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Agradeço a todos os membros da banca, pelos comentários e sugestões que contribúıram
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Abstract

In this work we introduce the notion of partial actions of weak Hopf algebras on algebras.
This new subject arises in order to unify the notions of partial group action [29], partial
Hopf action ([2],[3],[18]) and partial groupoid action [7]. We also develop some fundamental
tools in order to construct the partial smash product and the globalization of a partial
action, as well as, we establish a connection between partial and global smash products
via a surjective Morita context. In particular, in the case that the globalization is unital,
these smash products are Morita equivalent.

We show that it is possible to connect globalizable partial groupoid actions and sym-
metric partial groupoid algebra actions, extending similar results for group actions [18].

We also introduce the concept of partial coactions of weak Hopf algebras. In this context,
we show that every partial comodule algebra comes from a global one and also that the
reduced tensor product is a coring.

Moreover, we give a complete description of all partial (co)actions of a weak Hopf
algebra on its ground field, which suggests a method to construct more general examples.

Finally, we explore the Morita theory in two different ways. The first one is made using
partial actions. In this approach we show that, under some special conditions on the weak
Hopf algebra, the obtained Morita context is a generalization of the one given in [37]. As
an application, we develop a Galois theory connecting this Morita context, the canonical
map, and the Galois coordinates.

The second one is via partial coactions. We construct the reduced tensor product and
show that it is a coring. Motivated by corresponding results in [16], we construct the Morita
theory obtaining some new additional Galois equivalences.
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Resumo

Neste trabalho introduzimos a noção de ações parciais de álgebras de Hopf fracas em
álgebras. Este novo conceito surge com o intuito de unificar as noções de ação parcial
de grupos [29], ação parcial de álgebras de Hopf ([2],[3],[18]) e ação parcial de grupóides
[7]. Também desenvolvemos ferramentas fundamentais para a construção do produto smash
parcial e para a globalização da ação parcial, bem como estabelecemos uma conexão entre o
produto smash parcial e global através de um contexto de Morita sobrejetor. Em particular,
no caso em que a globalização é unitária, estes produtos smash são Morita equivalentes.

Mostramos que é posśıvel conectar ação parcial de grupóide e ação parcial simétrica da
álgebra de grupóide, extendendo resultados similares para ação parcial de grupos [18].

Nós também introduzimos o conceito de coação parcial de álgebras de Hopf fracas. Neste
contexto, mostramos que todo comódulo álgebra parcial vem de um global e também que
o produto tensorial reduzido é um coanel.

Mais ainda, damos uma descrição completa de todas as (co)ações parciais de uma
álgebra de Hopf fraca no seu corpo base, o que sugere um método de construir exemplos
mais gerais.

Finalmente, exploramos a teoria de Morita de duas maneiras distintas. A primeira é
feita usando-se ações parciais. Nesta abordagem, mostramos que sob certas condições para
a álgebra de Hopf fraca, o contexto de Morita obtido é uma generalização daquele dado
em [37]. Como uma aplicação, desenvolvemos a teoria de Galois conectando esse contexto
de Morita, a aplicação canônica e as coordenadas de Galois.

A segunda abordagem é feita através de coações parciais. Construimos o produto ten-
sorial reduzido e mostramos que ele é um coanel. Motivados por resultados em [16], con-
struimos a teoria de Morita, obtendo algumas novas equivalências de Galois.
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Introduction

Partial (co)actions

Partial action of groups on algebras was introduced in the literature by R. Exel in [31].
His main purpose in that paper was to develop a method that allowed to describe the
structure of C∗-algebras under actions of the circle group. The first approach of partial
group actions on algebras, in a purely algebraic context, appeared later in a paper by M.
Dokuchaev and R. Exel [29].

Partial group actions can be easily obtained by restriction from the global ones, and
this fact stimulated the interest in knowing under what conditions (if any) a given partial
group action is of this type. In the topological context this question was dealt with by F.
Abadie in [1]. The algebraic version of a globalization (or enveloping action) of a partial
group action, as well as the study about its existence, was also considered by Dokuchaev
and Exel in [29]. A nice approach on the relevance of the relationship between partial and
global group actions, in several branches of mathematics, can be seen in [28].

As a natural task, S. Caenepeel and K. Janssen [18] extended the notion of partial group
action to the setting of Hopf algebras and developed a theory of partial (co)actions of Hopf
algebras, as well as a partial Hopf-Galois theory. Based on the Caenepeel-Janssen’s work,
E. Batista and M. Alves in [2, 3] showed that every partial action of a Hopf algebra has a
globalization and that the corresponding partial and global smash products are related by
a surjective Morita context. At almost the same time, D. Bagio and A. Paques developed a
theory of partial groupoid actions extending, in particular, results of Exel and Dokuchaev
in [29], about partial group actions and their globalizations.

Actions of weak Hopf algebras is the precise context to unify these above mentioned
theories, and this is our main purpose.

In this work we deal with actions of weak Hopf algebras and extend to this setting many
of the results above mentioned. As it is well known, Hopf algebras and groupoid algebras
are perhaps the simplest examples of weak Hopf algebras. The weak Hopf algebra theory
has been started at the end of the 90s by G. Böhm, F. Nill and K. Szlachányi [9–11,39,43].

In Chapter 2 we present the definition of the partial action of a weak Hopf algebra on an
algebra. One of our main goals is to show that the notion of globalization can be extended
to partial module algebras over weak Hopf algebras. We succeed to prove that every partial
module algebra over weak Hopf algebras has a globalization (also called enveloping action),
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extending the corresponding results on partial Hopf actions obtained by E. Batista e M.
Alves in [2] and [3]. We also prove the existence of minimal globalizations and that any
two of them are isomorphic, as well as that any globalization is a homomorphic preimage
of a minimal one (see Theorem 2.4.9).

Another one is to ensure that the partial version of the smash product, as introduced
by D. Nikshych in [38], can also be obtained in the partial context (see Section 2.5). The
hardest task here is to show that such a partial smash product is well-defined, just because
the tensor product, in this case, is not over the ground field. The usual theory does not fit
into our context since the definitions for partial structures are a bit different. The existence
of partial smash products allows us to construct a surjective Morita context relating them
with the corresponding global ones (see Theorem 2.6.6).

As an application, we describe completely all the partial actions of a weak Hopf algebra
on its ground field, which also suggests the construction of other examples of these partial
actions, different from the canonical ones (see Lemma 2.3.1). We also analyze the relation
between partial groupoid actions, as introduced in [7], and partial actions of groupoid
algebras, showing how partial group actions, in particular, and partial groupoid actions, in
general, fit into this new context (see Theorem 2.2.5).

In Chapter 3, we study the partial coactions of a weak Hopf algebra on an algebra. In
the same way as we did in Chapter 2, we describe the partial coactions on the ground field
(see Theorem 3.2.1) and, moreover, we show that any partial coaction can be obtained
from a global one (see Theorem 3.3.3). As a last task in this chapter, we show that the
reduced tensor product A⊗H is an A-coring (see Proposition 3.4.1). However, our main
goal in this chapter is to build a necessary theory that we will need in Chapter 4.

Galois and Morita

Évariste Galois left us a rich and prosperous theory, intending to describe the relations
between roots of a polynomial equation. A modern approach of the Galois ideas, developed
by E. Artin, R. Dedekind, L. Kronecker and several other mathematicians, deals with field
extensions and their automorphism groups. It is well known that there are several equivalent
conditions for a field extension to be a Galois extension.

The extension of the field Galois theory to the commutative ring context was started
by M. Auslander and O. Goldman in [6] and continued by S. U. Chase, D. K. Harrison
and A. Rosenberg in [25]. In this last paper several others equivalent conditions for a ring
extension to be Galois were introduced.

Recently, a Galois theory for partial group actions on rings was introduced in the
literature by M. Dokuchaev, M. Ferrero and A. Paques generalizing the Galois theory
developed by Chase-Harrison-Rosenberg, and stimulating many others contributions to
the developing of this new subject.

On the other side, K. Morita has developed his own theory relating two rings by means
of two bimodules and two morphisms of bimodules. The Morita context is useful to relate
the category of modules over these rings. Indeed, it is well known that if they are unital

3



rings and the morphisms are surjective then we can show that the correspondent categories
of modules are equivalent.

We merge both such Morita and Galois theories in order to obtain a theorem which
gives necessary and sufficient conditions for an extension to be Galois, in the context of
partial actions of weak Hopf algebras.

In Chapter 4, we construct a Morita context relating the partial smash product and the
subalgebra of invariants (see Theorem 4.1.10). Moreover, under some additional hypothesis,
we show that the context match with the one given by M. Cohen, D. Fischman and S.
Montgomery in [27] (see Subsection 4.1.2). We also develop a Galois theory, relating the
canonical map, the Morita context and the Galois coordinates (see Theorem 4.2.3).

We continue the chapter showing that the category of the relative partial Hopf module is
equivalent to the category of comodules over the A-coring A⊗H, where A is a partial H-
module algebra (see Proposition 4.3.5). Finally, we present a new Morita context for partial
H-comodule algebras relating the subalgebra of coinvariants and an specific subalgebra of
Hom(H,A), unifying results obtained by S. Caenepeel, E. De Groot and K. Janssen in
[14,15,18] (see Theorem 4.3.11).

Conventions

Throughout, H will denote a weak Hopf algebra over a field k. Every k-algebra is
assumed to be associative and unital, unless otherwise stated. Unadorned ⊗ means ⊗k.
We will adopt the Sweedler notation for the comultiplication of H, that is, ∆(h) = h1⊗h2

(summation understood), for any h ∈ H. We will also denote by · any partial action and
by . any global one. In a similar way, for partial coactions we will use the notation ρ̄ and
for the global one ρ. The Sweedler notation for right partial coaction will be written as
ρ̄(a) = a0 ⊗ a1 and ρ(a) = a0 ⊗ a1 for the global one (summation understood).
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Chapter 1

Preliminaries

In this chapter we recall some basic concepts which will be necessary along the whole
work. For the proofs of the results in Section 1.2 see [14] and [16].

1.1 Weak Hopf algebras

We start recalling the definition and some properties of a weak Hopf algebra over a
field k. For more about it we refer to [9].

Definition 1.1.1. A sixtuple (H,m, u,∆, ε, S) is a weak Hopf algebra, with antipode S,
if:

(WHA1) (H, m, u) is a k-algebra,

(WHA2) (H, ∆, ε) is a k-coalgebra,

(WHA3) ∆(kh) = ∆(k)∆(h), ∀h, k ∈ H,

(WHA4) ε(kh1)ε(h2g) = ε(khg) = ε(kh2)ε(h1g),

(WHA5) (1H⊗∆(1H))(∆(1H)⊗1H) = ∆2(1H) = (∆(1H)⊗1H)(1H⊗∆(1H)),

(WHA6) h1S(h2) = ε
L
(h),

(WHA7) S(h1)h2 = ε
R

(x),

(WHA8) S(h) = S(h1)h2S(h3),

where ε
L

: H → H and ε
R

: H → H are defined by ε
L
(h) = ε(11h)12 and ε

R
(h) = 11ε(h12).

We will denote HL = ε
L
(H) and HR = ε

R
(H). It is clear from these definitions that HL and

HR are both finite dimensional over k. Algebras H satisfying only the five first statements
enumerated above are simply called weak bialgebras.

Note that item (WHA5) can be written as 11⊗1′112⊗1′2 = 11⊗12⊗13 = 11⊗121′1⊗1′2.
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Example 1.1.2. Every Hopf algebra is a weak Hopf algebra.

Example 1.1.3. Let G be a groupoid (see Definition 2.2.1) such that the order of G0 is
finite. Then the groupoid algebra kG with basis {δg | g ∈ G} is a weak Hopf algebra with
the maps

m : kG⊗ kG → kG

δg ⊗ δh 7→

{
δgh if ∃gh
0 otherwise

u : k → kG
1k 7→

∑
e∈G0

δe

∆: kG → kG⊗ kG
δg 7→ δg ⊗ δg
ε : kG → k

δg 7→ 1k

S : kG → kG
δg 7→ δg−1 .

In this case the algebras HL and HR are the subalgebra of kG generated by the elements
in G0

Example 1.1.4. If H is a finite dimensional weak Hopf algebra, then H∗ is a weak Hopf
algebra with the maps

m : H∗ ⊗H∗ → H∗

f ⊗ g 7→ f ∗ g : H → k
[f ∗ g](h) = f(h1)g(h2)

u : k → H∗

1k 7→ εH

∆: H∗ → H∗ ⊗H∗

f 7→
n∑
i=1

fi ⊗ gi

where f(hk) =
n∑
i=1

fi(h)gi(k),

ε : H∗ → k
f 7→ f(1H)

SH∗ : H → H
f 7→ f ◦ SH .

6



Example 1.1.5. Let H and L be two weak Hopf algebras, then the tensor product H ⊗ L
is a weak Hopf algebra.

Remark 1.1.6. Note that a Hopf algebra is also a weak Hopf algebra, then for a Hopf
algebra H the tensor algebra H ⊗ L is a weak Hopf algebra (which is not a Hopf algebra)
if and only if L is a weak Hopf algebra (which is not a Hopf algebra).

Based on it, the whole amount of examples of Hopf algebras can generate weak Hopf
algebras simply using the tensor product.

It is usual to use the next proposition to determine when a weak Hopf algebra is a Hopf
algebra.

Proposition 1.1.7. A weak Hopf algebra is a Hopf algebra if one of the following equivalent
conditions hold:

1. ∆(1H) = 1H ⊗ 1H ;

2. ε(hk) = ε(h)ε(k) ∀h, k ∈ H;

3. h1S(h2) = ε(h)1H ∀h ∈ H;

4. S(h1)h2 = ε(h)1H ∀h ∈ H;

5. HL = HR = k1H .

Many of the basic properties of a weak Hopf algebra proved in the finite dimensional
case (see [9, 11, 17]) also hold in the general case. We start by enumerating some of these
properties which can be verified using arguments similar to those used in the finite dimen-
sional case. These properties will be very useful along this work.

Lemma 1.1.8. Let H be a weak Hopf algebra. Then,

εL ◦ εL = εL (1.1)

εR ◦ εR = εR (1.2)

ε(hεL(k)) = ε(hk) (1.3)

ε(εR(h)k) = ε(hk) (1.4)

εL(hεL(k)) = εL(hk) (1.5)

εR(εR(h)k) = εR(hk) (1.6)

for all h, k in H.

Proof. We will show (1.1), (1.3) and (1.5). The remaining ones follow in a similar way.
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(1.1) Let h ∈ H
εL(εL(h)) = εL(ε(11h)12)

= ε(11h)εL(12)
= ε(11h)ε(1′112)1′2
= ε(11h)ε(12)13

= ε(11h)12

= εL(h).

Then εL ◦ εL = εL.

(1.3) Let h, k ∈ H
ε(hεL(k)) = ε(hε(11k)12)

= ε(h12)ε(11k)
= ε(h1Hk)
= ε(hk).

Then ε(hεL(k)) = ε(hk).

(1.5) Let h, k ∈ H
εL(hεL(k)) = ε(11hεL(k))12

(1.3)
= ε(11hk)12

= εL(hk).

Then εL(hεL(k)) = εL(hk).

Lemma 1.1.9. Let H be a weak Hopf algebra. Then, ∆(1H) ∈ HR ⊗HL.

