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Abstract

Evolutionary game theory offers interesting models for the study of the emergence and
maintenance of cooperation. One mechanism that can maintain cooperation in a Prisoner’s
Dilemma is affixing players in a network, under imitation dynamics (NOWAK; MAY,
1992). Interestingly, it was found that dilution of this lattice may lead to an enhancement
of cooperation (VAINSTEIN; ARENZON, 2001), and this increase has a connection to
the percolation threshold of the lattice (WANG; SZOLNOKI; PERC, 2012a). We intend
to explore this phenomenon using extended mean-field approximations. We didactically
present the construction of these approximations and develop a simple and clear algorithm
that systematically implements an approximation method based on the ideas presented by
Gutowitz & Victor (1987), explaining them in a simple way of under/overrepresentation
of structures. We use this method to explore and compare different approximations for the
square lattice. We found that the most commonly used pair approximation for the square
lattice does not have the best predictions amongst the pair approximations, at least in
the evolutionary game system analysed. We use pair approximations for different diluted
lattices to explore the connection of percolation and the increase of cooperation. The pair
approximations reproduce the phenomenon in a qualitative way. We find that, for the
pair approximation, the site-occupancy at which the peak of cooperation disappears can
be changed by alterations in the noise of the imitation function probability, including
changing the peak to beyond the percolation threshold. These could be explained if the
increase of cooperation happens due to favorable local configurations becoming more

probable around some site occupation values, which could be confused with the percolation
threshold.

Keywords: Evolutionary Game Theory. Prisoner’s Dilemma. Extended Mean-Field Ap-

proximations. Local Structure Theory. Percolation Threshold. Games on Diluted Lattices.






Resumo

A Teoria de Jogos Evolutivos oferece modelos interessantes para o estudo da emergéncia
e manuten¢ao da coopera¢ao. Um mecanismo que consegue manter a cooperacao no Di-
lema do Prisioneiro ¢é a fixacao dos jogadores em uma rede, usando dindmica de imitacao
(NOWAK; MAY, 1992). Um resultado interessante que foi encontrado é que a diluigdo
dessas redes pode levar a um aumento da cooperagao (VAINSTEIN; ARENZON, 2001), e
este aumento tem uma conexao com o limite de percolacao critico da rede (WANG; SZOL-
NOKI; PERC, 2012a). N6s pretendemos explorar esse fenémeno usando aproximacoes de
campo-médio extendidas. Como parte dessa exploragao, apresentamos didaticamente a
construcao dessas aproximacoes e desenvolvemos um algoritmo claro e simples para sis-
tematicamente implementar um método de aproximacgao baseado nas idéias apresentadas
por Gutowitz & Victor (1987), explicando-as de uma forma simples, através do conceito
de sub/super-representacao de estruturas. Com o uso deste método para explorar e com-
parar diferentes aproximacoes na rede quadrada, encontramos que a aproximagao mais
comumente usada nao apresenta as melhores previsoes entre as diferentes aproximacoes de
pares para a rede quadrada, ao menos no sistema de jogo evolucionario analisado. Usando
aproximacoes de pares para diferentes redes diluidas, exploramos a conexao entre perco-
lagdo e o aumento de cooperadores. As aproximagoes de pares reproduzem o fenémeno de
uma forma qualitativa. Descobrimos que, ao menos para as aproximagoes de pares, o pico
de cooperacao desaparece em diferentes ocupagoes de rede com alteragoes do ruido na
funcao da probabilidade de imitacdo, incluindo mudancas para além do limite critico de
percolacao. Esses fatos podem ser explicados caso o aumento da cooperacao esteja ligada
a configuracoes locais mais favordveis se tornarem mais provavel para alguns valores de
ocupacao da rede, valores estes que poderiam ser confundidos com o valor critico para a

percolacao.

Palavras-chave: Teoria de Jogos Evolutivos, Dilema do Prisioneiro, Aproximacoes de

campo-médio extendidas, Limite critico de percolagao, Jogos em Redes Diluidas.
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1 Introduction

We will start with a brief overview of the history of Game Theory (GT), introduc-
ing some of the important concepts and results of this area. We will be presenting the
context in which the mathematical models were created, as a way to justify the choices
made in this dissertation.

Without further ado, we begin by defining what a game is in Game Theory, as the

word can cause some confusion to the unfamiliarized reader. We selected two of the four
definitions for game in the Merriam-Webster Online Dictionary (2021):

1. activity engaged in for diversion or amusement;

2. a physical or mental competition conducted according to rules with the participants in direct
opposition to each other.

3. a procedure or strategy for gaining an end

While the first definition may be more used in the daily life, the second captures
the meaning of a non-cooperative game in GT more closely, and the third can even capture
the class of cooperative games in GT. A chess match, bargaining with a vendor to lower the
price of an item, or fighting an animal so one does not become food can all be considered a
game by these definitions (and some, or even all, of such activities may not be considered
fun).

Game Theory is said to start as a formal field with the works of Von Neumann &
Morgenstern (1944) on cooperative games, where a group of players find the best solution
and can be bound to it, through some sort of central control or contract. It is followed by
an increase in scope with the study of non-cooperative games, where binding contracts are
not always available!. The focus passes to which strategy may earn the best payoff for an
individual player. Generally, it is considered that players are perfectly rational, and that
this is common knowledge to them. A perfectly rational player is the one that chooses the
best strategy, with highest payoff for himself. Defining what is the best strategy is not
simple in many situations, and that is a central problem in GT (SZABO; FATH, 2007,
p. 99).

One attempt of defining what the best strategies are is through the concept of Nash
equilibrium. The strategy of a group of players is considered to be at a Nash equilibrium
if any player individually changing their strategy would lead to a decrease in their payoff
(NASH, 1950). We could assume a perfectly rational player would play a strategy in the set

of the Nash equilibrium. This seems reasonable, but, in many games, such as the Tragedy

1 Contracts can be considered as a part of the game itself, making cooperative games a subset of

non-cooperative games.
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of the Commons and the Prisoner’s Dilemma, the Nash equilibrium strategies lead to a

worse individual payoff for all players when compared with other set of strategies.

In a game of Prisoners’ Dilemma (PD), the two players simultaneously choose be-
tween two possible actions: Cooperate or Defect. Depending on the action of both players,
each gains a payoff. If both cooperate, they both receive R (the Reward). If both defect,
they both receive P (the Punishment). If player X defects while player Y cooperates,
player X receives T' (the Temptation), while player Y receives S (the Sucker’s payoff),
and vice-versa. These payoffs can be visualized in a matrix form for easier comprehension
in Table 1a. The dilemma happens when conditions T'> R > P > S and 2R > T + S are
met?, as the Nash equilibrium set of strategies is both players defecting, each receiving

the P payoff, which is smaller than R if both cooperated.

Player Y Player Y
C D C D
ol r |0 ol 1|\
Player X S Player X 5
D T P D b 0
(a) Payoff in the Prisoner’s Dilemma game (b) Payoff in the weak Prisoner’s Dilemma
(IT'>R>P>Sand2R>S+T). game (1 <b<2).

Table 1 — Tables presenting the PD and weak PD payoff for Player X and Player Y choos-
ing to either cooperate (C) or defect (D). The weak PD game breaks the con-
dition P > S present in the PD game (payoff for defecting against a defector
is larger than cooperating against it), because P = S (and both equal to 0 in
this parametrization).

The dilemma happens due to the following consideration: if your opponent cooper-
ates, the action which leads to the highest payoff would be defecting, as you would receive
T which is bigger than R; if your opponent defects, the best action would be to defect
too, as you would receive P which is bigger than S. The basis of the dilemma lies in that
a mutual agreement to cooperate would yield a better payoff for both players but with
no reliable way to assure cooperation, the rational choice leads both players choosing to
defect. For details of the history, examples and more considerations about the Prisoner’s

Dilemma, we suggest the book by Poundstone (1993).

The Prisoner’s Dilemma has been used to model the nuclear arms race between the
United States and the Soviet Union during the Cold War. After acquiring the technology

related to building nuclear weapons, actually building a vast, deployable atomic arsenal

2 The condition 2R > T + S is necessary, as the players could agree to redistribute the payoff, gaining

equal values ,(T+.5)/2, greater than if they both chose to cooperate, R. In the case of multiple rounds,
alternating between cooperation and defection, in an out of sync way, the players could achieve this
redistribution of payoff, and the best aggregated payoff would be this anti-coordination solution rather
than cooperation. This condition imposes one of the fundamental characteristics of this dilemma: the
greater aggregated payoff happens when both cooperate.



is costly, and if the country does not use the arsenal (as atomic bombs have not been
military used since the second world war) it means a cost without a return. But if one
country produced a nuclear arsenal and the other did not, the first one could use the
military advantage as a potential threat in negotiations, so this potential advantage can
be compared to the Temptation in the PD game and being at the other end of the
stick of the threat can be considered the Sucker’s payoff. If both countries produced
they would incur an expensive cost, but neither would gain an advantage as making
a nuclear attack without destroying all of the targets nuclear weapons would lead to
retaliation, making a first attack actually a suicidal one (a state known as Mutual Assured
Destruction). The cooperation in this case is the pacifist one, where both agree to not
build an atomic arsenal. But, without ways to guarantee such deal, what we see in history
is both countries producing massive stockpiles of atomic weapons, both players locked in
a defecting position (POUNDSTONE, 1993).

We could have multiple, successive (finite) rounds of a PD game. In each round
there is a choice between cooperating and defecting. The players can react to each other’s
actions. Because of that, when the players have memory, the strategies are more complex.
Even then, mutual defection in all rounds is the only subgame perfect Nash equilibrium
(a generalization of the Nash equilibrium to repeated, multiple round games) (SZABO;
FATH, 2007, p. 100). This is due to a backwards induction reasoning: in the last round,
since there could be no retaliation against defecting, the best action is to defect. Since
this is common knowledge to both, both will defect in the last turn. In the previous to
last round, the best action is to defect, since you know in the last round both will be
defecting, so no retaliation is possible. Following this inductive reasoning, extending to

all rounds, defecting from start to finish becomes the Nash equilibrium.

An interesting result is obtained in the famous Axelrod’s tournaments, where sev-
eral strategies submitted by multiple people were played against each other in a multi-
round PD and the strategy that had a better overall performance was the Tit-for-Tat
(TFT) (AXELROD, 1984). TFT initiates with cooperation and after that, it just copies
the action performed by the other player in the last round. This simple strategy, with a
memory of only the previous round, can retaliate against non-cooperators and can estab-
lish and maintain mutual cooperation with cooperative players (AXELROD; HAMILTON,
1981). As pointed by Axelrod (1984, p. 20): “These results from the tournaments demon-
strate that under suitable conditions, cooperation can indeed emerge in a world of egoists
without central authority.” The exploration of these suitable conditions for cooperation
to arise and be maintained is fundamental to a comprehension of animal behaviour, and

the PD provides an interesting mathematical framework for this.

The book by Maynard (1982) explores Evolutionary Game Theory (eGT), “where

the concept of human rationality is replaced by that of evolutionary stability”. A cen-
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tral concept developed is that of an Evolutionary Stable Strategy, a strategy that, when
adopted by the entire population, is resistant to invasion by a small number of mutants.
According to Maynard (1982, p. 203), the TFT is an evolutionary stable strategy, and
resistant to invasion from a strategy of always defecting for example (given the expected
number of rounds to be high, in this case, the number of rounds is random and not known

to players).

Countless criticisms to the classic GT assumptions of perfect rationality to model
human behaviour can be given and is a fascinating subject of study, with many open
issues and points of discussion. Arguments can be given in favour of the eGT analysis:
generally the natural way of change is not by rational induction, but by Darwinian se-
lection. Therefore, it is important to explore the evolution of strategies and adaptations
to the environment as not static. In nature, genetically encoded strategies are slow to
change, depending on the life span of generations for different reproductive rates and mu-
tation rates to explore new strategies. In animal (human not excluded) behaviour, it is
common to see learning by observation and trial and error rather than inductive reason-
ing (SZABO; FATH, 2007, p. 101). For this reason, a fundamental mechanism in eGT is
that change in behaviour is based on copying strategies which are more successful (either

through reproduction or observation learning) rather than reasoning.

Evolutionary Game Theory has found multiple different mechanisms that help
sustain cooperation: kin selection; direct reciprocity; indirect reciprocity; group selection;
and the one most interesting to our work, network reciprocity (NOWAK, 2006). As it was
shown by Nowak & May (1992), even the simplest altruistic strategies, such as always
cooperate, can survive playing a weak PD (payoff matrix defined in Table 1b) when
players are fixed on a lattice and play against their neighbours, under deterministic rules
of copying the neighbour’s strategy with best performance. As indicated in the article, the
important mark that allows for simple cooperators to survive defectors is the formation of
clusters/groups of cooperator which can selft protect against the effects of defection. This
mechanism, fixating players in a lattice, has presented robust results favoring cooperators
even under other deterministic and stochastic rules (SZABO; FATH, 2007).

One way to see the relevance of this mechanism is by comparing this interaction
limited on a lattice with the geographic/movement limitation of animals in nature. The
population is generally not well-mixed and organisms (or its descendants) tend to face
each other multiple times due to geographical constriction. Some studies have been done
about different underlying structures, from different lattices (SZABO; VUKOV; SZOL-
NOKI, 2005) to scale-free (real) networks (WU et al., 2007; SZOLNOKI; PERC; DANKU,
2008), and show that the persistence of cooperation exists. Besides that, it has also been
questioned whether the introduction of mobility would break the benefits given by this
network limitation with different answers for different cases (VAINSTEIN; T.C. SILVA;



ARENZON, 2007; SICARDI et al., 2009; MELONI et al., 2009).

We are interested particularly in the case of a not fully occupied regular net-
work, some sites being randomly left empty. In Vainstein & Arenzon (2001), it is seen
that for some cases, the removal of some players from a square lattice can lead to a
rise of cooperation in the steady state. This could be related to the problem of over-
population/occupation already known in experiments with rats (CALHOUN, 1962) and
even discussed in very early population models (MALTHUS, 1878). On the other hand,
it could be related to what is seen in other networks that heterogeneity in the degree dis-
tribution may boost cooperation (PERC; SZOLNOKI, 2008). In Wang, Szolnoki & Perc
(2012a) and Wang, Szolnoki & Perc (2012b), it is seen that, for the square, triangular,
honeycomb and cubic lattices this cooperation increase occurs near the critical percola-
tion threshold for the specific lattice. As is known from graph theory, this threshold is
connected to the existence of a infinite connected group and a regime change in how far
information can travel in this diluted lattice (ESSAM, 1980; GRIMMETT et al., 1999).

We will investigate the problem of game theory in diluted lattices in Chapter 3
using extended mean-field approximations, while in Chapter 2 we discuss how to construct
these extended mean-field approximations for lattices, exploring different constructions

for the undiluted square lattice.






2 The Approximate Analytical Solution

Sometimes, we have no way to analytically solve a lattice game model without
making approximations based on assumptions about the system. We intend to create a
simple and clear algorithm that systematically implements an approximation method for
different lattices and game models, making it easier to computationally explore multiple

variations of lattices or game models.

