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SURFACE MINING

SHORT-TERM SAMPLING SPACE OPTIMIZATION
ABSTRACT

The sampling spatial distribution and procedures have a pronounced influence on the geological modeling, grade
estimates, resources classification and mine planning. The collection, preparation and analysis of samples are time
consuming and also expensive. Therefore, the sampling strategy must be carefully planned. The short-term sampling
is a solid contribution to improve knowledge about the geological contacts and to promote the grade control from
the mining operation perspective. The geostatistical analysis provides useful tools to define optimal sampling
location in the short-term, avoiding lack or excess of sampling to be collected and analyzed. Insufficient samples
affect grade estimations, generating values with low confidence to be assigned into the blocks. On the other hand,
excess of samples generates unnecessary costs and time consumption for their preparation and analysis, which may
contribute for delays during the grades model updating and consequently affect the decision making process. This
work aims to demonstrate an application of a methodology to determine the optimal drill spacing for short-term
purposes, using geostatistical simulation to assess the uncertainty and measure the benefit of cutting down and/or
adding samples to certain areas. The techniques are tested in a phosphate deposit to find a representative grid that
allows one to obtain suitable grade estimates for each block to improve the short-term mine planning.
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INTRODUCTION

The application of standardized sampling techniques helps all the subsequent stages of mining, such as, but
not limited, to block model estimation, mine planning and processing. Therefore, the use of an accurate sampling
protocol is essential for a better performance and accuracy of all the subsequent steps. Moreover, oversampling
should also be avoided due to the high costs attached to the sampling tasks. For this reason, obtaining a suitable
sample mesh becomes an essential, but not always obvious duty. In short-term operational scenario, it is important
the sample collection and analysis to be efficient, so there is time to take necessary decisions in short periods.

Some authors use uncertainty measures to optimize sample patterns and/or drill spacing in a long-term
scenario for resources and reserves classification. Koppe (2011) used uncertainty measures to locate new drillings
on a regular grid of samples in order to reduce risk in a given transfer function. The author also mentions that the
uncertainty level of a function that reflects the uncertainty of one or more geological attributes can be used in a
mineral resource classification. The scenarios generated by stochastic simulation can also be used to analyze the
uncertainty associated with the values of a global transfer function. When the transfer function is the ore tonnage
above a given cut-off grade, each simulated scenario results in a value for ore tonnage and the uncertainty associated
with this tonnage can indicate the reserves classification as probable or proven.
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Emery et. al. (2009) used an optimization algorithm to find the sampling pattern that minimizes the average
error from geostatistical simulation. The error depends on the ore variability, in a way that more samples provide
better accuracy in the grade estimation. The minimum number of additional samples depends on the sampling
objective (Koppe, 2011). In a short-term scenario, it is desired to collect a minimum number of samples to reduce
costs and time.

Reducing the grade variability in processing plant feeding is fundamental, especially when the grades are
low and there are contaminants. Geostatistical techniques, such as Ordinary Kriging and Indicator Kriging allow the
construction of estimated models. However, these techniques do not give access to uncertainty and smooth the
natural variance of the original data. Geostatistical simulation, on the other hand, allows to access the average error
of the estimation for a better decision making process. This study aims to minimize the error by testing the effect of
short-term samples spacing, comparing different sampling grids. The grid that shows higher spacing and minimize
the error to an acceptable level will be considered optimal. The simulation algorithm used in this case study was
Turning Bands (Matheron, 1973).

The first step is the simulation performance for the available data. Then, a simulated scenario is chosen as
reference to obtain data with different spacing. The simulation algorithm is performed again for several spacing, and
the uncertainty about the estimated concentrations is measured by the error calculation. Finally, the impact on the
uncertainty by different data spacings is evaluated. This case study used data from a phosphate mine in Minas Gerais
- Brazil.

Case Study

The methodology was tested using a short-term database, comprised by 299 rotary diamond drill holes,
drilled in a regular grid of 25 m x 25 m, with different orientations according the geological zones. The holes have in
average 35 m depth and the length of samples is standardized at 5 m.

