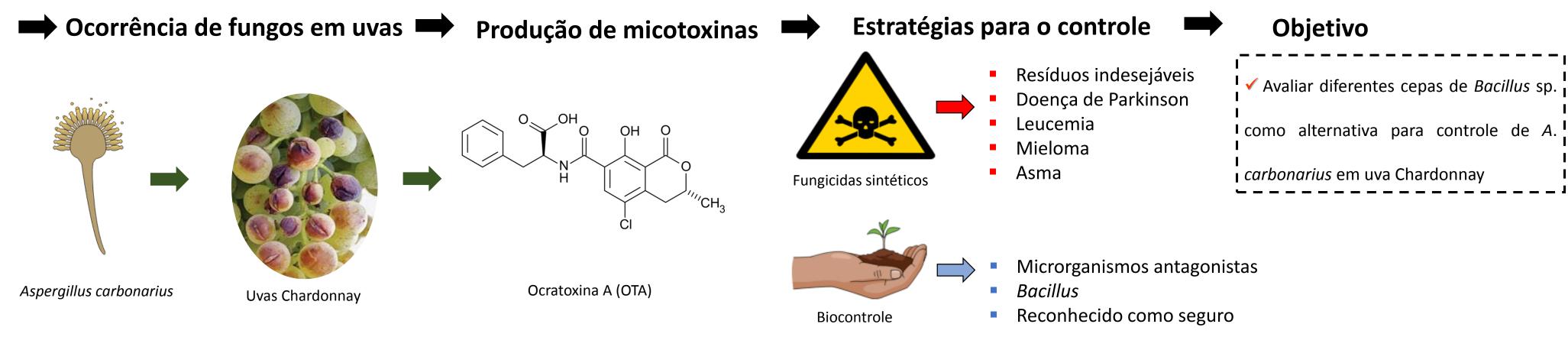


Universidade: presente!


EFEITO DO USO DE Bacillus NO DESENVOLVIMENTO DE Aspergillus carbonarius E SÍNTESE DE OCRATOXINA A EM UVAS

ICTA/UFRGS

Rafaela Diogo Silveira, Juliane Elisa Welke

MATERIAIS E MÉTODOS

- ✓ Bacillus sp. P1, Bacillus sp. P7, Bacillus sp. P11 e Bacillus sp. P45
- ✓ Aspergillus carbonarius ITAL293 (produtor de OTA)

Atividade antagonista

Bacillus spp.

- Cultivo em ágar BHI • 125 rpm a 37 °C/48h
- 37 °C/24h

Suspensão de células Incubação a 25 °C/7 dias (10⁹ UFC mL⁻¹) Suspensão de esporos Cultivo em caldo BHI $(10^3 \text{ esporos mL}^{-1})$

- Cultivo em ágar batata dextrose
- 25 °C/7 dias

A. carbonarius

Parâmetros avaliados

Crescimento fúngico

- ✓ Porcentagem de bagas sem desenvolvimento de *A. carbonarius*
- Critérios visuais
- ✓ Contagem fungos (UFC mL⁻¹): • Diluição seriada

Produção de OTA

✓ Cromatografia Líquida de Alta Eficiência com detecção por estectrometria de massas sequencial (LC-MS/MS:

Atividade antioxidante

✓ Oxidação da Glutationa ✓ Desoxirribose (GSH)

✓ ORAC ✓ ABTS

RESULTADOS E DISCUSSÃO

Tabela 1. Antagonismo de <i>Bacillus</i> spp. contra <i>A. carbonarius</i>						
Tratamentos	Contagem fúngica (UFC mL ⁻¹) ^a	Redução - <i>A. carbonarius</i> (%) ^b	Imagens			
<i>Bacillus</i> sp. P1	0	100	6			
<i>Bacillus</i> sp. P7	3,2 10 ⁴ ± 2,5 10 ²	58	(
<i>Bacillus</i> sp. P11	ND	75				
<i>Bacillus</i> sp. 45	ND	25				
Controle (sem <i>Bacillus</i> sp.)	8,8 x 10 ⁶ ± 4,0 10 ⁴	0				

a Valores representam as médias ± desvio padrão; b Porcentagem de bagas sem desenvolvimento de A. carbonarius; ND: não determinado (análise em andamento)

Tabela 2. Concentração inibitória da cepa *Bacillus* P1 como estratégia de biocontrole de *A. carbonarius*

Suspensão de células de <i>Bacillus</i> P1 (UFC mL ⁻¹)	Redução do crescimento (%)	
10 ⁶	0	
10 ⁷	0	
10 ⁸	75	
10 ⁹	100	

Tabela 3. Efeito do uso da cepa *Bacillus* P1 como estratégia de biocontrole de *A. carbonarius*.

Tratamento	ABTS (% remoção do ABTS)	ORAC (μmol ET mL ⁻¹)	GSH (nMol GSH mL ⁻¹)	Desoxirribose (% Inibição da geração de ⁻ OH)
Controle (uva sem inoculação)	79,55 ± 1,0 ^B	83,20 ± 4,0 ^c	800,3 ± 5,7 ^c	12,3 ± 2,77 ^c
A. carbonarius	92,0 ± 0,2 ^A	113,5 ± 0,7 ^B	832,6 ± 8,61 ^B	45,76 ± 1,50 ^B
Bacillus P1	92,5 ± 0,4 ^A	125,1 ± 2,0 ^A	1053,4 ± 3,9 ^A	60,6 ± 5,3 ^A
Bacillus sp. P1 + A. carbonarius	93,0 ± 0,1 ^A	138,93 ± 3,3 ^A	1003,7 ± 3,1 ^A	74,4 ± 7,0 ^A

a ET: Equivalente de Trolox; Letras diferentes nas colunas indicam diferença estatística pelo teste de Tukey (P<0,05), letras iguais não diferem entre si significativamente.

CONCLUSÕES

- ✓ A utilização de *Bacillus* para o biocontrole de *A. carbonarius* foi promissora, principalmente com a cepa P1;
- ✓ As uvas tratadas com a cepa P1 de *Bacillus* sp. apresentaram maior atividade antioxidante nos testes ORAC, GSH e Desoxirribose do que as uvas controle e incoluladas com A. carbonarius