We will start by introducing simple cases of this method to establish some notation
to later formalize it. We start in section 2.1 by introducing the mean-field approach, which
assumes that the correlation between players on the lattice can be ignored, applying it to
players fixated on a square lattice playing the weak PD with their four neighbours, and
the copying mechanism is defined by a function w of the difference of payoff between the
pair randomly chosen for comparison. This method fails to predict an essential feature
present in Monte Carlo (MC) simulations for the system: the coexistence of strategies.
In section 2.2, we will then introduce an improved method that considers neighbour-to-
neighbour (pair) correlations. Applying the pair method to the same system, we show

that it predicts coexistence of strategies.

We present the Local Structure Theory method for building approximations, in
section 2.3, formalizing some concepts, such as frames, format and blocks. We also present
the 1D applications of the method, described by Gutowitz & Victor (1987), using the
bayesian extension process (FUKS, 2012).

In section 2.4, we describe our Automated Extension algorithm for building ap-
proximations for the extended frames, that reduces to the 1D application but allows us
to build approximations for other lattices using the same core concepts, and discuss some
problems that may arise from the algorithm used, in section 2.4.1. We follow with section
2.5, implementing the algorithm step-by-step in an example. In section 2.6, we briefly

discuss some adjustments to reduce program runtime.

In section 2.7, we compare the performance of different approximations for the
weak PD in a square lattice, using as a basis the MC simulations, in a similar manner to
what was done by Szabo & Toke (1998), but we focus on the different options of extended
frames. We find that with the right selection, not only can we reduce the program runtime,
but we also improve the approximation made for the system. Based on observation, we

briefly describe guidelines for choosing the extended frame in section 2.7.4.
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2.1 A First Step: the Mean-field Approach

As a didactic introduction to the Local Structure Theory, we will show the Mean-
Field Theory (MFT) and how its assumption fails to capture important features of the
system we are trying to analyze. The basic assumption of MFT is that there is no cor-
relation between neighbours, so that the probability of a given configuration being in a

lattice is just the product of the independent sites being in their given states.

We will apply MFT to the following system: players in a square lattice play a weak
Prisoner’s Dilemma with their first neighbours and themselves (there is auto-interaction),
choosing randomly a pair of neighbours, one of them copies their neighbour with proba-
bility given by a function f of the difference of their payoffs. In MFT, the state of the
system will be defined by the probability of finding the players in a certain state (playing a
certain strategy). In this case, there are only two states: cooperator (C) and defector (D).
The system will be defined by two variables pc(t) and pp(t). These variables represent the
probabilities of finding a cooperator and a defector, respectively. Using a normalization
condition (pc+pp = 1), the state of the system can be defined using a single independent
variable. We will adopt p¢ for defining the system state and write a differential equation

for the evolution of the system.

The system can change states when the randomly chosen neighbours form a
cooperator-defector (C'D) pair. The process of a cooperator invading a defector (C' — D)
depends on the number of cooperating neighbours of each player (to calculate their
payoff). In this case, the payoff difference between C' and D will be APay(nc,np) =
(nc +1) —b(np + 1), where ne (np) is the number of cooperating neighbours of the C
(D) player excluding the initial pair considered (the C player gains +1 for playing with
itself and the D player gains +b due to playing with the C). The probability of the C' or
D player having n cooperator neighbours (besides the one in the pair), P(n,p¢) follows
a binomial distribution:

3

ottt = nep 1)

Plope) = (

where the (i) counts the different way we can arrange the n cooperators around the
player, p2p3, " the probability of having n cooperator and 3 —n defector neighbours, and

all the threes are due to the player having 3 neighbours beside the neighbour in the pair.

So, the probability of the C' player having ne cooperator neighbours, and, simul-

taneously, the D player having np cooperator neighbours, P(n¢,np, pc), is

3 3 . (et
P(ne,np,pc) = P(ne,pe)P(np,pe) = <n0> <HD>PCC+ P(1— pe)ttnetno) - (2.2)

where p¢ is the probability of a player being in the cooperator (C') state and the probability
of being a defector (D) is pp = 1 — pc. We highlight that P(ne,np,pc) = P(np, ne, pe),
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meaning that this function is symmetrical under a ng <> np transformation. This means
that in this estimation of the probability of the sites around the C' and D pair, we can

swap them from places and the probability of that configuration remains the same.

The change in the probability of finding cooperators (p¢) is given by the difference
between the rate of defectors invading cooperators (Np_,¢) and the rate of cooperators

invading defectors (N¢_,p):

pe = (Newsp — Npoe) pe(l —pe), (2.3)

where po(1 — pe) is the probability of the central C'D pair existing in the first place. This
term guarantees that when po = 1 or pc = 0, then Ape = 0, since there is no strategy
update/change once one of the strategies becomes extinct. Considering that po(1 — pe)
is strictly greater than 0 in the region (0,1), we will not be writing it in the following
equations due to space limitation and the fact that it does not change the behaviour of
the system, and can be considered a nonlinear rescale of time (HAUERT; SZABO, 2005).

To calculate the probability No_,p , we can sum the probability of a change occur-
ring in a given configuration multiplied by the probability of that change, given by the
f(APay(nc, np)):

Newp= Y, > f(APay(ne,np))P(ne,np,pe) ; (2.4)

nc=0 np=0

in the same manner for Np_,¢, only the probability of change is given by f(—APay):

Npoe = Z Z f(=APay(nc,np))P(nc,np, pc) (2.5)
nc=0 np=0
Z Z f(=APay(np,nc))P(ne,np,pe) , (2.6)

nc=0 np=0

where from equation (2.5) to (2.6), we simply rewrite the labels in the summation and
use that P(n¢,np,pc) = P(np,ne, pe). Using the equations above to obtain the change

in cooperators probability (pc), we obtain:

[f((nc +1) = b(np + 1)) = f(b(np + 1) — (nc +1))|P(nc,np,pc) (2.7)
[f((nc +1) = b(np + 1)) = f(b(nc + 1) = (np +1))|P(nc,np, pe), (2.8)
where we use equation (2.6) to write (2.8), so that it is evident that in the case where
b =1, pc = 0 as the term between square brackets becomes null. This means that for

b =1, the system does not change from the initial condition, and that all states are fixed

points (but they are not really attractors). And we use equation (2.5) to write (2.7), so
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we can analyze other values of b by differentiating p¢c in relation to b and, using the chain

rule, we obtain:

e & asta) as@)
ol (_nD_l)[dx T

P(n¢,np,pc) .

APay(nc,np) —APay(nc,np)

(2.9)

It is easy to assume that f is a non-decreasing function, since for an increase in the payoff
difference, it is expected that the change of being copied increases, or is at least the same.
Given that % > 0 results in %’C < 0 and that po = 0 for b = 1 and the fair assumption
that % > 0 for some value!, we can conclude that:

e Forb>1,pc <0V pe € (0,1). Meaning that if there is at least one defector in the

system, they will come to dominate the whole system (pc = 0 is a stable attractor).

e« Forb <1, pc >0V pc € (0,1). Meaning that if there is at least one cooperator
in the system, they will come to dominate the whole system (pc = 1 is a stable

attractor).

Excluding the b = 1 case, there is no stable coexistence of cooperators and de-
fectors. However, this is a feature that appears when simulating this system with Monte
Carlo (see section 2.7). Therefore, this approximation fails to capture an essential feature
of the system. In the next section, we will include local pair correlations to better predict
the system behavior, and later on we will show how to generalize to include more extensive

local correlations.

2.2 Local pair correlations approach

In this approach, we will assume that the system evolution does not build corre-
lations larger than neighbour-to-neighbour (pairwise) correlations. We will call a pair of
players a “S15; pair” when one of the neighbours uses strategy S; and the other uses
strategy So. We will consider the same system of the previous section (a weak PD in a
square lattice with interaction). In this approximation, there will be four variables that
define the state of the system: the probability of finding each of the pairs in the lat-
tice: pcc, Pocp, Ppc, Ppp, which are, respectively, the probability of finding the pair
CC, CD, DC,DD. These probabilities meet certain conditions:

o Normalization: The function must be normalized (pcc + pep + Ppec + pop = 1)

to be interpreted as probability.

L' It is evident that Af > 0 for some value of Az (for f not constant in the region of payoff differences).

Although this does not prove the assumption that % > 0 for some of the x value assumed in our
summation, it is enough for the presented conclusion.
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o Symmetry under rotation: Since the square lattice is symmetrical under 7/2
rotations and the process does not have directional preference, the equality pcp =

ppc must hold. Due to this, we will use C'D and DC' interchangeably.

e Closure condition: the probability of a single player being in a given state can
be obtained by P,(C) = pcc + pep (probability of a site being in a state C') and
P.(D) = ppc + ppp (probability of a site being in a state D) .

The normalization and symmetry under rotation conditions reduce the number
of free independent variables from four to two. Different than the previous approach
where setting P,(C') fully determined the state of the system, we will have to set two
variables: P (CC) and P (CD) or Ppir(CC) and P, (DD), for example. Another
set of variables is considered further in this section. In a similar manner to the last

section, the evolution of the system will also be determined by differential equations for

[ E R I RN E NN NN NN

these variables.

(o))

(a) A generic configuration (AgBgy)Aj A2 A3 B BsBs on the pair frame. Changes (processes) only
happen inside the blue dotted box. For now, we will disregard the A;B; and A3B3 connec-
tions (dashed lines) when estimating this block probability.

O ©® @ OO @
© @ © @

(b) Before the C' — D invasion (configura- (c) After the C — D invasion (configura-
tion (CD)CCCCDD). tion (CC)CCCCDD).

Figure 1 — The pair frame with a generic configuration (a), and a specific configuration
before (b) and after (c¢) a C'— D invasion process.

Before trying to write the equations for the evolution of the system, we will analyze

a specific configuration and what happens when there is a C' invading a D. In Figure 1b,
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we are considering a cooperator with 3 cooperator neighbours invading a defector site
with only one cooperator neighbour and two defector neighbours. In Figure lc, we see
the configuration after the D player changes to a C player. We can observe that two C'D
pairs change to C'C' pairs and two DD pairs change to C'D pairs due to the invasion.
Therefore, the total number of C'D pairs does not change, while the number of CC (DD)
pair increases (decreases) by two. When this process happens, it changes the probability
of CC pairs (pcc) and DD pairs (ppp). The contribution of this exact process to poc
would be 2 multiplied by the probability of the process happening (w) multiplied by the
probability P, tig of this specific eight-site configuration presented in Figure 1a happening
in the lattice:

dpcc
dt

= 2WP,.onig((CD)CCCCDD) + other contributions. (2.10)

Different from d’iftc , for deD the contribution of this specific process is null, as

the number of the C'D pairs do not change, the contribution for 922 is the negative of

dt
that for d’éctc )

We can estimate the probability of these configurations using the probability of the
pairs in a similar manner to what was done in the previous section. However, in this one,
we multiply the probability of all pairs in the configuration before the invasion. Ignoring
the connections between A; By and A3Bs, we can count three CC, two C' D, two DD pairs,
and obtain the following probability:

Pcb 3 2
Pronsiy((CD)CCCCDD) = Wpcc Pep Pop (2.11)

where we divide by the site probabilities P,, because the central sites appear four times
in the pair probabilities. A visual representation of P,,f;, can be seen in Figure 2. This

also normalizes the P, i, function:

Dep 3 C,D) (C,D)
N AZA Pconfzg((CD)AlAzAsBleBs) = W 1:[1 [ Z bca; ] [ Z pCB] (212)
1,42,43, i=

B1,B2,Bs
=(C,D)

Pcp 3
_ Wga(o) P,(D) = pcop, (2.13)

where, in the second equality, we are using the closure condition.

In order to write the evolution equations, we have to consider that each player
in j = {A1A2A3B1ByB3} can be a cooperator (C') or a defector (D). Then, we should
sum the contribution of all processes that can happen in all different configurations in the
eight-site frame presented in Figure la. The contribution is weighted by the probability
wf( that the given process happens for configuration j and also weighted by the number

of pair changes the process x causes, that can be encoded in a function (AN,), (cp);-
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Figure 2 — Visual representation of the estimated probability Py iy of the eight-site con-
figuration. Blue painted structures means the term enters multiplying and red
painted structures enters the approximation dividing, extra red circles around
a site means dividing more times.

For the example in Figure 1b, where the process is C — D and the configuration is
(CD)CCCCDD, this function would be:

(ANcc)e—p, ©pycccepp = +2 5

(ANcp)e—p, epycccepp = +1;
(ANGp)e—p, (pycccepp =0 <+ —D, (CD)
(ANpc)c—p, (cp)cccepp = —1;

(ANpp)esp, (¢pycccepp = —2 . (2.14)

In this case, we are considering (AN(/p) = (AN¢p) + (ANpe) and, later AN{, will be
divided by two. The numbers are equal for both C'D and DC' pairs because we are consid-
ering a process that is symmetrical in the lattice. For each process in a given configuration
changing n C'D pairs and m DC pairs there will be a “mirrored” configuration, where the

“mirrored” process changes m C'D and n DC pairs.

Based on that, we can write the evolution equation for pcc and pop, and, in this

way, fully describe the evolution of the variables as:

dpcc PCAPCAPCAPDBPDB2PDBs
=2 ! 2 L 2 AN : 2.15
dt pCD; ( PE(C)POB(D) ; CC’) (CD)j | » ( )
dpep PCAPCAPCAsPDBPDByPDBs i (ANGD) x (D))
=9 : 2.16
a o en 2 ( P3(C)P3(D) ; 2 - (216

where the summation in y represents the processes C' — D and D — C. The number 2
multiplying both equations (2.15) and (2.16) comes from the contributions from a central-
ized DC pair instead of a C'D pair, that would result in an equal contribution for the way
the (AN’) was defined. It also does not change the dynamics as t is being very loosely
defined and a multiplicative term in all differential equation does not change the evolu-
tion path. The 2 in the denominator in equation (2.16) is also due to the way we defined

(AN), specially (AN¢p), and can be justified by deriving the normalization condition

(d(Pcc+PCD+PDC+pDD) _ O)
dt :
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We can write (AN) as a function of the number of cooperator neighbours of the

invaded pair (basically, nc and np defined in the last section):

(ANcc)esp =1+np ; (ANcc)pso = —ne; (2.17)
(ANGp)osp =2(1 —np) ; (ANGp)pose = 2(ne — 2) . (2.18)

For the curious, we open equations (2.15) and (2.16) for the specific case of the
system with self-interaction and temptation value b = 1.5, and transition function w being

a Fermi function (defined in Appendix D) with parameter K = 0.1:

dpce
1 =pipPhp + 0.04 pipPhp + 3 PecPepPhp + 17.82 peepipphp — 9 PecpépPop+

— 3 pocPEp + 3 Pecpepbhp + 18 DecbepPhp + 4.5 PecPpppp — 6 PecPip+

+ p?(’JCp?bD +6 p%CpC’DPQDD +9 p?()}Cp%DpDD —2.95 p?()JCp:é’D . (2.19)

dpep

2
dt

=2 pepphp — 11.92 ptpphp — 12 pippop — 4 pep + 6 pecpepPhp+

—0.12 peepepPop — 18 pecpépPop — 6 PocPip + 6 PecPopPhp+

— 9 PecPepppD + 2 PacPhp — 6 Picpeppop + 1.96 piepip - (2.20)

Obviously, equations (2.19) and (2.20) convey little to no information for the reader,
but may be useful for comparison when trying to recreate this specific case. For a better
readability of these equations, we visually represent these vector fields in Figure 3, using

streamlines.

