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Abstract

The population of Milky Way (MW) satellites contains the faintest known galaxies and thus provides essential
insight into galaxy formation and dark matter microphysics. Here we combine a model of the galaxy–halo
connection with newly derived observational selection functions based on searches for satellites in photometric
surveys over nearly the entire high Galactic latitude sky. In particular, we use cosmological zoom-in simulations of
MW-like halos that include realistic Large Magellanic Cloud (LMC) analogs to fit the position-dependent MW
satellite luminosity function. We report decisive evidence for the statistical impact of the LMC on the MW satellite
population due to an estimated 6±2 observed LMC-associated satellites, consistent with the number of LMC
satellites inferred from Gaia proper-motion measurements, confirming the predictions of cold dark matter models
for the existence of satellites within satellite halos. Moreover, we infer that the LMC fell into the MW within the
last 2 Gyr at high confidence. Based on our detailed full-sky modeling, we find that the faintest observed satellites
inhabit halos with peak virial masses below ´ M3.2 108 at 95% confidence, and we place the first robust
constraints on the fraction of halos that host galaxies in this regime. We predict that the faintest detectable satellites
occupy halos with peak virial masses above M106 , highlighting the potential for powerful galaxy formation and
dark matter constraints from future dwarf galaxy searches.

Unified Astronomy Thesaurus concepts: Dark matter (353); Milky Way dark matter halo (1049); Galaxy
abundances (574)

1. Introduction

The sample of confirmed and candidate Milky Way (MW)
satellite galaxies has more than doubled in the last 5 yr. Modern
imaging surveys have driven these discoveries; in particular,
following the successes of the Sloan Digital Sky Survey
(SDSS) in the early 2000s (Willman et al. 2005a, 2005b;
Belokurov et al. 2006, 2007, 2008, 2009, 2010; Grillmair
2006, 2009; Sakamoto & Hasegawa 2006; Zucker et al. 2006;
Irwin et al. 2007; Walsh et al. 2007), the Dark Energy Survey
(DES) and the Panoramic Survey Telescope and Rapid
Response System Pan-STARRS1 (PS1) have discovered 17
and three new satellite galaxy candidates, respectively (Bechtol
et al. 2015; Drlica-Wagner et al. 2015; Kim & Jerjen 2015;
Koposov et al. 2015; Laevens et al. 2015a, 2015b; Luque et al.
2016). These systems are identified as arcminute-scale over-
densities of individually resolved stars, and many have already
been spectroscopically confirmed. Meanwhile, other surveys
with the Dark Energy Camera and VST ATLAS have recently
discovered several additional satellites (Martin et al. 2015;
Drlica-Wagner et al. 2016; Torrealba et al. 2016a, 2016b, 2018;
Koposov et al. 2018; Mau et al. 2019).

Nonetheless, the current census of MW satellites is likely
highly incomplete, particularly for faint systems in the outer
regions of the MW halo. This is evidenced by the detection of
three new ultrafaint satellites in the first ∼676 deg2 of Hyper
Suprime-Cam Strategic Survey Program (HSC-SSP) imaging
data (Homma et al. 2016, 2018, 2019) and the discovery of
Antlia II, the lowest surface brightness galaxy currently known,
using RR Lyrae member stars identified in Gaia DR2
(Torrealba et al. 2019). In the near future, the Legacy Survey
of Space and Time (LSST) conducted from the Vera C. Rubin
Observatory will be able to detect satellites over the entire southern
sky down to a surface brightness of m ~ -32 mag arcsecV

2

(Ivezić et al. 2008; Tollerud et al. 2008; Hargis et al. 2014; Nadler
et al. 2019b).

Interpreting the cosmological and astrophysical implications
of these discoveries requires a detailed understanding of the

observational selection effects for each survey under con-
sideration. In a companion paper (Drlica-Wagner et al. 2020,
hereafter Paper I), we derive observational selection functions
for DES and PS1 based on searches for simulated satellites in
each data set. These selection functions encode the probability
that satellites in either survey are detectable as a function of
their absolute magnitude, heliocentric distance, physical size,
and position on the sky. They incorporate realistic photometric
error models, selection masks that exclude highly reddened
regions near the Galactic disk, and the influence of local stellar
density on satellite detectability. Detection sensitivity is linked
to sky position because various surveys have imaged different
parts of the sky at varying depths, and accurately modeling this
effect is crucial in order to disentangle anisotropy in the
underlying MW satellite system from selection effects.
In this paper, we combine the observational selection

functions derived in Paper I with a detailed model of the
galaxy–halo connection and high-resolution cosmological
zoom-in simulations of MW-mass host halos to infer the
position-dependent MW satellite luminosity function. Although
several empirical models have recently been used to study
subsets of the MW satellite population (Jethwa et al. 2018; Kim
et al. 2018; Newton et al. 2018; Nadler et al. 2019b), this is the
first analysis that is directly based on imaging data over more
than ∼15,000 deg2; indeed, our analysis covers 75% of the
high Galactic latitude sky. Moreover, our galaxy–halo connec-
tion model allows us to marginalize over astrophysical
uncertainties in our fit to the observed DES and PS1 satellite
populations. We quantify the impact of the largest MW
satellite, the Large Magellanic Cloud (LMC), and its associated
satellites on the observed DES and PS1 satellite populations.
We find that the satellites accreted with a realistic LMC analog
—defined in terms of its mass, heliocentric distance, and infall
time—are essential to fit the DES and PS1 luminosity functions
simultaneously; this finding constitutes a remarkable confirma-
tion of hierarchical structure formation. We predict that
4.8±1.7 (1.1±0.9) of the known satellites observed by
DES (PS1) fell into the MW with the LMC, consistent with the
number of LMC-associated satellites inferred from Gaia53 NHFP Einstein Fellow.

2
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proper-motion measurements (Kallivayalil et al. 2018; Patel
et al. 2020).

Our analysis constrains the properties of the lowest-mass
halos that host observed satellites, which we infer to have peak
virial masses below ´ M3.2 108 at 95% confidence. This
finding, along with constraints on the faint-end slope of the
luminosity function, can be used to inform feedback prescrip-
tions in hydrodynamic simulations (Sawala et al. 2016b; Fitts
et al. 2018; Simpson et al. 2018; Munshi et al. 2019; Wheeler
et al. 2019). Constraints on the minimum halo mass also hold
broad implications for the microphysical properties of dark
matter (e.g., Drlica-Wagner et al. 2019; Nadler et al. 2019a).
Crucially, our model can be extended to explore the degeneracies
between baryonic physics and deviations from the cold dark
matter (CDM) paradigm.

This paper is organized as follows. We first provide an
overview of our framework in Section 2. We then describe the
simulations (Section 3), galaxy–halo connection model
(Section 4), observational selection functions (Section 5), and
statistical framework (Section 6) used in our analysis. We
present our results in Section 7, focusing on the observed DES
and PS1 satellite populations (Section 7.1), the impact of the
LMC system (Section 7.2), the total MW satellite population

(Section 7.3), galaxy–halo connection model constraints
(Section 7.4), the properties of halos that host the faintest
observed satellites (Section 7.5), and the implications of our
findings for dark matter microphysics (Section 7.6). We discuss
the main theoretical uncertainties in our analysis in Section 8,
and we conclude in Section 9. Appendices provide additional
details on our galaxy–halo connection model (Appendix A) and
statistical framework (Appendix B), the robustness of our
results to observational systematics (Appendix C) and resolu-
tion effects (Appendix D), and the observed DES and PS1
satellite populations (Appendix E).
Throughout, we use the term “galaxy–halo connection

model” to refer to a model that describes how the properties
of galaxies, including luminosity and size, are related to the
properties of halos, such as peak virial mass. Furthermore,
“log” refers to the base-10 logarithm.

2. Analysis Overview

Using the observed population of MW satellites to constrain
our galaxy–halo connection model requires the following
ingredients (see Figure 1 for a visualization of each step).

Figure 1. Visualization of our MW satellite modeling framework. In the first step, we perform high-resolution zoom-in simulations of MW-like halos selected from a
larger cosmological volume (Section 3); in the second step, we paint galaxies onto subhalos using a parametric model for the galaxy–halo connection (Section 4); in
the third step, we use the observational selection functions derived in Paper I to compute the probability that these satellites would be observed in DES or PS1 imaging
data (Section 5); and in the final step, we calculate the likelihood of producing the true DES and PS1 satellite populations given many mock satellite population
realizations at fixed galaxy–halo connection model parameters (Section 6). We then iterate this process to constrain our galaxy–halo connection model.

3
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1. A model that predicts the underlying MW satellite
population.

2. An observational selection function that, convolved with
the prediction in the previous step, yields a prediction for
the observed satellite population.

3. A model for the likelihood of producing the true MW
satellite population given the prediction from the
previous step.

The first step above can be performed using either a
hydrodynamic simulation, in which galaxy formation is
modeled at the simulation level, or an empirical prescription
for painting galaxies onto halos. We take the latter approach in
this paper, which allows for a more flexible modeling
framework, as well as the use of simulations that are closer
approximations to the MW system. Indeed, our results may
help to constrain feedback prescriptions in hydrodynamic
simulations. Note that the assumed dark matter model (e.g.,
cold versus warm dark matter or collisionless versus interacting
dark matter) affects the underlying satellite population and
often manifests as a cutoff in the abundance of halos—and thus
faint galaxies—below a halo mass threshold determined by the
microphysical properties of dark matter.

The steps outlined above each rely on tools that have been
developed in previous studies and Paper I. Here we simply
provide a brief description of each step, and we defer additional
details to the Appendices.

3. Simulations

3.1. General Description

Our model of the underlying MW satellite population is built
on high-resolution dark matter–only zoom-in simulations of
MW-mass host halos selected from the suite of 45 hosts presented
in Mao et al. (2015), which have virial masses between 1.2 and

´ M1.6 1012 .54 The highest-resolution particles in these
simulations have a mass of ´ -M h3 105 1, and the softening
length in the highest-resolution regions is -h170 pc 1.

Halo catalogs and merger trees were generated using the
ROCKSTAR halo finder and the CONSISTENT-TREES merger
code (Behroozi et al. 2013b, 2013c). Subhalos in these
simulations are well resolved down to a present-day maximum
circular velocity of » -V 9 km smax

1 (Mao et al. 2015). To be
conservative, we only use subhalos with both > -V 9 km smax

1

and peak maximum circular velocity > -V 10 km speak
1. In

Appendix D, we show that these resolution thresholds are
sufficient for modeling the satellite populations of interest here.

