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ABSTRACT

Web users around the world produce and publish high volumes of data of various types,

such as text, images, and videos. To keep a friendly and respectful environment, the plat-

forms in which this content is published usually restrain users from publishing offensive

content and rely on moderators to filter the posts. However, this method is insufficient

due to the high volume of publications. The identification of offensive material can be

automatically performed using machine learning, but it needs an annotated dataset. Al-

though there are datasets for offensive text detection available, there are no such datasets

for videos. Also, most of the published datasets process English data, leaving Portuguese

and other languages underrepresented. In this work, we investigate the problem of of-

fensive video detection. We assemble, describe, and publish a dataset of videos in Por-

tuguese. Also, we run experiments using popular machine learning classifiers used in

offensive language detection and report our findings, alongside multiple evaluation met-

rics. In the results, we found that word embedding provided better results when used

with Deep Learning classifiers, but n-gram performed better than word embedding for

Classic algorithms. Random Forest and Naive Bayes classifiers presented the best perfor-

mance across most of the features when compared to the other Classic algorithms. The

W-CNN architecture employed in our study presented the best results for most of the fea-

ture sets using Deep Learning algorithms. For Transfer Learning models, BERT was the

best classifier for most of the feature sets. Also, for the ensemble experiments, Naive

Bayes, Random Forest, M-CNN, and M-LSTM achieved the best results for the exper-

iments with all features and the ones using feature ablation. Using ensemble improved

the results for some categories of algorithms and feature representation. Also, feature

ablation experiments helped to identify the contribution of each feature in the ensemble

results, improving the results in some cases. Overall, Deep Learning algorithms scored

the best results, followed by Classic and Transfer Learning algorithms.

Keywords: Offensive content. hate speech. dataset. classification. machine learning.

youtube. video.



Um Estudo sobre Detecção de Vídeo Ofensivo

RESUMO

Usuários da Web em todo o mundo produzem e publicam grandes volumes de dados de

vários tipos, como texto, imagens e vídeos. Para manter um ambiente amigável e respei-

toso, as plataformas nas quais esse conteúdo é publicado geralmente impedem os usuá-

rios de publicar conteúdo ofensivo e contam com moderadores para filtrar as postagens.

No entanto, esse método é insuficiente devido ao alto volume de publicações. A iden-

tificação de conteúdo ofensivo pode ser realizada automaticamente usando aprendizado

de máquina, mas precisa de um conjunto de dados anotado. Embora existam conjuntos

de dados disponíveis para detecção de texto ofensivo, não existem conjuntos de dados

para vídeos. Além disso, a maioria dos conjuntos de dados publicados processa dados

em inglês, deixando português e outras linguagens com pouca representatividade. Neste

trabalho, investigamos o problema da detecção de vídeo ofensivo. Nós montamos, des-

crevemos e publicamos um conjunto de dados de vídeos em português. Além disso, reali-

zamos experimentos usando classificadores populares de aprendizado de máquina usados

na detecção de linguagem ofensiva e relatamos nossas descobertas, juntamente com vá-

rias métricas de avaliação. Nos resultados, descobrimos que word embedding forneceram

resultados melhores quando utilizado com Deep Learning, mas n-gram foi melhor do que

word embedding para algoritmos Clássicos. Os classificadores Random Forest e Naive

Bayes apresentaram o melhor desempenho na maioria dos atributos quando comparados

aos outros classificadores Clássicos. A arquirtetura W-CNN utilizada no nosso estudo

apresentou os melhores resultados para a maioria dos conjuntos de atributos utilizando

Deep Learning. Para modelos de Transfer Learning, BERT foi o melhor classificador

para a maioria dos conjuntos de atributos. Além disso, para os experimentos com en-

semble, Naive Bayes, Random Forest, M-CNN and M-LSTM conseguiram os melhores

resultados para experimentos com todos os atributos e aqueles utilizando remoção de atri-

butos. Utilizar ensemble melhorou os resultados de alguns grupos de algoritmos e repre-

sentações de atributos. Adicionalmente, experimentos de remoção de atributos ajudaram

a identificar a contribuição de cada atributo nos resultados de ensembles, melhorando

os resultados em alguns casos. Em geral, algoritmos de Deep Learning conseguiram os

melhores resultados, seguidos por algoritmos Clássicos e de Transfer Learning.

Palavras-chave: conteúdo ofensivo, discurso de ódio, conjunto de dados, classificação,



aprendizado de máquina, youtube, vídeo.
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1 INTRODUCTION

The wide adoption of social media platforms popularized the creation of user-

generated content. Together with the democratization of content creation enabling users

to express their ideas, came the dissemination of hate speech and other types of offen-

sive material and behavior such as profanity, cyberbullying, and harassment. When users

publish and disseminate offensive content, they are contributing to a hostile environment.

This type of content might be harmful for users and discourage them from using the

platforms. An unpleasant environment could also cause loss of revenue to the owners.

Additionally, companies do not wish to be associated with this type of content, which

could happen if their advertisements get displayed in an offensive video, for example. To

tackle these problems, researchers from both companies and academia have proposed ap-

proaches aiming at detecting offensive content on different platforms (SCHMIDT; WIE-

GAND, 2017).

On the Web, there is a variety of platforms that enable user content production

in different formats, such as text, image, audio, and video. So far, text has been the

most popular format used by people to do so, thanks to its input and storage simplicity,

and the diffusion of comment sections supported by social networks. As a result, the

vast majority of the existing works focused on detecting offensive content in text (social

network posts, news comments, tweets, etc.). However, videos also play an essential role

in the diffusion of content as they can reach a broad audience, including young children.

Estimates say that 1 billion hours of videos are watched daily on YouTube alone1. To

provide a safe environment for children and a healthy environment for users in general,

detecting offensive videos becomes necessary.

Detecting offensive content is usually addressed as a supervised learning task and,

as such, demands training data. Whereas there is a growing number of datasets for textual

content, datasets of videos are far less common. To address this gap, we assembled and

made available OffVidPT, a dataset of videos annotated as to whether they present of-

fensive content. We define as offensive, videos that express racism, sexism, homophobia,

xenophobia, religious intolerance, or profane language. The language of the videos is

Portuguese, which is underrepresented in terms of the availability of datasets.

The source of the videos used in our work was YouTube since it is the most widely

used video-sharing platform on the Internet. YouTube has over two billion users, com-

1<https://techjury.net/stats-about/youtube/>

https://techjury.net/stats-about/youtube/
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ing from more than 100 countries, with one billion hours watched daily2. The platform

establishes policies regarding hateful content, harassment, and cyberbullying, and other

sensitive topics3. To ensure the content being published in the platform complies with the

policies and guidelines, YouTube has moderators working 24 hours a day, seven days a

week reviewing videos flagged by users. However, YouTube also employs machine learn-

ing to analyze and flag videos for further review. However, due to the massive number of

videos uploaded daily, it is hard to verify whether all videos comply with the established

policies. Also, while YouTube is a vast platform, smaller platforms with less revenue

might not be able to afford human labor to review videos published in their environment

to protect their users. This scenario makes affordable and automated ways to detect of-

fensive content desirable.

In order to explore the solutions to offensive video detection, we experimented

with a series of classification strategies and configurations. We tested a variety of clas-

sifiers, including Classic (Naive Bayes, Logistic Regression, SVM, C4.5, and Random

Forest), Deep Learning (CNN and LSTM), and Transfer Learning (BERT and ALBERT)

algorithms.

Our goal is to answer three research questions (RQ):

• RQ1: Is it possible to accurately classify whether a video has offensive content just

by analyzing its textual features?

• RQ2: Which features are the most helpful in detecting offensive content?

• RQ3: Which class of algorithms performs better at detecting offensive videos?

The results of the experiments show that textual features can be used for offensive

video detection, but there is still room for improvement. Combining the predictions from

the different sets of features and classifiers helps to improve the results. Still, a finer

analysis is necessary to investigate the impact of each feature in the ensemble. In some

cases, the performance can be improved by removing one feature from the group. As an

example, the ensemble built using the results of Classic algorithms using n-gram achieved

the best AUC in our experiments by removing the descriptions feature set from its feature

list. The results also show that Deep Learning algorithms, especially CNN architectures,

achieved the best performance in our domain. Also, n-gram provided better results than

word embedding for Classic algorithms, but word embedding in combination to Deep

Learning algorithm performed better. Furthermore, Transfer Learning algorithms yielded

2<https://www.youtube.com/intl/en/yt/about/press/>
3<https://www.youtube.com/intl/en/yt/about/policies/>

https://www.youtube.com/intl/en/yt/about/press/
https://www.youtube.com/intl/en/yt/about/policies/
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accurate classification using just the transcriptions of the videos, but they did not achieve

the best result with other feature sets.

This work has two main contributions. The first one is the compilation of a dataset

containing four textual and one statistical feature sets extracted from 400 videos in Por-

tuguese from YouTube, which can be used for researchers to investigate the problem of

offensive content detection. The second contribution is an analysis of offensive content

detection using this dataset with Classic, Deep Learning, and Transfer Learning classifiers

under different feature representations.

As a byproduct of this thesis, we had a paper accepted at the 12th Language Re-

sources and Evaluation Conference (rated as Qualis A1) (ALCANTARA; FEIJO; MOR-

EIRA, 2020). The paper is a summarized version of this document containing the main

ideas and results. Additionally, our dataset was accepted and published under the Inter-

national Standard Language Resource Number4 (ISLRN) 529-322-484-169-1.

The next chapters present the details of our work. Chapter 2 covers the background

concepts that served as the basis for this work, such as feature representations, classifi-

cation algorithms, and evaluation metrics. Chapter 3 surveys related work to our study,

describing approaches proposed by other researchers. Chapter 4 provides information on

the dataset we built and used in our work. Chapter 5 introduces our methodology for

offensive video detection. In Chapter 6, we present the experimental setting and discuss

the results achieved by our experiments, including their limitations. Finally, Chapter 7

summarizes our goals and approach, highlights our best findings, and discusses future

work.

4<http://www.islrn.org/>

http://www.islrn.org/
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2 BACKGROUND

In this chapter, we present concepts used across our work that are fundamental to

understand it. These concepts include terminology for offensive content, feature repre-

sentations, classification algorithms, and evaluation metrics.

2.1 Terminology

In our work, use the term offensive content to refer to any material that offends

people, dependently or independently of their personal or shared characteristics. There

are many works with variant definitions for quite similar problems.

An example of these variants used across some works is profanity, which can be

understood as the type of language employed by people through profane, vulgar, mali-

cious, or inappropriate terms. These terms sometimes might not be addressed to other

people and become offensive, but they might make the environment where it is published

inappropriate for some public (XIANG et al., 2012). Works such as Fišer, Erjavec and

Ljubešić (2017), Xiang et al. (2012), Sood, Antin and Churchill (2012a), Sood, Antin and

Churchill (2012b), Su et al. (2017), among others, address the identification of profanity.

Similarly, the term abusive language is employed by Nobata et al. (2016) to refer to the

language used by users that can be harmful to others.

Harassment can be understood as the use of content against other people with the

intention of being offensive to them, but without recurrence (YIN et al., 2009). Ducharme

(2017) uses the term cyberharassment, as it happens on the Internet. Users harassing oth-

ers might make use of a profane vocabulary to do so, such as insults. Bretschneider,

Wöhner and Peters (2014), Kennedy et al. (2017), Pelle and Moreira (2017), Chatza-

kou et al. (2017) are examples of works employed on detection of harassment in the

Web. Similarly to harassment, cyberbullying is the employment of offensive language

against people in the Web, but in this case, it tends to happen repeatedly against the vic-

tim (REYNOLDS; KONTOSTATHIS; EDWARDS, 2011). Detection of cyberbullying

was studied by Chatzakou et al. (2017), Vigna et al. (2017), Ross et al. (2016), and many

others.

Hate Speech is the type of offensive content employed against specific people,

motivated by and targeting the victim’s characteristics, such as religion, gender, and skin

color. Some works dealt with Hate Speech detection more broadly (DAVIDSON et al.,
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2017; FIŠER; ERJAVEC; LJUBEŠIĆ, 2017; PELLE; MOREIRA, 2017), but other re-

searchers took a more fine-grained approach and worked on the detection of the sub-

categories of Hate Speech, such as religious intolerance (PETE; L., 2015), xenopho-

bia (BRETSCHNEIDER; PETERS, 2017), and sexism/racism (HASANUZZAMAN; DIAS;

WAY, 2017; TULKENS et al., 2016; PETE; L., 2015; GAMBäCK; SIKDAR, 2017). As a

result of the growing interest on the topic, dedicated workshops and evaluation campaigns

were run, such as the 3rd Workshop on Workshop on Language Online1, and HatEval2 and

OffensiveEval3 for SemEval 2019.

2.2 Feature Representations

Natural language cannot be understood by computers in the same way humans

understand it. Thus, humans had to come up with strategies to enable computers to un-

derstand and process natural language. This need gave origin to a field named Natural

Language Processing (NLP) and has been very important to contribute to the progress

in related areas such as machine learning. Computers can be trained to understand nat-

ural language by looking into large volumes of textual data to identify relations between

its elements and extract information from the text. This ability is fundamental in text

classification tasks, as the computer needs to extract features from textual documents to

perform the prediction. Different representations have been used for text to enable better

processing by classifiers, with the most prominent being n-gram and word embedding.

2.2.1 n-grams

On text processing, an n-gram is used to split textual information into sequences

of n tokens. The text becomes a composition of multiple tokens, which might be present

in different documents. This way, the presence of a token in the text can be used as an

indicator to determine its relationship with the class to be predicted, like whether it is

offensive or not. Two popular types of n-gram for text use words or characters as tokens.

So, for example, if we take the sentence The book is on the table, we could create word

n-grams of size three and have the tri-grams: The book is, book is on, is on the, and

1<https://www.aclweb.org/portal/content/3rd-workshop-abusive-language-online>
2<https://competitions.codalab.org/competitions/19935>
3<https://competitions.codalab.org/competitions/20011>

https://www.aclweb.org/portal/content/3rd-workshop-abusive-language-online
https://competitions.codalab.org/competitions/19935
https://competitions.codalab.org/competitions/20011
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on the table. Alternatively, we could take the word table and create character n-grams of

size two and have the bi-grams: ta, ab, bl, and le.

2.2.2 Word Embeddings

Although useful to help computers understand the text by analyzing the presence

of or absence of tokens in it, n-grams do not provide semantic information, which limits

the advance of text processing. To solve this problem, researchers came up with the idea of

embeddings: vector representations of text in a continuous space. These multidimensional

vectors enable the computer to catch the semantic meaning and perform some operations

like assessing the similarity between two words, for example.

