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Abstract

Many systems are continually evolving in nature. In contrast to phenomena at, or
close to, equilibrium, the behavior of out of equilibrium systems is much less understood.
The geometrical characterization of the structures, e.g., domains and hulls, common for
certain classes of non-equilibrium dynamics and their time evolution are important in de-
termining the macroscopic properties of many systems. For example, consider the problem
of phase-ordering kinetics, when a system is suddenly quenched from a high temperature
state, driving the system from a disordered phase to an ordered one. After the quench,
ordered regions begin to form and grow via domain coarsening. The morphology of the
domain structure holds information about the system’s geometric properties and also
grasp information about its phase transition. Many systems exhibit domain growth, with
examples varying from magnetic domain growth in ferromagnetic materials to the phase
separation in bacterial populations.

In particular, only recently, the role of the critical percolation point on the dynamical
properties of 2d spin systems after a sudden temperature quench has been considered. In
equilibrium, it is possible to resolve the thermal and percolative effects on finite lattices
by studying the cluster size heterogeneity, Heq(T ), a measure of how heterogeneous the
domains are in size. In this thesis, we extend the equilibrium measure Heq(T ) to out of
equilibrium configurations, deriving an analytical expression for the dynamical cluster
size heterogeneity H(t), based on the analytical equations for domain size distributions.
We study its temporal evolution and explore its usefulness in studying out of equilibrium
situations after driving the system out of equilibrium by a sudden quench in temperature.
Our analysis shows that H(t) detects and distinguishes between different time regimes
related to the two timescales in the system, namely the short percolative one and the
long coarsening one. Besides, we also study a simple statistical model that generates inde-
pendent domains whose only constraint is to fill the system area. We focus on evaluating
the heterogeneity for algebraic distributions and showing that there is an exponent that
maximizes the heterogeneity.
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Resumo

Muitos sistemas na natureza estão em constante evolução. Ao contrário de fenômenos
em equilíbrio, ou perto do equilíbrio, o comportamento de sistemas fora do equilíbrio é
muito menos compreendido. A caracterização geométrica de estruturas comuns para certas
classes de dinâmicas fora do equilíbrio, como domínios e hulls, e a sua evolução temporal
são importantes para determinar propriedades macroscópicas de muitos sistemas. Por
exemplo, considere o problema de ordenamento de fases dinâmico, quando a temperatura
do sistema é repentinamente resfriada, levando o sistema de uma fase desordenada para
uma ordenada. Após o resfriamento, regiões ordenadas começam a se formar devido à
interação entre os spins e ocorre o crescimento de domínios. A morfologia da estrutura
dos domínios contém informação sobre as propriedades geométricas do sistema e também
guardam informação sobre sua transição de fase. Há diversos sistemas que apresentam
crescimento de domínios, com exemplos variando de crescimento de domínios em materiais
ferromagnéticos a separação de fase em populações de bactérias.

Em particular, apenas recentemente, o papel do ponto crítico de percolação nas pro-
priedades dinâmicas de sistemas de spin 2d após um súbito resfriamento na temperatura
foi considerado. Em equilíbrio, é possível separar os efeitos térmicos e percolativos em
redes finitas através da heterogeneidade de tamanhos de domínios, Heq(T ), uma medida
de quão heterogeneos os tamanhos dos domínios são. Nesta tese, apresentamos uma ex-
tensão da medida de equilibrío Heq(T ) para configurações fora de equilíbrio, através de
uma expressão analítica para a heterogeneidade de tamanhos de domínios dinâmica H(t),
baseada na solução analítica para a distribuição das aŕeas dos domínios. Estudamos a
evolução temporal de H(t) e demonstramos sua utilidade para analisar situações fora de
equilíbrio após tirar o sistema de equilíbrio através de uma diminuição súbita na tem-
peratura. Nossa análise mostra que H(t) detecta e distingue entre os diferentes regimes
temporais relacionados às duas escalas de tempo do sistema, isto é, à escala curta perco-
lativa e à longa de crescimento de domínios. Além disso, também estudamos um modelo
estatístico simples que gera domínios independentes cujo único vínculo é preencher a área
do sistema. Focamos em estimar a heterogeneidade para distribuições de probabilidade
algébricas e mostramos que há um expoente para a qual a heterogeneidade é maximizada.
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Resumo simplificado estilo nota de
imprensa (Press release)

Propriedades geométricas de modelos de spin:

heterogeneidade de tamanhos de domínios

Amanda de Azevedo Lopes
Orientador: Jeferson J. Arenzon

Muitos sistemas na natureza estão em constante evolução, longe de estarem em equilí-
brio. Ao contrário de fenômenos que ocorrem em equilíbrio, o comportamento de sistemas
fora do equilíbrio é muito menos compreendido. Por exemplo, ao agitar uma mistura de
dois líquidos, como água e óleo, tirando-a do que chamamos de estado de equilíbrio, um
grande número de pequenas gotículas se formam. Mas se a deixarmos em repouso, estas
gotas (domínios) crescem até as duas fases se separarem completamente (equilíbrio), for-
mando duas camadas de água e óleo. Esse tipo de fenômeno é chamado de crescimento de
domínios e pode ser visto nos mais diferentes contextos, desde bolhas de sabão e domínios
em materiais ferromagnéticos até segregação espacial em populações de bactérias. Em
particular, o estudo de domínios formados durante a evolução temporal desses sistemas
possui grande importância teórica e inúmeras aplicações tecnológicas, sendo ainda um
problema não completamente esclarecido. Podemos caracterizar geometricamente esses
domínios: suas áreas, perímetros, números de lados, etc. Com isso, é possível determinar
propriedades macroscópicas dos sistemas. A morfologia da estrutura dos domínios con-
tém informação sobre as propriedades geométricas e também guarda informação sobre a
transição de fase do sistema.

A informação que pode ser obtida desses sistemas depende das quantidades que se-
rão medidas. Recentemente, um novo observável geométrico foi introduzido para estudar
estados de equilíbrio. Neste trabalho exploramos, pela primeira vez, seu comportamento
em situações fora do equilíbrio. Essa quantidade, a heterogeneidade dos tamanhos de do-
mínios, H, fornece detalhes sobre a uniformidade das áreas desses domínios e é sensível
às diferentes escalas de comprimento de sistemas em equilíbrio. Estudamos então a evo-
lução temporal desse observável H em modelos simples para sistemas fora do equilíbrio
após realizar uma perturbação brusca que os tira do equilíbrio (por exemplo, um rápido
resfriamento). Nossa análise mostra que, através da medida de H, é possível detectar e
distinguir os diferentes comportamentos relacionados às escalas de tempo presentes no
sistema, isto é, uma escala curta e uma longa, associada ao crescimento de domínios.
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Chapter 1

Introduction

Equilibrium statistical mechanics studies the complicated behavior of systems consti-
tuted of a huge number of building blocks - particles, spins, etc. It provides well-developed
general tools to approach complex physical problems in statistical equilibrium. However,
many systems in nature are constantly evolving over time. In contrast to phenomena at,
or close to, equilibrium, the behavior of out of equilibrium systems is much less compre-
hended. Studies over the past few decades have provided important information to un-
derstand these systems dynamics better. In particular, one of the key issues is to geomet-
rically characterize the structures that are common for certain classes of non-equilibrium
dynamics.

One approach to studying out of equilibrium systems is by perturbing a system in equi-
librium and observing its relaxation. The equilibrium state of some systems corresponds
to different macroscopic configurations, e.g., a magnetic system with magnetizationm and
−m. Therefore, when perturbing such systems, different regions of the system attempt to
equilibrate in different equilibrium phases locally. These locally ordered regions grow (or
coarsen) until, if possible, reaching the new equilibrium state [1].

A classic example of systems that exhibit such domain growth behavior are systems
quenched through a phase transition, such as magnets quenched through the disordered
(paramagnetic) phase to the ordered (ferromagnetic) one. After the quench, the system
tries to adapt and locally equilibrate with its environment, dividing itself into several
regions called domains. The domains will not order instantaneously but typically will
have a slow relaxation until they eventually reach the new equilibrium state [1]. Other
systems that manifest similar behaviors are depicted in Figure 1.1. Figure 1.1a shows the
coarsening of a superconducting magnetic froth as the temperature is increased [2]. The
domain interfaces are in a superconducting phase, while the inside of the domains is in
a normal magnetic phase. Another example is the magnetic domain growth during the
heat treatment of a FeRh alloy [3,4]. Upon heating, domains nucleate and grow, and the
system undergoes an antiferromagnetic to ferromagnetic phase transition (Figures 1.1b
and 1.1c).
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(a)

(b)

(c) (d)

Figure 1.1: Examples of systems that exhibit coarsening. (a) Coarsening of magnetic
froth on a superconducting lead disc as temperature increases, extracted from Prozorov
et al. [2]. The inside of the cells are in a normal magnetic phase and the interfaces are in
a superconductor one. (b) X-ray photoemission electron microscopy images of magnetic
domain growth in a FeRh thin film, extracted from Keavney et al. [3]. Upon heating, the
system undergoes an antiferromagnetic to ferromagnetic phase transition at∼ 375K. Local
domain magnetization in red and blue. (c) Backscattered electron images during heat
treatment of a FeRh alloy displaying magnetic domain growth, extracted from Chirkova
et al. [4]. Bright and dark correspond to different phases. (d) Phase separation in bacterial
populations, extracted from McNally et al. [5]. Initially, two strains of Vibrio cholerae
bacteria (represented in red and blue, respectively) are in a well-mixed state. One of
these strains kills the adjacent bacteria through a secretion mechanism that intoxicate
other strains, promoting spatial separation between the different strains and enhancing
cooperation with kin.
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These patterns are not restricted to magnetic systems, also occurring in several other
systems as biological tissues [6], spatial patterns in ecological ecosystems [7], and bacte-
rial populations [5]. Figure 1.1d shows the spatial separation in two well-mixed bacterial
populations, where each population is represented in red and blue, respectively [5]. One
of these strains kills the adjacent bacteria through a secretion mechanism that intoxi-
cate other strains and predators, promoting phase separation between the strains and
enhancing cooperation with kin.

The examples above demonstrate that the study of ordering processes is essential to
understand pattern formation, which is a relevant problem for many areas. A common
characteristic of the coarsening regime is that there is a single relevant length scale R(t) so
that all spatial quantities are statistically invariant in time when measured with respect
to R(t) [1]. Figure 1.2 presents five snapshots of the coarsening process in a liquid crystal,
illustrating the scale invariance during the evolution. The experimental system is a liquid
crystal made of achiral bent-core molecules that exhibit electric-driven deracemization,
which is the formation of chiral domains from an achiral solution [8]. Initially, the cooled
liquid crystal is isotropic, with the bent-core or “banana” molecules (Figure 1.3a) orga-
nized in layers, aligned parallel to each other. Their alignment has a tilt direction with
two possible orientations due to their bent shape (Figure 1.3b). There is no preferential
direction of the tilt in the absence of an external field, and there are no domains formed.
The tilt direction can be controlled by applying an electric field, which induces the for-
mation of chiral domains. Domains of opposite chirality have different optical properties
and polarize the light differently. Through polarizer filters, both alignments can be dis-
tinguished – with crossed polarizers, the domains cannot be distinguished (Figure 1.3c,
left). By decrossing polarizers, chiral domains can be seen (Figure 1.3c, right). Upon the
application of an external electric field, chiral domains are formed and grow as a function
of time (Figure 1.2).

Phase ordering processes are qualitatively well understood, but there are still many
open questions regarding the morphology of the spatial structures [11]. A series of works
have studied the morphology of the domain structure [8,12–14] focusing on the geometrical
distributions. The morphology of the domain structure holds not only information about
the system’s geometric properties but also grasps information about its phase transition
and the occurrence of metastable states [15–17]. Various works [12, 13, 18] have shown
that very early in the evolution of two-dimensional coarsening systems, the distribution
of domain sizes approaches the expected form at critical percolation. The percolating state
persists across the dynamics, evolving through the usual coarsening dynamics. Also, not
only the short time dynamics is influenced by the critical percolation, but also the final
state of the zero temperature Ising model. The probabilities that a 2d coarsening system
reaches the ground state or evolves to a frozen stripe are equal to those of a spanning
cluster at critical percolation [15,16].
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t = 10s t = 600s

t = 1800s t = 3600s

t = 7200s

Figure 1.2: Snapshots of the formation and coarsening of chiral domains formed by
an electric-field-induced deracemization in a liquid crystal made of achiral bent-core
molecules for times 10, 600, 1800, 3600, 7200s. Initially, the cooled system is isotropic.
Upon the application of an external electric field, chiral domains start to form. Bright
and dark regions correspond to domains with opposite chiralities. Time measured in sec-
onds. Figures extracted from Sicilia et al.. [8].
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(a) (b)

(c)

Figure 1.3: (a) Schematic representation of a liquid crystal bent-core molecule. (b)
Schematic representation of a chiral layer consisting of achiral bent-core molecules (purple
rods). The molecules are parallel to each other, with their long axis tilted with respect
to the layer normal (vertical red arrow). Due to the molecules “banana” shape, each one
possesses a dipole moment (green arrow) in the molecular plane and perpendicular to the
long axis of the molecules. The layer normal, tilt direction (blue arrow), and the polar
axis define a right-handed coordinate system (denoted by curled fingers), whereas in the
mirror image, these vectors define a left-handed system, demonstrating the chirality of the
layer structure. (c) By applying an electric field and decrossing polarizers (right panel),
two chiral domains can be seen (bright and dark regions). Top row figures extracted from
Keppke and Moro [9]. Bottom row figures extracted from Earl et al. [10].

The relation between coarsening dynamics and percolation is surprising due to their
differing natures. Percolation is a paradigm of a noninteracting problem, which is defined
as the process of a liquid moving slowly through a substance that has tiny holes [19]. On the
other hand, coarsening dynamics depends on the interactions between the spins, which
contrasts with the percolation process. Thus, apparently paradoxical, the interactions
between the spins provide the environment for the formation of percolative features.
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1.1 Motivations

There are several quantities to characterize systems geometrically, e.g., the space-
time correlation function or the distribution of cluster sizes. In this thesis, we take a
different approach to analyze the geometrical structures. We explore a recently proposed
quantity called cluster size heterogeneity, which measures how heterogeneously sized the
equilibrium domains in a distribution are [20]. Rather than taking into account the whole
distribution, the heterogeneity only considers whether a given size is present in a system
configuration. Despite the simplicity to define this quantity, the heterogeneity successfully
determined the nature of the explosive percolation transition [20], which motivated a
detailed study of its scaling properties and its application in other models, such as the
site and bond percolation models [21], the Ising [22,23] and Potts models [24].

The results for the equilibrium cluster size heterogeneity Heq(T ) of the geometrical
domains in the 2d Ising model showed two peaks at two very distinct temperatures. The
first, small peak is associated with the thermal transition [22]. It occurs close to T1 ' Tc

and is only observed for large systems [23]. The second peak is much larger than the first
one, and appears at T2(L) > Tc [23]. The second peak is identified as an effect from the
percolative transition. As the system size increases, the position of the second peak T2(L)

approaches Tc. Despite the thermal and percolative transitions occurring at the same
Tc, for finite systems these effects have not yet merged. Therefore, for equilibrium finite
samples, the equilibrium cluster size heterogeneity was able to untangle the percolative
and thermal effects.

Although the equilibrium cluster size heterogeneity has been properly characterized
[20–24], whether this measure may be useful to study out-of-equilibrium configurations
remains an open question. In particular, some of the questions we want to address are:

(i) Extend the measurement of the cluster size heterogeneity to out-of-equilibrium con-
figurations and characterize its dynamical properties.

(ii) Analyze the dynamical size heterogeneity in the 2d Ising model. Is this quantity
able to give information on the approach to the critical percolation point and the
following coarsening evolution? How do different initial states, e.g., infinite or finite
range correlations, change the behavior of H(t)?

(iii) How do different values of the exponent τ of the domain size distribution change
the behavior of the heterogeneity? What value of this exponent τ maximizes the
heterogeneity and how do we compare it with the known values for different models,
i.e., how do we compare different long tailed distributions?

(iv) What geometrical properties play a role in the early time dynamics? What micro-
scopic processes play a role in the formation of the first percolating cluster?
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The first and second questions were the subject of a publication in Physical Review
E [25], which is included in Appendix A. We have shown that the dynamical cluster size
heterogeneity H(t) is a suitable observable that distinguishes among different dynamical
regimes, and provides information on the scaling laws related to domain growth and
percolation transition during the dynamics. The third and fourth questions are the subject
of forthcoming works [26,27], respectively. The preprint version of Ref. [26] is included in
Appendix B.

1.2 Organization of the manuscript

This thesis is organized as follows: Chapter 2 contains a brief review of the Ising
model, and of geometrical and statistical properties of domains, focusing on the coarsen-
ing process and the dynamic scaling hypothesis. It also addresses briefly the percolation
problem and its relation with the coarsening dynamics. Chapter 3 is dedicated to a review
of the equilibrium cluster size heterogeneity and its properties. Chapter 4 contains the
results of the cluster size heterogeneity in a more general model, in which domains are
independently chosen, with only a constraint on the total area of the system. Section 4.1
presents the model, while sections 4.2 and 4.3 illustrate the results for a general domain
distribution and an algebraic one, respectively. In chapter 5 are the results for the clus-
ter size heterogeneity in out of equilibrium configurations. Section 5.1 presents a brief
description of the Ising dynamics, and the quench protocol used to drive the system out
of equilibrium. The following sections 5.1.1 and 5.1.2 contain the results for the different
initial temperatures. Chapter 6 summarizes the results and presents the final remarks on
this thesis. At the end of that chapter, we discuss some perspectives of this thesis.

9



Chapter 2

Coarsening, domain growth, and
percolation

One of the simplest examples of phase-ordering kinetics is a magnetic system quenched
from above to below its critical temperature. The interactions between the spins drive the
system towards an ordered state, where the spins initially form small domains of the differ-
ent equilibrium phases and compete to select the new equilibrium state. Thus, coarsening
dynamics is when a system initially in a disordered state starts to order locally in one of the
competing equilibrium phases. Such domain growth exhibits a scaling phenomenon that,
according to the dynamical scaling hypothesis, possesses a single characteristic length
R(t), such that all spatial quantities are independent of time when measured with respect
to R(t) [1].

In recent years there has been considerable interest in the role of percolation in the
coarsening dynamics of magnetic systems [12, 13, 15–17, 28–31]. Investigations on the do-
main size distribution in curvature-driven coarsening dynamics have found that after
a short time, the statistical and geometrical properties of spin clusters of neighboring
sites have the same properties of clusters in critical percolation [12, 13]. The percolating
state persists throughout the dynamics, with the system continuing to evolve through
the usual curvature-driven coarsening dynamics. Similar results were found for coarsen-
ing with weak disorder [32] and for conserved order-parameter dynamics [18]. However,
not only the short time scale is influenced by the critical percolation, but also the final
state of the zero temperature Ising model. The relation between coarsening dynamics and
percolation is surprising due to the diverse nature of both problems. This chapter begins
with a brief overview of geometrical and statistical properties of domains, focusing on
domain growth and the scaling hypothesis. It also addresses the percolation problem and
its relation with the coarsening dynamics.
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2.1 Ising model

The Ising model [33], used to describe the behavior of magnetic systems, is one of the
simplest and most widely studied models. The physicist Wilhelm Lenz proposed it to his
student Ernst Ising, who exactly solved the one-dimensional version in his Ph.D. thesis in
1924. It was proposed to explain the transition from the paramagnetic phase (P) at high
temperature to the ferromagnetic one (F) that occurs below the Curie temperature Tc.

The model consists of a set of spins that may assume the values +1 or −1, disposed
on a lattice with a given geometry, where each spin interacts with its neighbors. In the
absence of an external magnetic field, the Ising model is described by the hamiltonian:

H = −J
N∑

〈i,j〉
SiSj , (2.1)

where J is the exchange interaction between the spins, the sum is over all pairs of spins
that are neighbors, and N is the total number of spins. For J > 0, the interaction is
ferromagnetic, while for J < 0 it is antiferromagnetic. It has analytical solutions for one
and two-dimensional cases. In the one-dimensional case, there is no phase transition. The
two-dimensional case was exactly solved by Lars Onsager in 1944 [34] on a square lattice
without an external magnetic field. The phase transition is continuous and occurs at the
critical temperature Tc = 1/ ln(1 +

√
2) ' 2.269.

