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GEOSTATISTICS APPLIED TO GEOMETALLURGICAL MODELING
ABSTRACT

Many factors influence on ore processing efficiency and a better understanding of these aspects
and their impact on the processing plant can help to improve the ore recovery. The construction of a
geometallurgical model is fundamental for achieving this objective, since the knowledge of ore properties
allows a more accurate forecast of mass recovery by the process, improving mine planning. Most
geometallurgical variables are non-additive, i.e., the output value from a combination of samples does not
depend only of the values and masses of the initial samples, but also from a complex relationship with
other variables. Due to these complex relationships, it is not recommended the use of conventional
estimation methods like Inverse Distance to a Power or Ordinary Kriging (OK), once this estimates use a
linear weighted average. Non-linear geostatistical methods were developed to estimate a local probability
distribution of possible values for a variable. Among these methods, Indicator Kriging (IK) can be used to
estimate the probability of a block to be above (or below) a determined cut-off or the likelihood to belong
to a certain class or category. This study uses IK combined with the information from the geometallurgical
tests to build a short term block model of a phosphate mine at Vale Fertilizantes S/A. It is expected the use
of a geometallurgical model for the mine planning will improve the recovery prognostic of each selective
mining unit and may be used as a tool to help in the decision making process beyond the simple cut-off
grade on the P>Os grade. At the end, the model generated by the linear methods (OK) is compared against
the model proposed using IK. The prevision by the IK geometallurgical proved to be accurate and the
results were compared against production figures.
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INTRODUCTION

Ore characterization is mandatory in all mining projects. The results normally obtained from the
pilot plant can integrate the models used for predicting the processing plant recovery. This process is
referred as geometallurgy (Braga, 2015).

In this scenario, geometallurgy provides the interaction among physical/chemical rock properties
such as mineral assemblage, hardness and chemical composition, with process variables including mass
recovery and energy consumption. Therefore, it is possible to estimate with accuracy and reasonable
precision the process performance, helping to improve mine planning and project risk evaluation
(Mendonga, 2015).

The incorporation of geometallurgical variables in short term block model helps in predicting
processing plant efficiency. However, it is necessary to be cautious when estimating geometallurgical
models. Mass recovery and concentrate grades are non-additive variables, i.e., their values do not average
linearly.

Inverse Square Distance and Ordinary Kriging (Matheron, 1963) are estimation techniques that
use a weighting average to combine sample values to estimate a block depending on its distance and
covariance, respectively. Since results are based on the weighted average of the data without considering
their relationship with other variables or their non-additivity, the use of such estimation technique is not
recommended for building a geometallurgical model. Conversely, indicator kriging (Journel, 1982)
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estimates probabilities by a categorical transformation of a dataset based on cutoff grades or thresholds. As
a result, it is possible to derive at each block the probability to be above or below a determined cut-off.
This paper evaluates the applicability of indicator kriging as estimation method for building a
geometallurgical model of a phosphate mine located at a carbonatite complex in central Brazil.

METHODOLOGY

The processing plant efficiency is probably one of the most influential aspects to improve
profitability in a mining project. Due to this fact, it is vital to have a deep understanding of the
geometallurgical aspects of the ore, as they directly affect recovery. Through the application of a
methodology to estimate the geometallurgical model, it is expected to be possible to predict the processing
plant performance and introduce data to assist mine planning.

The carbonatite complex used in this case study belongs to an ultramafic-carbonatitic alkaline
intrusion related to ultrapotassic intense magmatism of the Upper Cretaceous (Gibson et al., 1995). The
complex is composed by silicate (predominantly ultramafic), carbonatite and foscoritic rocks containing
significant phosphate and titanium deposits, which are currently being mined for apatite (Brod et al. 2000).
The apatite (P-Os) and anatase (TiO-) deposits are located at the weathering mantle on these alkaline rocks.
The supergene concentration of these minerals is given by solubilization and leaching of the most mobile
components contained in the original rocks. Moreover, in shallower horizons, apatite was partially
transformed into secondary phosphate. However, in deeper portions, it remained in the weathering mantle
as resistive mineral. The anatase is a product of weathering originated from the decalcification of
perovskite (CaTiOs) in the original rock.

In this case study, the prior data separation into domains precedes the estimation. The classes were
separated according to the weathering zones, since for this kind of deposit geometallurgical behavior is
directly related to the weathering intensity, the domains description is shown in Figure 1, presented in a
typical cross section.
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Figure 1 — Weathering Zones Separation.

This study starts by geometallurgical tests to obtain data. A pilot plant mimics the processing
plant on a smaller scale, in order to provide indicators of process recovery and concentrate grades. The
variables considered for this case study was the concentrate grade, also the metallurgical and mass
recovery, as shown in Table 1. The dataset is heterotopic comprising 5369 samples. Univariate statistics for
each variable is depicted in Table 2.
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Table 1 — Variables and their description.

Variable Name Description
P>OsCON Apatite Concentrate
RECTOT Metallurgical Recovery

RMTOT Mass Recovery

Table 2 — Samples basic statistics.

Variable Name Number of Minimum  Maximum Mean Stat}da?rd
Data Deviation
P>0sCON (%) 2434 11.50 38.00 34.59 2.70
RECTOT (%) 5369 1.77 99.32 56.49 14.10
RMTOT (%) 5369 0.78 55.10 14.98 6.32

Since the samples of the concentrate grade have different mass recoveries, it was necessary to
transform it into accumulated variables, by weighting each grade sample in function of its mass.