To obtain these vectors, a large volume of textual data is necessary, because the

more data for training, the more representative the vectors will be. We say this data is

used to train the vectors to enable the adjustments of each of their indexes, also called

weights. Those weights are what allows the computer to perform calculations with the

vectors. However, the first techniques to create embeddings were not able to efficiently

use the available hardware to process large volumes of data due to the computational cost

necessary to do so. Later, researchers came up with new techniques and, aligned with

the advance of the hardware industry, embeddings for NLP became popular. In the next

paragraphs, we present Word2Vec (MIKOLOV et al., 2013) considered as the most influ-

ential embedding, and other techniques proposed later, such as FastText Bojanowski et al.

(2017), Joulin et al. (2017), Wang2Vec (LING et al., 2015) and GloVe (PENNINGTON;

SOCHER; MANNING, 2014).

Word2Vec. Mikolov et al. (2013) proposed new techniques for word vector train-

ing, contributing to improve the vectors and reduce the complexity of the training. Previ-

ous works could not perform well with large volumes of training data, which also ended

up affecting the quality of their vectors. Mikolov et al. (2013) proposed two different

architectures to approach the problem, both using neural networks (sets of algorithms

used to perform learning tasks, similar to the human brain): Continuous Bag-of-Words

(CBOW) and Skip-gram. They work similarly, but while the first architecture is used to

predict words based on others, provided as context, the second one does the opposite, i.e.,

it predicts the context words based on a given one. Table 2.1 shows some examples of

relationships between pairs of terms presented by Word2Vec.

GloVe. GloVe stands for Global Vectors. It was proposed by Pennington, Socher
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Table 2.1: Examples of semantic and syntactic word relationship provided by Word2Vec
shown in Mikolov et al. (2013)

Type of relationship Word Pair 1 Word Pair 2

Se
m

an
tic

Common capital city Athens Greece Oslo Norway
All capital cities Astana Kazakhstan Harare Zimbabwe
Currency Angola kwanza Iran rial
City-in-state Chicago Illinois Stockton California
Man-Woman brother sister grandson granddaughter

Sy
nt

ac
tic

Adjective to adverb apparent apparently rapid rapidly
Opposite possibly impossibly ethical unethical
Comparative great greater tough tougher
Superlative easy easiest lucky luckiest
Present Participle think thinking read reading
Nationality adjective Switzerland Swiss Cambodia Cambodian
Past tense walking walked swimming swam
Plural nouns mouse mice dollar dollars
Plural verbs work works speak speaks

Source: Mikolov et al. (2013)

and Manning (2014) and combines methods based on predictions used in previous studies,

like Word2Vec, with a novel approach based on statistical information related to word

co-occurrences. This change enabled the model to obtain more semantic and syntactic

information. The goal was to create more meaningful word vectors. Although related,

this model does not provide CBOW and Skip-gram architecture variations.

Wang2Vec. Proposed by Ling et al. (2015), this model is a modification of

Word2Vec created to additionally take into consideration the order of the words in the

sentence. The changes were proposed in an attempt to gather more syntactic informa-

tion about the words in the corpus, improving results on syntactic tasks. Changes were

performed to both CBOW and Skip-gram to make them aware of the position of context

words, originating the Continuous Window Model and Structured Skip-gram architec-

tures, respectively. With those changes, the authors were able to improve state-of-the-art

results for tasks such as part-of-speech tagging.

FastText. This model is more recent than the previous ones and was proposed by

Bojanowski et al. (2017), Joulin et al. (2017). It attempts to create word embeddings that

consider word morphology. To do so, they proposed an approach that relies on character

n-gram. The first step is breaking the word in a bag of character n-grams. Then, embed-

dings are created for those n-grams. Finally, the word embedding is obtained by summing

its character n-grams embeddings. This model is derived from the Skip-gram model used
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in Word2Vec.

Comparison of Word Embedding Methods. Hartmann et al. (2017) trained

these word embeddings with multiple vector dimensions varying from 50 to 1000 us-

ing an extensive Portuguese corpus. They evaluated the performance of the embeddings

intrinsically using syntactic and semantic analogies (word level) and extrinsically using

Part-of-Speech (POS) tagging and sentence similarity tasks. For the intrinsic evaluation,

FastText was the best embedding for syntactic analogies, which was expected due to its

capacity to capture morphological features better. On the other hand, GloVe performed

best for semantic similarities, probably thanks to its ability to better model semantic in-

formation. Wang2Vec ranked second in both tasks, which can probably be justified by

its consideration of word order during training. For the extrinsic evaluation, Wang2Vec

achieved the best results for POS tagging using 300 dimensions embeddings, and it is

valid to say that usually, the bigger the number of dimensions, the better the result for

all models . Word2Vec using CBOW was the best model for European Portuguese, while

Wang2Vec Skip-Gram achieved the best results for Brazilian Portuguese, both using 1000

dimensions. By looking at their results, we can say that for all models, using 300 dimen-

sions provides a significant enhancement when compared to lower dimension embed-

dings, although not too much improvement is achieved when compared to higher dimen-

sion embeddings.

2.3 Classification Algorithms

Data mining comprehends the extraction of useful knowledge from data, usually

performed using large volumes of it (CHAKRABARTI et al., 2006), which has been

possible thanks to the advances in technology in the last years. The different domains and

types of problems being addressed enabled the definition of varying task classes in data

mining. One of these classes is data classification, which attempts to learn the relationship

between a set of feature variables and a target variable of interest (AGGARWAL, 2014).

In other words, this means we use information about something like a tweet, a video, or

an image, for example, to classify that entity using a target class, like offensiveness.

Data classification is usually divided into two phases. The first one is the training,

in which we use data to train the computer to classify the data. The data used in this

phase is called training data. The resulting product of this phase is a trained classification

model. The quality of this model relies significantly on the quality and amount of data



21

used for training. In the second phase, called testing, we use the trained model to classify

a test instance. This classification can output two different types of results: a discrete

value, like offensive or not offensive, or a numerical score for each class, like 25%

offensive and 75% not offensive. Numerical scores can be converted to discrete values

according to predefined thresholds. For example, one could consider a video as offensive

if the score is above 75% for the offensive class.

The splitting of the data between training and testing can be done in different

ways. A popular one is to use k-fold cross-validation. This method consists of splitting

the data into k disjoint subsets, named folds, of the approximately same size. Then,

the model is trained k times. For each time, k − 1 different folds are used to train the

model. The remaining fold is used for testing. The final performance is given by averaging

the performance obtained for each training (KOHAVI, 1995). Sometimes, the data is

manually split into instance sets to train and test the model. As an example, this is used

in classification competitions, such as SemEval-2018 Task 7 (GÁBOR et al., 2018) and

SemEval-2019 Task 6 (ZAMPIERI et al., 2019), where only the training data is provided

to the participants to train their models. The testing data is provided when it is time to

evaluate the trained models and measure their performance.

Providing a labeled dataset to train and test classification models enables what we

call supervised learning. Here, the models use the features provided for each instance

to predict the target variable. On the other hand, the data is not labeled for unsupervised

learning, requiring learning models to find patterns in the dataset using different strategies

by looking for similarities among the instances. An example of unsupervised learning is

data clustering. There is also semi-supervised learning, which is in between supervised

and unsupervised learning. Here, models make use of both labeled and unlabelled data to

classify the data (CHAPELLE; SCHÖLKOPF; ZIEN, 2006).

As mentioned, the data used in the classification algorithms should be labeled, so

we have a target variable to train and test the classification models. This labeling step is

a crucial phase in the construction of the data to be used in the experiments, also named

dataset, because it affects the quality of training and, consequently, testing. However,

manually labeling the data requires a lot of effort, since the amount of data needed is

usually large. This manual task also enables the risk of the data being affected by the

annotator’s bias. In an attempt to mitigate this problem, researchers usually provide clear

instructions to the annotators on how to perform the labeling. Another measure adopted

during the labeling process is to have each instance labeled by more than just one person.
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This way, the researchers can establish thresholds for the agreement among the annotators

and define the final label for their dataset.

In the next sections, we present the classification algorithms we used in this work.

We grouped the algorithms into three different categories to provide a better understand-

ing of their characteristics: Classic, Deep Learning, and Transfer Learning.

2.3.1 Classic Models

In this section, we present widely adopted models in data classification, which

we refer to as Classic models. These models use features defined beforehand to train

and learn how the data should be represented and classified. We group these methods

because they do not employ Deep Learning or Transfer Learning techniques, which are

more recent and work differently.

Naive Bayes. This is a probabilistic classification algorithm, very fundamental

among the classification methods. Probabilistic models use statistical inference in the

data to find the best target variable (class) of an instance (AGGARWAL, 2014). Naive

Bayes is an algorithm based on Bayes’ theorem, which is used to calculate conditional

probabilities (JOYCE, 2019). This model is a generative model, which roughly means the

likelihood to classify an instance as a particular target variable comes from the observation

of the probabilities of both classes and features of the document (joint probability). Naive

Bayes uses the Bayes formula with the assumption of independence of all feature variables

given the value of the class of the instance to be classified. This assumption is why

it is called naive, as this independence among the feature variables is a simplification.

However, despite this naive assumption, this classifier performs surprisingly well in many

applications (ZHANG, 2004).

Logistic Regression. A logistic regression model, like Naive Bayes, is a proba-

bilistic model. However, it is a discriminative model, which roughly means the probabil-

ity to classify an instance as a particular class comes from the observation of its features

(conditional probability). This model outputs a discrete value (usually binary) instead of

a continuous outcome and fits the previously calculated probability into one of the classes

by using likelihood. A logistic regression model is able to use discrete and continuous

features to perform the prediction (AGGARWAL, 2014). This model is similar to a linear

regression model. However, it uses a sigmoid function to make the prediction interval

range from zero to one instead of an infinite continuous space, enabling the calculation
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and interpretation of the probabilities.

SVM. The Support Vector Machine (SVM) algorithm takes a multidimensional

vector space and attempts to find a hyperplane that best separates the instances of the

vector space in the target variables. Noble (2006) presents four concepts about SVM to

help understand how it works. The first one is the separating hyperplane, which creates

the sectors that will contain the vectors for each of the target variables, exemplified in

Figure 2.1a and 2.1b. As there might be multiple possible separating hyperplanes for a

dataset, the concept of the maximum-margin hyperplane is introduced. This concept states

that the best hyperplane should be located in a position where the distance from each of its

nearest vectors (margin) is the highest (maximum), as it maximizes the model’s ability to

classify new data correctly. As an example, Figure 2.1d illustrates the best hyperplane se-

lected among possible ones displayed in Figure 2.1c. The third concept is the soft margin

parameter. It defines how far away exception vectors might reside from the hyperplane

without resulting in a misclassification, as they would be on the other side of the hyper-

plane. Finally, the last concept is the kernel function, which is a mathematical operation

performed over the data to enable its projection in a space with a higher dimension. This

operation is performed when it is not possible to define the hyperplane using the current

vector space. Figure 2.1f shows an example of the application of a kernel function where

each instance of the dataset in Figure 2.1e was squared.

Decision Tree. A decision tree splits the data in a hierarchical structure so that

each path through the nodes leads to a leaf node defining the predicted class of the in-

stance. The data partition is done using a split criterion, which is a condition using one or

more data features to determine the split logic. When just one feature is used, the split is

named univariate. A multivariate split occurs if multiple features are combined to define

the split condition. Both methods are exemplified in Figure 2.2a and 2.2b. The goal of de-

cision trees is to recursively split the training data, as much as possible, to enable the best

discrimination for the instance class. However, it is not possible to decide when to stop

splitting the data to prevent the model from start overfitting. In other words, a decision

tree could get too many levels and become excessively adapted to the training data, which

could cause the model to perform very well for the training data but poorly for new data

(testing data). Parameters are used to prune the tree to avoid this problem (AGGARWAL,

2014). Two decision tree methods were found to be widely employed: C4.5 (QUINLAN,

1993) and Random Forest (BREIMAN, 2001). The first one is the implementation of a

single decision tree. Random Forest, on the other hand, is an ensemble method consist-



24

Figure 2.1: Examples of SVMs using data related to the prediction of two different types
of leukemia. The blue dot in Figure 2.1b represents an unseen example to the model

(a) An uni-dimensional hy-
perplane, represented by the
black dot

(b) A bi-dimensional hyper-
plane, represented by the
black line

(c) Some possible hyper-
planes for current the vec-
tors

(d) The maximum-margin
hyperplane, selected from
Figure 2.1c

(e) An uni-dimensional
dataset on which a hyper-
plane can not be created

(f) The hyperplane obtained
after applying a kernel func-
tion to Figure 2.1e

Source: Noble (2006)

ing of a collection of random decision trees where the final prediction comes from the

majority of the votes cast by each tree.

2.3.2 Deep Learning Models

Dee Learning models make use of neural networks with many layers and units

(neurons) to explore the data and extract features to be used in the learning process. In

other words, while Classic method works with the features provided beforehand only, a

Deep Learning model uses all of them to generate many more features itself, which is

done by using internal (hidden) layers of the model. The first layer is only responsible

for inputting the data into the model without modification. Each hidden layer takes the

output from the previous one as input, processes it, and outputs a set of features to be

processed by the next layer. The last one, also known as the output layer, can be seen as

a classification layer, as it is responsible for outputting the final prediction of the model.

The data flow among the units is usually unidirectional. However, depending on

the architecture employed in the model, this flow might be bidirectional. Internally, each

neuron receives the input data, calculates the net value, and then converts it to an output
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Figure 2.2: Examples of decision trees used to predict the high risk of cardiovascular
disease based on two features extracted from a data snapshot presented by Aggarwal
(2014): C-Reactive Protein and Cholesterol

(a) Univariate Splits (b) Multivariate Splits

Source: Aggarwal (2014)

to be sent to the next inputs. The calculation of the net value is done using a net value

function, which uses the unit parameters or weights. The weights are adjusted in the

learning process. The calculation of the output is done using an activation function, which

depends on the unit type (AGGARWAL, 2014).

While classic models do not require too much data to achieve substantial perfor-

mance in some cases, Deep Learning models usually demand large volumes of data to be

able to learn from them and perform well. However, processing large amounts of data,

allied to running complex algorithms, was a problem in the past due to the limitation of

the hardware power. Thankfully, technology has evolved in the last years, significantly

increasing the processing and storage powers available and reducing the cost to consume

them. Alongside with new techniques to handle large volumes of data, Deep Learning

research and commercial solutions have appeared worldwide. Two types of deep neural

networks have been widely used for text classification and will be described next: Con-

volutional and Recurrent Neural Networks.