Proof. Note that
∆(1H) = 11 ⊗ 12

= 11 ⊗ ε(12)13

= 11 ⊗ ε(1′112)1′2
= 11 ⊗ εL(12)

so ∆(1H) ∈ H ⊗HL.

On the other hand
∆(1H) = 11 ⊗ 12

= 11ε(12)⊗ 13

= 11ε(1
′
112)⊗ 1′2

= εR(11)⊗ 12

so ∆(1H) ∈ HR ⊗H.

Then ∆(1H) ∈ (HR ⊗H) ∩ (H ⊗HL) = HR ⊗HL.

8



Lemma 1.1.10. The following statement holds:

z ∈ HL ⇔ ∆(z) = 11z ⊗ 12 (1.7)

and in this case ∆(z) = z11 ⊗ 12.

For HR there is a similar statement:

w ∈ HR ⇔ ∆(w) = 11 ⊗ w12 (1.8)

and in this case ∆(w) = 11 ⊗ 12w.

Moreover ∆(HL) ⊂ H ⊗HL and ∆(HR) ⊂ HR ⊗H.

Proof. Let h be in HL. Then

∆(h) = ∆(εL(h))
= ∆(ε(11h)12)
= ε(11h)∆(12)
= ε(11h)12 ⊗ 13

= ε(1′1h)111′2 ⊗ 12

= 11ε(1
′
1h)1′2 ⊗ 12

= 11εL(h)⊗ 12

= 11h⊗ 12.

Conversely, if ∆(h) = 11h⊗ 12, thus h = (ε⊗ I)∆(h) = ε(11h)12 = εL(h) ∈ HL.
Moreover, in the above case,

∆(h) = ∆(εL(h))
= ∆(ε(11h)12)
= ε(11h)∆(12)
= ε(11h)12 ⊗ 13

= ε(11h)121′1 ⊗ 1′2
= εL(h)11 ⊗ 12

= h11 ⊗ 12.

Also, if h ∈ HL, then we have

∆(h) = 11h⊗ 12

= 11h⊗ ε(12)13

= 11h⊗ ε(1′112)1′2
= 11h⊗ εL(12).

and so ∆(H) ⊂ H ⊗HL.

The remaining items are analogous.
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Proposition 1.1.11. Let h, k in H. The following properties hold:

h1 ⊗ h2S(h3) = 11h⊗ 12 (1.9)

S(h1)h2 ⊗ h3 = 11 ⊗ h12 (1.10)

h εL(k) = ε(h1k)h2 (1.11)

εR(h) k = k1ε(hk2) (1.12)

Proof. We will show (1.9) and (1.11). The items (1.10) and (1.12) work in a similar way.
(1.9) For h ∈ H,

h1 ⊗ h2S(h3) = h1 ⊗ εL(h2)
= h1 ⊗ ε(11h2)12

= h1ε(11h2)⊗ 12

= (1h)1ε(11(1h)2)⊗ 12

= 1′1h1ε(111′2h2)⊗ 12

= 11h1ε(12h2)⊗ 13

= (11h)1ε((11h)2)⊗ 12

= 11h⊗ 12.

(1.11) For h, k ∈ H,

h εL(k) = hε(11k)12

= ε(h1)ε(11k)h212
(1.10)
= ε(h1)ε(h2S(h3)k)h4

= ε(1h1)ε(h2S(h3)k)h4

= ε(1h1S(h2)k)h3)h4

= ε(εR(h1)k)h2
(1.4)
= ε(h1k)h2.

Lemma 1.1.12. HL and HR are subalgebras of H with unit 1H . Moreover, if z ∈ HL and
w ∈ HR, we have that zw = wz.

Proof. Let h, h′ ∈ HL. Then
hh′ = hεL(h′)

(1.11)
= ε(h1h

′)h2
(1.7)
= ε(11hh

′)12

= εL(hh′)

and it means hh′ ∈ HL.
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Analogously, if k, k′ ∈ HR, then we have

k′k = εR(k′)k
(1.12)
= k1ε(k

′k2)
(1.8)
= 11ε(k

′k12)
= εR(k′k)

and it means k′k ∈ HR.

Moreover,
εL(1H) = ε(11)12 = 1H = 11ε(12) = εR(1H)

hence 1H lies in both HR and HL.

Now, picking up h ∈ HL and k ∈ HR we have

hk = εL(h)εR(k)
= ε(11h)121′1ε(k1′2)
= ε(11h)12ε(k13)
= ε(11h)1′112ε(k1′2)
= 1′1ε(k1′2)ε(11h)12

= εR(k)εL(h)
= kh.

Lemma 1.1.13. Let H be a weak Hopf algebra. Then,

εL(εL(h)k) = εL(h)εL(k) (1.13)

εR(hεR(k)) = εR(h)εR(k) (1.14)

εL(h) = ε(S(h)11)12 (1.15)

εR(h) = 11ε(12S(h)) (1.16)

εL(h) = S(11)ε(12h) (1.17)

εR(h) = ε(11h)S(12), (1.18)

for all h, k ∈ H.

Proof. (1.13)

εL(εL(h)k)
(1.5)
= εL(εL(h)εL(k))

(1.1.12)
= εL(h)εL(k).

(1.14)

εR(hεR(k))
(1.6)
= εR(εR(h)εR(k))

(1.1.12)
= εR(h)εR(k).
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(1.15)
εL(h) = ε(11h)12

(1.3)
= ε(11εL(h))12

(1.1.12)
= ε(εL(h)11)12

= ε(h1S(h2)11)12
(1.4)
= ε(εR(h1)S(h2)11)12

= ε(S(h1)h2S(h3)11)12

= ε(S(h)11)12.

(1.16)
εR(h) = 11ε(h12)

(1.4)
= 11ε(εR(h)12)

(1.1.12)
= 11ε(12εR(h))
= 11ε(12S(h1)h2)

(1.3)
= 11ε(12S(h1)εL(h2))
= 11ε(12S(h1)h2S(h3))
= 11ε(12S(h)).

(1.17)
S(11)ε(12h) = S(11)12S(13)ε(14h)

= εR(11)S(12)ε(13h)
(1.1.12)

= 11S(12)ε(13h)
= εL(11)ε(12h)
= ε(1′111)1′2ε(12h)
= ε(1′111)ε(12h)1′2
= ε(1′1h)1′2
= εL(h).

(1.18)
ε(h11)S(12) = ε(h11)S(12)13S(14)

= ε(h11)S(12)εL(13)
(1.1.12)

= ε(h11)S(12)13

= ε(h11)εR(12)
= ε(h11)1′1ε(121′2)
= 1′1ε(h11)ε(121′2)
= 11ε(h12)
= εR(h).
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Lemma 1.1.14. Let H be a weak Hopf algebra. Then,

εL ◦ S = εL ◦ εR = S ◦ εR (1.19)

εR ◦ S = εR ◦ εL = S ◦ εL (1.20)

S(11)⊗ S(12) = 12 ⊗ 11 (1.21)

S(hk) = S(k)S(h) (1.22)

S(h)1 ⊗ S(h)2 = S(h2)⊗ S(h1) (1.23)

ε ◦ S = ε (1.24)

S(1H) = 1H (1.25)

h1 ⊗ S(h2) h3 = h 11 ⊗ S(12) (1.26)

h1 S(h2)⊗ h3 = S(11)⊗ 12 h, (1.27)

for all h, k ∈ H.

Proof. (1.19) For the first equality:

εL(S(h))
(1.17)
= S(11)ε(12S(h))
= S(11ε(12S(h)))

(1.16)
= S(εR(h)).

For the second:

εL(εR(h))
(1.16)
= εL(11ε(12S(h)))
= εL(11)ε(12S(h))
= ε(1′111)1′2ε(12S(h))
= ε(1′111)ε(12S(h))1′2
= ε(1′1S(h))1′2
= εL(S(h)).

(1.20)The first equality holds because:

εR(S(h))
(1.18)
= ε(S(h)11)S(12)
= S(ε(S(h)11)12)

(1.15)
= S(εL(h)).

For the second:

εR(εL(h))
(1.15)
= εR(ε(S(h)11)12)
= ε(S(h)11)εR(12)
= ε(S(h)11)1′1ε(121′2)
= 1′1ε(S(h)11)ε(121′2)
= 1′1ε(S(h)1′2)
= εR(S(h)).
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(1.21)
S(11)⊗ S(12) = S(εR(11))⊗ S(12)

(1.20)
= εL(εR(11))⊗ S(12)
= εL(11)⊗ S(12)
= ε(11′11)12′ ⊗ S(12)
= 12′ ⊗ ε(11′11)S(12)

(1.18)
= 12′ ⊗ εR(11′)
= 12′ ⊗ 11′ .

(1.22)
S(hk) = S((hk)1)(hk)2S((hk)3)

= S(h1k1)h2k2S(h3k3)
= S(h1k1)εL(h2k2)

(1.5)
= S(h1k1)εL(h2εL(k2))

(1.11)
= S(h1k1)εL(h3)ε(h2εL(k2))
= S(h1k1)h3S(h4)ε(h2εL(k2))
= S(h1k1)ε(h2εL(k2))h3S(h4)

(1.11)
= S(h1k1)h2εL(k2)S(h3)
= S(h1k1)h2k2S(k3)S(h3)
= εR(h1k1)S(k2)S(h2)

(1.4)
= εR(εR(h1)k1)S(k2)S(h2)

(1.12)
= εR(k1)ε(εR(h1)k2)S(k3)S(h2)
= S(k1)k2ε(εR(h1)k3)S(k4)S(h2)

(1.12)
= S(k1)εR(h1)k2S(k3)S(h2)

(1.12)
= S(k1)εR(h1)εL(k2)S(h2)

(1.1.12)
= S(k1)εL(k2)εR(h1)S(h2)
= S(k1)k2S(k3)S(h1)h2S(h3)
= S(k)S(h).

(1.23)
∆(S(h)) = ∆(S(h1)h2S(h3))

= ∆(S(h1)εL(h2))
(1.22)
= ∆(S(h1)) ∆(εL(h2))
= ∆(S(h1))[11 εL(h2)⊗ 12]
= ∆(S(h1))[11 h2S(h3)⊗ 12]

(1.9)
= ∆(S(h1))[h2S(h5)⊗ h3S(h4)]
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= ∆(S(h1))∆(h2)[S(h4)⊗ S(h3)]
= ∆(S(h1))∆(h2)[S(h4)⊗ S(h3)]

(1.22)
= ∆(S(h1) h2)[S(h4)⊗ S(h3)]
= ∆(εR(h1))[S(h3)⊗ S(h2)]
= [11 ⊗ 12 εR(h1)][S(h3)⊗ S(h2)]
= 11 S(h3)⊗ 12 εR(h1) S(h2)
= 11 S(h4)⊗ 12 S(h1)h2S(h3)
= 11 S(h2)⊗ 12 S(h1)

(1.21)
= S(12) S(h2)⊗ S(11) S(h1)

(1.22)
= S(h2 12)⊗ S(h1 11)
= S(h2)⊗ S(h1).

(1.24)
ε(S(h)) = ε(S(h1)h2S(h3))

= ε(S(h1)εL(h2))
(1.3)
= ε(S(h1)h2)
= ε(εR(h))

(1.4)
= ε(h).

Moreover, S(1H) = S(εL(1H))
(1.20)
= εR(εL(1H)) = 1H .

(1.26)
h1 ⊗ S(h2) h3 = h1 ⊗ εL(h2)

(1.18)
= h1 ⊗ ε(h2 11) S(12)
= h1 ε(h2 11)⊗ S(12)
= h111′ ε(h212′ 11)⊗ S(12)
= h111 ε(h212)⊗ S(13)
= h11 ⊗ S(12).

(1.27)
h1 S(h2)⊗ h3 = εL(h1)⊗ h2

(1.17)
= S(11) ε(12 h1)⊗ h2

= S(11)⊗ ε(12 h1) h2

= S(11)⊗ ε(12 11′h1) 12′h2

= S(11)⊗ ε(12h1) 13h2

= S(11)⊗ 12h.

The finite dimension of HL and HR is enough to prove the following lemma, which
allows us to obtain results in the sequel without to resort, as it is usual, to the bijectivity
of the antipode.

Lemma 1.1.15. Let H be a weak Hopf algebra. Then S(HL) = HR and S(HR) = HL.
Moreover, SL = S|

HL
and SR = S|

HR
are bijections between HL and HR.
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Proof. We proceed by showing that the linear maps SL = S|
HL

: HL → HR and SR =
S|

HR
: HR → HL are surjective and dim(HL) = dim(HR).

Since HL = εL(H), it follows by (1.20) that S(HL) ⊆ HR. Similarly, S(HR) ⊆ HL.

Conversely, if z ∈ HL, then z = εL(z)
(1.17)
= S(11)ε(12z) ∈ S(HR). And, if w ∈ HR, then

w = εR(w)
(1.18)
= ε(w11)S(12) ∈ S(HL).

Now, take the linear map ϕL : HL → H∗R, given by ϕL(z)(w) = ε(wz), for all z ∈ HL

and w ∈ HR.

Notice that if z ∈ Ker(ϕL), then z = εL(z) = ε(11z)12 = ϕL(z)(11)12 = 0. Hence, ϕL
is injective and dim(HL) ≤ dim(H∗R) = dim(HR). Similarly, we also get that dim(HR) ≤
dim(HL).

Lemma 1.1.16. For all z ∈ HL and w ∈ HR, we have:

11S
−1
R (z)⊗ 12 = 11 ⊗ 12z (1.28)

11 ⊗ S−1
L (w)12 = w11 ⊗ 12 (1.29)

Proof. Indeed,

(1.28):

11S
−1
R (z)⊗ 12

(1.9)
= S−1

R (z)1 ⊗ S−1
R (z)2S(S−1

R (z)3)
= S−1

R (z)1 ⊗ εL(S−1
R (z)2)

= 11 ⊗ εL(12S
−1
R (z)) (since S−1

R (z) ∈ HR)
(1.13)
= 11 ⊗ 12 εL(S−1

R (z))
= 11 ⊗ 12 εL(εR(S−1

R (z))) (since S−1
R (z) ∈ HR)

(1.19)
= 11 ⊗ 12 εL(S(S−1

R (z)))
= 11 ⊗ 12 εL(S|

HR
(S−1

R (z)))

= 11 ⊗ 12 εL(z)
= 11 ⊗ 12 z

(1.29):

11 ⊗ S−1
L (w) 12

(1.10)
= S(S−1

L (w)1)S−1
L (w)2 ⊗ S−1

L (w)3

= εR(S−1
L (w)1)⊗ S−1

L (w)2

= εR(S−1
L (w)11)⊗ 12 (since S−1

L (w) ∈ HL)
(1.14)
= εR(S−1

L (w))11 ⊗ 12

= εR(εL(S−1
L (w)))11 ⊗ 12 (since S−1

L (w) ∈ HL)
(1.20)
= εR(S(S−1

L (w)))11 ⊗ 12

= εR(S|
HL

(S−1
L (w)))11 ⊗ 12

= εR(w)11 ⊗ 12

= w11 ⊗ 12
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Lemma 1.1.17. For all z ∈ HL and w ∈ HR, we have:

zS(11)⊗ 12 = S(11)⊗ 12z (1.30)

11 ⊗ S(12)w = w11 ⊗ S(12) (1.31)

Proof. Indeed,

(1.30):

S(11)⊗ 12z
(1.28)
= S(11S

−1
R (z))⊗ 12

= S(S−1
R (z))S(11)⊗ 12

= zS(11)⊗ 12

(1.31):

w11 ⊗ S(12)
(1.29)
= w11 ⊗ S(12S

−1
L (w))

= w11 ⊗ S(S−1
L (w))S(12)

= w11 ⊗ wS(12)

1.2 Corings

Definition 1.2.1. Let A be a unital ring. A set C is an A-coring if C is an A-bimodule
and there are morphisms of A-bimodules ∆C : C → C ⊗A C and εC : C → A such that

(CR1) (∆C ⊗A I)∆C = (I ⊗A ∆C)∆C;

(CR2) (I ⊗A εC)∆C(c) = c⊗A 1A ' c ∀c ∈ C;

(CR3) (εC ⊗A I)∆C(c) = 1A ⊗A c ' c ∀c ∈ C.