For comparison effects, and as an example, we will use another set of independent
variables that are suggested in Szabo & Fath (2007, p. 203). Instead of using pcc and pep
as our variables, we will use the probability of a player being a cooperator (P,(C) = P(C))

and a measure of deviation from the well-mixed state (¢):

pec = P*(C) + g; P(C) = pcc + pep; (2.21)
pcp = P(C)(1 — P(C)) —g; q = poc — (poc + pep); (2.22)

where the conditions for p to be interpreted as a probability function are stated in our new
variables as {0 < P(C) < 1} and {—min{P*(C), (1 - P*(C)} < q¢ < [1 - P(C)P(C)}.
Time derivatives for P(C') and g could be obtained in terms of the derivatives of poc and

pep through direct derivation of expressions in (2.21) and (2.22).

In both streamline maps of Figure 3, we can clearly observe a stable attractor
point in (pcc,pep) ~ (0.233,0.172) (equivalent to (Pc,q) ~ (0.405,0.065)). Therefore,
using this approximation, we can see a coexistence of cooperator and defectors. This
result presents, at least, a qualitative improvement upon the mean-field result presented
in section 2.1, since coexistence of cooperator/defector is a feature present in Monte

Carlo simulations. In later sections, we will compare these and other approximations more
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pcc P(C)
(a) Graph using pcc and pop as variables. (b) Graph using P(C) and ¢ as variables.

Figure 3 — The streamline graphs shows the vector field determined by equations (2.19)
and (2.20). As we can see, there is a stable attractor point (marked by the red
triangle) at (pcc, pop) = (0.233,0.172) in the first graph, or in the equivalent
position in the second graph at (Pg,q) ~ (0.405,0.065). The dotted red line
marks the upper limit due to the normalization condition and non-negativity
of the probability function p. The green dots marks (pcc,pep) = (0.25,0.25)
(alternatively, (P, q) = (0.5,0)) the well-distributed (half cooperator /half de-
fector) state that is generally assigned at start of MC simulations. The contin-
uous red line marks the evolution path (streamline) to the attractor point.

minutely. We will in the next sections describe how to generalize this “correlation method”
for other lattices, for more extensive correlations and discuss different approximations
based on this method.

2.3 Local Structure Theory

Local Structure Theory (LST) was initially designed to mathematically treat cellu-
lar automata on one-dimensional lattices (GUTOWITZ; VICTOR; KNIGHT, 1987), and
was later extended to Euclidean lattices (GUTOWITZ; VICTOR, 1987; GUTOWITZ;
VICTOR, 1994); applications in evolutionary Game Theory (SZABO; TOKE, 1998) and
other areas followed (DICKMAN;, 1988; DICKMAN, 1990; HIEBELER, 1997). The basic
assumption of LST is that the correlations generated by the system decay with distance
and that, with this assumption, we can estimate the probability of larger blocks based on
the probability of the smaller blocks it contains. We will make some definitions in Subsec-
tion 2.3.1 and explain the case of one-dimension in subsection 2.3.3 so that explaining the
general method developed to build the approximation, described in Section 2.4, becomes

easier.
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2.3.1 Definitions: Frame, Frame Format, Block

In this section, we introduce the frame and block concepts presented in Gutowitz
& Victor (1987) in a simple and comprehensive manner. Our definitions vary from the

original, in being a little loose so we can adapt it to different systems.

A simple way to think of a frame is to think of it as, given a lattice or graph and
an ordered list of sites, the graph formed only by the sites from this list. A more elaborate
and workable definition is that the frame is an object that contains the “connection
properties” (in an orderly form) of an ordered list (that is, a tuple) of sites in a lattice or
graph. The “connection properties” are very loosely defined on purpose, because different
systems may need different concepts of “connection properties”. For example, a system
that breaks isometry may need definitions of relative position, like site E is the left
neighbour of site F', rather than just knowing they are neighbours. This loose definition
allow us to describe a method for building approximations that can be later adapted for a
multitude of systems. One way to define the “connection properties” could be by defining
the number of paths of size n that go from site F to F' in the lattice (F, F in the tuple
forming the frame). The number of paths of size 1 is the Adjacency matrix A between the
sites in the tuple and it will be the only information needed for some cases. Other cases
may require more information. In section 2.2, we have loosely used “pair” frames and an
eight-site frame, which can not be formed from a square lattice, since it is missing some
connections. For a visualization of the frame, we could use the graphs formed by sites, as

exemplified for different frames in Figure 4.

Another example, set in the square lattice, is that we can form a frame f from
the ordered tuple [(0,0), (0,1), (1,0), (1,1)] and a frame g from the tuple [(1,0), (1,1),
(2,0), (2,1)]. The frames f and g have the same “connection properties” between the
sites (in their given position in the tuple), and we will say that f and g have the same
frame format (or shape). In Figure 4c, the frames formed by [Ag, By, A1, Bi] and [Ay,
By, As, Bs] have the same frame format, also the pair frames [Ay, By| and [A;, By] in
Figure 4b have the same frame format. We will generally call a frame format by the
figure it represents in the lattice. For example, the frame format of f is a square, a visual

representation in Figure 4a.

Another concept we will use is the permutated frame, which is a frame generated
by a permutation of the elements in the tuple. For example, the frame generated by the
tuple [Ay, By, Ag, Bg| has the same frame format as [Ag, By, A1, Bi], but the frame
generated by [Ag, By, By, Aj] does not have the same frame format. Although both
are permutations of the first tuple presented, the second one does not have the same
“connection properties” (the second site is a direct neighbour with the third which doesn’t
happen in the original). In general, we will consider only one of the permutations of a frame

when searching for frames that have a certain format/shape. For example, we considered
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(a) A square frame. (b) Two different pair frames. (c) An eight-site frame.
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Figure 4 — Visualization of different frames.

the pair CA; and ignored the pair A;C in section 2.2.

Another related concept is a subframe. A frame f is a subframe of g, when the
tuple that forms f can be formed by the removal of sites from the tuple that forms ¢g. For
example, the square frame in Figure 4a is a subframe of the eight-site frame in Figure 4c,
and the pair frames in Figure 4b are subframes of the square frame and, consequently, of

the eight-site frame.

Finally, a block is the assignment of states to all players in a frame or frame
format. For example, {C'D, CC, DD, DCY} are all blocks in the pair frame, used in the
section 2.2. To simplify the notation, the set of all blocks for a given frame format will
be called 0 format. We can define a function Pfopmat(X) that represents the probability for
a given frame of that format to be an X block. For example, P, (CD) would be the
probability that a pair in the system is a C'D block. For Pjymq(X) to be a probability

function, the function must be non-negative,

{Pformat(X) 2 O} VXe O format (223)
and normalized,
Y Proma(X) = 1. (2.24)
Xeo—fo'r'mat

There will be block probabilities, generally connected to a specific frame format,
that we will be directly updating when performing the evolution of the system. Generally,
to make notation less extensive, we will use px = Pormat(X ), making it easier to identify
and write equations. For example, in section 2.2, we have used pcp = P (CD). We will
call the blocks we are updating as central blocks, or important blocks, to differentiate
from other blocks. These same adjectives will be used for the frame or frame format

underlying theses blocks.

Generally, in Game Theory and also in Cellular Automata, the changes to a player
state depends on its neighbours state. Consequently, defining only the configuration in a
frame is not necessarily enough to define the dynamics of that frame. Therefore, we will

need to be able to estimate the probability of a larger frame, including the neighbours
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of the initial frame. In the pair approximation example, in section 2.2, we constructed
an extended frame, shown in Figure la, containing the other three neighbours for each
player of the pair, in a total of eight players in this extended frame and we estimated its

blocks probabilities using equation (2.11).

Our central block probabilities will be updated over time by the equation (2.25),
which is calculated using the different configurations in those extended frames and pro-
cesses that can happen in those frames:

= ¥ [Pmm (Z w§;<AN@->]~,x>] , (225)

JETeut X

where P,.,;(j) is the probability of a j extended block in the extended frame; wi is the
probability of process x happening in a j extended block; and (AN;);, is the change
counting function for the ¢ (central) block, that counts how many i (central) blocks are
created subtracted by how many are modified to other blocks if the x process happens
in the j extended block. The w and AN; are described by the model we are considering
(game, lattice, method of update...) and are independent of the particular probabilities of
blocks. We will use the central block probabilities {p;} to construct P.,;(j). We indicate
section 2.2, again, as an exemplification of the defined functions w, AN and P.,; (in that

case P.onfig above, the equations (2.15) and (2.16) are specific cases of (2.25).

Equation (2.25) will always maintain the original normalization of the block proba-
bilities as >_;(AN;);, = 0, since there is no “creation” of new blocks, only transformations
from one type of block into another. In this way, we can show that the normalization of
the block probability is preserved:

4 (Z pi> BN [pggg (Z ol Z(ANZ-)]-,XN o (2.26)
i i jE€Oext X i
This is important, as P.,; may be constructed as a non-normalized function and the

original/central p = Pf,qme function will still remain normalized.

2.3.2  Closure condition and probability for smaller blocks

Using the block probability for a frame f, we can estimate the block probabilities
for a frame g, a subframe of f. We will name Ly_, as the list of the members of f removed
to form g and L, as the list of member of g. To obtain the probability for a given s block of

g, we can realize the following summation over all possible states (blocks) of the members

Lffg (O-Lffg>:

TLy_g

Pis)= Y Pils+i); (2.27)

i=state of Ly_g
where s + ¢ is a block of f, which we attributed the s states to the members of L, and
the ¢ states to the Ly_,, according to their positions in the f frame. In general, we will

call this a closure condition of P.
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For example, if we have pair block probabilities (pp.r) and we want to obtain
the probability for single site being in state s, P,(s), we would simply sum over all pair

probabilities, where the first point is in state s:

Po() = 3 Prain(s. ). (2.28)

Another example is obtaining the probability function for pair blocks (Ppu;) given

that we have square block probabilities (Psguare):

Ppair(‘sb 52) = ZPsquare(Sla 52, i) j) = Zpsquare(sb j7 i? 32); (229)
ij 1,]
where the player in state s; neighbours the ones playing s, and j; the other connections

are self-evident.

In all cases, it is clear that the normalization of the constructed probability function

for the subframe follows the normalization for the extended frame.

2.3.3 Approximation of the probability of larger blocks in one dimension

The important point of Local Structure Theory is presenting an approximation
for the probability of larger blocks from the smaller blocks it contains. Its base is the
bayesian extension process. In the one dimension (1D) case, we will be interested in the
probabilities of n connected, sequential, players. The LST, according to Gutowitz, Victor
& Knight (1987), allows the estimation of a n-block probability (P,) from the probabilities
of two (n — 1)-blocks (P,_1) by

P, 1(s1, S2, «vy Spn_1)Pu1(S2, -++, Sn_1, Sn
Po(s1, S2, +++; Sn-1, Sp) = ten o P, 2(321) li 21) 1 >7 (2:30)

where P, 5 can be constructed using the closure condition exemplified in the last section,
and defining Py for the empty set (0): Py(0) = 1.

We can see in (2.30) that the term that appears dividing refers to the (n—2) block
that appears in the two (n — 1)-blocks probabilities being multiplied. We can demonstrate
that the constructed P, function will be normalized if P,_; and, consequently, P, _o are:

> Pu(s, .-, sn) (2.31)

515--55n

8240480 —1 81
(2.32)
1
— P o(S2, oy Sne1) - Poo(S2, -\ Sn_ 2.33
s2, -;n—l Pn—2(32a ety Sn—l) 2(82 ° 1> 2(82 ° 1> ( )
= Z Pn,Q(SQ, NN 8,171) =1 R (234)
82, .oy Sp—1
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where, in the second equality, the summation in parenthesis is exactly the closure condition

that describes P, 5. In the last equality, we used the fact that P,_5 is normalized.

We can use the definition in equation (2.30), recurrently, to estimate an n-block
probability from an (n — 2)-block probabilities and so on. In the example of estimating a

n-block probability with (n — 2)-block probabilities, we would end up with the equation

Pn—2(81,---7 5n—2)'Pn—2(32; ) Sn—l)'Pn—Q(S?n ) Sn)
Pn—3(827 ce Sn—Z)'Pn—3(S37 ce Sn—l)

Pn(Sl, S92, ..., Sp—_1, Sn) =

(2.35)

This would be an approximation using shorter correlations to estimate the n-block

probability.

Using the equation (2.30) recurrently (n — 1) times, we would end up with
Pn(Sl, S92, ..., Sp—1, Sn) = le(S]) :Pl(Sl)'Pl(SQ)...Pl(Sn,1>‘P1(Sn) s (236)
j=1

where this would be the estimation based on the assumption that there is no correlation
between players. This is equivalent to the common mean-field approximation for the one
dimensional case, where we would have just the site probability to estimate the probability

of a larger sequence of players in the network.

2.4 Automated Extension Algorithm

The LST approximation ks easily applied for one dimension and acyclic graphs.
However naturally extending this process to more dimension or more complex structures
may be hard, as is explained by Gutowitz & Victor (1987):

In more than one dimension maximum entropy extension is consider-
ably more delicate. The variational problem translates into a system
of polynomial equations, whose explicit solution in terms of radicals
is in general not possible. Furthermore, extension to each larger frame
typically requires solution of an entirely new (and larger) system of equa-
tions. In this paper we do not solve the more general problem. Rather,
we approximate the maximum entropy extension by a formula which is
a straight-forward analog of the one-dimensional formula. As in the one
dimensional case, the formula is rational in smaller block probabilities.
(GUTOWITZ; VICTOR, 1987, p. 59)

With the same idea, but focusing on the ease of implementation, we propose and
describe a simple algorithm for building these approximations, inspired by the Bayesian
extension process, which is both simple to implement and whose motivations are simple

to explain.

As a guideline for the automated extension process, we do not want any player

(and, in general, structures smaller than the considered central frame) in the extended
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frame probability function to be over or underrepresented. For that, the number of times
it appears in the numerator minus the number of times it appears in the denominator
must be equal to one. For example, in equation (2.30), the s; and s,, both appear once in
the numerator, while s, ..., s,_1 appear twice in the numerator and once in the denom-
inator. We also want to use the correlations to a maximum when correcting an over or
underrepresentation. For example, in equation (2.30), we divide by a P, _5 block probabil-
ity and not by n — 2 P; block probabilities, since P,,_1(s1, ..., S$,—1) and P,_1(s2, ... Sy,)

“share” the n — 2 players (so,...,8,_1).

Keeping the concept of over or underrepresentation in mind, we created a simple
algorithm to determine how many times we should multiply/divide a certain (smaller)
block probability to estimate the probability for the extended block:

0. Input: The extended frame (N, sites) and central frame format (with V., sites).

1. First, identify all frames (non-permutated) with the same format as the desired
central frame contained in the extended frame. Define the set of these frames as ®q
and the number of frames in this set as mg. The multiplication of those central block

probabilities form the first part of the approximation, so define ¢g[i] =1V i € [1,my).

