

A =

02x2

1
2
η 0

0 1
2
η

02x2 02x2

 B =

 02x2

j−1
x 0

0 j−1
y



C =


2[fθ(η + aεy − bεx)− ox(εx + bη) + fxbεy] −2[fx(η + aεy)− ox(εy − aη)] 0 0

2[fy(η + aεy − bεx)− oy(εx + bη)] −2[oy(εy − aη)] 0 0

0 0 1 0

0 0 0 1


(41)

Note that, as opposed to the 3D model, in this case none of the matrices for the rigid-
body dynamics A(η) and B are directly functions of the states, although A(η) still de-
pends on the quaternion through η. The output matrix C(x, η), however, still has {εx, εy}
dependence.
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3.3.2 DAR 2D Model

On the DAR 2D model, it is clear in (42) that not only the system has a lower order,
but also the nonlinear vectors ξ and π.

x =


εx

εy

ωx

ωy

 ξ =

εxωyεyωx

ωxωy

 π =

 ε2x

ε2y

εxεy

 τ =

[
τx

τy

]
(42)

The resulting matrices for two dimensions are then expressed by:

A1 =

02x2

1
2
η 0

0 1
2
η

02x2 02x2

 A2 = 04x3 B1 =

 02x2

j−1
x 0

0 j−1
y



Ω1 =

−ωy 0 0 0

0 −ωx 0 0

0 0 −ωy 0

 Ω2 = I3×3

C1 =


2(fθη − oxbη) 2(oxaη − fxη) 0 0

2(fyη − oybη) 2oyaη 0 0

0 0 1 0

0 0 0 1

 C2 =


−2(ox − fθb) −2(ox − fxa) 2(fθa+ fxb)

−2(oy − fyb) −2oy 2fya

0 0 0

0 0 0



Π1 =

−εx 0 0 0

0 −εy 0 0

−εy 0 0 0

 Π2 = I3×3

(43)
Similarly to what happens in the Quasi-LPV 2D model, the nonlinear part of the rigid-

body dynamics vanishes on the DAR since A2 equals zero. The output, however, still has
the nonlinear vector π as a system parameter.
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4 CONTROL

4.1 Problem Definition

The control design problem, which is hereafter turned into an optimization problem,
will be solved for both model representations considered in this work: Quasi-LPV and
DAR.

In view of system (23), with states representing the camera rotation angle in terms of
quaternions (ε) and rotation speed ω; and outputs (31) representing the error between a
feature projection and its desired coordinates on the image and the rotation speed ω:

Problem 4.1. Considering a closed-loop system defined by the set of nonlinear equations

(32) for Quasi-LPV or (36) for DAR, determine a static output feedback control law that

maximizes the estimate of the region of attraction inside a specified domain of interest in

which the origin is guaranteed to be asymptotically stable.

Note that two problems are actually embedded in Problem 4.1, one for Quasi-LPV
system representation and one for DAR. It was kept as a single problem considering their
similarity and for comparison of results between them.

4.2 Control Structure

After the determination of the models’ matrices that represent the nonlinear system,
in order to solve Problem 4.1, the feedback of the system is defined as:

τ = Ky = K

[
e

ω

]
(44)

where K ∈ Rm×p, being m the number of inputs and p the number of outputs of the
system.
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4.3 Stability Analysis

As stated in section 3.3, since this work deals with a one feature problem, the 2D
model will be used and rotation around the Z camera axis won’t be treated, being the
parameters related to this additional degree of freedom assumed to be fixed as zero.

Considering this, adapting Theorem 4.1 from (KHALIL, 2002):

Lemma 4.1. Let x = 0 be an equilibrium point for ẋ = f(x). Given a domain of interest

x ∈ X containing the origin, if there is a Lyapunov candidate function V (x) = xᵀPx

such that

V (0) = 0, V (x) > 0 ∀ x ∈ X − {0} (45)

V̇ (x) = xᵀPẋ+ ẋᵀPx < 0 ∀ x ∈ X − {0} (46)

R = {x : V (x) 6 1} ⊂ X (47)

Then x = 0 is an asymptotically stable equilibrium point and R is an estimate of the

region of attraction, since every initial condition inside R asymptotically approaches the

origin.

Based on that, the following topics are now addressed to analyze local asymptotic
stability for equilibrium points, considering the requirements on region of attraction es-
timate: domain of interest, time-varying parameters and parameters based on the desired
scenarios covered.

4.3.1 Domain of Interest

Let xε := ε and xω := ω represent the state vectors for the quaternion and the ro-
tation speed, respectively (e.g. for a 2D system, xε = [xε1 xε2] = [x1 x2]ᵀ and
xω = [xω1 xω2] = [x3 x4]ᵀ). X can then be defined as the domain of interest, in
which any control law designed for the system (23) will be valid, according to:

X =

{
xε ∈ Rn/2, xω ∈ Rn/2 :

∑
i

x2
εi

αi
+
∑
i

x2
ωi

βi
≤ 1

}
, i = 1, . . . , n/2 (48)

where n is the number of states (system order) and X forms a hyperellipsoid, i.e., a higher
dimensional ellipsoid, with αi being the squared length limit for the ith dimension of ε
and βi being the squared length limit for the ith dimension of ω.

This is done to assign an elliptic range for both ε and ω in which it is desired that
the system respects the required stability characteristics. It is important to notice that this
region of attraction estimate in ε can be projected on the screen according to (9) (with µ0

taken as the center of the display, i.e., [0 0 1]ᵀ).
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The objective, therefore, is to design a control law that maximizes R ⊂ X in which
the origin is asymptotically stable. Then, it follows that:{

xᵀεM
−1xε + xᵀωN

−1xω ≤ 1
}
, ∀x : xᵀPx ≤ 1, i = 1, . . . , n/2 (49)

where:

M−1 =

α−1
1 0

. . .
0 α−1

i

 N−1 =

β−1
1 0

. . .
0 β−1

i

 (50)

By taking these relations and applying Lemma 2.2 (S-procedure), equation (49) be-
comes equivalent to:

∃κ ∈ R+ :

{
κP −

[
M−1 0

0 N−1

]
� 0

}
(51)

which defining κ = 1 (consideringR is restricted to the edges ofX ) and using Lemma 2.1
(Schur complement) can be stated as the following inequality (representing a restriction
to the optimization problem): [

P In

In Υ

]
� 0 (52)

where Υ =

[
M 0

0 N

]
.

The following steps are part of the procedure to define αi and βi limits. While βi is
specified in step (c), αi determination is complemented in next section, according to the
polytope defined for the states which encloses the region X .

(a) A desired angular range {±ψX̂ ,±ψŶ } inside or not of the camera field of
view, but limited to (−90°, 90°), is selected for X̂ and Ŷ axes of the display
as a domain of interest.

(b) Considering the elliptic form of the domain of interest, the rotation limits
around each camera axis are taken independently, resulting in:

qψX̂ =


cos(

ψX̂
2

)

0

sin(
ψX̂
2

)

0

 qψŶ =


cos(

ψŶ
2

)

sin(
ψŶ
2

)

0

0



qlim =


min {ηψX̂ , ηψŶ } 1

−εψŶ εψŶ
−εψX̂ εψX̂

0 0


(53)
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where ψX̂ is associated with a rotation around the camera Y axis and ψŶ with
a rotation around the camera X axis.

qlim definition makes η limited to positive values, avoiding any discontinuities
in η = 0 as already mentioned, and since the solution dynamics are continu-
ous, if the initial condition has η > 0, it will always be positive. The value of
ε, instead, is limited to (−1, 1).

(c) The limits for ω depend on the {±ψX̂ ,±ψŶ } range specified, taking into ac-
count an estimation of the settling time. In this case, by setting an arbitrarily
low settling time, the limits for ω represent a relaxed restriction. Considering
that:

N =

[
β1 0

0 β2

]
=

[
ψŶ/ts 0

0 ψX̂/ts

]
(54)

where ts[s] is an approximate maximum desired settling time.