3.2. Host Halo and LMC Analog Selection

The MW might be atypical compared to the average halos of
a similar mass (e.g., Boylan-Kolchin et al. 2010; Busha et al.
2011; Rodríguez-Puebla et al. 2013; Fielder et al. 2019); in
particular, its satellite population is likely affected by the
existence of the LMC system and the “satellites of satellites”
that accreted with the LMC into the virial radius of the MW
(Lynden-Bell 1976; D’Onghia & Lake 2008; Lu et al. 2016;
Dooley et al. 2017). In addition, the detailed merger history of
the MW—such as the early accretion of an LMC-mass galaxy

inferred from Gaia data—might affect its faint satellite
population (Bose et al. 2019).
Thus, we select MW-like host halos that each have an LMC

analog with realistic internal and orbital properties; both of
these hosts experience an early major merger similar to the
Gaia-Enceladus accretion event (see Appendix A.3 for details).
We define realistic LMC analogs as subhalos with

1. present-day maximum circular velocity -V 55 km smax
1,

2. present-day heliocentric distance < <D40 kpc 60 kpc, and
3. time of accretion onto the MW less than 2 Gyr ago.

These criteria yield two MW-like host halos with virial masses
of 1.57 and ´ M1.26 1012 , respectively. Both of these hosts
were used in the less restrictive host halo set defined in Nadler
et al. (2019b), and both have a Navarro–Frenk–White (NFW)
concentration parameter that is consistent with constraints set
using the combination of satellite and globular cluster
dynamics measured by Gaia (Callingham et al. 2019; Watkins
et al. 2019). The LMC analogs in these two simulations have
present-day virial masses of 1.6 and ´ M2.5 1011 , respec-
tively, and both have peak virial masses of ´ M3.0 1011 .
These LMC analogs accreted onto their host halos 1 and 1.5
Gyr ago, respectively, and their orbital dynamics are consistent
with LMC proper-motion measurements (e.g., Kallivayalil
et al. 2013).
Our fiducial LMC analogs have masses that are consistent

with LMC mass estimates based on stellar stream dynamics,
satellite dynamics, and the orbital histories of both Magellanic
Clouds (Besla 2015; Peñarrubia et al. 2016; Erkal &
Belokurov 2019; Erkal et al. 2019).55 However, different
studies have adopted various definitions of “LMC mass,” and
precision in the LMC mass definition (and particularly in the
distinction between peak and present-day halo mass) is crucial
going forward. We expect that our inference is most sensitive
to the peak mass rather than the present-day mass of the LMC
because peak mass correlates more directly with the expected
abundance of LMC satellites, particularly for recent infall
scenarios. Other probes of LMC mass are likely sensitive to
these quantities in different ways, and some—including timing
arguments (e.g., Peñarrubia et al. 2016) and orbit-rewinding to
infer LMC satellite abundances (e.g., Patel et al. 2020)—might
be most sensitive to the ratio of the LMC and MW halo masses.
Although the masses of our host halos are consistent with

observational constraints for the MW (e.g., Busha et al. 2011;
Bland-Hawthorn & Gerhard 2016; Patel et al. 2017), our
simulations span a narrower range of host mass relative to the
uncertainty on this quantity inferred from Gaia measurements.
For example, Callingham et al. (2019) found that the MW host
virial mass lies between 1.0 and ´ M1.8 1012 at the 95%
confidence level (also see Cautun et al. 2019b; Li et al.
2019a, 2019b). Since subhalo abundance is proportional to host
halo mass, predicted satellite abundances scale linearly with
MW mass, modulo second-order changes in subhalo disruption
due to variations in the mass accretion history of the central
galaxy (Kelley et al. 2019; Samuel et al. 2020). Ideally, our
analysis would be performed using MW-like host halos—all of
which include realistic LMC analogs—that bracket the current
range of allowed MW host mass; however, the availability of

54 We define virial quantities according to the Bryan–Norman virial
overdensity (Bryan & Norman 1998), with Δvir;99.2 as appropriate for
the cosmological parameters adopted in our zoom-in simulations: h=0.7,
Ωm=0.286, Ωb=0.047, and ΩΛ=0.714 (Mao et al. 2015).

55 Although detailed exploration of Magellanic Cloud binary systems is
beyond the scope of this work, we note that Shao et al. (2018) and Cautun et al.
(2019a) found that LMC analogs with SMC-like companions are typically
more massive than isolated LMC analogs.
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such MW-like systems is limited by the statistics of our
simulations. Thus, we do not marginalize over the full range of
allowed MW host masses in this work. We estimate the
potential impact of this uncertainty in Appendix A.1.

4. Galaxy–Halo Connection Model

To associate satellite galaxies with subhalos in the simula-
tions described above, we use a modified version of the model
developed in Nadler et al. (2019b). This model parameterizes
the relationship between satellite and subhalo properties and
the effects of baryonic physics on subhalo populations in
flexible ways, which allows us to marginalize over the relevant
theoretical uncertainties. Additional model details and tests are
presented in Appendix A.

4.1. Satellite Luminosities

To associate satellite luminosities with subhalos, we follow
Nadler et al. (2019b) by employing an abundance-matching
procedure that monotonically relates the absolute V-band
magnitude of satellites, MV, to the peak circular velocity of
subhalos, Vpeak.

56 This relation is constrained by the GAMA
survey (Loveday et al. 2015; Geha et al. 2017) for bright
systems ( < -M 13 magV ) and is extrapolated into the regime
of dim satellites by treating the faint-end slope of the satellite
luminosity function, α, and the lognormal scatter in luminosity
at fixed sV , Mpeak as free parameters. We assume that this
scatter is lognormal and constant as a function of halo
properties in our fiducial analysis; we explore a mass-
dependent scatter model in Appendix A.2.

Our abundance-matching model is a simple, empirical
prescription for assigning satellite luminosities that is not
designed to capture the complexities of star formation in
ultrafaint dwarf galaxies. For example, Bose et al. (2018)
argued that star formation in systems dimmer than

~ -M 5 magV is effectively shut down by reionization,
resulting in two distinct galaxy populations today. While our
abundance-matching model is consistent with the current data,
which are fit fairly well by a single power-law luminosity
function (see Paper I), it will be valuable to investigate more
detailed models of stellar mass growth and compare against a
wider range of observables, including the inferred star
formation histories of MW satellites, in future work.

4.2. Satellite Sizes

We assign physical sizes to satellites by extrapolating a
modified version of the size–virial radius relation from
Kravtsov (2013), which links a galaxy’s stellar 3D half-mass
radius to its halo’s virial radius, into the faint satellite regime.
In particular, we set the mean predicted size of each satellite at
accretion according to

( )
⎛
⎝⎜

⎞
⎠⎟º r

R

R
, 1

n

1 2
vir

0

where  and n are free parameters, Rvir denotes the subhalo
virial radius measured at accretion, and =R 10 kpc0 is a
normalization constant. Following Nadler et al. (2019b), we

equate the 3D half-mass radii predicted by Equation (1) to
azimuthally averaged projected half-light radii; this conversion
neglects mass-to-light weighting and projection effects. None-
theless, this size relation yields reasonable mean sizes when
compared to the observed population of classical and SDSS-
discovered satellites (Nadler et al. 2019b).
We draw the size of each satellite from a lognormal

distribution with a mean given by Equation (1) and a standard
deviation of s Rlog , which is a free parameter in our model.
When fitting the observed satellite populations, we only
compare predicted and mock satellites with >r 10 pc1 2 in
order to exclude likely star clusters from the analysis. We
explore a more conservative cut of >r 20 pc1 2 in
Appendix C.2.
The size prescription described above assumes that satellite

sizes are fixed after accretion onto the MW. However, post-
infall effects such as tidal stripping and tidal heating can shrink
or enlarge satellites depending on their orbital histories
(Peñarrubia et al. 2009; Errani et al. 2015; Fattahi et al.
2018). In Appendix A.4, we show that our key results are not
sensitive to these effects using a simple model for satellite size
evolution due to tidal stripping.

4.3. Subhalo Disruption Due to Baryonic Effects

To incorporate the effects of baryonic physics—and
particularly the tidal influence of the Galactic disk—on our
simulated subhalo populations, we apply a random forest
algorithm trained on hydrodynamic simulations to predict the
probability that each subhalo will be disrupted in a hydro-
dynamic resimulation based on its orbital and internal proper-
ties (Garrison-Kimmel et al. 2017b; Nadler et al. 2018). We
model the strength of this disruption effect using the free
parameter , which is defined such that = 1 corresponds to
fiducial hydrodynamic predictions (Nadler et al. 2018) and
larger (smaller) values of  correspond to more effective (less
effective) subhalo disruption. For each subhalo, we set

( ) ( )º p p , 2disrupt disrupt,0
1

where pdisrupt,0 is the fiducial disruption probability returned by
the machine-learning algorithm in Nadler et al. (2018).

4.4. Galaxy Formation Efficiency

The stochastic, nonlinear nature of galaxy formation in low-
mass halos likely leads to a smoothly varying fraction of
occupied halos, rather than a sharp cutoff in the efficiency of
galaxy formation (Sawala et al. 2016b; Fitts et al. 2018;
Munshi et al. 2019; Wheeler et al. 2019). Thus, in our fiducial
model, we parameterize the fraction of halos that host galaxies
of any mass, referred to as the galaxy occupation fraction,
following Graus et al. (2019),

( ) ( )
⎡
⎣
⎢⎢

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎤
⎦
⎥⎥s

º +
-


 

f
1

2
1 erf

2
, 3gal peak

peak 50

gal

where peak is the largest virial mass a subhalo ever attains,
which typically occurs before infall into the MW;50 is the
peak halo mass at which 50% of halos host galaxies of any
mass; and σgal is the width of the galaxy occupation fraction. In
our fiducial model,50 and sgal are free parameters. Note that

56 We perform abundance matching using Vpeak to incorporate the effects of
halo assembly bias and mitigate the impact of subhalo tidal stripping (Reddick
et al. 2013; Lehmann et al. 2017).
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in the limit s  0gal , this reduces to a model in which all halos
with > peak 50 host a galaxy.

Although our analysis does not constrain σgal, Equation (3) is
a simple, physically motivated form of the occupation fraction
that will be interesting to explore in future work. Note that we
parameterize the occupation fraction in terms of peak halo mass
(rather than, e.g., Vpeak) because peak is more easily
interpretable and connects directly to constraints on alternative
dark matter models (e.g., Nadler et al. 2019a).

4.5. Orphan Satellites

Because we model faint galaxies that can potentially inhabit
subhalos near the resolution limit of our simulations, it is
important to account for artificially disrupted subhalos that
might host “orphan” satellites (Guo et al. 2011; see Bose et al.
2019 for a recent example of the importance of orphans in
satellite modeling). To model orphans, we follow the
prescription in Nadler et al. (2019b), which identifies disrupted
subhalos in each simulation, interpolates their orbits to z=0
using a softened gravitational force law and a dynamical
friction model, and accounts for tidal stripping with a mass-loss
model calibrated on high-resolution test simulations. We
parameterize the effective abundance of orphans by setting
their disruption probabilities equal to

( ) ( )º - p a1 , 4disrupt acc

where aacc is the final scale factor at which each subhalo enters
the virial radius of the MW, and is a parameter that captures
deviations from disruption probabilities in hydrodynamic
simulations, which are well fit by = 1 (Nadler et al.
2019b). Thus, larger (smaller) values of  correspond to a
greater (smaller) contribution from orphan satellites.