The procedure was used to sample the main variable of interest, the apatite content (P,Os), in a specific
region of the mine. In this region there are 650 samples, with average grade of 6% and variance of 4.75%?. Figure 1
shows the plan view of the selected holes and the color legend for the P,Os grades (a) and the histogram for the
original data (b).
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Figure 1. Sample location and original dataset histogram, respectively.

In Turning Bands the simulated values are derived from a distribution based on the associated theory with
multi Gaussian random functions. The normalization of a distribution is generated from a function that can be
graphically generated as shown in Figure 2, where the values corresponding to the p-quantile of the original
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cumulative data distribution are correlated with the corresponding values in the normal space. The histogram of the
normalized data (Figure 3) follows a Gaussian distribution, with mean of zero and standard deviation of 1.
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Figure 2. Process data standardization. Source: Goovaerts, 1997 — pp. 268.

After the data normalization (the histogram of original data normalized is presented on Figure 3), the
analysis of the spatial continuity was performed using variograms. The variogram model of normalized data was
inferred from the original data variogram model, as it has the same spatial continuity characteristics as the original

data.
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Figure 3. P,Os normalized data histogram.

The variogram models may be seen in Figure 4 and the variogram equation can be seen in Equation (1).
The variograms of P,Os presented higher continuity in azimuth N67 with a 200 m approximately range.
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Figure 4. P,Os standardized variograms in 3 directions. (a) major continuity direction (N67), (b) median continuity
direction (N157), (¢) minor continuity direction (D90). Continuous line represent the variogram model and dots
represent the experimental variograms.
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The simulation was performed on small support scale (quasi-punctual) with grid spacing of 2m x 2m x Sm
in the X, Y and Z, respectively, using the normalized data. The search parameters used in the simulation were the
same as the scope of the continuity model in each direction. In total, 80 realizations for P,Os grade were generated
using Turning Bands simulation in the Gaussian space, and then back transformed to the original distribution.

The scenarios obtained by simulation must reproduce the histogram and variogram models of the original
data, to validate the simulation. Figure 5 shows the variograms in three directions (colored lines), presenting ergodic
fluctuations around the original data model (black lines).
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Figure 5. Experimental variograms for the 80 realizations (black lines) and variogram model’s input to the
simulation algorithm (colored lines).

The maps and histograms for the realizations with lowest, highest variance and the variance closest to the
median are shown in Figure 6, Figure 7 and Figure 8, respectively.
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Figure 6. Map and histogram for the scenario with lowest variance
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Figure 7. Map and histogram for the scenario with highest variance
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Figure 8. Map and histogram for the scenario with the variance closest to the median.

Table 1. Statistics for realizations in points support.

Minimum Maximum Mean Variance

(% P,05) (% P,05) (% P,0s5)  (%* P,05)
0.25 15.38 5.97 421
Realization 0.25 15.38 6.08 4.68
0.25 15.38 6.21 5.28

From the simulated data in each realization were calculated the P,Os grades for 25,524 blocks of
10m x 10m x 10m in the X (east), Y (north), and Z (vertical) directions. The value of each block is the arithmetical
average of the previously simulated points within these blocks.

The grid used for the simulation (2m x 2m x 5m) ensured that the distribution of the blocks presented
theoretical variance to the variance of blocks (2,54% 2), considering the ergodic fluctuations, which simply means
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that the number of simulated points within each block is considered sufficient (for the study 50 simulated points
were considered). Table 2 shows statistics for realizations with lowest, highest and the variance closest to the
median values for the P,Os in the support block.

Table 2. Statistics for realizations in 10m x 10m x 10m support blocks.

Minimum Maximum Mean Variance
(% P,05) (% P,05) (% P,05)  (%* P,05)
1.46 13.77 5.99 2.16
Realization 0.95 13.94 6.07 2.56
0.39 14.30 6.21 3.10
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Figure 9. Map and histogram for the realization with nearest variance to the median values in blocks support.