2. Now, start to check if the subframes of the central frame are being over or under-
represented, starting at the ones with N, — 1 sites until the frames with one site

(looping a variable R from 1 to N, — 1, with a step of 1):

a) Find all different frame formats of size N, — R. This is done by removing
R members of the central frame and checking for different (non-permutated)

frame formats.

b) Find all different frames (non-permutated) in those formats in the extended
frame. This forms the set ®5 and the number of frames in that set mpg. For

each frame, start a variable cg[i] < 1V i € [1,mp].

c¢) For each frame f in ®g, check for a frame g of the sets ®q,--- , P4 (sets of
larger frames). If f is a subframe of g, update the cg[f] subtracting the ¢ value

of that g frame (cg|f] = crlf] — cn,[g], Where ng is N, minus the size of g).

d) Set the counter R to R <+ R+ 1.

3. The formula for the approximation of the extended block can then be written as:

Ncenfl

Pea(s) =[] TI [Pr(sp)V) (2.37)

R=0 fedp

where s is the block contained in the frame f, which is a sub-block of the total s
(extended frame) block, and Py is the block probability for the frame format of f.
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We can check that this algorithm generates the approximation as described in
equations (2.30) and (2.35) for the particular case of one dimension. And it also allows

us to extend this approximation for other, more complex, structures and lattices.

The cg variables will dictate how many times we divide or multiply by some frame
in the extension probability. A cg(f) = 0 means the frame f will not be used in calculating
the extended probability. In step (2.c) we count how many times that frame is already
multiplying and dividing the extended probability as subframes of a larger frame. This

way, cg counts the times a certain structure has been “represented” in the extension.

In the section 2.5, we will work with an example of a 3x4 extended frame approxi-
mated using a square format frame (four sites) to make the steps more clear to the reader.
We will also discuss, in section 2.4.1, problems when trying to estimate the probability
of cyclic structures using non-cyclic frames. Even in these cases, the approximation can
be used as it was explained in equation (2.26), where we showed that the central block

probabilities will remain normalized.

2.4.1 Problem with cyclic structures: Losing normalization and closure

When using the Automated Extension Process, we observed a problem in normal-
ization when building some of the approximations. An example is when we try to estimate
a square frame using pair frames. However, to simplify, we will exemplify with the sim-
plest closed cyclic graph, which is a triangle, and analyze the problem in which we try
to approximate its frame using pair frames. Using the Automated Extension Process for

describing the probability of a triangle (Px) in terms of the probability of pairs, we obtain:

ppazr(a b)ppaw"(b )ppair(cv CL) )

Paa b, o) = g

(2.38)

Summing over all configurations, we can easily see that the normalization of P, is

lost, since

R— jg;A PA(]) _ aX’b: Pll);g;z)r(?f()b) zc: ppair(bagl (ip)air(ca (l) 7£ 1 ’ (239)

unless there is no pair correlation, meaning ppq-(2,7) = P1(2) - P1(j) V i, j, we would have:

< Pia)- Pb)  Pi(D) - Pi(e) - Pi(e) - Pa(a)
PIRECIED N R P1<c> (2:40)

=S P(a) S P Pile) (2.41)

Even in the case where we renormalize Px by dividing by a constant R, the problem

persists in the fact that we do not obtain pp,;, from P when summing one site out (closure
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condition):
? Pa(a, b, c) 1 ppair(a,b) Ppair (0, €)Ppair (¢; @)
' 2y fale 0, ¢) 1 2.42
ppazr(aa b) XC: R R Pl(a) - P (b) ZC: PI(C) ( )
? 1 i ]
P2 3~ Prair (0, IPpair(¢10) (2.43)

Pi(a) - P1(b) Pi(c)

C

With equation (2.43), we can see that the closure condition will not be met, unless
R is a function of the states a, b (or, in the case where there is no pair correlation), which
is incoherent with R being a constant. Consequently, it is evident that this approximation
for the triangle frame is a little problematic. However, as we presented earlier in equation
(2.26), constructing non-normalized probability approximations for external frames will
not break the normalization for the probabilities we are updating.

In some cases, some pair relations are ignored when building the approximation

Ppair (ayb)ppair (b,C)
Py(b)

normalization but the approximation would have a worse performance, as we will show, in

(using Pa(a, b, ¢) = would be an example). This would maintain the
section 2.7.1, specifically when we compare the Simple and Connected pair approximations.
The former represents the case where we ignore some connections and the latter presents
the problems with normalization/closure presented in this section. In this particular case,

the eight-site frame is a cyclic structure, which forms squares.

2.5 Code Implementation and Example of Application

For this code implementation, we will drop some of the generality from the defini-
tions we have been using so far and work on one example: building an approximation for

a 3x4 extended frame using a square as central frame format.

1\ o\
(E)—()—B)—E:
Y 7\ (1 /r
(42) (do)—By) @

Figure 5 — Graph of the sites in the 3 x 4 Extended frame.

The extended frame for the N = 12 player will be defined by the N x N adjacency
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matrix M,,; between the sites®?, which can also be visualized in graph form in Figure 5:

AO BO Al Ag AQ Bl Bg BQ El E2 E5 E4

Af(- 1 1 1 1 0 0 O 0O 0 0 0
By1 - 0 0 0 1 1 1T 0 0 0 O
A1 0 - 0 0 1 0 0 1 0 0 0
A; 1 0 0 - 0 O 1 0 0 1 0 0
A1 0 0 0 - 0 0 0 1 1 0 0
M., — By 1 1 0O O —-— 0O O O 0 0 1 7 (2.44)
B,fo 1 o0 1 0 O - 0 0 0O 1 0
B;y0 1 0 O O O O - 0 0 1 1
10 0 1 0 1 0 O 0 - 0 0 0
E{0 0 0 1 1 0 0 0 0 —=— 0 0
E10 o0 o0 o0 o0 o0 1 1 0 0 = 0
ENO O O O 0 1 0 1 0 0 0 -

where we left the values for self-interaction undefined (that is the — in the matrix).
And we will define the central frame format by indicating an ordered list of sites in

the extended frame that have that format. In the example we are working, we will use
Veen = [AO> B(h A17 Bl]

2.5.1 Step 1: Finding all squares in the extended frame

Step one is to find all frames (not-permuted) that have the same format as the
frame generated by v..,. In order to implement that, we first generate the 4x4 adjacency
matrix for the v, sites (using M,,;) and then we generate the matrices for all 4! = 24
permutations. We keep the different generated matrices in a list V.., and the permuta-
tions that generate the same matrix as ve., in a list L™, This last list will have the
permutations that do not change the relation between sites, meaning that it lists the
symmetrical frames and it can be used to reduce the number of different blocks. For the
example we are working on, there are just three different adjacency matrices formed by
permutations of v, these three form the W,.,. In the list of matrix V.., below, the first
one is the generated by v..,, and the others are generated by the permutation in the line

above the adjacency matrix, which is just one of the eight possible permutations of v,

2 We name the sites a little differently in Appendix B, where we explain other approximations for the

square lattice. The results are equivalent if you change [E1, Eo, Es3, E4] to [Eq, E4, Fa, Fy].

In the cross approximation, which we will be making later, defining only the adjacency matrix will
not suffice to characterize the relation between sites. Consequently, we will also define the 2-step walk
matrix, and all tests made using the adjacency matrix will be equally made for the 2-step walk matrix.
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that generates that same matrix:

Ay By A1 B Ay B A1 By Ay By B1 A
— 1 1 0 — 0 1 1 — 1 0 1
1 — 0 1 0 — 1 1 1 — 1 0
\I[cen = s s (2 45)
1 0 — 1 1 1 — 0 0 1 — 1
0 1 — 1 1 0 — 1 0 1 —

And there are eight symmetries in the square format, therefore there are eight

sym.

permutations in LJY™:

Lsym _ [AO;BO>AlaBl]a [A07A17B(]3B1}7 [A17B17A07BO]7 [AlaA(]aBlaBO]v (2 46)
oo [Bo, Ao, B, A1), [Bo, B1, Ao, A1), [B1, Bo, A1, Aol,  [B1, A1, Bo, Ao

With this done, we can find which of the N..,-combinations of all the N = 12
players generate a matrix equal to one of the matrices in W..,,. In the cases in which
the generated matrix matches one of the V.., matrices, we can find a permutation of
that combination that matches the matrix generated from v..,. This process identifies
the square frames (non-permutated) in the extended frames. In the example, there are
(12) = 495 combinations, and from these there are six square frames (non-permutated)

4
in the extended frames:

(2.47)
[A07A37E2aA2]7 [307B1aE47B2]a [B())B37E3732]

o {[AOaBO,Al,Bl], [Ao, Bo, As, B, [Ao,Al,El,AzL}
Then mg = 6, and ¢y = {1,1,1,1,1,1}. Where my is the number of square frames
found in the extended frame, and c¢q is the list of the exponents for the square block
probabilities that will be multiplied to construct the approximation. In Figure 6, we
visually represent the 6 frames that form ®,, we can clearly see sites (and structures)
appearing in more than one square, we will correct this “overrepresentation” in the next

step (Step 2) by verifying how represented are each of the substructures of the square.
(A—(4y) (A—(B) (B)—(B)
E—1y) A5y BF—E

Figure 6 — Visual representation of the frames in ®.
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2.5.2 Step 2 for R=1: Removing one site

When we remove one member from the square, we will always form the same
subframe format: an L-format frame. Although there are differences in the generated

adjacency matrix, these are only permutated cases of the same frame format.

AO BO Al BD AO Al Al BD AO
- 1 1 - 1 0 - 0 1

U = 1 — o1 = 1|10 = 1]¢; (2.48)
1 0 - 0 1 - 1 1 -

There are in total m; = 24 L-frames in the extended frame, four for each of the
six square frames in @y (we visually represent the L-frames in the square [Ag, By, A1, Bi]
in Figure 7). They have no way of being repeated in two different squares (that are not
permutations of each other) as there is no way for a square to share three vertices and
not the fourth one with another square. All of them are represented in one, and only one,
of the squares, resulting in ¢;[i] = 0 V i € ®;. The effect of this is that we will not need

to use the L-frames to calculate the probability for the extended frame.

I I
(—(By) (A)—B)
Figure 7 — Visual representation of the L-frames in the square [Ag, By, A1, Bi].

2.5.3 Step 2 for R=2: Removing two sites

By removing two sites from the square frame, we can generate two different frame
formats: the pair and the diagonal-neighbour formats: [Ag, By] and [A;, By are, respec-
tively, examples of these formats?. There are in total 17 pair frames (represented in Figure
8a) and 12 diagonal-neighbour frames, totaling my = 29 frames in ®5. In the same man-
ner as for the L format, two squares frames can not share the same diagonal-neighbour
without being a permutation of the same frame. Therefore, we will not use this frame in
the extended probability. The same, however, does not happen to the pair frame, since

[A(], Bo, Al, Bl] and [A(), Bo, Ag, B3] share [AO, B()], for example.

4 Here again, for best characterization of the “diagonal-neighbour” format, we should use the two-step
matrix, since the adjacency matrix for the two is null, but their relations lie in that they are the
“diagonal” neighbours (different from very distant sites, for example, that have the same adjacency
matrix). For simplicity, we will ignore this.
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There are seven pair frames (represented in Figure 8b) that appear twice in the

square frames, namely

(I)2{[177]}:{[A07B0]> [A07A1]’ [A07A2]’ [AO,A?)L [BO,Bl]a [B07BZ]7 [BO’B3]}7
(2.49)

while all other (size 2)-frames appear only once. Since ¢[i] = 0 V i, we do not have to

consider how many times they appear in the L-frames. We can then write c¢y:

—1lifie ®{[1,7
eali] = ALT (2.50)
0if i € Oo{[8,29]}
The consequence of this step is that the approximation of P34 will be divided by
the probability of the seven repeated pair blocks. In a way, we will be compensating for

their overrepresentation in the square frames.

I 50 g I O—® I 0 I

I@ @I@ QI. QI O—®
0" 0—6 66 ©

(a) All pair frames in the 3x4 extended frame. (b) The seven pairs (®2{[1,7]}) that appear in
two different square frames from ®y.

W—@) G B—C

O—6 6—®

Figure 8 — Pair frames in the 3x4 frame and repeated pair frames in P.

2.5.4 Step 2 for R=3: Removing three sites

Finally, for the last case, we have mz = 12 different site frames in the extended
frame. To obtain c3, we simple count the times they appear in the squares minus the times

they appear in one of the seven pairs above:

Number of timesin | Ay By Ay As Ay By, By By E, FEy E; E,
D 4 4 2 2 2 2 2 2 1 1 1 1
Do {[1,7]} 4 -4 -1 -1 -1 -1 -1 -1 0 0 0 O
Total o o 1 1 1 1 1 1 1 1 1 1
3 T 1r o o0 o o o0 o0 o0 o0 0 o0

(2.51)

This results in c3[A¢] = c3[Bo] = 1, while ¢3[i] = 0 for i € (P35 — {Ap, Bo}). The
consequence of this step is that the approximation of P3.4 will be multiplied by the
probability of the player strategies Ay and By. In a way, we will be compensating for their

resulting underrepresentation in steps 1 and 2.
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O o O o
() — — — )
O o O o

Figure 9 — Visual representation of the approximation for the 3 x 4 extended frame using
squares. Light blue meaning that frame enters the approximation multiplying,
while red means division.

2.5.5 Step 3: Writing the approximation for the extended frame

Now, we can finally write the approximation for the extended frame, resulting in:

P3 A _PD(AU7 BO) A17 Bl)PD(A(h BO) A37 BS)PD(A(]?Al) E17 AZ)PD(A07 A?n E27 AQ)
w4 =
(

P_(Ag, Bo)P-(Ao, A1) P—(Ag, A2) P_ (Ao, A3)
PD(B07B17E47B2)PD(BOJB37E3JB2)
P,(Bo, Bl)P7<BO7 BQ)Pf(B(% B3)

PO(AO)PO(BO) ) (252)

where we take the liberty of using Ag, By, - -+ for the state of the Ag, By, - - site, and we
use closure conditions to obtain the pair probability P_ and the single site probability P,
for states Sy and Si:

P_(So,51) =>_ P1(S0, 51,1, ) ZPD So,14,51,7) vV So, S1; (2.53)
1,7

Po(So) = > P(So, k, i, ) ZP (S0, k) v S, . (2.54)
i7j7k

We introduce a visual representation of equation (2.52) in Figure 9. Light blue
meaning that frame enters the approximation multiplying, while red means division. In
this way we can quickly and easily visualize an approximation, and rapidly check over and
underrepresentation of structures. This use of a visual representation for the extension
process was suggested in (SZABO; FATH, 2007, p. 207). The formula for Ps.4 allows us
to use it in equation (2.25) to calculate the evolution of the system for changes in the

states of site Ay and By (the ones for which we can actually compute the AN function).

