

Evento	Salão UFRGS 2020: SIC - XXXII SALÃO DE INICIAÇÃO
	CIENTÍFICA DA UFRGS
Ano	2020
Local	Virtual
Título	Geração de Estados Iniciais Difíceis em Problemas de
	Planejamento Automatizado
Autor	BRUNO CORRÊA DE ALMEIDA
Orientador	ANDRÉ GRAHL PEREIRA

Geração de Estados Iniciais Difíceis em Problemas de Planejamento Automatizado

Universidade Federal do Rio Grande do Sul

Autor: Bruno Corrêa de Almeida **Orientador:** André Grahl Pereira

Planejamento automatizado é uma área da inteligência artificial que tem como objetivo encontrar uma sequência de ações realizada por um agente para atingir um objetivo a partir da descrição de um problema. Uma tarefa de planejamento é definida como uma tupla (V,s_0,A,S^*) , em que V são as variáveis de estado, s_0 o estado inicial, A o conjunto de ações e S^* o conjunto de estados objetivo. Uma solução para uma tarefa de planejamento é uma sequência de ações que permite a alcançar um estado de S^* a partir de s_0 . A dificuldade de resolver uma tarefa de planejamento depende muito do estado inicial s_0 . Portanto, a escolha do estado inicial é importante na geração de tarefas suficientemente difíceis para avaliar o desempenho de planejadores, estudar a natureza de problemas de planejamento, ou treinar funções heurísticas.

Uma maneira de gerar estados iniciais mais difíceis é abordar a questão como um problema de planejamento que, ao contrário do convencional, busca um estado que maximiza a distância dos estados objetivo. Utilizamos funções heurísticas para guiar a busca maximizando a estimativa do real custo de solução da tarefa. Além disso, para encontrar estados ainda mais difíceis, propomos a utilização de informações não triviais, como as noções de novelty e de conflitos, que estimam a necessidade de movimentos contra-intuitivos, fator importante em domínios que possuem variáveis de estado que interagem entre si, um problema que os humanos normalmente enfrentam em desafios como Sokoban e quebra-cabeças do tipo (n^2-1) -Puzzle.

Devido ao curto tempo de atividades, o trabalho ainda não está concluído. Até o momento, já foram feitas aplicações de medição de tempo e memória de algoritmos como A^* e IDA^* nos problemas de planejamento de 15-puzzle e de Pac-Man para fixação de conhecimentos e testes de desempenho desses domínios.