Example 1.2.2. If A is a commutative ring then any A-coalgebra is an A-coring.

Definition 1.2.3. Let A be a unital ring. An A-bimodule R is said to be an A-ring if there
exist morphisms of A-bimodules m : R ⊗A R → A and ı : A → R such that for all a ∈ A
and r ∈ R,

1. (I ⊗A m)m = (m⊗A I)m;

2. m(ı⊗A I)(a⊗A r) = 1A ⊗A ı(a)r;

3. m(I ⊗A ı)(r ⊗A a) = 1A ⊗A rı(a).

Note that if C is an A-coring then ∗C = AHom(C, A) is an A-ring with multiplication
# given by (f#g)(c) = g(c1f(c2)) and ı : A→ ∗C given by ı(a)(c) = εC(c)a.

Definition 1.2.4. An element x in an A-coring C is a grouplike element if ∆C(x) = x⊗A x
and εC(x) = 1A.
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From now on we will consider the A-coring C with a fixed grouplike x.

Definition 1.2.5. Let M be a vector space over k and A be a k-algebra. M is a right
comodule over the A-coring C if M is a right A-module and there exist a map ρ : M →
M ⊗A C such that

(CM1) ρ is right A-linear;

(CM2) (I ⊗A εC)ρ(m) = m⊗A 1A ' m;

(CM3) (ρ⊗A I)ρ = (I ⊗A ∆C)ρ.

We will denote the category of the right C-comodules by MC.
The set of elements of a C-comodule M invariant by the coaction ρ is defined by

M coC = {m ∈M | ρ(m) = m⊗A x}.

Note that A is an object in MC with the coation ρ : A → A ⊗A C ' C defined by
ρ(a) = 1A ⊗A xa. Hence AcoC = {a ∈ A | xa = ax} which is clearly a subring of A.

Definition 1.2.6. Let C be an A-coring and consider the map

can : A⊗AcoC A → C
a⊗ b 7→ axb.

We say that C is a Galois coring if can is bijective.

Let now Q = {q ∈ ∗C | c1q(c2) = q(c)x}. Q is an (∗C, AcoC)-bimodule via

f ⇀ q / a = f#q#ı(a).

Moreover, A is an (AcoC, ∗C)-bimodule with actions b . a = ba and a ↼ f = f(xa).
The maps

τ : A⊗∗C Q → AcoC

a⊗ q 7→ q(xa)

and
µ : Q⊗AcoC A → ∗C

q ⊗ a 7→ q#ı(a)

determine the Morita context (AcoC, ∗C, A,Q, τ, µ).

Finally, consider the map

∗can : ∗C → ∗(A⊗AcoC A) ' AcoCEnd(A)op

f 7→ ∗can(f)(a) = f(xa),

and the functors
FC :MAcoC → MC

N 7→ N ⊗AcoC A
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and
GC :MC → MAcoC

M 7→ M coC

where MAcoC denote the category of right AcoC-modules and MC the category of right
C-comodules.

Theorem 1.2.7. Let C be a coring with fixed grouplike x such that C is a left A-progenerator.
The following statements are equivalent:

1. can is bijective and A is faithfully flat as left AcoC-module;

2. ∗can is bijective and A is a left AcoC-progenerator;

3. The Morita context (AcoC, ∗C, A,Q, τ, µ) is strict;

4. (FC, GC) is an equivalence of categories.
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Chapter 2

Partial actions of weak Hopf algebras
on Algebras

2.1 Partial actions of weak Hopf algebras

Hereafter, all actions of a weak Hopf algebra on any algebra will be considered only on
the left side. Actions on the right side can be defined in a similar way, and corresponding
results similar to the ones we will deal with along this text can be obtained as well. Recall
that in this work all algebras are assumed to be associative and unital, unless otherwise
stated. Furthermore, in order to avoid confusion, we will always denote by · any partial
action and by . any global one (see, in particular, Section 2.4). Throughout, H will always
denote a weak Hopf algebra, without any more explicit mention, unless otherwise required.

The usual definition for (global) actions of weak Hopf algebras on algebras is the fol-
lowing.

Definition 2.1.1. Let A be an algebra. A (global) action of H on A is a k-linear map
. : H ⊗ A→ A such that the following properties hold for all a, b ∈ A and h, k ∈ H:

(i) 1H . a = a,

(ii) h . ab = (h1 . a)(h2 . b),

(iii) h . (k . a) = hk . a.

In this case, A is called an H-module algebra.

Note that in this definition we do not need to require A to be unital. However, in the
literature we find the definition of an action of a weak bialgebra H on an algebra A with
unit 1A, where the conditions (i)-(iii) have to be satisfied, as well as the fourth condition

h . 1A = ε
L
(h) . 1A.
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Nevertheless, in the case that H is a weak Hopf algebra, this fourth condition is implied
by the three previous ones, as we will see in the following lemma.

Lemma 2.1.2. Let A be an H-module algebra. Then,

h . 1A = ε
L
(h) . 1A,

for all h ∈ H.

Proof. In fact,
ε
L
(h) . 1A = h1S(h2) . 1A

(iii)
= h1 . (1A(S(h2) . 1A))
(ii)
= (h1 . 1A)(h2S(h3) . 1A)

(1.9)
= (11h . 1A)(12 . 1A)
(iii)
= (11 . (h . 1A))(12 . 1A)
(ii)
= 1H . (h . 1A)1A
(i)
= h . 1A.

In the setting of partial actions we have the following.

Definition 2.1.3. Let A be an algebra. A partial action of H on A is a k-linear map
· : H ⊗ A→ A such that the following properties hold for all a, b ∈ A and h, k ∈ H:

(PMA1) 1H · a = a;

(PMA2) h · ab = (h1 · a)(h2 · b);

(PMA3) h · (k · a) = (h1 · 1A)(h2k · a).

In this case A is called a partial H-module algebra.

Moreover, we say that · is symmetric (or, A is a symmetric partial H-module algebra)
if the additional condition also holds:

(PMA4) h · (k · a) = (h1k · a)(h2 · 1A).

Remark 2.1.4. Observe that, assuming the condition (PMA1), the conditions (PMA2)
and (PMA3) in Definition 2.1.3 are equivalent to

h · (a(k · b)) = (h1 · a)(h2k · b).

In a similar way, conditions (PMA2) and (PMA4) are equivalent to

h · ((k · a)b) = (h1k · a)(h2 · b).
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Example 2.1.5. Let H4 = k < g, x | g2 = 1 x2 = 0 and gx = −xg > be the Sweedler’s
algebra over a field k with characteristic different of 2. Define λ ∈ H∗4 by

λ : H4 → k
1 7→ 1k
g 7→ 0
x 7→ r
xg 7→ −r

where r ∈ k.
For a weak Hopf algebra H, the map

· : H ⊗H4 ⊗H → H
h⊗ v ⊗ h′ 7→ h1h

′S(h2)λ(v)

defines in H a structure of partial H ⊗H4-module algebra.

It is immediate to check that any (global) action is a particular example of a partial
one. The following proposition tells us under what condition a partial action is global.

Lemma 2.1.6. Let A be a partial H-module algebra. Then, A is an H-module algebra if
and only if h · 1A = ε

L
(h) · 1A, for all h ∈ H.

Proof. From Lemma 2.1.2, if A is an H-module algebra then h · 1A = ε
L
(h) · 1A, for all

h ∈ H.
Converselly, suppose that h · 1A = ε

L
(h) · 1A, for all h ∈ H. Then,

h · (g · a) = (h1 · 1A)(h2g · a)
= (ε

L
(h1) · 1A)(h2g · a)

= (h1S(h2) · 1A)(h3g · a)
(1.27)
= (S(11) · 1A)(12hg · a)
= (ε

L
(S(11)) · 1A)(12hg · a)

(1.19)
= (ε

L
(ε

R
(11)) · 1A)(12hg · a)

= (ε
R

(11) · 1A)(12hg · a)
(1.1.9)

= (11 · 1A)(12hg · a)
= 1H · (hg · a)
= hg · a,

for all g, h ∈ H.

In the next lemmas we will see some technical properties of partial actions, which will
be very useful tools in the sequel.
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Lemma 2.1.7. Let A be a partial H-module algebra. If w ∈ HR (or, w ∈ HL and the
partial action is symmetric), then

w · (h · a) = wh · a,

for every h ∈ H and a ∈ A.

Proof. Suppose first that w ∈ HR. Thus,

w · (h · a) = (w1 · 1A)(w2h · a)
(1.8)
= (11 · 1A)(12wh · a)
= 1H · (wh · a)
= wh · a.

Now, assuming that the partial action is symmetric and w ∈ HL, we have

w · (h · a) = (w1h · a)(w2 · 1A)
(1.7)
= (11wh · 1A)(12 · a)
= 1H · (wh · a)
= wh · a.

Lemma 2.1.8. Let A be a partial H-module algebra, h, k ∈ H and a, b ∈ A. Then,

(h · a)(k · b) = (11h · a)(12k · b).

Proof. In fact,
(h · a)(k · b) = 1H · [(h · a)(k · b)]

= (11 · h · a)(12 · k · b)
= (11 · h · a)(12 · 1A)(13k · b)
= (11 · (h · a)1A)(12k · b)
= (11 · h · a)(12k · b)
= (11h · a)(12k · b)

where the last equality follows by Lemmas 2.1.7 and 1.1.9.

Lemma 2.1.9. Let A be a partial H-module algebra, a, b ∈ A and z ∈ H.

(i) If z ∈ HL, then (z · a)b = z · ab.

(ii) If z ∈ HR, then a(z · b) = z · ab.

In particular, (HL · A) is a right ideal of A and (HR · A) is a left ideal of A.
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Proof. (i) If z ∈ HL,
(z · a)b = (z · a)(1H · b)

(2.1.8)
= (11z · a)(12 · b)
(1.7)
= (z1 · a)(z2 · b)
= z · ab

(ii) If z ∈ HR,
a(z · b) = (1H · a)(z · b)

(2.1.8)
= (11 · a)(12z · b)

(1.8)
= (z1 · a)(z2 · b)
= z · ab

The last assertion is obvious.

From the above lemma, we have the following immediate consequences.

Corolary 2.1.10. Let A be a partial H-module algebra, h, z ∈ H and a ∈ A.

(i) If z ∈ HL, we have that (z · 1A)(h · a) = z · (h · a). If, in addition, the action is
symmetric, then z · (h · a) = zh · a.

(ii) If z ∈ HR, then (h · a)(z · 1A) = zh · a

Lemma 2.1.11. Let A be a partial H-module algebra. The following assertions hold for
all h, k ∈ H and a, b ∈ A:

(i) (h · a)(k · b) = h1 · (a(S(h2)k · b)).

(ii) If the action is symmetric and the antipode S is invertible then,

(h · a)(k · b) = k2 · ((S−1(k1)h · a)b).

Proof. Let h, k ∈ H and a, b ∈ A. Then,
(i)

h1 · a(S(h2)k · b) = (h1 · a)(h2 · (S(h3)k · b))
= (h1 · a)(h2 · 1A)(h3S(h4)k · b)
= (h1 · a)(h2S(h3)k · b)

(1.9)
= (11h · a)(12k · b)

(2.1.8)
= (h · a)(k · b).

(ii) Since S is invertible, we obtain from (1.27) that

k2S
−1(k1)⊗ k3 = 11 ⊗ 12k, (2.1)
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for all k ∈ H.

Thus,
k2 · (S−1(k1)h · a)b = (k2 · (S−1(k1)h · a))(k3 · b)

(PMA4)
= (k2S

−1(k1)h · a)(k3 · 1A)(k4 · b)
= (k2S

−1(k1)h · a)(k3 · b)
(2.1)
= (11h · a)(12k · b)

(2.1.8)
= (h · a)(k · b)

2.2 Partial groupoid actions

Partial groupoid actions were introduced in the literature by D. Bagio and A. Paques
in [7]. Our main purpose in this section is to prove that, given a groupoid G such that
the set G0 of all its identities is finite, there is a one to one correspondence between the
symmetric partial actions of the groupoid algebra kG on a G0-graded algebra A and the
globalizable partial actions of the groupoid G on A (see Theorem 2.2.5).

Definition 2.2.1. A groupoid is a non-empty set G equipped with a partially defined
binary operation, for which the usual axioms of a group hold whenever they make sense,
that is:

(i) For every g, h, l ∈ G, g(hl) exists if and only if (gh)l exists and in this case they are
equal.

(ii) For every g, h, l ∈ G, g(hl) exists if and only if gh and hl exist.

(iii) For each g ∈ G there exist (unique) elements d(g), r(g) ∈ G such that gd(g) and
r(g)g exist and gd(g) = g = r(g)g.

(iv) For each g ∈ G there exists an element g−1 ∈ G such that d(g) = g−1g and
r(g) = gg−1.

The uniqueness of the element g−1 is an immediate consequence of the above definition,
and (g−1)−1 = g, for all g ∈ G. The element gh exists if and only if d(g) = r(h) if and only
if exists h−1g−1 and, in this case, (gh)−1 = h−1g−1, r(gh) = r(g) and d(gh) = d(h).

An element e ∈ G is said to be an identity of G if there exists g ∈ G such that
e = d(g) (and so e = r(g−1)). Let G0 denote the set of all identities of G. Note that
e = e−1 = d(e) = r(e), for all e ∈ G0. For more about groupoid’s properties we refer to
[35].

Definition 2.2.2. [7] A partial action of a groupoid G on an algebra A is a pair

α = ({αg}g∈G, {Dg}g∈G)

where, for each e ∈ G0 and g ∈ G, De is an ideal of A, Dg is an ideal of Dr(g), and
αg : Dg−1 → Dg is an algebra isomorphism such that:
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(i) αe is the identity map IDe of De,

(ii) α−1
h (Dg−1 ∩Dh) ⊆ D(gh)−1 ,

(iii) αg(αh(x)) = αgh(x), for all x ∈ αh−1(Dg−1 ∩Dh),

for all e ∈ G0 and g, h ∈ G such that d(g) = r(h).

For the proof of the following lemma see [7, Lemma 1.1].

Lemma 2.2.3. Let α = ({αg}g∈G, {Dg}g∈G) be a partial action of a groupoid G on an
algebra A. Then,

(i) αg
−1 = αg−1, for all g ∈ G,

(ii) αg(Dg−1 ∩Dh) = Dg ∩Dgh, if d(g) = r(h).