Alternatively, as mentioned previously, if no restriction is to be imposed to ω, (49) can
be written as {

xᵀεM
−1xε ≤ 1

}
, ∀x : xᵀεPεxε ≤ 1, i = 1, . . . , n/2, (55)

where P =

[
Pε P12

P ᵀ
12 Pω

]
, resulting in inequality

[
Pε In/2

In/2 M

]
� 0 (56)

However, as discussed in (SALTON et al., 2017), not restricting ω to a defined domain
of interest can result in additional conservativeness and a smaller region of attraction
estimate for ε, since the stability conditions would have to be satisfied for the whole
possible range of ω.

4.3.2 Polytopic Approach for Time-Varying Parameters and Uncertainties

In a similar approach to (TROFINO; DEZUO, 2014; SALTON et al., 2017; SARAIVA,
2019), polytopes to evaluate the system for stability will be defined for both the time-
varying parameters and for other parameters that are expected to have a predefined range,
which are part of the state matrices. The difference here is that the domain of interestX in
which to maximize the actual region of interestR is not a polytope itself, but norm-based.

Therefore, in order to have a finite set of equations ensuring stability of the domain
of interest by evaluating points that are representative for this purpose, a convex hull of
vertices containing the ellipsoid is defined so that X ⊂ X̄ ⊂ VX̄ , where X̄ is the domain
specified in (57) which is contained by VX̄ . Note that, to have a less conservative set of
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vertices (closer to the actual norm-based domain of interest X ), it was chosen to have an
8-sided polytope, i.e., an octagon for the limits of ε.

Then, based on qlim:

X̄ =
{
x ∈ Rn : |x1| ≤ εψŶ cosφi, |x2| ≤ εψX̂ sinφi

}
, i = 1, . . . , 8 (57)

where εψX̂ , εψŶ are obtained from (53), φ1, . . . , φ8 are equally spaced angles from 0 to 2π

rad and X̄ ⊂ VX̄ .
With the definition of this polytope, which will be used to assess the stability of the

system, and completing the definition of the parameters for the domain of interest: as
stated previously, X ⊂ VX̄ . For that to be true, and to delimit correctly this ellipsoid
region for ε (i.e., tangent to X̄ ⊂ VX̄ ), it is maximized as follows, with a procedure
adapted from (POLCZ; SZEDERKÉNYI; PÉNI, 2015):

First, new vertices VZ are defined as the average points of VX̄ , therefore resulting in a
new (inner) polytope Z ∈ VZ :

Z =

{
z ∈ Rn :

z1 ≤ εψŶ
cosφi+cosφi+1

2
, z2 ≤ εψX̂

sinφi+sinφi+1

2
, i = 1, . . . , 7

z1 ≤ εψŶ
cosφi+cosφ1

2
, z2 ≤ εψX̂

sinφi+sinφ1

2
, i = 8

}
(58)

where z =
[
z1 z2

]ᵀ
.

The inner polytope definition has the objective of preventing the domain of interest
for RoA estimate from exceeding the limits of the outer polytope. For that, the domain of
interest X is maximized within the limits of Z by finding:

OP1:

max
M,υ

υ :


M � 0, υ ≥ 1[
z

1

]ᵀ [
M 0

0 −υ

][
z

1

]
≥ 0,

[
z

1

]ᵀ [
M 0

0 −1

][
z

1

]
≤ 0

(59)

where M =

[
α1 0

0 α2

]
is the matrix to be used in (52).

The computation of the domain of interest for ε is illustrated in figure 3.
To achieve a solution that successfully meets the objectives considering the desired

scope and existing constraints, the range of parameters that are expected to vary not only
in real-time, but also for the all anticipated scenarios when the solution is applied to the
actual system or model, has to be taken into account, otherwise the solution won’t be
satisfactory within the whole range, degrading any necessary robustness.

Hence, one of the available methods that can be employed to address such require-
ments is to map the expected range of the varying parameters and include them as un-
certainties, resulting therefore in an uncertain system. This approach, considering more
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Figure 3 – Forming the domain of interest.

Source: from the author

specifically uncertain rational nonlinear systems, is thoroughly studied in (TROFINO;
DEZUO, 2014), being conveniently used, for example, in (SALTON et al., 2017) and
(SARAIVA, 2019).

In the present work, in addition to the parameters (x, η) that are taken as arguments
of the model representations in (32) and (36) (since they are inherently variables of the
functions), the desired position of the feature in the image projection, represented by
{a, b} in (26), is also assigned a range so it is possible to define where the feature is
intended to be projected inside that range.

With that in view, these additional parameters are defined as follows, forming a new
polytope, ∆ ⊂ V∆:

∆ =



δ1 := η : min {ηψX̂ , ηψŶ } ≤ δ1 ≤ 1

δ2 := a : |δ2| ≤ tanψŶ
δ3 := b : |δ3| ≤ tanψX̂
δ4 := aη :

¯
δ4 ≤ δ4 ≤ δ̄4

δ5 := bη :
¯
δ5 ≤ δ5 ≤ δ̄5


, δi ∈ R, i = 1, . . . , 5 (60)

where δ =
[
δ1 δ2 δ3 δ4 δ5

]ᵀ
, ηψX̂ , ηψŶ are defined in (53), ψX̂ , ψŶ are defined in sec-

tion 4.3.1 item (a), [
¯
δ4, δ̄4] are the minimum and maximum values of all combinations of

δ2δ1, respectively, and [
¯
δ5, δ̄5] are the minimum and maximum values of all combinations

of δ3δ1, respectively.
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Considering the uncertainties δ2 and δ3 are associated with the normalized desired
feature coordinates {a, b, 1}, defining the limits of |δ2| to tanψX̂ actually means that the
coordinate a values are limited by that angle. This is established by the relation tanψX̂± a

1

(feature’s first over third coordinate). The same happens for the coordinate b and ψŶ ,
related to δ3 definition.

Completing the set of parameters inside the state matrices, some of them are, however,
considered constant and therefore given prior to the analysis and not defined as uncer-
tainties, being them: camera intrinsic parameters {ox, oy, fx, fy, fθ} and camera inertia
parameters {jx, jy, jz}.

4.3.3 Remarks on Stability Analysis

As stated in the previous sections, to assess the closed-loop system in all the necessary
vertices and guarantee asymptotic stability in the estimate of the region of attraction with
the control design proposed, there has to be a matrix inequality for each of the combina-
tions of parameters composing the vertices of the polytopes, and also for the combination
of these polytopes.

Then, considering the polytopes X̄ ⊂ VX̄ in (57) and ∆ ⊂ V∆ in (60), the matri-
ces that define system (23) in its Quasi-LPV representation (41) and DAR (43) need to
be evaluated at all the mentioned vertices. This makes the matrix inequalities which as-
sess system stability to be dependent on (x, δ) ∈ VX̄ × V∆ (TROFINO; DEZUO, 2014;
SALTON et al., 2017).

4.4 Control Design

Given the definition of the domain of interest and the polytopes evaluated, the follow-
ing theorems, which are adapted from (COUTINHO et al., 2004; SALTON et al., 2017;
SARAIVA, 2019), address the asymptotic stability of the closed-loop 2D camera system
using the Quasi-LPV representation and DAR, respectively, and consequently solving
Problem 4.1:

Theorem 1. (Quasi-LPV Stability) Considering the Quasi-LPV representation (32) of

system (23) and letting (44) be the static output feedback control law for the closed-loop

system: Suppose there are matrices K ∈ Rm×n and Q = Qᵀ � 0 ∈ Rn×n such that

for all (x, δ) evaluated at the convex set of vertices VX̄ × V∆ that contain the domain of

interest X given by (48) and the polytopic region ∆ given by (60):

He{(A(x, δ) +BKC(x, δ))Q} ≺ 0 (61)

[
Q Q

Q Υ

]
� 0 (62)
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Then, the origin is an asymptotically stable equilibrium point for all trajectories starting

in:

R = {x ∈ Rn : xᵀPx ≤ 1} ⊂ X (63)

where P = Q−1.

