

Universidade: presente!

XXXI SIC

21.25. OUTUBRO . CAMPUS DO VALE

Análise de Armazenamento de Energia em Redes de Distribuição Considerando Incertezas de Carga e Geração Distribuída

Guilherme Souza Purri

Universidade Federal do Rio Grande do Sul, Porto Alegre, RS - Brasil

I. INTRODUÇÃO

Recursos Energéticos Distribuídos (**REDs**) são uma solução para a sobrecarga em redes de distribuição. Turbinas eólicas são equipamentos de Geração Distribuída (**GD**); contudo, as inerentes incertezas associadas à operação de fontes renováveis somadas à característica estocástica das cargas aumentam a complexidade da análise dos seus efeitos provocados. Sistemas de Armazenamento de Energia (**SAE**s) ajudam como suprimento alternativo da demanda, e assim podem regular o consumo, realizando ajustes de distribuição quando forem necessários.

II. OBJETIVO

O presente trabalho visa analisar o impacto de SAEs no desempenho e custo, considerando incertezas de carga e de GD no sistema.

Os objetivos específicos são:

- representar as incertezas de cargas residenciais e de geração eólica;
- modelar o perfil de operação de SAE;
- alocar o SAE baseado nos custos de operação do sistema, que contemplam perdas e violações de tensão;
- avaliar o impacto da GD e do SAE no desempenho do sistema de distribuição.

III. METODOLOGIA

Incertezas: por meio de um método de mineração de dados denominado *k-means clustering*, um histórico anual para cargas e GD foi sintetizado em 3 cenários representativos, como evidenciado pela Figura 1.

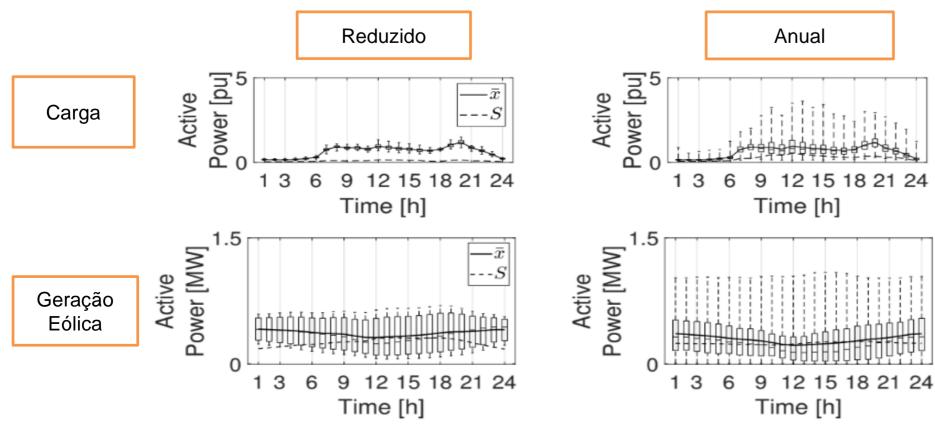


Fig. 1 – Diagramas de caixa da potência ativa das cargas e da GD, para 3 dias e 365 dias.

Operação do SAE: Dentro dos limites de Estado de Carga (EdC), apenas 1 ciclo de carga e descarga ocorre diariamente, às horas de menor e maior demanda, respectivamente. Valores instantâneos ao início e ao final dos dias são iguais para garantir a sustentabilidade da operação. O SAE é modelado pelas seguintes expressões:

$$EdC_{min} \le EdC[n] \le EdC_{max} \tag{1}$$

$$EdC[n+1] = EdC[n] + P_{in} \times \eta - P_{out} \div \eta$$
 (2)

Alocação: Configurou-se $EdC_{min} = 800$ kWh; $EdC_{max} = 4000$ kWh; $P_{in} = P_{out} = 1000$ kW; e $\eta = 80\%$. No sistemateste (Fig. 2), realizou-se busca exaustiva pelo melhor ponto de instalação, baseada nos custos de operação associados às perdas e violações de tensão, sendo obtida como localidade ideal a barra 10.

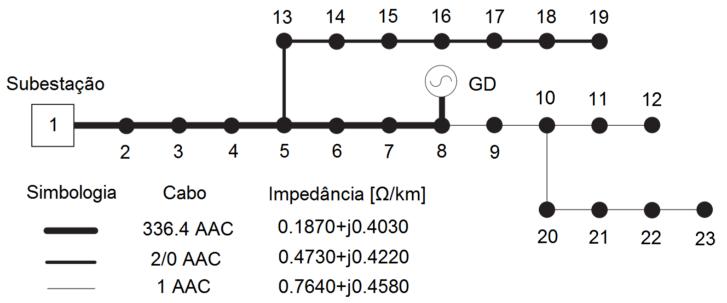


Fig. 3 – Topologia do sistema-teste de 23 barras.

IV. RESULTADOS E CONCLUSÃO

A GD por si só é benéfica, mas a flexibilidade de horários torna o SAE capaz de corrigir pontos críticos. As perdas do SAE tornam a descarga mais breve que a carga.

			_
Índice	Cargas	Cargas + GD	Cargas + GD + SAE
Potência Ativa [MWh]	22835	20251	20637
Potência Reativa [Mvarh]	16361	16140	16070
Perdas [MWh]	1342	1218	1167
Violação de Tensão [pu]	0,3805	0,3419	0,2947
Fator de Potência	0,5587	0,5426	0,7085
Custo de Operação [x10 ³ \$]	495	448	422

Tabela 1 - Resultados da Implementação Progressiva de Recursos.

Conclui-se que efeitos benéficos do SAE são potencializados na presença de geração intermitente e incertezas de consumo.

V. REFERÊNCIAS

Resener, Mariana, et al. "Mixed-integer LP model for volt/var control and energy losses minimization in distribution systems." (2016).

Ferraz, Bibiana Maitê Petry. "Programa de resposta à demanda baseado em preços aplicado a consumidores de baixa tensão." (2016).