Given a groupoid G, the groupoid algebra kG is a k-vector space with basis {δg | g ∈ G},
and multiplication given by the rule

δgδh =

{
δgh, if d(g) = r(h)

0, otherwise

for all g, h ∈ G. It is easy to see that kG is an algebra, and has an identity element, given
by 1kG =

∑
e∈G0

δe, if and only if G0 is finite [36]. Moreover, kG has a coalgebra structure
given by

∆(δg) = δg ⊗ δg and ε(δg) = 1k,

for all g ∈ G. It is well known that kG, with the algebra and coalgebra structures above
described, and antipode S given by S(δg) = δg−1 , for all g ∈ G, is a weak Hopf algebra.

From now on we will assume that G0 is finite and α = ({αg}g∈G, {Dg}g∈G) is a partial
action of G on A =

⊕
e∈G0

De. We also assume that each ideal Dg has a unit, denoted by

1g. Notice that, in this case, each 1g is a central element of A (in particular, Dg is also an
ideal of A), and the conditions (ii) and (iii) of Definition 2.2.2 imply the following:

αg(αh(x1h−1)1g−1) = αgh(x1(gh)−1)1g, (2.2)

for all x ∈ A, whenever d(g) = r(h).

Lemma 2.2.4. With the notations and assumptions given above, the map

· : kG⊗ A → A
δg ⊗ a 7→ αg(a1g−1)

is a symmetric partial action of kG on A.
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Proof. Indeed, · is a well-defined linear map. Furthermore,

(i) for all a ∈ A,
1kG · a =

∑
e∈G0

δe · a

=
∑
e∈G0

αe(a1e−1)

=
∑
e∈G0

a1e

= a1A = a.

(ii) for all g ∈ G and a, b ∈ A,

δg · ab = αg(ab1g−1)
= αg(a1g−1)αg(b1g−1)
= (δg · a)(δg · b).

(iii) for all g, h ∈ G and a ∈ A, if d(g) 6= r(h) then Dg−1

⋂
Dh = 0 = δgδh, and

δg · (δh · a) = αg(αh(a1h−1)1g−1) = 0 = (δg · 1A)(δgδh · a).

Otherwise, if d(g) = r(h) then

δg · (δh · a) = αg(αh(a1h−1)1g−1)
(2.2)
= αgh(a1(gh)−1)1g
= (δg · 1A)(δgh · a)
= (δg · 1A)(δgδh · a).

The symmetry of · is obvious for, as noticed above, 1g = δg · 1A is central in A, for all
g ∈ G, and the groupoid algebra is cocommutative.

The converse of Lemma 2.2.4 is given in the following theorem, which in particular
generalizes [32, Proposition 2.2].

Theorem 2.2.5. Let A be an algebra and G a groupoid such that G0 is finite. The following
statements are equivalent:

(i) There exists a partial action α = ({αg}g∈G, {Dg}g∈G) of G on A such that the ideals
Dg are unital and A =

⊕
e∈G0

De.

(ii) A is a symmetric partial kG-module algebra.

Proof. (i)⇒(ii) It follows from Lemma 2.2.4.

(ii)⇒(i) Let Dg = δg · A, 1g = δg · 1A, and αg : Dg−1 → Dg given by αg(x) = δg · x, for
all g ∈ G and x ∈ Dg−1 . We will proceed by steps.
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To show that α = ({αg}g∈G, {Dg}g∈G) is a partial action of G on A we need to check
that, for every g ∈ G and e ∈ G0, Dg is an ideal of Dr(g), De is an ideal of A, and αg is
an algebra isomorphism, which will be done in the steps 1, 2, and 3. We also show in the
step 1 that the ideals Dg, g ∈ G, are all unital. In the step 4, we show that the conditions
(i)-(iii) of Definition 2.2.2 hold. Finally, in the step 5 we show that A =

⊕
e∈G0

De.

Step 1: First of all, 1g is a central idempotent of A and Dg = 1gA, which implies that
Dg is a unital ideal of A, for all g ∈ G.

Indeed, (1g)
2 = (δg · 1A)(δg · 1A) = δg · 1A = 1g, and

1ga = (δg · 1A)a
= 1kG · (δg · 1A)a
=

∑
e∈G0

(δe · δg · 1A)(δe · a)

=
∑
e∈G0

(δeδg · 1A)(δe · 1A)(δe · a)

=
∑
e∈G0

(δeδg · 1A)(δe · a)

= (δr(g)δg · 1A)(δr(g) · a)
= (δr(g)g · 1A)(δr(g) · a)
= (δg · 1A)(δgδg−1 · a)
= δg · δg−1 · a
= (δgδg−1 · a)(δg · 1A)
= (δr(g) · a)(δr(g)g · 1A)
= (δr(g) · a)(δr(g)δg · 1A)
=

∑
e∈G0

(δe · a)(δe δg · 1A)

=
∑
e∈G0

δe · (a(δg · 1A))

= 1kG · (a(δg · 1A))
= a(δg · 1A)
= a1g.

Note that the above sequence of equalities gives an important and useful relation for the
partial action of G on A, that is,

(δg · 1A)a = δg · δg−1 · a = a(δg · 1A), (2.3)

for all g ∈ G and a ∈ A, which implies

Dg = δg · A = (δg · 1A)(δg · A) ⊆ 1gA = (δg · 1A)A
(2.3)
= δg · δg−1 · A ⊆ δg · A = Dg,

hence Dg = 1gA. The last assertion is immediate.

Step 2: Dg = Dr(g)1g, in particular Dg is an ideal of Dr(g), for all g ∈ G.
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It follows from (2.3) and the symmetry of · that

Dg = (δg · 1A)A
(2.3)
= δg · δg−1 · A
= (δgδg−1 · A)(δg · 1A)
= (δr(g) · A)(δg · 1A)
= Dr(g)1g.

Step 3: αg is an isomorphism of algebras, for all g ∈ G.

It is clear from the above that αg is a well-defined linear map. Thus, it is enough to
show that αg is multiplicative and α−1

g = αg−1 , for all g ∈ G.

For all a, b ∈ A, we have

αg(ab1g−1) = δg · ab1g−1

= (δg · a1g−1)(δg · b1g−1)
= αg(a1g−1)αg(b1g−1).

In order to show that αg is an isomorphism, we need first to show that αe is the identity
in De for all e ∈ G0.

Notice that for any h ∈ G and a, b ∈ A,

(δh · a)b = (δh · a)(δh · 1A)b
(2.3)
= (δh · a)(δh · δh−1 · b) = δh · (a(δh−1 · b)). (2.4)

Therefore, for e ∈ G0 and a ∈ A we have

a1e = (1kG · a)1e
=

∑
e′∈G0

(δe′ · a)(δe · 1A)

(2.4)
=

∑
e′∈G0

δe′ · (a(δe′ · δe · 1A)) (taking b = δe · 1A)

=
∑
e′∈G0

δe′ · (a(δe′δe · 1A)(δe′ · 1A))

= δe · (a(δe · 1A))
= δe · a1e
= αe(a1e).

Finally, for all a ∈ Dg we have

αg(αg−1(a)) = δg · (δg−1 · a)
= (δgδg−1 · a)(δg · 1A)
= (δr(g) · a)1g
= (δr(g) · a1r(g))1g
= a1r(g)1g
= a.
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For the equality αg−1αg(a) = a, for all a ∈ Dg−1 , one proceeds in a similar way.

Step 4: α = ({Dg}g∈G, {αg}g∈G) is a partial groupoid action of G on A.

We only need to check that α satisfies the conditions (i)-(iii) of Definition 2.2.2.

(i) It follows from Step 3.

(ii) For all h, g ∈ G such that d(g) = r(h) and a ∈ A, we have

αh−1(a1g−11h) = αh−1(a1h)αh−1(1g−11h)
(2.2)
= αh−1(a1h)1h−11(gh)−1 ∈ D(gh)−1 ,

thus αh−1(Dg−1 ∩Dh) ⊆ D(gh)−1 .

(iii) It follows from (ii) that if x ∈ αh−1(Dg−1 ∩ Dh) then αh(x) ∈ Dg−1 and x =
a1h−11(gh)−1 , for some a ∈ A. Hence, the elements αgαh(x) and αgh(x) exist and lie in
Dg

⋂
Dgh, and

αg(αh(x)) = αg(δh · a1h−11(gh)−1)
= δg · (δh · a1h−11(gh)−1)
= (δgδh · a1h−11(gh)−1)(δg · 1A)
= (δgh · a1h−11(gh)−1)(δg · 1A)
= αgh(x)1g
= αgh(x).

Step 5: A =
⊕
e∈G0

De.

Indeed, notice that

A = 1kG · A =
∑
e∈G0

δe · A =
∑
e∈G0

De,

and, since

1e1f = (δe · 1A)(δf · 1A)
(2.3)
= δe · (δe · δf · 1A) = δe · ((δe · 1A)(δeδf · 1A)) = 0,

for all e 6= f in G0, it easily follows that De ∩ (
∑

f∈G0
f 6=e

Df ) = 0.

2.3 Partial actions on the ground field

Partial actions of a weak Hopf algebra H on the ground field k provide a large amount
of examples of partial actions. In this section we give the necessary and sufficient conditions
for an action of H on k to be partial and, as an application, we describe all the partial
actions of a groupoid algebra on k. The reader is invited to compare the results presented
here with the results in [4].

It is clear that any action of H on k is, in particular, a k-linear map from H on k. The
question is: under what conditions a k-linear map from H on k defines a partial action of
H on k? The answer is given in the following lemma.
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Lemma 2.3.1. Let λ : H → k be a k-linear map. Then, λ defines a partial action of H on
k, via

h · 1k = λ(h), for all h ∈ H,

if and only if

λ(1H) = 1k and λ(h)λ(g) = λ(h1)λ(h2g), for all g, h ∈ H.

Proof. Assume that · is a partial action. Then,

λ(1H) = 1H · 1k = 1k

and
λ(h)λ(g) = h · (g · 1k) = (h1 · 1k)(h2g · 1k) = λ(h1)λ(h2g).

Conversely, note that 1H · 1k = λ(1H) = 1k and h · (g · 1k) = λ(h)λ(g) = λ(h1)λ(h2g) =
(h1 · 1k)(h2g · 1k). Taking g = 1H in this last equality we have the third required condition.

It is well known that, in the setting of Hopf algebra actions, the only global action on k
is given by the counit ε. This is not true for actions of weak Hopf algebras. In the following
proposition we will give necessary and sufficient conditions to obtain a global action of a
weak Hopf algebra H on k.

Proposition 2.3.2. Let λ : H → k be a k-linear map and . : H ⊗ k → k the k-linear
map given by h . 1k = λ(h). Then, . is a global action of H on k if and only if λ is a
convolutional idempotent in Algk(H,k) = {f ∈ Homk(H,k) | f is multiplicative}.

Proof. Assume that . is global. Then, λ(h)λ(g) = h . g . 1k = hg . 1k = λ(hg) and
λ(1H) = 1H . 1k = 1k, for all g, h ∈ H. Thus, λ ∈ Algk(H,k). Moreover, λ ∗ λ(h) =
λ(h1)λ(h2) = (h1 . 1k)(h2 . 1k) = h . 1k = λ(h), for all h ∈ H, that is, λ ∗ λ = λ.

Conversely, since λ is a map of k-algebras, for all a, b in k and g, h in H, we have

(i) 1H . 1k = λ(1H) = 1k,

(ii) h . ab = abλ(h) = ab(λ ∗ λ)(h) = (h1 . a)(h2 . b),

(iii) h . g . a = aλ(h)λ(g) = aλ(hg) = hg . a.

The example below illustrates this previous result.

Example 2.3.3. Let G be a groupoid given by a disjoint union of finite groups G1, ..., Gn.
Choose Gj one of these subgroups and define λ : kG → k by λ(g) = 1 if g ∈ Gj and
λ(g) = 0 otherwise. It is straightforward to check that λ is a convolutive idempotent in
Algk(kG,k).
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Note that the counit ε of a weak Hopf algebra is not an algebra homomorphism, so
it does not turn k on an H-module algebra. The next proposition gives a necessary and
sufficient condition for ε to define a partial (so, global) action on k.

Proposition 2.3.4. A weak Hopf algebra H is a Hopf algebra if and only if ε defines a
partial action on k. In this case, ε is the unique convolutional idempotent in Algk(H,k).

Proof. If H is a Hopf algebra, then ε is an idempotent element in Algk(H,k) and so it
defines an action on k. Conversely, if ε defines a partial action on k, then ε(1H) = 1k and
ε(h)ε(g) = ε(h1)ε(h2g) = ε(ε(h1)h2g) = ε(hg), which implies that H is a Hopf algebra.

For the last assertion, it is enough to see that if H is a Hopf algebra then Algk(H,k) is
a group with the convolution product and ε is its unit.

We end this section presenting a complete description of all partial actions of a groupoid
algebra kG on k, as well as, all partial actions of kG∗ on k when G is a finite groupoid.

Let G be a groupoid. We say that a set V ⊂ G is a group in G if V is a group with the
operation of G.

Proposition 2.3.5. Let G be a groupoid such that G0 is finite, and λ : kG→ k a k-linear
map. Then, λ defines a partial action of kG on k, as characterized in Lemma 2.3.1, if and
only if the set

V = {v ∈ G | δv · 1k = 1k = δr(v) · 1k}

is a group in G and δg · 1k = 0, for all g ∈ G \ V .

Proof. Assume that λ defines a partial action on k, given by δg · 1k = λ(g), for all g ∈ G.
Then, it follows from the equality

(δg · 1k)(δh · 1k) = (δg · 1k)(δgδh · 1k),

that
δg · 1k = (δg · 1k)(1kG · 1k)

=
∑
e∈G0

(δg · 1k)(δe · 1k)

=
∑
e∈G0

(δg · 1k)(δgδe · 1k)

= (δg · 1k)(δgδd(g) · 1k)
= (δg · 1k)

2.

Thus, δg · 1k is an idempotent in k, and therefore equal to either 1k or 0, for all g ∈ G.
Furthermore, the equality λ(1kG) = 1k ensures that V 6= ∅.

Now, we show that V is a group.

(i) For all g, h ∈ V , the product gh exists and lies in V . This is an immediate conse-
quence of the following expression

1k = λ(δg)λ(δh) = λ(δg)λ(δgδh) = λ(δgδh).
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(ii) For all g ∈ V , the element g−1 lies in V . Indeed, since g ∈ V we have

λ(δg−1) = λ(δg)λ(δg−1) = λ(δg)λ(δgg−1) = λ(δg)λ(δr(g)) = 1k.

Conversely, assume that V is group and let eV denote its identity element. Also, assume
that δg · 1k = 0, for all g ∈ G \ V . Under these assumptions we have, in particular,
that r(g) = d(g) = eV , for all g ∈ V , and δe · 1k = 0, for all e ∈ G0, e 6= eV . Thus,
λ(1kG) =

∑
e∈G0

λ(δe) = λ(δeV ) = 1k, and it is straightforward to check that λ(δg)λ(δh) =
λ(δg)λ(δgδh).

In the above proposition, if we assume k a field of characteristic 0, then δv · 1k = 1k
implies δr(v) · 1k = 1k. Later in Section 3.2 we will suppose that this characteristic is 0 to
simplify the calculations. Similar results can be obtained for any field.

Example 2.3.6. Let G = G1∪G2 be the groupoid given by the disjoint union of two groups
G1 and G2. Any subgroup V of G1 (or G2) defines a partial action of kG on k, given by
λ(δg) = δg,V , for all g in G, where δg,V = 1k if g ∈ V and δg,V = 0 otherwise.