Proof: Considering a Lyapunov candidate function V (x) = xᵀPx, with P = Q−1, the
assumption taken that Q is a symmetric positive matrix leads to the conclusion that the
function is positive definite. Then, in order to verify that (61) implies V̇ (x) < 0, by
recalling the Quasi-LPV model equation (32) and including on it the control law τ = Ky,
the dynamic of x can be set as (dependence on (x, δ) is omitted from the proof):

ẋ = Ax+BKCx (64)

And, taking the derivative of V (x) as in (46), it can be shown that:

V̇ (x) = xᵀPAx+ xᵀPBKCx+ xᵀAᵀPx+ xᵀCᵀKᵀBᵀPx (65)

so that the asymptotic stability can be guaranteed if He{PA + PBKC} ≺ 0, which by
pre and post-multiplying by Q is equivalent to (61).

Regarding the region of attraction estimate for the system, one can show that it will
be constrained to the elliptic range defined by X , as stated in (63), if it is proven that (62)
implies (49). For that, the process described in this section leading from the definition
of the domain of interest in (48) to the inequality (52) is recalled. Considering that, it
suffices to take Lemma 2.1 (Schur complement) and show that (62) can be written as:

Q−QΥ−1Q � 0 (66)

which by pre and post-multiplying by P and applying again the Schur complement is
equivalent to (52).

Completing the proof, if BMIs (61) and (62) are satisfied for all vertices VX̄ ×V∆, by
convexity it can be assumed that it is true ∀x ∈ X , ∀δ ∈ ∆ and consequently ∀x ∈ R.

Theorem 2. (DAR Stability) Considering the DAR representation (36) of system (23) and

letting (44) be the static output feedback control law for the closed-loop system: Suppose

there are matrices K ∈ Rm×n, Q = Qᵀ � 0 ∈ Rn×n, W1 ∈ Rnξ×nξ and W2 ∈ Rnπ×nπ

such that for all (x, δ) evaluated at the convex set of vertices VX̄ × V∆ that contain the

domain of interest X given by (48) and the polytopic region ∆ given by (60):He{(A1(δ) +B1KC1(δ))Q} A2(δ)W ᵀ
1 +QΩᵀ

1(x) (B1KC2(δ))W ᵀ
2 +QΠᵀ

1(x)

He{Ω2W
ᵀ
1 } 0

? He{Π2W
ᵀ
2 }

 ≺ 0

(67)
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[
Q Q

Q Υ

]
� 0 (68)

Then, the origin is an asymptotically stable equilibrium point for all trajectories starting

in:

R = {x ∈ Rn : xᵀPx ≤ 1} ⊂ X (69)

where P = Q−1.

Proof: Considering a Lyapunov candidate function V (x) = xᵀPx, with P = Q−1, the
assumption taken that Q is a symmetric positive matrix leads to the conclusion that the
function is positive definite. Then, in order to verify that (67) implies V̇ (x) < 0, first the
dynamic of x is recalled from the DAR model in (36) taking into account the control law
τ = Ky, so that (dependence on (x, δ) is omitted from the proof):

ẋ = A1x+ A2ξ +B1KC1x+B1KC2π (70)

The derivative of V (x) then becomes for the DAR:

V̇ (x) = He{xᵀPA1x+ xᵀPB1KC1x+ xᵀPA2ξ + xᵀPB1KC2π} (71)

By defining a vector ζ =
[
xᵀ ξᵀ πᵀ

]ᵀ
, in a similar manner as (SALTON et al.,

2017), it is possible to convert (46) it into the matrix inequality that follows:

ζᵀ

He{PA1 + PB1KC1} PA2 PB1KC2

Aᵀ
2P 0 0

Cᵀ
2K

ᵀBᵀ
1P 0 0

 ζ < 0 (72)

After that, the algebraic equations of the DAR are introduced in the stability prob-
lem together with some scaling variables, aiming to guarantee feasibility of the solu-
tion (TROFINO; DEZUO, 2014). To achieve this, Lemma 2.3 (Finsler’s Lemma) is ap-
plied thus obtaining the following matrix inequality, equivalent to V̇ (x) < 0 considering
[Ω1 Ω2 0] ζ = 0 and [Π1 0 Π2] ζ = 0 according to the model representation defined in
(36):

V̇ (x) + He
{
ξL1

[
Ω1 Ω2 0

]
ζ
}

+ He
{
πL2

[
Π1 0 Π2

]
ζ
}
< 0 (73)

which similarly to (72) turns into the following matrix form:He{PA1 + PB1KC1} PA2 + Ωᵀ
1L

ᵀ
1 PB1KC2 + Πᵀ

1L
ᵀ
2

Aᵀ
2P + L1Ω1 He{L1Ω2} 0

Cᵀ
2K

ᵀBᵀ
1P + L2Π1 0 He{L2Π2}

 < 0 (74)

By pre and post-multiplying (74) by diag(Q,W1,W2) and its transpose, respectively,
where W1 = L−1

1 and W2 = L−1
2 , it finally results in (67).
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The region of attraction estimate for the system, once again, can be shown to be con-
strained to the elliptic range defined by X , as stated in (69), in case (68) implies (49).
The process described in this section leading from the definition of the domain of interest
in (48) to the inequality (52) is used and therefore it suffices to take Lemma 2.1 (Schur
complement) and show that (68) can be written as:

Q−QΥ−1Q � 0 (75)

which by pre and post-multiplying by P and applying again the Schur complement is
equivalent to (52).

Therefore, if BMIs (67) and (68) are satisfied for all vertices VX̄ × V∆, by convexity
it can be assumed that it is true ∀x ∈ X , ∀δ ∈ ∆ and consequently ∀x ∈ R.

4.5 Optimization Method

Problem 4.1 brings up the necessity of maximizing the estimate of the region of attrac-
tion of the solution, inside a pre-specified domain. From that, it is a natural way forward
to think of it as an optimization problem with restrictions.

First, it is important to mention that the matrix inequalities conditions obtained in sec-
tion 4.3 for asymptotic stability can be classified as BMIs, which, as already explained in
section 2.3, have NP-hard feasibility analysis (TOKER; OZBAY, 1995). Therefore, the
solution strategy developed in this work includes finding a way to linearize the optimiza-
tion problems (i.e., transforming the BMIs into LMIs) before applying the optimization
process.

Several methods exist for this purpose, as described in section 1.1, being the P-K it-
eration algorithm used to solve the problems handled herein. This method was proposed
by (EL GHAOUI; BALAKRISHNAN, 1994) (referred to as V-K), while (SADABADI;
PEAUCELLE, 2016) explains it in the context of the available methods for BMI opti-
mization solution, providing a review of the static output feedback design methods that
achieve a set of LMIs to be solved, mostly iterative ones.

Some of these iterative approaches are able to convert a non-convex SOF design into
a convex optimization problem (SADABADI; PEAUCELLE, 2016). More specifically,
having in mind for example the LMI in (61) (which results from the dual formulation
of the Lyapunov equation), the P-K algorithm makes it convex in Q for a fixed K, in
an attempt to achieve a feasible solution used to find P = Q−1, and convex in K for a
fixed Q, making it possible to even impose a structured gain if necessary (SADABADI;
PEAUCELLE, 2016).

As mentioned in (EL GHAOUI; BALAKRISHNAN, 1994), this is an heuristic algo-
rithm and does not guarantee global stability. However, even though it is a local opti-
mization procedure, it can achieve good results depending on its initialization. Also as an
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advantage of the P-K method, if a step of the iteration is infeasible, it does not directly
imply that a feasible controller is non-existent (EL GHAOUI; BALAKRISHNAN, 1994),
meaning that if it continues running efficiently for each step’s LMIs it is possible that
convergence is achieved.

