

Universidade: presente!

XXXI SIC

21.25. OUTUBRO . CAMPUS DO VALE

EFEITO DO USO DE AGREGADO POROSO EM MATRIZ CIMENTÍCIA DE ALTA RESISTÊNCIA SOB AÇÃO DE ALTAS TEMPERATURAS

Felipe Risbacik

Orientação de Luiz Carlos Pinto da Silva Filho

INTRODUÇÃO

Os concretos de alto desempenho (CAD), que caracterizam-se por possuir baixa relação água/cimento e alta compacidade, têm conquistado cada vez mais espaço em obras de infraestrutura e em edificações de grande porte, devido as suas especificações técnicas. Porém, estes concretos apresentam fragilidades em relação a fissuração nas primeiras idades, devido à maior suscetibilidade de ocorrência da retração autógena e ao comportamento frente à elevadas temperaturas, no que diz respeito principalmente à ocorrência de "spalling" (desplacamentos explosivos). Uma alternativa que tem apresentados resultados interessantes na redução da fissuração precoce é o uso de cura interna. Esta técnica busca utilizar materiais porosos capazes de servirem como reservatórios de água internos na matriz cimentícia reduzindo o fenômeno de autodessecação, principal mecanismo da retração autógena. Porém, pouco se conhece sobre o comportamento de misturas cimentícias de alta compacidade, composta com agregado poroso saturado, em relação à exposição à elevadas temperaturas. Este trabalho se dedica ao estudo dessa questão.

OBJETIVOS

Avaliar o comportamento de corpos de prova de misturas cimentícias compactas, compostas com agregados porosos saturados, em relação à ação de temperaturas elevadas, tanto no quesito de desempenho residual quanto da ocorrência de desplacamentos explosivos ("spalling").

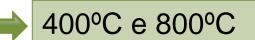
METODOLOGIA

Amostras

15 Corpos de prova cúbicos de 75mm de lado, com pelo menos, 2 anos de idade

Referencia 1 (Traço 1:0,1:1,91 e a/c=0,30)

- Modelo de Powers
- Água de cura interna: 0,066 Kg
- Substituição parcial da areia por agregado poroso



Coríndon Tamanho real x Aumento de 50x

Lite Ball
Tamanho real x Aumento de 50x

2 ° C/min - RILEM TC 129-MHT

45 minutos

27,5 ° C/min - ISO 834 (2014)

→ 30 minutos

Corpos de prova

Homogeneização

Ensaio de compressão cubico

EN 12390-3 Taxa de carregamento - 0,2 a 1 MPa/s

"Spalling"

<u>6</u> 0,6

Ensaio de compressão

Rompimento do CP

RESULTADOS

				Resistência à compressão
	23 °C	400 °c	800°c	90,00
f 1 - 2°C/min	73,29 MPa	60,59 MPa	35,25 MPa	80,00
rindon - C/min	70,37 MPa	56,43 MPa	32,31 MPa	© 70,000 — ₩ .g 60,000 — ₩ .g
ball - /min	60,24 MPa	61,21 MPa	32,45 MPa	70,00 —
1 - 5°C/min	73,29 MPa	84,86 MPa	-	40,000 — ■ Lii
rindon - 5°C/min	70,37 MPa	70,44 MPa	63,59 MPa	25,500
eball - 5°C/min	60,24 MPa	78,24 MPa	65,34 MPa	10,00 — 0,00 — 23°C 400°C - 2°C/min 800°C - 2°C/min 400°C - 27,5°C/min800°C - 27,5°C/min
90	omportamento - tax	a de aquecimento de	2°C	Comportamento - taxa de aquecimento de 27,5°C
80 70 60 50 40 30 20				M 80
30 20				10 40 10 10 10 10 10 10 10 10 10 10 10 10 10
0 100	200 300 40 Te	00 500 600 mperatura °C	700 800 900	0 100 200 300 400 500 600 700 800 90 Temperatura °C
	Ref1-2°C/min ——Corir	ndon - 2°C/min —— Liteball	- 2°C/min	Ref 1 - 27,5°C/min —— Corindon - 27,5°C/min —— Liteball - 27,5°C/min
	Relação Tf/Ti - taxa	a de aquecimento 2°	С	Relação Tf/Ti - taxa de aquecimento 27,5°C
1,4				1,4

CONCLUSÕES

- O uso de agregados porosos saturados em misturas de alta compacidade, aparentemente, apresentaram benefícios quanto à ocorrência de spalling;
- Diferentes taxas de aquecimento fornecem resultados distintos, sendo indicado taxas rápidas para avaliação da probabilidade de ocorrência de "spalling" e taxas lentas para verificação de resistência residual dos elementos submetidos ao aquecimento;
- Após o regime de aquecimento, a perda de resistência à compressão dos elementos de concreto foi superior para a mistura de referência, demonstrando que os materiais porosos podem ser contributivos para o alívio das tensões geradas;
- Para os CPs submetidos a taxa de aquecimento rápido, observa-se um aumento da resistência à compressão, possivelmente por uma hidratação provocada pelo vapor de água gerado.