2.2 Geometrical definitions

A system initialized in an out-of-equilibrium configuration or quenched to a subcrit-
ical temperature tries to order locally in two or more competing equilibrium phases or
absorbing states. This competition promotes the appearance of locally aligned regions
corresponding to each state. A group of nearest neighbor sites with aligned spins is de-
fined as a geometric domain or cluster. An example of a domain configuration is shown
in Figure 2.1. The area of a domain corresponds, for discrete spin systems, to the number
of spins contained in it. Geometric domains may have other, smaller geometric domains
inside their external interface, creating “holes”, and being inside even larger domains. The
outer domain boundary is called the “hull”, and the hull enclosed area corresponds to the
total number of sites inside the hulls, i.e., the area of the whole domain plus the area of
all domains inside it. In the example of Figure 2.1, the corresponding hull enclosed area
for the domains 1 and 2 is A(1)

h = πR2
1 and A

(2)
h = πR2

2, respectively. The area of the
corresponding geometric domains is A(1)

d = πR2
1, and A

(2)
d = π(R2

2 −R2
1) respectively.
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R2

R1

1

2

Figure 2.1: Example of hull enclosed and domain areas in a configuration with two circular
interfaces. There are two hull enclosed areas, A(1)

h = πR2
1 and A

(2)
h = πR2

2, and two domains
with areas A(1)

d = πR2
1 and A(2)

d = π(R2
2 −R2

1).

2.3 Dynamical scaling hypothesis

The theory of coarsening or phase-ordering kinetics is connected with the dynamical
evolution of the system toward the final equilibrium state [1]. An example of the patterns
formed by a system quenched from the disordered phase and left to evolve is shown in
Figure 2.2. After the quench, locally ordered regions grow in time (coarsen), and the typical
length scale of the ordered regions increases as the different phases compete to achieve
the final equilibrium state. Apart from a scaling factor, this domain structure remains
statistically similar at different times. This observation gave rise to the dynamical scaling
hypothesis, which states that there is a single growing length R(t) (the average domain
size at time t), such that the domain structure is statistically independent of time when
distances are measured with respect to it [1].

The characteristic length grows as a power-law

R(t) ' t1/zd , (2.2)

where zd is the dynamical exponent and depends on the dynamic universality class. The
universality classes are defined by the nature of the dynamics, the symmetries, the con-
servation laws, and the spatial dimensions. For the non-conserved order parameter class,
which includes the Ising model with Glauber dynamics, zd = 2, while for the conserved
order parameter class, e.g., the Ising model with Kawasaki dynamics, zd = 3 [1].

There are several ways to measure the characteristic length of the domains. One pos-
sibility is to measure the correlations between the spins. The correlation function at equal
times C(r, t) measures the correlation between two spins in two sites at a distance r at a
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t = 0 t = 64 t = 256 t = 1024

Figure 2.2: Snapshots of a Monte Carlo simulation of the 2d voter (first row) and Ising
(second, third and fourth rows) models with linear size L = 640 and periodic boundary
conditions. For the first to the third row, the initial state was T0 → ∞, corresponding
to an uncorrelated state. On the fourth row, the system was equilibrated at T0 = Tc,
corresponding to an initial state with long range correlations. Each color represents a
spin orientation, +1 or −1. On the second row, the Ising model was quenched from
T0 → ∞ to Tf = Tc, while on the third and fourth rows, the final temperature was
Tf = 0. Note that the voter model has a different coarsening process than the zero
temperature Ising model. The T = 0 dynamics is purely curvature driven, while the
voter dynamics is driven by interfacial noise. The voter model also differs from the Ising
model critical relaxation (second row), especially due to the absence of bulk fluctuations.
The temperature generates an excess of small domains and roughens the domain walls.
Snapshots were taken at times (measured in Monte Carlo steps, MCS) indicated below
the images.
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time t

C(r, t) =
1

N

N∑

i=1

〈Si(t)Sj(t)〉 ||~ri−~rj |=r , (2.3)

where N is the total number of spins and the brackets 〈...〉 denote the average over
different initial conditions. According to the dynamic scaling, the correlation function can
be rescaled as

C(r, t) ∼ f(r/R(t)) , (2.4)

where f(x) is the scaling function.

At high temperatures, T > Tc, the correlations between the spins are short ranged, and
in the limit T →∞, the spins are uncorrelated. The equilibrium state at zero temperature
is homogeneous, all spins are aligned and the correlation is of the order of the linear system
size L. After a quench from infinite temperature to a temperature T < Tc, the correlation
between the spins increases over time, as shown in Figure 2.3a. At a short range, the
spins have a higher probability of being in the same state, thus the correlation is higher.
As the distance r increases, this probability decreases and the correlation between the
spins is lower. Figure 2.3b shows the correlation function as a function of the rescaled
distance r/R(t). The characteristic length R(t) is computed as the distance r at which
the correlation is C(R, t) = 0.3, but the scaling does not depend on this value and other
choices give equivalent results. The inset shows that the characteristic length grows as a
power-law, R2(t) ∼ t, as predicted from the scaling hypothesis. The correlation function
was also measured experimentally. For example, the experimental results of the liquid
crystal system in Ref. [8] displayed a good agreement with the scaling hypothesis.

Despite several numerical studies and experimental results supporting the scaling hy-
pothesis, the proof of its validity has been restricted to a few simples models such as
the one-dimensional Ising model with Glauber dynamics [35, 36], the nonconserved O(n)

model in the limit n → ∞ [37], and the one-dimensional XY model [38]. The validity
of the scaling hypothesis was also demonstrated for two-dimensional coarsening systems
with nonconserved order parameter dynamics [12], which will be discussed in the next
section.

2.4 Domain growth

At zero temperature, there are no thermal fluctuations; hence the system excess energy
is located at the domain walls. Therefore, energy can only decrease by reducing the total
interface length. In 1979, Allen and Cahn [39] verified that the domain walls movement is
related to the superficial tension; thus, the coarsening process is purely curvature driven.
Allen and Cahn have shown that the velocity v of each element of a domain boundary is
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Figure 2.3: Correlation function C(r, t) for the 2d Ising model after a quench from T0 →∞
to Tf = 0 and several different times t = 22, ..., 210. (a) Initially, the spins are uncorrelated
and the correlation between the spins grows as the system evolves. At short distances, the
probability of the spins being in the same state is higher, hence a higher correlation. This
probability decreases as the distance between the spins increases, so the correlation is
lower. (b) Collapsed correlation function using the characteristic length measured as the
distance R at which the correlation is C(R, t) = 0.3 (dashed horizontal line in panel (a)).
On the inset, the time evolution of the squared characteristic length R2(t). As predicted
from the dynamical scaling, the characteristic length grows as a power-law, R2(t) ∼ t.
The linear system size is L = 640.

proportional to the local interfacial curvature [1, 39]:

v = − λ

2π
κ , (2.5)

where λ is a temperature-dependent constant, with the dimensions of a diffusion constant,
κ is the local curvature, and the velocity is normal to the interface, with its direction
setting the reduction of the curvature, κ ∼ r−1 (Figure 2.4a). As the interface velocity
depends on the curvature, domain walls of smaller domains move faster than the domain
walls of larger ones (Figure 2.4b). Since the interface length (and area) of smaller domains
is smaller than in larger ones, we will see that smaller domains disappear before bigger
ones.

To highlight the curvature driven growth, Figure 2.5 shows a comparison of the evo-
lution of a circular domain for the curvature driven 2d zero-temperature Ising model and
the 2d voter model. The voter model is a simple spin model without an associated energy
function named after its interpretation in terms of opinion dynamics [40–42]. In the voter
model, a site chosen at random aligns with a randomly chosen nearest neighbor. Thus,
the probability of a spin flip does not depend on the energy variation, as in the Ising
model, but is given by the fraction of nearest neighbors with opposite orientation. Hence,
there is no bulk noise and the motion of the interfaces does not depend on the curvature,
but is driven by interfacial fluctuations [43]. For curvature driven growth, a large bubble
shrinks with time due to the surface tension, with the density of interfaces (or domain
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boundaries) decaying with ρ ∼ t−1/zd . A large bubble under the voter model dynamics
does not shrink as in curvature driven growth but slowly disintegrates as the boundary
of the domain roughens, with the density of interfaces decaying with ρ ∼ 1/ ln t [43]. A
special case is the one-dimensional lattice where the voter dynamics is equivalent to the
zero temperature Ising-Glauber dynamics [44,45].

v2

v1

(a)

v1v2v3v4

(b)

Figure 2.4: Schematic of the velocity of a domain boundary and the local interfacial cur-
vature. Panel (a) illustrates two domains: the interface velocity is normal to the interface
and is proportional to the local curvature, thus v1 > v2. Panel (b) shows that a domain
wall moves faster for a higher local curvature, v1 > v2 > v3 > v4.

The time-dependence of the area contained within a hull may be derived from the
Allen-Cahn equation by integrating the velocity around the hull:

dAh
dt

=

∮
~v · d~̀= −λh

2π

∮
κd` = −λh , (2.6)

where the final equality is obtained from the Gauss-Bonnet theorem [12]. Integrating the
above equation in time, one obtains the area of a hull at any time t,

Ah(t) = Ah(0)− λht . (2.7)

Note that all hulls shrink at the same rate. As a result, at a time t, all hulls with an initial
area smaller than λht will have disappeared, while the enclosed areas of the remaining
hulls will have decreased by λht. Considering the number of hulls with areas between A
and A+ dA in a given time t, the distribution of hull enclosed areas nh(A, t) is:

nh(A, t) = nh(A+ λht, 0) . (2.8)

Therefore, when the initial distribution is known, the distribution at any later time
may be determined. Also, the shape of the distribution is not altered during the evolution
but is uniformly shifted to the left at rate λh. At zero temperature, the Ising model is
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t = 64 t = 1024 t = 16384 t = 39810 t = 63095

t = 8 t = 64 t = 256 t = 1024 t = 4096

Figure 2.5: Snapshots of a Monte Carlo simulation of the 2d zero-temperature Ising model
with linear size L = 640 and periodic boundary conditions evolving from an initial state
with a bubble of radius r = 0.3L. Each color represents a spin orientation, +1 or −1.
Snapshots were taken at times (measured in Monte Carlo steps, MCS) indicated below
the images. To highlight the curvature-driven evolution of the zero-temperature Ising
model, the bottom row displays the 2d voter model driven by the interfacial fluctuations.

purely curvature driven, and the interfaces tend to disappear or become flat, with the
smallest domains disappearing first from the domain distribution. The thermal fluctu-
ations roughen the domain walls at finite temperature, opposing the curvature driven
growth and slowing it down [13]. They also generate thermal domains that are not related
to the coarsening dynamics. This effect is easily noted in figure 2.2 comparing the evolu-
tion towards T = 0 and T = Tc. This temperature-dependent behavior is encoded in the
parameter λh.

2.5 Hull enclosed area and domain-size distributions

As seen in the previous sections, the coarsening process is curvature-driven. The inter-
faces tend to disappear independently of one another with a velocity proportional to the
local curvature. If the initial distribution is known, the time evolution of the distribution
n(A, t) can also be determined.

The equilibrium distribution is known for two particular cases. Cardy and Ziff [46] have
determined the equilibrium hull enclosed area distribution for a 2d, two-state system, as
the Ising model, at the critical temperature Tc:

nh(A, 0) ∼ ch
A2

, T0 = Tc , (2.9)

where ch = 1/(8π
√

3) ≈ 0.022972 is an adimensional universal constant. This expression
is valid for A0 � A� L2, with A0 a microscopic area and L2 the system size.

Cardy and Ziff [46] also computed the equilibrium hull enclosed area distribution for
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the random site percolation at the critical density pc. In random site percolation, a site is
occupied with probability p, and empty with probability 1−p. For p > pc, a cluster spans
the system with probability 1. Further details of random site percolation will be addressed
in the next section, 2.6. For a square lattice, the percolation threshold is pc ≈ 0.5927. The
Ising model in a square lattice with a disordered configuration (corresponding to the
equilibrium state at T →∞) has spins pointing up or down with probability 1/2, which
corresponds to an occupation probability of p = 0.5. Hence, this initial state is below the
percolation threshold.

However, after a quench from T0 → ∞ to T < Tc, the system is rapidly attracted
to a critical percolation state [13]. At a very short time tp1 a percolating cluster with
geometrical properties of critical percolation appears for the first time in the system [13].
Therefore, the equilibrium hull enclosed area distribution at critical percolation may be
used as the initial equilibrium distribution at T →∞,

nh(A, 0) ∼ 2ch
A2

, critical percolation (T0 →∞) , (2.10)

where the extra factor 2 arises from the counting of the two phases of hull enclosed
areas in the coarsening dynamics, while the result of Cardy and Ziff only accounts for
clusters of occupied sites in random percolation [12]. Indeed, for a quench from infinite
temperature to a subcritical temperature, the Ising model rapidly attains the critical
percolation distribution, as shown in Figure 2.6, so this distribution can be considered as
the starting point for the T0 →∞ case [13].

Using these distributions in (2.9) and (2.10) as the initial conditions n(Ai, ti) of the
equation (2.8), Arenzon et al [12, 13] have shown that the hull-enclosed area density is

nh(A, t) =
ch

(A+ λht)2
, T0 = Tc , (2.11)

nh(A, t) =
2ch

(A+ λht)2
, T0 →∞ , (2.12)

assuming a time much greater than the initial time t � ti and areas much larger than
microscopic areas, but still much smaller than the system size, A0 � A � L2. Both
distributions correspond to a system with a characteristic area proportional to t, which
corresponds to a characteristic length scale proportional to t1/2, validating the dynamical
scaling hypothesis [12].

Similarly, approximate expressions for the domain area distributions can be obtained,
which have a form similar to the hulls,

nd(A, t) ∼
cd

(A+ λdt)τ
, T0 = Tc , (2.13)

nd(A, t) ∼
2cd

(A+ λdt)τ
′ , T0 →∞ , (2.14)
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with the constants cd ≈ ch, τ ′ = 187/91 ≈ 2.055, τ = 379/187 ≈ 2.027, and the equilib-
rium distribution of domain areas at critical percolation given by [19]

nd(A, 0) ∼ 2cdA
τ ′−2
0

Aτ ′
, (2.15)

and at the critical temperature [47]

nd(A, 0) ∼ cdA
τ−2
0

Aτ
. (2.16)

The agreement between the analytical equations (2.13) and (2.14) is shown in Figures
2.7 and 2.8. Figure 2.7 shows the time-dependent domain distribution, after a quench
from T0 → ∞ to T = 0, at different times of the evolution. The lines are the analytical
distributions from Eq. (2.14) with the fitting parameters cd = 0.025, τ ′ = 2.055, and
λd = 2.1. The agreement between the analytical results and the simulations are very good,
apart from the bump at the end of the distribution. The overshoot of the distribution for
large areas is due to the finite size effects. The spanning domains are limited by the
lattice finite length and have a size much smaller than they would have on an infinite
system. Figure 2.8 shows the rescaled data, highlighting the collapse over time for the
simulations and the analytical data. The data were obtained on a square lattice with
linear size L = 640 using the continuous-time Monte Carlo dynamics, and the average
was taken over 2000 independent system realizations.

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10 10 10
3

10 10
5

t = 0
1

1

2

2

4

4

8

A

n
d
(A

,t
)

Figure 2.6: Early evolution of the domain distribution of the 2d Ising model with linear
size L = 640 and periodic boundary conditions quenched from the infinite temperature
initial condition to T = 0. The average was taken over 2× 103 samples. The distribution
quickly converges to the critical percolation. The straight line corresponds to A−2.055.
Results agree with those of Sicilia et al [13], validating the code that was used in Chapter
5.
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Figure 2.7: Evolution of the domain-size distribution of the 2d Ising model quenched from
the infinite temperature initial condition to T = 0. Same data as in Fig. 2.6, but at larger
times. The average was taken over 2× 103 samples. Dashed lines correspond to equation
(2.14), with λd = 2.1, cd = 0.025 and τ ′ = 2.055.
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Figure 2.8: Data collapse of the domain-size distribution of the 2d Ising model quenched
from the infinite temperature initial condition to T = 0. Same data as in Figure 2.7.
The analytical results of Eq. (2.14) (red line) have a good agreement with the simulation
results (points).
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2.6 Percolation

Percolation is a paradigm of a non-interacting problem, a purely geometrical phe-
nomenon. Broadbent and Hammersley proposed this model in 1957 [48] to model how
the random properties of a medium, e.g., the structure or the porosity of the medium,
influence the percolation of a fluid. For example, percolation can be defined as the pro-
cess of a fluid moving slowly through a substance that has tiny holes in it [19]. Another
example of percolation is coffee making, in which the water has a preferential direction
of flowing through the ground coffee. The fluid (water) percolates when it spreads from
one side of the structure to the other (in this case, the ground coffee), and percolation in
networks, which considers the propagation of activities through connected space. Though
there are many variants of the percolation problem, in this section, only site percolation
is addressed.

In general terms, site percolation is defined by randomly occupying a lattice site with
probability p and leaving it empty with probability (1 − p). Here, clusters are groups of
neighboring occupied sites [19]. Examples of clusters in the square lattice are shown in
Figure 2.9. In an infinite system, if the occupation probability is greater than the perco-
lation threshold, p > pc, the probability P (p) that a cluster extends from one side of the
system to the other is 1 (Figure 2.9c), while for p < pc, this probability is 0 (Figure 2.9a).
Thus, in the limit L → ∞ at the percolation threshold pc a phase transition occurs – a
spanning or giant domain emerges (Figure 2.9b). Notice the highlighted cluster in Fig-
ure 2.9b – a cluster connecting two opposite borders of the system is a percolating cluster
that spans (free boundary conditions) or wraps around the system (periodic boundary
conditions). This threshold pc depends on the lattice geometry and on its dimension d.
For the square lattice, pc ' 0.59, while for the triangular lattice, pc = 0.5.

(a) p < pc (b) p ' pc (c) p > pc

Figure 2.9: Examples of random site percolation for various values of occupation proba-
bility p on a 6×6 square lattice with free boundary conditions. Occupied sites are marked
by a red circle, while unoccupied sites are left empty. Neighbouring occupied sites form
clusters. The corresponding occupation probability p is indicated below each configura-
tion. Notice that there is a cluster spanning (perimeter highlighted in red) from the top
to the bottom at (b).
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Around the critical point pc the distributions of cluster sizes, hull enclosed areas,
perimeter lengths, etc. have a scaling behavior [19], i.e., there is a single relevant scale
that diverges as ξ ∼ |p − pc|−ν , where ν is the associated critical exponent. Near the
percolation threshold, ξ is limited in finite systems. Far from the critical region, ξ < L

and it behaves as if the system is infinite. The correlation length corresponds to the
average radius of a typical percolation cluster, contributing to the mean cluster size and
similar properties. The critical behavior of other quantities of interest are controlled by
ξ, that acts as a characteristic length.

The cluster size distribution, n(A), follows a power-law at the critical point [19],

n(A) ∼ A−τ , (2.17)

where τ the associated critical exponent. Approaching the critical region from below,
p . pc, large clusters are exponentially rare, and the cluster size distribution is

n(A) ∼ A−τ exp(−A/Ac) , (2.18)

where Ac acts as a cutoff on the cluster sizes. It is related to the correlation length,
Ac ∼ ξdf , where df is the fractal dimension. The exponents df and ν have the relation
σ = 1/(νdf ), therefore the cutoff can be written as

Ac ∼ |p− pc|−1/σ, (2.19)

where σ is associated with the extension of the cluster size distribution power-law tail.
From the scaling relations, several critical exponents are related and may be written in
terms of the other exponents. For example, the fractal dimension df can be expressed
in terms of the Fisher exponent τ , df = d/(τ − 1), where d is the dimensionality of the
lattice [49]. For 2d percolation some of the critical exponents are known, τ = 187/91,
df = 91/48, ν = 4/3, and 1/σ = 91/36 [19].

2.7 Critical percolation and coarsening

Even though percolation is a non-interacting problem, in recent years several papers
[12,13,15,16,18,28–30,50–52] have shown that it has an important role in the coarsening
dynamics of magnetic systems. As shown in Section 2.5, the initial distribution for the
infinite temperature does not have large domain sizes (t = 0, Figure 2.6). After the quench,
very early in the evolution, at a time tp1 , the distribution of domain sizes approaches
the expected form at critical percolation, and a percolating cluster is formed for the
first time [12, 13]. Other recent works have shown [17, 28, 29] that, despite a percolating
cluster first appearing in the early dynamics at a time tp1 , only at a longer timescale tp a
percolating cluster becomes stable.
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If the approach to a percolative state occurs in the early regime, how does it happen
if the occupation probability is below pc? The initial state at an infinite temperature
in a square lattice with spins pointing up or down with probability 1/2 corresponds to
a percolation problem with an occupation probability p = 0.5, below the percolation
threshold pc ' 0.59. Hence, the formation of a percolating cluster is an effect of the
coarsening dynamics and not of the occupation probability p. Indeed, the first percolating
cluster is formed when the magnetization is still close to zero, meaning p ' 0.5.