CNN. Convolutional Neural Networks (CNNs) were created and applied initially

in computer vision for image processing (Lecun et al., 1998). A CNN works by sliding

(convolving) a specific sized window over an image and processing its pixels using filters,

resulting in feature maps. These feature maps can have their dimensions reduced by

a process called pooling to result in a single number to be processed by further layers

in the network, or they can be used as inputs in a new convolutional layer and then be

pooled. These convolutional and pooling layers can be combined many times. After

the final pooling layer, many different architectures with diverse layers and classifiers
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can be employed to output the classification. Inspired by this architecture, researchers

adapted CNNs to use them in NLP. Kim (2014) proposed a CNN model for sentence

classification, depicted in Figure 2.3. Instead of convolving over pixels, the convolutional

layer processes word embeddings extracted from the text using a trained embedding. The

window size has a width equal to the embedding dimension and the height as three, four,

and five. The network uses 100 filters for each window, then performs max-pooling in

the feature maps, which means the maximum value in each feature map is selected. The

max-pooled feature-vector is used in a fully connected layer to output the class prediction

for the sentence.

Figure 2.3: CNN architecture proposed by Kim (2014) for sentence classification

wait
for
the

video
and
do
n't

rent
it

Convolutional layer with
multiple filter widths and

feature maps

Max-over-time
pooling

Fully connected layer
with dropout and
softmax output

n x k representation of
sentence with static and

non-static channels

Source: Kim (2014)

LSTM. The Long Short-Term Memory model was introduced by Hochreiter and

Schmidhuber (1997). It is a type of Recurrent Neural Network (RNN), which is designed

to handle data with sequential information, such as text. RNNs have state variables (hid-

den states) that enable storing prior knowledge and use it to calculate the output data.

The hidden state from one iteration is used as one of the inputs for the next iteration. A

unit in LSTM has three gates to control the input data: forget gate, input date, and output

gate. The input data used by those gates are the previous hidden state and iteration input

data. Additionally, a unit in LSTM has a candidate memory cell, which uses the same

input as the gates and calculates the candidate memory. The function of the input gate

is to determine how much new data will be added to the new memory. The forget gate

is used to calculate how much data from the previous memory cell will be retained. The
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model combines the output from the forget gate, input gate, and candidate memory cell

to produce the new memory. Finally, the output gate is used to generate the new hidden

state of the unit. Thus, in the end, the neuron outputs the new memory and the new hidden

state (LIN et al., 2019). Figure 2.4 illustrates this data flow in an LSTM unit.

Figure 2.4: The data flow in an LSTM unit to produce the new memory and hidden state

Source: Lin et al. (2019)

2.3.3 Transfer Learning Models

While the models presented so far require the training and testing data to be from

the same domain, there are some domains in the real world for which it is not always

possible to assemble a dataset big enough to create machine learning solutions for them.

To approach this problem, researchers sought ways to reuse the knowledge gained in

models trained for one domain into a different, though related, one. The solution found to

achieve this result was called Transfer Learning (WEISS; KHOSHGOFTAAR; WANG,

2016). Thus, Transfer Learning is especially useful when little training data is available.

There are two types of Transfer Learning: feature-based and fine-tuning. The

most notorious example of feature-based is using previously trained weights as the vector

representation layer when building a task specific model. Usually, this embedding layer

is kept frozen (or non-trainable) to avoid messing with the already trained weights. Fine-

tuning is the process of building a generic model and then changing the output layers to
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address a specific task. In this case, the whole model is fine-tuned using a low learning

rate for a few epochs to avoid damaging the previously learned representations. In the

next paragraphs, we present two Transfer Learning models that have been used by many

researchers to solve their NLP problems lately: BERT and ALBERT.

BERT. Bidirectional Encoder Representations from Transformers (BERT) (DE-

VLIN et al., 2019) is a framework designed to pre-train vector representations from plain

text in an unsupervised manner. The pre-trained model can be fine-tuned with just one

additional output, adapting to several natural language tasks. This model is trained with

two objectives: Masked Language Model and Next Sentence Prediction. In the first one,

some random tokens are masked and the model is trained to predict them. In the second

one, the model must predict if one sentence follows the other.

ALBERT. A Lite BERT (ALBERT) (LAN et al., 2019) is an improved version

of the BERT architecture that was able to reduce its size significantly. While the stan-

dard BERT Base model has 110M parameters, the standard ALBERT base model has

only 12M. This reduction was made possible by using cross-layer parameter sharing and

factorized embedding parametrization. With these changes, the model can be trained sig-

nificantly faster, enabling even larger models to be created.

2.3.4 Ensemble-based Model

The goal of this model, which is also referred to as meta-classifier or meta-learner,

is to combine multiple classification models to create a classifier able to outperform each

of the base classifiers (ROKACH, 2010). There are two different frameworks for ensem-

ble classifiers, according to Rokach (2010): independent, where each classifier is built

independently from the others, and dependent, where the output of a trained model is

used as input into another classifier. Figure 2.5 shows both frameworks and their work-

flow. The Training Set is submitted to a Dataset Manipulator, which is responsible for

taking the data to be used in that model, merge any existing data coming from other clas-

sifiers, and then feed the data to the Inducer. The Inducer represents the algorithm used

to take the data and create the trained model (Classifier). The output of each Classifier

is then combined by the Classifiers Composer block to predict the label of an unlabeled

input.
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Figure 2.5: Frameworks of ensemble models

(a) Independent framework (b) Dependent framework

Source: Rokach (2010)

2.4 Evaluation Metrics

In classification problems, there are many metrics used to verify the performance

achieved by classification models. In the following subsections, we present metrics based

on Japkowicz and Shah (2011) that we used to assess the results of the experiments in our

work.

2.4.1 Kappa

Referred to KPP in our work, this metric is the relative improvement of the current

predictor on the random predictor. Witten et al. (2016) calculate this metric using Equa-

tion 2.1, where SRAP represents the success rate of the actual predictor, and SRRP

represents the success rate of a random predictor.

KPP =
SRAP − SRRP

1− SRRP
(2.1)

2.4.2 True Positive Rate

This metric is the rate of positive instances which were classified correctly as

such. In our work, we refer to this metric as TPR, and it is calculated as presented in
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Equation 2.2.

TRP =
true positive

true positive+ false negative
(2.2)

2.4.3 Precision

Precision is the percentage of the classified instances that do belong to that class.

The weighted precision is defined as the weighted average precision of the positive and

negative classes using the number of cases in each class as weights. In our work, we report

the weighted precision (PRE). The precision is calculated as presented in Equation 2.3.

PRE =
true positive

true positive+ false positive
(2.3)

2.4.4 Recall

The recall is the percentage of correctly classified instances among all instances

from that class. Recall also has its variation named weighted recall, which is the weighted

recall average for the positive and negative classes using the number of instances on each

class as weights. As for precision, we report the weighted recall (REC) in our work. The

recall is calculated as presented in Equation 2.3.

REC =
true positive

true positive+ false negative
(2.4)

2.4.5 F-measure

The F-measure, also known as F1, is the harmonic mean between precision and

recall. The weighted harmonic mean between weighted precision and weighted recall is

named weighted F-measure, which is the one we report in our work as F1. The F-measure

is calculated as presented in Equation 2.5.

F1 =
2 ∗ PRE ∗REC

PRE +REC
(2.5)
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2.4.6 Area Under the Receiver Operating Characteristics Curve

Also known as Area Under the ROC Curve, or just AUC, this is the relationship

between true positives and false positives, representing how well the model can distin-

guish each instance between the classes. There are different methods to calculate this

metric, and Equation 2.6 shows one of them, where T p and T n are the subsets of positive

and negative instances in the test set T , respectively, and Ri is the rank of the ith instance

in T p.

AUC =

∑|Tp|
i=1 (Ri − i)

|T p||T n|
(2.6)

2.5 Summary

In this Chapter, we presented popular representations and classification models

used for text classification, alongside with standard metrics used to measure their results.

However, there are other ways of processing text, and other models employed in text clas-

sification in the literature, with new methods coming up every year. In the next Chapter,

we provide an overview of related works in the matter of text classification, especially

about the detection of offensive content, presenting data sources, methods, and models

employed to do so.
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3 RELATED WORK

Text classification has been studied for many years, with works in the area of

offensive detection dating as earlier as 2004, such as Greevy and Smeaton (2004). Since

then, a lot of effort have been applied to create new datasets and techniques to be used to

detect offensive content and its different subcategories. This happened mainly in the last

years when computational power increased, new methods were developed and advanced

models emerged. In this Chapter, we provide an overview of related works in tasks of

offensive content detection.

3.1 Datasets

The first studies on offensive content detection had almost no datasets available

for experimentation. Due to that reason, most works had to assemble their datasets. Since

English is the most widely used language on the Internet1, most of the studies on of-

fensive language detection have built or used English datasets, such as Magu, Joshi and

Luo (2017), Ducharme (2017), Wulczyn, Thain and Dixon (2017), Kennedy et al. (2017),

Nobata et al. (2016), for example. More recently, researchers have been building and

experimenting with datasets in other languages as well, such as German (BRETSCHNEI-

DER; PETERS, 2017; ROSS et al., 2016), Italian (VIGNA et al., 2017), Slavic (FIŠER;

ERJAVEC; LJUBEŠIĆ, 2017), Dutch (TULKENS et al., 2016; HEE et al., 2015), and

Portuguese (FORTUNA et al., 2019; PELLE; MOREIRA, 2017). Although most authors

publish their datasets, others do not, which prevents the reproducibility of their work and

comparison against other research.

The preferred data sources for gathering data and building datasets are social plat-

forms, thanks to their large volumes of data. Examples of these platforms include, but are

not limited to, Reddit (KENNEDY et al., 2017; SALEEM et al., 2016), Facebook (VI-

GNA et al., 2017; TING et al., 2013), Instagram (HOSSEINMARDI et al., 2015; ZHONG

et al., 2016), and Ask.fm (HEE et al., 2015; SAMGHABADI et al., 2017). Twitter de-

serves a special mention because it is the most used data source across the literature,

probably due to its massive user base and its user constant activity over the years. It was

used in works such as Fortuna et al. (2019), Davidson et al. (2017), Kennedy et al. (2017),

Hasanuzzaman, Dias and Way (2017), Burnap and Williams (2014), and many others.

1<https://www.internetworldstats.com/stats7.htm>

https://www.internetworldstats.com/stats7.htm
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Earlier works also used social platforms such as MySpace (DADVAR; JONG, 2012;

YIN et al., 2009; NAHAR; LI; PANG, 2013), and Formspring (REYNOLDS; KON-

TOSTATHIS; EDWARDS, 2011; KONTOSTATHIS et al., 2013; BIGELOW; (KON-

TOSTATHIS); EDWARDS, 2016).

Moreover, thanks to social plugins and the implementation of comment sections,

news portals became a space for user interaction. These platforms were found as a

great source of data for analysis. Yahoo! news portals (NOBATA et al., 2016; SOOD;

CHURCHILL; ANTIN, 2012; DJURIC et al., 2015) and the Brazilian news portal G12 (PELLE;

MOREIRA, 2017), for example, were used as a source for collecting comments for of-

fensive content detection. Some authors used comments from Wikipedia to build their

datasets for offensive content detection (WULCZYN; THAIN; DIXON, 2017; PAVLOPOU-

LOS; MALAKASIOTIS; ANDROUTSOPOULOS, 2017; SAMGHABADI et al., 2017).

YouTube was used as a data source by Anand et al. (2019) and earlier works

such as Ernst et al. (2017), Ducharme (2017), Kandakatla (2016), Dadvar, Trieschnigg

and Jong (2013), Chen et al. (2012), Xu and Zhu (2010). Similar to the other sources,

which collected comments, articles, or posts, just textual content is usually collected from

YouTube, not the videos themselves. Only a few works are devoted to analyzing videos.

Gangwar et al. (2017) evaluate approaches for the detection of pornography in image and

video using different datasets and Deep Learning models. Anand et al. (2019) propose

a framework to filter videos in English with inappropriate content (insults, hate speech,

promotion of extremism or terrorism) to prevent advertisements from using them. How-

ever, among the features used, they do not take transcriptions as a feature. In our work,

besides textual features such as title, description, and tags, we collected the video files

and extracted the transcription from them to use as a feature. Additionally, we obtained

multiple numerical and nominal features to study. Differently from the other studies, we

targeted videos in Portuguese, and our goal was to provide an analysis of the performance

of each feature set according to a wide range of algorithms and feature representations.

To annotate their datasets, authors have mostly used crowdsourcing platforms,

such as Amazon Mechanical Turk3 (BIGELOW; (KONTOSTATHIS); EDWARDS, 2016;

ZHONG et al., 2016; KONTOSTATHIS et al., 2013), CrowdFlower4 (BURNAP PE-

TEAND WILLIAMS, 2016; DAVIDSON et al., 2017; SAMGHABADI et al., 2017;

PETE; L., 2015; HOSSEINMARDI et al., 2015; BURNAP; WILLIAMS, 2014), and

2<https://g1.globo.com/>
3<https://www.mturk.com/>
4CrowdFlower became Figure Eight in 2018: <https://www.figure-eight.com/>

https://g1.globo.com/
https://www.mturk.com/
https://www.figure-eight.com/
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brad rapit5 (HEE et al., 2015). However, other works conducted their labeling processes

without using worldwide crowdsourcing platforms (VIGNA et al., 2017; KENNEDY et

al., 2017; WASEEM; HOVY, 2016; ROSS et al., 2016; DJURIC et al., 2015; DADVAR;

TRIESCHNIGG; JONG, 2013; KWOK; WANG, 2013). Some authors reported having

developed their own annotations tools as well (PELLE; MOREIRA, 2017; WARNER;

HIRSCHBERG, 2012).

3.2 Features

Data pre-processing is the first step in classifying offensive content in text. In this

step, stop-words were usually removed (ALMEIDA et al., 2017; MAGU; JOSHI; LUO,

2017; SALEEM et al., 2016; DJURIC et al., 2015; BURNAP; WILLIAMS, 2014). Punc-

tuation and special characters were removed as well (SALEEM et al., 2016; BURNAP;

WILLIAMS, 2014), although some authors used the presence of exclamations and inter-

rogations as features (NOBATA et al., 2016; CAPUA; NARDO; PETROSINO, 2016).

Similarly, other text elements like emojis, hashtags, number, mentions, or URLs were re-

moved by some authors (ALMEIDA et al., 2017; MAGU; JOSHI; LUO, 2017; SALEEM

et al., 2016; DJURIC et al., 2015; BURNAP; WILLIAMS, 2014) and used as features

by others (SAMGHABADI et al., 2017; DAVIDSON et al., 2017; NOBATA et al., 2016;

CAPUA; NARDO; PETROSINO, 2016). Lowercasing the text (DAVIDSON et al., 2017;

SALEEM et al., 2016; DJURIC et al., 2015) and applying stemmers on it (DAVIDSON

et al., 2017; MAGU; JOSHI; LUO, 2017; BURNAP; WILLIAMS, 2014) are additional

operations used in this pre-processing step by researchers.