Following Nadler et al. (2019b), we include orphan satellites
by fixing = 1 in our fiducial model. Thus, we effectively
assume that subhalo disruption in dark matter–only simulations
is a numerical artifact (van den Bosch & Ogiya 2018; van den
Bosch et al. 2018) but that subhalo disruption in hydrodynamic
simulations is a physical effect. We show that our results are
largely insensitive to the value of in Appendix A.6.

5. Observational Selection Functions

We employ the DES and PS1 survey selection functions
derived in Paper I, which have been publicly distributed as
machine-learning classifiers that predict satellite detection
probability given absolute magnitude, MV; heliocentric dis-
tance, D; azimuthally averaged projected half-light radius, r1/2;
and sky position.57 The predicted detection probabilities are
derived from searches for simulated satellites in catalog-level
DES and PS1 data, and they employ geometric cuts that restrict
observable satellites to lie within the respective survey footprint
and mask regions where satellite detection is challenging due to
interstellar extinction, bright nearby stars, and bright extra-
galactic objects.

We self-consistently apply these position-dependent detec-
tion criteria to our predicted satellite populations by matching
the on-sky position of our LMC analogs to the true on-sky
position of the LMC. In particular, we choose random observer
locations 8 kpc from the halo center, and we perform

appropriate rotations to our subhalo populations for each
observer location to match the true LMC position. We apply
the DES selection function for satellites within the overlap
region of the two surveys, and we only count satellites within a
fiducial heliocentric distance of 300 kpc.

6. Statistical Framework

To fit our galaxy–halo model to the DES and PS1 luminosity
functions derived in Paper I, we generate predicted satellite
populations given a set of galaxy–halo connection model
parameters, q, by performing mock DES-plus-PS1 surveys using
the selection functions described above. For each host halo and each
realization of our satellite model, we bin mock-observed satellites
according to their absolute magnitude. We further split satellites in
each absolute magnitude bin into high(m < -28 mag arcsecV

2 )
and low (m - 28 mag arcsecV

2) surface brightness samples
to incorporate satellite size information in our fit.58 We list the
DES and PS1 satellites used in this analysis in Table C1.
Next, we calculate the number of predicted satellites in each

bin i via

( ) ( )å= ´ - ´n p p f1 , 5i
s

s s sdetect, disrupt, gal,
i

i i i

where si indexes the satellites in bin i, pdetect is the detection
probability returned by the appropriate observational selection
function, pdisrupt is the disruption probability due to baryonic
effects (Equation (2)), and fgal is the galaxy occupation fraction
(Equation (3)). For objects that lie in the overlap region of the
DES and PS1 footprints, we calculate pdetect using the DES
selection function.
We note that detection probability mainly depends on

surface brightness and present-day heliocentric distance (see
Paper I), disruption probability mainly depends on orbital
properties (Nadler et al. 2018), and galaxy occupation depends
on peak according to Equation (3). Thus, our model for
satellite detectability is coupled to our galaxy occupation
fraction model, since surface brightness is directly linked to
peak due to our abundance-matching assumption. None-
theless, our results are largely unaffected if we exclude the
galaxy occupation fraction from our model, confirming that fgal
can be interpreted as the probability that a halo hosts a satellite
brighter than MV=0 mag, corresponding to the faintest
satellite in our observational sample.
We assume that satellites populate each bin in absolute

magnitude–surface brightness parameter space according to an
independent Poisson point process with a rate parameter λ that
depends on absolute magnitude, surface brightness, and our
galaxy–halo connection model parameters. Because our model
yields noisy estimates of λ, we marginalize over its range of
possible values in each bin, following Nadler et al. (2019b).
The likelihood of observing the set of DES and PS1 satellites,
sDES and sPS1 (specified by their absolute magnitudes and
surface brightnesses), given a set of model parameters q is then

( ∣ ) ( ∣ ˆ ) ( ∣ ˆ )

( )

q = ´s s n nP P n P n, ,

6
i

i i i iDES PS1
bins

DES, DES, PS1, PS1,

57 The DES Y3A2 and PS1 DR1 selection functions are publicly available at
https://github.com/des-science/mw-sats.

58 In particular, we calculate the effective surface brightness averaged within
the half-light radius as ( )m p= + +M r36.57 2.5 log 2V V 1 2

2 , where r1/2 is
measured in units of kpc.
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where n iDES, (n iPS1, ) is the observed number of DES (PS1)
satellites in bin i, and n̂ iDES, (n̂ iPS1, ) is a vector of the number of
mock DES (PS1) satellites in bin i from several realizations of
our model at fixed q. These realizations include draws over
host halos, observer locations, and our galaxy–halo connection
model, which is stochastic at fixed q. Note that steps 1–3 in
Figure 1 generate mock satellite populations n̂DES and n̂PS1, and
step 4 compares these to the observed populations nDES and
nPS1. The explicit forms of ( ∣ ˆ )nP n i iDES, DES, and ( ∣ ˆ )nP n i iPS1, PS1,

are given in Equation (B1).
Finally, we use Bayes’s theorem to compute the posterior

distribution over galaxy–halo connection model parameters,

( ∣ ) ( ∣ ) ( )
( )

( )q q q
=s s

s s
s s

P
P P

P
,

,

,
, 7DES PS1

DES PS1

DES PS1

where ( )qP is our prior on the galaxy–halo connection model
parameters (given in Appendix B.2), ( )s sP ,DES PS1 is the
Bayesian evidence, and ( ∣ )qs sP ,DES PS1 is given by
Equation (6). To sample from this posterior, we run 105

iterations of the Markov Chain Monte Carlo (MCMC) sampler
emcee (Foreman-Mackey et al. 2013) to sample the eight free
parameters ( )q a s s s=    n, , , , , , ,M R50 gal log using 32
walkers. We discard a burn-in period of 20 autocorrelation
lengths, corresponding to ∼104 steps, which leaves more
than100 independent samples.

7. Results

We now present our results, focusing on the observed DES
and PS1 satellite populations (Section 7.1), the impact of the
LMC system(Section 7.2), the total MW satellite population
(Section 7.3), the galaxy–halo connection model constraints
(Section 7.4), the properties of the halos that host faint
satellites(Section 7.5), and the implications for dark matter
microphysics(Section 7.6).

7.1. Observed Satellite Populations

Figure 2 shows the 68% and 95% confidence intervals for
the observed DES and PS1 satellite luminosity functions given
by draws from the posterior of our fiducial model, which is
consistent with both data sets. We note that the DES and PS1
likelihoods individually yield consistent results.
Figure 3 shows the corresponding satellite size distributions

drawn from our fiducial posterior. Our model is consistent with
the sizes of both the observed DES and PS1 satellites. It very
slightly overpredicts the sizes of observed DES systems;
however, we reiterate that our size model does not allow for
size reduction due to tidal stripping or size enlargement due to
tidal heating, which affect satellites with close pericentric
passages to the Galactic disk (e.g., Amorisco 2019). Our
findings in Appendix A.4 suggest that the post-infall size
evolution of satellites in subhalos with > -V 10 km speak

1 and
> -V 9 km smax

1 does not significantly affect our inference.
Our fiducial model is consistent with the outer radial

distributions of both DES and PS1 satellites, but it slightly
underpredicts the number of satellites near the center of the
MW ( D 100 kpc), particularly in PS1. We explore this
minor discrepancy in Appendix A.3, where we show that our
galaxy–halo connection model constraints and inferred total
MW satellite population are largely unaffected if the radial
distribution is forced to match the data.

7.2. The Impact of the LMC

To assess the impact of the LMC and its satellites on the
MW satellite population, we test the following models in
addition to our fiducial model, which includes a realistic,
recently accreted LMC system by construction.

(i) No LMC: a model with four host halos that have the same
mean concentration as our fiducial hosts but no LMC
analog.

Figure 2. Predicted DES and PS1 satellite luminosity functions resulting from a joint fit to these satellite populations. Dark (light) blue bands correspond to 68%
(95%) confidence intervals from our fiducial eight-parameter galaxy–halo connection model, dashed red lines show the 68% confidence interval for a model using host
halos without LMC analogs (“No LMC”), and black lines show the observed luminosity functions within each survey footprint. Our fiducial model, which includes
realistic LMC analogs, is decisively favored over the No LMC scenario, with a Bayes factor of ∼104.

7

The Astrophysical Journal, 893:48 (23pp), 2020 April 10 Nadler et al.



(ii) Misplaced LMC: a model with our fiducial host halos in
which subhalo positions are reflected, effectively placing
the DES footprint in the northern hemisphere.

(iii) Early LMC Infall: a model with two host halos that have
the same mean concentration as our fiducial hosts with
LMC analogs that pass our LMC Vmax and heliocentric
distance cuts but fall into the MW 2 and 6 Gyr ago,
respectively.

For each alternative LMC scenario listed above, we refit the
observed DES and PS1 satellite populations, sampling over the
same eight parameters used in our fiducial analysis.

Our fiducial model is favored over the No LMC, Misplaced
LMC, and Early LMC Infall scenarios with Bayes factors of
∼104, 104, and 103, respectively. In addition, both host halos in
the Early LMC Infall case are individually disfavored with
Bayes factors of ~103. Thus, we find decisive statistical
evidence for the impact of the LMC on the MW satellite
population, particularly within and near the DES footprint.
Moreover, we infer that the LMC system fell into the MW
within the last 2 Gyr at high confidence. We also note that, in
our fiducial host with more massive MW and LMC halos, the
LMC reaches pericenter near the second-to-last simulation
snapshot (i.e., ∼150 Myr ago). Performing our analysis using
the final snapshot for this host noticeably degrades the fit due to
the dispersal and disruption of LMC satellites during the
LMC’s pericentric passage. Thus, we use the second-to-last
snapshot for this host in our fiducial analysis, and we remark
that satellite abundances can potentially constrain the number
of allowed pericentric passages for the LMC.

The alternative LMC scenarios defined above are strongly
disfavored relative to our fiducial model because they cannot
produce a sufficient number of dim satellites in the DES
footprint without overpredicting the number of observed PS1
satellites. This is a direct consequence of the spatial overdensity
of subhalos near the LMC analogs in our fiducial simulations;
in particular, the projected density of resolved subhalos within
50◦ of the LMC on the sky is enhanced by∼50% relative to
the density on a random patch of sky.

To quantify the number of satellites in our fiducial model
that are associated with the LMC, we explore the following
definitions of LMC-associated subhalos.

(i) Fiducial definition. A subhalo is associated with the LMC
if it is within the virial radius of the LMC halo at the time
of LMC infall into the MW.

(ii) Gravitationally influenced definition. A subhalo is
associated with the LMC if it has ever passed within
the virial radius of the LMC halo.

