

Evento	Salão UFRGS 2020: SIC - XXXII SALÃO DE INICIAÇÃO
	CIENTÍFICA DA UFRGS
Ano	2020
Local	Virtual
Título	Análise de esforços mecânicos em luva prolongadora sob
	carregamento trativo
Autor	LEONARDO JACOB HENDLER
Orientador	MARCELO FAVARO BORGES

UFRGS – UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL LAMEF - LABORATÓRIO DE METALURGIA FÍSICA

ANÁLISE DE ESFORÇOS MECÂNICOS EM LUVA PROLONGADORA SOB CARREGAMENTO TRATIVO.

O Laboratório de Metalurgia Física (LAMEF) realiza diversos ensaios em materiais, os quais demandam uma gama de componentes mecânicos variados de acordo com o regime de trabalho que se deseja reproduzir. O presente estudo, deste modo, justifica-se em função de garantir a manutenção da integridade mecânica de um desses componentes quando submetido a uma solicitação específica. Dessa forma, objetiva-se verificar a robustez de uma luva prolongadora de aço ABNT 4340 por meio do conhecimento da localização precisa da região de concentração de tensão e sua respectiva magnitude, visando garantir a plena operação sob carregamento trativo de 100 kN. A realização do estudo concretizou-se através da modelagem e simulação da luva prolongadora, aplicando-se o método de análise por elementos finitos e empregando-se o método de convergência de malha como validador da simulação. Como resultados finais, pode-se afirmar que, após a análise da magnitude e da região de concentração das tensões encontradas, a peca é qualificada para a operação sob o regime de trabalho proposto, visto que a tensão de escoamento do material que a compõe é 710 MPa e a região de máxima tensão atingiu uma faixa de aproximadamente 431 MPa na simulação. Portanto, dentro das condições descritas acima, verifica-se a robustez e a aptidão para plena operação da luva prolongadora em questão.

> Leonardo Jacob Hendler¹ Marcelo Favaro Borges²

¹ Autor – Bolsista de Iniciação Científica e Graduando em Engenharia Mecânica - LAMEF/UFRGS

² Orientador - Professor do Laboratório de Metalurgia Física - LAMEF/UFRGS