The approach to a percolative state can be understood by looking at the typical
domain scale, R(t) [13]. When the typical domain size is much smaller than the lattice
spacing a0, R(t) � a0, the system has a disordered configuration. As R(t) increases,
a0�R(t)�L, one approaches the continuum percolation, for which pc = 1/2 in 2d [53].
Therefore, instead of increasing p, the dynamics self-tunes to a critical percolation state
as the correlation between spins increases.

Turning to the final evolution of the 2d Ising model quenched to zero temperature,
studies of an anomalous scaling for the equilibration time have shown that the ground
state is not always reached and the system may remain frozen in a striped state [50–52]. In
one dimension, the ground state is always reached, but in two dimensions, there is a non-
zero probability that the system freezes into a stripe configuration. Spirin et al [51, 52]
have found that in two dimensions, the ground state is reached with an approximated
probability of 0.6 and a state with two horizontal or vertical stripes with an approximated
probability of 0.3, while configurations with more stripes or diagonal ones are reached with
lower probabilities. Later, the probabilities of occurrence of such stripe states were shown
to correspond to the crossing probabilities in critical percolation for periodic and free
boundary conditions [15,16].

The frozen stripes occur because, at zero temperature, a straight domain wall is a
stable configuration. Therefore, at zero temperature, a percolating domain crossing the
system horizontally or vertically will eventually coarsen into a frozen striped state. The
most common stripe configuration is one with two stripes, typically with both stripes
of the same width [51, 52]. States with more than two parallel stripes are extremely
rare (Figure 2.10f), and contain alternating stripes whose width is at least two sites
[51,52]. Such a minimum width is necessary to have a stable stripe, otherwise, the stripe
will collapse under the dynamics. Conversely, a diagonal stripe has a low but nonzero
probability and is extremely long lived (teq ∼ L3), eventually reaching the ground state
in a much longer timescale [51] (Figure 2.10e). On the other hand, a percolating domain
crossing the system in a cross configuration will grow into the ground state in a time
teq ∼ L2. At finite temperature, striped states also exist but are not a stable configuration.
The metastable stripes persist for a finite long time compared to the usual relaxation time
scale but will eventually approach the ground state [15].

A spin cluster percolates in a 2d system with periodic boundary conditions (a model
defined on a torus) if the cluster wraps around the system, i.e., if there is a path of con-
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nected sites belonging to this cluster that winds around at least one of the two directions
of the system (horizontally or vertically). A percolating cluster in this system may have
the following configurations (Figure 2.10):

• a configuration with at least one cluster wrapping the system along only one direc-
tion, either vertically or horizontally. This configuration corresponds to the vertical
or horizontal stripes in Figures 2.10a and 2.10b;

• a configuration with an unique cluster wrapping the system in both directions (cross
configuration, Figure 2.10c);

• a configuration with at least one cluster wrapping in both directions but that does
not self-intersect. This configuration corresponds to the diagonal stripes in Figure
2.10d.

0 8 16 2417 32 4840 56

(a)

0 8 16 2417 32 4840 56

(b)

0 8 16 2417 32 4840 56

(c)

0 8 16 2417 32 4840 56

(d)
0 8 16 2417 32 4840 56 0 8 16 2417 32 4840 56

(e) (f)

Figure 2.10: Illustration of wrapping cluster configurations on a 2d lattice with periodic
boundary conditions (on a torus). Panel (a) shows two clusters wrapping the system
horizontally, and in (b) vertically. Panel (c) shows a cross configuration, with only one
cluster percolating in both directions, while in panel (d) both clusters percolate diagonally.
In panels (a), (b) and (d), the presence of the red wrapping cluster implies in the existence
of at least one blue percolating cluster next to them. On the other hand, the red percolating
cluster in both directions in (c) forbids the existence of other wrapping clusters. The
diagonal stripes eventually reach the ground state, shown in panel (e). The evolution of
the rare case of more than two parallel stripes is highlighted in panel (f).

The wrapping probabilities for site critical percolation on lattices with periodic bound-
ary conditions were calculated by Pinson [54]. The probability of having a cluster per-
colating in both directions with a cross topology is πhv ' 0.6190, the probabilities
of having a cluster wrapping the system either vertically, πv, or horizontally, πh, is
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πh,v = πh+πv ' 0.3388, as both configurations are equivalent. The probability of having a
cluster wrapping in both directions in a diagonally striped configuration is πdiag ' 0.0418.
Similar probabilities were calculated for systems with free boundary conditions [55, 56],
where the percolating cluster spans the system from one border to the opposite one instead
of wrapping around the system.

Despite a percolating cluster appearing early in the dynamics, only at a longer timescale
tp does the percolating cluster becomes stable, and its wrapping will determine the final
evolution. The time tp is defined [28] as the time the number and type of the wrapping
clusters (horizontally, vertically, diagonally, or in both directions) are equal to the amount
and kind of stripes in the final state [15, 16, 28]. This time is size dependent, tp ∼ Lzp ,
where zp depends on the dynamical exponent z and the lattice coordination nc. Arguments
for the necessity of a dynamical measurement of the lattice spacing and the influence of
another growing length, different from R(t) ∼ t1/2 have been put forward in Ref. [29]. This
implies in a percolation-related length, Rp(t) ∼ t1/zp . Through a more detailed argument,
the authors of Ref. [29] argued that the appropriate exponent is zp = 2/5.
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Chapter 3

Cluster size heterogeneity: the statics

In this chapter, we review the equilibrium properties of the cluster size heterogeneity,
Heq, originally introduced in the context of explosive percolation [20]. This quantity is
defined as the number of distinct domain-sizes present in a given system configuration.
Therefore, instead of considering the whole domain size distribution, Heq only considers
whether a given size is present in a configuration and corresponds to the number of
such distinct domain sizes. The success of the cluster size heterogeneity in determining
the nature of the explosive percolation transition [20] motivated the detailed study of this
quantity and its application to other models, as the site and bond percolation models [21],
the Ising [22,23] and Potts models [24].

The cluster size heterogeneity Heq is measured from each sample distribution, and not
from the averaged ones. The cluster size distribution, n(A), is defined as the number of
clusters of size A per site. Unlike the averaged domain size distributions shown in the last
chapter, a single configuration of a finite system does not have all possible domain sizes
present due to space restrictions. For example, consider a square lattice as in Figure 3.1.
A cluster is formed by neighbouring squares occupied by the same color. In this example
there are four clusters of size 1, two clusters of size 2, a cluster of size 3, a cluster of size
4 and a cluster of size 34. The heterogeneity of this configuration is Heq = 5. The domain
size distribution n(A) for this configuration is shown on the right, notice that there are
several missing cluster sizes. Therefore, the domain size distribution of a single sample,
n(A), is not continuous (Figure 3.2a), but for a sufficient number of samples or an infinite
system, the averaged distribution 〈n(A)〉 is indeed complete (Figure 3.2b).

3.1 Heterogeneity in random site percolation

As discussed in the section 2.6, site percolation is defined by randomly occupying a
lattice site with probability p and leaving it empty with probability 1 − p. Clusters are
defined as groups of neighboring occupied sites [19]. When p = 0, there are no occupied
sites. In the limit p → 0, the clusters are isolated particles, therefore Heq = 1. In the
opposite limit p → 1, there is only one giant cluster extending over the system, and
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Figure 3.1: Sketch of a 7 × 7 square lattice with free boundary conditions. Groups of
neighbouring squares occupied by the same color form a cluster. There are four clusters of
size 1, two clusters of size 2, a cluster of size 3, a cluster of size 4 and a cluster of size 34.
Hence, the heterogeneity for this configuration is Heq = 5. Notice that the largest cluster
(blue) crosses the system (percolates) in both directions. The domain size distribution
n(A) for this configuration is shown on the right.

Heq = 1 once again. In an infinite system, at the percolation threshold pc a phase transition
occurs – a spanning or giant domain emerges. A cluster extending from one side of the
system to the other connecting two opposite borders is a percolating cluster that spans
(free boundary conditions) or wraps around the system (periodic boundary conditions).
For all p > pc, there is a percolating cluster, while for p < pc, there is no such cluster [19].

As p increases from p = 0, sites start being populated, clusters nucleate and aggregate.
The diversity of cluster sizes increases, the distribution of domain sizes becomes broader
and Heq grows. Likewise, decreasing p from p = 1, the diversity of cluster sizes also
increases, as there is space for smaller clusters apart from the giant cluster and Heq

increases. Close to the transition, the distribution of cluster sizes follows a power law,
which further increases the likelihood of the clusters having different sizes. Therefore, Heq

is expected to have a maximum between these two limits.

The heterogeneity, along with a finite-size scaling (FSS), was first used by Lee et
al. [20] to clarify the nature of the explosive percolation transition. Still, neither have
the scaling properties of Heq been fully understood nor have they been fully explored
in the ordinary percolation problems. Noh et al. [21] studied the heterogeneity in site
and bond percolation models and found that the standard FSS form was not valid. The
cluster heterogeneity peak position (p∗, H∗) scaled algebraically with the system size L
with apparently universal exponents for the site and bond percolation on the square and
triangular lattices. However, the peak position, p∗, did not scale as L−1/ν , as would be
expected from the usual FSS hypothesis, where ν = 4/3 is the correlation length exponent
in two dimensions.
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∼ A−τ
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〈n(A)〉
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Figure 3.2: Schematic of a cluster size distribution of (a) a single, finite sample, n(A),
and (b) of an averaged ensemble, 〈n(A)〉. Due to finite-size restrictions, a single sample
of a finite system does not have all possible cluster sizes present. The smallest missing
size, A0, is indicated by a vertical dashed line. All sizes smaller than A0 are present, while
sizes greater than A0 may not be present in the system. On the right, the distribution’s
power-law behavior ∼ A−τ is indicated by a slanted dashed line. The cut-off term, Ac,
marks where the distribution deviates from the power-law behavior and is indicated by a
vertical dashed line.

Therefore, Not et al. [21] derived an appropriate FSS form for Heq

Heq(ε, L) = Ld/τf(|ε|L1/νH ) , (3.1)

where ε ≡ p − pc, L is the lattice linear size, d is the lattice dimension, τ is the Fisher
exponent, νH is a new critical exponent, and f(x) is a scaling function, that is constant
close to the transition and ∼ x−1/σ far from the critical region.

The standard FSS considers the region around the critical point where the correlation
length ξ differs from its behavior in an infinite system size, ξ ∼ |ε|−v. In finite systems, the
correlation length is constrained by the linear system size L and it is cutoff when ξ > L,
so the width of the critical region is thus |ε| ∼ L−1/ν . However, Heq displayed a different
scaling behavior. Instead of scaling with the correlation length exponent ν as would be
expected from the usual FSS, |p − pc| ∼ L−1/ν , the critical region scales with the new
exponent νH , |p− pc| ∼ L−1/νH .

To characterize Heq and derive the above FSS expression, Noh et al. started by spec-
ifying the size of each cluster, following the approach of Jan et al. [57] to find the FSS
behavior of the r-th largest cluster size at the critical percolation and extending this
approach to the off-critical region.

Near the percolation threshold, the cluster size distribution, n(A), for a finite cluster
size A is a contribution of a power-law and a cutoff term [19],

n(A) ∼ A−τ exp(−A/Ac) , (3.2)
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where Ac is a characteristic cluster size that acts as a cutoff on the cluster sizes (Fig. 3.2,
right). Near the critical region the characteristic cluster size diverges, Ac ∼ |ε|−1/σ, as the
correlation length also diverges, ξ ∼ |ε|−ν . Far from the critical region, where the correla-
tion length ξ � L, no finite size effect is observed and the observables are indistinguishable
from an infinite system. Thus,

Ac ∼




Ld/(τ−1) for |ε| � L−1/ν

|ε|−1/σ for |ε| � L−1/ν
. (3.3)

At the critical percolation point p = pc the giant cluster is fractal, with a fractal
dimension df = 91/48 in 2d, and the cluster size distribution follows a power-law n(A) ∼
A−τ . The critical exponents also obey scaling relations, and τ can be written in terms of
df , τ = 1 + d/df = 187/91, where d = 2 is the dimension of the system.

The dependence of Heq on the system size L may be understood as follows. We define
A0 as the average smallest cluster size not present in a distribution. Therefore, all domain
sizes A < A0 are present in the distribution, that is, the expected number of clusters
in this region is Ldn(A < A0) > 1, and we say the distribution in this range is dense
(Figure 3.2a). Since we are considering a finite system, above A0 some cluster sizes are
not present, Ldn(A > A0) < 1, i.e., there are some holes in the distribution, and this region
is said to be sparse. These two regions are separated at A = A0, defined as Ldn(A0) ∼ 1.
Noh et al. [21] argued that the contributions to Heq from these two regions are of the
same order.

Thus, to estimate H, we need to understand how both the dense and sparse regions
contribute to Heq. At the critical region, from Eq. (3.2), n(A0) ∼ A−τ0 ∼ L−d, so A0 scales
as A0 ∼ Ld/τ . As there is at least one cluster of each size in the region A < A0, this region
contributes to Heq with A0 ∼ Ld/τ . The remaining contribution is from the sparse region,
A > A0. Ranking those clusters by size from the largest one, the largest cluster lies in the
interval [A1,∞), with an expected number of clusters of

Ld
∫ ∞

A1

n(A)dA = 1. (3.4)

The second-largest cluster is in the interval [A2,∞), such that the expected number of
clusters in this region is 2,

Ld
∫ ∞

A2

n(A)dA = 2. (3.5)

Likewise for the r-th largest cluster, the expected number of clusters in the range [Ar,∞)

is
r ∼ N

∫ ∞

Ar

n(A)dA = Ld
∫ ∞

Ar

A−τdA ∼ LdA1−τ
r , (3.6)
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where Ar is the average size of the r-th largest cluster at p = pc,

Ar ∼
(
Ld

r

) 1
τ−1

. (3.7)

As we are ranking the clusters in reverse order, as r increases, Ar → A0. As A0 ∼ Ld/τ ,
for a very large r0, Ld/τ ∼ (Ld/r0)

1
τ−1 . Hence, there are r0 ∼ Ld/τ clusters in the sparse

region [21] and indeed both contributions to Heq scale in the same way,

H ∼ A0 + r0 ∼ Ld/τ . (3.8)

As noted by Jo et al. [22], the competing scales here are not the usual system size L
and the correlation length ξ, but the competition between A0 and Ac, which reflect the
limitations in cluster sizes due to the finite system size. The characteristic cluster size, that
is the cutoff from the power-law distribution, grows as Ac ∼ |ε|−1/σ. When Ac � A0, the
distribution is a well-developed power law, and the distribution for a single configuration
has many holes. Far from the critical region, Ac decreases and the critical region extends
up to the point in which Ac ∼ A0. By definition, Ldn(A0) ∼ 1. So, LdA−τc ∼ 1, which
leads to the scaling Ac ∼ Ld/τ . However, Ac diverges at the critical point, Ac ∼ |ε|−1/σ,
which allows us to estimate the size of the critical region as |ε| ∼ L−dσ/τ ≡ L−1/νH , where
νH is the new exponent defined as νH = τ/dσ = ντ/(τ − 1).

Hence, the scaling behavior of Heq is given by

H(ε, L) ∼




Ld/τ in the critical region, |ε| � L−1/νH

|ε|−1/σ otherwise
, (3.9)

which can be summarized by equation (3.1).

The behavior of the equilibrium cluster size heterogeneity as a function of the occu-
pation probability p for the site percolation model on the 2d square lattice and several
system sizes L is shown in Figure 3.3a [21]. The cluster heterogeneity is expected to be
maximal at the transition, and the cluster heterogeneity peak approaches the transition
from below the critical point pc. Due to the finite size, the percolating cluster that is
formed at pc occupies a large part of the system, leaving less space for other clusters, and
reducing Heq. Thus, the peak acts as a precursor effect to the transition in finite systems.
In the limit L→∞, the maximal heterogeneity converges to pc. The data for all different
sizes in Figure 3.3a collapse onto a single curve using Eq. (3.1) with νH = 187/72 and
τ = 187/91, confirming the predicted scaling form (Figure 3.3b). Thus, the FSS is not
governed by the correlation length exponent ν, but the new exponent νH , in contrast with
the standard FSS.
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(a)
(b)

Figure 3.3: Cluster heterogeneity in site percolation on the square lattice as a function of
the occupation probability p. In panel (a) the dotted lines represent the critical percolation
threshold pc. Lattice sizes are L = 25, ..., 212. As the system size L increases, Heq is higher
and the position of the peak approaches pc. Panel (b) shows the collapsed data using the
scaling function of Eq. (3.1). Figure extracted from Noh et al. [21].

3.2 Heterogeneity in the Ising model

The heterogeneity in cluster sizes in the two-dimensional Ising model was first inves-
tigated by Jo et al. [22]. They were able to verify the scaling proposed by Noh et al. [21]
through Monte Carlo simulations and found numerical values of the fractal dimension
df and the Fisher exponent τ for the cluster distribution agreeing with the known exact
values obtained via conformal field theory. For the considered system sizes, no peak was
observed at Tc but only a kink, although they argued the existence of such a peak.

Later, de la Rocha et al. [23] presented new results using larger system sizes for both
geometric and physical clusters. A geometric cluster considers all nearest neighbor par-
allel spins belonging to the same domain. In contrast, a physical cluster only takes the
fraction of the parallel spins effectively correlated [58, 59]. This distinction is important
for interacting spins under thermal noise: the heterogeneity of physical clusters Hp differs
from the geometrical one Hg. They have shown that in a square lattice, for equilibrium
states, varying the temperature, Hg has two distinct peaks for sufficiently large systems,
one small peak close to Tc and another, large and broad peak far above Tc.

The first peak is close to Tc (Figure 3.4a), and grows as expected with Ld/τ , while the
size of the critical region scales with L1/νH . The value of τ and νH used in the collapse
(Figure 3.5a) are τ ' 2.016(4) and νH ' 1.984, very close to the exponents for the
geometric domains in the Ising model, τ = 379/187 ' 2.027 and νH = 379/192 ' 1.974.

The second peak is much broader than the first one (Figure 3.4b). In the large temper-
ature limit, T →∞, due to the entropic contribution of uncorrelated spins, as discussed
in [22], Hg is a slowly increasing function of L, Hg(T → ∞) ∼ logL, which are depicted
as horizontal lines in Figure 3.4b. This asymptotic state can be measured on a random
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configuration with, on average, half the spins up and the other half down, and this state
is approached as Hg(T )−Hg(T →∞) ∼ T−1.

This second peak is harder to collapse (Figure 3.5b). Due to the excess heterogeneity
at high temperatures, this peak does not collapse well with the exponents used in the
first peak. Still, a satisfactory collapse was obtained with τ ' 2.048 and ν ' 1.25, values
closer to the exponents for the random site percolation, τperc = 187/91 and ν = 4/3 (thus,
νH = 187/72).

In 2d, both the thermal and percolative transitions for the geometric clusters happen at
the critical temperature Tc in the thermodynamic limit. However, for finite systems, these
transitions have not yet merged. As the system sizes increase, both peaks move towards
Tc, indicating that the exponents obtained collapsing both peaks should converge. The
authors of Ref. [23] argue that in the thermodynamical limit these exponents will converge
to the ones of the Ising model.
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Figure 3.4: Cluster size heterogeneity Heq for the 2d Ising model in equilibrium as a
function of the temperature for several system sizes. The vertical dotted line locates the
critical temperature Tc = 2/ ln(1 +

√
2). The horizontal lines indicate the asymptotic

behavior, Hg(T → ∞) ∼ logL. Note the different scale and temperature ranges in (a)
and (b). Figures extracted from de la Rocha et al. [23].

De la Rocha et al. [23] also analyzed the heterogeneity of the physical clusters, which
considers only the effectively correlated spins from the geometrical domains. The physical
clusters are also referred as Coniglio-Klein [59] or Fortuin-Kasteleyn [58] in the literature.
To obtain these domains, starting from a geometric cluster, for every pair of parallel spins,
a bond between them is created with a temperature-dependent probability p = 1− e−2β.
The parallel spins connected by these bonds form the physical cluster. In Figure 3.6
we highlight the difference between the geometrical and physical clusters through two
snapshots of the geometrical and physical clusters of the 2d Ising model evolving from an
initial disordered state (T →∞) to Tf = Tc. Sites with +1 and−1 spins are represented by
green and white sites, respectively. The largest clusters are highlighted in different colors,
red for spin +1 clusters and blue for spin −1 clusters. Notice the difference between both
configurations – the navy geometrical cluster is wrapping the system vertically, while the
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Figure 3.5: Collapsed data for the cluster size heterogeneity Heq from Figure 3.4. In panel
(a) the exponents τ and νH used to collapse the peak close to Tc are close to the ones
of the geometrical domains in the Ising model, while in panel (b) the exponents used to
collapse the second bigger peak are closer to the exponents for the random site percolation.
As the system size L increases, these values are expected to converge to the ones of the
geometrical domains in the Ising model. Figures extracted from de la Rocha et al. [23].

corresponding physical cluster is divided into many others; thus, the largest cluster with
m = −1 is much smaller. Even though the percolative and the thermal transitions occur
at the same temperature for both types of domains, only the physical clusters encode the
proper critical exponents, i.e., the percolative and thermal transitions are in the same
universality class. Thus, the geometrical fluctuations correspond to the thermal ones,
reflecting on the behavior of Hp.