2.6 Reducing Computational Costs

The computational time increases based on the number of different configurations
probed (Srtavers) which depends on the number of players in the extended frame (Nyjayers)

and the number of different strategies in the game (S). We will need bigger extended
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frames for more precise approximations (considering larger structures and correlations
between more distant sites). In latter sections, we will use extended frames with up to
18 players. In that case, for a game with 2 (3) strategies, there will be 2!8 ~ 2.6 x 10°
(38 ~ 3.9 x 108) different configurations.

Also, interpretation and readability of the data are another problem. For example,
for a cross approximation (5-site) and a game with S = 2 strategies, there are 2° = 32
different blocks in the central frame, meaning that there are 32 — 1 different variables
could be needed the state of the system. Using symmetries, we can reduce the number of

variables in that case to 12 — 1.

2.6.1 Symmetries

A great way to reduce the computational time is using a trick already used in
section 2.2, when we considered that the probability for a pair C'D and a pair DC' is
equal and that changes in C'D and DC pairs could be counted together in AN(, <

® are symmetrical

ANcp+ANpe. This trick works because the square lattice and the game
under 180° rotations (also, for 90° degree rotations, and this is why we did not even
consider using different probabilities for vertical and horizontal pairs). By using this fact,
we reduce by half the number of states we had to sum over, since we only had to consider

a C'D pair in the center.

This concept can be extended both to other lattices with different symmetries as
well as for higher order approximations, with the reduction in time being even greater.
We can encounter the symmetrical blocks by identifying which permutations in the frame
generate the same frame format. In the square example, in section 2.5, we could see that
the following permutations of the frame [Ag, By, A, B1| generate the same frame format

(in that case, the site relations are defined by the adjacency matrix):

Lsym —

cen

[AO;B0>AlaBl]a [A07A17B(]3B1}7 [A17B17A07BO]7 [AlaA(]aBlaBO]? (2 55)
[B())A(bBlaAl]a [BOaBlaAO;AlL [BlvB())AbAO]a [BlaAlaB(bAO]

If we apply these permutations to the state C'DCC| for example, the four differ-
ent states (CDCC, DCCC, CCDC, CCCD) will have the same probability. Applying
to all different states, we can reduce the system, from the original 16, to 6 variables
(ccco, cpcc, cbbc, ¢CDCD, CDDD, DDDD, as an example). For games with
more strategies, the reduction is greater: 21/81 &~ 0.259 for S = 3, and 55/256 ~ 0.21 for
S =4.

5 As a counter example, a game where a D player has less probability to invade the left neighbour than

the right one, even if their payoffs differences are the same, would break this symmetry
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2.6.2 Inactive states

Another way to reduce the number of configurations probed is by determining
which of the central blocks can be changed by the processes considered. For example,
if the central pair in Figure 1.a was a C'C' pair, C' players invading one another do not
change the system. The same is valid for a DD pair. We can consider that the CC(DD)
pair is an “inactive” state, and ignore it in the summation, not even probing all different
configurations around it. Another case occurs when there are players with fixed strategies
that can not be copied or changed (for example, the hole in diluted lattices). It is obvious
that pairs containing at least one such player are inactive states (considering no innovative
process in the system). The cumulative effect of speed-ups gained by considering both

symmetries and inactive states is presented in Table 2 for different cases.

Strategies
Approximation 2(C, D) 3(C. D, 0)
Pair 1/4=025 | 1/9=0.11
Square 4/16 = 0.25 | 11/81~ 0.14
Cross 10/32 ~ 0.31 | 26/243 ~ 0.11

Table 2 — Multiplicative effect on the number of configurations used in the approximation
when considering both symmetries and inactive states for the case of 2 (C' and
D) strategies and 3 strategies (C', D, and a fixed O strategy) in the Pair, Square
and Cross approximations for the square lattice.

2.7 Experimenting with different Extended Frames and Comparing

Approximations

Since many different frames can be chosen to make an approximation for a certain
central frame (pair, for example), we decided to test different extended frames and see

the impact that these different approximations can have on the results.

To make this comparison we decided tested the same system as in Szabo & Toke
(1998), which also makes MC simulations and pair, square and cross approximations for
the system, without specifying the extended frame used. The system analysed consists of
players positioned in a square lattice that play a weak PD with their first neighbours and
with themselves (self-interaction). The changes are made by randomly choosing a pair of
neighbours, and the probability of one player copying the other players’ strategy is given
by a Fermi Transition function with K = 0.1 (see a detailed definition of the transition
functions in Appendix D). We discuss if this system is really a weak Prisoner’s Dilemma

or a snowdrift game due to the self-interaction in Appendix A.

We decided to make four approximations for the pair as central frame: the Simple

Pair approximation which is usually made with unconnected neighbours of the central
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pair, and is based on the approximation for a 4N Bethe lattice; the Connected Pair
approximation, considering the eight-site frame needed to calculate the payoff of central
players and their relations; the Extended Pair approximation which also considers what
would be the diagonal neighbours of the central frame, forming a “3 x 4” rectangular
frame; and Second Neighbours Pair approximation considering all the first and second
neighbours of the central pair. In Figure 10, we represent visually these approximations.

More details about each approximation are given in Appendix B, specially in Table 8.

o o @9
O s (@) e (@)= O O (@)= (@)= O
o o @9
Simple Pair Connected Pair
o9
= I~ F—n P
@ = @@ . ® —(@)—@— o
®—@—@—® | 0 —@—@—@—@—o0
@ s @ e @ @ *—@—@—e
L)
Extended Pair Second Neighbours Pair

Figure 10 — Visual representation of the pair approximations being compared in Section
2.7.1. Light blue meaning the structure enters the approximation multiplying
and red enters dividing, extra red circles around a site mean extra divisions.
More detailed information in Appendix B, specially in Table 8.

We decided to make six approximations for the square as central frame: the Re-
duced Square approximation, in which we consider a square and its first neighbours (as
shown below, this approximation causes a miscount in AN); the 4x4 Square approxima-
tion, which, as the name indicates, utilizes an extended frame of 4 x 4 players; the 3x4
Square approximation, where we consider invasions in the centralized pair only (sites
Ap and By in the Appendix B); the Mixed Square approximation, where we consider
a special neighbourhood and that only one player can be invaded (site Ay being invaded
by By in the Appendix B). We detailed these approximations in Appendix B, specially
in Table 9 where we present the visual representation of the approximation and its cor-
responding equation. We visually represent these four square approximations in Figure
11. Besides these four approximations, we also perform a test removing the step counting
the representation of pairs and skip directly to counting the representation of points for

the reduced square and 4 x 4 frame, generating two other approximations. This experi-
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mentation serves to exemplify that using the more extensive correlations leads to better

approximations.
o o o] O o o
o O e O o|o o
o O e O 0| o o}
o o o] o o o
Reduced Square 4 x 4 Square
o o o o|o o o
@] O el N ] O
0 o o o| o o o]
3 X 4 Square Mixed Square

Figure 11 — Visual representation of the square approximations being compared in Section
2.7.2. Light blue meaning the structure enters the approximation multiplying
and red enters dividing. More detailed information in Appendix B, specially
in Table 9.

We decided to make three approximations for the cross: the Minimal Cross ap-
proximation, in which the extended frame contains basically a player and its first and
second neighbours, only this player can change strategy; the Double Cross approxima-
tion, which considers all first and second neighbours of a pair of neighbours. We also used
the Minimal Cross approximation with invasions of the first neighbours by the central
player, which leads to AN miscounting in these processes. This exemplifies the impor-

tance of choosing an extended frame that allows a correct counting of AN.

As a method of checking which approximation is better for this system, we com-
pare with the results obtained in Monte-Carlo simulations (averaged over 30 runs with
randomized starting configuration for each value of temptation in a 100x100 square lat-
tice). The results are shown in three different figures separating each according to the
central frame of the approximation in Figures 13, 14, 15 for the pair, square and cross

frame, respectively.

Visually, in Figure 13, the Connected Pair approximation curve seems to more
closely resemble the MC curve, followed by the Second Neighbour Pair. The worst approx-
imation seems to be the Simple Pair approximation. To better quantify this resemblance,
we calculated the absolute difference between the result obtained with each approximation

and the MC result, and present the (non-absolute) difference in Figure 13. We can see
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ol 0 e e O&=0 e
o) ®— @
Simple Cross Double Cross

Figure 12 — Visual representation of the cross approximations being compared in Section
2.7.3. Light blue meaning the structure enters the approximation multiplying
and red enters dividing. Rotated squares (diamond-shape) indicate the cross
structures. More detailed information in Appendix B, specially in Table 10.

that the approximations differ the most from the MC result, around the transition points
where the regime changes from coexistence to a single strategy dominating the system
(b~ 1.22 and b ~ 1.85). All curves reach a point where the difference is null, as they all
cross the MC curve. We also plot the standard deviation of the MC average in order to
show that the differences obtained are of a substantially larger order than the standard

deviation, meaning that the difference is relevant.

We can also reduce this resemblance to a single measure, calculating the area under
each of the absolute difference curves giving a measure of the total deviation. Although
not shown in Figure 13, we extended this summation beyond b = 2, since the Extended
and Simple Pair approximation still differ from the MC results in that range. Another
interesting measure can be the maximum difference in a result, which is the measure of
the maximum deviation from the MC curve. Besides that, we can see the difference in
the critical temptation (b) for the regime to change from coexistence to single strategy
dominance. That happens for b}/¢ = 1.22 and b}¢ ~ 1.85. And we consider for this
measure that the transition happens when one of the strategy probabilities drops bellow
5 x 10~*. We present the results for these measures in Table 3, and analyse them in the

following subsections.

2.7.1 Comparing Pair Approximations

As we can see in the comparison of all measures in Table 3 and visually in Figure
13, the Connected Pair approximation yields the best result amongst the pair approx-
imations. The area measure is, respectively, almost 2 and almost 4 times smaller than
the Extended and Simple pair approximations. Besides that, b.,.; for the transition from
coexistence to defection dominance is significantly better in the Connected Pair approx-

imation, happening at a distance to the MC transition at least 10 times closer than the
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Approximation Total Area | Max diff | b, (by — bMY) | by (by — bY1C)
Monte Carlo average - - 1.22 1.85
Simple Mean-Field 0.481 1.000 1.00
Simple Pair 0.171 0244 | 1.04 (-0.18) | 2.87 (1.02)
Connected Pair 0.041 0.154 1.04 (-0.18) 1.94 (0.09)
Extended Pair 0.075 0.183 1.02 (-0.2) 2.89 (1.04)
2nd neighbours Pair 0.052 0.183 1.02 (-0.2) 2.01 (0.16)
Reduced Square 0.084 0.327 1.34 (0.12) 1.91 (0.06)
4 x 4 Square 0.039 0.115 1.06 (-0.16) 1.86 (0.01)
Reduced Square (wp) 0.100 0.404 1.36 (0.14) 1.56 (-0.29)
4 x 4 Square (wp) 0.072 0.229 1.05 (-0.17) 1.58 (-0.27)
3 X 4 Square 0.038 0.115 1.06 (-0.16) 1.87 (0.02)
Mixed Square 0.046 0.123 1.06 (-0.16) 1.86 (0.01)
(AN wrong) Minimal Cross 0.141 0.314 1.32 (0.1) 1.96 (0.11)
Minimal Cross 0.013 0.068 1.11 (-0.11) 1.84 (-0.01)
Double Cross 0.011 0.076 1.13 (-0.09) 1.83 (-0.02)
Estimated error 4+0.004" | 40.0157 | £0.01 (£0.02) | £0.01 (£0.02)

Table 3 — This table presents four different measures for how much the different approxi-

mations resemble the MC results: Total area under the absolute difference curve
between the approximation for temptation b = [1, 3] (as presented in Figures
13, 14, 15); Max diff indicates maximum difference between the approximation
and MC results; And the values of b.,;; for both transitions between coexistence
to single strategy domination (with the difference from the MC result in paren-
thesis). The best results among the different central frames are highlighted in a
light blue shade and the best amongst all approximations are highlighted in a
darker blue shade. In the first line, we present the Monte Carlo results obtained
and, in the last line, we present estimates for the maximum measurement errors.
T The value of estimated measure error for total area and maximum difference
are the total area of the 1 sigma standard deviation curve for Monte Carlo
simulations and the maximum standard deviation for Monte Carlo simulations,
respectively.

other two approximations.

Comparing the Connected and Simple Pair approximations, it is expected that

the Connected yields a better result than the Simple, as the latter approximation simply

ignores some of the connections amongst players in that extended frame. Considering the

correlations between the top (or bottom) line players significantly improves the approxi-

mation, without making it more computationally expensive.

6

Analysing those two approximations and the results obtained, we can expect that

further increasing the extended frame, including more players and connections in the

neighbourhood, would further improve the approximation, since this would add more

6

We are, of course, considering that the computational expenses scales with the number of different
blocks/configurations we have to consider, and that the extra multiplications does not affect it much.
Also, other implementations of the code could make the Simple Pair approximation much faster as
discussed in section 2.6.
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Figure 13 — Comparing pair approximations using different extended frames (Simple, Con-
nected, Extended, Second Neighbourhood) with Monte Carlo results. The
colored region in the second graph represents the one-sigma range (standard
deviation of the sample) over 30 Monte-Carlo simulations for the system.

information about the first neighbours. Although this seems logical, comparing the results
in Table 3 for the Connected, Extended and Second Neighbours Pair Approximation or
analysing Figure 13, seems to contradict it. The 12-site rectangular neighbourhood and the
neighbourhood including all second neighbours (18 players in total) pair approximations
perform poorly compared to the Connected Pair (eight-site) approximation (but are still
better than the Simple Pair), considering the increased computational costs due to the

inclusion of more sites.

The “proposed lesson” we take comparing these approximations is that we should
not overextend our frames, but still keep all essential information to the process under
consideration. In this case, we should keep the information of the pair that has their payoffs
compared and its first neighbours, so we can calculate those payoffs, and, of course, the

information that some of those first neighbours are neighbours among themselves.

An interesting thing to notice is that Szabo & Toke (1998) used the Extended Pair
approximation (the curves match exactly) referring to it as a “pair approximation”. How-
ever in other papers (HAUERT; SZABO, 2005; SZABO; FATH, 2007), where the authors

explains the pair approximation in depth, they consider the Simple Pair approximation.

2.7.2 Comparing Square Approximations

We also decided to do some experimentation with different extended frames when
using a square as central frame. We began testing two extended frames considering all
invasions happening in the central square (all pairwise invasions in that square). The first
frame considered was the central square and their first neighbours, totaling 12 sites (we
call this the Reduced Square approximation). We also built a second extended frame with

a grid of 4 x 4 players (that is the same frame as the first one plus the four sites that
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Figure 14 — Comparing square approximations using different extended frames: Reduced,
4 x 4, 3 x 4, Mixed, and testing some cases omitting pair division marked
with (wp), with Monte Carlo results. The colored region in the second graph
represents the one-sigma range (standard deviation of the sample) over 30
Monte-Carlo simulations for the system.

are in the corners, and we call this the 4 x 4 Square approximation). The first one has a
problem: when one of the sites in the central frame is updated, not all square frames with
that site which are in the lattice are also in this extended frame. An example, looking at
the visual representation of the Reduced Square in Table 9 in the Appendix B, would be
that when we change the player in the second line and second column (A;), the square
in the top left corner (formed by Ay, Ei, G, E,) is not present as it is in the second
extended frame considered. This makes our counting function AN deviate from its true
value, since we do not count changes in the missing square.” Comparing the results in
Table 3 and visually in Figure 14, we can see that this deviation makes the approximation
perform quite poorly, being outperformed even by the pair approximations (unless when

predicting the first and second transition points).