To solve the SOF problem for the nonlinear camera system, synthesized by (61)-(62)
for the the Quasi-LPV representation and (67)-(68) for the DAR model, considering the
objective is to maximize the region of attraction estimate (restricted to a domain of in-
terest) to which the system is asymptotically stable, the minimization objective function
initially envisioned for the P-K algorithm is slightly modified. Instead of aiming at min-
imizing the largest eigenvalue of the matrix involved in the LMI by using an auxiliary
scalar variable until it becomes negative, achieving stability (SADABADI; PEAUCELLE,
2016; EL GHAOUI; BALAKRISHNAN, 1994), the objectives for each iteration step are
set as follows:

• For a fixed K: the trace of P (inverse of Q) will be minimized to achieve a larger
region of attraction estimate (the exact objective function will be explained in the
next sections);

• For a fixed P (through a fixed Q): the absolute value of the trace of the resulting
matrix on the left side of equations (61) or (67) is minimized. This is done to
maximize V̇ (x) such that the system is still asymptotically stable (according to
the restrictions), considering in the following step this will help approximating the
estimate of the region of attraction to its stability limits i.e., being further enlarged.

4.5.1 Algorithm Initialization

In order to improve the quality of the important initialization of the P-K algorithm, an
initial value for the gain K is obtained through the following process:

A linearized model of the system is evaluated at the equilibrium point at the center of
the image, with desired position at the same position, i.e., with:

qeq =


1

0

0

0

 ωeq =

0

0

0

 µ̄eq =

0

0

1

 (76)

From that, it is possible to estimate a gain matrix that stabilizes the system at the
referred point. Considering that it is likely that the system behavior will be similar if
evaluated at a point very close to the origin (infinitesimal distance), by having this initial
estimate of K and applying it to the first step of the optimization, the algorithm will be
able to look for a region of attraction estimate larger than this point in which the system
is still asymptotically stable.



41

The linearized state matrices become

A =

02x2

1
2

0

0 1
2

02x2 02x2

 B =

 02x2

j−1
x 0

0 j−1
y



C =


2fθ −2fx 0 0

2fy 0 0 0

0 0 1 0

0 0 0 1


(77)

Then, by taking the LMI in (61), changing the state matrices {A,B,C} by the lin-
earized ones in (77) and substituting Z ∈ Rm×n : Z = KCQ, it suffices to solve the
following optimization problem, adapted from (SALTON et al., 2017):

OP2:

min
Q, Z, N

trace(N) :


AQ+QAᵀ +BZ + ZᵀBᵀ ≺ 0[
Q I

I N

]
� 0

(78)

where N = Nᵀ ∈ Rn×n.
Using Lemma 2.1 (Schur complement), the bottom line of (78) implies N � Q−1 =

P , implicitly maximizingR since trace(N) > trace(P ).
Of course, at this stage there is no need to either define an LMI to restrict the DoI

or make use of a polytopic approach for the stability conditions, since the system is lin-
earized at a specified point.

Then, to acquire the initial estimated gain K, it follows that:

Kinit = ZPC−1 (79)

Note, from (77), that the linearized matrix C will always be invertible, since the intrinsic
parameters fx and fy will never be zero, making it a nonsingular matrix.

4.5.2 Resulting Optimization Problems

As previously explained, since the P-K algorithm is initialized with a non-arbitrary
pre-calculated gain, the first step is chosen as the one with fixed K = Kinit.

Then, since each iteration is comprised of two steps, for each model being analyzed
two optimization problems will be proposed. In addition to this, in the optimization prob-
lems involving the minimization of P , the same approach of OP2 will be taken by using
the auxiliary decision variable N , so that the RoA estimate is maximized considering
trace(N) > trace(P ).
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Quasi-LPV Stability
OP3 (fixed K):

min
Q, N

trace(N) :


(61), (62), ∀x ∈ VX̄ , ∀δ ∈ V∆[
Q I

I N

]
� 0

(80)

OP4 (fixed P ):

min
K, N
|trace(Λ)| :


(61), ∀x ∈ VX̄ , ∀δ ∈ V∆[
Q I

I N

]
� 0

(81)

where Λ is the resulting matrix on the left side of equation (61).

DAR Stability
OP5 (fixed K):

min
Q, W1, W2, N

trace(N) :


(67), (68), ∀x ∈ VX̄ , ∀δ ∈ V∆[
Q I

I N

]
� 0

(82)

OP6 (fixed P ):

min
K, W1, N

|trace(Λ)| :


(67), ∀x ∈ VX̄ , ∀δ ∈ V∆[
Q I

I N

]
� 0

(83)

where Λ is the resulting matrix on the left side of equation (67).

As it can be expected, the LMI for the DoI restriction is not present in the optimization
problems with fixed P , since it involves only the Q = P−1 variable.

4.6 Performance Extensions

4.6.1 Exponential Decay Rate

Considering the same system described for Problem 4.1:

Problem 4.2. Determine a static output feedback control law that maximizes the estimate

of the region of attraction, inside a specified domain of interest, in which every initial

state approaches the origin asymptotically at a decay rate of at least σ.

To address this performance problem, it is necessary to introduce the following defini-
tion, taken from (CASTRO et al., 2020), that will serve as a basis to determine conditions
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that guarantee the solution of the problem.

Definition 4.1. (σ-Exponential Convergence) The trajectories x(t) are said to converge

exponentially to zero inR if there exist scalars ε > 0 and σ > 0 such that

‖x(t)‖ ≤ ε‖x(0)‖e−σt ∀ t ≥ 0, ∀ x(0) ∈ R ⊆ Rn (84)

In this case, the trajectories x(t) approach the origin with an exponential decay rate

greater than σ.

Given the definition above, the domain of interest X in (48) and polytopes X̄ in (57)
and ∆ in (60), the following theorems, adapted from (CASTRO, 2019; SARAIVA, 2019;
SALTON et al., 2017) and using also concepts present in (BOYD et al., 1994), address the
asymptotic stability with exponential performance of the closed-loop 2D camera system.

Theorem 3. (Quasi-LPV Decay Rate) Considering the Quasi-LPV representation (32)
of system (23) and letting (44) be the static output feedback control law for the closed-

loop system: Suppose there are matrices K ∈ Rm×n and Q = Qᵀ � 0 ∈ Rn×n and

a positive scalar σ ∈ R such that for all (x, δ) evaluated at the convex set of vertices

VX̄ × V∆:

He{(A(x, δ) +BKC(x, δ))Q+ σQ} ≺ 0 (85)

[
Q Q

Q Υ

]
� 0 (86)

Then, all closed-loop trajectories starting in R asymptotically approach the origin at a

decay rate of at least σ, being this region of attraction estimate defined as:

R = {x ∈ Rn : xᵀPx ≤ 1} ⊂ X (87)

where P = Q−1.

Proof: Taking credit from the proof for Theorem 1, which demonstrates how the asymp-
totic stability criteria are transformed into a set of conditions based on matrix inequalities,
it follows that, by adding the decay rate term in (65) and assessing the stability condition
(46),

He{PA+ PBKC}+ 2σP ≺ 0, (88)

which is equivalent to (85) by pre and post-multiplying by Q, and also to:

V̇ (x, δ) < −2σV (x) (89)

The result of this differential inequality is, then:

V (x(t)) < V (x(0))e−2σt,∀x(0) ∈ R (90)



44

which, considering ε = 1 regarding Definition 4.1, completes the proof for the exponen-
tial decay rate problem with Quasi-LPV system representation. Note that, for polytopic
systems, this supplementary restriction adds constraints to the eigenvalues of all combi-
nations of (Ai +BiKCi) matrices, i = 1, . . . , nVX̄×V∆

, which are assessed in each matrix
inequality.