Binary features indicating the presence or absence of profanity, or offensive words

based on lists were used as well (PAPEGNIES et al., 2017; CAPUA; NARDO; PET-

ROSINO, 2016; NOBATA et al., 2016; HOSSEINMARDI et al., 2015; KWOK; WANG,

2013; REYNOLDS; KONTOSTATHIS; EDWARDS, 2011). Some works also used data

related to the users who published the contents to obtain features. These user-based fea-

tures we used by Hasanuzzaman, Dias and Way (2017), Waseem and Hovy (2016), Dad-

var, Trieschnigg and Jong (2013) and included age, gender, and location, for example.

The user activity and profile statistics were collected in Chatzakou et al. (2017) to trace a

profile of Twitter users. The goal was to identify similar users and potential offenders in

the network.

5<https://brat.nlplab.org/>

https://brat.nlplab.org/
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In addition to the features mentioned so far, the vast majority of the related works

use features based on tokenization and word or character n-gram, or both, as in Davidson

et al. (2017), Vigna et al. (2017), Kennedy et al. (2017), Ducharme (2017), Papegnies et

al. (2017), Nobata et al. (2016), Saleem et al. (2016), for example. For word n-gram,

unigram, bigram, and trigram were the most used. On the other hand, character n-gram

varied mostly from two from up to five characters. Some works used POS tags (NOBATA

et al., 2016) and even extracted n-grams from them (VIGNA et al., 2017; DAVIDSON et

al., 2017; SAMGHABADI et al., 2017; CAPUA; NARDO; PETROSINO, 2016). Embed-

dings were adopted in many studies and obtained significant results, with word embed-

ding being the most popular one (VIGNA et al., 2017; HASANUZZAMAN; DIAS; WAY,

2017; PAVLOPOULOS; MALAKASIOTIS; ANDROUTSOPOULOS, 2017; SAMGHABADI

et al., 2017; NOBATA et al., 2016). Paragraph embeddings (NOBATA et al., 2016)

and document embeddings (SAMGHABADI et al., 2017) were used as well. Some

authors also used Sentiment Analysis to obtain sentiment polarity scores to be used as

features (VIGNA et al., 2017; SAMGHABADI et al., 2017; KENNEDY et al., 2017; PA-

PEGNIES et al., 2017; DAVIDSON et al., 2017; CAPUA; NARDO; PETROSINO, 2016;

SALEEM et al., 2016).

3.3 Classifiers

The approaches used to address offensive content detection evolved over the years

from simple techniques, such as solely using dirty-word lists, to more advanced ones

using machine learning with multiple features. The most used classifier employed in the

literature is SVM, being used in works such as Park and Fung (2017), Ducharme (2017),

Magu, Joshi and Luo (2017), Vigna et al. (2017), Samghabadi et al. (2017), Davidson et

al. (2017), Pelle and Moreira (2017), and many others.

Probabilistic models were widely used as well. The best example in related works

is Naive Bayes (DAVIDSON et al., 2017; SALEEM et al., 2016; KWOK; WANG, 2013;

TING et al., 2013). Another example is Logistic Regression (PARK; FUNG, 2017; WUL-

CZYN; THAIN; DIXON, 2017; GAO; KUPPERSMITH; HUANG, 2017; SALEEM et

al., 2016), which is sometimes used with some modifications (DAVIDSON et al., 2017).

Decision tree models, such as C4.5 (TING et al., 2013; REYNOLDS; KONTOSTATHIS;

EDWARDS, 2011), and random forests (CHATZAKOU et al., 2017; KENNEDY et al.,

2017; DAVIDSON et al., 2017; PETE; L., 2015) were also employed.
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With its popularization in the last few years in different areas, researchers started

to use Deep Learning for NLP problems. LSTM models were used in Vigna et al. (2017),

Gao, Kuppersmith and Huang (2017), for example. Pavlopoulos, Malakasiotis and An-

droutsopoulos (2017) employed both RNN and CNN models in their works. Park and

Fung (2017) proposed three CNN models based on characters (CharCNN), words (Word-

CNN) and both of them (HybridCNN) to identify abusive language on Twitter. Gambäck

and Sikdar (2017) use CNN to detect Hate Speech. CNN was also used in Pavlopoulos,

Malakasiotis and Androutsopoulos (2017). Transfer Learning models have become more

prevalent in the last couple of years, and some works on offensive content detection are

starting to emerge (BASILE et al., 2019a; WU et al., 2019; AGGARWAL et al., 2019).

In addition to using single models, some authors employed ensemble classifiers

in their experiments. Pelle, Alcântara and Moreira (2018) combined the output of three

classifiers (HateWord2Vec, HateDoc2Vec, and SVM) in a meta-classifier to predict offen-

sive comments in the Web. Burnap and Williams (2014) predict Hate Speech on Twitter

using the output of three Classic classification models (random forest, SVM, and logistic

regression) in an ensemble classifier. In both works, the use of a meta-classifier improved

the results when compared to the combined models used separately.

3.4 Summary

In our work, we followed a similar approach adopted by related works on offensive

content detection but filled some of the gaps identified in this Chapter, such as processing

videos in Portuguese. This language is typically underrepresented in terms of the avail-

ability of annotated training data for machine learning algorithms. Also, the related works

presented here supported our choice about what features and classifiers to use. Our dataset

is presented next, in Chapter 4. Also, we tested different classification models from the

most seminal up to the most recent, using features selected based on their popularity and

results use across related works presented in this Chapter. The experimental setup and

results are presented in Chapters 5 and 6.
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4 DATASET

In this Chapter, we detail the process employed in the creation of the dataset for

offensive video detection and describe the dataset. The entire process is illustrated in

Figure 4.1 and explained in the next sections.

Figure 4.1: Dataset creation process

Search word

Offensive Words Results for
Word 1

Results for
Word 2

Results for
Word n

Retrieve data

Video IDs

Merging and
Filtering YouTube

Filtering Video Data

101,759Video, channel and user IDs

Default audion language = Portuguese

Download
videos

Download
subtitles

Portuguese
Video Data

5,180

Subtitles

Videos

Google Cloud
Speech-to-Text

YouTube

YouTube (timedtext)

youtube-dl

Filtering

Clear speech
in Portuguese,

duration <= 5 min

Annotation

Generate
transcription

Annotated
Videos

400

Description
(desc)

Tags
(tags)

Title
(titl)

Transcription
(tran)

Statistics
(stat)

...

Source: The Authors



38

4.1 Data Collection

To retrieve video data from YouTube, we used its official Application Program-

ming Interface1 (API). To search for potentially offensive videos, we used the <search.

list> endpoint and provided seed words using a list of dirty/offensive words provided

by Pelle, Alcântara and Moreira (2018), which contains terms in Portuguese and English.

Each seed word was searched individually, retrieving a set of video, channel, and user

ids. However, we kept only the video ids and discarded the channel and user ids retrieved.

Next, the search results were merged to avoid duplicates of videos that might have ap-

peared in more than one search. This process resulted in a total of 101,759 video ids.

Then, we used the <videos.list> endpoint to retrieve detailed and structured2 in-

formation for each video. Such information contains the features to be processed in this

study.

Next, we filtered the videos looking for the ones with default audio language at-

tribute explicitly set to Portuguese. Although we also retrieved videos in English, we

decided to focus on processing Portuguese videos at first, as one of our objectives is to

build and provide a dataset of videos in this language to contribute with the development

of resources in Portuguese. At the end of this filtering step, we ended up with a set of

5,180 videos. Next, we downloaded these videos using youtube-dl3, so they could have

their transcriptions extracted later. A second reason for downloading the videos was to

embed them directly in the annotation tool we developed instead of using YouTube video

player. We adopted this measure to prevent the unavailability of videos in case they were

removed from YouTube by the time they were annotated in this study. However, we did

not share or publish the downloaded video files, restricting their use to this work.

We also used an unofficial API4 provided by YouTube to retrieve the subtitles for

the videos. However, although some videos have subtitles in more than one language,

we found that most of the downloaded videos lack captions or have subtitles only in a

language different from the one in the audio track. Due to this reason, we did not use the

subtitles in our experiments.

To obtain the transcriptions, we used the Google Speech-to-Text5 service, which

makes use of machine learning to transcribe audio files automatically. Since this is a paid

1<https://developers.google.com/youtube/v3/>
2<https://developers.google.com/youtube/v3/docs/videos#resource-representation>
3<http://ytdl-org.github.io/youtube-dl/>
4<https://www.youtube.com/api/timedtext>
5<https://cloud.google.com/speech-to-text/>

https://developers.google.com/youtube/v3/
https://developers.google.com/youtube/v3/docs/videos#resource-representation
http://ytdl-org.github.io/youtube-dl/
https://www.youtube.com/api/timedtext
https://cloud.google.com/speech-to-text/
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service, we only submitted for transcription the videos successfully annotated by three

annotators. To provide the video to the transcription service, we had to convert the file to

Waveform Audio File Format6 (WAV) and also specify Portuguese as the target language

for the transcription. Google Speech-to-Text has an option to filter profanity words and

phrases named profanity filter, which we disabled to keep the transcription more loyal to

the original audio and provide more realistic results during our experiments.

4.2 Annotation Process

We chose to annotate a random sample of the videos which satisfied the following

conditions: (i) do not include unclear speech, or no speech at all (just noise or sounds,

without any spoken words), and (ii) be in Portuguese. The goal of (i) was to enable

annotators to watch videos with better audio quality, and also yield higher quality tran-

scriptions. The language filter (ii) was also necessary because the user who uploaded the

video may have set the default audio language attribute with a wrong value, or the video

could have mixed languages, affecting the transcription quality to Portuguese.

We also filtered out the videos with a duration longer than five minutes from the

sample, which corresponded to approximately 43.3% of all Portuguese videos (see Fig-

ure 4.2). The goal was also to keep annotators engaged and save time in the annotation

process, which is the bottleneck in dataset creation.

Figure 4.2: Distribution of videos in Portuguese according to their duration
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Source: The Authors

We developed a web tool to enable volunteers to annotate the videos. Each video
6<http://www-mmsp.ece.mcgill.ca/Documents/AudioFormats/WAVE/WAVE.html>

http://www-mmsp.ece.mcgill.ca/Documents/AudioFormats/WAVE/WAVE.html
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was analyzed by three annotators, as this is the number used by Pelle and Moreira (2017),

Davidson et al. (2017), and other authors who annotated their datasets. The annotators

were mostly from the academic environment, with varied age, gender, location and ex-

pertise in the subject. Annotators were asked to watch the full video and tag offensive

moments during the video. If nothing offensive was found, the annotator should explic-

itly specify the video was not offensive to be able to carry on with the annotation pro-

cess. These instructions are presented in Figure 4.3, alongside with the definition of what

should be considered offensive in the videos. This definition was designed to guide the

annotators in the process and prevent them from letting their personal beliefs or emotions

affect their judgment. These guidelines were presented to each annotator right before they

started to evaluate the videos and were available at any time in the video annotation page,

as shown in Figure 4.4. The annotation tool supported Portuguese and English for the

interface. However, as our target language was Portuguese, we presented the annotation

guidelines in Portuguese even if the interface language was set to English.

The tool was also used to show the general and user-specific annotation progress,

as an attempt to engage them in the annotation process, as can be seen in Figures 4.5

and 4.6. We anonymized the annotators’ names in Figures 4.5 to prevent exposing their

personal information. Since we believe this tool could help other researchers creating

their datasets, we made its source code available7.

By the end of the process, we had 400 videos annotated. For classification pur-

poses, we considered a video as offensive if it had at least one moment tagged as offensive

by at least two annotators. According to the agreement among the annotators, we created

two datasets:

• OffVidPT-2, in which at least two of the three annotators of each video agreed

on the positive class (offensive); and

• OffVidPT-3, in which all three annotators agreed on the positive class.

We made these datasets available8. They were accepted and published under the

ISLRN 529-322-484-169-1. However, due to YouTube API Services Developer Policies9,

the video contents cannot be published. Therefore, in addition to the video id and anno-

tations (labels assigned by each annotator), we included the following sets of information

(feature sets): description, tags, title, transcription, and statistic. Each of these feature sets

7<https://gitlab.com/cleber.93cd/video-hate-detector>
8<http://www.inf.ufrgs.br/~csalcantara/offensive-video-detection/datasets/>
9<https://developers.google.com/youtube/terms/developer-policies>

https://gitlab.com/cleber.93cd/video-hate-detector
http://www.inf.ufrgs.br/~csalcantara/offensive-video-detection/datasets/
https://developers.google.com/youtube/terms/developer-policies


41

Figure 4.3: Guidelines provided to annotators at the beginning of the annotation process,
also available at any time in the video annotation page

Source: The Authors

is described in detail in the next Section.

4.3 Feature Sets

We did not use the whole data retrieved from YouTube, as a lot of it was not

relevant in our task. Instead, we extracted four sets of textual information and a collection

of information containing statistics for each video. Each one of these sets is described

below and referred to as a feature set in our work.

• Description (desc): this text is provided by the author of the video, with an aver-

age of 763 characters. It contains all sorts of characters and is not always present
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Figure 4.4: Video annotation page with a video being evaluated and two moments tagged
as offensive

Source: The Authors

for every video.

• Tags (tags): this text is provided by the author of the video, usually short (∼186

characters), composed of words or sets of words separated by a dot (defining each

video tag), and not always present.

• Title (titl): this text is provided by the author of the video, usually short (∼51

characters), and composed of all sorts of characters. Unlike the other feature sets,

every video has a title.

• Transcription (tran): this text is obtained from the transcription of the video,

which was automatically generated using Google Speech-to-Text. Transcriptions

are usually long (∼1724 characters) and exist for every video.

• Statistic (stat): this is a snapshot of the statistics from the video at the moment

of the dataset collection, which includes: like counter, dislike counter, comment

counter, view counter, and favorite counter. We did not perform normalization for

these counters. We also included three additional features: presence of offensive

word (binary feature representing whether the title or description had one of the

offensive words provided in Pelle, Alcântara and Moreira (2018)), video duration
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Figure 4.5: Home page of the annotation tool with annotator ranking and project goal

Source: The Authors

(in seconds), and video category – a nominal information composed by the category

identifier associated to the video, such as 10 (Music) and 25 (News and Politics).

4.4 Dataset Statistics

To assess the degree of agreement among the annotators, we calculated the Fleiss

Kappa (FLEISS, 1971; LANDIS; KOCH, 1977) in our dataset. This statistical score is

used in the case where each instance was evaluated using discrete labels (nominal scale)

by the same number of people. However, this score does not require that annotators of one

instance to be the same as for the other instances, which is exactly the scenario of the an-

notation employed in our work. When we calculated the Fleiss Kappa for OffVidPT-2,

we found a score of 0.512, which is considered a moderate agreement. Although not

the greatest, this score is within the range found in dataset annotation of related works.

