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a b s t r a c t

In this paper, the pyvrft, a Python package for the data-driven control method known as Virtual
Reference Feedback Tuning (VRFT), is presented. Virtual Reference Feedback Tuning is a control design
technique that does not use a mathematical model from the process to be controlled. Instead, it uses
input and output data from an experiment to compute the controller’s parameters, aiming to minimize
an H2 Model Reference criterion. The package implements an unbiased estimate of the controller for
MIMO (Multiple-Input Multiple-Output) processes using both least-squares and instrumental variable
techniques. The package also provides accessory functions to import data and to perform MIMO
systems simulations, together with some examples.
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1. Motivation and significance

Data-driven control methods emerged in the literature on
the early 40’s, with the work of Ziegler and Nichols [1], which
provided practical formulas, based on simple experiments, to
tune PID controllers. However, most of the data-driven control
methods appeared and attained more visibility after the 90’s,
and they still are being researched and developed on the control
systems community until the present day. The main objective of
these techniques is to tune a predefined and fixed order controller
for a dynamic process, using batches of input and output data,
without the necessity of the process’ mathematical model [2].
Therefore, since the task to obtain a good and reliable process’
model can be very expensive and time-consuming, data-driven
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control became a very attractive matter for a wide range of
practical and industrial applications [3].

It is usual, among data-driven control literature, to classify the
methods on two distinct groups: the group of iterative meth-
ods, which use several experiments to update the controller’s
parameters iteratively, and the group of direct methods, that
require only one or two batches of data to tune the controller.
The most popular iterative methods are the Iterative Feedback
Tuning (IFT) [4], the Frequency Domain Tuning (FDT) [5] and the
Iterative Correlation-based Tuning (ICbT) [6] and the most pop-
ular direct methods are the Virtual Reference Feedback Tuning
(VRFT) [7], the Non-iterative Correlation-based Tuning (CbT) [8]
and the Optimal Controller Identification (OCI) [9]. Within the
group of direct methods, the VRFT is the most researched and
disseminated one, and it possesses several extensions, applica-
tions, and analysis around its properties on the literature. So, to
show this high popularity and the significance of the method,
some theoretical contributions and some recent papers of VRFT
applications are described in the sequence.
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One of the first extensions for the VRFT was proposed on [10],
which introduced the possibility to design two degree of freedom
controllers. Another relevant contribution to the method was its
extension for multivariable (or MIMO) control systems, demon-
strated on [11]. The MIMO scenario was also investigated on [12]
and on [13], where the latter introduced an unbiased formulation.
The VRFT approach for nonlinear control systems was presented
on [14], and on [15] the method was applied to design adaptive
PID controllers. As more recent contributions, the work [16] ad-
dressed the problem to deal with non-minimum phase plants,
and on [17] a solution with asymptotically guaranteed stability
was formulated. Also, the work [18] introduced the use of regu-
larization to enhance the method’s statistical properties, and the
paper [19] formulated a new setup of the VRFT to perform load
disturbance rejection.

Concerning the applications of the VRFT, there is also an ex-
tensive literature on the subject. For example, on [20], the VRFT
was employed to a classic benchmark problem, where it was used
to tune high order controllers for an active suspension system.
On [21], the method was used to design feedback controllers
for knee joint movement using functional electrical stimulation.
The VRFT was also used to tune multivariable controllers in a
simulation of a wastewater treatment plant on [22], to design
the active braking control of vehicles on [23], to control a non-
minimum phase level plant on [24], to control the attitude of
a quadcopter on [25], to control MIMO tank systems on [26]
and on [27], and to control cavity tuners in particle accelerators
on [28].

Accordingly, given the importance of data-driven control in
the literature and on practical and industrial applications, the
main idea of this work is to introduce a free and open-source
package, developed in Python, that implements the unbiased
VRFT method for MIMO processes [13], which is, as stated before,
the most popular direct data-driven method. It is important to
emphasize that there is also a Matlab toolbox for the VRFT,
described on [29]. Both the Matlab toolbox and pyvrft implement
the standard VRFT, with the option to use the least-squares or
the instrumental variable to tune the controller. Besides, there
are some differences between both software. The Matlab toolbox
gives additional options, as to tune nonlinear and two degree of
freedom controllers. Those options are not available on pyvrft. On
the other hand, pyvrft implements the unbiased MIMO version of
the VRFT, while the Matlab Toolbox was developed only for the
case of SISO (Single-Input Single-Output) systems.