Here LMC infall is defined as the snapshot at which the center
of the LMC halo crosses within the MW virial radius. Note that
nearly all systems that satisfy our strict definition are bound to
the LMC at the time of LMC infall.
Under the fiducial (gravitationally influenced) definitions

above, we predict that52±8 (181±25) total LMC-asso-
ciated subhalos (above our cuts of > -V 10 km speak

1 and
> -V 9 km smax

1) exist within the virial radius of the MW
today, where the 95% confidence interval is estimated by
drawing from our fiducial posterior. We predict that 48±8
(164±25) of these subhalos form galaxies with <M 0 magV
and >r 10 pc1 2 (in agreement with an earlier estimate by
Jethwa et al. 2018), and that 41±7 (118±21) of these
satellites survive tidal disruption due to the Galactic disk. Of
these surviving LMC-associated satellites, we predict
that4.8±1.7 (11±3.6) are currently observed by DES and
1.1±0.9 (6.1±2.1) are currently observed by PS1.
Our statistical probe of LMC satellite association is

remarkably consistent with the number of observed LMC
satellites inferred from Gaia proper-motion measurements,
which indicate that four galaxies in or near the DES footprint—
excluding the Small Magellanic Cloud (SMC)—are associated
with the LMC, and that two satellites in or near the PS1
footprint are potentially associated with the LMC (Kallivayalil
et al. 2018; Patel et al. 2020).59 In addition, the orbital

Figure 3. Size distributions derived by fitting our galaxy–halo connection model to the DES and PS1 satellite populations. Dark (light) blue bands correspond to 68%
(95%) confidence intervals from our fiducial eight-parameter model, dashed red lines show the 68% confidence interval for a model using host halos without LMC
analogs (“No LMC”), and black lines show the observed size distributions.

59 A recent analysis based on Gaia proper-motion measurements and
hydrodynamic simulations suggests that two bright satellites in or near DES,
Fornax and Carina, may also be LMC-associated (Pardy et al. 2020; however,
see Patel et al. 2020).
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dynamics of our predicted LMC satellites are consistent with
Gaia proper-motion measurements for these likely LMC-
associated systems. These predictions are also consistent with
other empirical models (Deason et al. 2015; Jethwa et al. 2016;
Dooley et al. 2017; Sales et al. 2017; Kallivayalil et al. 2018;
Erkal & Belokurov 2019; Zhang et al. 2019) and with
hydrodynamic simulations of isolated LMC analogs (Jahn
et al. 2019).

In Appendix D, we show that the properties of our LMC-like
systems are not significantly affected by the realizations of
small-scale power in our fiducial simulations. However, we
caution that the number of predicted LMC satellites observed
by DES and PS1 depends on the particular properties of our
two LMC analogs. Thus, exploring the robustness of these
results using a suite of zoom-in simulations selected to contain
realistic LMC systems with a range of internal and orbital
properties is an important avenue for future work.

7.3. The Total MW Satellite Population

Figure 4 shows the total MW satellite luminosity function and
surface brightness distribution resulting from our fit to the DES
and PS1 satellite populations. We infer that a total of 220±50
satellites with MV<0 mag and r1/2>10 pc exist within the
virial radius of the MW, where uncertainties correspond to 68%
confidence intervals calculated by sampling from our fiducial
posterior. Thus, we predict that ∼150 satellites remain undiscov-
ered in a standard CDM scenario, roughly one-fourth of which are
associated with the LMC. This is larger than the fraction of
satellites that have ever fallen into the MW that are associated
with the LMC because our fiducial LMC analogs accreted
recently, making their satellites less likely to be disrupted. Our
prediction for the total number of MW satellites is consistent with
several recent studies (Jethwa et al. 2018; Kim et al. 2018;

Newton et al. 2018; Nadler et al. 2019b), and it is lower than the
empirical estimate in Paper I, which was recognized to be inflated
due to the assumption of an isotropic satellite distribution. This
prediction will be tested by upcoming deep imaging surveys;
indeed, HSC-SSP has already started to probe this population of
distant, low surface brightness MW satellites by discovering three
new ultrafaint satellite candidates in ∼676 deg2 of imaging data
(Homma et al. 2016, 2018, 2019).
To estimate whether our predictions are consistent with

HSC-SSP observations, we draw realizations of the MW
satellite population from our fiducial posterior and calculate the
number of systems within the DES or PS1 footprints that would
not be observed by the appropriate survey. We then estimate
the number of these systems currently observed by an HSC-like
survey covering 676 deg2 that detects all satellites (i.e., systems
with MV<0 mag and r1/2>10 pc) down to a surface
brightness of m = -32 mag arcsecV

2 and out to a heliocentric
distance of 300 kpc, assuming an isotropic satellite distribution
at high Galactic latitudes and accounting for subhalo disrup-
tion. There are six known satellites in the HSC footprint, but
two of the six (Sextans and Leo IV) are detected at high
significance in PS1 by at least one of the search algorithms in
Paper I. We find that our mock HSC survey detects1.75±0.6
satellites, which is in slight tension with the number of systems
detected by HSC (four, after discounting Sextans and Leo IV).
Figure 4 illustrates several predictions from hydrodynamic

simulations of isolated and satellite dwarf galaxies. Our results
are largely consistent with the luminosity function of bright
MW satellites in hydrodynamic simulations of the Local Group
using the Feedback In Realistic Environments (FIRE) feedback
prescription, down to the FIRE resolution limit of ∼−6 mag
(Garrison-Kimmel et al. 2019). Note that these FIRE simula-
tions do not include LMC or SMC analogs, which accounts for
the discrepancy with both our predictions and the observed

Figure 4. Left panel: total MW satellite luminosity function inferred from our joint fit to the DES and PS1 satellite populations (blue) compared to the current census
of confirmed and candidate MW satellites (black) and the empirical estimate derived in Paper I (gray), which assumes an isotropic satellite distribution and a cored
NFW radial satellite distribution. The 68% confidence intervals from hydrodynamic simulations of the Local Group using the FIRE feedback prescription are shown in
red (Garrison-Kimmel et al. 2019). Luminosity function slopes predicted from hydrodynamic simulations with (solid green line) and without (dashed green line) H2-
based star formation are shown for comparison (Munshi et al. 2019); these predictions do not account for subhalo disruption due to the Galactic disk. Note that the
Paper I prediction (gray) differs from the “All Known Satellites” curve (black) at the bright end because it does not include the LMC, SMC, or Sagittarius. Right panel:
surface brightness distribution of MW satellites with MV<0 mag and r1/2>10 pc as a function of the limiting observable surface brightness of an all-sky survey.
Arrows indicate approximate detection limits for current surveys. Note that LSST Y1 is expected to have similar detection sensitivity to HSC (Ivezić et al. 2008;
Tollerud et al. 2008; Hargis et al. 2014; Nadler et al. 2019b).
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luminosity function at < -M 16 magV . Interestingly, other
recent hydrodynamic simulations indicate that different star
formation prescriptions significantly impact the amplitude and
faint-end slope of the luminosity function for satellites of
isolated LMC-like halos (Munshi et al. 2019). Thus, our
constraints on the faint-end slope, which are driven by satellites
with -M 6 magV (corresponding to stellar mass M*

M105 ), can be used to inform subgrid star formation
prescriptions.

7.4. Galaxy–Halo Connection Model Constraints

The posterior distribution for our fiducial model is shown in
Figure 5, and the corresponding galaxy–halo connection model
constraints are listed in Table 1. Note that we obtain
statistically consistent results when fitting the DES and PS1
satellite populations with either of our two fiducial simulations
individually in terms of both the Bayesian evidence and the
galaxy–halo connection model constraints. In particular, no
parameter constraints shift by more than 1σ relative to the

Figure 5. Posterior distribution from our fit to the DES and PS1 satellite populations. Dark (light) shaded contours represent 68% (95%) confidence intervals. Shaded
areas in the marginal distributions and parameter summaries correspond to 68% confidence intervals. Note that σM, σgal, and s Rlog are reported in dex, 50 is reported
as ( ) Mlog 50 , and  is reported in pc.
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fiducial values reported below when the fit is performed using
either simulation individually. We now discuss each constraint
in detail.

1. The inferred faint-end slope of the satellite luminosity
function is steeper than that reported in a previous study
based on classical and SDSS satellites (Nadler et al.
2019b). Our constraint is consistent with the faint-end
slope derived from higher-luminosity field galaxies in the
GAMA survey (Loveday et al. 2015; Wright et al. 2017),
even though it is based on a sample that extends nearly 10
mag fainter than that used in GAMA. We note thatα is
the most sensitive parameter in our analysis to modeling
assumptions and details of the observed satellite
population.

2. The scatter in luminosity at fixed Vpeak is constrained to
s < 0.19 dexM at 95% confidence, which may inform
hydrodynamic feedback prescriptions that predict a steep
increase in luminosity scatter at low masses (e.g., see
Wechsler & Tinker 2018). Our lack of a lower limit on
σM is consistent with previous studies of faint galaxy
samples (e.g., Lehmann et al. 2017). Meanwhile, large
values of σM are not allowed because too many low-Vpeak

satellites upscatter to observable luminosities, resulting in
overpredicted luminosity functions. To confirm that this
upper limit is robust, we calculate Bayes factors by
drawing samples from the posterior in bins of σM, finding
that σM=0.15 dex (σM=0.2 dex) is disfavored relative
to σM=0 dex with a Bayes factor of 30 (100).60 These
upper limits are comparable to the scatter typically
inferred from abundance-matching analyses of brighter
systems (σM∼0.2 dex) and smaller than that from
hydrodynamic simulations of dwarf galaxies (e.g., Rey
et al. 2019); however, we caution that our constraint
might be impacted by the use of only two independent
realizations of the MW satellite population. In addition, it
is potentially misleading to compare global constraints on
scatter to those derived from the MW alone. Both of these
caveats are important to explore in future work.

3. The peak mass at which 50% of halos host galaxies is
inferred to be less than ´ M8.5 107 at 95% confidence.
Note that this summary statistic depends on the lower

limit of our prior on50, since the50 posterior flattens
near its lower limit, which is chosen based on the
resolution of our simulations. Thus, we also calculate
Bayes factors by drawing from the posterior in bins of
50 to confirm that this summary statistic is robust. We
find that = ´ M8.5 1050

7 ( = ´ M1.5 1050
8 )

is disfavored relative to arbitrarily low values of 50
with a Bayes factor of50 (100). The current data are not
able to place a lower limit on 50, which would
correspond to the detection of a cutoff in galaxy
formation.

4. Our posterior is consistent with = 1, corresponding to
our fiducial baryonic disruption model. Although a large
spread in disruption strength is allowed by the data,
extremely efficient ( > 2.1) and inefficient( < 0.3)
subhalo disruption relative to hydrodynamic simulations
is strongly disfavored. These constraints widen when our
lognormal prior on  is relaxed; however, zero subhalo
disruption (corresponding to = 0) is robustly ruled out.