Samghabadi et al. (2017) reported 0.45, Warner and Hirschberg (2012) found 0.63, and

Pelle and Moreira (2017) achieved 0.71. Since OffVidPT-3 is composed of instances

for which all the annotators agreed, it did not make sense to calculate its Fleiss Kappa

score.
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Figure 4.6: User personal page with their progress and annotations

Source: The Authors

In OffVidPT-2, 235 videos (out of 400) were classified as offensive, which cor-

responds to 58.8% of the total. As for the OffVidPT-3 dataset, there were 156 videos

considered offensive, corresponding to 39.0% of the total. These distributions for the

datasets are presented in Figure 4.7. Although not completely balanced, the distribution

in the datasets shows a fair balance. It is typical for works involving data annotation to

end up with unbalanced datasets with a more significant disproportion than ours. Chatza-

kou et al. (2017), for example, created a dataset with four classes for Twitter users and got

the following proportion: 3.4% instances labeled as aggressors, 4.5% as bullies, 31.8% as

spammers and 60.3% as none of them. Waseem and Hovy (2016) annotated a dataset of

tweets for Hate Speech detection and obtained 11.7% of the instances labeled as racist,

20.0% as sexist, 68.3% as neither racist or sexist. Although some techniques can be

applied to balance datasets, these works left their datasets unbalanced to provide a better

match to the scenario found in the real world. Based on previous work and the distribution

of our dataset, we decided to leave our datasets with their original balance.
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Figure 4.7: Class distribution of our datasets
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4.5 Summary

The process described in this Chapter shows how we collected and annotated our

data. It also indicates which data we selected to use in our study, coming up with different

feature sets and two datasets based on the annotators’ agreement (OffVidPT-2 and

OffVidPT-3). In the next Chapter, we present the approach employed in this study for

offensive video detection, which includes an overview of the procedures used to process,

classify, and analyze our data, experiments, and results.
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5 DETECTING OFFENSIVE VIDEOS

The goal of this work is to address the problem of offensive video detection. The

hypothesis we wish to investigate is whether it is possible to accurately classify if a video

is offensive just by analyzing its textual features. In this investigation, we apply a wide

range of Classic, Deep Learning, and Transfer Learning algorithms.

The methodology adopted in this study is depicted in Figure 5.1. In summary,

we first process the input data to extract features to submit in the classifiers to perform

data classification. With the results in hand, we select the best classifiers and combine

their predictions, which in turn are submitted as input to an ensemble classifier. Finally,

a detailed analysis is performed addressing the offensive video detection problem. Our

methodology, described in the next sections of this Chapter, is generic and could be ap-

plied to related and future works in this subject.

Figure 5.1: Overview of our methodology for offensive video identification

Data Processing Feature Extraction Data Classification

Results

Best Results
Selection

Ensemble Data
Classification

Results Analysis

Ensemble
Results

Source: The Authors

5.1 Data Processing and Feature Extraction

The first step in our approach is to process the input data to make them suitable for

being handled by classification algorithms. This processing stage is fundamental to get

more uniform and standardized data, which increases the performance of classification

algorithms.

The different types of algorithms used in this work require different types of pro-

cessing and feature extraction. The Transfer Learning algorithms deal with raw text,
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which typically undergoes transformations such as tokenization and discarding noisy

characters. Deep learning methods take word embedding representations as input. The

Classic algorithms can use textual features from word or character n-gram and word em-

bedding. Additionally, Classic algorithms also processed statistical features. Figure 5.2

details the steps in the process of data processing and feature extraction applied to our

dataset, where out-of-vocabulary is abbreviated to OOV.

Figure 5.2: Steps to process the data and extract features for use in the classifiers
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5.2 Data Classification

The features extracted in the previous step are used to train and test different ma-

chine learning algorithms for classification. Figure 5.3 presents the relation between fea-

tures and classifiers, which are grouped by their categories.

The Classic algorithms employed in this study were covered in Section 2.3.1.

For Deep Learning, we designed architectures based on two main algorithms: CNN and

LSTM. Both networks use word embedding as input. Two different CNN architectures are

employed, both inspired by Kim (2014). The first one, named W-CNN, is shown in Fig-

ure 5.4. It has multiple convolution layers, each one responsible for processing a different

number of embeddings at a time. The max-pooling layer reduces the dimension of the

output of the convolution layers and concatenates them to feed the fully connected layer

that comes next. This layer processes the data by applying a dropout to prevent overfitting

and sends the output to the final layer, which calculates and outputs the predictions.

The second architecture, named M-CNN, is depicted in Figure 5.5. It uses a single
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Figure 5.3: Features used to feed the classifiers from each category
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embedding per document as input, which is manually calculated and described in Sec-

tion 6.1.1. To process the embedding, we use a single convolution layer. The remaining

layers of the network are the same as in the W-CNN. The difference between the two

architectures is that while the W-CNN takes multiple embeddings as input (one per word

in the instance), M-CNN takes a single embedding generated by an aggregation (i.e., the

average). The goal was to compare the two alternatives.

For our first LSTM implementation, named W-LSTM, the memory cells process

each word embedding extracted from the sentences. At the end of the processing, the

LSTM layer outputs the data used by the last layer in the network to calculate and output

the predictions. An overview of this architecture is depicted in Figure 5.6.

Similarly to the CNN architecture, we additionally defined an alternative LSTM

architecture to process a single embedding per document. We refer to this architecture as

M-LSTM, and it is represented in Figure 5.7. The other layers were not changed.

5.3 Best Results Selection and Ensemble Data Classification

After running the experiments with all the classifiers and feature sets, we selected

the best results for each algorithm category and feature set, reporting the feature represen-

tation and classifier that achieved the best result. The outputs of the selected classifiers

are used as inputs in a meta-classifier, i.e., in an ensemble. The entire process used in

the creation of the ensemble is shown in Figure 5.8. Additionally, we performed feature

ablation to understand the contribution of each member of the ensemble to the final result.
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Figure 5.4: Architecture employed in the W-CNN model
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Figure 5.5: Architecture employed in the M-CNN model
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This procedure means we excluded the predictions of one feature set at a time to check

the impact of each of them in the results.

5.4 Results Analysis

In this final stage, we analyzed the results of all classifiers, aiming at providing an

evaluation of the ability to detect offensive videos, which features are more helpful at this

task, and which algorithms perform better at detecting offensive content. We analyze the

results by algorithm category, feature representation, and feature set. Results were scored
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Figure 5.6: Architecture employed in the W-LSTM model
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Figure 5.7: Architecture employed in the M-LSTM model
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under different metrics to allow for a richer analysis.

5.5 Summary

In this Chapter, we presented the process we used in our study to provide infor-

mation on offensive video identification by using different features and classifiers. We

detailed each phase of this process to provide a comprehensive view of their function in

the whole process. In the next Chapter, we describe in detail our experiments, including

the configuration we applied to the algorithms, and present and discuss their results.
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Figure 5.8: The process employed to process the results of the classifiers and create an
ensemble classifier in our work
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6 EXPERIMENTS

The experiments reported in this Chapter aim at answering the following research

questions:

• RQ1: Is it possible to accurately classify whether a video has offensive content just

by analyzing its textual features?

• RQ2: Which features are the most helpful in detecting offensive content?

• RQ3: Which class of algorithms performs better at detecting offensive videos?

The next sections describe the experimental setup and discuss the results.

6.1 Experimental Setup

In this Section, we present the materials used in the experiments, which includes

the features extracted from the feature sets of the OffVidPT dataset, classifiers, metrics,

and the framework adopted.

6.1.1 Features

We used all feature sets of both datasets introduced in Chapter 4 (OffVidPT-2

and OffVidPT-3). The statistic feature set was already built in a format that would not

require additional processing before the submission to the Classic classifiers. However,

the textual feature sets needed to be pre-processed before the experiments, since the text

was noisy and not standardized. All the textual feature sets were used without sectioning,

including the transcriptions, which could have been sectioned according to the offensive

moments tagged during the annotation process.

We present statistics about the textual feature sets at each step of the pre-processing

phase, starting with the ones in Table 6.1 for the raw text. Those statistics include the

number of instances with missing value in the feature set (NP), minimum (min), maxi-

mum (max), mean (avg), and standard deviation (sdv) of both words and characters in

each instance.

We pre-processed the textual feature sets using the same script developed by Hart-

mann et al. (2017) to pre-process their corpus and train word embeddings. The code
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Table 6.1: Statistics extracted from the raw data of the textual feature sets, before any
pre-processing being applied

Feature Set NP
Chars Words

min max avg sdv min max avg sdv

desc 11 0 4,938 762.7 873.8 0 826 108.2 144.5
tags 54 0 537 185.9 151.8 0 89 27.3 22.9
titl 0 4 100 50.6 23.8 1 22 9.5 4.9
tran 0 6 8,423 1,723.8 1,437.7 1 1,494 324.6 265.4

Source: The Authors

changed the text to lowercase, converted any URL to the URL token, converted any email

address to the EMAIL token, converted numbers to the 0 token, disconnected punctuation

from words, and standardized different quotes and hyphens. The original script discarded

short sentences, but we changed it, so every sentence was kept. Additionally, due to the

nature of our textual feature sets, we added new commands to the script to remove line

breaks, symbols, and emojis. This processing turned the textual feature sets noise-free and

standardized. Table 6.2 shows statistics of the textual feature sets after this pre-processing

was applied.

Table 6.2: Statistics extracted from the standardized textual feature sets, the output of the
pre-processing using customized scripts based on Hartmann et al. (2017)

Feature Set NP
Chars Words

min max avg sdv min max avg sdv

desc 11 0 4,623 631.9 821.0 0 984 119.5 160.0
tags 54 0 602 199.6 163.2 0 139 41.4 34.3
titl 0 4 101 51.3 24.2 1 25 10.6 5.5
tran 0 6 8,425 1,723.6 1,437.6 1 1,500 324.6 265.6

Source: The Authors

The instances at this point were ready to be used in the Transfer Learning models,

which can process plain text as they internally create the feature representations for the

data. However, the instances required further pre-processing to be used in the Classic and

Deep Learning models, which requires the documents to have a standard format with the

same dimension (size). We applied two different types of processing to come up with the

following representations, our final features, also illustrated in Figure 5.2: n-gram and

word embedding.

n-gram. To generate the features for this representation, we performed punc-

tuation, number, and stop word removal, aiming at a more uniform set of tokens. For

the stop words, we used the Portuguese list provided by the Natural Language Toolkit
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(NLTK)1. Table 6.3 shows the statistics for the data after passing through this processing.

Then, we generated n-grams using two different types of tokens: words and characters.

For word n-grams, we generated two representations: word n-grams with only one word

(unigram), and word n-grams with n set from one to three (wngram). For charac-

ter n-grams, we generated one representation with n varying from two to five characters

(cngram). Table 6.4 counts the features created for each feature set and representation.

The statistic feature set, which is not textual, contains eight features, described previously

in Section 4.3.

Table 6.3: Statistics extracted from the pre-processed text used for n-gram feature extrac-
tion

Feature Set NP
Chars Words

min max avg sdv min max avg sdv

desc 11 0 3,707 467.6 610.0 0 633 69.6 93.0
tags 54 0 465 157.2 129.2 0 79 23.4 19.3
titl 0 4 86 39.9 18.7 1 15 6.4 3.2
tran 0 6 5,937 1,211.0 1,004.2 1 809 181.8 144.1

Source: The Authors

Table 6.4: Number of features in each n-gram representation for the textual feature sets

Feature Set unigram wngram cngram

desc 7,558 47,785 76,062
tags 3,324 17,047 41,055
titl 1,421 5,072 19,022
tran 10,554 117,259 87,839

Source: The Authors

Word Embeddings. We used the trained word embeddings for Portuguese pub-

lished by Hartmann et al. (2017), namely Word2Vec, FastText, Wang2Vec, and

GloVe. All the embeddings were trained using the CBOW variant, except GloVe, which

does not have this setting. We used the embeddings with 300 dimensions, as they repre-

sent a good balance between quality and efficiency. The same input used for n-gram

extraction was used to generate the word embeddings. The only difference was the re-

moval of OOV words, i.e., tokens not found in the trained embeddings were discarded.

At this point, some instances of the tags feature set ended up with no value, additionally

to the previously missing ones. To generate embeddings for all instances of the textual

feature sets and enable the correct processing of our models, we replaced missing descrip-

1<http://www.nltk.org/>

http://www.nltk.org/
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tions and tags with transcriptions and titles, respectively. We chose this criterion because

these feature sets instances have similar lengths. Table 6.5 shows the average and standard

deviation of OOV words of each feature set, and the statistics about the words before and

after the replacement of the missing values. Statistics on the number of characters are not

reported this time because we generated embeddings only for words, and the number of

characters, in this case, was irrelevant to the calculation. We generated two sets of word

embeddings for each instance, which have their creation process depicted in Figure 6.1

and described as follows:

• Single embedding: This set was composed of a single embedding for each instance

and had 300 dimensions – the same as the trained word embeddings. Our Embed-

ding Calculator (Figure 6.1) performed the embedding calculation. For each in-

stance, we took the weighted average of their unigram feature vectors. The weights

were given by the term frequency-inverse document frequency (TF-IDF) for each

word in the feature set corpus of the instance. This embedding set was used by all

Classic algorithms and some Deep Learning classifiers (M-CNN and M-LSTM).

• One embedding for each word: This set was composed of multiple word embed-

dings for each instance. The generation of this set was performed by an instance

iterator provided by the experimentation tool Weka (WITTEN et al., 2016), which

did a lookup in the trained word embedding to provide the embedding for each

word in the instance. Thus, the number of words gives the size of each embedding

set in each document. This variation was used by some Deep Learning algorithms

(W-CNN and W-LSTM) to process all tokens in each instance of the textual feature

sets.

Table 6.5: Statistics extracted from the pre-processed text used for word embedding gen-
eration

Feature Set NP
OOV W. Words before replacement Words after replacement

avg sdv min max avg sdv min max avg sdv

desc 11 2.4 4.7 0 588 67.2 89.7 1 588 70.5 91.1
tags 57 1.4 2.2 0 78 22.0 18.7 1 78 22.8 17.8
titl 0 0.4 0.7 1 14 6.0 3.1 1 14 6.0 3.1
tran 0 1.0 2.9 1 809 180.8 143.6 1 809 180.8 143.6

Source: The Authors
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Figure 6.1: Generation process of embedding sets for use in the Classic and Deep Learn-
ing algorithms
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6.1.2 Classifiers

We submitted our features to the Classic, Deep Learning, and Transfer Learning

models covered in Section 2.3. To run these classifiers, we used two different tools (envi-

ronments): Weka for the Classic and Deep Learning models, and Google Colab2 for the

Transfer Learning models. The implementations we used in this study for the Classic al-

gorithms on Weka are presented in Table 6.6. Some of the classifiers have different names

from the algorithms they implement.