1.1. Theoretical background

The core idea of the unbiased MIMO VRFT is to tune a con-
troller for a linear time-invariant (LTI) discrete-time process,
which can be represented by the following equation:

y(t) = G(q)u(t) + v(t), (1)

where q is the forward-shift operator, G(q) is an n × n rational
transfer function matrix, u(t) and y(t) represent, respectively, the
control input and output of the process, both described by a n-
dimension column vector. The noise vector v(t) can be written as

v(t) = H(q)w(t), (2)

with w(t) being a white noise n-dimension column vector, where
each of its elements has variance denoted by σ 2

wi
, i = 1, . . . , n

and H(q) is an n × n stable transfer function matrix.
The controller to be tuned is also an n×n linear time-invariant

system, which belongs to a predefined (user-specified) class of
transfer function matrices. The controller is parameterized by a

parameter vector ρ ∈ Rp so that the control action u(t) can be
written as

u(t, ρ) = C(q, ρ)(r(t) − y(t)), (3)

where r(t) is an n-dimensional column vector that represents the
reference signal. The MIMO structure of the controller is given by

C(q, ρ) =

⎡⎢⎣ C11(q, ρ11) C12(q, ρ12) · · · C1n(q, ρ1n)
...

...
...

Cn1(q, ρn1) Cn2(q, ρn2) · · · Cnn(q, ρnn)

⎤⎥⎦ , (4)

where ρ = [ρ11 ρ12 . . . ρn1 . . . ρnn]
T and it is assumed that

each subcontroller has a linear parametrization, i.e. they can be
written as

Cij(q, ρij) = ρT
ij C̄ij(q), ρij ∈ Rm, (5)

with C̄ij(q) being an m-dimension column vector of fixed causal
rational functions. Each subcontroller can have a different struc-
ture, provided that they are linear in the parameters. Finally,
the equations that describe the system (1)–(3) under closed-loop
control, are

y(t, ρ) = T (q, ρ)r(t) + S(q, ρ)v(t) (6)

S(q, ρ) = (G(q)C(q, ρ) + I)−1 (7)

T (q, ρ) = S(q, ρ)G(q)C(q, ρ) = G(q)C(q, ρ)S(q, ρ), (8)

where the dependence of the output on the controller’s parame-
ters was made explicit.

With the VRFT method, the objective is to tune the parameter
vector ρ to achieve a desired closed-loop performance for y(t, ρ),
which is specified through a transfer function matrix, denoted by
Td(q) and also known as the reference model. The reference model
defines the relationship between the reference signal r(t) and the
desired output of the closed-loop system, denoted by yd(t):

yd(t) = Td(q)r(t). (9)

Then, the VRFT designs the controller in a Model Reference (MR)
framework, where the goal is to minimize the L2 norm of the dif-
ference between y(t, ρ) and yd(t). This problem can be expressed
by

ρ̂MR = arg min
ρ

JMR(ρ) (10)

JMR(ρ) ≜
N∑

t=1

∥(Td(q) − T (q, ρ))r(t)∥2
2. (11)

The optimization problem described on (10)–(11) is non-convex,
and from (8), observe that T (q, ρ) depends explicitly on the
process’ transfer function G(q) that is usually unknown by the
user.

On the other hand, the VRFT proposes a convex optimization
problem that does not depend on the process’ model but uses
only input and output data to tune ρ. It assumes that a batch of
input/output data is collected from the process:

Z = {u(1), y(1), u(2), y(2), . . . , u(N), y(N)} (12)

and, then, the controller’s parameters are computed by solving
the following optimization problem:

ρ̂VR = arg min
ρ

JVR(ρ) (13)

JVR(ρ) ≜
N∑

t=1

∥L(q)u(t) − L(q)C(q, ρ)(T−1
d (q) − I)y(t)∥2

2. (14)
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The filter L(q) is inserted on the method as an extra degree
of freedom that can be used to improve the properties of ρ̂VR
under non-ideal conditions. The choice of the filter is discussed
with more depth and formality at [7,13], where the authors
demonstrate that an approximation for the optimal solution can
be achieved by

|L(ejω)|
2

= |Td(ejω)(I − Td(ejω))|
2
Φr (ejω)Φu(ejω)−1, (15)

for both SISO and MIMO cases, with Φr (ejω) and Φu(ejω) being the
power spectrum of r(t) and u(t) respectively.