Theorem 4. (DAR Decay Rate) Considering the DAR representation (36) of system

(23) and letting (44) be the static output feedback control law for the closed-loop system:

Suppose there are matrices K ∈ Rm×n, Q = Qᵀ � 0 ∈ Rn×n, W1 ∈ Rnξ×nξ and

W2 ∈ Rnπ×nπ and a positive scalar σ ∈ R such that for all (x, δ) evaluated at the convex

set of vertices VX̄ × V∆:He{(A1(δ) +B1KC1(δ))Q+ σQ} A2(δ)W ᵀ
1 +QΩᵀ

1(x) (B1KC2(δ))W ᵀ
2 +QΠᵀ

1(x)

He{Ω2W
ᵀ
1 } 0

? He{Π2W
ᵀ
2 }

 ≺ 0

(91)[
Q Q

Q Υ

]
� 0 (92)

Then, all closed-loop trajectories starting in R asymptotically approach the origin at a

decay rate of at least σ, being this region of attraction estimate defined as:

R = {x ∈ Rn : xᵀPx ≤ 1} ⊂ X (93)

where P = Q−1.

Proof: Taking credit from the proof for Theorem 2, which demonstrates how the asymp-
totic stability criteria are transformed into a set of conditions based on matrix inequalities,
it follows that, by adding the decay rate term in (74) and assessing the stability condition
(46), He{PA1 + PB1KC1 + σP} PA2 + Ωᵀ

1L
ᵀ
1 PB1KC2 + Πᵀ

1L
ᵀ
2

Aᵀ
2P + L1Ω1 He{L1Ω2} 0

Cᵀ
2K

ᵀBᵀ
1P + L2Π1 0 He{L2Π2}

 < 0 (94)

which is equivalent to (91) by pre and post-multiplying by diag(Q,W1,W2) and its trans-
pose, and also to:

V̇ (x) + 2σV (x) + He
{
ξL1

[
Ω1 Ω2 0

]
ζ
}

+ He
{
πL2

[
Π1 0 Π2

]
ζ
}
< 0 (95)

Since [Ω1 Ω2 0] ζ = 0 and [Π1 0 Π2] ζ = 0, (95) becomes:

V̇ (x, δ) < −2σV (x) (96)
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The result of this differential inequality is, then:

V (x(t)) < V (x(0))e−2σt,∀x(0) ∈ R (97)

which, considering ε = 1 regarding Definition 4.1, completes the proof for the exponen-
tial decay rate problem with DAR system representation.

Considering the proposed Theorems 3 and 4, in a similar process as explained before
in 4.5, they are turned into optimization problems to maximize the estimate of the region
of attraction, in which the P-K iterative algorithm (EL GHAOUI; BALAKRISHNAN,
1994; SADABADI; PEAUCELLE, 2016) is used. For that, the same initial estimation for
K is taken as in (79), based on the solution of (78).

With that, it is possible to define the following optimization problems with the ob-
jective of maximizing the region of attraction estimate considering Quasi-LPV and DAR
representations, regarding Problem 4.2:

Quasi-LPV Decay Rate
OP7 (fixed K):

min
Q, N

trace(N) :


(85), (86), ∀x ∈ VX̄ , ∀δ ∈ V∆[
Q I

I N

]
� 0

(98)

OP8 (fixed P ):

min
K, N
|trace(Λ)| :


(85), ∀x ∈ VX̄ , ∀δ ∈ V∆[
Q I

I N

]
� 0

(99)

where Λ is the resulting matrix on the left side of equation (85).

DAR Decay Rate
OP9 (fixed K):

min
Q, W1, W2, N

trace(N) :


(91), (92), ∀x ∈ VX̄ , ∀δ ∈ V∆[
Q I

I N

]
� 0

(100)

OP10 (fixed P ):

min
K, W1, N

|trace(Λ)| :


(91), ∀x ∈ VX̄ , ∀δ ∈ V∆[
Q I

I N

]
� 0

(101)

where Λ is the resulting matrix on the left side of equation (91).
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4.6.2 Reduced Oscillation

Considering the same system described for Problem 4.1:

Problem 4.3. Determine a static output feedback control law that maximizes the estimate

of the region of attraction, inside a specified domain of interest, in which every initial state

approaches the origin asymptotically at a decay rate of at least σ, limiting the imaginary

part of the eigenvalues of the closed-loop system’s linear portion to ±ν.

This additional restriction on the linear part’s eigenvalues has the objective of reduc-
ing the oscillatory behavior of the system’s response, which will be referred hereafter as
constrained oscillatory behavior.

As additional tools to solve such performance extension of the original problem, the
definition of LMI regions and D-stability are now introduced according to (MACKEN-
ROTH, 2004).

Definition 4.2. (LMI Regions) A subset D is called an LMI region if there exists a

symmetric m×m-matrix L and an arbitrary m×m-matrix M such that:

D =
{
z ∈ C : L+ zM + z̄Mᵀ < 0

}
(102)

The matrix-valued function

fD(z) = L+ zM + z̄Mᵀ (103)

is denoted as the characteristic function of D.

Definition 4.3. (D-stability) A matrix A is called D-stable if all its eigenvalues lie in D.

It is important to note that, although the D-stability is defined for linear systems,
applying it on the hereby called "linear part" of the nonlinear system under study brings
the possibility of achieving relevant performance improvements.

Considering that, the following horizontal band LMI region is defined as a restriction
to the imaginary part of the eigenvalues of the set of linearized closed-loop feedback for
all vertices assessed. According to the format in (CHADLI; BORNE; DUBUISSON,
2012), for square matrices A and X , with z as the eigenvalues of A, and a positive scalar
ν:

S =

{
z ∈ C : | Im(z)| < ν ⇔

[
−2ν z − z̄
−z + z̄ −2ν

]
< 0

}
(104)

which gives the following LMI restriction:[
−2νX AX − (AX)ᵀ

−AX + (AX)ᵀ −2νX

]
≺ 0 (105)

Therefore, given the definitions above, the domain of interest X in (48) and poly-
topes X̄ in (57) and ∆ in (60), and also the LMI region in (104), the following theorems,
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adapted from (CASTRO, 2019), address the asymptotic stability with exponential perfor-
mance and constrained oscillatory behavior of the closed-loop 2D camera system.

Theorem 5. (Quasi-LPV Reduced Oscillation) Considering the Quasi-LPV representa-

tion (32) of system (23) and letting (44) be the static output feedback control law for the

closed-loop system: Suppose there are matrices K ∈ Rm×n and Q = Qᵀ � 0 ∈ Rn×n

and positive scalars σ ∈ R, ν ∈ R such that for all (x, δ) evaluated at the convex set of

vertices VX̄ × V∆:

He{(A(x, δ) +BKC(x, δ))Q+ σQ} ≺ 0 (106)

[
Q Q

Q Υ

]
� 0 (107)

[
−2νQ FQ− (QF )ᵀ

−FQ+ (QF )ᵀ −2νQ

]
≺ 0 (108)

where F = A(x, δ) +BKC(x, δ).

Then, all closed-loop trajectories starting in R asymptotically approach the origin at a

decay rate of at least σ with oscillation constrained by ν in the imaginary part of the

eigenvalues of F , being this region of attraction estimate defined as:

R = {x ∈ Rn : xᵀPx ≤ 1} ⊂ X (109)

where P = Q−1.

Proof: Taking credit from the proof for Theorem 1, which demonstrates how the asymp-
totic stability criteria are transformed into a set of conditions based on matrix inequalities,
and Theorem 3, which demonstrates how to guarantee a specified decay rate for V̇ (x), the
constrained oscillation of the dynamic behavior of the system response is achieved by
restricting the eigenvalues of F = A(x, δ) + BKC(x, δ) to a horizontal band with limits
on the imaginary part at [−ν, ν].