5. The scatter in the galaxy occupation fraction is consistent
with zero, which makes sense given our lack of a lower
limit on50. Models with large scatter in the occupation
fraction (s < 0.67 dexgal ), corresponding to extremely
stochastic galaxy formation, are disfavored relative to a
step function occupation fraction at 95% confidence.
Note that the slope of the σgal posterior is driven by the
lower limit of our50 prior; as this limit decreases, the
σgal posterior flattens.

6. The amplitude of the galaxy–halo size relation, defined as
the typical size of a satellite in a halo with =R 10 kpcvir
at accretion, is constrained to lie between 12 and 73 pc at
68% confidence. For larger values of , satellites are too
large to be detected with high probability, and the DES
and PS1 luminosity functions are underpredicted; for
smaller values of, many predicted satellites do not pass
our r1/2>10 pc cut, and the luminosity functions are
underpredicted.

7. The scatter in the galaxy–halo size relation is constrained
to lie between 0.33 and 0.91 dex at 68% confidence. For
larger values of s Rlog , faint satellites upscatter to large
sizes too frequently, which results in underpredicted
luminosity functions. Our 68% confidence lower limit on
s Rlog of0.33 dex is consistent with the value estimated in
Kravtsov (2013). Lower values of s Rlog lead to slightly

Table 1
Galaxy–Halo Connection Model Constraints Derived from Our Fit to the DES and PS1 Satellite Populations

Parameter Physical Interpretation 95% Confidence Interval

Faint-end slope Power-law slope of satellite luminosity function −1.46<α<−1.39

Luminosity scatter Scatter in luminosity at fixed Vpeak s< <0 dex 0.19 dexM*

50% occupation mass Mass at which 50% of halos host galaxies ( )< < M7.5 log 7.9350*

Baryonic effects Strength of subhalo disruption due to baryons < <0.3 2.1

Occupation scatter Scatter in galaxy occupation fraction s< <0 dex 0.67 dexgal*

Size amplitude Amplitude of galaxy–halo size relation < <0 pc 110 pc*

Size scatter Scatter in half-light radius at fixed halo size s< <0 dex 1.2 dexRlog*

Size power-law index Power-law index of galaxy–halo size relation < <n0 1.8*

Note. Asterisks mark prior-driven constraints.

60 We provide details on our Bayes factor calculations in Appendix B.3.
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too many predicted DES and PS1 satellites; however, our
results are consistent with s = 0 dexRlog at 95%
confidence.

8. The power-law index of the galaxy–halo size relation is
constrained to lie between 0.5 and 1.45 at 68%
confidence. For shallower power-law slopes, satellite
sizes do not change appreciably as a function of halo size,
which results in a worse joint fit to the observed absolute
magnitude and surface brightness distribution. We note
that the posterior widens when our Gaussian prior on n is
relaxed.

7.5. Properties of Halos that Host the Faintest Satellites

We now explore the properties of the lowest-mass halos
inferred to host MW satellites. The left panel of Figure 6 shows
the galaxy occupation fraction derived from our statistical
inference, where uncertainties are estimated by drawing from
our fiducial posterior. By sampling from our fiducial posterior,
we infer that halos with a peak virial mass below ´ M2.5 108

and peak circular velocity below -19 km s 1 host at least one of
the faintest observed satellites. To convert these into maximally
conservative upper limits, we account for the uncertainty in
MW host halo mass using the procedure described in
Appendix A.1, which yields limits on the minimum halo mass
and peak circular velocity of < ´ M3.2 10min

8 and
< -V 21 km speak,min

1 at 95% confidence. Furthermore, we
predict that the faintest observed satellite inhabits a halo with

= ´ M1.5 10peak
8 , on average.61

These results improve upon the minimum halo mass
constraint derived from classical and SDSS satellites (Nadler
et al. 2019b) by a factor of 2, and they are consistent with the
constraints reported in Jethwa et al. (2018). Moreover, these
upper limits are not in significant tension with the expected
atomic cooling limit of » -V 20 km speak

1, contrary to recent

studies based on the radial MW satellite distribution (e.g.,
Graus et al. 2019) and consistent with the findings in Bose et al.
(2019).
We caution that the median galaxy occupation fraction

shown in Figure 6 is driven by the assumed functional form in
Equation (3) and is therefore arbitrary. Although the functional
form in Equation (3) is consistent with results from
hydrodynamic simulations for   M10peak

9 , this particular
functional form is not required to fit the DES and PS1
luminosity functions. Rather, we have evidence that fgal>50%
above a peak virial mass of ~ M108 . To verify that the
assumed form of the galaxy occupation fraction does not
impact our constraints, we also test a binned model in which
we fit for50 and a corresponding 90% occupation mass. We
find that the resulting 50% and 90% occupation constraints are
consistent with those inferred from our fiducial analysis.
A wide range of galaxy occupation fractions have been

reported in hydrodynamic simulations, with some placing50
as high as ~ M109 (Sawala et al. 2016b; Fitts et al. 2018).
However, recent hydrodynamic simulations run at higher
resolution result in efficient galaxy formation in significantly
lower-mass halos, and some claim that all halos down to the
resolution limit consistently host star particles (Wheeler et al.
2019). In addition, simulations of galaxy formation at early pre-
reionization epochs show that stellar systems form in halos
with masses as low as ~ M107 (e.g., see Figure 13 in Côté
et al. 2018 for a compilation of recent simulation results). Most
recently, high-resolution simulations of high-redshift galaxy
formation that include the effects of spatially and temporally
inhomogeneous reionization find ~ M1050

8 (Katz et al.
2019).
Our galaxy occupation fraction constraint implies that

models with > M1050
8 are in significant tension with

the observed MW satellite population, as long as MW satellite
formation is representative of galaxy formation at this halo
mass scale, on average. This assumption may not be true if the
reionization history of the MW’s Lagrangian volume differs
from the average reionization history of an MW-mass halo

Figure 6. Left panel: fraction of halos that host galaxies, inferred from our fit to the DES and PS1 satellite populations. The solid line shows the median inferred
galaxy occupation fraction, and dark (light) shaded contours represent 68% (95%) confidence intervals. The resolution limit of our simulations is indicated by the
dashed vertical line. Right panel: SMHM relation inferred from our fit to the DES and PS1 satellite populations. An extrapolation of the mean SMHM relation derived
from more luminous field galaxies is shown in gray (Behroozi et al. 2013a). Stars illustrate the mean of the predictedpeak range corresponding each observed DES
and PS1 satellite, and top ticks indicate the corresponding present-day virial masses of the halos that host these systems.

61 The faintest observed satellite in our analysis, Cetus II, is detected by DES
with MV=0.02 mag (Drlica-Wagner et al. 2015; Table C1).
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hosting dwarf galaxies of the masses considered here (however,
see Alvarez et al. 2009; Busha et al. 2010). Note that analyses
based on H I surveys of Local Group dwarfs indicate a
suppression mass scale similar to our50 constraint (Tollerud
& Peek 2018).

Due to our abundance-matching assumption, the lowest-
mass halos in our model host the faintest galaxies, on average.
Thus, our constraints on the masses of these halos are
conservative, since the most massive halos in our simulations
are forced to host more easily observable satellites at fixed
distance and size, modulo baryonic disruption effects and
abundance-matching scatter. In other words, our abundance-
matching model yields a testable prediction: the faintest
galaxies should inhabit the halos with the lowest pre-infall
virial masses. We expect this correlation to be weakened by
post-infall effects, including tidal stripping, but we can
nevertheless infer the present-day joint distribution of halo
mass and satellite luminosity or stellar mass. We illustrate this
stellar mass–halo mass (SMHM) relation in the right panel of
Figure 6. Our inferred SMHM relation is generally consistent
with recent results (e.g., Jethwa et al. 2018). Like the faint-end
slope of the luminosity function, the SMHM relation can be
used to discriminate between different subgrid models of star
formation and stellar feedback (Munshi et al. 2019). As in
previous studies, we find that the SMHM relation in the
ultrafaint regime falls off more steeply than extrapolations of
abundance-matching relations derived using higher-mass field
galaxies (Behroozi et al. 2013a). Interestingly, Agertz et al.
(2020) found that full on-the-fly radiative transfer is necessary
to match the steepness and normalization of our inferred
SMHM relation for a fixed hydrodynamic feedback
prescription.

Ultimately, our predictions must be confronted with the
dynamical mass function of observed satellites, measurements of
which will improve significantly in the era of upcoming
spectroscopic facilities and giant segmented mirror telescopes
(Simon et al. 2019). A preliminary comparison of our joint
predicted distribution of luminosity and Vmax with the measured
stellar velocity dispersions of DES and PS1 satellites suggests
that our model is consistent with the inferred central densities of
low-luminosity satellites ( > -M 6 magV ). Although there is a
systematic discrepancy between observed and predicted values
of Vmax for brighter systems (the “too big to fail” problem), our
simple comparison does not account for the conversion from
line-of-sight velocity dispersion measured within observed half-
light radii to Vmax or the tidal effects of the Galactic disk on the
density profiles of surviving subhalos. Moreover, the systems for
which predicted densities are higher than those inferred
observationally are susceptible to baryonic feedback processes
that core the inner regions of halos (Di Cintio et al. 2014), and
this effect has been shown to alleviate the too big to fail problem
(Brooks et al. 2013; Sawala et al. 2016a; Wetzel et al. 2016;
Lovell et al. 2017; Garrison-Kimmel et al. 2019).

Finally, we explore the properties of the halos inferred to
host the faintest potentially detectable galaxies. In particular,
we calculate the minimum peak halo mass necessary for halos
to contain a stellar population of at least M100 , chosen to
represent the approximate threshold for which it would be
possible to observationally confirm a stellar system as a dark
matter–dominated dwarf galaxy.62 By populating a higher-

resolution version of one of our fiducial simulations and
sampling from the posterior of our abundance-matching
relation, we find that systems at the observational threshold
occupy halos with > M10peak

6 at 95% confidence. To
detect even lower-mass halos, gravitational probes of dark
matter that are independent of baryonic content, e.g., gravita-
tional lensing or stellar streams, must be employed.

7.6. Implications for Dark Matter Microphysics

Many deviations from CDM lead to a cutoff in the
abundance of low-mass halos. Several authors have used
MW satellite abundances to constrain a free-streaming cutoff
induced by warm dark matter (e.g., Macciò & Fontanot 2010;
Kennedy et al. 2014; Lovell et al. 2014; Jethwa et al. 2018).
Nadler et al. (2019a) showed that similar constraints apply to
other dark matter models, resulting in limits on the velocity-
independent scattering cross section between dark matter and
baryons. Our statistical detection of halos with peak virial
masses below ´ M3.2 108 therefore translates directly into
constraints on various microphysical properties of dark matter.
Nadler et al. (2019a) found that the minimum halo mass

inferred in this fashion is comparable to the limit on the half-
mode mass Mhm, which corresponds to the scale at which the
matter power spectrum is suppressed by a critical amount
relative to CDM due to dark matter free streaming or
interactions. Performing a statistical inference in which the
half-mode mass is varied will constrain it to lie below our upper
limit on 50, since the abundance of halos at and above the
half-mode mass is reduced relative to CDM.
Thus, for a simple and conservative estimate of the dark matter

constraints resulting from our analysis, we set the upper limit on
Mhm equal to our upper limit on the minimum halo mass, i.e.,

< ´M M3.2 10hm
8 , which corresponds to a lower limit on the

half-mode scale of > -k h36 Mpchm
1. Using the relations in

Nadler et al. (2019a) with the cosmological parameters h=0.7
and Ωm=0.286 corresponding to the simulations used in our
analysis (see Section 3.1), this yields a lower limit of 3.4 keV on
the mass of thermal relic warm dark matter and an upper limit of
6×10−30 cm2 on the velocity-independent dark matter–baryon
scattering cross section for a 10 keV dark matter particle mass,
both at 95% confidence. We leave a detailed investigation of dark
matter constraints to future work.