The convex optimization problem introduced on (13)–(14)
has a closed-form solution, given by the least-squares equation.
Moreover, under ideal conditions, both JMR(ρ) and JVR(ρ) have the
same global minimum, such that the unbiased MIMO VRFT can be
successfully used to solve the MR problem [13]. Under non-ideal
conditions, when the complexity of the controller is restricted,
and the desired performance cannot be achieved, the VRFT pro-
poses the use of the filter L(q) to shape the method’s criterion,
aiming to approximate the minimum of both cost functions. Also,
when the signals are corrupted by noise, an instrumental variable
can be used to provide unbiased estimates for ρ. In this case,
a second batch of data that is uncorrelated with the first one
must be collected, either by running a second experiment or by
simulating the process with an identified model [7,13].

1.2. Practical aspects and preprocessing the data

When the input/output data are collected from a real process,
which possibly is nonlinear, presents high frequency measure-
ment noises, drifts or offsets, missing data, periodic disturbances,
and other undesirable effects corrupting them, they are not likely
to be directly used on system identification [30] or on data-
driven control methods, such as the VRFT. Hence, to improve
the efficiency of pyvrft on real applications, a preprocessing step
on the data is highly recommended and it can done using basic
operations that are also known and employed by the system
identification community and described on its classic books [30,
31]:

• Remove sample means [30]: if the data presents offsets or
drifts, the user can subtract the mean value of the samples of
y(t) and u(t), assuming that the system is around an equi-
librium point and reducing the impact of this undesirable
effect;

• Prefiltering the data [30,31]: prefiltering y(t) and u(t) with
the same filter will not change the shape of the VRFT crite-
rion. So, the user can prefilter the signals with a low-pass
filter (to reduce high frequency noise/disturbances), a high-
pass filter (to reduce low frequency noise/disturbances, or
even drifts and offsets), or a band-stop filter, like a notch
filter (to reduce the effects of a disturbance with a specific
frequency on the data).

It is important to reiterate that those are just basic and simple
recommendations to preprocess the data in order to reduce the
most typical undesirable effects that appears on the data. How-
ever, the user can also apply more sophisticated and complex
preprocessing procedures, as those discussed with more depth
at [30,31].

1.3. How to use the software

The first step to use the software is to install the package,
which can be made via pip, running the command: pip in-
stall pyvrft. The pip command also installs the package’s
prerequisites if they are not present in the Python environment:

numpy for numerical computations, scipy for signal processing
and matplotlib to create graphics.

To run the main function of pyvrft, namely vrft.design(),
to tune the parameters of an MIMO LTI controller, it is necessary
to collect input and output data from the process (in an open-
loop or closed-loop experiment) and organize them as a matrix
(numpy.ndarray) with dimension (N, n):

U = [u(1) u(2) · · · u(N)]T , (16)

Y = [y(1) y(2) · · · y(N)]T . (17)

Besides, if the signals are corrupted by noise, the user may collect
output data from a second experiment to use the instrumental
variable technique:

Ȳ = [ȳ(1) ȳ(2) · · · ȳ(N)]T . (18)

After collecting and organizing the data, the user must specify
the desired closed-loop performance through Td(q), the controller
structure that will be tuned, and the VRFT filter L(q). All these
quantities are transfer matrices (or MIMO transfer functions) and,
since there is no structure of such type on the traditional Python
packages for signal and numerical processing (numpy and scipy),
in pyvrft it was decided to organize them as nested Python lists,
as described below