Measurements for Hp for equilibrium states as a function of the temperature are shown
in Figure 3.7. Different from the case of the geometrical clusters, Hp presents a clear
peak near Tc even for the smaller sizes, which grows closer to the critical temperature
as the system size increases. Its behavior at large temperatures is also different from
the geometrical clusters, as the spins become uncorrelated as the temperature increases.
Indeed, when T →∞, all spins are effectively uncorrelated and form clusters of unit size,
resulting in Hp(T → ∞) → 1. The proposed scaling form also collapses very well the
data for the physical clusters (Figure 3.8). The collapse used the Ising thermal exponents,
ν = 1, τp = 31/15, and νH = 31/16.

The measurements of the heterogeneity in the Ising model show that Hg is very sen-
sitive to the thermodynamical transition, even though the geometrical domains do not
encode the proper critical properties. This suggests that Hg may be used to obtain a pre-
liminary estimate for the thermal transition. Moreover, by resolving the transition into
two peaks, it may help disentangle the percolative effects from the thermal ones. Explor-
ing this dissociation when the system is driven out-of-equilibrium is the subject of chapter
5.
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(a) (b)

Figure 3.6: Snapshots of geometrical and physical clusters of the 2d square lattice Ising
model with linear size L = 160 and periodic boundary conditions evolving from an initial
disordered state to Tf = Tc. Green and white sites represent +1 and −1 spins, respectively.
The largest clusters are highlighted in different colors, red for spin +1 clusters and blue
for spin −1 clusters. Both snapshots are for the same system evolution (a) illustrating
the geometrical domains, and (b) the physical ones. Notice the difference between both
configurations – the blue geometrical cluster is wrapping the system vertically, while the
corresponding physical cluster is broken into many others, thus the largest blue (red)
cluster is much smaller. The snapshots were taken at 104 MCS.
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Figure 3.7: Cluster size heterogeneity Hp of the physical domains for the 2d Ising model in
equilibrium as a function of the temperature for several system sizes. The vertical dotted
line locates the critical temperature Tc = 2/ ln(1 +

√
2). In this case, there is a single

pronounced peak close to Tc. Figure extracted from de la Rocha et al. [23].
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Figure 3.8: Collapsed data for the cluster size heterogeneity Hp of physical domains from
Figure 3.7. There is an excellent collapse with the critical exponents of the physical clusters
in the Ising model τp = 31/15, ν = 1 and νH = 31/16. Figure extracted from de la Rocha
et al. [23].
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Chapter 4

Cluster size heterogeneity: a mean-field
approach

In the previous chapter, we have reviewed the equilibrium cluster size heterogeneity
in random site percolation and the Ising model. In this chapter, we investigate how the
exponent of a power-law distribution changes the behavior of the heterogeneity in a finite
system. Motivated by the results of the equilibrium cluster size heterogeneity in the 2d

Ising model [23] and the recent results of the dynamical cluster size heterogeneity [25],
that will be shown in chapter 5, a natural question that one may ask is what value of
the exponent τ maximizes the heterogeneity and how do we compare it with the known
values for different models, specifically, the Ising model?

Throughout this chapter, we will study a general model of independent and identi-
cally distributed integer random variables, i.e., a general simple model that generates
independent domains whose only constraint is to fill the system area S. This is a sort of
a mean-field approach, as there are no correlations between the domains. The only con-
straint imposed on the system is on the set of chosen domains, although imposing a global
constraint somewhat reintroduces correlations. In the cases shown so far, e.g., geometric
domains in the Ising model, the equilibrium dynamics imposes correlations between them,
which is different from the model considered in this chapter. We focus on the evaluation
of the heterogeneity for a general case and algebraic distributions. Therefore, this chapter
is somewhat different from the previous one since it does not directly address the Ising
model, nor percolation, but has a mean-field approach to investigate H.

4.1 General model with independent and identically

distributed random variables

We consider a model where independent and identically distributed random variables
{sd} are extracted from a generic probability distribution p(s). In the analogy with do-
mains, the variables sd represent the size, i.e., the volume, of the d-th domain. The prob-
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ability distribution p(s) is denoted as bare distribution, since the effective (or dressed)
distribution of the sd will be shaped by the presence of the global constraint

D∑

d=1

sd = S , (4.1)

where S is a parameter playing the role of the system size, and D stands for the fluc-
tuating number of domains that, according to the particular extraction of the {sd}, is
needed to fulfill Eq. (4.1). As it is, this approach is rather general. However, it can be
adapted to describe specific models (e.g., random percolation or the Ising model) by using
an appropriate domain size distribution p(s).

The probability of a configuration C ≡ [{s1, . . . , sD};D] is given by

pS({s1, . . . , sD};D) =
1

ZS

D∏

d=1

p(sd)δ∑D
d=1 sd,S

, (4.2)

where the constraint given by Eq. (4.1) is imposed by the Kronecker delta. The quantity
ZS plays the role of a partition function

ZS =
∞∑

D=1

ZS(D) , (4.3)

where ZS(D) is the partial partition function

ZS(D) ≡
S∑

s1=1

S∑

s2=1

· · ·
S∑

sD=1

D∏

d=1

p(sd)δ∑D
d=1 sd,S

, (4.4)

corresponding to an ensemble with a fixed number of domains D, while ZS corresponds
to an ensemble where D can fluctuate. From this simple observation, one obtains the
probability of having a number D of domains,

pS(D) =
ZS(D)

ZS
, (4.5)

and the average number of domains,

〈D〉S =
S∑

D=1

DpS(D) . (4.6)

As already mentioned, the dressed probability distribution of finding a domain of size
s is different from the bare one due to the constraint on the total size, Eq. (4.1). It can
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be obtained from Eq. (4.2) by marginalization as

pS(s) = D

S∑

s1=1

S∑

s2=1

· · ·
S∑

sD−1=1

pS({s1, . . . , sD−1, s};D) (4.7)

=
p(s)∑∞

D=1DZS(D)

∞∑

D=1

DZS−s(D − 1) , (4.8)

where the extra factor D appears because it does not matter which domain takes the
specific size s.

Therefore, the average domain size is

〈s〉S =
S∑

s=1

spS(s). (4.9)

Similarly, the average heterogeneity is

〈H〉S =
S∑

H=1

H pS(H) , (4.10)

where pS(H) is the probability of observing a certain value ofH for a given bare probability
function. In the next section, we will introduce an alternative approach for evaluating
〈H〉S, so the demonstration of pS(H) will be omitted here. For the derivation of pS(H),
please refer to Ref. [26] (in preparation).

4.2 Solution for a general bare distribution

In principle, all probabilities can be computed with the expressions given in the last
section. However, this approach becomes rapidly impracticable already for moderate val-
ues of S without a clever approach to handling those equations. Let us consider, for
example, the computation of pS(s) or pS(D), Eqs. (4.8) and (4.5), which involve the func-
tions ZS defined in Eq. (4.3). The sums in ZS contain, a priori, SS terms, which cannot
be enumerated by a fast computer even for relatively small values of S. However, due to
the constraint over the area imposed by the δ function in Eq. (4.4), only a small fraction
of those terms does not vanish. This suggests that the algorithmic complexity involved in
the determination of ZS can be softened by resorting to a clever summation scheme. The
following recursive relation

ZS(D) =
∞∑

s=1

p(s)ZS−s(D − 1) (4.11)

allows us to express ZS(D) in terms of ZS(D− 1), that can be easily proved upon writing
δ∑D

d=1 sd , S
= δ∑D

d=2 sd , S−s1 in Eq. (4.4). It was shown in Ref. [60] that using the above
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recurrence relation the algorithmic complexity is lowered to polynomial.

With this convenient recursive method, we can obtain an exact solution of the model
up to relatively large values of S. Let us first look at the dressed probability distribution,
pS(s). This quantity is plotted in Figure 4.1 using an algebraic bare probability, p(s) ∼ s−τ ,
for different values of τ . We compare the exact dressed probability distribution obtained
from Eq. (4.8) with the results of numerical simulations where, after extracting the random
variables sd, only the configurations respecting the constraint (4.1) are kept. One sees a
perfect agreement between the exact pS(s) and the numerical simulations. As expected,
the dressed and the bare distributions coincide, pS(s) ' p(s), up to values s . S, beyond
which pS(s) gets strongly depressed. This suggests that the bare p(s) can be used in place
of the dressed distribution pS(s) as an approximation to evaluate the different quantities
of interest, thus simplifying the calculations.

10
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-4

10
-2

10
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 1  10  100

s

p S
(s
)

τ = 1
2
3

bare
dressed

Figure 4.1: The exact dressed probability distribution pS(s) (solid lines) obtained from
Eq. (4.8) is compared with numerical simulations (points) using a bare probability dis-
tribution p(s) ∼ s−τ (dashed lines) and different values of τ for a system size S = 100.
Deviations only become large when s is close to S.

To compute the heterogeneity, instead of turning to Eq. (4.10), which requires the
evaluation of pS(H) (and its huge number of terms in the sums), we make use of a
different approach, which directly provides the value of 〈H〉S, without resorting to pS(H).

As defined in the previous chapter, the contributions for the heterogeneity come from
two regions of the cluster size distribution, s ≤ s∗ and s > s∗, namely the dense and
sparse regions, where s∗ separates both regions and is defined by

〈D〉S pS(s∗) = 1 . (4.12)

From this definition, as discussed previously, there is at least one domain of each size
s ≤ s∗, and this region contributes with s∗ to the heterogeneity. For s > s∗, differently, a

39



domain of size s is found with probability pS(s). Thus, combining both contributions, we
obtain an expression for the average heterogeneity

〈H〉S ' s∗ + 〈D〉S
S∑

s=s∗
pS(s). (4.13)

It has been shown in Ref. [25] that this is an excellent approximation for 〈H〉S, agreeing
very well with the results from numerical simulations. Thus, with Eq. (4.13) the evaluation
of 〈H〉S only depends on 〈D〉S and pS(s), which can be computed with the recurrency
method discussed above.

4.3 Solution for an algebraic bare distribution

One of the important applications of cluster size heterogeneity is exploring spatial
models critical properties, as previously discussed. Thus, it is particularly relevant to
consider the case of an algebraic bare distribution

p(s) =

{
N−1(τ, S)s−τ ; for 1 ≤ s ≤ S

0 ; for s > S,
(4.14)

where the normalization is a generalized harmonic number and can be written in terms
of the Riemann and Hurwitz zeta functions, ζ(x) and ζ(x, y), respectively:

N(τ, S) =
S∑

s=1

p(s) =
∞∑

s=1

s−τ −
∞∑

s=S+1

s−τ

= ζ(τ)−
∞∑

s=0

(s+ S + 1)−τ

= ζ(τ)− ζ(τ, S + 1) . (4.15)

The exact value of the average number of domains, 〈D〉S, can be computed from
Eqs. (4.5) and (4.6), and is shown in Figure 4.2 against S for three values of τ . To
compute the approximate expression for 〈D〉S, we use the approximation pS(s) ' p(s), so
Eq. (4.9) can be written as

〈s〉S '
S∑

s=1

sp(s) =
1

N(τ, S)

S∑

s=1

s1−τ =
1

N(τ, S)

( ∞∑

s=1

s1−τ −
∞∑

s=S+1

s1−τ
)

=
ζ(τ − 1)− ζ(τ − 1, S + 1)

N(τ, S)
=
N(τ − 1, S)

N(τ, S)
, (4.16)

from which the analytical approximation for 〈D〉S is obtained

〈D〉S '
S

〈s〉S
. (4.17)
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Hence, evaluating Eq. (4.17) using Eq. (4.16) and considering the limit for large S,
we obtain an approximate expression for the average number of domains. The asymptotic
behavior of the normalization N(τ, S) is obtained through the the Euler-Maclaurin sum
formula [61]

N(τ, S) ' ζ(τ) +
1

1− τ S
1−τ , (4.18)

and
N(τ − 1, S) ' ζ(τ − 1) +

1

2− τ S
2−τ , (4.19)

which for τ close to 1 reduces to [62]

N(1, S) ' lnS + γ , (4.20)

where γ ' 0.577 is the Euler constant. Thus, for the case τ = 1, we have

〈D〉S =
S N(1, S)

N(0, S)
' lnS + γ (4.21)

and for the case τ = 2,

〈D〉S '
π2

6

S

lnS
, (4.22)

where ζ(2) ' π2/6. Similarly, considering the large S limit, all cases are summarized
below

〈D〉S '





2− τ
1− τ ; for τ < 1

lnS ; for τ = 1

ζ(τ)(2− τ)Sτ−1 ; for 1 < τ < 2

ζ(2)S

lnS
; for τ = 2

ζ(τ)

ζ(τ − 1)
S ; for τ > 2 .

(4.23)

The agreement between these results and the exact determination, shown in Figure 4.2,
is very good even for τ = 1 where the leading term in the approximation is not a simple
power-law.

Using the approximation pS(s) ' p(s) on the definition of s∗ from Eq. (4.12), we
obtain

s∗(S, τ) '
(

S

γ + S2−τ−1
2−τ

)1/τ

, (4.24)

where the asymptotic behavior of the Riemann zeta function is approximated by ζ(x) '
(x− 1)−1 + γ. Substituting s∗ in Eq. (4.13), we obtain an approximate expression for the
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Figure 4.2: Average number of domains as a function of the system size S for different
values of τ evaluated through Eq. (4.6). The solid lines indicate the predicted asymptotic
behaviour given by Eq. (4.23), while for τ = 1, 〈D〉S ' lnS.

average heterogeneity

〈H〉S ' s∗ + 〈D〉S
S∑

s=s∗
p(s)

' τs∗ − (s∗)τS1−τ

τ − 1
. (4.25)

This determination of 〈H〉S is shown in Figure 4.3 for the smallest and largest sizes only
and compared with numerical simulations. The agreement between the analytical and
numerical results is very good. In particular, both cases present a peak at τ ' 2, which
becomes more pronounced as S increases.

As shown for the average number of domains 〈D〉S, for large S the leading contribution
of Eq. (4.25) is

〈H〉S '





2− τ
1− τ ; for τ < 1

lnS ; for τ = 1

τ(2− τ)1/τ

τ − 1
S1−1/τ ; for 1 < τ < 2

2

(
S

lnS

)1/2

; for τ = 2

τ

τ − 1

[
S

γ + (τ − 2)−1

]1/τ
; for τ > 2 .

(4.26)
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Figure 4.3: Cluster size heterogeneity, 〈H〉S as a function of the exponent τ for different
system sizes S obtained through numerical simulations. The results present averages over
a large number of samples (106 for the smallest size, and 104 for the largest). Solid lines
are the approximate analytical solution given by Eq. (4.26), whose agreement with the
numerical results is very good (shown only for the smallest and largest sizes).

It is possible to analyze how the size dependence of 〈H〉S observed in Figure 4.3 relates
to the exponent τ from Eq. (4.26). The hetetogeneity size dependence may be written as
〈H〉S ∼ Sα(τ), with

α(τ) ∼





0 ; for τ < 1

1− 1/τ ; for 1 < τ < 2

1/τ ; for τ > 2.

(4.27)

The exponent α(τ) evaluated from the above expression is plotted with a dashed line in
Figure 4.4 and compared with simulation results. The results were obtained by fixing the
value of τ for different system sizes in the simulation data in Figure 4.3 and extrapolating
the results through a power-law fit to obtain an estimate of α(τ).

Thus, from Figure 4.4 it is clear that there is a maximum value of the heterogeneity at
τ = 2 for an algebraic bare function, signaled by the abrupt change of behavior at τ = 2.
This result can be interpreted with a similar reasoning used in chapter 3 for random site
percolation. If one considers a fixed number of domains D, it is intuitive that the steeper
the bare power-law distribution (i.e., a larger τ), there is a higher probability of repeatedly
extracting small domains than selecting larger domains, hence a smaller H. On the other
hand, for a slow decaying function, i.e., a smaller τ , the probability of extracting different
sizes is higher, thus a higher H. However, the average number of domains 〈D〉S depends
on the (fixed) system size S and varies with τ .

(i) For τ > 2, the average number of domains 〈D〉S, Eq. (4.23), does not depend on
τ , only on S. Even though 〈D〉S ∼ S, the heterogeneity depends on the number
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Figure 4.4: Behavior of exponent α(τ) as a function of τ . Fixating a value of τ in the simu-
lation data in Figure 4.3, we obtain an estimate of α(τ) through an extrapolation through
a power-law fit. The dashed line is the approximate analytical solution in Eq. (4.27).

of different sizes in a given configuration. Since the probability of extracting small
domains is much higher than selecting larger ones, the size diversity is low; thus,
the heterogeneity is small, 〈H〉S ∼ S1/τ .

(ii) On the opposite limit, when τ ≤ 1, comparing Eqs. (4.23) and (4.26), one sees
〈D〉S ' 〈H〉S. Therefore, most of the clusters have a distinct size (meaning that
s∗(S, τ) is very small). When τ ≤ 1, there is a high probability of extracting a
cluster comparable to the system size, thus reducing the effective space available to
additional clusters (due to the imposed constraint on the system size), and 〈H〉S is
small irrespective of the system size at this range.

(iii) In between those two limits, 1 < τ < 2, 〈D〉S still depends on τ . As τ increases from
small values, 〈D〉S also increases. However, for a fixed D, increasing τ , decreases
H. Thus, there is a competing effect between lowering the diversity of sizes and the
average increase of D. The latter effect prevails, so H increases for 1 < τ ≤ 2 and
presents a pronounced maximum at τ = 2.

Interestingly, the maximum heterogeneity is found at τ = 2, which is close to the
exponent for geometrical domains in the Ising model, τ = 379/187 ' 2.027 [47, 63], for
physical clusters, τ = 31/15 ' 2.067 [59], and at critical percolation, τ = 187/91 ' 2.055

[19]. Another possibility is to consider the distribution of areas inside every hull. Although
the number of hulls is precisely the same as the number of geometric domains, as each hull
is associated with a single domain [13], they do not need to obey the area constraint and,
indeed, their total area is larger than S. Strikingly, their Fisher exponent τ is exactly
2, which corresponds to the exponent that maximizes the heterogeneity in the model
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addressed in this chapter. We thus speculate that the fewer constraints upon the domains,
the closer their exponent will be to τ = 2.

The cluster size heterogeneity measurements through a sort of mean-field approach
show that there is, indeed, an exponent that maximizes the heterogeneity and is very
close to the associated exponents for the Ising model. Also, we have seen that the cluster
size heterogeneity measurements in the equilibrium Ising model are very sensitive to the
thermodynamical transition and thatHg may be used to disentangle the percolative effects
from the thermal ones. Exploring this dissociation when the system is driven out-of-
equilibrium is the subject of the next chapter.

45



Chapter 5

Cluster size heterogeneity: the
dynamics

The measurement of the cluster size heterogeneity was useful to resolve both the ther-
mal and percolative transitions in the 2d Ising model, but there are many questions related
to the time evolution of the cluster size heterogeneity. Despite being proposed to study
equilibrium configurations, is the cluster size heterogeneity able to provide additional in-
formation on out-of equilibrium systems? Does the temporal evolution of the cluster size
heterogeneity shed some light on the percolative and thermal effects? Is H(t) useful to
study the geometric properties and the coarsening processes? Such questions motivated
a preliminary study [64] of the dynamical cluster size heterogeneity in the Potts model
with q = 2, 3 and different quench protocols.

To address these questions, in this Chapter, we discuss the dynamical properties of
the cluster size heterogeneity, H(t), in the 2d Ising model. Our main objective here is
to explore whether this new observable may be useful, not only to study equilibrium
properties of simple models, but their dynamics as well. The results presented in this
chapter have been published in Phys. Rev. E [25], which is included in Appendix A.

5.1 Ising dynamics

We study the dynamical heterogeneity in the 2d Ising model, whose Hamiltonian is

H = −J
∑

〈i,j〉
sisj , (5.1)

with J > 0, si = ±1 is the spin at the site i, and the sum is over the pairs of nearest-
neighbours sites on an L×L square lattice with periodic boundary conditions. There are
two possible initial states:

(i) an uncorrelated random spin configuration, where each site has the probability 1/2

to be in the state si = +1 or si = −1. This condition corresponds to an equilibrium
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infinite temperature state;

(ii) a configuration thermalized at the critical temperature Tc, corresponding to a state
with infinite range correlations.