8. Theoretical Uncertainties

We aim to present a thorough galaxy–halo connection model
that allows us to marginalize over the most important
theoretical uncertainties when modeling the MW satellite
population. Nonetheless, our modeling choices necessarily
affect the predicted number of detected low-mass halos and
thus our upper limit on the minimum halo mass,min. In this
section, we briefly discuss the main uncertainties in this
analysis and their impact on ourmin constraint.
To do so, we consider the upper limit onmin as a function

of modeling assumptions, starting with the most conservative
model possible and adding one assumption at a time. We
illustrate the results of this exercise in Figure 7 for upper limits
calculated as follows.

(i) Minimal CDM. Assuming a maximally massive MW
halo given Gaia constraints (i.e., a virial mass of

´ M1.8 10 ;12 Callingham et al. 2019; Cautun et al.
2019b; Li et al. 2019a, 2019b), count the subhalos within

62 For many MW satellites, this will likely require spectroscopy with giant
segmented mirror telescopes (Simon et al. 2019).
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the virial radius of the MW in order of decreasing Vpeak

until the number of kinematically confirmed DES and
PS1 satellites is matched, and set the lowest corresp-
onding value ofpeak equal to the upper limit onmin.

(ii) MW host mass. Repeat the previous step with the MW host
mass fixed to its average value in our two fiducial
simulations (i.e., an average virial mass of ´ M1.4 1012 ).

(iii) Subhalo disruption. Repeat the previous step many times
with the subhalo number weighted by disruption prob-
ability, sampling  from our fiducial posterior, to calculate
an upper limit onmin at 95% confidence.

(iv) Satellites (confirmed). Repeat the previous step including the
observational detection probabilities for mock satellites in the
DES and PS1 footprints by drawing satellite properties from
our fiducial posterior.

(v) Satellites (unconfirmed). Repeat the previous step includ-
ing the unconfirmed candidate satellites detected by DES
and PS1 in the observed tally.

This yields ( ) < ´ M17, 14, 12, 6.5, 2.5 10min
8 for mod-

els (i)–(v), respectively. Note that models (i)–(iii) are extremely
conservative, since subhalos are counted in order of decreasing
Vpeak; however, these models do not reproduce the observed
position-dependent MW satellite luminosity function or radial
distribution. Model (iv) yields the conservative limit presented
in Appendix C.1, and model (v) yields our fiducial constraint,
uncorrected for MW host halo mass. Although we have not
explicitly considered artificial subhalo disruption in this list of
theoretical uncertainties (e.g., van den Bosch & Ogiya 2018;
van den Bosch et al. 2018), our fiducial orphan satellite model
effectively assumes that subhalo disruption in dark matter–only
simulations is entirely artificial, which is a conservative choice.

Figure 7 shows that both fitting the satellite luminosity
function and including the population of faint, kinematically
unconfirmed satellite galaxies in our fit yield significant
increases in constraining power. We emphasize that our
galaxy–halo connection model is conservative from the
perspective of upper limits on the minimum halo mass, since
we assume that high-mass halos host the brightest observed
satellite galaxies. Moreover, we marginalize over many
uncertainties in the connection between low-mass halos and
faint galaxies. Thus, the largest gain in constraining power
likely results from our detailed use of observational selection
functions, i.e., from the fact that some satellites are not detected

in DES or PS1 data. Given our extensive validation of the DES
and PS1 selection functions in Paper I, we are therefore
confident in our minimum halo mass constraints.

9. Conclusions

We have presented the results of a forward-modeling
framework for MW satellites applied to recent searches for
satellites in photometric surveys over nearly the entire high
Galactic latitude sky. Our analysis includes position-dependent
observational selection effects that faithfully represent satellite
searches in DES and PS1 imaging data, and our galaxy–halo
connection model allows us to marginalize over theoretical
uncertainties in the relationship between galaxy and halo
properties, the effects of baryonic physics on subhalo
populations, and the stochastic nature of galaxy formation in
low-mass halos. By performing a Bayesian analysis of the
observed DES and PS1 satellite populations, we find decisive
statistical evidence for the following.

1. The LMC impacts the observed MW satellite population,
contributing 4.8±1.7 (1.1±0.9) LMC-associated satellites
to the DES (PS1) satellite populations.

2. The LMC fell into the MW within the last 2 Gyr.
3. The faintest satellites currently known occupy halos with

peak virial masses less than ´ M3.2 108 .
4. The faintest detectable satellites (i.e., dark matter–

dominated systems with >M M100* ) occupy halos
with peak virial masses greater than M106 .

These results have broad implications for galaxy formation and
dark matter physics. For example, comparing our inferred
luminosity function and galaxy occupation fraction to predictions
from hydrodynamic simulations will help break degeneracies
subgrid star formation and feedback models. Meanwhile, extend-
ing our model to study the evolution of the luminosity function
will shed light on high-redshift faint galaxy populations (e.g.,
Boylan-Kolchin et al. 2015; Weisz & Boylan-Kolchin 2017) and
the MW’s local reionization history (e.g., Busha et al. 2010;
Lunnan et al. 2012; Katz et al. 2019).
Finally, our statistical detection of low-mass halos translates

directly into constraints on a suite of dark matter properties,
including warmth in thermal production scenarios, initial
velocity distribution in nonthermal production scenarios, self-
interaction cross section, interaction strength with the Standard
Model, formation redshift, stability, and quantum mechanical
behavior on astrophysical scales. Exploring the interplay
between galaxy formation physics and alterations to the
standard CDM paradigm will be crucial in order to extract
these signals from upcoming observations of ultrafaint
galaxies, and forward-modeling approaches like the one
developed here will drive these studies forward.

This paper has gone through internal review by the DES
collaboration. Our code and subhalo catalogs are available at
github.com/eonadler/subhalo_satellite_connection; please contact
the authors with additional data requests. We thank Ralf Kaehler
for providing the visualizations of our simulations used in Figure 1.
We thank Shea Garrison-Kimmel and Andrew Wetzel for sharing
data from the ELVIS on FIRE simulations. We thank Susmita
Adhikari, Arka Banerjee, Ekta Patel, and Andrew Pontzen for
useful conversations. Finally, we are grateful to the anonymous
referee for constructive feedback.

Figure 7. Impact of modeling assumptions on the minimum subhalo mass
inferred from the observed DES and PS1 satellite populations. The first three
models match the number of subhalos to the number of confirmed DES and
PS1 satellites, and the last two models populate subhalos with galaxies to fit the
position-dependent MW satellite luminosity function and size distribution.
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Appendix A
Galaxy–Halo Connection Model Details

In this appendix, we examine several components of our
galaxy–halo connection model to determine whether any of our
assumptions significantly impact the results presented above.

A.1. MW Host Halo Mass

The analysis in this paper is restricted to two fiducial MW-
like hosts with virial masses of 1.57 and ´ M1.26 1012 .
However, we expect the uncertainty in the MW host halo mass,
MMW, to impact our constraints. Consider a toy model in which
Nsat satellites brighter than a limiting magnitude MV ,min must be
predicted in order to match the observed luminosity function.
In this toy model, the predicted number of satellites is given by
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where dN dsub peak is the subhalo mass function,min is the
lowest halo mass populated by an observed satellite, and f
encapsulates the observational selection, subhalo disruption,
and galaxy occupation effects that determine whether each halo
hosts an observable satellite, all of which depend on galaxy–
halo connection model parameters q. Neglecting the depend-
ence of the latter effects on host mass (which we expect to be
subdominant compared to the overall rescaling of subhalo
abundances), using the standard linear relationship between
subhalo abundance and host mass, and assuming a standard
subhalo mass function slope of µ - dN dsub peak peak

2 (e.g.,
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Mao et al. 2015), we have

( )òµ µ
¥

- 


N M d
M

. A2sat MW peak
2

peak
MW

minmin

Thus, for a fixed observed satellite count Nsat, we expect our
95% confidence level upper limit on min to scale linearly
with host mass. In addition, because the error on MW mass is
independent of the error onmin, we expect these uncertain-
ties to add in quadrature.

Given our fiducial minimum halo mass of ´ M2.5 108

derived for an average host mass of ´ M1.4 1012 , we therefore
expect < ´ M3.2 10min

8 ( < ´ M2 10min
8 ) for a

maximally high-mass (maximally low-mass) host halo given the
current 2σ observational uncertainty on the MW virial mass of

´ < < ´M M1.0 10 1.8 1012
MW

12 (Callingham et al. 2019;
Cautun et al. 2019b; Li et al. 2019a, 2019b). We expect the
remaining galaxy–halo connection model parameters and asso-
ciated errors to remain largely unchanged, although rerunning our
analysis using additional simulations is required to confirm this
hypothesis. We expect the inferred total satellite count to scale
linearly with MW mass; thus, given our fiducial prediction of 220
total MW satellites with MV<0 mag and r1/2>10 pc, we
expect 280 (170) such satellites for a maximally high-mass
(maximally low-mass) host halo.

Above, we implicitly assumed that our galaxy–halo connec-
tion model is capable of adjusting the number of faint satellites,
which make the largest contribution to Nsat, while simulta-
neously matching the bright end of the observed satellite
luminosity functions. This assumption holds because we have
fixed the abundance-matching prescription to the relation
derived from GAMA data for < -M 13 magV while allowing
the faint-end slope to vary. We note that the results of Newton
et al. (2018) suggest that the inferred number of satellites
within a fixed physical radius is independent of MMW. We find
that the total number of satellites inferred within the virial
radius scales almost exactly linearly with MMW, as expected
from the linear scaling of subhalo abundance with host halo
mass, and further confirming the consistency of the results
among our two fiducial simulations. In addition, we find that
min is roughly independent of MMW for our fiducial
simulations.