Proposition 2.3.7. Let G be a finite groupoid, kG∗ the dual Algebra of kG with basis
{pg | g ∈ G} and · : kG∗ ⊗ k → k a k-linear map. Take the set V = {v ∈ G | pv−1 · 1k 6=
0 and pv · 1k 6= 0} and suppose that the characteristic of the field does not divide the
cardinality of V . Then · is a partial action of kG∗ on k if and only if V is a group in G,
and in this case it is defined by

pg · 1k =

{
1
|V | , if g ∈ V,
0, otherwise.

Proof. Supposing that λ defines a partial action, then for any g, h ∈ V we have that

pg · (ph · 1k) =
∑
l∈G

(pl · 1k)((pl−1g ∗ ph) · 1k)

= (pgh−1 · 1k)(ph · 1k)

and, on the other side, since ph · 1k lies in k

pg · (ph · 1k) = (pg · 1k)(ph · 1k).

But h ∈ V means that ph · 1k 6= 0. Hence pg · 1k = pgh−1 · 1k for any g, h ∈ V .

Therefore, it is clear that there exists the product of any two elements in V and it lies
in V .

So, the above stated says that if g lies in V (and so g−1) then

pg−1 · 1k = pg−1g · 1k

which means that d(g) also lies in V .
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Moreover, there is a unique unit in V because for any g, h ∈ V , d(g) = r(h−1) = d(h).
Then V is a group in G.

It just remains to show that pg · 1k = 1
|V | . It follows directly from

1kG∗ · 1k = 1k ⇔
∑
g∈G

pg · 1k = 1k

⇔
∑
g∈V

pg · 1k = 1k

and since pg · 1k = ph · 1k for any g, h ∈ V , we have the desired result.
The converse follows by a simple calculation.

2.4 Globalization of partial actions

In this section we show that any partial action of a weak Hopf algebra can be obtained
from a global one. Particularly, in this section, the notations · for partial actions and B for
global ones are crucial.

First of all, given a global action we will see how to construct a partial one from it. The
method to do this is given in the following lemma.

Lemma 2.4.1. Let B be an H-module algebra via . : H ⊗ B → B. Let A be a right ideal
of B which is also an algebra with unit 1A. Then, the k-linear map · : H ⊗A→ A given by

h · a = 1A(h . a)

is a partial action of H on A.

Proof. For every a, b ∈ A and g, h ∈ H, we have

(i) 1H · a = 1A(1H . a) = 1Aa = a.

(ii) h · (ab) = 1A(h . ab) = 1A(h1 . a)(h2 . b) = 1A(h1 . a)1A(h2 . b) = (h1 · a)(h2 · b).

(iii) h · (g · a) = 1A(h . (g · a)) = 1A(h . 1A(g . a)) = 1A(h1 . 1A)(h2g . a) = 1A(h1 .
1A)1A(h2g . a) = (h1 · 1A)(h2g · a)).

The partial action · of H on A, obtained by the method given above, is called induced
by the action ..

Definition 2.4.2. Let A be a partial H-module algebra. We say that a pair (B, θ) is a
globalization of A if B is an H-module algebra via . : H ⊗B → B, and

(i) θ : A→ B is a monomorphism of algebras such that θ(A) is a right ideal of B,
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(ii) the partial action on A is equivalent to the partial action induced by . on θ(A), that
is, θ(h · a) = h · θ(a) = θ(1A)(h . θ(a)),

(iii) B is the H-module algebra generated by θ(A), that is, B = H . θ(A).

Notice that in the above definition as well as in Lemma 2.4.1 we do not need to require
B to be unital.

The existence of such a globalization will be ensured by the construction presented in
the sequel.

We start by taking the convolution algebra F = Hom(H,A), which is an H-module
algebra with the action given by (h . f)(k) = f(kh), for all f ∈ F and h, k ∈ H. Let
ϕ : A→ F be the map given by ϕ(a) : h 7→ h·a, for all a ∈ A and h ∈ H. Put B = H.ϕ(A).

Proposition 2.4.3. The pair (B,ϕ) is a globalization of A.

Proof.

(i) ϕ is an algebra monomorphism such that ϕ(h ·a) = ϕ(1A) ∗ (h.ϕ(a)), for all h ∈ H
and a ∈ A. Indeed,

- ϕ is clearly k-linear,

- ϕ is injective because 1H · a = a,

- ϕ(ab)(h) = h · ab = (h1 · a)(h2 · b) = ϕ(a)(h1)ϕ(b)(h2) = [ϕ(a) ∗ ϕ(b)](h), for all
a, b ∈ A and h ∈ H,

- (ϕ(1A) ∗ (h . ϕ(a)))(k) = (k1 · 1A)(k2h · a) = k · h · a = ϕ(h · a)(k), for all k ∈ H.

(ii) ϕ(A) is a right ideal of B. Indeed,

ϕ(b) ∗ (h . ϕ(a)) = ϕ(b) ∗ ϕ(1A) ∗ (h . ϕ(a))
= ϕ(b) ∗ ϕ(h · a)
= ϕ(b(h · a)),

for all a, b ∈ A and h ∈ H.

(iii) B is an H-module algebra.

In fact, B is clearly a vector subspace of F which is invariant under the action ., and

(h . ϕ(a)) ∗ (k . ϕ(b))
(2.1.11)
= h1 . (ϕ(a) ∗ (S(h2)k . ϕ(b)))
= h1 . (ϕ(a) ∗ ϕ(1A) ∗ (S(h2)k . ϕ(b)))
= h1 . (ϕ(a) ∗ ϕ(S(h2)k · b))
= h1 . (ϕ(a(S(h2)k · b))),

for all a, b ∈ A and h, k ∈ H.
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The pair (B,ϕ), as constructed above, is called the standard globalization of A.

Proposition 2.4.4. With the above notations, a partial action on A is symmetric if and
only if ϕ(A) is an ideal of B.

Proof. Suppose that a partial action of H on A is symmetric. Then,

((h . ϕ(a)) ∗ ϕ(b))(k) = (h . ϕ(a))(k1)ϕ(b)(k2)
= ϕ(a)(k1h)ϕ(b)(k2)
= (k1h · a)(k2 · b)

(PMA4)
= k · ((h · a)b)
= ϕ((h · a)b)(k)

for all h, k ∈ H and a, b ∈ A. As ϕ(A) is a right ideal of B, the required follows.

Conversely, since ϕ(A) is an ideal of B we have that ϕ(1A) is central in B. Then,

k · (h · a) = ϕ(h · a)(k)
= (h · ϕ(a))(k)
= (ϕ(1A) ∗ (h . ϕ(a)))(k)
= ((h . ϕ(a)) ∗ ϕ(1A))(k)
= (h . ϕ(a))(k1)ϕ(1A)(k2)
= ϕ(a)(k1h)ϕ(1A)(k2)
= (k1h · a)(k2 · 1A)

for all h, k ∈ H and a ∈ A.

By a homomorphism between two globalizations of a same partial H-module algebra
we mean a multiplicative linear map that commutes with the respective actions. If such a
homomorphism is bijective we say that such globalizations are isomorphic.

Proposition 2.4.5. With the above notations, any globalization of A is a homomorphic
preimage of the standard one.

Proof. Let (B′, θ) be a globalization of the partial H-module algebra A and define the
following map

Φ: B′ → B
n∑
i=0

hi I θ(ai) 7→
n∑
i=0

hi . ϕ(ai)

In order to prove that Φ is well-defined, it is enough to check that if
n∑
i=0

hi I θ(ai) = 0
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then
n∑
i=0

hi . ϕ(ai) = 0. Assume that
n∑
i=0

hi I θ(ai) = 0. Then, for all k ∈ H we have

0 = θ(1A)(k I
n∑
i=0

hi I θ(ai))

= θ(1A)(
n∑
i=0

khi I θ(ai))

=
n∑
i=0

khi · θ(ai)

= θ

(
n∑
i=0

khi · ai
)

and, as θ is injective, we get
n∑
i=0

khi · ai = 0.

Hence, for any k ∈ H,(
n∑
i=0

hi . ϕ(ai)

)
(k) =

n∑
i=0

ϕ(ai)(khi)

=
n∑
i=0

khi · ai
= 0.

Clearly, Φ is surjective and Φ(g I b′) = g . Φ(b′), for all b′ ∈ B′ and g ∈ H.

Finally, for all h, k ∈ H and a, b ∈ A,

Φ((h I θ(a))(k I θ(b))) = Φ(1H I ((h I θ(a))(k I θ(b))))
= Φ((11 I h I θ(a))(12 I k I θ(b)))
= Φ((11h I θ(a))(12k I θ(b)))
= Φ((h1 I θ(a))(h2S(h3)k I θ(b)))
= Φ(h1 I (θ(a)(S(h2)k I θ(b))))
= Φ(h1 I θ(a(S(h2)k · b)))
= h1 . (ϕ(a(S(h2)k · b)))
= h1 . (ϕ(a) ∗ (S(h2)k . ϕ(b)))
= (h1 . ϕ(a)) ∗ (h2S(h3)k . ϕ(b))
= (11h . ϕ(a)) ∗ (12k . ϕ(b))
= (11 . h . ϕ(a)) ∗ (12 . k . ϕ(b))
= 1H . ((h . ϕ(a)) ∗ (k . ϕ(b)))
= Φ(h I θ(a)) ∗ Φ(k I θ(b)).

Definition 2.4.6. Let (B, θ) be a globalization of a partial H-module algebra A. We say
that B is minimal if for every H-submodule M of B such that θ(1A)M = 0 we have M = 0.

The concept of minimal globalization was intruduced by M. Alves and E. Batista in
[2], where they shown that the globalization for a partial action of the group algebra are
ever minimal.
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Proposition 2.4.7. The standard globalization (B,ϕ) of A is minimal.

Proof. It is enough to prove that the minimal condition holds for any cyclic submodule of

B. Let m =
n∑
i=0

hi . ϕ(ai) be an element in B. Suppose that ϕ(1A) ∗ 〈m〉 = 0, where 〈m〉 is

the H-submodule of B generated by m, that is, 〈m〉 = H .m.

Then, for all k ∈ H,

0 = ϕ(1A) ∗ (k . m)

= ϕ(1A) ∗
(
k .

n∑
i=0

hi . ϕ(ai)

)
= ϕ(1A) ∗ (

∑
i khi . ϕ(ai))

= (
∑

i khi · ϕ(ai))
= ϕ(

∑
i khi · ai)

which implies
∑
i

khi · ai = 0, since ϕ is a monomorphism.

Since m ∈ B ⊆ Hom(H,A) we have

m(k) = (
n∑
i=0

hi . ϕ(ai))(k)

= (
∑

i ϕ(ai))(khi)
=

∑
i khi · ai

= 0

for all k ∈ H. Therefore, m = 0.

Proposition 2.4.8. Any two minimal globalizations of a partial H-module algebra A are
isomorphic.

Proof. Let (B′, θ) be a minimal globalization of A, (B,ϕ) the standard one, and Φ: B′ → B
as defined in Proposition 2.4.5. It is enough to prove that Φ is injective.

Suppose Φ(
∑

i hi . θ(ai)) = 0. Thus, 0 = (
∑

i hi . ϕ(ai))(g) =
∑

i ghi · ai, for all
g ∈ H, and so 0 = θ(

∑
i ghi · ai) =

∑
i ghi · θ(ai) = θ(1A)(

∑
i ghi . θ(ai)) = θ(1A)(g .∑

i hi . θ(ai)).
Now, if M denotes the H-submodule of B′ generated by

∑
i hi . θ(ai) we have that

θ(1A)M = 0, hence M = 0. Therefore, Φ is injective.

We end this section summarizing all the above main results in the following theorem.

Theorem 2.4.9. Let A be a partial H-module algebra.

(i) A has a minimal globalization.

(ii) Any two minimal globalizations of A are isomorphic.

(iii) Any globalization of A is a homomorphic preimage of a minimal one.
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2.5 Partial smash product

In this section we construct the smash product for a partial H-module algebra.

The smash product already exists for an H-module algebra and even for a partial H-
module algebra when H is a Hopf algebra. So, it is natural to ask if it still works for a
partial H-module algebra when H is a weak Hopf algebra. The hard task here is to get
the good definition of smash product. In fact, the smash product for Hopf algebra actions
(partial or global) is, by construction, a tensor product over the ground field, which makes
it easy to show that it is well-defined. This does not occur when dealing with weak Hopf
algebra actions because the tensor product, in this case, is not anymore over the ground
field but over the algebra HL.

In order to get our aim we need first a right HL-module structure for a partial H-module
algebra.

Proposition 2.5.1. Let A be a partial H-module algebra. Then, A is a right HL-module
via a / z = S−1

R (z) · a = a(S−1
R (z) · 1A), for all a ∈ A and z ∈ HL.

Proof. As 1H ∈ HL and S−1
R (1H) = 1H , it follows that a / 1H = 1H · a = a.

Let a ∈ A, h, g ∈ HL, so

(a / h) / g = S−1
R (g) · (S−1

R (h) · a)
= (S−1

R (g)1 · 1A)(S−1
R (g)2S

−1
R (h) · a)

(1.8)
= (11 · 1A)(12S

−1
R (g)S−1

R (h) · a)
= 1H · (S−1

R (hg) · a)
= a / hg.

The equality S−1
R (z) · a = a(S−1

R (z) · 1A) holds by 2.1.9(ii).

Notice that the action, by restriction, of HR on a partial H-module algebra usually
behaves like a global action. The Lemma 2.1.7 is a good example of it. In fact, a partial
H-module algebra does not become an HR-module algebra simply because HR is not a
coalgebra. However, the partial action in A generates on it a structure of HR-module. The
next lemma shows one more property for the action of HR on a partial H-module algebra
that works like a global action.

Lemma 2.5.2. Let A be a partial H-module algebra. If h belongs to HR, then ε
L
(h) · 1A =

h · 1A.
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Proof. Let h ∈ HR

ε
L
(h) · 1A = h1S(h2) · 1A

(1.8)
= 11S(12h) · 1A

(2.1.7)
= 11 · (S(12h) · 1A)
(1.8)
= h1 · (S(h2) · 1A)
= (h1 · 1A)(h2S(h3) · 1A)
(1.9)
= (11h · 1A)(12 · 1A)

(2.1.7)
= (11 · (h · 1A))(12 · 1A)
= 1H · (h · 1A)1A
= h · 1A.

There is also another useful characterization for the right action of HL on A.

Lemma 2.5.3. If z ∈ HL, then a / z = a(z · 1A).

Proof. Let z ∈ HL.

a / z = a(S−1
R (z) · 1A)

(2.5.2)
= a(ε

L
(S−1

R (z)) · 1A)
= a(ε

L
(ε

R
(S−1

R (z))) · 1A) since S−1
R (z) ∈ HR

(1.19)
= a(ε

L
(S(S−1

R (z))) · 1A)
= a(ε

L
(z) · 1A)

= a(z · 1A) since z ∈ HL.

Now we are able to define the smash product for a partial H-module algebra A.

First, notice that H has a natural structure of a left HL-module via its multiplication.
We start by considering the k-vector space given by the tensor product A⊗H

L
H, and also

denoted by A#H, with the multiplication defined by

(a#h)(b#g) = a(h1 · b)#h2g.