• Td(q): nested Python list with two levels. The first one rep-
resents a line of the transfer matrix Td(q) and the sec-
ond one represents a column of Td(q). Each element of the
list has a specific variable type, which is the signal.ltisys.
TransferFunctionDiscrete (the scipy variable type for discrete-
time transfer functions);

• C(q, ρ): nested Python list with three levels. The first level
represents a line of the transfer matrix C(q, ρ) and the
second represents a column of C(q, ρ). Yet, the third level
represents each element of the m-vector C̄ij(q). Each ele-
ment of this list is also a signal.ltisys.TransferFunctionDiscrete
variable;

• L(q): has the same structure of Td(q), which is a nested
Python list of two levels and each element is a signal.ltisys.
TransferFunctionDiscrete.

The following code exhibits an example for the design of an
SISO controller:

Td = signal.TransferFunction([0.2], [1, -0.8], dt=1)

L = signal.TransferFunction([0.25], [1, -0.75], dt=1)

C = [
[signal.TransferFunction([1, 0], [1, -1], dt=1)],
[signal.TransferFunction([1], [1, -1], dt=1)],

]

p = vrft.design(u, y, y, Td, C, L)

To assist the user with the definitions of these quantities on
Python and how to use them on the software, there are a few ex-
amples of controllers design within the package. Also, a detailed
description of each function is available and can be accessed with
the help() command on the Python environment.

2. Software description

The pyvrft is a Python package that implements the unbiased
MIMO VRFT method, to tune an MIMO (or SISO) LTI controller,
with the possibility to use the least-squares or the instrumental
variable to solve the problem. To familiarize the user with the
software’s architecture and its particularities, they are described
on the following subsections.
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2.1. Software architecture

The package contains 3 main modules, namely control.py, csv-
func.py and invfunc.py. Each one of these modules has its purpose
inside the package and its functions that are described in the
sequence.

2.1.1. control.py
This module implements the main algorithms of the package,

that are used to compute the controller’s parameters. It possesses
three functions:

• design(): this is the main function of the pyvrft package, the
one that implements the Unbiased MIMO VRFT method. It
calls several functions from different modules of the package
as filter(), colfilter(), mtf2ss() and stbinv();

• filter(): implements a multivariable filtering operation,
which is essential for the main function of the package. This
function can also be used for simulations and validation of
the controllers;

• colfilter(): implements a column filtering operation, which
filters every column of a matrix of signals with the same
filter.

2.1.2. csvfunc.py
This module is used to import csv data into Python. It pos-

sesses just one function, that is

• datafromcsv(): provide the option to read the data from a
csv file. The csv file must have a strict organization of its
columns, such as [y1, y2, . . . , yn, u1, u2, . . . , un].

2.1.3. invfunc.py
This module contains the functions that are related to the

algorithm that performs a stable inversion of a linear system,
which is used on the VRFT to calculate the virtual error, i.e., the
signal ē(t) = (Td(q)−1

−1)y(t). The algorithm was firstly presented
on [32], and it was implemented on pyvrft through the following
functions

• invredc(): implements one step of the inversion algorithm,
which is the system reduction step. This function is called
at each iteration of the stable inversion algorithm;

• stbinv(): implements the inversion of the system, calling
invredc() to perform the system reduction step. It also calcu-
lates the conditions for the stable algorithm to be successful.
Otherwise, it produces a warning to the user;

• mtf2ss(): transforms a MIMO transfer function on a state–
space representation. The algorithm that was employed is
a simple one, that does not intend to produce a minimal
realization. This procedure is important because the VRFT
method was implemented with a transfer function notation
(as it is usually done in the literature of this theme). Al-
though, the stable inversion algorithm is implemented using
a state–space representation, as presented on [32].

2.2. Software functionalities

The main functionality of the pyvrft package is to tune an
MIMO LTI controller for a dynamic process with the unbiased
MIMO VRFT method, using batches of input and output data. This
can be achieved with the function design(), described above.
Besides, as some secondary functionalities, it is possible to use
other functions of the package for different kinds of applications.
For example, filter() can be used to simulate MIMO LTI sys-
tems, or equivalently, to filter a vector of signals with an MIMO
filter. The stbinv() function can be applied to calculate the

Fig. 1. PRBS signals applied in the pilot plant’s input on the open-loop
experiment.