A.2. Mass-dependent Scatter

Here we test a model where the abundance-matching scatter
in luminosity at fixed Vpeak, σM, depends on peak halo mass.
Motivated by the model in Garrison-Kimmel et al. (2017a), we
set

( ) ( )s s gº - - log log , A3M M M,0 peak 1

where sM,0 is a free parameter that captures the amplitude of the
luminosity scatter, γM is a free parameter that captures its mass
dependence, and = M101

11 is fixed. By rerunning our fit
with γM as an additional ninth free parameter, we find that large
values of γM are ruled out by the DES and PS1 satellite
populations at high statistical significance, with γM<0.07 at
95% confidence. Large values of γM are disfavored because
abundant, low-mass halos host satellites that upscatter to
observable luminosities too often to match the observed DES
and PS1 luminosity functions; however, the same caveats noted
in Section 7.4 for our constraint on σM apply to γM, so this

upper limit should be interpreted with caution. Introducing
mass-dependent scatter does not significantly affect our
inferred upper bound on 50, implying that our fiducial
minimum halo mass constraint does not depend on the details
of our luminosity scatter model.

A.3. Radial Scaling

To account for potential biases in our radial subhalo
distributions due to artificial disruption and halo finder
incompleteness, we define the parameter χ by

( )cºr r , A4sat sub

where rsat is a satellite’s distance from the center of its host
halo, which we equate to its galactocentric distance, and rsub is
the galactocentric distance of the corresponding subhalo.
In our main analysis, we take subhalo positions directly from

the simulation data and therefore assume χ=1. However, as
noted above, our fiducial model slightly underpredicts the
observed radial distribution of satellites close to the center of
the MW in the PS1 footprint. We plot the predicted DES and
PS1 radial distributions for our fiducial model in Figure A1; to
illustrate the effect of varying χ, we also show the 68%
confidence interval for our fiducial posterior evaluated
with χ=0.5.
To test the impact of radial scaling, we refit the DES and PS1

satellite populations with χ as an additional ninth free
parameter. As expected, decreasing χ reduces the tension
between the predicted and observed inner radial distribution of
PS1 satellites; however, doing so does not significantly affect
the goodness of fit for the observed luminosity functions and
size distributions. Moreover, our key constraints, including the
upper limit on50, and our conclusions regarding the impact
of the LMC system are not affected. In particular, the Bayes
factors in favor of our fiducial LMC model relative to the
alternative LMC scenarios defined in Section 7.2 are
unchanged. We note that, since we have only fit to observed
absolute magnitudes and surface brightnesses, the discrepancy
with the observed radial distribution for χ=1 might not
persist for a fit that includes galactocentric distance; we
comment on the technical difficulties associated with such a fit
in Appendix B.4.
Bose et al. (2019) suggested that the Gaia-Enceladus

accretion event, in which an LMC-mass galaxy merged with
the MW 8–11 Gyr ago, might lead to a relative overabundance
of ultrafaint satellites in the MW. Because of dynamical
friction, this overabundance would be particularly evident in
the innermost regions of the MW and might affect the observed
radial satellite distribution. Interestingly, both host halos used
in this work experience a Gaia-Enceladus-like accretion event,
following the definition in Bose et al. (2019) of a massive
( ~ M1011 ) halo merging with the MW halo between z=1
and 2. Given that we still predict an underabundance of
observed satellites in the inner regions of both fiducial host
halos, the Gaia-Enceladus-like events they experience do not
seem to be sufficient to ease the tension with the observed
radial distribution. Nonetheless, exploring the relationship
between the mass accretion history of the MW and the
present-day radial distribution of observed ultrafaint satellites
in detail is an interesting avenue for future work.
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A.4. Tidal Stripping

Following Nadler et al. (2019b), we test a model for the
evolution of satellite sizes by changing the mean sizes
predicted by Equation (1) to

( )
⎛
⎝⎜

⎞
⎠⎟¢ º
b

r r
V

V
, A51 2 1 2

max

acc

where ¢r1 2 denotes the satellite half-light radius at z=0, r1/2 is
the half-light radius at accretion predicted by Equation (1), Vmax

(Vacc) is the maximum circular velocity of a subhalo today (at
accretion), and β>0 is a parameter that controls the strength of
size reduction due to tidal stripping. We set β=0 in our fiducial
analysis, meaning that satellite sizes are fixed based on halo sizes
at accretion. However, tidal stripping after infall can shrink
satellite sizes; for example, Peñarrubia et al. (2009) found that

1<β<2 describes the results of high-resolution simula-
tions well.
In Figure A2, we illustrate predicted size distributions for our

fiducial posterior evaluated with β=3; a large value of β was
chosen to test an extreme dependence of satellite sizes on tidal
stripping. We find that even this extreme model does not
impact the observed satellite size distributions, indicating that
our results are robust to assumptions about tidal stripping. Our
simulations lack the spatial resolution to test whether the
Peñarrubia et al. (2009) prescription holds in detail and alters
observed satellite size distributions, but this—along with an
exploration of size enlargement due to tidal heating—is an
interesting avenue for future work.

A.5. Concentration-dependent Satellite Sizes

Jiang et al. (2019) found that galaxy sizes in two
hydrodynamic simulations follow a size relation similar to that

Figure A1. Radial distributions derived from our fit to the DES and PS1 satellite populations. Our fiducial eight-parameter galaxy occupation fraction model is shown
in blue. Dark (light) blue bands correspond to 68% (95%) confidence intervals, dashed red lines show the 68% confidence interval for a model using host halos
without LMC analogs (No LMC), and black lines show the observed radial distributions. Dotted–dashed blue lines show the 68% confidence interval for a model with
a radial scaling parameter of χ=0.5.

Figure A2. Size distributions derived by fitting to the DES and PS1 satellite populations. Our fiducial eight-parameter galaxy occupation fraction model is shown in
blue. Dark (light) blue bands correspond to 68% (95%) confidence intervals, dashed red lines show the 68% confidence interval for a model with a concentration-
dependent galaxy–halo size relation, and dotted–dashed blue lines show the 68% confidence interval for a model with an extreme dependence of satellite size on tidal
stripping.
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in Kravtsov (2013), with an additional dependence on halo
concentration. In particular, the size relation

( )⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟º

g
r

c R

R10
, A6

n

1 2
vir

0

with g= = = - = n R0.02, 1, 0.7, 1 kpc0 , and halo con-
centration c measured as a function of redshift, fits the
hydrodynamic simulation results in Jiang et al. (2019) with a
residual scatter of ∼0.15 dex. This relation implies that more
concentrated halos host less extended stellar systems at a fixed
virial radius in these simulations.

To test whether a concentration-dependent size model is
favored by the DES and PS1 data, we refit these satellite
populations with γ as an additional ninth free parameter.
Because the concentration of subhalos after infall into the MW
is difficult to measure accurately in our simulations, we
measure the concentration at the time of accretion when
implementing Equation (A6). We find that our galaxy–halo
connection model constraints are largely unchanged in this
case, although the upper limits on s Rlog (0.88 dex) and n (1.7)
are more stringent than in our fiducial model. We find that the
amplitude of the size relation is degenerate with γ, and our
analysis does not place an upper limit on  in this case. Here γ
itself is constrained to lie between −1.5 and −0.2 at 95%
confidence. The predicted luminosity functions and size
distributions are nearly identical to those from our fiducial
analysis (we illustrate the size distribution for our fiducial
posterior evaluated with γ=−0.7 in Figure A2).

A.6. Orphan Satellite Contribution

To test the importance of orphan satellites, we refit the DES
and PS1 satellite populations with = 0, which adds zero
orphans to our fiducial subhalo populations and effectively
assumes that there is no artificial subhalo disruption in our
simulations. Our constraints are virtually unaffected by this
extreme variation in. In particular, the 95% confidence upper
limit on50 increases by less than 1σ to M108 , and the rest
of our galaxy–halo connection model constraints are also not
significantly affected. The total number of MW satellites with
MV<0 mag and r1/2>10 pc decreases to 190±50, as
expected from the absence of an orphan satellite population.
Thus, ∼15% of the systems in our best-fit model are orphan
satellites; these satellites might be associated with heavily
stripped or disrupting subhalos.

Appendix B
Statistical Framework Details

Next, we provide additional details on our statistical
framework, and we discuss several caveats.

B.1. Poisson Process Likelihood

The Poisson point process likelihood in our statistical
comparison to observed satellites is implemented as follows.
Suppose we observe ni real satellites and ˆ nni, mock satellites in
an absolute magnitude bin i, where ˆn = N1 ,..., runs over all
model realizations, including different host halos, and draws
from our stochastic galaxy–halo connection model. The
likelihood of observing these satellites given our model

realizations, which enters Equation (6), is then
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where the dependence on galaxy–halo connection model
parameters q is implicit, and we assumed (i) a flat prior on λi
for λi�0 and (ii) that ni and all ˆ nni, are drawn from the same
Poisson distribution with rate parameter λi. Note that our
method yields noninteger numbers of mock satellites by
counting each system as ( )´ - ´p p f1detect disrupt gal objects
according to Equation (5), so we have replaced factorials in the
Poisson likelihood with appropriate gamma functions. Our
results are unaffected if we enforce integer satellite counts by
performing a binary mock observation of each predicted
satellite according to its detection probability.

B.2. Priors

We list the prior distributions used in our fiducial analysis in
Table B1, several of which are informed by previous work. The
prior on the faint-end slope is a noninformative Jeffreys prior
(Jethwa et al. 2018). The upper limit on the luminosity scatter
is chosen to be very conservative; for example, Lehmann et al.
(2017) found that abundance-matching scatter at the luminosity
scale of the brightest systems used in our analysis is less than
~0.25 dex. For50, we set the lower limit of the prior based
on the resolution limit of our simulations, which is a maximally
conservative choice from the perspective of the inferred upper
limit on this quantity. In particular, while we can decrease the
lower limit of this prior because the50 posterior is flat below

~ ´ M5 107 due to the limited sensitivity of the DES and
PS1 satellite searches, doing so would artificially decrease the
inferred 95% confidence upper limit.63 Priors for  and n are
set based on studies that identify the preferred values of these
parameters, and priors for s ,gal , and s Rlog are chosen to be
uniform with conservative upper bounds.

B.3. Bayes Factor Calculation

To calculate Bayes factors, we estimate the Bayesian
evidence using the bounded harmonic mean method described
in Nadler et al. (2019b). In particular, for a given posterior, we
select samples of galaxy–halo connection model parameters q
within a fixed Mahalanobis distance of a point q0 in a high-
density region of the posterior. We then average the inverse of
the posterior probabilities for these samples, and we normalize
by the volume of the sampled region. We repeat this procedure
for high-density regions that contain 10%–25% of the total
number of MCMC samples, and we average over these
percentiles to obtain the mean Bayesian evidence.

B.4. Caveats and Future Work

In this work, we fit to observed MW satellites in an
observable parameter space x that consists of absolute
magnitude and two large surface brightness bins. However, it
would be more constraining to perform our inference in a

63 However, as noted in Section 7.4, our reported Bayes factors are
independent of this choice.
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higher-dimensional space that includes galactocentric distance.
There are two main difficulties inherent in our statistical
modeling.

1. We have binned observed and modeled satellites
assuming that the unknown Poisson process rate in each
bin is independent from the rate in other bins. This
assumption is unphysical, as the rate should vary
smoothly in observable parameter space.