Theorem 2.5.4. This above multiplication is well-defined, associative, and 1A#1H is a
left unit.

Proof. The well-definition:
It is enough to show that the map µ̃ : A×H ×A×H → A#H given by µ̃(a, h, b, g) =

a(h1 · b)#h2g is (HL,k, HL)-balanced. In fact, for all a, b ∈ A, h, g ∈ H, z ∈ HL and r ∈ k
we have:
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µ̃(a, h, b / z, g) = a(h1 · (b / z))#h2g
= a(h1 · (S−1

R (z) · b))#h2g
= a(h1 · 1A)(h2S

−1
R (z) · b)#h3g

= a(h1 · 1A)(h211S
−1
R (z) · b)#h312g

(1.28)
= a(h1 · 1A)(h211 · b)#h312zg
= a(h1 · 1A)(h2 · b)#h3zg
= a(h1 · 1Ab)#h2zg
= a(h1 · b)#h2zg
= µ̃(a, h, b, zg).

It is clear that µ̃(a, hr, b, g) = µ̃(a, h, rb, g), and

µ̃(a / z, h, b, g) = (a / z)(h1 · b)#h2g
= a(S−1

R (z) · 1A)(h1 · b)#h2g
(2.1.8)
= a(11S

−1
R (z) · 1A)(12h1 · b)#h2g

(1.28)
= a(11 · 1A)(12zh1 · b)#h2g
= a(11 · 1A)(12 · 1A)(13zh1 · b)#h2g
= a(11 · 1A)(12 · zh1 · b)#h2g
= a(1H · 1A(zh1 · b))#h2g
= a(z11h1 · b)#12h2g
(1.7)
= a(z1h1 · b)#z2h2g
= µ̃(a, zh, b, g).

The associativity:

((a#h)(b#g))(c#k) = (a(h1 · b)#h2g)(c#k)
= a(h1 · b)(h2g1 · c)#h3g2k
= a(h1 · b1A)(h2g1 · c)#h3g2k
= a(h1 · b)(h2 · 1A)(h3g1 · c)#h4g2k
= a(h1 · b)(h2 · (g1 · c))#h3g2k
= a(h1 · b(g1 · c))#h2g2k
= (a#h)(b(g1 · c)#g2k)
= (a#h)((b#g)(c#k)).

The left unit:
(1A#1H)(a#h) = 1A(11 · a)#12h

= (11 · a)#12h
(1.1.9)
= S−1

R (S(11) · a)#12h
= a / S(11)#12h
= a#S(11)12h
= a#εL(1H)h
= a#h.
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It follows from the above theorem that

A#H = (A#H)(1A#1H)

is an algebra with 1A#1H as its unit. This algebra is called the partial smash product of A
by H.

The following example illustrates that, in general, 1A#1H is not a unit of A#H.

Example 2.5.5. Let G be a finite groupoid which is not a group and Ge = {g ∈ G |
d(g) = e = r(g)} the isotropy group associated to e, for some e ∈ G0. It is easy to see that
k is a partial kG-module algebra via

· : kG⊗ k → k
g ⊗ 1k 7→ δg,Ge ,

where δg,Ge = 1k if g ∈ Ge and 0 otherwise. In this case, 1k#1kG is not a right unit for the
smash product k#kG. Indeed, since G is not a group, there exists an element x in G \Ge.
Thus, x · 1k = 0 and, consequently, (1k#x)(1k#1kG) = 0.

Actually, we have the following.

Proposition 2.5.6. Let A be a partial H-module algebra. Then, 1A#1H is a unit in A#H
if and only if A is an H-module algebra.

Proof. Suppose 1A#1H a unit in A#H. Then a#h = a(h1 · 1A)#h2 and, applying εL on
the second element of each term of this equality, we have

a / εL(h) = a(h1 · 1A) / εL(h2).

Hence,

a(εL(h) · 1A)
(2.5.3)
= a / εL(h)
= a(h1 · 1A) / εL(h2)
= a(h1 · 1A)(εL(h2) · 1A)
= a(h1 · 1A)(h2S(h3) · 1A)
(9)
= a(11h · 1A)(12 · 1A)

(2.1.8)
= a(h · 1A)(1H · 1A)
= a(h · 1A)

and, taking a = 1A we have h ·1A = εL(h) ·1A. By Lemma 2.1.6, A is an H-module algebra.
The converse is straightforward and standard.

We have some more properties for the smash product. The first of them shows that we
can see A inside A#H. It will be useful in Chapter 4 to give an A-module structure for
some objects.

The second one says we can break a simple element a#h in two parts, making easier
some computations.
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Proposition 2.5.7. Let A be a partial H-module algebra. Then the map

ı : : A → A#H
a 7→ a#1H

is an algebra monomorphism.

Proof. Note that a#1H = a(11 · 1A)#12
(2.1.9)
= (11 · a)#12 = (1A#1H)(a#1H) = a#1H for

all a ∈ A.
Supposing a#1H = b#1H , then a#1H = b#1H and so a = b. It means ı is injective.
Moreover, if a, b ∈ A,

ı(a)ı(b) = (a#1H)(b#1H)
= a(11 · b)#12

(2.1.9)
= (11 · ab)#12

= (1A#1H)(ab#1H)
= (ab#1H)
= ı(ab)

then ı is an algebra morphism.

In other words, the theorem says that we can see A inside of A#H as A#1H .
And, for the second one, we have:

Proposition 2.5.8. Let A be a partial H-module algebra. Then a#h = (a#1H)(1A#h)
for all a ∈ A and h ∈ H.

Proof. In fact,
(a#1H)(1A#h) = a(11 · 1A)#12h

(2.1.9)
= (11 · a)#12h
= (1A#1H)(a#h)
= (a#h).

2.6 A Morita context

In the setting of partial actions of Hopf algebras with an invertible antipode there exits
a Morita context relating the partial smash product A#H and the (global) smash product
B#H, where B denotes a globalization of A such that the image of A inside B is an ideal
of B (cf. [2]). In this section we extend this result to the setting of partial actions of weak
Hopf algebras.

First, recall the definition of a Morita context.
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Definition 2.6.1. Let A and B be unital rings. A Morita context for A and B is a
sixtuple (A,B,M,N, (, ), [, ]) where M is a (A,B)-bimodule, N is a (B,A)-bimodule, and
(, ) : M ⊗B N → A and [, ] : N ⊗A M → B are homomorphisms of (A,A)-bimodules and
(B,B)-bimodules, respectively, such that

(i) (m,n)m′ = m[n,m′],

(ii) [n,m]n′ = n(m,n′),

for all m,m′ ∈M n, n′ ∈ N .

We will first construct a non unitary monomorphism of algebras from A#H into B#H.
For this we need the following lemma.

Lemma 2.6.2. Let A be a partial H-module algebra and (B, θ) a globalization of A. Then,
S−1
R (h) . θ(a) = S−1

R (h) · θ(a), for all h ∈ HL.

Proof. Note that S−1
R (h) · θ(a) = θ(1A)(S−1

R (h) . θ(a)). But S−1
R (h) lies in HR, thus, by

Lemma 2.1.9(i), we have θ(1A)(S−1
R (h) . θ(a)) = S−1

R (h) . (θ(1A)θ(a)) = S−1
R (h) . θ(a).

Proposition 2.6.3. Let (B, θ) be a globalization of the partial H-module algebra A. Then,
there exists a non unitary algebra monomorphism Ψ from A#H to B#H.

Proof. Define
Ψ̃ : A×H → B ⊗HL

H
(a, h) 7→ θ(a)⊗ h.

For all a ∈ A, h ∈ H and z ∈ HL, we have

Ψ̃(a, zh) = θ(a)⊗ zh
= θ(a) / z ⊗ h
= S−1

R (z) . θ(a)⊗ h
(2.6.2)

= S−1
R (z) · θ(a)⊗ h

= θ(S−1
R (z) · a)⊗ h

= θ(a / z)⊗ h
= Ψ̃(a / z, h),

which shows that Ψ̃ is HL-balanced. Thus, there exists a k-linear map Ψ from A⊗HL
H to

B ⊗HL
H defined by Ψ(a⊗ h) = θ(a)⊗ h.

It follows from the injectivity of θ and similar calculations that the k-linear map
Ψ′ : θ(A)⊗HL

H → A⊗HL
H given by Ψ′(θ(a)⊗ h) = a⊗ h is well-defined. Furthermore,

Ψ is a monomorphism because Ψ′ ◦Ψ = IA⊗HL
H .
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It remains to check that Ψ: A#H → B#H is multiplicative. In fact, for all a, b ∈ A
and h, g ∈ H, we have

Ψ((a#h)(b#g)) = Ψ(a(h1 · b)#h2g)
= θ(a(h1 · b))#h2g
= θ(a)θ(h1 · b)#h2g
= θ(a)(h1 · θ(b))#h2g
= θ(a)(h1 . θ(b))#h2g
= (θ(a)#h)(θ(b)#g)
= Ψ(a#h)Ψ(b#g).

In the sequel, we will construct the bimodules which will define a Morita context for
A#H and B#H. For this construction we will suppose that θ(A) is an ideal of B and
the antipode S of H is invertible. This assumption on S is necessary because in this
construction we will need to make use of Lemma 2.1.11(ii).

Now let M = Ψ(A#H) and N be the vector space generated by the elements of the
form (h1 . θ(a))#h2, for all a ∈ A and h ∈ H.

Proposition 2.6.4. With the above notations and assumptions, M is a right B#H-module
and N is a left B#H-module, via the multiplication of B#H.

Proof. Let θ(a)#h ∈M and k . θ(b)#g ∈ B#H, so

(θ(a)#h)(k . θ(b)#g) = θ(a)(h1k . θ(b))#h2g
= θ(a)(h1k · θ(b))#h2g
= θ(a(h1k · b))#h2g

that lies in M .

Let k . θ(a)#h ∈ B#H and g1 . θ(b)#g2 ∈ N . Then we have

(k . θ(a)#h)(g1 . θ(b)#g2) = (k . θ(a))(h1g1 . θ(b))#h2g2
(2.1.11)
= h2g2 . [(S−1(h1g1)k . θ(a))θ(b)]#h3g3

that lies in N because θ(A) is an ideal of B = H . θ(A).

Now, the assertion follows from the associativity of B#H.

Proposition 2.6.5. Keeping the same notations and assumptions as above, M is a left
A#H-module and N is a right A#H-module via the actions

I : A#H ⊗M → M
a#h⊗m 7→ Ψ(a#h)m

and
J : N ⊗ A#H → N

n⊗ a#h 7→ nΨ(a#h)

respectively, where Ψ is the non unitary monomorphism defined in 7.3. Moreover, M and
N are bimodules.
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Proof. We need only to ensure that J is well-defined. The well-definition of I as well as
the other assertions follow from the fact that A#H is a subalgebra of A#H and Ψ is
multiplicative.

Given h1 . θ(a)#h2 ∈ N and a′#g ∈ A#H, we have

(h1 . θ(a)#h2) J (a′#g) = (h1 . θ(a)#h2)(Ψ(a′#g))
= (h1 . θ(a)#h2)(θ(a′(g1 · 1A))#g2)
= (h1 . θ(a)#h2)(θ(a′)(g1 · θ(1A)#g2))
= (h1 . θ(a)#h2)(θ(a′)(g1 . θ(1A)#g2))
= (h1 . θ(a))(h2 . θ(a

′))(h3g1 . θ(1A))#h4g2

= (h1 . θ(aa
′))(h2g1 . θ(1A))#h3g2

(2.1.11)
= h3g2 . [(S−1(h2g1)h1 . θ(aa

′))θ(1A)]#h4g3

that lies in N , because θ(A) is an ideal of B, which ensures that J is also well-defined.

Now, we consider the maps [, ] : N⊗A#HM → B#H and (, ) : M⊗B#HN → Ψ(A#H) '
A#H given by the multiplication of B#H. Both such maps are well-defined because
M,N ⊆ B#H.

Theorem 2.6.6. (A#H,B#H,M,N, (, ), [, ]) is a Morita context. Moreover, the maps [, ]
and (, ) are both surjective. In particular, if B also has an identity element, then A#H and
B#H are Morita equivalent.

Proof. The main assertion follows from Propositions 7.4 and 7.5, and from the associativity
of the multiplication of B#H.

For the surjectivity of (, ) and [, ] it is enough to show that MN = Ψ(A#H) and
NM = B#H.

In fact, clearly Ψ(A#H) ⊆MN . Conversely, given g1 . θ(b)#g2 ∈ N and θ(a)#h ∈M
we have

(θ(a)#h)(g1 . θ(b)#g2) = θ(a)(h1g1 . θ(b))#h2g2

= θ(a)(h1g1 · θ(b))#h2g2

= θ(a(h1g1 · b))#h2g2

= θ(a(h1g1 · b1A))#h2g2

= θ(a(h1g1 · b)(h2g2 · 1A))#h3g3

= Ψ(a(h1g1 · b)#h2g2)

which lies in Ψ(A#H). Hence, MN = Ψ(A#H).

Clearly, we have that NM ⊆ B#H. To prove that B#H ⊆ NM it is enough to check
that the equality

(h1 . θ(a)#h2)(θ(1A)#S(h3)g) = h . θ(a)#g
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holds for all a, b ∈ A and h, g ∈ H. Indeed,

(h1 . θ(a)#h2)(θ(1A)#S(h3)g) = (h1 . θ(a))(h2 . θ(1A))#h3S(h4)g
= h1 . θ(a)#h2S(h3)g
(1.9)
= 11h . θ(a)#12g

(2.1.7)
= 11 . h . θ(a)#12g
= (h . θ(a)) / S(11)#12g
= h . θ(a)#S(11)12g
= h . θ(a)#εR(1H)g
= h . θ(a)#g.

Therefore, B#H = NM . The last assertion follows from [41, Theorems 4.1.4 and 4.1.17]

In [33], J. Garćıa and J. Simón has shown that the identity element hypothesis can be
replaced by idempotent ring hypothesis. It can be applied to our case, allowing B to be a
non-unital algebra and keeping the categories equivalent.
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Chapter 3

Partial coactions of weak Hopf
algebras on algebras

In this chapter we explain some points concerning partial coactions of weak Hopf alge-
bras. In Section 3.1 we define a partial H-comodule algebra and show some examples. We
also show that for finite dimensional weak Hopf algebras, there is a bijective correspon-
dence between partial H-comodule algebra and partial H∗-module algebra. In Section 3.3
we show that every partial H-comodule algebra has a globalization.

The Section 3.2 is dedicated to the study of the partial coactions on the ground field.
We characterize all coactions, as well as apply it to particular weak Hopf algebras. This
section is useful to construct new examples of partial coactions.

In Section 3.4 we show that if A is a partial H-comodule algebra, the reduced tensor
product A⊗H is an A-coring.

Along this chapter all coactions will be assumed to be right coactions.

3.1 Partial coactions

We start the section recalling the notion of an H-comodule algebra.

Definition 3.1.1. Let B be an algebra. B is said to be an H-comodule algebra if there
exists a linear map ρ : B → B ⊗H such that

(CA1) (I ⊗ ε)ρ(a) = a;

(CA2) ρ(ab) = ρ(a)ρ(b);

(CA3) (ρ⊗ I)ρ = (I ⊗∆)ρ.

Denote the image of an element b ∈ B by ρ(b) = b0 ⊗ b1.
We present some trivial examples, which will be used later in the construction of the

globalization.