We also decided to experiment with a different approximation: when building the
approximation for those extended frames, we did not divide by pair probabilities, going
straight to the site probabilities for “correcting overrepresented” players. This was tested
as this could simplify the automated extension process, reducing the steps to implement
it. The result for these changes can be seen in Table 3 and in Figure 14 marked with (wp);
they exemplify the importance of correctly applying the automated extension process, as
the performance of these approximations without pair division is far worse than the ones
with it, for the same extended frame. It is also interesting that, in both cases, the removal
of the pair probability division leads to a far earlier transition from coexistence to defector

dominance, without a significant change in the transition point of cooperator dominance

7 We can try to correct AN with estimations of what that missing square could be, but this was not

implemented as this would make AN dependent on the probability values of blocks, and not only
on the process taking place and configuration. In a certain way, we would be transferring part of the
probability of the extended frame to the AN function.
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to coexistence.

Using the concept from the pairs that we should not overextend our extended
frame, we decided to test a third and fourth frames. The difference being that, in this
case, we would not use all processes occurring in a square (which is our central frame
in this approximation). We built our extended frame from the basic pairwise interaction
and their first neighbours only including other players if they would make us err in the
same way that the Reduced Square errs, that is miscounting AN. This leads to what
we called the 3 x 4 Square (12-site) and the Mixed Square (10-site) approximations. The
10-site approximation has the peculiarities that the invaded player must be the left one
from the central pair as explained in Table 9 (in Appendix B). Besides that, there are
pair and site probabilities both in the numerator and denominator in the approximation.
The 3 x 4 Square performs as well as the 4 x 4 Square approximation, and the curves
almost match each other, but with the advantage that there are only 1/2% = 1/16 of the
blocks compared to the 4 x 4 approximation. The Mixed Square performs quite well, but
has a worse result than the 3 x 4 Square. We could improve it by introducing the use
of L-frame format probabilities, which we did not test. The computational cost does not
decrease much from the 3 x 4 Square due to the broken symmetry not allowing us to use
some of the speed up tricks used in the other approximations, although the number of

sites is reduced.

2.7.3 Comparing Cross Approximations
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Figure 15 — Comparing cross approximations using two different extended frames (and
an extra one which miscounts AN, marked as “(wrong) Minimal Cross”)
with Monte Carlo results. We don’t present the “(wrong) Minimal Cross” in
the difference to MC, as they would make it harder to visualize the difference
between the other two approximations. The colored region in the second graph
represents the one-sigma range (standard deviation of the sample) over 30
Monte-Carlo simulations for the system.

We also tested using a cross as the central frame, which consists of a player and
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its four neighbours in the lattice and built two extended frames. In the first, we added all
of the central player’s first and second neighbours to the extended frame (allowing us to
correctly calculate AN for the case in which the central player changes state), in a total of
13 sites in the frame, calling it the Minimal Cross frame. In the second, we consider a pair
and include all first and second neighbours of this pair, allowing us to correctly calculate
AN for both players in the pair. This frame includes 18-sites and we call it the Double
Cross frame. The ideas for building the frames centered on a player (Minimal Cross) or a
pair (Double Cross) are the same as the ones used in building the Mixed Square and the

3 X 4 Square frames, respectively.

Looking at Figure 15, we can see that Minimal Cross and Double Cross are quite
close to each other. Considering its measurements in Table 3, we can see that all differences
in the measurements are within the estimated maximum error. That means that the two
approximations perform quite similarly. Using the square cases as comparison, we would
expect that the Double Cross should outperform the Minimal Cross (in the same way the
3 x 4 Square outperforms the Mixed), which can be seen in some measurement, but those
differences are not significant. The difference in computational costs between these two
approximations is significant, because we have 2° = 32 times more configurations in the

Double Cross frame for this system.

To more firmly stress that a AN miscalculation introduces an error in the Reduced
Square case, we implemented the Minimal Cross evolution in two ways: one in which we
considered that the central player can invade and be invaded by its neighbours; and
another where only the central player can be invaded. In the first, the AN function will
be miscounted for the neighbours, since not all cross frames in the lattice they are part of
are in this extended frame. The second will not have this problem, because only the central
player will be invaded, and AN can be correctly computated using this extended frame.
In Table 3 and Figure 15, we present the results for the first evolution as “(AN wrong)
Minimal Cross”, and, for the second, simply as “Minimal Cross”. From the measurements,
it is obvious that the one with the wrong AN computation has a poorer performance
across all measurements. Also, by looking at Figure 15 (or measurements of b; and bs), it

favors cooperation by dislocating both transitions to higher values of b.

2.7.4 Guiding Principles for choosing the extended frame

By analysing the results, we create a “guiding principle list” for choosing the

extended frame for the approximation:

1. It, obviously, must allow us to calculate the probability for the process to happen.
In our example, we needed a pair and its first neighbours, allowing us to calculate

the payoff difference for the pair.
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2. It must allow us to correctly compute the AN function for the sites we intend to be
updatable, and, for that, we must include all central frames in the lattice to which

the player changing states belongs.

2.1 (optional) It must also allow us to correctly calculate AN function for the
player being copied as this may, or may not, improve the approximation. The case

tested are within our error margin, so we can not conclude either way.

3. It must not “overextend”, which means it must not include more players than those
necessary to fulfill the items above, as this generally does not improve, and can even

impair the quality of the approximation at an increased computational cost.
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3 Applications to Diluted Lattices

As exposed in chapter 1, there are some cases in which diluting a lattice may
be beneficial to cooperators (VAINSTEIN; ARENZON, 2001). In this chapter, we use
local approximations as explained in section 2.4 to explore the mechanisms under this
increase of cooperation. We specially use the Connected Pair approximation (detailed in
Appendix B) to analyse the behaviour in the diluted square lattice and we develop other
pair approximations for other lattices: Honeycomb; Cubic; Triangular; Bethe trees with
3,4, 5, 6 neighbours.

As it was noted by Wang, Szolnoki & Perc (2012a), the analysis of weak PD and
Snowdrift games with a Fermi transition function in the Square (K = 0.4), Honeycomb
(K = 0.3), Cubic (K = 0.6) and Triangular (K = 0.6) lattices indicates that the perco-
lation threshold may have a particular importance to this mechanism of enhancement of

cooperation:

More importantly, if b is close to the critical value at which coopera-
tors would normally die out, the optimal population density is strongly
related to the percolation threshold of the interaction graph ... Accord-
ingly, percolation plays a key role by the resolution of social dilemmas
by significantly elevating the effectiveness of spatial reciprocity. (WANG;
SZOLNOKI; PERC, 2012a, p. 2)

Further investigations of the weak PD in a diluted square lattice done by Leivas
(2018) shows that the breaking of the lattice into multiple independent clusters is also
important. With Cooperators having a better survival chance in larger clusters (bigger
than 100 sites) than in smaller ones. Besides that, Leivas (2018) shows that a replica-
tor transition function can reproduce the peak of cooperation close to the percolation
threshold if a perturbation is added.

Another investigation, in the same analytical vein as the present work, by Xu et
al. (2016), considers the snowdrift game using a replicator transition function (with pay-
off normalized by the number of neighbours) on a square lattice and they point out the
importance of local payoff levels and the redistribution of players among different payoff
levels due to dilution leading to increase in cooperation. Xu et al. (2016) considers that
the pair approximations do not show the qualitative behaviour of the peak of coopera-
tion: “For the bigger clusters, we show that the pair approximation is inadequate. This
inadequacy points to the necessity of incorporating a longer spatial correlation in to the
theory”. Their model of pair approximation differs from ours as there is no strategy-hole
correlation in theirs. In our analysis, the evolution of different correlations between coop-

erators and defectors with holes is an important feature of the system. This may be the
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reason why their pair approximation fails to capture the peak of cooperation while a cross
approximation (which has player-hole correlations included) captures it. Our pair approx-
imations capturing the qualitative behaviour of the system indicates the relevance of the
local structure and the importance of the levels of transition in the transition function w

for the appearance of the cooperation peak.

3.1 Approximations for the Diluted Lattice

In our model, we chose to consider a diluted lattice not as a different lattice from
the original, but rather we suppose that the game has changed: now besides the players
playing either cooperation (C') or defection (D), there are a fixed number of players with
a new strategy O that can not be copied or changed, and it gives zero payoff when
playing both with cooperators and defectors. Indeed, these O players can be seen as the
holes in a diluted lattice. This allows us to use one extended frame instead of multiple
extended frames with different probabilities, as was done by Xu et al. (2016). And since
O is regarded as a strategy, we can see C or D players developing different probabilities

of being near the holes, as this is quantified as one of the probabilities.

The weak Prisoner’s Dilemma is represented by the following payoff matrix with
the addition of the O strategy:

Player Y
C D O
b %
C 1 0 0
Player X 0 :
ayer D b 0 0
o1 0 ) 0 «

Table 4 — Payoff for the weak Prisoner’s Dilemma adding an O fixed strategy to represent
unoccupied sites. Since the payoff for the hole is not used in any calculation,
we mark it with an asterisk (*).

Analysing the system in this way, we can also question whether the zero payoff
could influence the phenomenon. Maybe holes giving (or subtracting) a different payoff
can change the system’s behaviour. This payoff given by a hole could be explained in many
ways. For example, it could be that the absence of a player in that region results in an
abundance of resources that can be explored by the neighbours, or it could represent the
opposite scenario. Testing whether this changes the system behaviour would be interesting.
In our model, the payoff given by the hole to a cooperator or a defector is the same
as a defector gives them: zero. This invites us to do a comparison: of a hole being a

unchangeable and uncopyable defector. This comparison fails in the case of the Snowdrift
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game, as tested in Wang, Szolnoki & Perc (2012a), although the payoff given by the
hole still matches the lowest payoff in this game, that of P = 0, and in this case the
cooperation peak still appears. Interestingly, in this same paper, its shown that for the
Stag-Hunt model, in which the lowest payoff for an interaction is S = —r and thus lower
than the payoff given by holes, the cooperation peak is not reproduced. Another way
this comparison can be broken is in the system analysed by Xu et al. (2016), where the
players have their payoff divided by the number of players around them before comparison.
In this way, the holes give a small boost to players surrounded by them based on their
performance with other players. This does not appear to change the behaviour of the
system and addresses some questions raised in Szolnoki, Perc & Danku (2008), in which,
for some scale free networks, normalizing by the different number of neighbours makes
the benefit to cooperation decrease. Although we raise this question of the zero payoff of
holes, we do not pursue it.

Also, the choice of considering a hole as a strategy facilitates the application of
other approximations and the development of the differential equations. As it is pointed

by Xu et al. (2016), considering different extended frames and its different probabilities
for the holes is a complicated task:

.. we propose a site-diluted evolutionary snowdrift game and focus on
studying the effects of disorder. Although there were similar simula-
tion results reported in disordered models using different evolutionary
mechanisms, our focus is to present a theoretical framework that can
be applied to a wide range of problems concerning competing games in
disordered systems. This is a challenging task as theoretical analysis of
evolutionary games in regular lattices is far from satisfactory, let alone
disordered lattices. (XU et al., 2016, p. 2)

When performing a pair approximation with these three strategies, compared to
the example in section 2.2, we will not only have the probabilities P(C,C), P(C, D),
P(D, D), but also the probabilities P(C, O), P(D,O), P(O, O). Due to the fixed amount of

holes, the probabilities will have the following relations with the site occupancy parameter

p:

P(0,0) = (1 - p)* (3.1)
P(C,0) + P(D,0) = p(1 — p) (3.2)
P(C,C)+2P(C, D)+ P(D,D) = p* (3.3)

We know that the probability of one hole being next to the other (P(O,0)) is fixed as
shown in equation (3.1), and by equation (3.2) we know that P(C,0)+P(D,0) = 0, as p is
a constant of the system. Therefore, the system state can be defined by three independent
variables (as an example: P(C, C), P(C, D), P(C,0)), needing only one extra independent

variable when compared to the pair approximation for the undiluted lattice.
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For the square lattice analysis, we decided to use the Connected Pair approxima-
tion, which we argued in section 2.7.1 to be the best pair approximation. The details
of this approximation can be seen in Table 8, in Appendix B. For the other lattices, we

developed different pair approximations, presented in Appendix C.

3.2 Results for the Diluted Square Lattice

We will start analysing the same system as given by Wang, Szolnoki & Perc (2012a):
a weak PD in a diluted square lattice with a Fermi transition function with K = 0.4. We
compare the fraction of cooperators fo = P(C')/p (that is the fraction of non-hole players
that are cooperators) obtained by MC simulations in Figure 16a with those obtained from
the Connected Pair approximation for the square lattice in Figure 16b. We notice that
the behaviour of the system is only captured in its qualitative way by the approximation,

without numerical precision.

Comparing the graphs in Figure 16, we can see that this pair approximation
presents similar cooperation peaks for intermediate values of p. And most interestingly,
this peak disappears for b increasing around the same value of p, =~ 0.6, which is close
to the site percolation threshold p..;; = 0.59. We can see that for b = 1.01, the curve is
similar, but in the pair approximation there is a complete extinction of defectors for a
range of values of p around p = 0.7. For other values of b, this pair approximation fails
in its predictions of which b values presents these peaks, allowing the presence of it until
bmaz = 1.39, a far higher value than b,,,, ~ 1.09 obtained in MC simulations. This could
be expected as this approximations favours the cooperators even in a undiluted lattice, as
we can see by the existence of cooperators at p =1 and b = 1.1, while in MC simulations
for a full lattice the cooperation is extinct by b =~ 1.07 (SZABO; FATH, 2007, p. 157).

Interestingly, in the approximation for b = 1.4 and other values beyond, there is a
gap around p = 0.6, with cooperators discontinuously jumping from complete absence to
coexistence (with fo substantially larger than zero). This gap closes, and then disappears,
with increasing b. This is interesting for two reasons. First, because we know there are
almost 2.6% of isolated players at the lattice for p = 0.6 and, in the pair approximation, the
half of those which start as cooperators get extinguished even being completely isolated
for b = 1.4 but not for some higher b (e.g. b = 1.99 in Figure 16b). This is probably linked
to the different speeds of process happening: for low b, the invasion of defectors is slow
enough that the mixing of pairs do not separate the population before extinction, while
at high b this separation occurs. The second reason is that this could indicate that the
p = 0.6 seems to be important as a transition point for what is happening locally, not

only in the larger structure.

We decided to continue using the Connected Pair approximation to explore this
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Figure 16 — Values of the fraction of cooperators (fc), given a site occupancy p, for a
diluted square lattice, transition function w is Fermi with K = 0.4. Different
curves for different values of b.

system under different transition functions w (the details of one are presented in Appendix
D): Heaviside, Replicator, and Fermi with K = 0.01, with K = 0.1, with K = 1.00. The
results are presented in Figure 17, with the cooperators’ fraction fo represented in color-

scale for different values of parameters p and b.

