

SIMPÓSIO BRASILEIRO DE

MICROBIOLOGIA APLICADA

ANAIS

PORTO ALEGRE, 25 A 27 DE MARÇO DE 2021

SIMPÓSIO BRASILEIRO DE

MICROBIOLOGIA APLICADA

Editado por

Andreza Francisco Martins Amanda de Souza da Motta Patricia Valente da Silva

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL PORTO ALEGRE, 25 A 27 DE MARÇO DE 2021

Anais

XIII Simpósio Brasileiro de Microbiologia Aplicada

25 a 27 de março de 2021, Porto Alegre, Brasil

ISSN 2237-1672

Porto Alegre, Brasil
Universidade Federal do Rio Grande do Sul
2021

Anais do XIII Simpósio Brasileiro de Microbiologia Aplicada

Photolysis of sodium chloride and sodium hypochlorite by ultraviolet light inactivates the trophozoites and cysts of *Acanthamoeba castellanii* in the water matrix

Beni Jequicene Mussengue Chaúque^{1,2} and Marilise Brittes Rott¹

(benichauq@gmail.com)

The present study aimed to investigate an effective, sustainable and accessible way to inactivate chlorine-resistant microorganisms such as *Acanthamoeba castellanii*, through the photolysis of sodium chloride (NaCl) and sodium hypochlorite (NaOCl) in the water matrix. The of trophozoites and cysts (2x10⁷ per 8 mL) were exposed for 30, 60, 90, 120 and 150 minutes to the photolysis effect of NaOCl (1.0, 2.0, 4.0, 8.0 mg/L) or NaCl (5.0, 10, 20, 40 g/L) by ultraviolet light C (243µW.cm²), then the viability was analyzed. The inactivation of all trophozoites was achieved by exposure to the photolysis effect of 2.0 mg/L of NaOCl or 20 g/L of NaCl, in 150 or 120 minutes, respectively. Inactivation of all cysts was achieved by double exposure to the photolysis effect of 1.0 mg/L NaOCl or 5.0 g/L NaCl from 90 minutes of each exposure round. The exposure time was a strong determinant in the inactivation of *A. castellanii* trophozoites or cysts. The photolysis of NaOCl or NaCl is an effective method to eliminate *A. castellanii* in water. These findings expand the list of chlorine-resistant microorganisms that can be inactivated by NaOCl photolysis and shows that NaCl photolysis is a new and promising method for treating swimming pools water and wastewater.

Keywords: *Acanthamoeba castellanii*, disinfection, advanced oxidation processes, free-living amoebae, photolysis.

Órgão de fomento: CAPES

¹ Department of Microbiology, Immunology and Parasitology, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Brazil.

² Universidade Rovuma, Niassa Branch, Lichinga City, Mozambique.