Knowing that these geometallurgical are non-additive was proceeded the estimative by indicator
kriging, which transforms the original dataset (u,) into categories based on threshold limits (Zx) according
to, as shown in Equation (2). In this case, the cut-off grades were chosen considering the deciles of the
distribution.

. _ 1, Z(ua) < Zk
@z ={y 40 sz M

The spatial continuity analysis started with the indicators defined for the median (Q50). As all the
variograms have the same form and spatial continuity major axes, with large continuity for low grades and
short for the high grades, the median model was applied with a range reduction factor for the higher
quantiles, and an increase factor for the lower quantiles. It was not possible to use domains separation for
the spatial continuity analysis due to the small number of samples within some domains in the dataset. The
multiple indicator probabilities were kriged and the E-type model derived from each estimated block
conditional probability distribution function.

The E-type mass recovery estimates were validated using swath plots, comparing sample averages
against block averages within regions and histograms reproduction. These validations proved to be ok and
the models were accepted. The next stage was to compare the block models derived from IK and OK and
evaluate the geometallurgical model constructed against production results.

RESULTS AND DISCUSSION
Average Difference Analysis

The average difference measures the discrepancy of two values. In this case study, the difference
was calculated for each block value (n blocks in the model) from the IK and OK estimates, with the
objective to identify if there is a significant divergence between the methods. An average difference near to
zero indicates the methods lead to similar results on average, while very negative or positive results shows
substantial discrepancy between the methods. The average difference was calculated using Equation (4):

1
Average Dif ference = EZ IKestimate — OKestimate )
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The differences should have average error close to zero and minimum spread, i.e. the average
close to zero (unbiasedness) is not sufficient, since high and low magnitude errors can compensate each
other (need also to be precise). The average difference histograms for the three variables considered in this
study are displayed in Figure 2.
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Significant differences in the two estimation methods were detected. Mass recovery (RECTOT)
presented an average difference of -1.14%, indicating that the blocks were overestimated by OK, when
compared to the IK estimates. From the histogram of differences, it is noticed that 50% of the blocks
presented difference exceeding 1.87%. Considering the importance of mass recovery at the processing
plant, these errors were considered significant.

The metallurgical recovery (RMTOT) presented an average difference near zero, not showing
global difference between the two models. Even tough global differences were not noticed, 25% of the
blocks error exceeded 1.25%. The apatite concentrate (POsCON) also showed differences, but less
significant. Although this comparison is not capable to identify which estimation method is more accurate,
it shows that ignoring non linearity and non-additivity can significantly affect geometallurgical variable
estimates.

Estimated Grades vs. Real Grades

This analysis is introduced as a reconciliation scheme between the grades obtained from the
processing plant (herein referred as real grades) and the grades estimated by the kriged models. It is
expected that the IK and OK estimated block models approximate on average the real grades.

Ten planned blending piles were selected along 2015 production, and it was compared the average
grade of all blocks forming each pile against the real grade. The closer to zero the difference is, the more
similar the real and estimated grades are.

It is important to observe that in this study case there is no sampling at the blending piles.
Therefore, it became impossible to detect if the differences founded between the estimated and real grades
are due to mine planning deviations, processing plant inefficiency or the estimated method itself. This fact
limits some of the analysis but do not invalidates the comparison made.

IK models approximates better the metallurgical recovery (RMTOT) for 70% of the analyzed
piles and was more accurate than OK. The average relative error reaches -10% for IK prediction, while OK
to -20%. The reconciliation results for each planned pile tested can be seen in Figure 3.

For mass recovery (RECTOT) both kriged models led to similar results. Their reconciliation
results are depicted in Figure 4. For the apatite concentrate (P.OsCON), 60% of pile grades were better
approximated by IK derived block grade estimations (Figure 5). The average relative error was -1% with
IK, while the OK presented a relative error of -2%.
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Figure 3 - Metallurgical recovery reconciliation results.
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Figure 4 - Mass recovery reconciliation results.
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Figure 5 - Apatite concentrate grades reconciliation results.

It is possible to observe a considerable difference between the measured at the plant results and
the estimated ones. The probable causes for this discrepancy are: the upscaling effect (error) from the pilot
plant tested to the processing plant, estimation error at each block value associated with the interpolation
process (kriging minimizes the error but do not eliminate it), discrepancies caused by operation lack of
geometric adherence between the planned blocks to be mined and the ones really extracted, and last but not
least important the sampling error at the processing and pilot plants. Even though these probable causes are
known, it is not possible to accurately nominate which one is more or less responsible for this discrepancy.

CONCLUSION

Combining mineralogical characterization into mineral processing studies is of paramount
importance for defining ore types and to understand their behavior at the processing plant. Incorporating
geometallurgical response into mine planning can lead to a more effective and profitable operation.

The use of non-linear methods to deal with non-additive geometallurgical variables provide more
precise and accurate models. In this case study, results from reconciled models against production data
showed IK is more accurate than OK for the purpose of estimate geometallurgical variables.

The error analysis showed a significant difference between the estimation methods. This is
important to show the impact on the chosen method to estimate a block model. The reconciliation analysis
presented a slight improvement in estimating using IK, even considering the discrepancies between the real
and estimated grades. These discrepancies are not only caused by the estimation method, but for a
combination of factors.

In future studies, other alternatives will be investigated to build models with geometallurgical
variables modelling including stochastic simulations.
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