Figure 10 shows the standard deviation for several simulated scenarios. The number of scenarios in which
the standard deviation becomes stable is considered satisfactory to assess the range of the uncertainty space.
Therefore, it is possible to verify that from 60 scenarios this aim is already reached.
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Figure 10. Number of scenarios versus standard deviation of P,Os contents.

Additional Data Obtained From Simulation
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Among the 80 simulation scenarios only one was chosen as the reference for the creation of virtual dataset.
The reference scenario was the 48" considering it has the closest variance to the median variance of the data,
however all scenarios are equiprobable to represent the mineral deposit. Using the realization in points support (2m
X 2m x 5m), an interpolation by the nearest neighbor method with a search radius of 0.001 meters at nodes with
spacing 6m x 6m x 5m at east, north and vertical direction, respectively. The values interpolated represent the values
of samples from a sampling campaign. This procedure created a new dataset with 148,856 samples spaced by of
6m x 6m x Sm.
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Figure 11. Map and histogram for the new dataset.

These data were normalized, and the variograms were adjusted due to a change in the variance. A new
simulation was performed with these data to calculate the new error. From the simulated levels in each realization,
the P,Os grade was calculated for 34,200 blocks of 10m x 10m x 10m in the X, Y, and Z directions. The value of
each block is the arithmetical average of the points within the blocks.

The result of the simulation provides for each block a distribution probability based on the obtained
realizations. The error of the estimate is calculated after the results treatment, by compiling all realizations for each
block and their calculation formula is shown in Equation (2), where the Q95 is the quantile 95, Q5 is the quantile 5
and Etype is the average of all scenarios. Equation 2 supposes a distribution of simulated values symmetric around
E-type (as illustrated in Figure 12).
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Figure 12. Representation of quantile and E-type realizations.
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Based on the information from the mine considered for this case study, an error of 10% about the estimated
of each block value can be accepted. With the 6 m x 6 m grid was obtained an average error of 8% for all simulated
blocks, which means that when kriging is performed with the data in mesh 6 m x 6 m, the error of the estimated
content is 8% higher or lower. Note that this error is an approximation of the maximum error about the estimate of

each block.
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Figure 13. Error map and the histogram to the grid 6m x 6m x 5m.

Using the same methodology, were tested grids with spacing of 10m x 10m, 14m x 14m, 18m x 18m and
22 m x 22m. The results can be seen in Figures 14 to 17.
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Figure 14. Error map and the histogram to the grid 10m x 10m x 5m.

227




228 | 24" WORLD MINING CONGRESS PROCEEDINGS

75010 02 03

Error

70E00
X (n)

Figure 15. Error map and the histogram to the grid 14m x 14m x 5m.
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Figure 17. Error map and the histogram to the grid 22m x 22m x Sm.

Figure 18 shows the error obtained for the different grids tested. As can be seen the error increases
acoording the sampling density is sparser. With this graph it is possible to select the “optimal” drill hole spacing
considering the acceptable error.
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Figure 18. Average error versus drill spacing.

CONCLUSION

The simulation conducted in this study generated 80 equally probable scenarios for the variable P,Os,
which reproduced the statistics and spatial continuity of the initial data. Considering all the scenarios are equally
possible representations of the deposit, one of these scenarios was used as a source of information for testing
different sampling spacing. Other scenarios can be chosen as a reference for application of the methodology, where
the error on the estimate considered in this study, should be similar for different scenarios used as a source of
information.

The results showed that a grid of approximately 8m x 8m could be used to produce the acceptable error for
the study area (10%). It should be noted that for regions with different variability of P,Os grades the result may be
different. Usually the operation uses a spacing of 25m x 25m. According to the results, this spacing is not sufficient
to ensure the minimum acceptable error, which means there will be more uncertainty during the planning of the
mine, and the block sent to the process plant will have associated error.

The uncertainty magnitude of the estimates depend on the local sampling variability. Clearly, the use of
additional information decreases uncertainty and error because the most information available will result in a more
precise estimative. Otherwise, more samples mean more money and time spent. The determination of acceptable
error and a proper sampling grid is fundamental to mine planning optimization.
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