Assuming the additional restriction (108) is the LMI condition (similar to (105)) for
F to be D-stable (see Definition 4.3) in the S domain (104), respecting then the charac-
teristic function inside the domain definition, then according to Definition 4.2, S can be
considered an LMI region where the eigenvalues of F = A(x, δ) + BKC(x, δ) lie. This
verifies, therefore, the reduced oscillation requirement of Problem 4.3.

Theorem 6. (DAR Reduced Oscillation) Considering the DAR representation (36) of

system (23) and letting (44) be the static output feedback control law for the closed-loop

system: Suppose there are matrices K ∈ Rm×n, Q = Qᵀ � 0 ∈ Rn×n, W1 ∈ Rnξ×nξ and

W2 ∈ Rnπ×nπ and positive scalars σ ∈ R, ν ∈ R such that for all (x, δ) evaluated at the
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convex set of vertices VX̄ × V∆:He{(A1(δ) +B1KC1(δ))Q+ σQ} A2(δ)W ᵀ
1 +QΩᵀ

1(x) (B1KC2(δ))W ᵀ
2 +QΠᵀ

1(x)

He{Ω2W
ᵀ
1 } 0

? He{Π2W
ᵀ
2 }

 ≺ 0

(110)[
Q Q

Q Υ

]
� 0 (111)

[
−2νQ FQ− (QF )ᵀ

−FQ+ (QF )ᵀ −2νQ

]
≺ 0 (112)

where F = A1(δ) +B1KC1(δ).

Then, all closed-loop trajectories starting in R asymptotically approach the origin at a

decay rate of at least σ with oscillation constrained by ν in the imaginary part of the

eigenvalues of F , being this region of attraction estimate defined as:

R = {x ∈ Rn : xᵀPx ≤ 1} ⊂ X (113)

where P = Q−1.

Proof: Taking credit from the proof for Theorem 2, which demonstrates how the asymp-
totic stability criteria are transformed into a set of conditions based on matrix inequalities,
and Theorem 4, which demonstrates how to guarantee a specified decay rate for V̇ (x), the
constrained oscillation of the dynamic behavior of the system response is achieved by
restricting the eigenvalues of F = A1(δ) +B1KC1(δ) to a horizontal band with limits on
the imaginary part at [−ν, ν].

In a similar approach of the proof for Theorem 5, assuming the additional restriction
(112) is the LMI condition (similar to (105)) for F to be D-stable (see Definition 4.3)
in the S domain (104), respecting then the characteristic function inside the domain def-
inition, then according to Definition 4.2, S can be considered an LMI region where the
eigenvalues of F = A1(δ) + B1KC1(δ) lie. This verifies, therefore, the reduced oscilla-
tion requirement of Problem 4.3.

Again, as done in the decay rate performance extension, considering the proposed
Theorems 5 and 6, in a similar process as explained before in 4.5, they are turned into op-
timization problems to maximize the estimation of the region of attraction, in which the
P-K iterative algorithm (EL GHAOUI; BALAKRISHNAN, 1994; SADABADI; PEAU-
CELLE, 2016) is used. For that, the same initial estimation for K is taken as in (79),
based on the solution of (78).

With that, it is possible to define the following optimization problems with the ob-
jective of maximizing the region of attraction estimate considering Quasi-LPV and DAR
representations, regarding Problem 4.3:
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Quasi-LPV Reduced Oscillation
OP11 (fixed K):

min
Q, N

trace(N) :


(106), (107), (108), ∀x ∈ VX̄ , ∀δ ∈ V∆[
Q I

I N

]
� 0

(114)

OP12 (fixed P ):

min
K, N
|trace(Λ)| :


(106), (108), ∀x ∈ VX̄ , ∀δ ∈ V∆[
Q I

I N

]
� 0

(115)

where Λ is the resulting matrix on the left side of equation (106).

DAR Reduced Oscillation
OP13 (fixed K):

min
Q, W1, W2, N

trace(N) :


(110), (111), (112), ∀x ∈ VX̄ , ∀δ ∈ V∆[
Q I

I N

]
� 0

(116)

OP14 (fixed P ):

min
K, W1, N

|trace(Λ)| :


(110), (112), ∀x ∈ VX̄ , ∀δ ∈ V∆[
Q I

I N

]
� 0

(117)

where Λ is the resulting matrix on the left side of equation (110).
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5 NUMERICAL RESULTS

Some numerical results are presented in this chapter, in order to verify the control
design described as a solution to each of the problems proposed in chapter 4.

The simulations were performed using Matlab software, with Yalmip toolbox for the
optimization problems (LOFBERG, 2004). The solvers used in Yalmip were SDPT3 and
SEDUMI.

5.1 General Definitions

Aiming at a more direct comparison of the results, some constant parameters were
set to the same values in all simulations, as presented in (118), being them the intrinsic
parameters of the camera and its moment of inertia in both axis, X and Y . Additionally,
a 35mm focal distance was used, with a standard resolution of 1280 × 1024 pixels on
the display. In accordance with these parameters, the camera FOV becomes 54.432° ×
37.849°.

Kc =

1244.4 0 640

0 1493.3 512

0 0 1

 J =

1 0 0

0 1 0

0 0 1

 (118)

Although it is straightforward to compare some quantitative aspects of the results,
such as the trace of the resulting matrix P , which translates into a smaller or larger
estimate of the region of attraction, and the settling time obtained for each error norm
response, which can be used to verify an approximate decay rate of the error, some qual-
itative aspects are also evaluated so that it is possible to make a complete analysis of the
results.

Note that the criteria used for estimating the settling time is as follows: considering
the initial error norm between the desired final position for the feature on the display and
its initial position is 100%, the settling time is the time the feature takes to depart from
this initial position and attain (also staying within) 2% of the initial error.

Finally, two kinds of results are obtained, the first one related to the optimization
problem (achieved K and P matrices and the estimation of the region of attraction), and
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another consisting of the dynamic response of the system over time. For the optimization
problems, a set of 10 P-K iterations was considered reasonable. Also, for better compari-
son of results, some input parameters were set to the same values in all simulations, being
them:

Desired angular range on the camera field of view (see section 4.3.1 item (a)):
ψX̂ = 25.5° ψŶ = 18.9°
Initial feature projection: 300× 650 px

Desired feature projection: 670× 460 px

Restriction in ω was imposed to the domain of interest in addition to ε, as explained
in section 4.3.1. It means that the system is analyzed for stability in a more restricted
ω region (though still sufficient to enable adequate rotation speeds in each camera axis),
therefore allowing a larger ε region to be acquired.

Regarding the initial conditions for the simulations, the initial and desired coordinates
µc and µ̄ were obtained based on their projections m and m̄ by inverting equation (29):

µc = K−1
c m µ̄ = K−1

c m̄ (119)

Then, the rotation angle and vector are calculated, resulting in the quaternion initial
conditions:

ψ0 = arccos
µc · µ̄
‖µc‖ ‖µ̄‖

~r0 =
µc × µ̄

‖µc‖ ‖µ̄‖ sinψ0

ε0 = ~r0 sin(ψ0

2
)

(120)

The initial conditions for rotation speed were set to ω0 =
[
0 0 0

]ᵀ
.

5.2 Results for the General Asymptotic Stability Problem

The results from the general asymptotic stability problem (Problem 4.1) simulations
are presented in this section. In figure 4, the outer green rectangle establishes the limits
for the desired feature position. Inside it, an octagonal blue polytope where the vertices
VX̄ of the polytope X̄ lie. Inside the octagon a blue ellipsoid marks the domain of interest
X . Finally, the red ellipsoid shows the RoA estimate obtained using Quasi-LPV repre-
sentation and the green one shows the RoA estimate obtained using DAR. These regions
were obtained considering ω = 0.

