

Evento	Salão UFRGS 2020: SIC - XXXII SALÃO DE INICIAÇÃO
	CIENTÍFICA DA UFRGS
Ano	2020
Local	Virtual
Título	Sintese de dissulfeto de molibdênio (MoS2) sobre SiO2 via
	dispersão de solução de (NH4)2MoS4
Autor	ALEXSANDRO VIEIRA DA SILVA
Orientador	CLAUDIO RADTKE

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE QUÍMICA

Nome: Alexsandro Vieira da Silva

Cartão: 00245644

Orientador: Cláudio Radtke

Sintese de dissulfeto de molibdênio (MoS₂) sobre SiO2 via dispersão de solução de (NH₄)₂MoS₄

Na medida em que a miniaturização de transistores feitos á base de silício chegam ao seu limite, materiais bidimensionais estão ganhando cada vez mais importância em pesquisa e desenvolvimento. Dentre estes materiais há o dissulfeto de molibdênio (MoS₂), um dicalcogeneto de metal de transição (TMD) que apresenta propriedades bastante interessantes. O presente estudo trata da síntese de MoS₂ sobre a superfície de óxido de silício pela deposição de tetratiomolibdato de amônio (NH₄)₂MoS₄ sobre a superfície do substrato^[1]. Para a síntese, preparou-se uma solução de (NH₄)₂MoS₄ (325 mg em 25 mL de DMF) que foi dispersa sobre o substrato pela técnica de spin-coating. Após secagem a temperatura ambiente, as amostras eram levadas a um forno tubular pré-evacuado. As etapas reacionais foram divididas em duas partes. Na primeira, ocorria o processo de redução do molibdênio. Com um fluxo de forming gas (Ar / H₂), a amostra era levada para a zona quente do forno quando esse atingisse 500° C, ficando nessa temperatura durante uma hora. A segunda etapa era onde ocorreria a sulfurização da amostra. Em zona fria, mudou-se o fluxo para apenas de gás inerte. Utilizou-se como fonte de enxofre 100 mg dele sólido em um cadinho distante da amostra, onde foi aquecido até sublimação em um forno auxiliar. A amostra era levada até a zona quente do forno na temperatura de 1000° C, permanecendo nessa temperatura durante 30 minutos. Todas as sínteses foram realizadas em pressão atmosférica. Utilizando espectrometria de retroespalhamento Rutherford (RBS), determinaram-se as melhores condições de deposição para a obtenção de amostras lateralmente homogêneas. Análises de espectroscopia de fotoelétrons induzidos por raios X (XPS) mostraram que não houve sulfurização das amostras, o que não levou a formação de MoS₂ nas mesmas. Os resultados obtidos com a utilização do (NH₄)₂MoS₄ como precursor até o presente momento não foram totalmente satisfatórios e conclusivos, necessitando de estudos para melhoria homogeneidade de deposição e controle reacional, os quais já estão em andamento.

Referência:

[1] K. Liu, et al; Nano Lett, 12, (2012), 1538-1544