To drive the Ising model out of the equilibrium state, we apply a simple protocol
consisting of a sudden quench in temperature, shown in Figure 5.1a. We consider two
relevant temperature paths: starting at an initial uncorrelated state, corresponding to an
infinite initial temperature, instantaneously quench the system to a subcritical temper-
ature, Tf < Tc (Figure 5.1b, path I, T0 → ∞, Tf < Tc). The other interesting initial
configuration is to thermalize the system at the critical temperature Tc for an initial con-
figuration with infinite range correlations, then quench it to a subcritical temperature
(Figure 5.1b, path II, T0 = Tc, Tf < Tc).

t

T

Tf

t = 0

(a)

I

II

T < Tc Tc ∞

(b)

Figure 5.1: Simple quench protocols. (a) Instantaneous quench protocol, when the system
is instantaneously quenched to a temperature Tf at time t = 0. (b) Temperatures used in
the simulations. The initial conditions are T0 →∞ or T0 = Tc and the final temperature
is Tf < Tc.

When T0 = Tc, the system is equilibrated with a cluster flip algorithm that is more
efficient near the critical region when compared to single flip dynamics [65]. Single flip algo-
rithms, like the Metropolis algorithm, have a dynamical critical exponent, z ≈ 2.0, higher
than the values for cluster flip algorithms, like the Swendsen-Wang or Wolff algorithms,
z ≈ 0.25 [65]. This effect is due to the critical slowing down, that makes the transition
slower close to the transition, because of the divergence of the correlation length with the
exponent z and the significant critical fluctuations. Despite the usefulness in accelerating
the thermalization process at Tc, cluster flip algorithms have non-local dynamics, so for
the dynamical measurements, we must use a single flip algorithm.

The temperature after the quench is Tf = 0. The continuous time Monte Carlo algo-
rithm [65] is used to accelerate the simulations. This algorithm is particularly simple at
zero-temperature, since there is no bulk noise and the dynamics is concentrated on the
domains’ interfaces. Therefore, the spins that can be flipped are those with an opposing
local field. The transition probability is
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wi(s) ∼





1, if ∆Ei(s) < 0

p, if ∆Ei(s) = 0

0 if ∆Ei(s) > 0 ,

(5.2)

where p ∈ [0, 1] is the probability of accepting an ∆E = 0 flip. For the heat bath and
Glauber dynamics, p = 1/2, while for the Metropolis algorithm, p = 1 [66].

In the continuous-time dynamics, we keep a list of the Nmobile spins that have a pos-
sibility to flip. At zero-temperature, those are the spins where the energy cost if the spin
were to flip is ∆E ≤ 0. By keeping track of the flippable spins, there is a higher probabil-
ity that the proposed flip will be accepted. Thus, this algorithm saves computer time by
not picking spins that do not have a probability to flip. Each attempt to flip corresponds
to a time increment by 1/Nmobile, instead of 1/N . The time increment varies as Nmobile

decreases during the dynamics. Time is measured in Monte Carlo steps (MCS), where one
unit corresponds to N attempts to flip.

To compute the heterogeneity, the clusters are identified using the Hoshen-Kopelman
algorithm [67]. The geometric domains are computed in a sweep of the lattice, checking
which nearest neighbors spins are parallel, and assigning labels to track each cluster.
Next, the domain size distribution and the total number of clusters are measured. From
the cluster distribution, the heterogeneity and other quantities may be measured, such as
the existence and type of percolating clusters, the largest and second largest cluster size,
the first absent domain size in the distribution, etc.

5.1.1 Critical initial temperature

At T0 = Tc the system has infinite range correlations with high thermal fluctuations.
The cluster size distribution with this initial condition evolves as [12,13]

nd(A, t) ∼
c [λ(t+ t′)]τ−2

[A+ λ(t+ t′)]τ
, (5.3)

where nd(A, t)dA is the average number of clusters per unit area, whose size is between
A and A + dA. The constant c ' 0.029 [12, 13] is very close to the Cardy-Ziff number,
ch = 1/8

√
3π ' 0.023 [46], the constant λ has the dimensions of a diffusion constant (we

consider time and area units unitary). At T = 0, λ ' 2, with time and area units unitary,
and t′ is a microscopic time such that λt′ ' 1.

The cluster size distribution (5.3) is the starting point to derive an analytic expression
for the cluster size heterogeneity. The initial state at Tc has a large percolating cluster
already established, with the second largest percolating cluster much smaller than the
largest one. The time a percolating cluster first appears is indicated by tp1 , and when the
percolating cluster becomes stable is tp. Since there is a percolating cluster at the initial
state, tp1 ' 0, and as this cluster is already stable, being much bigger than the second
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largest cluster, tp ' 0 [28]. The above distribution is an average, while the heterogeneityH
is measured from a single configuration, as discussed in Chapter 3 and shown in Figure 3.2.
Differently from the averaged distribution of Eq. (5.3), in a single sample not all possible
cluster sizes may be present, therefore there are holes in this distribution.

As done for the equilibrium heterogeneity, we denote A0(t) as the smallest missing size
at time t. Then, the sample cluster size distribution is dense for A < A0(t), and sparse for
sizes greater than A0(t). If l0 is a microscopic length and (l0L)2 the area of the system,
A0(t) is the size such that (l0L)2n(A0, t)l

2
0 ∼ 1. Using Eq. (5.3) and setting l0 = 1, we

obtain an expression for A0(t)

A0(t) ' (λt+ 1)

[(
L
√
c

λt+ 1

)2/τ

− 1

]
Θ(t− t0) , (5.4)

where Θ(t) is the Heaviside step-function. From the Allen-Cahn equation (2.5), we know
the areas are decreasing with a rate λ, and the smallest domains will disappear first
from the distribution. Therefore, the dense region of the cluster size distribution will have
disappeared after a time t0 such that

t0 '
L
√
c

λ
. (5.5)

The heterogeneity H(t) is given by the contributions of both the dense and sparse
regions,

H(t) ' A0(t) + L2

∫ ∞

A0

dA n(A, t), (5.6)

where the first term corresponds to the size of the dense region, and the second term to
the number of clusters in the sparse region. Using Eqs. (5.3) and (5.4) with Eq. (5.6), we
get an expression for H(t) at all times:

H(t) '





(λt+ 1)

[
τ

τ − 1

(
L
√
c

λt+ 1

)2/τ

− 1

]
, t ≤ t0

L2c

τ − 1

1

λt+ 1
, t ≥ t0.

(5.7)

Analysing both terms, we notice H(t) has a first regime when the coarsening process is
slowly removing the smallest clusters, slowly changing A0(t), up to times t ' t0, and a
second regime after the dense region has disappeared, and H(t) becomes equivalent to
the number of remaining clusters.

The initial value H(t = 0) corresponds to the equilibrium state at Tc

H(t = 0) ' Heq(Tc, L) ' τ

τ − 1
c1/τL2/τ , (5.8)

whereas H(t→∞) = 0, because we do not consider the spanning clusters in our definition
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of the domain size distribution. At t = t0, both regimes give H(t0) ' L
√
c/(τ − 1).

The system initially in equilibrium at T0 = Tc already has a percolating cluster,
therefore tp1 = 0. This cluster is already stable against the dynamics, thus tp = 0 [28].
The presence of a percolating cluster at tp1 = 0 does not imply tp = 0, as this first may
not be stable against the dynamics. For example, an infinite temperature configuration
on the triangular lattice, with the same probability 1/2 of the spins being in the state +1
or -1, is already at the critical percolation state and has tp1 = 0. However, this cluster
from the initial distribution is not stable, therefore tp > 0 [28].

The cluster size heterogeneity, H(t), is shown in Figure 5.2 for several lattice sizes. The
simulations are compared with the analytical equation (5.7) (black lines) with a pretty
good agreement at all times, except close to t0, where there is a change of regime. Initially,
the coarsening process is removing the smaller clusters from the distribution, without a
significant impact on H(t) up to t ' t0, since mostly of the removed clusters do not
have an unique size. When the dense region is about to disappear, H(t) crosses over to a
power-law regime. Almost all remaining clusters have an unique size, and H(t > t0) may
be approximated by the number of clusters, Nd(t > t0) ∼ t−1 (Figure 5.3).

Figure 5.2: Dynamical cluster size heterogeneity H(t) as a function of time (in MCS) for
the 2d Ising model after a quench from T0 = Tc to Tf = 0. In the first regime, t ≤ t0, H(t)
changes slowly from its initial value Heq(Tc, L), while the second regime has a power-law
behavior with t−1. The behavior of both regimes is well captured by Eq. (5.7) (solid lines).
We consider c ' 0.029, λ ' 2, while τ is used as a fitting parameter to account for finite
size effects. For simplicity, only the samples that converged to a fully magnetized state
were considered.

The cluster size heterogeneity H(t) collapses well onto a universal curve, H(t) =

L−1f(t/L) (Figure 5.4). The time is scaled as t→ t/L and the cluster size heterogeneity
as H(t) → H(t)/L. The scaling used in the equilibrium case in Ref. [23] considered
only the dependency of Heq(T, L) on the system size, Heq(T, L) ∼ L−d/τ . The analytic
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Figure 5.3: Several observables as a function of time after a temperature quench from
T0 = Tc to Tf = 0. In the first temporal regime, H(t) presents a slow variation, as well as
the number of domains in the dense region,Ndense(t). The coarsening dynamics is removing
the smaller clusters in the dense region, thus the number of domains in the sparse region,
Nsparse(t), is decreasing quickly. When the dense region is about to disappear, t ' t0,
the first missing size A0(t) starts to decrease, and almost all remaining clusters have an
unique size, thus Nsparse(t > t0) ' Nd(t > t0) ' H(t > t0). The solid black line indicates
the power-law behavior in the final regime. The system linear size is L = 1280 and time
is in MCS.

expression (5.7) provides the proper scaling form f(x), and the right dependence on the
system size.

Despite the exact value of the Fisher exponent τ for the Ising critical point being
known, τcritical Ising = 379/187, we have considered τ = τ(L) as a fitting parameter to take
finite size effects into account. As the system size increases, these values τ(L) converge
to the correct value for the Ising critical point, as shown in the inset of Figure 5.4, where
each point was obtained from each fit of the analytical expression (5.7). Nevertheless, it
is remarkable that H(t) can detect two distinct regimes and that both regions have an
excellent collapse.

Another feature of Eq. (5.7) is a small peak H(tmax) (Figure 5.5). Both the numerical
data and Eq. (5.7) agree on the position of the maximum, tmax,

λtmax + 1

L
=
√
c

(
τ − 2

τ − 1

)τ/2
' 0.004 , (5.9)

even though the height H(tmax) has a small deviation between Eq. (5.7) and the numerical
data. This deviation is enlarged in Figure 5.5 due to the chosen vertical scale and can be
due to the dependence of Eq. (5.7) on the precise value of c. Furthermore, the analytical
results do not account for the coalescence of two domains to form a bigger one, or the
fission of a big domain into two smaller ones [13]. Despite these processes not being
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important in the analytic results, as given in Eq. (5.3), they may play a role in the small
peak of H(t) where there is a change of regime.

5.1.2 Infinite initial temperature

At the initial infinite temperature, despite spins being uncorrelated, there are small
clusters present in the system and there is no percolating cluster. The initial heterogene-
ity H(t = 0) is not very large and corresponds to the equilibrium state at an infinite
temperature [21–23]

Heq(T →∞, L) ' lnL . (5.10)

Differently from the previous case, the initial state in equilibrium at T → ∞ is not
critical. Soon after the quench, the domains begin to coalesce into larger ones and the
domain size distribution approaches in a few MCS the random site percolation critical
state [12,13]. The first occurrence of a percolating cluster is at tp1 , subsequently destroyed
by the dynamics. The largest and second largest cluster compete until a later time tp,
when the largest cluster becomes stable and will grow throughout the dynamics. After
the cluster size distribution becomes critical at tp1 , it evolves as [12,13,29]

nd(A, t) ∼
2c [λ(t+ tp1 + t′)]τp−2

[A+ λ(t+ tp1 + t′)]τp
, (5.11)

where τp = 187/91 is the Fisher exponent, the factor 2 in the numerator accounts for the
existence of clusters with both positive and negative magnetization, while in the related
percolation problem only particle clusters are considered and not the empty sites. Similar
to the previous case, we obtain an expression for the first missing cluster size A0(t) from
the cluster size distribution,

A0(t) ' [λ(t− tp1) + 1]



(

L
√

2c

λ(t− tp1) + 1

)2/τp

− 1


Θ(t− t0) , (5.12)

and the time t0 at which the dense part of the distribution will have disappeared is

t0 '
L
√

2c− 1

λ
+ tp1 . (5.13)

Thus, calculating using Eq. (5.6), the behavior of H(t) is given by the expression

H(t) '





(λ(t− tp1) + 1)


 τp
τp − 1

(
L
√

2c

λ(t− tp1) + 1

)2/τp

− 1


 , tp1 < t ≤ t0

2L2c

τp − 1

1

λ(t− tp1) + 1
, t ≥ t0.

(5.14)
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Figure 5.4: Collapse of the cluster size heterogeneity H(t) for the 2d Ising model after the
quench from T0 = Tc to Tf = 0 onto an universal curve, H(t) = Lf(t/L). The inset shows
that the values of τ(L) used to fit the analytical curves in the Figure 5.2 do converge to
the correct value for the critical Ising as the system size increases. The Fisher exponent τ
used here is the one for the geometric domains in the Ising model, τcritical Ising = 379/187.
The agreement in the main panel with Eq. (5.7) (black line) is also good.
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Figure 5.5: Zoom into the region close to the end of the plateau for the 2d Ising model
after the quench from T0 = Tc to Tf = 0. A small peak at tmax is marked by the vertical
line, given by Eq. (5.9). The height of the peak H(tmax) depends on the precise value of c
in Eq. (5.7). The deviation from the numerical data appears larger because of the chosen
scale.
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Soon after the quench, H(t) grows rapidly and presents a pronounced peak followed
by an intermediate plateau before the final power-law decrease toward the asymptotic
state, as shown in Figure 5.6.
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Figure 5.6: Dynamical cluster size heterogeneity H(t) as a function of time for the 2d
Ising model after a quench from T0 →∞ to Tf = 0. For the largest size, we indicate the
times when a percolating cluster first appears, tp1(L), and when it becomes stable, tp(L).
The black horizontal line indicates Heq(T2, L), observed in Ref. [23], which agrees well
with the peak H(tpeak, L). On the right, the black curve is Eq. (5.14) using τp = 187/91,
showing a good agreement for the regime t > tp1 . Notice that panel (a) is in a semi-log
scale, while panel (b) is in a log-log scale. For simplicity, only the samples that converged
to a fully magnetized state were considered in our numerical data.

As in the previous T0 = Tc case, the analytical expression of H(t) (5.14) also has a
broad and small maximum before t0, at tmax

λtmax + 1

L
=
√

2c

(
τp − 2

τp − 1

)τp/2
' 0.011. (5.15)

However, the numerical data do not have this maximum and decrease after t > t0. We
conjecture that this is an effect of the sizes considered here, so the region t ≤ t0 may
not be fully developed yet, or due to the presence of the initial, precursor maximum that
influences the behavior before tp1 . The cluster size distribution in Eq. (5.11) considers the
initial state at the critical percolation state, therefore we do not expect the analytical
expression for H(t) to capture any features for t < tp1 . As a matter of fact, in the
analytical expression, t = tp1 corresponds to the beginning of the slowly changing region
that precedes the small maximum, which approximately extends between tp1 and tp (whose
separation depends on L), observed in Figures 5.6a and 5.6b:

H(tp1) '
τp

τp − 1
(L
√

2c)2/τp . (5.16)

The pronounced peak before the appearance of the first percolating cluster is a pre-
cursor feature of the percolating state. As the domains coalesce after the quench, the
domain size distribution widens as shown in Figure 2.6 and H(t) increases. However, as
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the largest cluster increases, less space is available for the other clusters, reducing the
size heterogeneity. Therefore, the maximum heterogeneity occurs at tpeak slightly before
tp1 . This early peak is not only a precursor effect of the percolating cluster that appears
at tp1 , but also has a strong, mysterious connection with the equilibrium measures of
Ref. [23]. For all sizes considered, there is a correspondence between the heights of the
dynamical peak, H(tpeak), and the second equilibrium peak, Heq(T2), observed in Ref. [23],
H(tpeak) ' Heq(T2). This correspondence is indicated by a small horizontal line for the
largest L in Figure 5.6a. Indeed, as the temperature decreases, the equilibrium peak at
T2 [23] (Figure 3.4b) also precedes the appearance of a percolating cluster. Furthermore,
we also observe that the peak seems to be (roughly) twice the height of the analytical ex-
pression at tp1 , which indicates the beginning of the correspondence between the analytical
expression and the numerical data:

H(tpeak, L) ' Heq(T2, L) ' 2H(0, L) ' 2τp
τp − 1

(L
√

2c)2/τp , (5.17)

indicated in the inset of Figure 5.7. The relation between the peak and the analytical
expression H(tpeak, L) ' 2H(0, L) is not yet completely understood. This finding suggests
that the approach to critical percolation and the formation of the first percolating cluster
has to be further investigated.

As expected, the numerical data for t > tp1 is well described by Eq. (5.14) as shown in
Figures 5.6b and 5.7, while the peak region clearly grows with a different exponent than
the subsequent evolution t > tp1 of H(t). For t > tp1 , as in the previous T0 = Tc case, the
evolution follows the usual coarsening process with a t−1 power-law growth. By rescaling
both H(t) and the time by L, H(t) has a very good collapse for t > tp1 , in agreement
with Eq. (5.14) (Figure 5.7), despite stronger finite size effects than in the T0 = Tc case.

For t ≥ t0, the power-law behavior of H(t) ∼ t−1 is similar to the T0 = Tc case
and accounts for the number of clusters Nd(t) (Figure 5.8), differing from the T0 = Tc

case only by the value of τp and the factor of 2 in the numerator. Initially, the main
contribution to the number of clusters Nd(t) is from the dense region, Ndense(t). Recalling
from the Allen-Cahn equation (2.5), the small clusters are being withdrawn first from the
distribution at the beginning of the dynamics. These small clusters are concentrated in the
dense region for a long period of the dynamics. Meanwhile, the number of clusters in the
sparse region, Nsparse(t) has a maximum that coincides with the peak in the heterogeneity.
Recalling from Eq. (5.14), in this region H(t) ' A0(t) +Nsparse(t). Even though the sum
A0(t) +Nsparse(t) is greater than H(t) in Figure 5.8, we recall that initially Nsparse(t) does
not account for the number of unique sizes in this region, due to repeated cluster sizes.
For intermediate times, tp1 < t < t0, the number of domains in the sparse region has a
plateau, and while Ndense(t) is reducing rapidly, their removal from the system does not
impact H(t) significantly since there are many repeated cluster sizes in this region. When
the dense region disappears from the system at times t ≥ t0, A0(t) ' 1 and Ndense(t) ∼ 0,

55



Figure 5.7: Collapse of the dynamical cluster size heterogeneity H(t) as a function of time
for the 2d Ising model after a quench from T0 → ∞ to Tf = 0. Both H(t) and time are
rescaled by L. The behavior of t > tp1 is well approximated by Eq. (5.14) with τp = 187/91
(solid line). The inset shows, in the upper straight line, the height of the peaks H(tpeak, L)
(circles) and Heq(T2, L) (squares) along with Eq. (5.17), indistinguishable at this scale, as
a function of the system size. Below, we compare the data of H(tp1) and H(tp) (triangles)
with Eq. (5.16), that get closer as L increases.

H(t) corresponds to the number of domains Nd(t) ' Nsparse.

Returning to t < tp1 and the early peak at tpeak. The H(tpeak) is a precursor effect of
the percolating cluster that appears at tp1 . Additionally, this peak has a strong relation
with the equilibrium measures of Ref. [23] (Figure 5.6a). Indeed, the equilibrium peak at
T2 [23] also anticipates the first appearance of a percolating cluster as the temperature is
decreased from a high temperature. Similar to the equilibrium case, where the equilibrium
peak at T2 had a different scaling from the equilibrium peak at Tc, the data collapse in
Figure 5.7 fails in the early regime. This indicates that the dynamical scaling length
R(t) ∼ t1/2 is not the single relevant length scale after the quench.

A good collapse around the heterogeneity peak, tpeak < t < tp1 , is obtained with
t ∼ Lα, with α ' 0.22 (Figure 5.9). Notice that although the peaks are well collapsed,
neither the black triangles indicating tpeak, nor the black circles indicating tp1 exhibit a
good convergence. Only for the larger sizes tpeak and tp1 seem to collapse with H(t)/L and
t/Lα, with α ' 0.22. Meanwhile, this exponent does not collapse tp. Thus, different values
of the exponent α can collapse the characteristic times, tp1 and tp. For tp, it was shown in
Ref. [29] that the exponent corresponding to the stabilization of the percolating cluster
is 0.4. On the left side of the peak, it seems that the convergence to a universal curve is
slower. This is in agreement with Ref. [23], where it was found that H(T →∞) ∼ log(L).