2. As the number of bins increases, the number of satellites
per bin decreases, which causes the uncertainty in the rate
parameter to increase and our model to become
increasingly unconstrained. This is a particularly challen-
ging problem as we move to higher-dimensional para-
meter spaces, since the number of bins increases rapidly
with dimensionality.

To address these issues, it is possible to connect rates in nearby
regions of parameter space in an unbinned fashion using a
correlated prior. This is equivalent to imposing that our galaxy–
halo model should produce satellite abundances that vary
smoothly as a function of observable quantities. We now lay
out the mathematical formalism necessary for introducing this
prior.

Our model of the distribution of satellites in observable
space is an inhomogeneous Poisson process, where the number
of “events” in any region  of observable space x is given by a
Poisson distribution with rate ( )òl l= 

x dx, where ( )l x is
referred to as the “rate function.” Given a rate function ( )l x ,
the likelihood of observing N events at a set of points { }=xi i

N
1 is

({ } ∣ ) ( ) ( ) ( )⎡
⎣⎢

⎤
⎦⎥ò l l l= -=

=

p x x dx xexp , B2i i
N

i

N

i1
1

where we suppressed the dependence of the rate on our galaxy–
halo connection model parameters q. In our case, the “events”
{ }=xi i

N
1 are the locations of detected satellites in an observable

parameter space. Note that in this formulation, there is no
binning in x.

Calculating this likelihood exactly is challenging because, in
order to compare observed and modeled satellite populations,
we must integrate over the unknown rate function λ,

({ }∣{ ˆ })
({ }∣ ) ({ ˆ }∣ ) ( )
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l l l l
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p x p x p

p x p
. B3i j
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j

Here, both the numerator and denominator contain functional
integrals over the rate; these integrals are performed over an
infinite-dimensional space consisting of the rate at each point in
observable parameter space. Further, this rate is a stochastic
function in our galaxy–halo connection model due to satellite
luminosity and size scatter. This makes our model an
inhomogeneous Poisson process with a stochastic rate function,
which is known as a “Cox process.” The prior on the rate
function, ( )lp , must admit only positive rates; one possible
choice is to treat the logarithm of the rate as a Gaussian
process. Models involving Cox processes are often termed
“doubly intractable” due to the presence of intractable integrals
over the rate function (Murray 2007).
There are, however, several approaches to make Cox

processes tractable. As noted above, we bin satellites in
absolute magnitude and split the sample into two large surface
brightness bins, so that our likelihood is over the number of
counts in each bin, rather than the locations of the points. This
is equivalent to assuming that the rate function is constant in
each bin and leads to the likelihood
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where λj is the rate in bin j, j is the volume of bin j, and nj is the
number of events in bin j. Binning turns the functional integral
over ( )l x in Equation (B3) into a finite-dimensional integral
over the value of λ in each bin. Choosing Cartesian bins in
observable parameter space then renders the problem tractable
(Flaxman et al. 2015). There also exist approaches that avoid
binning the observable space (Adams et al. 2009; John &
Hensman 2018), which we intend to explore in future work.

Appendix C
Robustness to Observational Systematics

We now present a set of tests in order to verify the
robustness of our key results to various observational
systematics.

C.1. Kinematically Unconfirmed Satellites

To assess possible systematic uncertainties associated with
the observed set of DES and PS1 satellites presented in Paper I,
we rerun the entire analysis using only satellites that are

Table B1
Prior Distributions for the Parameters Varied in Our Fiducial Eight-parameter Fit to the DES and PS1 Satellite Populations

Free Parameter Prior Distribution Motivation

Faint-end slope ( )a ~ - -arctan unif 1.1, 0.9 Jeffreys prior for a- < < -2 1.2
Luminosity scatter ( )s ~ unif 0, 2 dexM Conservative upper limit (Garrison-Kimmel et al. 2017a; Lehmann et al. 2017)
50% occupation mass ( ) ( ) ~ Mlog unif 7.5, 1150 Lower limit corresponds to simulation resolution limit (Mao et al. 2015)
Baryonic effects ( ) ( )m s~ = = ln 1, 0.5 Hydrodynamic simulations (Nadler et al. 2018, 2019b)
Occupation scatter ( )s ~ unif 0, 1 dexgal Hydrodynamic simulations (Fitts et al. 2018; Graus et al. 2019)
Size amplitude ( )~ unif 0, 0.5 kpc Empirical galaxy–halo size relation (Kravtsov 2013)
Size scatter ( )s ~ unif 0, 2 dexRlog Empirical galaxy–halo size relation (Kravtsov 2013)
Size power-law index ( )m s~ = =n 1, 0.5 Empirical galaxy–halo size relation (Kravtsov 2013)

Note. Here ( )m s , denotes a normal distribution with mean μ and standard deviation σ.
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confirmed to exhibit dark matter–dominated internal kinematics.
The candidate satellites excluded from this reanalysis are indicated
in Table C1. As shown in Figure C1, our galaxy–halo connection
model constraints are largely unaffected by refitting the DES and
PS1 satellite populations under the conservative assumption that
all unconfirmed systems are star clusters. Most importantly, the
upper limit on 50 only increases by ∼1σ, to ´ M5 108 at
95% confidence, and the minimum halo mass increases to

´ M6.5 108 , similar to the minimum halo mass inferred from
classical and SDSS satellites in Nadler et al. (2019b). In addition,
the total predicted number of MW satellites decreases by s~1 to
150±60. These shifts are expected, since unconfirmed satellite
candidates constitute many of the faintest systems in our fiducial
sample. Thus, we conclude that our key constraints and
predictions are not highly sensitive to the nature of kinematically
unconfirmed satellite candidates.

Figure C1. Posterior distribution from our fit to the kinematically confirmed DES and PS1 satellite populations. Dark (light) shaded contours represent 68% (95%)
confidence intervals. Shaded areas in the marginal distributions and parameter summaries correspond to 68% confidence intervals. Note that σM, σgal, and s Rlog are
reported in dex,50 is reported as ( ) Mlog 50 , and  is reported in pc. Note that σgal is not constrained at 68% confidence in this fit.
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C.2. Satellite Size Criterion

Next, we test whether a more conservative satellite size
criterion impacts our results. For this test, we self-consistently
exclude all observed and predicted satellites with r1/2>20 pc
from our statistical inference, rather than the r1/2>10 pc cut
used in our fiducial analysis. Our key constraints are not
significantly affected; for example, the 95% confidence level
upper limit on 50 increases slightly, to ´ M1.5 108 . The
upper limit on the amplitude of the galaxy–halo size relation,
which was 110 pc in our fiducial analysis, increases to 220 pc,
as we might expect from excluding small satellites in the fit.

C.3. Biases in Measured Satellite Properties

Finally, we test whether systematic offsets in measured satellite
properties could affect our conclusions. In particular, we assume
that every measured DES and PS1 satellite absolute magnitude is
offset from the fiducial value listed in Table C1 by
D = +M 1 magV , which is similar to the width of the absolute
magnitude bins used in our fiducial analysis. We rerun the entire
analysis with these shifted magnitudes, and we repeat this
procedure for D = -M 1 magV . In both cases, we still obtain a
good joint fit to the DES and PS1 luminosity functions. As
expected, the inferred faint-end slope is steeper (shallower) than
that obtained from our fiducial analysis for D = -M 1 magV
(D = +M 1 magV ); however, the total predicted number of MW
satellites with <M 0 magV and >r 10 pc1 2 and our 95%
confidence upper limit on 50 are not significantly affected in
either case.

Appendix D
Resolution and Sample Variance

To assess the impact of resolution effects on our fiducial
simulations and results, we compare the subhalo maximum
circular velocity function, radial distribution, and size distribution
from one of our fiducial host halos (excluding LMC satellites) to
those from a higher-resolution resimulation of the same host. In
particular, we resimulate this halo with a ´ -M h4 104 1 high-
resolution particle mass and an -h85 pc 1 minimum softening
length. We find that the distributions of all relevant subhalo
properties are not significantly affected above the resolution limit
of our fiducial simulations. Moreover, by rerunning our analysis,
we find that none of our galaxy–halo connection model
constraints are significantly affected when using a higher-
resolution simulation.
We also assess the impact of sample variance on our fiducial

subhalo and satellite populations, since the final positions of
LMC satellites might be sensitive to the realizations of small-
scale density fluctuations in our fiducial simulations. In
particular, we resimulate both of our fiducial host halos at
standard resolution with different random seeds for small-scale
phases in the matter power spectrum below -h60 kpc 1. We
find that the properties of the MW host halo and LMC halo are
not significantly affected in these resimulations, and that the
resulting subhalo populations are nearly identical in terms of
their distributions of  V,peak peak, halo size at accretion, and
present-day heliocentric distance, implying that our results are
robust to sample variance in the phases of the matter power
spectrum on small scales.

Appendix E
Observed Satellite Data Vectors

The confirmed and candidate DES and PS1 satellites that
pass the detection criteria defined in Paper I are listed in
Table C1. Note that, although Kim 2 (DES) and Laevens 1
(PS1) formally pass these detection criteria, we do not include
these systems in our analysis or Table C1 because they are
suspected to be star clusters (Paper I).
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Table C1
MW Satellites Used in Our Analysis

Name MV D r1/2
(mag) (kpc) (pc)

DES
Fornax −13.46 147 707
Sculptor −10.82 84 223
Reticulum II −3.88 30 31
Eridanus IIa −7.21 380 158
Tucana II −3.8 58 165
Grus II* −3.9 53 92
Horologium I −3.55 79 31
Tucana III* −2.4 25 44
Tucana IV −3.5 48 128
Phoenix II −3.30 83 21
Horologium II* −2.6 78 33
Tucana V

*
−1.6 55 16

Pictor I
*

−3.45 114 18
Columba I

*

−4.2 183 98
Cetus II* 0.02 30 17
Grus I

*
−3.47 120 21

Reticulum III* −3.31 92 64

PS1
Leo I −11.78 254 226
Leo II −9.74 233 165
Draco −8.71 76 180
Ursa Minor −9.03 76 272
Sextans −8.72 86 345
Canes Venatici I −8.8 218 338
Boötes I −6.02 66 160
Ursa Major II −4.25 32 85
Coma Berenices −4.38 44 57
Sagittarius II −5.2 69 32
Willman 1 −2.53 38 20
Canes Venatici II −5.17 160 55
Segue 1 −1.30 23 20
Segue 2* −1.86 35 34
Crater II −8.2 117 1066
Draco II* −0.8 22 17
Triangulum II* −1.60 30 13
Hercules −5.83 132 120
Cetus II*b 0.02 30 17

Notes. Properties of confirmed and candidate DES and PS1 satellites used in
our analysis, listed in order of detection significance (Paper I). Asterisks mark
kinematically unconfirmed systems.
a Eridanus II is not included because it lies outside our fiducial 300 kpc
heliocentric distance cut.
b Cetus II is detected in both PS1 and DES; in our analysis, we only count this
system in the observed DES population.
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