Fig. 2. Output signals collected in the pilot plant on the open-loop experiment.

inverse of an MIMO system, i.e, the signal u(t) = G(q)−1y(t),
which can be useful on some circumstances, and mtf2ss() can
be used to transform a MIMO transfer function representation
(done with the nested Python list structure) to a state–space
model.

3. Illustrative examples

To motivate the application of pyvrft on real control systems,
this section demonstrates an experimental example, where the
main objective is to tune a full PI controller for an MIMO level
control process. This example, along with two others, are also
provided on the package. The process that is considered in this
example belongs to a pilot plant, which was fully described at [26]
and used to compare different control strategies for multivariable
processes. The plant possesses a Two-Input Two-Output (TITO)
process, where the outputs y1(t) and y2(t) are the levels of water
on two distinct tanks and the inputs u1(t) and u2(t) are the
percentage opening of two globe valves that are used to regulate
the water flow of the system.

To collect the data from the process, two distinct pseudoran-
dom binary sequences (PRBS) were applied as input signals on
the process in an open-loop experiment. Fig. 1 exhibits the input
signals, and Fig. 2 exhibits the output signals obtained. These
data were stored on a csv file, that was read with the pyvrft
datafromcsv() function.
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Fig. 3. Comparison between outputs, desired outputs and reference signals on
the closed-loop experiment with the controller (21).

Fig. 4. Control signal on the closed-loop experiment with the controller (21).

The reference model was defined as

Td(q) =

⎡⎢⎣
0.03

q − 0.97
0

0
0.02

q − 0.98

⎤⎥⎦ , (19)

and the controller structure to be tuned was a full PI:

C(q, ρ) =

⎡⎢⎢⎣
ρ0
11q + ρ1

11

q − 1
ρ0
12q + ρ1

12

q − 1
ρ0
21q + ρ1

21

q − 1
ρ0
22q + ρ1

22

q − 1

⎤⎥⎥⎦ . (20)

The filter of the VRFT was chosen as L(q) = Td(q)(I − Td(q)),
and the pyvrft was used to estimate the controller’s parameters.
The controller designed with the software was

C(q, ρ) =

⎡⎢⎣
4.39(q − 0.992)

q − 1
3.12

−10.49(q − 0.993)
q − 1

0.26(q − 0.828)
q − 1

⎤⎥⎦ , (21)

which is practically the same obtained on [13,26]. This controller
was implemented on the pilot plant, and the achieved closed-
loop performance is exhibited on Figs. 3 and 4. Fig. 3 shows a
comparison between the output signals, the reference signals, and
the desired outputs on the closed-loop experiment and Fig. 4
exhibits the control signals in this experiment.

Notice that the process’ outputs, obtained on the closed-loop
experiment, were very close to the desired ones. Also, the control

system almost achieved a perfect decoupling between the loops,
where one reference/output signal does not disturb the other,
which is a significant result for a multivariable control system.

4. Impact

The pyvrft package intends to impact the industrial users,
researchers, and developers of data-driven control methods, pro-
viding for these groups, a free and open-source software that
allows them to use the VRFT method on practical situations and
to develop and test further theoretical contributions. As far as the
authors know, this is the first implementation of the unbiased
MIMO VRFT that is free and open for the community, as well as
peer-reviewed. From now on, new users of VRFT do not need to
implement the algorithms from zero and by themselves. More-
over, the package was developed in Python, which is the largest
growing programming language used by scientific communities,
and that provides free and open-source algorithms that can be
verified, corrected, and expanded by other users.

5. Conclusions

The pyvrft is a Python package for designing feedback con-
trollers using the Virtual Reference Feedback Tuning method.
The package computes unbiased estimates for MIMO and SISO
controllers. Both classical least-squares and instrumental vari-
ables are available to be used. The package simplifies the task of
calculating feedback controllers since it implements a data-driven
solution that does not depend on a mathematical process’ model.
The architecture of the package makes it simple to use, and it
is a timesaving tool for control designers. The pyvrft package is
open-source, and it is distributed under an MIT license.
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