What we can see in Figure 17a is that with the Heaviside transition function, the
peak of cooperation appears at p, = 0.72 and ceases when b > 1.5. For increasing values
of K in the Fermi transition function (remember that for X' — 0 the Fermi becomes a
Heaviside), we can see in Figures 17b to 17e, that the peak for cooperation starts to cover
a region of values of p for lower b and is dislocated for lower values of p for higher b; we
obtain a peak close to the p..;; =~ 0.59 for K = 0.4 (p, = 0.6), the same as used in Wang,
Szolnoki & Perc (2012a). However, it keeps moving to lower values with further increases
of K and for K = 1.0 it reaches p, = 0.52. Further investigation is needed as to whether
this also happens in MC simulations. In Figure 17f, we can see that the replicator has
the strangest behaviour: for increasing b, the peak moves in the opposite direction for
increasing p. Not only that but the fraction of cooperators may increase when increasing
b for some fixed values of p. We believe, again, this is due to the sensibility to the speed for

different processes to happen, and in the replicator function these speeds vary drastically.

To better visualize this displacement of the cooperation peak, in Figure 18 we
compare ppq:, where the (local) maximum in the fraction of cooperators happens, for
each b and for each different transition function. We note that due to the extinction of
defectors (that is when the fraction of cooperator reaches 1), in some cases, ppq, comprises

a range of p values.

To better understand what is happening in the pair approximation, we analyse
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Figure 17 — Prisoner’s Weak Dilemma in a diluted Square Lattice obtained with the con-
nected pair approximation. In the x-axis, we have the density (p) of players
and in the y-axis, Temptation (b) and in color scale we can see the fraction
of not-holes that are cooperators.

the final state for the case of the Heaviside for 1 < b < 1.5 and p = 0.72 (where
the maximum of cooperation happens). The final state of the system is P(C') = 0.587
(fe = 0.815), P(D) = 0.133. In more detail we can see the pair probabilities P(CC) =
0.437651, P(C'D) = 0.000001, P(DD) = 0.080746, P(DO) = 0.051798, P(C'O) = 0.149802.
Two interesting things can be seen: that P(C'D) — 0, which means that the frontier be-
tween the C and D almost disappears, being separated by O players; and P(DO) —
P(D)P(O) ~ 0.0146 (or, to better exemplify % ~ 1.39), that means during this
separation it seems that the defectors are more likely to get stuck with holes around them
than other players. Actually P(DO)— P(D)P(O) generally also has a peak together with
the peak of cooperation. These two behaviours can be seen across all transition functions

around the maximum of the cooperators’ fraction.
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Figure 18 — Square lattice p,,., comparison for different w transition functions, according
to the Connected Pair approximation.

3.2.1 Possible explanation for the diluted square lattice

We can try to understand the behaviour of the pair approximation by looking at
the probability of a player having N occupied neighbours (P(N, p)), which can be easily
calculated by:

4
P(N,p) = <N> pPN(1—p)t N, for 0K N <4; (3.4)

and the probability of a pair having N and M neighbours (P(N, M, p)), which can be
calculated by:

P(N,p)P(M,p)

P(N, M, p) = PO

forO0 < N, M <4 . (3.5)

We show the different P(V, p) in Figure 19a, where we can see that for p = 0.6,
the probability of having 2 and the probability of having 3 neighbours is the same. Also,
another transition happens close to this value (actually, at p ~ 0.614): when it becomes
more probable that players have 4 neighbours than 1 neighbour. Also around p &~ 0.71
is the point where players have the same probability of having 3 or 4 neighbours. These

points p = 0.6 and p ~ 0.71 are also important transitions in the probability of a pair
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of neighbours having N and M neighbours, as it can be seen in Figure 19b, because
P(N, M, p) is basically P(N, p) multiplied by P(M, p) with a normalization.
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(a) Probability a player has N neighbours for changing p parameter. We also plot the probability
of a player having 2 or 3 neighbours, that is P(2, p) + P(3, p).
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(b) Probability a pair having N and M neighbours for changing p parameter. Here we summed
the probability of pairs having 2, 3 neighbours with 3, 2 neighbours, so for N # M we double
P(N, M, p) to define the probability of having 2*3 neighbours, for example.

Figure 19 — Probabilities for the local structures for a player and a pair.

The probability of a pair of neighbours having N and M neighbours is an important

quantity to understand the possible (and most probable) local payoff configurations. We

present in Table 5, for b = 1.05, the probability of the D — C process (Defector invading

a Cooperator) minus the probability of the C' — D, when the C' has nc cooperator

neighbours and the D has np cooperator neighbours.

A possible explanation is that, in the case of a Heaviside transition function, the
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Cooperation enhancement at p = 0.72 is due to the most common local configuration
being a player with 4 neighbours playing against one player with 3 or 2 neighbours (or
even 1 neighbour). Thus, according to Table 5a, if the Cooperator occupies the place with
four neighbours and is surrounded by other cooperators (the evolution generally leads
to p(CC) > p(C)p(C)), it can invade the defector. This mechanism works, but when
lowering p the probability of having four neighbours decreases, so the cooperators loose
its advantage. We can see that when b > 1.5, the peak does not appear, that is when there
is a change in Table 5a, for np,nc = 2,3 from —1 to 1, and cooperators are invaded any

time they have their payoff compared with a defector has at least one other cooperator

neighbour.
‘ ‘ nc ‘ ng
0 1 2 0 1 2 3
1 1 0.8649 0.0624 1
QQ 2 <:Q 2 QQ 2 06351  -0.4621
3 3 08932 0.1853 3
(a) Heaviside, for values of (b) Fermi with K = 0.4, b = (c) Fermi with K = 0.4, b =

1<b<15. 1.05. 1.30.

Table 5 — Tables presenting the values of wp .o — we_,p for different configurations of
number of cooperator neighbours of the cooperator (n¢) and of the defector
(np) for two different transition functions. We can obtain wp_,¢ (we—p) from
any of the values displayed on the table, z, as wp_c = *

% (wC—>D = I_Tz)
Now, analysing Table 5b, we see that for b = 1.05, the change from a Heaviside
to a Fermi transition with K = 0.4 can not be considered a small perturbation in the
system. In this case, a cooperator playing against a defector with the same total number
of cooperator neighbours has a 40% to almost 50% chance of invading the defector, while
for other configurations the player which has more chance to invade has at least a 10 times
higher probability of doing so than of being invaded (|Jwp_,c —we—p| > 0.81 implies that
max{zg—;f, ‘:}DL;%} > 10). This almost 50% chance of invading a defector greatly benefits
cooperators, since when it invades, it strengthens the position of the original cooperator,
while if the defector is the one invading, it weakens the position of the original defector
(which will still have cooperator neighbours to fight against). This could be measured in

the AN for these processes in these different configurations.

We can see in Figure 18 that the peak for b = 1.05 happens for a range of values
of p around 0.7, since cooperators have an advantage when it has 4 neighbours, as well as
when it has 3 or 2, so we see this peak of cooperation spread for a range of p. Increasing
b to b = 1.3, we can see in Table 5c, that having 4 neighbours is not as advantageous
as before, but having 2 or 3 neighbours still be enough, if your neighbours have less
neighbours than you, hence the peak moves to values close to p = 0.6, where this happens

and having 4 neighbours is less probable.
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3.3 Prisoner's Dilemma in other lattices

o =
p p p
(a) Honeycomb/3N Bethe. (b) 4N Bethe lattice. (c) 5N Bethe lattice.
=
p p p
(d) 6N Bethe lattice. (e) Cubic lattice. (f) Triangular lattice.

Cooperators fraction (f¢)
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Figure 20 — Results obtained from pair approximations for a Weak PD in different diluted
lattices using a Heaviside transition function (detailed in Appendix D). In the
x-axis, we have the density (p) of players and in the y-axis, Temptation (b)
and in color scale we can see the fraction of occupied sites that are cooperators

(fe)-

We also investigated other lattices using a Heaviside transition function. Besides
the Triangular, Cubic and Honeycomb, we studied Bethe trees with 3 to 6 neighbours.
The details for the pair approximations used are in Appendix C. The 3N Bethe pair
approximation is not different from the approximation made for the Honeycomb lattice.
The 4N Bethe tree pair approximation is equivalent to a Simple Pair approximation for the
square lattice. So, we can compare these two approximations for the square lattice again.
In the same way, the 6N Bethe lattice pair approximation can be seen as an approximation
for the cubic lattice where we disregard the relations among the sites around the central

pair.
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The results for these lattices are shown in Figure 20. We again see that we are
able to replicate the appearance of a peak of cooperation for middle values of the site
occupancy p. The two behaviours pointed out in the square lattice (P(C'D) — 0 and
P(DO) > P(D)P(0)) also happens in each of these lattices when close to the cooperation

peak.
1.0
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Temptation (b)

Figure 21 — Different lattice p,,., comparison for Heaviside transition functions.

We display an overview of the site occupancy at which there is a maximum of
cooperation (pmq.) for each b and each lattice in Figure 21. We can see an interesting
behaviour: for b < 1.5, ppa: of the Square lattice is close to the p,.. of the 3N Bethe tree
and that of the Cubic lattice is close to the 5N Bethe tree. In these cases, p... matches
more closely that of a uniform tree with one less neighbour than the one with the same
number of neighbours. However, looking at the entire range of parameters in Figure 17a
and 20, we can see that the behaviour (such as, width of the peak and b transitions)
of the Square and Cubic lattices matches more closely the behaviour 4N and 6N Bethe
trees, respectively, only dislocated to higher values of p and whole regions of cooperation
disappearing (specially for higher b). We can see this for the square by comparing Figure
17a with 20a and 20b, and for the cubic comparing Figure 20e with 20c and 20d.

We present ppq. for the highest b in which the cooperation peak appears (p.)

so we can compare to values of the percolation threshold (p..;) from the literature in
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Lattice Neighbours Perit p«(Heaviside)
Honeycomb (3N Bethe) 3 0.69 (0.5) 0.70
Square 4 0.59 0.72
Triangular 6 1/2 0.38 (0.51) *
Cubic 6 0.31 0.46
4N Bethe 4 0.33 0.51 (0.56) i
5N Bethe ) 0.25 0.46
6N Bethe 6 0.20 0.38

Table 6 — Values of p..;; for different lattices (rounded to within 0.01 variation), obtained
from: Essam (1980) for N Bethe p..;= 1/(N-1); Djordjevic, Stanley & Margolina
(1982) for square and honeycomb; Sykes & Essam (1964) for triangular; Wang
et al. (2013) for cubic.
T For the 3N Bethe lattice: perit = 0.5 and for the honeycomb p..;y = 0.69.
t In the triangular (4N Bethe), the higher peak of cooperators’ fraction for lower b
(b < 1.5)isat p=0.51 (p = 0.56), while the fainter one with higher b (b > 1.5) is at
p=0.38 (p=0.51).

Table 6. We can see that for increasing N, the Bethe lattice p, decreases. And, adding
more connections in the local topology (as a square or cubic lattice can be compared
to 4N and 6N with addition of some connections), the p, also increases. Besides these
general observations, we can see that the p, = 0.7 for the Honeycomb almost matches
Perit = 0.69 of this lattice, but this approximation could be used as well for a 3N Bethe
tree, which has a lower p..;; = 0.5. Interestingly, the stronger peak (for b < 1.5) for the
4N Bethe lattice (p. = 0.56) also falls close to the percolation threshold for the Square
lattice (p. =~ 0.59). This could be evidence to the peak of cooperation really being due
to changes in the local payoff structure. These benefits match coincidentally (or not so,
as the local structure is linked to the larger percolation) the percolation threshold. We
also think further investigation in MC simulations for the Honeycomb, Triangular and
Cubic lattices (as well as possibly studying the behaviour in Bethe trees) is needed, as
even in Figure 2 from Wang, Szolnoki & Perc (2012a), it is not clear whether the peaks in
cooperation for higher b go to the percolation threshold. And, in the case of the triangular
lattice, we can even see it receding to higher p for higher b, rather than getting closer to

the percolation threshold.
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4 Discussion

We began with the idea to develop extended mean-field approximations for dif-
ferent lattices, with the intention to better understand the relation between cooperation
and percolation, a problem presented by Wang, Szolnoki & Perc (2012a). Analysing in-
fluential papers, like Szabo & Toke (1998) (which uses extended approximations for GT
in square lattices) and its referenced papers (DICKMAN, 1988; GUTOWITZ; VICTOR,;
KNIGHT, 1987; SZABO; SZOLNOKI, 1996), we found the explanations to be poor in
clarifying which and how the approximations are built. However, there is a solid mathe-
matical framework for the one dimensional case (GUTOWITZ; VICTOR; KNIGHT, 1987)
and trees (non-cyclic graphs) (FANNES; VERBEURE, 1984), but the approximations for
two dimensional lattices seemed ambiguous on how to build them for different extended
frames, and even how to choose them. It is common to see the use of the pair approxima-
tion for the Bethe tree with 4 neighbours as a pair approximation for the square lattice
(HAUERT; SZABO, 2005; SZABO; FATH, 2007, p. 207). Even when there is an explana-
tion to the different contributions to the partial equations, it is poorly given and misses
one important part: the AN counting function, which happens in Hauert & Szabo (2005).
Also, since the extended frame is an arbitrary choice, these choices when not properly
explained can compromise the reproducibility of the presented results, which is the case
in the Szabo & Toke (1998), where the pair approximation used is the Extended Pair
approximation, instead of the usual Simple Pair approximation used and explained by
the same author in Hauert & Szabo (2005), Szabo & Fath (2007, p. 207).

Considering this, we decided to describe a standard method of generating the
approximations through a detailed step-by-step algorithm (section 2.4), based on the ideas
in Gutowitz & Victor (1987), we used the core concept of the Bayesian extension process,
only we explained it through the concepts of over/underrepresentation of structures. In
section 2.5, we exemplified the application of this algorithm to a specific case of a square
approximation in a square lattice, so there is a didactic example to be explored. Before
this, for purely educational reasons, we introduced a mean-field approximation (section
2.1) and a pair approximation (section 2.2) to simplify the description and exemplification
of the concepts used for the creation of the approximation (frames and blocks), which are

later formally introduced in section 2.3.1.

To better understand the use of different extended frames and how to choose them,
we studied a single system on the square lattice using different central and extended frames.
Through comparison with Monte Carlo simulations, we discussed the effects of different
extended frames and resumed our findings in the form of a guideline in section 2.7.4.

These findings must be validated in other systems, a task for future works. An interesting
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case is the Connected Pair approximation which yielded much better predictions than
the usually used Simple Pair approximation. We also observed the relevance of the AN
counting function, since choosing an extended frame inappropriate to the process under
consideration can lead to miscomputation in AN and a consequent poor performance of

the approximation.