Figure 5 has essentially the same information as figure 4, but showing the region of
attraction estimate in terms of the quaternion coordinates εx and εy. It can also be seen in
this figure a greater RoA estimate obtained with DAR than the one obtained with Quasi-
LPV.

The control design problem was solved for both model representations, so that to
compare the performance of the optimization for each representation, figure 6 shows the
outline of the trace of P along each iteration.
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Figure 4 – Image region of attraction estimate for stability problem.

Source: from the author.

Figure 5 – Quaternion region of attraction estimate for stability problem.

Source: from the author.

Figure 6 – Trace of P for stability problem.

Source: from the author.
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Considering that, for Quasi-LPV the final matrix P had trace(PqLPV ) = 111.63,
being:

PqLPV =


55.565 2.2685 −0.46141 11.87

2.2685 29.09 −8.4226 3.2123

−0.46141 −8.4226 15.108 −2.2381

11.87 3.2123 −2.2381 11.863

 (121)

with the resulting output feedback gain K matrix:

KqLPV =

[
−0.00011751 −2.7428× 10−05 −0.36909 1.6358

2.4034× 10−05 −9.2695× 10−05 −2.2621 0.16179

]
(122)

For DAR, final matrix P had trace(PDAR) = 68.319 and the value:

PDAR =


43.585 −0.06493 0.0082866 −0.15777

−0.06493 24.199 0.16498 0.15213

0.0082866 0.16498 0.27875 0.094787

−0.15777 0.15213 0.094787 0.25599

 (123)

with K:

KDAR =

[
0.005544 −0.016127 −26.066 −47.543

0.0068577 0.012375 58.49 10.148

]
(124)

The next figures show the results for 100 seconds with the Quasi-LPV representation.
In figure 7 the quaternion values εx and εy approach zero, as well as the image error in
each display axis shown in figure 8, leading the feature to the target position. Both figures
exhibit an oscillatory behavior which reflects in the feature trajectory. This oscillation
becomes even more evident in figure 9 for the rotation speed components.

Figure 7 – Quasi-LPV ε (quaternion) for stability problem.

Source: from the author.
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Figure 8 – Quasi-LPV image error for stability problem.

Source: from the author.

Figure 9 – Quasi-LPV system rotation speed for stability problem.

Source: from the author.

Following that, the DAR results for 100 seconds are shown. In figure 10 the quaternion
values εx and εy approach zero, which happens also for the image error components in
figure 11. This means that the feature approaches its desired position as expected. The
oscillatory behavior is also present for the DAR, but far less expressive than in the Quasi-
LPV simulation. Figure 12 evidences a strong fast initial bouncing in the rotation speed
components ωx and ωy, which after some seconds considerably reduces.

Figure 13 shows that the image error norm in DAR decays faster than in Quasi-LPV,
which can also be verified with the settling time for each of them: TsqLPV = 65.07s and
TsDAR = 15.50s.

Figure 14 shows the image projection path for both simulations, where the DAR shows
a longer feature trajectory than the Quasi-LPV, although presenting lower levels of oscil-
lation. Nevertheless, both met the objective of approaching asymptotically to the desired
position.
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Figure 10 – DAR ε (quaternion) for stability problem.

Source: from the author.

Figure 11 – DAR image error for stability problem.

Source: from the author.

Figure 12 – DAR system rotation speed for stability problem.

Source: from the author.
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Figure 13 – Image error norm for stability problem.

Source: from the author.

Figure 14 – Image projection path for stability problem.

Source: from the author.

5.3 Stabilization Problem with Exponential Decay of the Error

This section shows simulation results from the asymptotic stabilization problem with
an exponential decay constraint (Problem 4.2). All parameters from the general stabiliza-
tion problem where maintained, with the addition of:

Minimum exponential decay rate: σ = 0.25

With that, the resulting RoA estimate for DAR (in green) and Quasi-LPV (in red)
are shown in figure 15, which evidences a slightly greater region estimate for the DAR.
This is a result of the evolution of the trace of P along 10 iterations of the optimization
algorithm for each model representation, presented in figure 16.
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Figure 15 – Image region of attraction estimate - decay constraint.

Source: from the author.

Figure 16 – Trace of P - decay constraint.

Source: from the author.

For Quasi-LPV, final matrix P had trace(PdqLPV ) = 76.966 and the value:

PdqLPV =


44.199 −1.3753 0.85141 −1.2197

−1.3753 28.571 −2.1768 3.6602

0.85141 −2.1768 1.183 −1.8257

−1.2197 3.6602 −1.8257 3.0127

 (125)

and the resulting output feedback gain matrix K was:

KdqLPV =

[
0.067555 −0.08741 30.786 −55.862

0.042874 −0.051461 21.423 −36.448

]
(126)

For DAR, final matrix P had trace(PdDAR) = 71.091 and the value:

PdDAR =


44.072 −0.81816 0.54818 −0.64084

−0.81816 25.523 −0.69051 1.1889

0.54818 −0.69051 0.51923 −0.53651

−0.64084 1.1889 −0.53651 0.97749

 (127)
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with K:

KdDAR =

[
0.020003 −0.029058 −8.7616 −10.021

0.01802 −0.014872 2.3292 −13.573

]
(128)

The next figures show the Quasi-LPV results for 10 seconds of simulation time. In
figure 17, the quaternion values εx and εy approach zero. The same for the image error
along each display axis presented in figure 18. It becomes evident that the decay rate is
considerably faster than the one verified in the general stability problem, being necessary
only 10 seconds of simulation to verify the settling of the data. In figure 19, the rotation
speed components ωx and ωy have shown the same decay pattern.

Figure 17 – Quasi-LPV ε (quaternion) - decay constraint.

Source: from the author.

Figure 18 – Quasi-LPV image error - decay constraint.

Source: from the author.
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Figure 19 – Quasi-LPV system rotation speed - decay constraint.

Source: from the author.

The DAR results for 10 seconds are shown in figures 20, 21 and 22, where a simi-
lar decay rate increase is verified, although exhibiting less oscillatory behavior than the
simulation with the Quasi-LPV model representation.

Figure 20 – DAR ε (quaternion) - decay constraint.

Source: from the author.

Figure 21 – DAR image error - decay constraint.

Source: from the author.
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Figure 22 – DAR system rotation speed - decay constraint.

Source: from the author.

In figures 23 and 24 the image error norm and the image projection path are presented,
respectively, for both cases. There is some bouncing present in the Quasi-LPV error norm,
which can be better understood by checking the path profile. The DAR simulation shows
a reduction on trajectory length to reach the target. The settling times were TsdqLPV =

3.204s and TsdDAR = 2.808s, with DAR approaching the target faster than Quasi-LPV.

Figure 23 – Image error norm - decay constraint.

Source: from the author.

Figure 24 – Image projection path - decay constraint.

Source: from the author.
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5.4 Stabilization Problem with Additional Oscillation Constraint

This section shows results from the optimization problem with exponential decay
constraint and an additional oscillation constraint (Problem 4.3). These constraints are
expressed as:

Minimum exponential decay rate: σ = 0.25

Maximum closed-loop linear portion eigenvalues’ imaginary absolute value: ν = 1.5

Figure 25 shows the RoA estimate for DAR (in green) is again larger than the RoA
estimate for Quasi-LPV (in red), which is corroborated by the trace of P evolution along
the 10 optimization iterations performed, presented in figure 26.

Figure 25 – Image region of attraction estimate - decay and oscillation constraints.

Source: from the author.

Figure 26 – Trace of P - decay and oscillation constraints.