Example 3.1.2. H is an H-comodule algebra via ∆H .
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Example 3.1.3. For any algebra A, the tensor algebra A ⊗H is an H-comodule algebra
with coaction given by ρ = IA ⊗∆H .

Note that in the case of Hopf algebras, given any algebra B there exists a coaction
given by ρ(b) = b⊗ 1H . This is not a coaction in the case of weak Hopf algebra. Moreover
the following statement holds:

Proposition 3.1.4. Let H be a weak Hopf algebra.Then B is an H-module algebra by

ρ : B → B ⊗H
b 7→ b⊗ 1H

if and only if H is a Hopf algebra.

Proof. Supposing B an H-comodule algebra by ρ, then for any b ∈ B we have b⊗11⊗12 =
(I ⊗∆)ρ(b) = (ρ⊗ I)ρ(b) = b⊗ 1H ⊗ 1H . Hence ∆(1H) = 1H ⊗ 1H which implies that H
is a Hopf algebra.

The converse is straightforward.

Remember that if H is a Hopf algebra and A is an H-module algebra, then ρ(1B) =
1B ⊗ 1H . For weak Hopf algebras this is not true in general. In this case there exists a
similar result:

Proposition 3.1.5. Let B be an H-comodule algebra. Then ρ(1B) = 10 ⊗ εL(11).

Proof.
10 ⊗ εL(11) = 10 ⊗ 11

1S(11
2)

= 100 ⊗ 101S(11)
= (1 10)0 ⊗ (1 10)1S(11)
= 1′0100 ⊗ 1′1 101S(11)
= 1′010 ⊗ 1′111

1S(11
2)

= 1′010 ⊗ 1′1εL(11)
(1.11)
= 1′010 ⊗ ε(1′1111)1′12

= 1′0010ε(1′0111)⊗ 1′1

= (1′0 1)0ε((1′0 1)1)⊗ 1′1

= 1′00ε(1′01)⊗ 1′1

= 1′0 ⊗ 1′1

= ρ(1B).

Then using [17, Proposition 4.10] we obtain some properties:

Theorem 3.1.6. Let B be an H-comodule algebra. The following assertions hold:

(i) (ρ⊗ I)ρ(1) = (ρ(1)⊗ 1)(1⊗∆(1));

(ii) (ρ⊗ I)ρ(1) = (1⊗∆(1))(ρ(1)⊗ 1);
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(iii) b0 ⊗ ε̄R(b1) = b10 ⊗ 11;

(iv) b0 ⊗ εL(b1) = 10b⊗ 11;

(v) ρ(1B) = 10 ⊗ εL(11);

(vi) ρ(1B) = 10 ⊗ ε̄R(11);

(vii) ρ(1) ∈ B ⊗HL;

where ε̄R is defined by ε̄R(h) = ε(h11)12.

We introduce now the definition of partial H-comodule algebra.

Definition 3.1.7. Let A be an algebra. Then A is a partial H-comodule algebra if there
exists a linear map ρ̄ : A→ A⊗H such that:

(PCA’1) (I ⊗ ε)ρ̄(a) = a;

(PCA’2) (ρ̄⊗ I)[(a⊗ 1H)ρ̄(b)] = (ρ̄(a)⊗ 1H)((I ⊗∆)ρ̄(b)) ;

moreover it is symmetric if

(PCA’3) (ρ̄⊗ I)[ρ̄(b)(a⊗ 1H)] = ((I ⊗∆)ρ̄(b))(ρ̄(a)⊗ 1H).

Note that in the above definition we do not need A to be unital. Moreover, if A is
unital, it is clear that the above definition is equivalent to the following:

Definition 3.1.8. Let A be a unital algebra. Then A is a partial H-comodule algebra if
there exists a linear map ρ̄ : A→ A⊗H such that:

(PCA1) (I ⊗ ε)ρ̄(a) = a;

(PCA2) ρ̄(ab) = ρ̄(a)ρ̄(b);

(PCA3) (ρ̄⊗ I)[ρ̄(a)] = (ρ̄(1A)⊗ 1H)((I ⊗∆)ρ̄(a));

moreover it is symmetric if

(PCA4) (ρ̄⊗ I)[ρ̄(a)] = ((I ⊗∆)ρ̄(a))(ρ̄(1A)⊗ 1H).

The first definition is more general than the second one as it does not require A to be
unital. However, since we are working with unital algebras, we will use the second one in
order to make the proofs more detailed and easier for the reader.

We adopt the notation ρ̄(a) = a0 ⊗ a1 for the partial coaction.

Remark 3.1.9. It is straightforward to check that any H-comodule algebra is also a partial
H-comodule algebra

Now we give a characterization which allows us to decide when a partial H-comodule
algebra is an H-comodule algebra.
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Proposition 3.1.10. Let A be a partial H-comodule algebra. Then ρ(1A) = 10 ⊗ εL(11) if
and only if A is an H-comodule algebra.

Proof. In fact, if ρ(1A) = 10 ⊗ εL(11), then for any a ∈ A we have

(I ⊗∆)(ρ)(a) = a0 ⊗ a1
1 ⊗ a1

2

= (1Aa)0 ⊗ (1Aa)1
1 ⊗ (1Aa)1

2

= 10a0 ⊗ 10
1a

1
1 ⊗ 10

2a
1

2

= 10a0 ⊗ εL(10)1a
1

1 ⊗ εL(10)2a
1

2
(1.7)
= 10a0 ⊗ εL(10)11a

1
1 ⊗ 12a

1
2

= 10a0 ⊗ εL(10)a1
1 ⊗ a1

2

= 10a0 ⊗ 10a1
1 ⊗ a1

2

= a00 ⊗ a01 ⊗ a1

= (ρ⊗ I)ρ(a)

hence A is an H-comodule algebra.
The converse is exactly Proposition 3.1.5

The following proposition gives us the correspondence between partial module alge-
bras and partial comodule algebras where the weak Hopf algebra is assumed to be finite
dimensional.

Proposition 3.1.11. Let H be a finite dimensional weak Hopf algebra. Then A is a (sym-
metric) partial H-comodule algebra if and only if A is a (symmetric) partial H∗-module
algebra.

Proof. Supposing A to be a partial H-comodule algebra via ρ̄ : A→ A⊗H, define

· : H∗ ⊗ A → A

f ⊗ a 7→ f · a = a0f(a1)

then:
(PMA1) Let a ∈ A,

1H∗ · a = εH · a
= a0εH(a1)

(PCA1)
= a.

(PMA2) Let f ∈ H∗ and a, b ∈ A

f · ab = (ab)0f((ab)1)
(PCA2)
= a0b0f(a1b1)

= a0f1(a1)b0f2(b1)
= (f1 · a)(f2 · b).
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(PMA3) Let f, g ∈ H∗ and a ∈ A
f · (g · a) = f · (a0g(a1))

= a00f(a01)g(a1)
(PCA3)
= 10a0f(11a1

1)g(a1
2)

= 10f1(11)a0f2(a1
1)g(a1

2)

= 10f1(11)a0(f2 ∗ g)(a1)
= (f1 · 1A)(f2 ∗ g · a).

Thus, A is a partial H∗-module algebra. Moreover, if A is a symmetric partial H-
comodule algebra then

(PMA4) Let f, g ∈ H∗ and a ∈ A
f · (g · a) = f · (a0g(a1))

= a00f(a01)g(a1)
(PCA4)
= a010f(a1

111)g(a1
2)

= a0f1(a1
1)g(a1

2)10f2(11)

= a0(f1 ∗ g)(a1)10f2(11)
= (f1 ∗ g · a)(f2 · 1A).

Hence, A is a symmetric partial H∗-module algebra.

Conversely, if A is a partial H∗-module algebra with action · and {hi}ni=1 is a basis for
H, define

ρ̄ : A → A⊗H
a 7→

n∑
i=1

h∗i · a⊗ hi

where {h∗i }ni=1 is the dual basis for H∗, then:
(PCA1) Let a ∈ A

(I ⊗ εH)ρ̄(a) =
n∑
i=1

εH(hi)h
∗
i · a

= εH · a
= 1H∗ · a

(PMA1)
= a.

(PCA2) For all f ∈ H∗ and a, b ∈ A

(I ⊗ f)(ρ̄(ab)) =
n∑
i=1

f(hi)h
∗
i · ab

= f · ab
(PMA2)

= (f1 · a)(f2 · b)
= (

n∑
i=1

f1(hi)h
∗
i · a)(

n∑
j=1

f2(hj)h
∗
j · b)

=
n∑
i=1

n∑
j=1

(h∗i · a)(h∗j · b)f(hihj)

= (I ⊗ f)(ρ̄(a)ρ̄(b))
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hence ρ̄(ab) = ρ̄(a)ρ̄(b).

(PCA3) For all f, g ∈ H∗ and a ∈ A

(I ⊗ f ⊗ g)((ρ̄⊗ I)ρ̄(a)) = a00f(a01)g(a1)
= f · (g · a)

(PMA3)
= (f1 · 1)(f2 ∗ g · a)

= 10f1(11)a0f2(a1
1)g(a1

2)

= 10a0f(11a1
1)g(a1

2)
= (I ⊗ f ⊗ g)((ρ̄(1)⊗ 1)[(I ⊗∆)(ρ̄(a))]),

then (ρ̄⊗ I)ρ̄(a) = (ρ̄(1)⊗ 1)[(I ⊗∆)(ρ̄(a))].
Therefore, A is a partial H-comodule algebra. Moreover, if A is a symmetric partial

H∗-module algebra then

(PCA4) For all f, g ∈ H∗ and a ∈ A

(I ⊗ f ⊗ g)((ρ̄⊗ I)ρ̄(a)) = a00f(a01)g(a1)

= f · (a0g(a1))
= f · (g · a)

(PMA4)
= (f1 ∗ g · a)(f2 · 1)

= a0(f1 ∗ g)(a1)10f2(11)

= a0f1(a1
1)g(a1

2)10f2(11)

= a010f(a1
111)g(a1

2)
= (I ⊗ f ⊗ g)([(I ⊗∆)(ρ̄(a))](ρ̄(1)⊗ 1)),

then (ρ̄⊗ I)ρ̄(a) = [(I ⊗∆)(ρ̄(a))](ρ̄(1)⊗ 1).
Hence, A is a symmetric partial H-comodule algebra.

Example 3.1.12 (Induced partial coaction). Let B be an H-comodule algebra with coaction
ρ and A a unital right ideal of B. Then we can induce

ρ̄ : A → A⊗H
a 7→ (1A ⊗ 1H)ρ(a),

which defines in A a partial coaction.

Example 3.1.13. Let H4 = k < g, x | g2 = 1 x2 = 0 and gx = −xg > be the Sweedler’s
algebra over a field with characteristic different of 2. Take v = 1

2
1 + 1

2
g + rxg an element

in H4, with r ∈ k.
For a weak Hopf algebra H, the map

ρ̄ : H → H ⊗H ⊗H4

h 7→ h1 ⊗ h2 ⊗ v,

defines in H an structure of a partial H ⊗H4-comodule algebra.
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3.2 Partial coactions on the ground field

In a similar way we did in Section 2.3 for partial actions, we describe and give in this
section examples of partial coactions on the ground field.

Note that if we have a partial coaction of H on its ground field k, then the partial
coaction ρ̄ : k→ k⊗H should be k linear, so it is enough to study who is ρ̄(1k).

We start with the main theorem which describes all partial coactions of H on k.

Theorem 3.2.1. Let H be a weak Hopf algebra over a field k and ρ̄ : k→ k⊗H a k-linear
map such that ρ̄(1k) = 1k ⊗ h. Then ρ̄ defines on k a partial coaction if and only if the
following conditions hold:

(i) ε(h) = 1k;

(ii) h = h2;

(iii) h⊗ h = hh1 ⊗ h2.

Proof. We will proceed by showing that the properties (PMA1), (PMA2) and (PMA3)
are one-to-one related with items (i), (ii) and (iii). In fact,

[(PCA1)⇔ (i)]:
(I ⊗ ε)ρ̄(1k) = 1k ⇔ 1kε(h) = 1k

⇔ ε(h) = 1k.

[(PCA2)⇔ (ii)]:

ρ̄(1k) = ρ̄(1k)ρ̄(1k) ⇔ 1⊗ h = (1⊗ h)(1⊗ h)
⇔ h = h2.

[(PCA3)⇔ (iii)]:

(ρ̄⊗ I)ρ̄(1k) = (ρ̄(1k)⊗ 1k)(I ⊗∆)ρ̄(1k) ⇔ 1k ⊗ h⊗ h = (ρ̄(1k)⊗ 1k)(1k ⊗ h1 ⊗ h2)
⇔ 1k ⊗ h⊗ h = (1k ⊗ h⊗ 1k)(1k ⊗ h1 ⊗ h2)
⇔ 1k ⊗ h⊗ h = 1k ⊗ hh1 ⊗ h2

⇔ h⊗ h = hh1 ⊗ h2.

And the proof is complete.

Note that under the assumption ε(h) = 1k, the item (iii) implies item (ii) simply
applying I ⊗ ε on it. However, we keep the item (ii) because it allow us to proceed exactly
as in the proof of the above theorem, i.e., we can show one-to-one relations between them
and the partial coactions axioms.

We now describe all coactions of the groupoid algebra kG and his dual kG∗ on the
ground field, for a finite groupoid G. For a better understanding by the reader, we suppose
that the characteristic of the field k is 0 in the next statements. Similar results also work
for any field k.
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Proposition 3.2.2. (Partial coactions of kG∗ on k) Let G be a finite groupoid, kG the
groupoid algebra and kG∗ its dual algebra. Take {pg | g ∈ G} the dual basis of kG∗ and
define ρ(1k) = 1k⊗x. Then ρ is a right partial coaction of kG∗ on k if and only if x =

∑
h∈V

ph

where V is a group in G.

Proof. Let x =
∑
g∈G

αgpg. Note that x2 = x⇔ αg = 0 or αg = 1 for each g ∈ G. So we can

suppose x =
∑
h∈V

ph for V a subset of G.

Now we have
εkG∗(x) = εkG∗(

∑
h∈V

ph)

=
∑
h∈V

ph(1kG)

=
∑
h∈V

ph(
∑
e∈G0

δe)

=
∑
h∈V

∑
e∈G0

ph(δe)

=
∑
h∈V

∑
e∈G0

δe,h,

where δe,h is the Kronecker’s delta defined by δe,h =

{
1 if h = e

0 otherwise
.

So, if e /∈ V for all e ∈ G0, εkG∗(x) = 0. Therefore, the condition (i) of Theorem 3.2.1
is equivalent to say that there is a unique e ∈ V such that e ∈ G0.

Moreover,

(x⊗ 1H)∆(x) = (
∑
g∈V

pg ⊗ 1H)∆(
∑
h∈V

ph)

=
∑

g,h∈V
(pg ⊗ 1H)∆(ph)

=
∑

g,h∈V
(pg ⊗ 1H)(

∑
l∈G∃l−1h

pl ⊗ pl−1h)

=
∑

g,h∈V
(pg ⊗ pg−1h)

=
∑
g∈V

(pg ⊗
∑
h∈V

pg−1h).

But (
∑
g∈V

pg) ⊗ (
∑
h∈V

ph) =
∑
g∈V

(pg ⊗
∑
h∈V

ph). Since {pg | g ∈ G} is a basis of kG∗, the

condition (iii) of Theorem 3.2.1 is equivalent to
∑
h∈V

ph =
∑
h∈V

pg−1h for each g ∈ V .