We decided to apply the approximations to the diluted lattices in the simplest
way, considering holes to be an unchanging-uncopyable state. This particular view raises
a question on how much setting the payoff zero for holes may change the system behaviour,
but this question is not further pursued. Using the Connected Pair approximation for the
square lattice yielded good qualitative results, even fantastically predicting numerically
at which p the peak of cooperation disappears with increasing temptation b. Further
studies showed that these predictions are sensitive to changes in the noise parameter
K. This result raises the suspicion that the relation to percolation may come more as a
coincidence, at least for the pair approximation, since the boost of cooperation may be
related to changes in the local configurations associated with changes in the w transition
functions. We also developed pair approximations for the honeycomb, triangular and cubic
lattices (besides analysing the cases for regular trees with less than 6 neighbours). In this
analysis, we found the same behaviour as in the square lattice. A further study is needed
in MC simulations to check if it presents the same behaviour. Also, further explorations
with direct changes to the w transition tables may present interesting results. We believe
that a study of the state evolution in the pair approximations, instead of just the final
stable state, through visualization of the three dimensional vector field (similar to what
was done in Figure 3, but three dimensional) may collaborate to the understanding of
this cooperation boost for certain p and b values. Also, for better numerical predictions,

increasing the size of the central frame is important, as pointed out by Xu et al. (2016).

We hope this work allows the easy construction of approximations for different
systems with its specifics being considered. Further extensions of this work could include
innovative dynamics, diffusion/mobility, birth and death process, as well as an analysis
of other games and more complicated strategies. Also we hope to see the application of
this automated extension process to produce approximations for other kinds of graphs
and lattices. Another expansion of this work could be verifying whether the proposed
algorithm, as well as the guideline for choosing the extended frame, indeed leads to better

approximations.
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APPENDIX A - Is the Weak PD with

Self-Interaction a Snowdrift game?

It is common in eGT to include self-interaction, that is, adding an interaction
where the player plays one time with itself. This grants a great benefit to cooperators
in a weak PD, since they receive R = 1 for this auto-interaction and defectors receive
P = 0. We could, of course, include this in the payoff matrix instead of counting it as
an auto-interaction, we can even claim that this is the expected way a rational player
would compute the payoff matrix. Provided that the player plays with n neighbours (in
the square lattice n = 4), a cooperator gets 1/n more in each interaction (independent if
it is against a cooperator or a defector) and a defector gets no benefit. Therefore, we can
rewrite the Payoff Table 1b as:

Player Y
C D
b
C| 1+1/n 1
Player X 7/ /n
n
D b 0
(a) Payoff in the weak Prisoner’s Dilemma game with self-interaction.
Player Y
C D
b/ (0t 1)
C 1
Player X 1/(n+1)
5 ICESY .
bn/(n+1)

(b) We perform a rescaling of the payoff table to maintain R = 1, P = 0 by dividing all values
by 1+1/n=(n+1)/n.

Table 7 — Two versions of the payoff matrix for the weak Prisoner’s Dilemma game with
self-interaction. The second payoff matrix is rescaled to maintain R =1, P = 0.

We can clearly see, in Payoff Table 7a, that the payoff for cooperating with a
defector (1/n) is higher than defecting with a defector (0). This means that the P > S
condition is not met changing this game into a Snowdrift (also named, Hawk-Dove) in
the case where b > 1+ 1/n. It certainly follows the condition 7" > R > S > P, meaning it
can be read as a Snowdrift game. Looking at Payoff Table 7b, we find that the values will
match the common parametrization for Hawk-Dove R=1, T=1+r, S=1—7r, P =0,
only at b =2+ 1/n (r = n/(n + 1)) which normally is not an explored value, since the

limitations for a weak PD not becoming a anti-coordination game is b < 2.
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APPENDIX B - Approximations for the

square lattice

Here we will detail the approximations used in section 2.7, by defining for each
one its extended frame, the equation for its block approximation probability function and

presenting a visual representation of this approximation.

The extended frames will be defined by selecting different parts of the graph in

Figure 22. The graph shows 20 named sites that form a part of a square lattice.

More information on the approximations are in Table 8 for the pair, Table 9 for
the square and Table 10 for the cross approximations. In the following sections, we will

write the equation for its block approximation probability function.

B—O—6—6
B—O—O—B—6—6
B—O—6—6
E —F;

Figure 22 — A graph representing part of a square lattice. We will select different parts as
the extended frame to build different approximations.
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B.1 Pair approximations
The four different pair approximations we used are defined in Table 8, and their
block probabilities are defined in the following equations.

For the simple pair approximation:

P (4, By)
Psim e —
P P3(Ag) P3(By) ; H

Ao, i (B(), Bz)] (B].)

For the connected pair approximation:

. P_(Ay, B1) P_(As, Bs)
Peonn = PSlmPle X PO(AI) ( ) (A3) (BS)

(B.2)

For the extended pair approximation:

P (Ey, AP (Es, As) P_(Ey, As)P_(Ey, Ay)
Po(B2) Po(A1) Po(Az)  Po(Ey)Po(As)Po(As)
DBy, B)P_(Fy, By) P_(Fy, By)P_(Fy, By)
Po(F2)Po(Bl) o(Ba) Po(Fy)Po(Bs)Po(B)

Pext = Pconn X

(B.3)

For the second neighbours pair approximation:

P_(Ay, E3) P_(By, F3) P_(Ay, Ey) P_(By, F\) P_(E\, F)

P(4)  Pu(By) PO<A1> Po(B1) Pu(E1)Po(Fy)
(Ag,E5) (Bg,F5) P_(E5,F5)
P,(As) P,(B3) P.(Es)P,(F5)

Pan:PextX

(B.4)

B.2 Square approximations

The four different square approximations we used are defined in Table 9; their

block probabilities are defined in the following equations.

For the reduced square approximation (the one that leads to miscounting of the
AN function):

Pr(Ag, By, Ay, 1)PD(A07Bo,Ag,B3)PD(Ao7A1,E2,A2)X
P_(Aq, Bo)P_(Ag, Ay)
P (BO,Bl,FQ, By)Pr(Ay, By, F1, Ey)
P_(By, B1)P_(By, A1)

Pred:

For the 3 x 4 square approximation:

P3><4—

Pr(Ao, By, Ay, Bl)PD(Am By, As, B3) Po(Ao, Ay, Bz, Ay) Po(Ao, As, Ey, AQ)
P_(Ag, Bo) P (Ao, A1) P_ (Ao, A2) P_(A, A3)
P(Bg, By, Fy, By) Po(By, Bs, Fy, By)
P_(By, B)P_(By, Ba)P_(By, Bs)

P,(Ap)P5(Bo) (B.6)
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For the 4 x 4 square approximation:

PEl(Alv ElyGlyEQ)PEl(AlaEbFl;BQ>PD<Bl7Fl7G27F2)
P_(Ay, E5)P_(Ay, B1)P_(Ay, F3)P_(Ay, E1)P_(By, FY)

Pyyy = P3yyq X Po(Al)Po(Bl)

(B.7)
For the mixed square approximation:
P ) :PEI(A07 BO) A17 Bl)PD(A07 BO) A37 B3)PD(A07 Ah E27 A2>PD<A05 A37 E47 AQ) x
e P_(Ao, Bo)P_(Ag, A1) P_(Ap, Ag) P_(Ag, As)
Pu(Ao)
P (By, A B.
X ( 05 Q)PO(BO) ( 8)

B.3 Cross Approximations

The two different cross approximations we used are defined in Table 10; their block

probabilities are defined in the following equations.

For the minimal cross approximation:

Py (A, A1, A3, Ag, Bo) Py(As, By, By, Ag, B)Py(Ay, By, By, By, Ay)
P_(A, Bo)P_(Ag, A)P_(Ag, A2)P_(Ag, As)

" P, (A3, Ao, E4, E5, Bs)P(By, By, Ao, Bs, Bs)
Po(Es) Po(Ey) Po(B2) Po(By)

Pcross =

For the double cross approximation:

P.(By, F1, A1, By, Fy) Py (Bs, Fy, By, Fy, Fs) y
P_(Ay, B1)P_(As, B3)P_(By, B)P_(By, Bs)P_(By, Bs)
P.(Bs, By, As, Fs, Fy)P_(Ey, F{)P_(Es, F5)

Py(Ey) Py (Es) Py (Fy) Py (Fs) Py (Fy) Po(Fy)

Pdouble = PcrossPo(BQ)PO(B4) X

(B.10)
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APPENDIX C - Pair Approximations for

Diverse Lattices

We present in this appendix the pair approximations used for lattices besides
the square lattice. We define the extended frames used in each case and present the
equation for the block probability for the extended frame. For the Honeycomb, Cubic and
Triangular lattices, we also present the graphed form of the extended frame and the visual

representation of its pair approximation.

C.1 Pair Approximation for the N Bethe trees

For a Bethe lattice with N neighbours, we consider a central pair formed by players
Ag and By, naming the first neighbours of A as Ay --- Ay_1 and the first neighbours of B
as Bi--- By_1. The pair approximation for the extended frame j = Ay By A;--- An_1
By --- By_1 (2N sites) can be written as:

Py pethe(j) = P-(AoBo) H (Afjoi ((l:;)B)

_ P4 ) 1NH1P (Ao A;)P_(ByB;) (C.2)

[P(Ao) P (Bo)[Y

(C.1)

For N = 4, this approximation is equivalent to the Simple Pair approximation
for the square lattice, explained in Appendix B, equation B.1. Equivalently, we could use
N = 6 for an approximation for the Cubic lattice, disregarding the relations existent

among their first neighbours.

C.2 Pair Approximation for the Honeycomb Lattice

For the honeycomb lattice, since no cyclic structure can be seen analysing just the
pair and its first neighbours, we use the approximation for the Bethe tree with N = 3, for

a state j = AgByA; A2 B1 By (the graph formed by them is represented in Figure 23a):

. (AOBO)
Phoneycomb(]) [ (Ao) (Bo)]2 _

P_(AgA1)P_(AgAs)P_(BoB1)P-(BoBs).  (C.3)

The visual representation of this pair approximation for the honeycomb lattice is

presented in Figure 23b.
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o o
N\ /
= e
/ N\ o o
(b) Visual representation for the pair ap-

(a) Extended frame for the Honeycomb/3N proxnnatl(?n for the Honeycomb/3N
. Bethe lattice.
Bethe lattice.

Figure 23 — Extended Frame and visual representation for its pair approximation used for
the Honeycomb lattice/3N Bethe tree.

C.3 Pair Approximation for the Cubic Lattice

We present the extended frame (the central pair and its first neighbours, totaling
12-sites) for the pair approximation for the cubic lattice in Figure 24a. The block pair
probability for the state j = Ag By Ay--- A5 By--- Bsis:

| | P (A:B)
Pcuicj:P,ee,] X FYENYE=EY C4
b ( ) 6,Beth ( ) i_g475 P(AZ)P(BZ) ( )
= Pronn(AoBoA1A2 A3 By By Bs) % P (A0A) P-(BoBi) P_(A:By) , (C.5)

P(Ao)P(Bo)P(A;) P(B;)

where, in equation (C.4), we take in consideration a 6N Bethe lattice and multiply by the
other connections the neighbours have. In equation (C.5), we consider the two dimensional
square lattice case and extend adding the sites Ay As By Bs to form the approximation
for the cubic lattice. Both are equivalent. They could be easily generalized to hypercubes
of higher dimmensions, specially equation (C.4). We present the pair approximation for

the cubic lattice in visual form in Figure 24b.

@ - - °
, @ = _, ® °
, - o ® ® o
>4 S
@ (b) Visual repr:sentation ;)r the pair ap-
proximation for the cubic lattice.

(a) Graphed extended frame for the cubic
lattice.

Figure 24 — Extended Frame and visual representation for its pair approximation used for
the cubic lattice.
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C.4 Pair Approximation for the Triangular Lattice

For the triangular lattice, we consider the central pair and its first neighbours,
totaling 10 sites, as represented in graph form in Figure 25a. The block pair probability
for the state j = AO BO El E2 Al AQ A3 Bl BQ Bg is:

P_(AoA;)P_(ByB;)

Piriang(j) = P-(AoBo) P(A)P(B,

X

P_(AOEZ-)P_(BOEi)
P(Ay)P(By)P(E;)

X

II

i=1,2

)
P_(KiKis) 1 | )

L_Hl PR P(Kos)

where we define that K; = [Ay, Ag, A3, Es, Bs, Bs, By, F1, Ay] (it’s a list of the neighbors of
the central pair in the anti-clockwise order) to shorten the equation. The visual represen-
tation of the pair approximation for the triangular lattice in equation (C.6) is presented
in Figure 25b.

I @ I P —. = _:\ - -,
® @ O

/N /N 7N

— (4) — (&) — &G — ) —®
N /N /N 7 /N \
@ ® ® ®

(b) Visual representation for the pair ap-

(a) Graphed extended frame for the trian- proximation for the triangular lattice.
gular lattice.

Figure 25 — Extended Frame and visual representation for its pair approximation used for
the triangular lattice.
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APPENDIX D - Transition function w

Throughout this work we will use different functions for the transition function w.
These represent chances for the given process to happen (in our case, invasion). We will
be using functions based on the payoff difference between two players APay. We will use
three different w functions which assign different probabilities for each APay: Heaviside;

Replicator; Fermi (family of functions with parameter K). All of them are non-decreasing

dw
' dAPay

has a greater chance of being copied than one with a smaller payoff.

functions of APay, that is > 0, which means that a player with a higher payoff

The Heaviside function is an interesting case, where, when comparing a pair, if
the payoff of the player is higher than the neighbour’s, it is certainly copied (probability
one). If it is lower, it will not be copied (probability zero). The definition of Heaviside we

used is:

1if APay >0
O©(APay) = . (D.1)
0if APay <0

The results may change a little for some specific values of b if we define for A Pay =
0 = O(APay) = 0.5. We did not investigate these cases.

The replicator function comes from some early models in Biology (SZABO; FATH,
2007, p. 118), where the chance of being copied increases linearly with increasing payoff
difference, with the condition that the chance of being copied if the payoff difference is
negative is null. The definition of the Replicator transition we used is:
APay  if APay >0

wrpp(APay) = { M (AP , (D.2)

0if APay <0

where max(APay) is the maximum payoff difference possible, normalizing this case to
probability one. It is interesting that we do not need this normalization N = 1/max(APay)
in the approximations as it can be incorporated into the At. The same can be argued for
MC simulations when we try to use a normalization N < 1/max(APay). For example,
if we normalize by N = 0.5/max(APay), we know the system will take double the time,

therefore the evolution just needs a rescale in the time to be corresponding.

The Fermi family of functions is defined by a noise K parameter (K > 0). It
is interesting because we will not have null probabilities of being copied for APay < 0.
Allowing players with a smaller payoff to be copied is sometimes referred to as irrationality.
This property frees some points in the lattice that would be frozen (WANG; SZOLNOKI;
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PERC, 2012a). The definition of the Fermi with noise K we used is:

1
1+ e—APay/K :

errmi(APay) - (D3)
Besides being a smooth, continuous function, the Fermi family has the nice prop-
erty that wrermi(€) = 1 — Wrepmi(—2). This results that the chance of A invading B is

complimentary of the chance of B invading A.

Also, when K — 0, this function tends to a Heaviside function (with APay = 0 =
O(APay) = 0.5) and for K — 00, Wpermi(x) = 1/2 V x. This results that, with increasing
K parameter, the chances of being copied become more random, introducing a certain

noise for the probability of the process happening.
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