Source: from the author.
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For Quasi-LPV, final matrix P had trace(PoqLPV ) = 99.821 and the value:

PoqLPV =


50.256 −5.249 6.5845 −4.0415

−5.249 34.95 −5.3724 9.4124

6.5845 −5.3724 6.4145 −4.1794

−4.0415 9.4124 −4.1794 8.2

 (129)

and the resulting output feedback matrix gain K was:

KoqLPV =

[
0.00038725 −0.0015794 −2.8545 0.15989

0.0013654 −0.00054789 −0.4914 −1.7584

]
(130)

For DAR, trace(PoDAR) = 79.073, with P :

PoDAR =


47.471 −0.86038 2.2994 −1.165

−0.86038 28.043 −1.0993 2.8452

2.2994 −1.0993 1.4378 −1.0812

−1.165 2.8452 −1.0812 2.1209

 (131)

and the resulting output feedback matrix was:

KoDAR =

[
0.0023996 −0.0070236 −14.977 −2.0989

0.0042907 −0.002881 −6.096 −5.8284

]
(132)

The next figures show a 10 second result for Quasi-LPV. In figure 27 the quaternion
values εx and εy are presented, approaching zero. Figure 28 shows the image error along
X̂ and Ŷ axis. In both figures it can be verified that the oscillatory behavior is consider-
ably reduced in relation to the previous problems’ results. In figure 29, the rotation speed
components ωx and ωy are shown.

Figure 27 – Quasi-LPV ε (quaternion) - decay and oscillation constraints.

Source: from the author.
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Figure 28 – Quasi-LPV image error - decay and oscillation constraints.

Source: from the author.

Figure 29 – Quasi-LPV system rotation speed - decay and oscillation constraints.

Source: from the author.

The DAR results are presented for 10 seconds of simulation time in the following fig-
ures. In figure 30 the quaternion values εx and εy approach zero, as expected considering
the stability problem. Figure 31 shows the image error from the target position in pix-
els in X̂ and Ŷ axis. In both figures the behavior regarding decay rate and oscillation is
similar to that obtained in Quasi-LPV results. Figure 32 shows the DAR rotation speed
components ωx and ωy.

Figure 33 shows the image error norm of the Quasi-LPV and DAR simulations. It is
possible to verify on it a lower oscillatory behavior than in the previous problems simula-
tions. Regarding the image projection path, figure 34 shows a behavior that is consistent
to the observations in previous figures for both representations. The estimated settling
time for Quasi-LPV and DAR are, respectively, TsoqLPV = 4.05s, and TsoDAR = 4.174s.
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Figure 30 – DAR ε (quaternion) - decay and oscillation constraints.

Source: from the author.

Figure 31 – DAR image error - decay and oscillation constraints.

Source: from the author.

Figure 32 – DAR system rotation speed - decay and oscillation constraints.

Source: from the author.
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Figure 33 – Image error norm - decay and oscillation constraints.

Source: from the author.

Figure 34 – Image projection path - decay and oscillation constraints.

Source: from the author.

5.5 Final Analysis of the Simulation Results

The results obtained and presented along chapter 5 have provided examples that sup-
port the theoretic solutions which were developed and explained in chapter 4.

After analyzing the numerical results for the general asymptotic stability problem, it
is possible to state that both Quasi-LPV and DAR solutions met the problem objective.
By achieving a feasible solution for K and P , figures 13 and 14 show that the feature

projection is successfully positioned at the desired coordinate.

Of course, these results are supported also by the figures that show, for each of the
representations, the quaternion response, the image error on each axis along time and the
rotation speed behavior. And, as expected, since this problem is unconstrained regarding
decay rate and oscillation, there is a high settling time with an oscillatory behavior on the
path of the feature. It can also be noted a better optimization of the region of attraction
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estimate for the DAR in relation to the Quasi-LPV.
For the problem extension on exponential decay rate constraint, again figures 23 and

24, together with the settling time acquired, provide data that supports their objective
achievement. Oscillation of the responses and trajectories are still high, mainly on the
Quasi-LPV case. Again in this case the region of attraction estimated of the DAR is
greater than for Quasi-LPV, as shown in figure 15 and supported by the numerical value
of the trace of P for both.

Finally, the results of the extension for oscillation constraint provide, as it can be seen
in figures 33 and 34, a less oscillatory response (more direct path for the desired feature

image coordinate), and still a settling time compatible with the decay rate defined. As in
previous cases, DAR had a larger estimation of the region of attraction in comparison to
Quasi-LPV, as it can be seen in figure 25, and a lower value of trace of P , as shown in
figure 26.
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6 CONCLUSIONS

As stated in the introductory chapters, the main objective of this dissertation was to
provide a systematic method for finding a static output feedback gain that stabilizes a
closed-loop rigid-body dynamic system using the image output and the rotation speed.
Theorems 1–6 presented in chapter 4 have provided conditions for the fulfillment of the
requirements present in each of the problems proposed, while the optimization problems
have guaranteed solutions which have as main outputs an SOF gain and an estimate of the
region of attraction. Taking into account the simulation results which have verified both
the methodology and the expected behavior for the system in each case, as a conclusion
it can be considered that the main objective has been successfully achieved.

To accomplish that, some secondary objectives were not only necessary, but each of
them has also generated interesting results that can be further studied. In chapter 3, the
rigid-body rotation dynamic model used for the nonlinear camera system was represented
both in a Quasi-LPV form and in a Differential Algebraic form. First, the 3-dimensional
dynamic model was identified in both representations and then, considering the scope
of the problems (related to a single image feature to have its image projection position
controlled), it was simplified to 2-dimensional state-space models that served successfully
for the control design proposed.

The definition of the outputs of the system, still part of chapter 3, was also an impor-
tant part of the work performed, since it served as a basis for the static output feedback
control employed on the system. While avoiding unnecessary complexity on the models,
it also needed to be effective at providing the adequate response which could be viable
considering the camera characteristics, thus, justifying the choice of taking an image-
based error combined with the angular velocity in each axis. An additional advantage of
this approach was to avoid having to measure directly the angular position. Then, based
on some image formation concepts, described in chapter 2, the equations that were also
introduced in each model representation were defined and explained.

In order to actually solve the stability problem, as well as the performance extensions
proposed (i.e., exponential decay rate and reduced oscillatory behavior), the background
mathematical techniques introduced previously were used, as well as adaptations from
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other authors’ works referenced throughout the text. For the definition of a domain of
interest that would provide an effective estimation of the region of attraction, both norm-
based and polytopic approaches were combined resulting in a set of additional restrictions
to the optimization problems.

On the optimization problems solution, it is important to note that since the theorems
resulted in bilinear matrix inequalities, an iterative algorithm (called P-K) was used to
transform the problem into step-by-step linear problems, which at each iteration kept im-
proving its response by finding optimal gains to expand the estimated region of attraction
for the asymptotic stable equilibrium point. Since this scheme was sensitive to the initial
condition for the gain matrix, a first estimate of it was acquired with a linearization onto
the equilibrium point studied (i.e., the origin). Section 4.5 described in details how this
process was performed.

Finally, as analyzed in section 5.5, the results obtained validate that the solutions
proposed are satisfactory for the problems under the scenarios that were studied, being
them: asymptotic stability, exponential decay and constrained oscillatory response.

Considering all that, the methods used in this work could potentially enhance the
knowledge available on vision-based control systems and provide tools to develop real-
world solutions in addition to the ones currently existing. Having that in mind, some
future work on the subject is hereby proposed as a continuation of each main aspect
studied in the present dissertation.

Additional research can be employed on refining the estimation of the region of at-
traction, by using for instance other functions to prove stability of the closed-loop system,
with a format that suits the objective needs. Other extensions to the main stabilization
problem can also be studied, such as input saturation, physical limits of the camera, and
so on. Furthermore, extension to a 3-dimensional solution for the two-feature problem,
which brings the necessity of assessing the third degree of freedom for the camera ro-
tation as well as the definition of a combined output for the features’ projection, would
bring important evolution to the subject. Controlling the camera translation in addition
to the rotation can also be a possible evolution, as well as the integration on practical
applications.
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