Other estimates of the exponent α are possible. For example, we can check the relation
of tpeak with the system size L through a power-law tpeak ∼ Lα. As the peak is very
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Figure 5.8: Number of clusters as a function of time for the 2d Ising model after a quench
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broad for smaller systems, the determination of tpeak is not very precise for these sizes.
Thus, only linear sizes greater than L > 640 were considered in the fit, and an exponent
α ' 0.293±0.03 was obtained (Figure 5.10). The local slope of this function also provides
an estimate for α, dtpeak/dL ∼ Lα−1. Using this relation, we obtain α ' 0.270±0.03 (inset,
Figure 5.10). However, while this exponent α ' 0.27 collapses well tpeak(L), it has a poor
collapse in the region after the peak, indicating that there is indeed another length scale
playing a role in the approach to critical percolation. For comparison, the dashed line in
the inset of Figure 5.10 fits well the data and corresponds to α = 0.22, which was obtained
from the collapse of H(t) (Figure 5.9). Clearly, H(t) has a different dependence on the
system size L in the region of the peak, the plateau and the tail. Furthermore, a more
detailed analysis of this exponent α = 0.22 is necessary to establish with greater reliability
if H(t) is well suited as an observable to measure the approach to critical percolation.
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Figure 5.10: Position of the peak tpeak as a function of the system size L. The slope of
the orange line is α ' 0.2935 ± 0.03. The inset shows dtpeak/dL ∼ Lα−1, whose slope
provides another estimate for α, α ' 0.2696 ± 0.03. The dashed line corresponds to an
exponent α = 0.22. Since the peak is very broad for smaller system sizes, the smaller ones
L = 160, 320, 640 were not used to fit the peak tpeak, thus omitted here.

For completeness, we also show the final evolution of the dynamical cluster size het-
erogeneity H(t) for the ground and frozen states. Even though H(t) only considers the
unique cluster sizes, it can also distinguish the final evolution to the ground state or frozen
stripes (Figure 5.11). Although the fate of the asymptotic state is determined at a time
tp, the evolution of the cluster size heterogeneity H(t) for the different asymptotic states
is similar up to a time much greater than tp ∼ L0.4.

Typically, configurations evolving directly to the ground state will equilibrate in a
time teq ∼ L2. Figure 5.11 highlights that all wrapping configurations (1d stripes, diag-
onal stripes or cross configuration, illustrated in Figure 2.10) reach a configuration with
two unique domain sizes at t/L2 ∼ 0.1. Interestingly, the evolution to the diagonal stripes
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is faster to reach a state with two domains than the other configurations. Subsequently,
after reaching this configuration with two different domain sizes, the samples evolving
directly to the ground state converge quickly to a fully aligned configuration, in a time
teq ∼ L2. Meanwhile, the horizontal or vertical stripes will be “frozen” at H(t) = 2, the
corresponding final number of stripes, which will not be altered since the number of do-
mains does not change while the system is straightening the interfaces. The freezing time
is the time when no spin updates are possible, i.e., flipping any spins increases the sys-
tem’s energy, as straight boundaries are stable configurations at T = 0 and the system
is in a local minimum of energy. An example of this process for four stripes is shown in
Figure 2.10f. Thus, due to the samples converging to frozen striped states, H(t) does not
converge to 1 when averaging over all samples. Differently from the horizontal or vertical
stripes, diagonal stripes are not a stable configuration. Therefore, the domain walls will
eventually diffuse and annihilate in a time teq ∼ L3 [51]. The slower relaxation of the
diagonal stripes is evidenced by the plateau before collapsing to the ground state.
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Figure 5.11: Final evolution of the dynamical cluster size heterogeneity H(t) as a function
of the rescaled time t/L2 for the 2d Ising model after a quench from T0 → ∞ to Tf = 0
with linear size L = 640. From the wrapping probabilities in critical percolation, the
system reaches the ground state in teq ∼ L2 with probability ∼ 0.6290. Horizontal or
vertical stripes (two or more) are stable configurations reached with probability ∼ 0.334.
Diagonal stripes are long lived configurations that reach the ground state in teq ∼ L3

with the probability ∼ 0.039 [51, 54]. Due to the samples converging to striped states,
averaging over all samples H(t) does not converge to 1.

To check how universal the behavior of H(t) is, we compare the behavior of H(t)

in the 2d Ising model after a quench from T0 → ∞ to Tf = 0 and the 2d voter model
evolving from a fully uncorrelated state (Figure 5.12). The voter model is a simple spin
model without an associated energy function named after its interpretation in terms of
opinion dynamics [40–42]. In the voter model, a site chosen at random aligns with a
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randomly chosen nearest neighbor. Thus, the probability of a spin flip does not depend
on the energy variation, as in the Ising model, but is given by the fraction of nearest
neighbors with opposite orientation. Hence, there is no bulk noise and the motion of the
interfaces does not depend on the curvature, but is driven by interfacial fluctuations [43].
Actually, the voter and the Ising models are two particular cases of a family of stochastic
systems with bimodal variables, up-down symmetry on a square lattice, and isotropic and
short-ranged interactions [68]. The transition rates define this class of models, with the
spin-independent variables in the transition rates acting as control parameters for bulk
and interfacial noise [68]. For some particular choices of these parameters, the Ising, voter
and majority voter dynamics may be recovered. Except for the Ising case, the dynamics
for arbitrary control parameters do not satisfy detailed balance. Hence, the voter model
is essentially out-of-equilibrium [69].

Despite the differences of the coarsening mechanism and the larger timescales in the
voter model [31], the overall behavior of H(t) is similar. Using the same definition for
tp1 and tp as before, we can see in Figure 5.12 that these times are related to the end
of the precursor peak and the end of the plateau, even if the critical properties of the
percolating cluster in the voter model do not correspond to the critical percolation [31].
Remarkably, the precursor peak has roughly the same height for both models, suggesting
a more general mechanism in the approach to a percolating state.
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Figure 5.12: Comparison between the time evolution of H(t) for the 2d Ising model at
Tf = 0 and the 2d voter model, both starting from an initially uncorrelated state (T →
∞). The system linear size is L = 1280 and the time is in MCS. The precursor peak has
roughly the same height for both models. The black horizontal line indicates Heq(T2, L),
suggesting a common mechanism behind the peak.
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Chapter 6

Conclusions

In this work, we studied the dynamical properties of the cluster size heterogeneity
and its applications to the out-of-equilibrium Ising model. The equilibrium cluster size
heterogeneity Heq(T ) in the 2d Ising model presents two peaks at very different temper-
atures, which were associated with the thermal and percolative transitions [23]. In the
thermodynamical limit, both the thermal and percolation transitions occur at Tc [70,71].
In finite systems, these transitions are marked by a peak in the measured quantities (e.g.,
mean cluster size, magnetic susceptibility) and occur at a different temperature than Tc,
depending on the system size. Despite occurring at Tc in the thermodynamical limit, they
have not yet merged for finite systems. Hence, the equilibrium cluster size heterogeneity
Heq(Tc) was able to disentangle the percolative and thermal effects in equilibrium finite
samples by separating them into two peaks. Motivated by those results and to further ex-
plore the role of the percolative transition in the dynamics, we investigated whether this
quantity is useful to study out of equilibrium configurations. In particular,H(t) was shown
to distinguish between different regimes, demonstrating that it is an interesting measure
to study the rich interplay between percolation and coarsening either at equilibrium or
short-time scales during the dynamics. Besides, we have also investigated how different
exponents of a power-law distribution affect the diversity of sizes in a system. Through
a general model of independent and identically distributed integer random variables, we
have shown that there is a value τ that maximizes the heterogeneity of the system.

In equilibrium, at high temperatures, thermal fluctuations break down large domains
into small clusters, decreasing the average domain size with temperature and the size
diversity. Decreasing the temperature, correlations between the spins grow, larger domains
are formed, and the diversity of sizes increases; however, as T < Tc, a giant cluster fills
most of the system, without much space for other clusters. So, both at T � Tc or T � Tc,
the size diversity is smaller than that close to Tc, where the distribution of domain sizes
is a power-law. Therefore, one expects a peak in Heq between these two extreme limits.
Indeed there are two peaks present [23], one very close to Tc and a second one near
the temperature where the percolating cluster first appears [72]. Since the equilibrium
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cluster size heterogeneity gives information on two different length scales associated with
percolation and coarsening, we aimed to investigate whether the dynamical cluster size
heterogeneity H(t) can give information on these regimes as well.

We extended the equilibrium measure of how heterogeneous the domains are to nonequi-
librium situations deriving an analytical expression for H(t), based on the analytical
equations for the domain size distribution. Specifically, we explored H(t) usefulness in
the nonconserved order-parameter dynamics of the 2d Ising model after a sudden quench
in temperature. We considered two relevant initial temperatures, starting at a state with
(T0 →∞) or infinite range correlations (T0 = Tc). The fixed final temperature is Tf = 0.
The measurement of H(t) along the time evolution of the system made it possible to
identify distinct temporal regimes during these quench protocols.

For quenches starting at Tc, H(t) displays a plateau that increases very slowly, pre-
senting a small peak before crossing over to the power-law coarsening regime. Initially, a
stable percolating cluster is already present, and the domain size distribution follows a
power law. The coarsening dynamics removes the smaller clusters from the system, and
hence the H(t) plateau, as most of the removed clusters do not have a unique size. In
the latter regime, the domain size distribution is sparse, with many absent domain sizes
and a small probability of two domains having the same size. Thus, the heterogeneity
corresponds to the total number of clusters and decays as a power law. The analytical
expression provided the proper scaling form for H(t) and the correct dependence on the
system size, which collapsed well H(t) onto a universal curve for T0 = Tc.

In contrast, when the quench is performed from T0 → ∞, in a few time steps, the
system approaches the percolation critical state [12, 13]. The approach to the critical
percolation state is characterized by a very pronounced peak in H(t), which acts as a
precursor of the percolating cluster being built. As expected, this peak is not captured by
the analytical expressions, as the expression for the domain size distribution is not valid
for t < tp1 . The large percolating cluster formed at tp1 is not stable against the dynamics.
The two largest clusters grow by absorbing smaller domains and coexist until a later time
tp. At tp, the largest cluster prevails over the others, and its percolating configuration will
determine the final state of the system. The dynamics after the system has passed through
the critical percolation point, t > tp1 , is similar to the temporal regimes present in the
quench starting at Tc. Nevertheless, H(t) captured these regimes, in agreement with the
numerical data and displayed an excellent collapse in these regions.

Besides being a precursor feature of the percolating cluster that appears soon after-
ward, the early peak H(tpeak) has a strong relation to the equilibrium measures Heq(T ) of
Ref. [23]. The height of both peaks is roughly the same, H(tpeak) ' Heq(T2). Indeed, the
equilibrium peak at T2 [23] also anticipates the first appearance of a percolating cluster.
As the temperature decreases, the correlation length grows, larger domains are formed,
and a percolating cluster is formed at temperatures roughly below T2. Similar to the equi-
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librium case, where the peak at T2 had a different scaling from the one at Tc, the data
collapse from the analytic expression of H(t) fails in the early regime. This supports that
there is another growing length, different from R(t) ∼ t1/2, playing a role in the short
time dynamics [29]. The peak region tpeak < t < tp1 is well collapsed with an exponent
α ' 0.22. Although the collapse in the right side of the peak is good, the characteristic
times tp1 , and tp do not present a good convergence with this exponent. Thus, different
values of the exponent α can collapse the other characteristic times, tp1 and tp. Recent
works [29,31] discuss the approach to critical percolation and how the exponent α associ-
ated with this length scale depends on the microscopic dynamics and the lattice geometry.
Nonetheless, the origin of the exponent α has to be better understood.

We have also analyzed H(t) in the 2d voter model evolving from an initial disordered
configuration. The voter model is an out of equilibrium model without an associated
energy function. Remarkably, despite the voter dynamics not being curvature driven as in
the Ising model, H(t) displayed a similar behavior from the infinite temperature quench
and distinguished different temporal regimes in the voter dynamics. The early peak height
is roughly the same in the 2d voter and Ising models, suggesting a more general mechanism
behind the formation of the first percolating cluster. Differently from the Ising model, the
critical properties of the cluster formed at tp1 do not correspond to critical percolation [31].
Even so, defining tp1 and tp as in the Ising model, indicate that these time scales are related,
as in the Ising model, to the end of the precursor peak and the end of the plateau, which
further indicates a more general mechanism in the approach to a percolating state. We
hypothesize this relation could be due to a similarity of these models, as both are particular
cases of a family of stochastic systems [68,73].

Motivated by the correspondence between the height of the dynamical peak H(tpeak)

and equilibrium heterogeneity second peak Heq(T2), we investigated also how different
values of the exponent τ of the domain size distribution change the behavior of the het-
erogeneity. We considered a general statistical model that generated independent domains
from a given probability distribution, whose only constraint is to fill the system area S,
and explored the behavior of the heterogeneity. We started from a generic probability
function and focused on the algebraic case due to the relevance of the cluster size hetero-
geneity in exploring critical properties of spatial models. Through this sort of mean-field
approach, in the sense that the only constraint imposed is on the set of chosen domains,
we obtained analytical expressions for the average domain size, average number of do-
mains, and the average heterogeneity. For large values of τ , the distribution is steep, i.e.,
there is a higher probability of repeatedly extracting small domains, which results in a
small heterogeneity. In the other limit, small τ , large clusters get more probable as the
distribution decays slowly. Although it is more likely that all clusters have different sizes,
the total number of clusters necessary to fill the area S is smaller; hence the diversity
of sizes will also be small. We thus expected a maximum value of the heterogeneity at
intermediate values of τ . Indeed, we have found a maximum heterogeneity at τ = 2. In-
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terestingly, this value is close to the exponent for geometrical domains in the Ising model,
τI = 379/187 ' 2.027 [47, 63], for physical clusters, τ = 31/15 ' 2.067 [59], and at
critical percolation is τp = 187/91 ' 2.055 [19]. Instead of considering the geometrical
domains, another possibility is to use the distribution of hull enclosed areas. Although
the number of hulls is exactly the same as the number of geometrical domains, as each
hull is associated with a single domain [13], they do not need to obey the area constraint
and, indeed, their total area is larger than S. Remarkably, their exponent τ is exactly 2,
which corresponds to the exponent that maximized the heterogeneity in our model with
independent domains, whose only constraint was on the total area S. We thus speculate
that the fewer constraints upon the domains, the closer their exponent will be to τ = 2.

Another way to investigate the mechanism behind the height of the cluster size het-
erogeneity peak and the relation between the dynamical H(tpeak) and equilibrium second
peak Heq(T2) is to ask what geometrical properties play a role in the early time dynamics.
What microscopic processes play a role in the formation of the first percolating cluster?
In the zero-temperature Ising model, two types of flips are allowed: energy-lowering (en-
ergetic) ones or zero-energy (entropic) flips. Thus, what is the role of each type of flip
in the dynamics? Does changing the acceptance probability of each type of flip alter the
dynamics and equilibrium of the system? To answer the questions mentioned above, we
have begun to explore how the details of the microscopic dynamics influence the macro-
scopic behavior of the system. Energetic flips are always accepted, then by altering the
acceptance probability of the entropic spin flips, we observe the effects of each type of flip.
Our preliminary results indicate that the energy-lowering flips are behind the formation
of the first percolating cluster. Still, the zero-energy flips are essential to the stabilization
of percolation and the final coarsening regime.

Finally, the cluster size heterogeneity was recently proposed to study equilibrium con-
figurations. Its measurement in the equilibrium 2d Ising model was able to resolve the
thermal and percolative effects. Here we have extended its measurement to out of equilib-
rium configurations, and H(t) has proven to be a useful observable that unveils the rich
interplay between percolation and coarsening dynamics either in equilibrium or at short-
time scales. Still, the rich behavior of H(t) suggests that its study in several extensions
would be interesting. Although we focused here on geometric domains, the dynamical
heterogeneity associated with the physical clusters [59], would also be of interest [23],
along with the heterogeneity of hulls and perimeters. While we considered a temperature
protocol of only a single sudden quench, H(t) may be useful when exploring other quench
procedures, such as the Kovacs protocol [74–77], that considers two sudden changes in
temperature in order to measure memory effects, or a finite cooling rate, such as the
Kibble-Zurek mechanism [72, 78–80]. Other interesting cases would be the Ising model
with conserved order parameter [18, 31] or disorder [8, 30, 81]. Additionally, the analysis
of the heterogeneity in other models and lattices is required to understand the univer-
sality of its behavior. The (q > 2) Potts model is a particularly interesting case, as

64



the time-dependence of the domain growth depends on the number of sides of each do-
main [14, 82, 83]. Preliminary results of H(t) in the 2d q > 2 Potts model [64] indicate a
peak in the heterogeneity, but further studies are needed to characterize the origin of this
peak.
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Appendix A

Dynamical cluster size heterogeneity

The paper included in this appendix is the complete text of Ref. [25], which is related
to the results presented in chapter 5. Reproduced from Physical Review E 101, 012108
(2020); https://doi.org/10.1103/PhysRevE.101.012108
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Only recently has the essential role of the percolation critical point been considered on the dynamical
properties of connected regions of aligned spins (domains) after a sudden temperature quench. In equilibrium, it
is possible to resolve the contribution to criticality by the thermal and percolative effects (on finite lattices, while
in the thermodynamic limit they merge at a single critical temperature) by studying the cluster size heterogeneity,
Heq(T ), a measure of how different the domains are in size. We extend this equilibrium measure here and study
its temporal evolution, H (t ), after driving the system out of equilibrium by a sudden quench in temperature. We
show that this single parameter is able to detect and well-separate the different time regimes, related to the two
timescales in the problem, namely the short percolative and the long coarsening one.

DOI: 10.1103/PhysRevE.101.012108

I. INTRODUCTION

The ferromagnetic Ising model displays relatively homoge-
neous configurations when equilibrated either at temperatures
T � Tc or T � Tc, where Tc is its critical temperature. In
the former case, thermal fluctuations in the giant, equilibrium
background cluster of aligned spins are energetically inhibited
but increase in probability with temperature. In the opposite
limit, well above Tc, large domains of parallel spins are
unstable against the thermal noise, which breaks them into
small clusters whose average size decreases with temperature.
At these extreme limits, the size diversity is smaller than
that found close to Tc, where the distribution of allowed
sizes is very broad, with a fully developed power law (in the
thermodynamic limit, L → ∞). Because neighboring parallel
spins are not necessarily correlated, besides the geometric
clusters described above, Coniglio-Klein (CK) clusters [1]
may be built by removing a temperature-dependent fraction of
the parallel pairs from the geometric clusters. These so called
physical clusters have been useful in developing powerful
simulation algorithms [2,3] and to unveil geometric properties
for both models and experimental systems [4–9] that char-
acterize both the equilibrium critical behavior [1,10] and the
out-of-equilibrium dynamics [4]. The domain size distribution
only becomes dense in the infinite-size limit or after ensemble
averages are taken, while for a single, finite sample, space
constraints forbid the presence of every possible cluster size,
and the distribution gets truncated and sparse, subject to
sample-to-sample fluctuations. A simple, global measure of
the heterogeneity of a finite equilibrium configuration was
introduced [11–15], only taking into account whether a given
size is present in a configuration. The cluster size hetero-
geneity (H) is defined as the number of distinct cluster sizes,

*arenzon@if.ufrgs.br

irrespective of the number of equally sized domains, that are
present in a finite-size sample.

The results for the equilibrium cluster size heterogeneity
Heq(T ) of the geometrical domains in the two-dimensional
(2D) Ising model show a double peak structure at two very
distinct temperatures. The small peak at T1 � Tc, associ-
ated with the thermal transition [14], is only observed for
sufficiently large systems [15]. The peak grows as Heq(T1)
∼ Ld/τ , where τ = 379/187 � 2.027 is the Fisher exponent
associated with the power-law cluster size distribution at the
critical temperature of the Ising model [16,17]. In spite of the
thermal and percolative transitions occurring at the same Tc,
for finite systems these effects have not yet merged. Indeed,
the percolative contribution appears as a second, much larger
peak [15], at a temperature significantly higher than Tc [e.g.,
T2(L) � 2Tc for L = 640]. The height of this second peak
behaves as Heq(T2) ∼ Ld/τ ′(L). The exponent τ ′, associated
with the height of the second peak, is closer to the percolation
value, τp = 187/91 � 2.055, but it should cross over to τ

as the two peaks merge in the thermodynamic limit. The
double-peaked heterogeneity is a property of the geometric
domains, while the physical (CK) domains, on the other
hand, have a single peak similar to the susceptibility. Thus,
for equilibrium finite samples, when describing the thermal
and percolation transitions with the cluster heterogeneity of
geometric domains, they seem to be disentangled, each one
affecting the geometric properties more effectively at different
temperatures (where the peaks are located), suggesting that
the corresponding mechanisms may be different. The smaller
the system is, the larger is the interval between these peaks.
Whether this equilibrium separation translates to a temporal
resolution is an interesting question. Thus, the main objective
of this paper is to explore whether this measure may be useful
to study not only equilibrium properties of simple models but
their dynamics as well.