Table 6.6: Weka classifiers used for the Classic algorithms

Classic Algorithm Implementation

Naive Bayes <weka.classifiers.bayes.NaiveBayes>
Logistic Regression <weka.classifiers.functions.SimpleLogistic>
SVM <weka.classifiers.functions.SMO>
C4.5 <weka.classifiers.trees.J48>
Random Forest <weka.classifiers.trees.RandomForest>

Source: The Authors

Weka does not have the Deep Learning algorithms built-in. However, there is a

package named WekaDeeplearning4j (LANG et al., 2019) that can be installed through

2<https://colab.research.google.com/>

https://colab.research.google.com/
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Weka’s package manager to fill this gap. This package expands Weka’s original set of

classifiers with Deep Learning algorithms based on Deeplearning4j3, enabling the user to

define their architecture with the different algorithms and layers available.

For the Deep Learning classifiers, we used two main architectures: W-CNN and

W-LSTM. Additionally, we defined two others based on the main ones: M-CNN and

M-LSTM. While the main ones use the "Word Embedding Ready" text from Figure 5.2

as input, the M-CNN and M-LSTM architectures use the manually calculated embed-

ding described in the Subsection 6.1.1 as input. To process it, the W-CNN and W-LSTM

architectures convert each word in the instances to word embedding using a CnnTextEm-

beddingInstanceIterator and RnnTextEmbeddingInstanceIterator, respectively. For each

iterator, we provided the trained embedding, mini-batch size = 50 (choice based on Kim

(2014)), truncation length = 810, and no stop word removal (Dl4jNull scheme), as we

already removed stop words during pre-processing. The truncation length was chosen

based on the longest sentence in our corpus, which comes from the transcriptions feature

set. The default token pre-processor and tokenizer factory provided by Weka were used.

For the M-CNN, we used a ConvolutionInstanceIterator, with same mini-batch size as

the others, desired width = 300, desired height = 1, and desired number of channels = 1.

Finally, for the M-LSTM, we used a DefaultInstanceIterator with a mini-batch size = 8.

Our W-CNN uses a similar architecture and parameter values of the network built

by Kim (2014) and is illustrated in Figure 5.4. We used a Dl4jMlpClassifier, to which we

added three convolution layers with the number of rows in the kernel (k) varying from one

to three for each of them. We chose these numbers to keep the same range used to process

word n-grams in our study. All the three convolution layers share the following other

parameter values: number of columns in kernel = 300 (the same number of dimensions of

the embedding), number of filters = 100, convolution mode = "SAME", stride = 1x300,

no padding (0x0), and ReLU as the activation function. To merge the feature maps from

the three convolution layers, we added a max-pooling layer (GlobalPoolingLayer with

pooling type = "MAX") after them. Next, we added a fully connected layer with dropout

= 0.5 to prevent over-fitting (DenseLayer followed by DropoutLayer on Weka), number of

outputs = 100, ReLU as the activation function. Finally, we have an output layer with two

outputs (one for each of our classes) and Softmax as the activation function. Additionally,

we set L2 regularization factor = 0.0003 through the network configuration options of the

classifier on Weka.

3<https://deeplearning4j.org/>

https://deeplearning4j.org/
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The M-CNN only differs from the W-CNN by the configuration of the convolution

layers. Instead of three layers, there is a single convolution layer, as can be seen in Fig-

ure 5.5, with number of filters = 300, kernel = 300x1, stride = 1x1. The other parameters

are the same as in the W-CNN. This configuration enabled the convolution layer to use

the entire embedding of each instance to calculate the weights of the filters, providing

the same output size as the W-CNN to the other layers in the network. We tried to set a

different kernel size, but that performed very poorly.

The architecture we employed in our W-LSTM model is shown in Figure 5.6. We

applied a similar configuration as in Gao, Kuppersmith and Huang (2017): one LSTM

layer with hyperbolic tangent activation function, sigmoid function for the gate activation,

and the number of outputs = 100. We used the GravesLSTM implementation provided by

Weka for the LSTM layer, which implements the vanilla LSTM model presented in Greff

et al. (2017). Next, we used a RnnOutputLayer for the output layer with binary cross-

entropy loss function (LossBinaryXENT), sigmoid activation function, and the number

of outputs = 2. This model, differently from the W-CNN, was built using a RnnSequence-

Classifier, for which we also set the backpropagation through time = 50 for both backward

and forward parameters. These parameters are used to reduce the complexity when updat-

ing weights in RNNs when the sequences under processing are generally long. The value

of these parameters was set according to the recommendation on DL4J page4. Addition-

ally, we used the network configuration option in the classifier to set dropout = 0.2, as

in Gao, Kuppersmith and Huang (2017). The other parameters were left with their default

values.

The last Deep Learning architecture, the M-LSTM, used the manually calculated

embedding to learn how to identify offensive videos. Differently from the W-LSTM ar-

chitecture defined previously, the M-LSTM used a Dl4jMlpClassifier, since the RnnSe-

quenceClassifier could only handle text. That also means we did not have to set the back-

propagation through time parameters, but we still used the network configuration option

to set dropout = 0.2. We used the GravesLSTM implementation for the LSTM layer with

the same configuration as in the W-LSTM model. Also, we used an OutputLayer with the

same setup as the RnnOutputLayer in the W-LSTM. The architecture of this network is

represented in Figure 5.7.

4<https://deeplearning4j.org/docs/latest/deeplearning4j-nn-recurrent#tbptt>

https://deeplearning4j.org/docs/latest/deeplearning4j-nn-recurrent#tbptt
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6.1.3 Evaluation Metrics

We calculated all the metrics described in Section 2.4, namely kappa (KPP), true

positive rate (TPR), weighted precision (PRE), weighted recall (REC), weighted F-measure

(F1), and area under the ROC curve (AUC). To keep in line with the existing research on

offensive content detection (CHATZAKOU et al., 2017; PAVLOPOULOS; MALAKA-

SIOTIS; ANDROUTSOPOULOS, 2017; NOBATA et al., 2016), we decided to use AUC

to elect the best result achieved by the combination of algorithm and feature representa-

tion. Still, other evaluation metrics can be informative. The number of instances gives the

weights in the weighted metrics in the classes. Also, we used ten-fold cross-validation

in our experiments. Therefore, the measures reported are the result of the average of the

real values obtained for each fold. So, metrics that rely on others, such as F1, might not

assume the same value that they would get using their equations.

6.1.4 Experimental Procedure

While the statistic feature set was submitted only to the Classic classifiers, the tex-

tual features were submitted to all the classifiers in the three categories covered previously.

However, the Deep Learning and Transfer Learning classifiers did not use the n-gram

features. This proceeding was performed for both OffVidPT-2 and OffVidPT-3.

The Transfer Learning classifiers used only the textual features sets after pre-processing.

These models do not require removing stop word or punctuation, as they were already

pre-trained to use them. The features, classifiers, and datasets combinations amounted

to a total of 434 experimental runs, not considering the ensembles. The distribution of

features and classifiers is shown in Figure 6.2. We used ten-fold cross-validation in our

experiments and averaged the results of the iterations to get to a final result and selected

the runs with the best score for AUC for each feature set.

Additionally, we created many independent ensemble classifiers (ROKACH, 2010)

in an attempt to outperform the results of the other classifiers used in isolation. We used

this type of ensemble to keep our study aligned with other works that also used the same

technique (PELLE; ALCÂNTARA; MOREIRA, 2018; PETE; L., 2015). Our ensembles

were created by combining the best result obtained for each feature set. In other words,

there are five features in each ensemble, except for Deep Learning ensemble, since we

did not use the statistic feature set in the Deep Learning algorithms. Each ensemble is
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Figure 6.2: Architecture employed in the experiments for offensive video detection
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identified by the association of a feature representation and a classifier category: Classic

n-gram ensemble, Classic word embedding ensemble, and Deep Learning word embed-

ding ensemble. These three ensembles were created for each dataset (OffVidPT-2 or

OffVidPT-3).

To create an ensemble, we took the classification results of its group, ranked them

by the best AUC, and grouped them by feature set. Then, we used the classifier and feature

representation of the best result to generate the predictions of the instances in the training

data for each feature set. Next, we combined these predictions in an ensemble represen-

tation, where each feature is the predictions for a specific feature set. Also, aiming at

analyzing the impact of each feature set in the result of the ensemble classification, we

created subsets out of the full ensemble representations by excluding one single feature at

a time. This procedure, called feature ablation, resulted in a total of 17 ensemble repre-

sentations, which we submitted to all the five Classic algorithms and two Deep Learning

models (M-CNN and M-LSTM), adding 238 runs to our study, amounting to 672 in total.

Thus, the input to the classifiers in the ensemble experiments is a combination of pre-

dictions generated by other classifiers. We changed the kernel size and instance iterator

width of the W-CNN according to the ensemble representation size to enable the classi-



61

fier to work. All the other configurations in this classifier and the others were kept the

same. As in the other experiments, we used ten-fold cross-validation for the ensemble

experiments and selected the best one using the arithmetic average of the folds results.

Figure 6.3 shows this procedure of processing the classifier results to create the ensemble

representations and submission of these representations to the classifiers.

Figure 6.3: Architecture employed in the experiments with the ensemble classifier for
offensive video detection

Classic and
Deep Learning

Results

 Best Results
(per feature set)

Generate
Predictions

Predictions
(for each feature set)

sort by best result and
group by feature set

Ensemble
Representation

N
ai

ve
 B

ay
es

Lo
gi

st
ic

 R
eg

re
ss

io
n

R
an

do
m

 F
or

es
ts

C
4.

5

SV
M

M
-L

ST
M

M
-C

N
N

Classic Classifiers

Deep Learning
Classifiers

Source: The Authors

6.2 Results

In this Section, we present the results achieved in our experiments and answer our

research questions. As mentioned before, the results are given by the average of the scores

obtained by each fold using ten-fold cross-validation. Table 6.7a presents the best results

for the experiments using the feature sets for OffVidPT-2. The results are grouped

by the type of learning algorithm, feature representation, and feature set. Also, the "all"

feature set corresponds to the ensemble experiment where the features correspond to the

predictions of all feature sets. Table 6.8a presents the results for the experiments with

the Classic n-gram ensemble, i.e., ensemble representation built using the best results of

experiments using Classic algorithms and n-gram. Table 6.9a reports the best experiment

results using the Classic word embedding ensemble instead. Table 6.10a shows the results

for the Deep Learning word embedding ensemble, the last one for OffVidPT-2. The

statistic feature set was included in the ensemble results of Tables 6.8a and 6.9a. Also,

the best score achieved for each metric in each table is highlighted.

For the ensemble results tables, we report the best classifiers according to their
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AUC. Some classifiers achieved the same AUC, and, for this reason, we present all of

them, enabling a comparison according to the other metrics. Also, those tables show the

result for the ensemble when the predictions from all feature sets were used (all), and the

results for the case when we excluded one of the feature set predictions (all - <excluded

feature set>).

The results are presented similarly for OffVidPT-3. Table 6.7b presents the best

results grouped by algorithm category, feature representation, and feature set, including

the "all" feature set for the ensemble experiments. Tables 6.8b, 6.9b, and 6.10b present

the results for the Classic n-gram, Classic word embedding, and Deep Learning word

embedding ensembles, respectively. These results show the best classifiers according to

the achieved AUC.

Intuitively, we were expecting the results to be higher in OffVidPT-3, as it had

a full annotator agreement. However, our results showed that scores were very similar.

The larger number of instances in the positive class presented in OffVidPT-2 seemed to

provide more evidence for the learning model to identify such cases and thus compensate

for smaller agreement in the annotations.

6.2.1 Is it possible to accurately classify whether a video has offensive content just

by analyzing its textual features?

The best scores achieved in our experiments were 0.80 in AUC and 0.75 in F1

for Classic n-gram ensemble for OffVidPT-3 (Table 6.8b). In an analogous binary

classification of offensive content on texts, the organizers of OffensEval-2019 (subtask

A) reported the best scores in hate speech detection to be around 0.83 in F1 (ZAMPIERI

et al., 2019). On a similar task, the best results on HatEval (subtask A) (BASILE et al.,

2019b) were considerably lower for English (0.65) and slightly better in Spanish (0.76).

Although the results we report here cannot be compared directly to any of those SemEval

tasks, their scores give us an indication of the expected classification quality on a sim-

ilar domain with the same number of classes. In this sense, our results are within the

range achieved in HatEval. This finding may indicate that, while there is still room for

improvement, textual features can be used for offensive video detection.
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6.2.2 Which set of features is the most helpful in detecting offensive content?

Overall, looking at the best results for each individual set of features, we find

AUC scores ranging between 0.70 and 0.76 in most cases. When ensembles are used to

combine the predictions of all feature sets, we notice a slight improvement for Classic n-

gram and Deep Learning word embedding ensembles results for OffVidPT-2. On the

other hand, the Classic word embedding ensemble result showed a slight decrease. For

the OffVidPT-3, the AUC improved by 3% for the Classic n-gram ensemble with all

feature sets and 5% when the description feature set was removed (Table 6.8b), the most

significant improvement. The other ensembles of all feature sets had a slight decrease.

However, when we analyze the kappa, precision, recall, and F1 metrics, the ensembles

generally increase their scores, which might be desirable in some situations.

Looking at feature representation in Tables 6.7a and 6.7b, we observed that n-

gram performs slightly better than word embedding for all feature sets and metrics, except

for the descriptions feature set (AUC not included in OffVidPT-2). However, word

embeddings are better with Deep Learning algorithms, outperforming all results for their

use in Classic algorithms for OffVidPT-2 (Table 6.7a) and most of the results for their

use with Classic algorithms for OffVidPT-3 (except for precision for descriptions and

TPR), as can be seen in Table 6.7b. GloVe was the best word embedding representation

for both datasets for most textual feature sets. Wang2Vec ranked second, followed by

FastText and Word2Vec. For n-gram representations, character n-gram and word unigram

are the most helpful for the classification, while word n-gram (wngram) did not achieve

the best result for any textual feature set.

The statistic feature set, which was only submitted to the Classic algorithms, did

not score close to the best results, but it still outperformed some results achieved using

other feature sets (Table 6.7a and 6.7b). Nevertheless, this feature set contributed to im-

proving the scores in the ensemble experiments by 1% for Classic n-gram ensemble and

2% for Classic word embedding ensemble (Tables 6.8a, 6.8b, 6.9a, and 6.9b).

