

Evento	Salão UFRGS 2020: SIC - XXXII SALÃO DE INICIAÇÃO
	CIENTÍFICA DA UFRGS
Ano	2020
Local	Virtual
Título	Transformação Genética de Eucalyptus grandis Via
	Agrobacterium tumefaciens
Autor	ANELISE DA SILVA FONSECA
Orientador	GIANCARLO PASQUALI

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

Transformação Genética de *Eucalyptus grandis* Via *Agrobacterium tumefaciens*.

Autora: Anelise da Silva Fonseca

Orientador: Prof. Dr. Giancarlo Pasquali

Justificativa: A biotecnologia veio somar-se ao melhoramento genético convencional, permitindo a obtenção de genótipos com maior produtividade e qualidade. Dentre as técnicas, destaca-se a transformação genética a qual consiste na introdução controlada de um gene ou fragmento de DNA no genoma de uma célula receptora e a regeneração do indivíduo transgênico completo capaz de expressar este transgenes. A escolha de E. grandis para estudo no projeto justifica-se pelo ótimo conteúdo de celulose da madeira desta espécie, o rápido crescimento volumétrico e a resistência a pragas, além da disponibilidade da sequência genômica completa, tornando-a ideal trabalhos de caracterização genética e, consequentemente, para a identificação e o isolamento de genes responsáveis por várias características de interesse comercial e silvicultural. **Objetivo:** O objetivo que orienta o presente trabalho é viabilizar uma metodologia eficiente de transformação genética de E. grandis via Agrobacterium tumefaciens e de regeneração de plantas transgênicas completas. Metodologia: Realização de testes de protocolos de regeneração de plantas de eucalipto a partir de diferentes explantes utilizando o meio de cultura MS com concentrações variáveis de tiodiazuron (TDZ) e ácido naftalenoacético (ANA). Uma vez definidas as melhores condições de regeneração, testes de transformação genética que serão realizadas com o emprego de A. tumefaciens EHA105 contendo plasmídeo binário codificador de proteínas de resistência à canamicina e proteínas repórteres. Resultados e Perspectiva: Cotilédones, folhas primárias e segmentos de caule de plântulas de eucalipto representam bons explantes para início de culturas de calos in vitro, e respondem diferentemente às concentrações de reguladores de crescimento ANA e TDZ. Até o momento, não fomos capazes de definir a melhor combinação de hormônios e meios para a regeneração de plantas a partir dos calos formados. Com a conclusão do trabalho, espera-se a obtenção de plantas transgênicas completas de E. grandis e a definição das condições ótimas para o protocolo.