After a quench from infinite to a below-critical tem-
perature, the out-of-equilibrium, single-flip dynamics of the
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nonconserved order parameter 2D Ising model is first attracted
by the percolative critical point and only then crosses over
to the coarsening regime [18,19]. In the process, a perco-
lation cluster first appears in the early stages (tp1 ) of the
dynamics [18,19], but it only becomes stable on a longer,
size-dependent timescale tp ∼ Lzp [20,21] where the exponent
has been conjectured to be zp = 2/5 [21] for the square
lattice. This initially percolating cluster strongly correlates
with the asymptotic state [20,22–28]. The domain growth
eventually leads to the fully magnetized ground state for
roughly 2/3 of the random initial configurations. The second
most frequent outcome is a configuration of parallel stripes,
while diagonal stripes have a much smaller probability (and a
longer timescale). During the evolution, as the domains keep
decreasing the excess energy at the curved interfaces, there
appears a growing characteristic length associated with the
coarsening regime, �d (t ) ∼ t1/zd , with zd = 2 [4].

The existence of a characteristic length obviously does
not imply that the system is homogeneous, with domains
similarly sized. A possible measure of the diversity of the
actual sizes is the cluster size heterogeneity previously dis-
cussed, extended here to out-of-equilibrium configurations.
While both the initial and the asymptotic equilibrium values of
Heq have been measured [15], there are many questions related
to the intermediate time evolution of H (t ). In particular,
since Heq seems very responsive to the percolative equilib-
rium properties, does the dynamical size heterogeneity give
information on the two regimes, approaching and departing
from the critical percolation point, before the dynamics is
dominated by coarsening? How distinct are these regimes? Is
H (t ) monotonic in time or is there one or two peaks related to
the equilibrium behavior? Is it possible for a single parameter
to give information on the two length scales associated with
coarsening? How do different initial and final temperatures
change the behavior? We address some of these questions,
showing that the dynamical cluster size heterogeneity, H (t ), is
indeed a suitable observable that not only distinguishes among
different dynamical regimes, but also provides quantitative
access to the scaling laws related to the growth of correlations
and of percolative clusters during the dynamics. Furthermore,
we show that the time evolution of H (t ) correlates with the
nature of the correlations present in the initial state, whether
long-range if the quench is performed from T0 = Tc, or ab-
sent from T0 → ∞. It is also noteworthy that the short-time
regime of H (t ) resulting from the dynamics triggered from
T0 → ∞ to T = 0 allows a quantitative connection with the
percolation-related peak observed in the equilibrium hetero-
geneity, Heq(T2).

II. DYNAMICAL CLUSTER HETEROGENEITY

Following different temperature quench protocols that
drive the system out of equilibrium, we study the 2D Ising
model whose Hamiltonian is

H = −J
∑
〈i j〉

σiσ j, (1)

where J > 0, σi = ±1 is the spin at site i, and the sum is
over all nearest-neighbor sites on an L × L square lattice with
periodic boundary conditions (L is measured in units of the

n(A, t)

A
A0

FIG. 1. Schematic cluster size distribution for a single, finite
sample. Differently from an infinite system or averaged distribution,
some sizes have no realizations. The smallest missing size, A0, is
indicated by a vertical dashed line, separating the dense region of the
distribution, A < A0, from the sparse one, A > A0. Those sizes that
are indeed present in the specific configuration define a measure of
the cluster size heterogeneity (in this example, H = 12).

lattice spacing �0). We choose the initial temperature T0 to
be either infinite or the critical one, these equilibrium states
thus differing by having zero or infinite range correlations,
respectively. The fixed temperature adopted after the quench
is T = 0. The simulations were performed on square lattices
with linear sizes up to L = 5120. Averages up to 1000 sam-
ples were taken for the smaller systems, while larger sizes
require fewer samples (100). When T0 = Tc it is necessary
to equilibrate the system, and 1000 Swendsen-Wang steps
were performed, while during the subsequent temporal dy-
namics, in all cases, a fast version of the single-spin Glauber
algorithm at T = 0 was used [29]. Time is measured in
Monte Carlo steps (MCSs), where one unit corresponds to N
attempts to flip.

Along the time evolution of the system, we measure the
dynamical cluster size heterogeneity H (t ), taking into account
only the nonspanning clusters [the presence of one or more
spanning clusters does not have a large influence on H (t ),
except close to the asymptotic state, where it is small]. It is
defined, as in the equilibrium case, as the number of different
cluster sizes present at time t on a finite-size configuration (see
the schematic depiction in Fig. 1). Although different domain
definitions are possible, we consider here only geometrical
domains, i.e., sets of connected parallel spins.

A. Quench from Tc to Tf = 0

After a quench from the equilibrium initial state at the Ising
critical temperature (T0 = Tc), the cluster size distribution of
geometric domains evolves as [18,19]

n(A, t ) � c[λ(t + t ′)]τ−2

[A + λ(t + t ′)]τ
, (2)

where n(A, t )dA is the average number of (nonspanning)
clusters, per unit area, whose size is between A and A + dA.
The constant c � 0.029 [18,19] is very close to the Cardy-Ziff
number [10], ch = 1/(8π

√
3) � 0.023, λ � 2 (time and area

units are unitary) is a temperature-dependent material con-
stant (the chosen value is for T = 0), and t ′ is a microscopic
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FIG. 2. Dynamical cluster size heterogeneity, H (t ), as a function of time (in MCS) after a temperature quench from T0 = Tc down to
Tf = 0. For simplicity, only those samples that converged to a fully magnetized state were considered. (a) In the first regime, t � t0, H (t )
presents a slow variation starting from Heq(Tc ), Eq. (7), while in the power-law regime, the behavior is t−1. The whole behavior is well
approximated by Eq. (6) and shown as solid lines. We consider c � 0.029, λ � 2, and τ to take finite-size effects into account, as a fitting
parameter. (b) The simulation data collapse well onto a universal curve, H (t ) = L f (t/L), using the asymptotic value of the Fisher exponent,
τ = 379/187. The agreement with Eq. (6) is also very good. The inset shows that the values of τ (L) that better fit the data in panel (a) do
converge to the correct value as L increases.

time such that λt ′ � 1. The above distribution is an average
while the heterogeneity H is measured from single configu-
rations as schematically shown in Fig. 1. At the moment of
the quench, there is an already stable spanning cluster, tp � tp1

� 0 [20]. Differently from the averaged distribution of Eq. (2),
for a single sample there are holes in the distribution, as not all
possible sizes may be present. Denoting by A0(t ) the smallest
missing size at time t , the sample cluster size distribution is
dense for A < A0(t ) and sparse above it. If �0 is a microscopic
length and (�0L)2 is the area of the system, A0 is the size such
that (L�0)2n(A0, t )�2

0 ∼ 1. Thus, setting �0 = 1, we obtain that

A0(t ) � (λt + 1)

[(
L
√

c

λt + 1

)2/τ

− 1

]
�(t − t0) (3)

and the dense region of the cluster size distribution, on aver-
age, disappears after a time

t0 � L
√

c

λ
. (4)

The cluster size heterogeneity after the quench, H (t ), is shown
in Fig. 2(a) for different lattice sizes. The coarsening process
moves the whole distribution to the left, removing the smallest
clusters, initially changing very slowly the value of H (t ) up to
t � t0. It then crosses over to a different regime, decreasing
as a power law, when the dense region is about to disappear.
Once the remaining distribution is sparse, almost all present
cluster sizes appear only once, and H (t ) becomes equivalent
to the number of clusters. These two contributions to H (t )
may be approximated by

H (t ) � A0 + L2
∫ ∞

A0

dA n(A, t ), (5)

where the first and second terms correspond, respectively, to
the size of the dense region and the number of clusters in the
sparse one. Using Eqs. (2) and (3) with Eq. (5), we get an

expression for H (t ) at all times:

H (t ) �
⎧⎨
⎩

(λt + 1)
[

τ
τ−1

( L
√

c
λt+1

)2/τ − 1
]
, t � t0,

L2c
τ−1

1
λt+1 , t � t0.

(6)

Notice that H (t → ∞) = 0 in the above expression because,
in our definition, the spanning clusters are not accounted
for. At t = t0 � L

√
c/λ, both terms give H (t0) � L

√
c/(τ −

1) while the initial value, corresponding to the equilibrium
state at Tc, is

H (0) � Heq(Tc) � τ

τ − 1
c1/τ L2/τ . (7)

Figure 2(a) also compares the simulations with the above
expression for H (t ) as solid lines. The agreement is pretty
good, except where there is a change of regime, close to t0,
where n(A, t ) is still significant and there may be more than
one cluster with the same size, originating the small deviation
seen in Figs. 2(a) and 3. Despite its exact value being known,
we have considered τ as a fitting parameter in order to take
finite-size effects into account. The inset of Fig. 2(b) shows
the values of τ (L) obtained from each fit (performed only
for the initial times, t < 10−2) and how they converge to
τ = 379/187 as L → ∞. Figure 2(b) also shows that the same
data, when properly rescaled, present an excellent collapse.
From Eq. (6) we see that the rescaling is H (t ) = L−1 f (t/L),
where f (x) ∼ x−1 (a power-law decay) for x � 1, and x1−2/τ

(a very slow increase) for x � 1. There is a further, subtle
feature of the numerical data, again well captured by Eq. (6),
that can be seen in Fig. 3: H (t ) is not a monotonous function.
It presents a maximum H (tmax ) whose location agrees well
with the numerical data,

λtmax + 1

L
= √

c

(
τ − 2

τ − 1

)τ/2

� 0.004, (8)
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FIG. 3. Zoom into the region close to the end of the plateau, after
a quench from T0 = Tc, showing a very small peak at tmax (vertical
line), Eq. (8). The height of the peak in Eq. (6) depends on the precise
value of c, and the difference from the numerical data appears larger
because of the chosen scale.

although the height has a small deviation (enlarged in Fig. 3
because of the chosen vertical scale).

B. Quench from T0 → ∞ to Tf = 0

When quenching the system from T0 → ∞ down to Tf =
0, the general cluster size heterogeneity behavior can be seen
in Fig. 4(a). At the initial high temperature, despite spins being
uncorrelated, small clusters of parallel spins are present. The
initial heterogeneity is not very large and slowly grows with
the system size, Heq(T → ∞) ∼ ln L [12,14,15], as can be
observed in Fig. 4(a). Soon after the quench, H (t ) presents a
pronounced peak followed by a growing, intermediate plateau
before the final power-law decrease toward the asymptotic

state. The dynamics is eventually attracted [22,24,25,27] to a
state that is either fully magnetized or contains on- or off-axis
stripes. Although the results are similar, for simplicity we kept
only those samples that got, eventually, fully magnetized.

Differently from the previous case, the initial equilibrium
state at T0 → ∞ is not critical. Nonetheless, before entering
the scaling regime, the system first approaches the random site
percolation critical state [18,19], with an average cluster size
distribution given by a power law A−τp whose Fisher exponent
is τp = 187/91. As discussed in the Introduction, the first
occurrence of a percolating, albeit unstable, cluster is at the
early time tp1 , while at tp it becomes stable. After the cluster
size distribution becomes critical at tp1 , its time evolution is
well approximated by [18,19,21]

n(A, t ) � 2c[λ(t + tp1 + t ′)]τp−2

[A + λ(t + tp1 + t ′)]τp
, (9)

where the factor 2 in the numerator comes from the existence
of clusters with both positive and negative magnetizations,
while in the related percolation problem only particle clusters,
not voids, are accounted for. In analogy to the previous case,
the behavior of H (t ) after a quench from T0 → ∞, calculated
using Eq. (5), is given by

H (t ) �
⎧⎨
⎩

(λt + 1)
[ τp

τp−1

(
L
√

2c
λt+1

)2/τp − 1
]
, tp1 < t � t0,

2L2c
τp−1

1
λt+1 , t � t0,

(10)

where, in this case, t0 � L
√

2c/λ. As in the T0 = Tc case,
H (t ) also has a broad and small maximum before t0, more
precisely at (λtmax + 1)/L = √

2c[(τp − 2)/(τp − 1)]τp/2 �
0.011. However, this maximum does not appear in the
simulation, and H (t ) seems to always decrease. This is

FIG. 4. (a) Dynamical cluster size heterogeneity H (t ) as a function of time (in MCS) after a temperature quench from T0 → ∞ down
to Tf = 0. For simplicity, only those samples that converged to a fully magnetized state were considered. For the largest size, we indicate
the times when a percolating cluster first appears and when it becomes stable, tp1 and tp, respectively. In Ref. [15] it was observed that the
equilibrium heterogeneity, Heq, has a second, larger peak at T2(L), well above T1 � Tc where another, smaller peak is located. The value of
Heq(T2) agrees well with H (tpeak ) and is shown, for the largest simulated size only, as a small horizontal line on top of the peak. (b) Data
collapse. As the system size increases, a region between tp1 and tp, where H (t ) slowly changes, becomes apparent. The behavior for t > tp1

is well approximated by Eq. (10) with τp = 187/91 (solid line). The inset shows, in the upper straight line, the height of the peaks H (tpeak )
and Heq(T2), indistinguishable at this scale, along with Eq. (12), as a function of the system size. The data below (triangles) correspond to the
values of H (tp) and H (tp1 ) that, albeit different, get close as L increases.
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because, for the sizes considered here, the region t � t0 may
not yet be fully developed, or it may be because of the
presence of the initial, precursor maximum that reverses the
behavior below tp1 .

Since Eq. (9) considers an effective initial state at the
percolation threshold, the above expression for H (t ) is not
expected to capture any feature before tp1 . Indeed, t = 0
corresponds to the beginning of the slowly changing region,
which roughly extends between tp1 and tp (and whose width
depends on L), observed in Figs. 4(a) and 4(b):

H (0) � τp

τp − 1
(L

√
2c)2/τp . (11)

In contrast with the T0 = Tc case, H (t ) has a very pro-
nounced peak just before the appearance of the first perco-
lating cluster, i.e., tpeak < tp1 , which is a precursor feature of
the percolating state. After the quench, as the correlations
build larger clusters, the size distribution widens and H (t )
increases. However, as the largest cluster increases, less space
remains for the other clusters. Thus, a state of maximum
heterogeneity occurs slightly before tp1 and the associated
percolation transition. In particular, the height of the peak
seems to correspond to the equilibrium heterogeneity at the
second peak observed in Ref. [15], i.e., for each system size,
H (tpeak ) � Heq(T2), as indicated by a small horizontal line in
Fig. 4(a) (only for the largest L). Moreover, we numerically
observe that it is twice the height at tp1 :

H (tpeak ) � Heq(T2) � 2H (0) � 2τp

τp − 1
(L

√
2c)2/τp . (12)

For t � t0, the power-law behavior of H (t ) is similar to the
T0 = Tc case and accounts for the number of clusters, differing
only by the value of τp and the factor 2 in the numerator. The
data for t > tp1 are well described by Eq. (10), as can be seen
in Fig. 4(b).

Nonetheless, by rescaling both H (t ) and time by L
[Fig. 4(b)], although the finite-size effects are somewhat
stronger than in the T0 = Tc case, both the agreement with
Eq. (10) and the collapse in the same region are very good.

Despite the strong, early peak being a precursor effect of
the percolating cluster that appears soon afterward, tpeak < tp1 ,
it has a strong connection with the equilibrium measures of
Ref. [15]. Indeed, as the temperature is slowly decreased, the
equilibrium peak at T2 [15] also anticipates the first appear-
ance of a percolating cluster. Interestingly, the data collapse
in Fig. 4(b) fails in the very early regime, indicating that the
dynamical scaling length ξ (t ) ∼ t1/2 is not the sole relevant
length scale after the quench. The precursor peak shifts to the
left, indicating that a scaling factor Lα , with α < 1, should
be considered instead of L. Indeed, as seen in Fig. 5, a good
collapse around the peak is obtained with α � 0.22. However,
notice that although the peaks are well collapsed, neither the
black circles indicating tp1 nor the black squares for tp present
a good convergence. Different values of the exponent α can,
on the other hand, collapse those characteristic times. For tp,
it was shown in Ref. [21] that the exponent is 0.4.

To check how universal the H (t ) behavior is, we compare
in Fig. 6, for L = 1280, the behavior of H (t ) for the Ising
model after a quench from T0 → ∞ and the Voter model
(VM) evolving from a fully uncorrelated state. The VM is

FIG. 5. Rescaling of the early time region near the peak of H (t )
after a temperature quench from T0 → ∞. The region that includes
both the peak and tp1 is well collapsed using α � 0.22.

interesting as there is no bulk noise, and detailed balance is
not obeyed. Instead of considering the energy variation for a
putative flip, as in the Ising model, in the VM the spin chooses
and aligns with a single neighbor. As shown in Ref. [30], the
timescales are all larger in the VM, nonetheless the overall
behavior of H (t ) is similar, Fig. 6. Moreover, defining tp1 and
tp as above (even if the critical properties of the percolating
cluster do not correspond to critical percolation [30]), we can
see in Fig. 6 that they are related, respectively, to the end of
the precursor peak and the end of the plateau. A remarkable
feature in this figure is the height of the early peak, which is
roughly the same in both models, suggesting a more general
mechanism.

III. CONCLUSIONS

In equilibrium at high temperatures, domains of parallel
neighboring spins are not large and within a limited range of
sizes, thus the number of different domain sizes in a given
configuration, Heq(T ), is small. Decreasing the temperature,
spins become more correlated and the clusters increase and

0
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10-2 100 102 104 106 108

Ising
Voter

t

H
(t
)

tp

tp

FIG. 6. Comparison between the time evolution of H (t ) for the
Ising at T = 0 and the Voter model, both starting from an initially
uncorrelated state (T0 → ∞). The system linear size is L = 1280 and
time is in MCS. Notice that the precursor peak has roughly the same
height for the two models, suggesting a common mechanism.
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diversify, increasing Heq. However, as some clusters get com-
parable to the size of the system, the lack of space tends to
decrease the diversity. In the presence of these competing
mechanisms, one expects a peak in Heq. Remarkably, for
geometric domains, two peaks are present [15], one near the
temperature where the percolating cluster first appears [31]
and a second one very close to Tc. We extended here this
equilibrium measure of how heterogeneous the domains are
in size to nonequilibrium situations, H (t ). Specifically, we
explore its usefulness in the nonconserved order-parameter
dynamics of the 2D Ising model after a sudden quench
in temperature, confirming that this observable unveils the
rich interplay between percolation and ferromagnetism either
close to the phase transition (equilibrium) or at short-time
scales during the dynamics.

For quenches starting at Tc, H (t ) presents an initial plateau
that increases very slowly, attaining a shallow maximum
before crossing over to a power-law behavior. In this latter
regime, the sample size distribution is very sparse and the
probability of two domains having the same size is small.
The heterogeneity does correspond, in this time regime, to the
total number of clusters and decays as a power law. When
the system, instead, is first equilibrated at T0 → ∞ (random
spin configuration), in addition to these regimes after it passes
through the percolation critical point, there is also a very
pronounced peak that is a precursor indication that a giant,
percolating cluster is being built.

The rich behavior of H (t ) suggests that it would be in-
teresting to consider several extensions, both in equilibrium
and after a quench in temperature. While for the Ising model

each domain has a single neighbor and its size decreases at the
same, constant rate, for the (q > 2) Potts model domains may
either decrease or increase as their time evolution, given by
the von Neumann law, depends on their number of sides. The
coarsening behavior is thus richer [32–34]. As a consequence,
domains with the same area but a different number of sides
have a larger probability of evolving into different sizes,
increasing the heterogeneity. Such a mechanism, which breaks
the degeneracy of areas depending on the number of sides,
is absent in the Ising model. Another interesting case is the
Ising model with conserved order parameter [30,35,36] or
disorder [37–39]. Although we focused here on geometric do-
mains, the heterogeneity associated with the Coniglio-Klein
clusters [1] would also be of interest [15], along with the
heterogeneity of perimeters. The dynamics of the 3D Ising
model is more challenging [24,40,41], as multiple frozen
percolating clusters coexist and, for sufficiently large sys-
tems, the ground state is never reached. In addition, the
thermal and percolation transitions do not coincide. Finally,
it would be important to verify our results in experimental
setups [5,9].
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Università di Salerno, via Giovanni Paolo II 132, 84084 Fisciano (SA), Italy∗

Zipf’s law describes the empirical size distribution of the components of many systems in natural
and social sciences and humanities. We show, by solving a statistical model, that Zipf’s law co-
occurs with the maximization of the diversity of the component sizes. The law ruling the increase
of such diversity with the total dimension of the system is derived and its relation with Heaps’ law
is discussed. As an example, we show that our analytical results compare very well with linguistics
datasets.