When combined in ensemble representations, the feature sets did not increase the

results in all the cases compared to their subgroup (feature set results used to create the

ensemble). The simple combination of all feature sets provided a slight increase for AUC

for Classic n-gram and Deep Learning word embedding ensembles for OffVidPT-2,

and Classic n-gram ensemble for OffVidPT-3. However, Tables 6.8a and 6.8b show

that removing the descriptions feature set from the Classic n-gram ensemble for both



64

OffVidPT-2 and OffVidPT-3 increased the AUC, maybe because the descriptions

are long and provided by the user, increasing the chance to hide offensive content. The

most significant improvement was observed for OffVidPT-3, where the AUC increased

by 5%. As can be seen in Tables 6.9a and 6.9b, removing the tags feature helped to

improve the AUC. However, this would still not outperform the AUC achieved by the title,

and the tags feature sets alone in Classic word embedding experiments for OffVidPT-2

and OffVidPT-3, respectively.

6.2.3 Which class of algorithms performs better at detecting offensive videos?

Overall, Deep Learning models and some ensemble learning had the best results,

with the two highest AUC achieved using the M-CNN classifier with the Classic n-gram

ensemble for OffVidPT-3: 0.80 for "all - desc" and 0.79 for "all - tags" ensemble

representations (Table 6.8b). The Transfer Learning algorithms outperformed Classic

algorithms when processing the transcription feature set. However, the Classic algorithms

seemed to be able to learn better from the description, tags, and title feature sets than

the Transfer Learning algorithms. The other CNN classifier, W-CNN, achieved almost

all of the best results when using the textual feature sets separately, as can be seen in

Tables 6.7a and 6.7b. The only exception is that M-LSTM performed better than W-CNN

when processing the descriptions feature set for OffVidPT-2. This performance shows

that, although the CNN core idea is designed for image processing, it can outperform

other Classic and Deep Learning algorithms when used for NLP.

The W-LSTM classifier did not score the best result for any of the experiments.

The M-LSTM, on the other hand, scored well for the ensemble experiments. For every

ensemble representation, the M-LSTM scored the best result for at least one of the feature

ablation experiments, and, when it did not achieve the best AUC, it always scored close

to the best. We observed this same behavior for M-CNN in the ensemble experiments,

alongside with the Naive Bayes classifier.

The Random Forest classifier outperformed Naive Bayes in most of the experi-

ments with Classic algorithms. For the statistic feature set, for example, Random Forest

achieved the best results for both datasets. However, although Naive Bayes scored sec-

ond in the textual feature sets experiments, it produced many of the best results in the

ensemble experiments, outperforming Random Forest in this case. The Logistic Regres-

sion classifier was the best for transcriptions using cngram features for OffVidPT-3
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(Table 6.7b) but did not outperform Random Forests and Naive Bayes for the other ex-

periments with textual feature sets. On the other hand, the Logistic Regression algorithm

was able to achieve some of the best AUC results in the ensemble experiments, but usually

scoring behind in the other metrics. The C4.5 and SVM algorithms, on the other hand,

did not score as good as the other ones in our experiments.

When comparing the Transfer Learning classifiers, BERT outperformed most of

the results achieved by ALBERT. Both classifiers achieved the same AUC and F1 for

transcriptions in OffVidPT-3 (Table 6.7b), but ALBERT achieved better precision and

kappa. In comparison to the Classic and Deep Learning classifiers, the Transfer Learning

models scored some of the best precision, recall, and F1 results for OffVidPT-2. For

the OffVidPT-3, on the other hand, BERT and ALBERT were not able to achieve any

of the best results, scoring poorly for precision, recall, and F1. The only exception, in

this case, is for AUC, where BERT and ALBERT scored close to the best results.

6.3 Limitations

Since the creation of datasets for classification is a supervised task, we relied on

human and their bias. Providing guidelines and definitions for annotators is helpful and

extremely important. However, people still might judge instances using their beliefs or

feelings, affecting the quality of their annotations and the dataset in general. Learning

algorithms, especially Deep Learning models, expect a large volume of data to be able to

extract features and improve their performance. The number of instances in our datasets

probably prevented achieving better results. Also, algorithms used in our experiments

had their parameters set to their default values, and no tuning was done, which could have

contributed to better results.
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Table 6.7: Best results by algorithm category, feature representation, and feature set
(a) OffVidPT-2 dataset

Feature Best KPP TPR AUC PRE REC F1Repres. Set Repres. Classifier

C
la

ss
ic

- stat - R. Forest 0.26 0.52 0.68 0.64 0.65 0.64

n-gram

desc cngram R. Forest 0.19 0.36 0.72 0.63 0.63 0.60
tags unigram N. Bayes 0.33 0.82 0.74 0.70 0.65 0.65
titl cngram N. Bayes 0.29 0.74 0.74 0.67 0.64 0.64
tran unigram R. Forest 0.31 0.61 0.73 0.67 0.67 0.66
all ensemble N. Bayes 0.35 0.59 0.75 0.69 0.69 0.68

word
embedding

desc Wang2Vec R. Forest 0.26 0.45 0.71 0.65 0.66 0.64
tags Wang2Vec R. Forest 0.23 0.40 0.71 0.64 0.65 0.62
titl Wang2Vec R. Forest 0.19 0.38 0.72 0.62 0.63 0.61
tran FastText R. Forest 0.20 0.37 0.67 0.62 0.63 0.61
all ensemble N. Bayes 0.29 0.52 0.70 0.66 0.66 0.66

D
ee

p
L

.

word
embedding

desc GloVe M-LSTM 0.35 0.60 0.74 0.69 0.69 0.68
tags GloVe W-CNN 0.37 0.55 0.77 0.71 0.71 0.70
titl Wang2Vec W-CNN 0.31 0.60 0.75 0.67 0.66 0.66
tran Wang2Vec W-CNN 0.31 0.49 0.77 0.68 0.68 0.67
all ensemble M-LSTM 0.43 0.69 0.78 0.73 0.72 0.72

Tr
an

sf
er

L
. desc BERT 0.24 0.76 0.70 0.67 0.76 0.71

tags BERT 0.23 0.80 0.69 0.67 0.80 0.73
titl ALBERT 0.34 0.73 0.74 0.73 0.73 0.73
tran BERT 0.32 0.77 0.76 0.71 0.77 0.73

(b) OffVidPT-3 dataset

Feature Best KPP TPR AUC PRE REC F1Repres. Set Repres. Classifier

C
la

ss
ic

– stat – R. Forest 0.30 0.77 0.71 0.67 0.67 0.67

n-gram

desc unigram N. Bayes 0.24 0.79 0.67 0.65 0.65 0.64
tags cngram R. Forest 0.26 0.93 0.73 0.70 0.69 0.64
titl unigram N. Bayes 0.35 0.82 0.75 0.70 0.70 0.69
tran cngram L. Regre. 0.38 0.87 0.72 0.72 0.72 0.70
all ensemble M-CNN 0.46 0.85 0.78 0.76 0.75 0.74

word
embedding

desc Wang2Vec R. Forest 0.25 0.92 0.71 0.70 0.68 0.64
tags GloVe R. Forest 0.20 0.91 0.73 0.68 0.66 0.61
titl FastText R. Forest 0.23 0.88 0.69 0.67 0.67 0.63
tran GloVe R. Forest 0.23 0.91 0.69 0.69 0.67 0.63
all ensemble N. Bayes 0.35 0.86 0.71 0.72 0.71 0.69

D
ee

p
L

. word
embedding

desc GloVe W-CNN 0.29 0.85 0.74 0.69 0.69 0.66
tags Word2Vec W-CNN 0.37 0.84 0.78 0.71 0.71 0.70
titl GloVe W-CNN 0.34 0.85 0.75 0.70 0.70 0.69
tran GloVe W-CNN 0.31 0.88 0.75 0.70 0.70 0.67
all ensemble M-CNN 0.31 0.84 0.75 0.69 0.69 0.68

Tr
an

sf
er

L
. desc BERT 0.30 0.40 0.71 0.63 0.50 0.54

tags BERT 0.34 0.49 0.71 0.70 0.49 0.56
titl BERT 0.32 0.52 0.70 0.62 0.55 0.57
tran ALBERT 0.37 0.52 0.76 0.67 0.52 0.58
tran BERT 0.35 0.57 0.76 0.63 0.57 0.58

Source: The Authors
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Table 6.8: Feature ablation experiment for the Classic algorithms using n-grams
(a) OffVidPT-2 dataset

Ensemble Repr. Best Classifier KPP TPR AUC PRE REC F1
all Naive Bayes 0.35 0.59 0.75 0.69 0.69 0.68

all - stat Naive Bayes 0.36 0.66 0.74 0.70 0.69 0.69
all - stat M-LSTM 0.38 0.73 0.74 0.71 0.69 0.69

all - desc Naive Bayes 0.38 0.69 0.75 0.71 0.70 0.70
all - desc M-CNN 0.38 0.70 0.75 0.71 0.69 0.69

all - tags Naive Bayes 0.31 0.59 0.72 0.67 0.67 0.66
all - tags M-CNN 0.32 0.60 0.72 0.68 0.67 0.67
all - tags M-LSTM 0.33 0.62 0.72 0.68 0.68 0.67

all - titl Naive Bayes 0.38 0.65 0.73 0.70 0.70 0.69
all - titl M-LSMT 0.37 0.66 0.73 0.70 0.69 0.69
all - titl Logistic Regression 0.33 0.57 0.73 0.68 0.68 0.67

all - tran Naive Bayes 0.37 0.68 0.74 0.70 0.69 0.69
(b) OffVidPT-3 dataset

Ensemble Repr. Best Classifier KPP TPR AUC PRE REC F1
all M-CNN 0.46 0.85 0.78 0.76 0.75 0.74

all - stat M-CNN 0.43 0.82 0.77 0.75 0.74 0.73

all - desc M-CNN 0.46 0.82 0.80 0.76 0.75 0.74

all - tags M-CNN 0.48 0.84 0.79 0.77 0.76 0.75

all - titl M-LSTM 0.43 0.77 0.77 0.74 0.73 0.73
all - titl M-CNN 0.39 0.81 0.77 0.72 0.72 0.71

all - tran Naive Bayes 0.33 0.82 0.70 0.69 0.69 0.68
all - tran M-LSTM 0.29 0.78 0.70 0.67 0.67 0.66

Source: The Authors
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Table 6.9: Feature ablation experiment for the Classic algorithms using word embeddings
(a) OffVidPT-2 dataset

Ensemble Repr. Best Classifier KPP TPR AUC PRE REC F1
all Naive Bayes 0.29 0.52 0.70 0.66 0.66 0.66

all - stat Naive Bayes 0.31 0.49 0.68 0.68 0.68 0.67

all - desc Naive Bayes 0.30 0.50 0.67 0.67 0.67 0.66
all - desc M-LSTM 0.21 0.48 0.67 0.63 0.62 0.62

all - tags Naive Bayes 0.31 0.51 0.71 0.67 0.68 0.66

all - titl M-CNN 0.24 0.44 0.70 0.65 0.65 0.63
all - titl Naive Bayes 0.31 0.52 0.70 0.67 0.67 0.67

all - tran Naive Bayes 0.32 0.53 0.69 0.68 0.68 0.67
all - tran Logistic Regression 0.25 0.43 0.69 0.65 0.65 0.63
all - tran M-LSTM 0.30 0.54 0.69 0.67 0.67 0.66

(b) OffVidPT-3 dataset

Ensemble Repr. Best Classifier KPP TPR AUC PRE REC F1
all Naive Bayes 0.35 0.86 0.71 0.72 0.71 0.69
all M-LSTM 0.34 0.80 0.71 0.70 0.70 0.69
all Logistic Regression 0.28 0.87 0.71 0.70 0.68 0.66

all - stat Naive Bayes 0.27 0.85 0.69 0.68 0.68 0.65
all - stat M-LSTM 0.34 0.76 0.69 0.69 0.69 0.68

all - desc Logistic Regression 0.30 0.86 0.70 0.70 0.69 0.67
all - desc M-LSTM 0.30 0.75 0.70 0.68 0.67 0.66
all - desc Naive Bayes 0.33 0.88 0.70 0.72 0.71 0.68
all - desc M-CNN 0.29 0.86 0.70 0.69 0.69 0.67

all - tags M-CNN 0.35 0.87 0.72 0.72 0.71 0.69

all - titl M-LSTM 0.33 0.77 0.71 0.69 0.69 0.68
all - titl Naive Bayes 0.31 0.89 0.71 0.71 0.70 0.67
all - titl M-CNN 0.30 0.88 0.71 0.70 0.69 0.67

all - tran M-LSTM 0.28 0.78 0.69 0.67 0.67 0.65
all - tran Logistic Regression 0.30 0.89 0.69 0.71 0.70 0.67
all - tran Naive Bayes 0.31 0.88 0.69 0.70 0.70 0.67
all - tran M-CNN 0.31 0.87 0.69 0.70 0.70 0.67

Source: The Authors
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Table 6.10: Feature ablation experiment for the Deep Learning algorithms using word
embeddings

(a) OffVidPT-2 dataset

Ensemble Repr. Best Classifier KPP TPR AUC PRE REC F1
all M-LSTM 0.43 0.69 0.78 0.73 0.72 0.72
all M-CNN 0.40 0.65 0.78 0.72 0.71 0.71
all Random Forest 0.37 0.53 0.78 0.71 0.71 0.69

all - desc M-CNN 0.36 0.56 0.77 0.70 0.70 0.69

all - tags M-LSTM 0.35 0.59 0.75 0.69 0.69 0.68
all - tags M-CNN 0.33 0.61 0.75 0.68 0.67 0.67

all - titl M-CNN 0.36 0.59 0.76 0.70 0.69 0.69

all - tran M-LSTM 0.37 0.59 0.76 0.70 0.70 0.70
all - tran Naive Bayes 0.39 0.59 0.76 0.71 0.71 0.70

(b) OffVidPT-3 dataset

Ensemble Repr. Best Classifier KPP TPR AUC PRE REC F1
all M-CNN 0.31 0.84 0.75 0.69 0.69 0.68

all - desc Naive Bayes 0.36 0.88 0.73 0.72 0.72 0.70
all - desc M-LSTM 0.35 0.73 0.73 0.70 0.69 0.68
all - desc Random Forest 0.31 0.83 0.73 0.69 0.69 0.67

all - tags M-LSTM 0.33 0.73 0.71 0.70 0.68 0.67
all - tags Naive Bayes 0.31 0.87 0.71 0.71 0.70 0.67
all - tags Random Forest 0.26 0.83 0.71 0.68 0.67 0.64

all - titl M-CNN 0.31 0.86 0.73 0.70 0.69 0.67

all - tran M-CNN 0.35 0.84 0.74 0.71 0.70 0.69

Source: The Authors
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7 CONCLUSION AND FUTURE WORK

In this work, we investigated the problem of detecting offensive videos. The dis-

semination of offensive content on the Web reaches many platforms, especially where

users can create their content, such as social networks. Instead of keeping a friendly envi-

ronment, some users use the platforms to publish offensive content, harass other people,

and disseminate hate. The posts may be presented in different formats such as images,

audio, and video, but the text is the most used one thanks to the diffusion of comment

sections in many platforms and websites. Also, the offensive content can be classified

in different categories according to the target audience of the attack, frequency of the

attacks, and vocabulary employed.