Diversity is a central concept in ecology, economics, in-
formation theory, and other natural and social sciences.
It can be quantified by diversity indices [1, 2], such as
(species) richness, the Gini-Simpson index or Shannon
entropy, which characterize the system under study from
different angles. Loosely understanding the term, high
diversity may represent an advantage in terms of re-
silience and performance. This is the case, for instance,
in ecology, where well differentiated ecosystems are often
(see, e.g., Ref. [3] for the debate on this topic) considered
to be more stable [4–6], and in economy as well: strong
countries have a well diversified production [7].

In most cases diversity is hindered by limiting factors.
For an ecosystem the amount of energy and chemical fac-
tors available does not allow an unbounded increase of
the population. Similarly, the number of different items
produced by an economy is limited by its strength. The
diversity drift is therefore a complex optimization pro-
cess.

Elaborating on that, in this Letter we consider a quan-
tity, the diversity index D, that takes the aforementioned
restrictions into account. Its definition can be given in
terms of richness [1], a quantity that counts the num-
ber of different types which are present in a collection of
items. For instance, the set of integers {3, 7, 1, 9, 0, 1} is
richer than {3, 2, 3, 7, 7, 2}, because there are 5 different
figures in the former and only 3 in the latter. We consider
situations where types can be identified by quantitative
labels s, as in the example above. D is the richness of the
collection of entities {s1, . . . , sN}, with arbitrary N , but

subjected to the additive constraint S =
∑N
n=1 sn. Here

sn represents the portion of the total resource S assigned
to the n-th entity of the ensemble, i.e. its size. Enti-
ties can be cities [8] of a country with total population
S, distinct words [9] occurring with absolute frequencies
{sn} in a book of size S or genes [10] expressed with
abundances {sn} where S is the total number of proteins
synthesized in a cell.

These systems are instances where the Zipf’s law [11,

12] is observed to hold. Other well known examples in-
clude [13] GDP of nations [14], firm sizes [15], species
in taxa [16] and fragmentation processes [17]. To ex-
plain Zipfian behaviour many generative mechanisms
have been proposed [18–24]; some of them, though, suffer
drawbacks such as a lack of generality or limited predic-
tive power in singling out the correct power law exponent.
Zipf’s law has been also framed in a broader statistical
perspective [25–27]. For instance, it has been shown to
be associated to maximally informative samples in mod-
eling complex systems [26, 28].

In this Letter we show that the maximization of the
diversity index D and the occurrence of Zipf’s law in the
distribution of the component sizes {sn} are naturally re-
lated. This is achieved by deriving, in a statistical model,
a diversity law that can be used to estimate the index D
of distributions of empirical data. We put our results to
the test in the context of quantitative linguistics showing
remarkable agreement with data taken from the Guten-
berg English texts database [29]. Finally, within our ap-
proach we also recover in a simple way the expression
of Heaps’ law [30, 31] and discuss its relation with the
diversity law.

The model.—Consider sets of independent and identi-
cally distributed integer random variables {sn}, sampled
from a generic probability distribution p(s). We call sn
the size of the n-th component (or entity). p(s) will
be denoted as the bare distribution, since the effective
(dressed) distribution of the sn is shaped by the presence

of a global constraint
∑N
n=1 sn = S, where S is the total

dimension of the system. N is the fluctuating number
of entities that, according to the particular extraction of
the {sn}, is needed to fulfill the constraint. The proba-
bility of a particular configuration C ≡ [{s1, . . . , sN};N ]
is given by

pS({s1, . . . , sN};N) =
1

ZS

N∏

n=1

p(sn)δ∑N
n=1 sn,S

, (1)

where the constraint is enforced by the Kronecker delta.
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FIG. 1. Pictorial representation of the problem. Power laws,
p(s) ∼ s−τ , are sketched with an increasing exponent τ (from
bottom to top) alongside with relative typical realizations
{sn}. Entities of the same size are depicted as blocks of the
same color and in all the cases they add up to S, the total
length of the bar. For large values of τ , most of the entities
have small and similar sizes, resulting in a poor diversity D.
In the other limit, small τ , large sizes do get more probable
but the total number of entities required to fill S is smaller.
Consequently, diversity is again small. The diversity is ex-
pected to be maximal for an intermediate value of τ .

The quantities ZS =
∑∞
N=1 ZS(N) and

ZS(N) ≡
S∑

s1=1

S∑

s2=1

...
S∑

sN=1

N∏

n=1

p(sn)δ∑N
n=1 sn,S

(2)

play the role of partition functions in an ensemble where
N is fluctuating or fixed, respectively. One obtains the
probability of having a number N of entities as pS(N) =
ZS(N)/ZS . The dressed probability of observing a size s
can be written using Eq. (2) as

pS(s) =
p(s)∑∞

N=1N ZS(N)

∞∑

N=1

N ZS−s(N − 1) , (3)

where the factor N appears because we do not distinguish
among components.

If ts is the number of times the value s ∈ [1, S] is
found in a given configuration C, the diversity index D
(hereafter also referred to as simply diversity) is defined
as

D =

S∑

s=1

(1− δts,0) , (4)

namely the number of different values assumed by the
entities. The probability pS(D) of observing a certain
value of D is formally given in the Supplemental Material
(SM) [32].

We are interested in highly diverse configurations,
therefore we consider power law bare probability distri-
butions, which grant access to a wide range of sizes,

p(s) =
s−τ

Λ(τ, S)
; for 1 ≤ s ≤ S, (5)

and p(s) = 0 otherwise. The normalisation Λ(τ, S) =
ζ(τ)− ζ(τ, S + 1) is a generalized harmonic number and
can be written in terms of the Riemann and Hurwitz zeta
functions, ζ(x) and ζ(x, y) respectively.

Our goal is to compute the average diversity 〈D〉S and
the value of τ which maximizes it (see Fig. 1). Given the
complicated expression of pS(D), we directly determine
〈D〉S as follows. We split the range of sizes into s ≤ s∗

and s > s∗ [33], where s∗ is defined by 〈N〉S pS(s∗) = 1;
these two sectors contribute to 〈D〉S as

〈D〉S ' s∗ + 〈N〉S
S∑

s=s∗
pS(s). (6)

Indeed, given an average number of entities 〈N〉S , there
is at least one of them for each size s ≤ s∗, contributing
to the first term on the r.h.s. of Eq. (6). The second
term is the average number of entities with s > s∗. Since
these are represented at most once this also corresponds
to their contribution to 〈D〉S .

With Eq. (6), the evaluation of 〈D〉S only depends
on the knowledge of 〈N〉S and pS(s). These quantities
can be computed numerically with an exact recursive
method, as discussed in the SM [32]. For an analytical
treatment of the problem it is possible to approximate
the dressed probability distribution with the bare one,
i.e. pS(s) ' p(s) (see the SM [32]). This simplifica-
tion leads to an asymptotic expression for 〈D〉S which is
accurate for large S. The average component size reads
〈s〉S =

∑S
s=1 spS(s) '∑S

s=1 sp(s) = Λ(τ−1, S)/Λ(τ, S),
from which 〈N〉S can be obtained as 〈N〉S ' S/〈s〉S .
Using Λ(x, S) ' ζ(x) + S1−x/(1 − x) for x 6= 0, 1,
Λ(1, S) ' lnS and Λ(0, S) ' S, valid for large S, we
obtain

〈N〉S '





(2− τ)/(1− τ) ; for τ < 1

lnS ; for τ = 1

ζ(τ)(2− τ)Sτ−1 ; for 1 < τ < 2

ζ(2)S/ lnS ; for τ = 2

ζ(τ)S/ζ(τ − 1) ; for τ > 2 ,

(7)

which is in excellent agreement with the exact determina-
tion, see the SM [32]. From the definition 〈N〉S pS(s∗) =
1, we obtain s∗(τ, S) ' [S/Λ(τ −1, S)]1/τ and, substitut-
ing in Eq. (6), one arrives at the sought after result for the
average diversity: 〈D〉S ' s∗+(s∗)τ [ζ(τ, s∗)−ζ(τ, S+1)].
Approximating the Riemann zeta function by ζ(x) '
(x − 1)−1 + γ, where γ ' 0.577 is the Euler constant,
we can write

s∗(τ, S) ' S1/τ
[
γ + (S2−τ − 1)/(2− τ)

]−1/τ
(8)

〈D〉S '
τs∗ − (s∗)τS1−τ

τ − 1
, (9)

where the appropriate limits for τ = 1 and 2 are taken.
This determination of 〈D〉S is portrayed in Fig. 2 and

compared with the outcome of numerical simulations
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FIG. 2. Average diversity, 〈D〉S , obtained through numeri-
cal simulations for various sizes S (see key), dashed lines are
guides to the eye. Entities are extracted from the bare distri-
bution Eq. (5) and the statistics is restricted over configura-
tions respecting the global constraint. Results are averaged
over 104-106 configurations. Solid lines (shown only for the
extreme sizes), are the analytical solutions given by Eq. (9).
Inset: The exponent α(τ), defined below Eq. (10), as a func-
tion of τ . Solid line is the analytical result, dots are fits from
the simulation data.

finding a very good agreement. For large S, the lead-
ing contribution to Eq. (9) is

〈D〉S '





(2− τ)/(1− τ) ; for τ < 1

lnS ; for τ = 1

τ(2− τ)1/τ

τ − 1
S1−1/τ ; for 1 < τ < 2

2 (S/ lnS)
1/2

; for τ = 2

τ

τ − 1

[
S

γ + (τ − 2)−1

]1/τ
; for τ > 2 .

(10)
One has 〈D〉S ∼ Sα(τ) with α(τ) = 0 for τ < 1, α(τ) =
1 − 1/τ for 1 < τ < 2 and α(τ) = 1/τ for τ > 2, see
inset of Fig 2. In conclusion, for large S, 〈D〉S presents
a pronounced peak at τ = 2. This behavior is due to
the competition between the abundance of entities 〈N〉S ,
favored by large τ , and the diversity of their sizes which
instead is enhanced by small τ , as shown in Fig. 1. We
remark that the upper bound obtained by considering the
deterministic partition S ' 1+2+ . . .+D with D ∼ S1/2

overpowers the τ = 2 case only by a logarithmic factor.
Let us mention that, although we explicitly solved the

model for power law distributions, which yield maximum
diversity, our calculations can be straightforwardly gen-
eralised to different p(s). For instance, in the case of
algebraic distributions with a lower cut-off, a case often
representative of real situations [34], one recovers similar
results provided that the cut-off is independent of S (see
the SM [32]).

Diversity, Zipf ’s and Heaps’ laws.— Since the diver-
sity is determined once an empirical distribution of sizes

FIG. 3. Diversity indexD evaluated from the data of Ref. [38].
Each green point is one of the more than 30000 English books
in the Project Gutenberg database (accessed July 2014), while
the black dots correspond to a logarithmic binning of the same
data. The solid line is the result 〈D〉S = 2(S/ lnS)1/2, from
Eq. (10) for τ = 2, which corresponds to maximal diversity.

is given, we can use 〈D〉S given in Eq. (10) to estimate
the diversity index D of power law distributed empiri-
cal data, regardless of the mechanism whereby they are
produced. If this assumption holds, on the basis of our
analytical arguments, one can conclude that if a system
displays Zipf’s law (τ ' 2 [12, 35]) it is at the edge of
maximal diversity and vice versa.

As an example we consider quantitative linguistics, the
field in which Zipf’s law has been originally observed in
almost every human language [9, 36–38]. The regime of
validity of the law in this context [39], its deviations [40]
and the underlying mechanism(s) are still a matter of
dispute. Nonetheless, large scale studies have been per-
formed in order to validate that. For example, Moreno-
Sánchez et al. [38] considered a very large set of English
books (more than 30000) from the Gutenberg Project
database. They checked how well some simple, one-
parameter forms of the Zipf’s law describe these data
on the whole interval of frequencies, finding very good
agreement with a distribution of exponents centered on
τ ' 2.

We use the filtered data of Ref. [38] and, for each book,
measure the diversity index D. The total number of
words a book contains is its total size S, the number of
distinct words is the number of entities, N , and the size
s of each entity is its absolute frequency, i.e. how many
times that word appears. The diversity D is therefore
the number of different frequencies a given text displays.
The result of this analysis is shown in Fig. 3 along with
Eq. (10) for τ = 2. Notice that there are no free param-
eters in the plot. The agreement between our theoretical
prediction and the experimental points is consistent with
the results reported in Ref. [38] showing that a great deal
of the books have τ close to 2.

The content of Eq. (7) is Heaps’ law, which gives an es-
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timate of the number of components of a system of total
size S given that the empirical size distribution follows a
power law with exponent τ . Our expression of the law for
τ > 1 is in accordance with Ref. [31] and complements
the result with the cases with τ ≤ 1 and with the ap-
propriate prefactors. Heap’s law is expected to hold for
systems which are robust in the statistics of their compo-
nent (pS(s) in our notation) at varying S [31, 34]. This is
captured in our approach, where Eq. (7) is only arrived
at using distributions which have the same form for any
S (the same applies to Eq. (10)).

In our approach, Heap’s law (7) and the diversity
law (10) imply each other, encoding dependencies on the
system size on equal footings. However, notably, the lat-
ter naturally selects the exponent τ = 2 as a special
one. Moreover, our analysis of the Gutenberg dataset
shows that the diversity law is obeyed up to the largest
sizes considered (S ' 107), whereas it is known [41]
that strong deviations from Heaps’ law are caused by
the finiteness of the vocabulary. Therefore, at least in
the context of language, the diversity law appears more
robust and this suggests that its use could be more suited
to interpret the size dependence of empirical data.

Discussion.— The partition of a finite resource S
among constituents informs numerous systems in diverse
fields of science and humanities. In this Letter, by
solving a paradigmatic statistical model, we have shown
that a maximally diverse partition is accompanied by
Zipf’s law. When framed in terms of extremization of
appropriate cost functions, problems are endowed with
a complementary description and can be approached
with new strategies. Our study suggests that, in some
instances where Zipf’s law is empirically observed,
promoting diversity to the role of a driving force could
provide further theoretical insights towards a deeper and
more general comprehension.
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SUPPLEMENTAL MATERIAL

Probability distribution of the diversity index D.— The

formal expression of the constrained richness probability
distribution pS(D) reads

pS(D) =
1

D!

S∑

N=D

N !

1,S∑

s1

1,S∑

s2 6=s1

1,S∑

s3 6=s1,s2
· · ·

1,S∑

sD 6=s1,...,sD−1

ki=1,N−D+1∑

k1,k2,...,kD∑D
i=1 ki=N

1
∏D
j=1 kj !

D∏

m=1

p(sm)kmδ∑D
n=1 knsn , S

, (11)

Eq. (11) can be read out as follows. i) The product∏D
m=1 p(sm)km is the probability of a configuration where

there are {km} entities of sizes {sm}. ii) One can go
through all those configurations by summing over all the
km, provided that

∑D
i=1 ki = N , the total number of enti-

ties. Furthermore, each index ki starts at 1, because each
of the D different sizes must be represented by at least
one component, up to N −D − 1, which is the situation
in which all the other sizes, except si, are represented by
single components. iii) The factor N !/

∏D
j=1 kj ! (N ! has

been moved to the beginning of the expression) is the
number of ways to have a realisation of {km}. The extra
factor D! appears in order to avoid overcounting of con-
figurations that have the same realisation of the entities
due to the symmetry upon relabeling the sizes. iv) The
δ function sets the system total size S. v) The sums over
s1, · · · , sD are constrained not to overlap because, given
D, there must be D entities of different sizes, no matter
what these sizes are. vi) The sum over N starts from the
given value of D, N ≥ D, because it is not possible to
have D different sizes in the configuration with less than
D entities.

Exact solutions using recursive method.— Let us con-
sider the computation of the quantities pS(s), Eq. (3),
and pS(N) = ZS(N)/ZS . The sums defining ZS(N) in
Eq. (2) contain, a priori, a number SS of terms, which
cannot be enumerated by a fast computer even for rela-
tively small values of S. However, due to the constraint
imposed by the δ function, only a small fraction of such
terms does not vanish. It was shown in Ref. [42] that
using the recurrence relation

ZS(N) =

∞∑

s=1

p(s)ZS−s(N − 1), (12)

that can be easily proved upon writing δ∑N
n=1 sn,S

=
δ∑N

n=2 sn,S−s1 , the algorithmic complexity is lowered to
polynomial. With this tool we obtain an exact solution
of the model up to relatively large values of S.

Let us start to discuss the dressed size probability
pS(s). This quantity is plotted in Fig. 4 using an al-
gebraic bare probability p(s) ∼ s−τ for different values
of τ . The exact determination, obtained from Eq. (3),
is compared with the outcome of numerical simulations

10−8

10−6

10−4

10−2

100

100 101 102

p S
(s
)

s

τ = 1
2

3

bare

dressed

FIG. 4. The exact dressed probability distribution pS(s) ob-
tained from Eq. (3) is compared with numerical simulations
for a system of size S = 100, using a bare size distribution
p(s) ∼ s−τ and different values of τ . Deviations only become
large when s is close to S where pS(s) is small.

where, after extracting the random variables sn, only the
configurations respecting the constraint are kept. One
sees a perfect agreement. As expected, the dressed and
the bare distribution coincide, pS(s) ' p(s), up to values
s . S beyond which pS(s) gets strongly depressed. This
suggests that the bare distribution p(s) can be used, in
place of pS(s), in the calculation of different quantities,
thus simplifying the task.

The exact value of the average number of entities

〈N〉S =
S∑

N=1

NpS(N), (13)

can be computed by means of

pS(N) =
ZS(N)

ZS
. (14)

again evaluated with the recursive method. The result is
shown in Fig. 5.

Algebraic distributions with lower cut-off.— We con-
sider the case of power law bare distributions with a con-
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100

102

104

102 103 104

S

Sτ−1

τ = 3

2

3/2

1

〈N
〉 S

S

FIG. 5. Average number of domains as a function of the
size of the system for different values of τ evaluated through
Eq. (13). The solid lines represent the analytical evaluation
of 〈N〉S using the bare probability distribution, as discussed
in the main paper. It can be noticed that in the region τ < 2
there is a shift by a constant prefactor, although the form is
correctly predicted. The predicted asymptotic behaviour for
τ = 3/2 and 3, given by Eq. (7), is also indicated.

stant lower cut-off sL

p(s) =





0 ; for s < sL

s−τ/Λ(τ, sL, S) ; for sL ≤ s ≤ S
0 ; for s > S ,

(15)

where Λ(τ, sL, S) = ζ(τ, sL)−ζ(τ, S), where ζ(x, y) is the
Hurwitz zeta function. We denote the average number of
entities 〈N〉S,sL and the average diversity 〈D〉S,sL in this

case. Equation (6) can be cast as

〈D〉S ' s∗ − sL + 〈N〉S
S∑

s=s∗
pS,sL(s), (16)

where pS,sL(s) is the appropriate dressed probability dis-
tribution. Also in this case we can approximate, for large
S, pS,sL(s) ' p(s). Therefore we can write the average
size of the entities as 〈s〉S,sL ' Λ(τ−1, sL, S)/Λ(τ, sL, S)
and 〈N〉S,sL ' S/〈s〉S,sL . For large S we can approxi-
mate Λ(x, sL, S) ' ζ(x, sL) + S1−x/(1 − x) for x 6= 0, 1
and, noticing that ζ(x, sL) = ζ(τ) + const., on has
Λ(1, sL, S) ' lnS and Λ(0, sL, S) ' S. We obtain

〈N〉S,sL '





(2− τ)/(1− τ) ; for τ < 1

lnS ; for τ = 1

ζ(τ, sL)(2− τ)Sτ−1 ; for 1 < τ < 2

ζ(2, sL)S/ lnS ; for τ = 2

ζ(τ, sL)S/ζ(τ − 1, sL) ; for τ > 2 ,

(17)
which is the same as Eq. (7) with all the Riemann zeta
functions replaced by Hurwitz ones. Therefore, with s∗ '
(S/Λ(τ − 1, sL, S))1/τ , we can write

〈D〉S ' s∗ − sL + (s∗)τ [ζ(τ, s∗)− ζ(τ, S + 1)] , (18)
which, to leading order in S, reads

〈D〉S,sL '





(2− τ)/(1− τ)− sL ; for τ < 1

lnS ; for τ = 1

τ(2− τ)1/τ

τ − 1
S1−1/τ ; for 1 < τ < 2

2 (S/ lnS)
1/2

; for τ = 2

τ

τ − 1

[
S

ζ(τ − 1, sL)

]1/τ
; for τ > 2 .

(19)
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