Machine learning using supervised learning is the primary method used to detect

offensive content on the Web. Past works used Classic algorithms, such as Naive Bayes,

to approach the problem. Later, Deep Learning algorithms started to be widely used in

the same task with complex and deep neural networks, such as CNN and LSTM, due

to their improvement to earlier results. More recently, a new and promising category of

algorithms called Transfer Learning was developed, and researchers started to apply them

to the offensive content detection problem. Since the primary input of these algorithms

is text, researchers used NLP techniques to turn textual information into meaningful data

to the computer. Two methods, widely used across other works, are n-gram of words and

characters, and word embedding.

We studied offensive video detection, as previous works limited their approach

mostly to comments associated with videos. Our goal was to analyze textual features ex-

tracted from the video itself, such as transcription, and other features that are provided by

the publisher but are still directly related to the video, such as title, description, and tags.

More specifically, we wanted to know it is possible to accurately classify whether a video

has offensive content just by analyzing its textual features, which features are the most

helpful in detecting offensive content, and which class of algorithms performs better at

detecting offensive videos. Moreover, we wanted to analyze how Classic, Deep Learning,

and Transfer Learning algorithms would perform with these features. Additionally, we

selected Portuguese as the content language to be studied, as most of the works target

content in English, leaving Portuguese underrepresented in this type of problem.

We collected and annotated a dataset of 400 videos in Portuguese from YouTube,

due to its popularity and content availability in Portuguese. We extracted features sets
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from the videos and used them in Classic (Naive Bayes, Logistic Regression, SVM, C4.5,

and Random Forest), Deep Learning (CNN and LSTM), and Transfer Learning (BERT

and ALBERT) algorithms. More specifically, we extracted one statistical feature set and

four textual feature sets from the dataset (description, tags, title, and transcription). We

also published these features to contribute to this research field by enabling other re-

searchers to reproduce our experiments or evolve them. We extracted and used n-gram

and word embedding from the textual feature sets to use as input in the Classic and Deep

Learning algorithms. The Transfer Learning algorithms used raw but standardized text

as they can process it to create their internal representations. Additionally, we created

ensemble-based classifiers in an attempt to improve our results. The quality of the clas-

sifiers in our work was measured using the AUC, but we also reported other metrics for

analysis.

The results of our experiments show a significant performance for the Deep Learn-

ing algorithms, especially for the CNN architectures using word embedding, outperform-

ing the other categories. The Transfer Learning models achieved better AUC than Classic

models for transcriptions. However, the best results for the other feature sets using Clas-

sic algorithms usually ranked better than the best ones for the same feature sets using

Transfer Learning.

When compared against word embedding, n-gram achieved better results with

Classic algorithms using character n-gram and word unigram. However, word embedding

demonstrated to be more helpful in Deep Learning than in Classic algorithms. Addition-

ally, we found GloVe and Wang2Vec to be the best-trained embeddings to most of our

textual feature sets. We also did not find a pattern for the performance of each of these

feature sets. Our results show that the helpfulness of each feature set varies according

to the algorithm used. The ensemble-based experiments added little improvement to the

best results using feature sets alone. Still, feature ablation experiments in the ensembles

showed that some feature sets might play a negative role in the results.

Overall, our best result was 0.80 for AUC and 0.75 for F1, reached with the

ensemble-based classifier using Classic algorithms and n-gram. These results are in the

range of results achieved in competitions of offensive content identification with binary

classification. This finding means that, although there is still room for improvement, tex-

tual features can be used to identify offensive content on the Web.

We performed our study on offensive video detection with a set of classifiers and

features. However, other possibilities can be explored in this matter. The dataset, for
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example, can be expanded with more annotated instances. We believe our scores can

be increased by a higher number of cases in the dataset, since they would provide more

data for the classifiers, enabling them to extract more information and possibly improve

the classification quality. The data source can be expanded to other platforms other than

YouTube, such as Facebook, Twitter, Instagram and even Netflix, for example. Also, the

dataset can be extended to other languages to compare the results to the ones achieved for

Portuguese.

Besides the dataset, the feature sets themselves can be expanded. One possibility

could be the union of all textual feature sets to provide a single document for each video.

Another possibility could be analyzing the comments videos. Although n-gram and word

embedding are the most popular features generated from text, other features used in NLP

can be extracted and used by the classifiers. Also, the statistic feature set can be expanded

with additional information from the data initially retrieved during the dataset creation.

New features can also be extracted from the video itself, like by processing the frames

and thumbnails. Additionally, new combinations can be tested for the ensemble-based

classification, not limited to subgroups of feature representations and classifiers in our

work.

Since we did minimal parameter tuning, future work can also explore new combi-

nations of values for those parameters in an attempt to improve the classification results.

The algorithms employed in our study have many parameters that can be fine-tuned, but

some techniques can help with this process, such as grid search. This task is time and

resource consuming, but it can yield good improvement for the trained models.

Future work may also explore the employment of different classifiers and archi-

tectures. New deep neural networks can be created by combining different layers and

algorithms to create robust classifiers. Other Transfer Learning classifiers, such as ULM-

FiT (HOWARD; RUDER, 2018), can also be employed in future work. Different Classic

classifiers can be experimented and even combined with methods such as ensemble-based.

These tests would provide performance baselines for other studies and comparisons anal-

ysis with the other classifiers in our study.
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APPENDIX A — RESUMO EXPANDIDO EM PORTUGUÊS: UM ESTUDO

SOBRE DETECÇÃO DE VÍDEO OFENSIVO

Usuários da Web em todo o mundo produzem e publicam grandes volumes de da-

dos de vários tipos, como texto, imagens e vídeos. Para manter um ambiente amigável e

respeitoso, as plataformas nas quais esse conteúdo é publicado geralmente impedem os

usuários de publicar conteúdo ofensivo e contam com moderadores para filtrar as posta-

gens. No entanto, esse método é insuficiente devido ao alto volume de publicações. A

identificação de conteúdo ofensivo pode ser realizada automaticamente usando apren-

dizado de máquina, mas precisa de um conjunto de dados anotado. Embora existam

conjuntos de dados disponíveis para detecção de texto ofensivo, não existem conjuntos

de dados para vídeos. Além disso, a maioria dos conjuntos de dados publicados processa

dados em inglês, deixando português e outras linguagens com pouca representatividade.

Neste trabalho, investigamos o problema da detecção de vídeo ofensivo. Nós montamos,

descrevemos e publicamos um conjunto de dados de vídeos em português. Além disso,

realizamos experimentos usando classificadores populares de aprendizado de máquina

usados na detecção de linguagem ofensiva e relatamos nossas descobertas, juntamente

com várias métricas de avaliação. Os resultados dos nossos experimentos mostram um

desempenho significante para algoritmos de Depp Learning, especialmente para arquite-

turas de CNN utilizando word embedding. Os modelos de Transfer Learning atingiram

melhores AUC do que os modelos Clássicos para transcrições. Entretanto, os melhores

resultados para outros conjuntos de atributos utilizando algoritmos Clássicos geralmente

foram melhores que os melhores para os mesmos conjuntos de atributos utilizando Trans-

fer Learning.

Os melhores resultados obtidos nos nossos experimentos foram 0,80 para AUC

e 0,75 para F1 para o ensemble Clássico com n-grama para OffVidPT-3. Em tarefas

com objetivo similar (classificação binária de conteúdo ofensivo em texto), pesquisadores

reportaram resultados similares. Embora os resultados que reportamos não possam ser

comparados diretamente com esses dessas tarefas, os resultados delas nos dão um indica-

tivo da qualidade de classificação esperada em um domínio semelhante com o mesmo

número de classes. Nesse sentido, nossos resultados estão dentro da faixa dos resultados

alcançados nessas tarefas. Essa descoberta pode indicar que, enquanto ainda há espaço

para melhoramentos, atributos textuais podem ser utilizados para detecção de vídeo ofen-

sivo.
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Em geral, ao observar os melhores resultados para cada conjunto de atributos, nós

encontramos valores de AUC variando entre 0,70 e 0,76 na maioria dos casos. Quando en-

sembles são utilizados para combinar as predições de todos os conjuntos de atributos, nós

percebemos uma pequena melhora para os resultados dos ensembles Clássicos usando n-

grama e Deep Learning utilizando word embedding para OffVidPT-2. Por outro lado,

o ensemble Clássico com word embedding apresentou uma leve redução no desempenho.

Para OffVidPT-3, a AUC melhorou 3% para o ensemble Clássico usando n-grama com

todos os conjuntos de atributos e 5% quando o atributo descrição foi removido, a mel-

hora mais significativa. Os outros ensembles de todos os conjuntos de atributos tiveram

uma pequena baixa no desempenho. Entretanto, quando analisamos as outras métricas, os

ensembles geralmente aumentam seus resultados, o que pode ser desejável em algumas

situações.

Observando as representações de n-grama e de word embedding, observamos que

n-grama apresenta um desempenho um pouco melhor que word embedding para todos

os conjuntos de atributos e métricas, exceto para o conjunto de atributos de descrição

(desconsiderando AUC para OffVidPT-2). No entanto, word embedding é melhor com

os algoritmos de Deep Learning, superando todos os resultados para uso nos algoritmos

Clássicos para OffVidPT-2 e a maioria dos resultados para uso com algoritmos Clássic

para OffVidPT-3. GloVe foi a melhor representação de word embedding nos dois

conjuntos de dados para a maioria dos conjuntos de atributos textuais. Wang2Vec ficou

em segundo lugar, seguido por FastText e Word2Vec. Para representações de n-grama,

n-grama de caractere e unigrama de palavra foram os mais úteis para a classificação,

enquanto n-grama de palavra (wngram) não obteve o melhor resultado para nenhum

conjunto de atributos textuais.

O conjunto de atributos estatísticos, que foi submetido apenas aos algoritmos Clás-

sicos, não obteve resultados próximos aos melhores resultados, mas ainda assim superou

alguns resultados alcançados usando outros conjuntos de atributos. No entanto, esse con-

junto de atributos contribuiu para melhorar o desempenho nos experimentos de ensemble

em 1% para o ensemble Clássico utilizando n-grama e 2% para o ensemble Clássico uti-

lizando word embedding.

Quando combinados em representações de ensemble, os conjuntos de atributos

não melhoraram os resultados em todos os casos em comparação com seu subgrupo (re-

sultados do conjunto de atributos usados para criar o ensemble). A combinação simples

de todos os conjuntos de recursos proporcionou um leve aumento para AUC para ensem-



83

ble Clássico utilizando n-grama e ensemble de Deep Learning utilizando word embed-

ding para OffVidPT-2, e ensemble Clássico usando n-grama para OffVidPT-3. No

entanto, os resultados mostraram que a remoção das descrições do ensembnle Clássico

utilizando n-grama para OffVidPT-2 e OffVidPT-3 aumentou a AUC, talvez porque

as descrições sejam longas e fornecidas pelo usuário, aumentando a chance ocultar con-

teúdo ofensivo. A melhoria mais significativa foi observada para OffVidPT-3, onde

a AUC aumentou 5%. Os resultados também mostraram que a remoção das tags ajudou

a melhorar a AUC. No entanto, isso ainda não superou a AUC obtida pelo títulos e tags

sozinhos nos experimentos de word embedding utilizados em algoritmos Clássicos para

OffVidPT-2 e OffVidPT-3, respectivamente.

No geral, os modelos de Deep Learning e alguns ensembles tiveram os melhores

resultados, com os dois mais altos AUC alcançados usando o classificador M-CNN com o

ensemble Clássico utilizando n-grama para OffVidPT-3: 0,80 para "all - desc" e 0,79

para a representação de ensemble "all - tags". Os algoritmos de Transfer Learning su-

peraram os algoritmos Clássicos ao processar as transcrições. No entanto, os algoritmos

Clássicos pareceram ser capazes de aprender melhor com os conjuntos de atributos de

descrição, tags e título do que os algoritmos de Transfer Learning. O outro classificador

CNN, W-CNN, obteve quase todos os melhores resultados ao usar os conjuntos de atrib-

utos de texto separadamente. A única exceção é que o M-LSTM teve um desempenho

melhor que o W-CNN ao processar descrições para OffVidPT-2. Esse desempenho

mostra que, embora a idéia central de CNN tenha sido projetada para processamento de

imagem, ela pode superar outros algoritmos Clássicos e de Deep Learning quando usada

para Processamento de Linguagem Natural (PNL).

O classificador W-LSTM não obteve o melhor resultado para nenhum dos experi-

mentos. O M-LSTM, por outro lado, obteve boa pontuação nos experimentos de ensem-

ble. Para cada representação de ensemble, o M-LSTM obteve o melhor resultado em pelo

menos um dos experimentos de ablação de atributos e, quando não alcançou a melhor

AUC, sempre esteve próximo do melhor resultado. Observamos esse mesmo comporta-

mento para o M-CNN nos experimentos de ensemble, juntamente com o classificador

Naive Bayes.

O classificador Random Forest superou o Naive Bayes na maioria dos experimen-

tos com algoritmos Clássicos. Para o conjunto de atributos estatísticos, por exemplo, o

Random Forest alcançou os melhores resultados para os dois conjuntos de dados. No en-

tanto, embora Naive Bayes tenha obtido o segundo lugar nos experimentos de conjuntos
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de atributos textuais, ele produziu muitos dos melhores resultados nos experimentos de

ensemble, superando Random Forest nesse caso. O classificador de Regressão Logística

foi o melhor para transcrições usando cngram para OffVidPT-3, mas não superou

Random Florests e Naive Bayes para os outros experimentos com conjuntos de atributos

textuais. Por outro lado, o algoritmo de Regressão Logística foi capaz de obter alguns

dos melhores resultados de AUC nos experimentos de ensemble, mas geralmente ficando

atrás nas outras métricas. Os algoritmos C4.5 e SVM, por outro lado, não foram tão bons

quanto os outros em nossos experimentos.

Ao comparar os classificadores de Transfer Learning, o BERT superou a maioria

dos resultados alcançados pelo ALBERT. Ambos os classificadores alcançaram a mesma

AUC e F1 para transcrições em OffVidPT-3, mas o ALBERT obteve melhor precisão

e kappa. Em comparação com os classificadores Clássic e de Deep Learning, os mode-

los de Transfer Learning obtiveram os melhores resultados de precisão, recall e F1 para

OffVidPT-2. Para OffVidPT-3, por outro lado, BERT e ALBERT não foram ca-

pazes de obter nenhum dos melhores resultados, obtendo uma pontuação baixa em pre-

cisão, recall e F1. A única exceção, nesse caso, é para AUC, onde BERT e ALBERT

obtiveram resultados próximos dos melhores.
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