For the groupoid algebra kG, it is not so easy to determine all partial coactions on
a field as in the last proposition. We should find special idempotents in the groupoid G.
Then, we can use Proposition 3.1.11 and apply the result for partial actions of kG∗.

Proposition 3.2.3. (Partial coactions of kG on k) Let G be a finite groupoid and kG the
groupoid algebra. If we define ρ(1k) = 1k ⊗ x, then ρ is a right partial coaction of kG on k
if and only if x =

∑
h∈V

1
|V |δh where V is a group in G.
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Proof. Suppose first that we have ρ : k → k ⊗ kG a partial right coaction where ρ(1k) =
1k ⊗ x and x =

∑
h∈G

αhh.

So we can define a left partial action of kG∗ on k by

pg · 1k = 10pg(1
1) = 1k pg

(∑
h∈G

αhh

)
= αg.

In this way we have that
· : kG∗ ⊗ k → k

pg ⊗ 1k 7→ αg

is a partial action.
Since it is well known all partial actions of kG∗ on k (by Proposition 2.3.7), we need to

have V = {g ∈ G | αd(g) = αg 6= 0} a subgroup of G and αg = 1
|V | for g ∈ V .

So, if ρ is a partial coaction, we need to have x =
∑
h∈V

1
|V |ph where V is a subgroup of

G.

Conversely, if we have ρ defined by ρ(1k) = 1k ⊗
(∑
h∈V

1
|V |ph

)
for V a subgroup of G

and char(k) does not divide |V |, we can define

· : kG∗ ⊗ k → k

pg ⊗ 1k 7→ αg =

{
1
|V | , if g ∈ V
0, otherwise

a partial action.
The above partial action gives origin to a partial coaction ρ̄ defined by

ρ̄(1k) = 1k ⊗

(∑
g∈G

pg · 1kg

)
= 1k ⊗

(∑
h∈V

ph · 1kh

)
= ρ(1k).

So ρ̄ = ρ and ρ is a right partial coaction.

3.3 Globalization

In this section we show that every partial H-comodule algebra can be seen as induced
partial coactions, as described in Example 3.1.12.

We start defining globalization for partial H-comodule algebras.

Definition 3.3.1. Let (A, ρ̄) be a partial H-comodule algebra. An H-comodule algebra
(B, ρ) is said to be a globalization for (A, ρ) if there exists a non unitary algebra monomor-
phism θ : A→ B such that:

(GCA1) θ(A) is a right ideal of B;
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(GCA2) B is the H-comodule algebra generated by θ(A);

(GCA3) the partial coaction in θ(A) is induced by the coaction in B, i.e., the following
diagram is commutative:

A
θ //

ρ̄
��

B

(θ(1A)⊗1H)ρ
��

A⊗H
θ⊗I
// B ⊗H.

The reader should understand that by an H-comodule algebra generated by an algebra
A we mean the smallest H-comodule algebra containing A.

The next lemma will be useful to construct a globalization for a partial H-comodule
algebra. We will denote by ρ the coaction of the partial H-comodule algebra on A and by
·ρ the partial action of H∗ on A induced by ρ. Moreover, we denote by H∗ ·ρA the k-vector
space generated by the elements {f ·ρ a | f ∈ H∗; a ∈ A}.

Lemma 3.3.2 ([3]Lemma 1). Let Λ be an H-comodule algebra. If A ⊆ Λ is a subalgebra,
the subcomodule algebra B generated by A is the subalgebra generated by H∗ ·ρ A. In other
words, the set S = {f ·ρ a; a ∈ A, h ∈ H} generates B as an algebra.

The proof of the above lemma for the weak Hopf algebra case does not require a special
attention. It is enough to observe that we are only interested in the coalgebra structure of
H, which does not change replacing a Hopf algebra by a weak Hopf algebra.

We are going now in direction to show that given a partial module algebra A, then
there exists a globalization for it.

First of all recall from Example 3.1.3 that A⊗H is an H-module algebra with coaction
given by ρ = (IA ⊗ ∆H). Moreover, if ρ̄ is the induced partial coaction on A, then ρ̄ is
injective by (PCA1). In other words, the map ρ̄ : A→ A⊗H is an algebra monomorphism.

Using Lemma 3.3.2, take B the comodule algebra generated by ρ̄(A). Moreover, since
ρ̄ is a partial action, then by (PCA3) we have that (ρ̄⊗ IH)ρ̄ = (ρ̄(1A)⊗ 1H)((IA⊗∆H)ρ̄).

In other words, for the immersion ρ̄, the diagram

A
ρ̄ //

ρ̄
��

B

(ρ̄(1A)⊗1H)ρ
��

A⊗H
ρ̄⊗I
// B ⊗H.

is commutative and B is the comodule algebra generated by ρ̄(A).
It just remains to show the item (GCA1), i.e., we need to show that ρ̄(A) is a right

ideal of B. Since ρ̄ is an algebra morphism, is is enough to show that ρ̄(1A)b ∈ ρ̄(A), for
any generator b of B, to obtain ρ̄(A)B ⊆ ρ̄(A).
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Note that B is generated by the elements

{f ·ρ ρ̄(a) | f ∈ H∗; a ∈ A} = {f ·ρ (a0 ⊗ a1) | f ∈ H∗; a ∈ A}
= {a0 ⊗ a1

1f(a1
2) | f ∈ H∗; a ∈ A}

and so the generators of B are of the form b = a0 ⊗ a1
1f(a1

2).
Thus,

ρ̄(1A)(a0 ⊗ a1
1f(a1

2)) = (10 ⊗ 11)(a0 ⊗ a1
1f(a1

2))

= 10a0 ⊗ 11a1
1f(a1

2)
(PCA3)
= a00 ⊗ a01f(a1)

= ρ̄(a0f(a1))

which lies in ρ̄(A). Therefore (GCA1) hold.
So, B with the coaction ρ = (IA⊗∆H) is a globalization for the partial module algebra

A, called the standard globalization.

Therefore, we have the following theorem:

Theorem 3.3.3. Every partial module algebra has a globalization.

Remark 3.3.4. Note that a simple computation, similar to this one we did above, shows
that ρ̄(A) is an ideal of B if and only if A is a symmetric partial module algebra.

3.4 The reduced tensor product is an A-coring

Let A be a symmetric partial H-comodule algebra. The vector space

A⊗H = (A⊗H)ρ̄(1A) =

{
n∑
i=1

ai1
0 ⊗ hi11 | ai ∈ A; hi ∈ H

}

is called the reduced tensor product of A by H.
We denote by a⊗h the element a10 ⊗ h11 in A⊗H. Note that a⊗h = a10⊗h11, thus

A⊗H is a subalgebra of A⊗H with right unit given by ρ̄(1A). Then we can define left and
right actions of A on A⊗H as follows:

a · (b⊗h) = (ab)⊗h and (b⊗h) · a = b a0⊗h a1

for all a ∈ A and b⊗h ∈ A⊗H.
Note that A⊗H is an A-bimodule via these actions. In fact, A⊗H is clearly a left A-

module and since ρ̄ is an algebra morphism, A⊗H is a right A-module. The compatibility
between these actions is straightforward.

Thus, we can define two maps

∆A⊗H : A⊗H → A⊗H ⊗A A⊗H
a⊗h 7→ a⊗h1 ⊗A 1A⊗h2
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and
εA⊗H : A⊗H → A

a⊗h 7→ a10εH(h11).

Proposition 3.4.1. With the above defined maps, A⊗H becomes an A-coring.

Proof. First of all, we will show that ∆A⊗H is well-defined. In fact, the map

∆̃: A⊗H → A⊗H ⊗A A⊗H
a⊗ h 7→ a⊗h1 ⊗A 1A⊗h2

is such that
∆̃(a⊗h) = ∆̃(a10 ⊗ h11)

= a10⊗h111
1 ⊗A 1A⊗h211

2

= a1010′⊗h111
111′ ⊗A 1A⊗h211

2
(PCA4)
= a100⊗h1101 ⊗A 1A⊗h211

= a⊗h1 · 10 ⊗A 1A⊗h211

= a⊗h1 ⊗A 10 · 1A⊗h211

= a⊗h1 ⊗A 10⊗h211

= a⊗h1 ⊗A 1A⊗h2

= ∆̃(a⊗ h),

therefore, since ∆A⊗H = ∆̃|
A⊗H

, the well-definition follows.
Moreover, ∆A⊗H is an A-bimodule map, as follows

a ·∆A⊗H(b⊗h) · c = a · b⊗h1 ⊗A 1A⊗h2 · c
= ab⊗h1 ⊗A c0⊗h2c

1

= ab⊗h1 ⊗A c0 · 1A⊗h2c
1

= ab⊗h1 · c0 ⊗A 1A⊗h2c
1

= abc00⊗h1c
01 ⊗A 1A⊗h2c

1

= abc010⊗h1c
1

111 ⊗A 1A⊗h2c
1

2

= abc0⊗h1c
1

1 ⊗A 1A⊗h2c
1

2

= ∆A⊗H(abc0⊗hc1)
= ∆A⊗H(a · b⊗h · c).

Now we will check that ∆A⊗H is coassociative. In fact,

(∆A⊗H ⊗ I)∆A⊗H(a⊗h) = ∆A⊗H(a⊗h1)⊗ 1A⊗h2

= a⊗h1 ⊗ 1A⊗h2 ⊗ 1A⊗h3

= a⊗h1 ⊗∆A⊗H(1A⊗h2)
= (I ⊗∆A⊗H)(a⊗h1 ⊗ 1A⊗h2)
= (I ⊗∆A⊗H)∆A⊗H(a⊗h).

To show the well-definition of εA⊗H , consider

ε̃ : A⊗H → A
a⊗ h 7→ aεH(h),
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which is clearly well-defined. Therefore εA⊗H is also well-defined since εA⊗H = ε̃|
A⊗H

.
Moreover,

a · εA⊗H(b⊗h) · c = ab10c εH(h11)

= ab(10c)0 εH((10c)1)εH(h11)

= ab100c0 εH(101c1)εH(h11)
(PCA4)
= ab1010′c0 εH(11

111′c1)εH(h11
2)

= ab10c0 εH(11
1c

1)εH(h11
2)

= ab10c0 εH(h11c1)

= abc0 εH(hc1)

= abc010 εH(hc111)

= εA⊗H(abc0⊗hc1)
= εA⊗H(a · b⊗h · c).

It just remains to show the counit property.

(IA⊗H ⊗ εA⊗H)∆A⊗H(a⊗h) = a⊗h1 ⊗A εA⊗H(1A⊗h2)
= a⊗h1 · εA⊗H(1A⊗h2)⊗A 1A
= a⊗h1 · 10εH(h211)⊗A 1A
= a100⊗h1101εH(h211)⊗A 1A

= a1010′⊗h111
111′εH(h211

2)⊗A 1A
= a10⊗h111

1εH(h211
2)⊗A 1A

= a10⊗h11 ⊗A 1A
= a⊗h⊗A 1A
' a⊗h

and

(εA⊗H ⊗A IA⊗H)∆A⊗H(a⊗h) = (εA⊗H ⊗A IA⊗H)∆A⊗H(a10⊗h11)

= εA⊗H(a10⊗h111
1)⊗A 1A⊗h211

2

= 1A ⊗A εA⊗H(a10⊗h111
1) · 1A⊗h211

2

= 1A ⊗A a1010′εH(h111
111′)⊗h211

2

= 1A ⊗A a1010′εH(h111
2)εH(11

111′)⊗h211
3

= 1A ⊗A a1010′εH(11
111′)⊗h11

2

= 1A ⊗A a100εH(101)⊗h11

= 1A ⊗A a10⊗h11

= 1A ⊗A a⊗h
' a⊗h.

Therefore the reduced tensor product is an A-coring.
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Chapter 4

Galois extension and Morita theory

In this chapter we will discuss the existence of a Morita context relating the subalgebra
of invariants of a partial H-module algebra A and the correspondent partial smash product
A#H. We will also show that under some hypothesis, which are trivial in the Hopf algebra
case, the Morita context constructed here extends the one described by S. Montgomery in
[37].

Using the obtained context, we will develop a Galois theory. The main theorem consist
of 3 equivalences, which will be used to define a Galois extension in the partial (co)actions
of weak Hopf algebras case.

Finally, we will construct another Morita context, inspired in the coring’s case given by
S. Caenepeel.

4.1 A Morita context for the subalgebra of invariants

In this section we are interested in a Morita context between the subalgebra of invariants
of a partial H-module algebra A and the partial smash product A#H.

4.1.1 A general context

Definition 4.1.1. Let A be a left partial H-module algebra. The set
H
A = {a ∈ A |

h · a = (h · 1A)a ∀ h ∈ H} is called the subalgebra of invariants of A.

Proposition 4.1.2. Let A be a left partial H-module algebra. Then c lies in
H
A if and only

if h · (ac) = (h · a)c, for all a ∈ A and h ∈ H.

Proof. If c ∈ H
A, then for all a ∈ A and h ∈ H

h · (ac) = (h1 · a)(h2 · c)
= (h1 · a)(h2 · 1A)c
= (h · a1A)c
= (h · a)c.

The converse is immediate taking a = 1A.
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It follows easily by Proposition 4.1.2 that
H
A is, in fact, a subalgebra of A.

Note that A#H is clearly a right A-module via the immersion of A into A#H, given
in Proposition 2.5.7.

We are now interested in showing that A is a left A#H module.

Proposition 4.1.3. Let A be a partial H-module algebra. Then A is a left A#H-module
by

⇀: (A#H)⊗A A → A
(a#h) ⇀ b 7→ a(h · b).

Proof. Firstly we need to show that ⇀ is well-defined. For each b ∈ A, we can define
ϕ̃b : A×H → A by ϕ̃b(a, h) = a(h · b) which is HL balanced.

In fact, recalling that A is a right HL-module via a C z = S−1
R (z) · a (see Proposi-

tion 2.5.1), we have

ϕ̃b(a / z, h) = (a / z)(h · b)
= (S−1

R (z) · a)(h · b)
(2.1.9)
= a(S−1

R (z) · 1A)(h · b)
(2.1.8)
= a(11S

−1
R (z) · 1A)(12h · b)

(1.28)
= a(11 · 1A)(12zh · b)

(2.1.8)
= a(1H · 1A)(zh · b)
= a(zh · b)
= ϕ̃b(a, zh)

for all a, b ∈ A, z ∈ HL and h ∈ H. This ensures that the map ϕb : A#H → A given by
ϕb(a#h) = a(h · b) is well-defined.

So we can define φ : (A#H) × A → A by φ(a#h, b) = ϕb(a#h) = a(h · b). It is
A-balanced:

φ(a#h, bc) = a(h · bc)
= a(h1 · b)(h2 · c)
= ϕc(a(h1 · b)#h2)
= ϕc((a#h)(b#1))
= φ((a#h)(b#1), c).

Which shows that the map ⇀ is well-defined.

It just remains to prove that A is, in fact, a left A#H module. It is our next step:
For any a ∈ A

(1A#1H) ⇀ a = 1A(1H · a) = a

and for any a, b, c ∈ A and h, g ∈ H,

(a#h) ⇀ [(b#g) ⇀ c] = (a#h) ⇀ b(g · c)
= a(h · (b(g · c)))
= a(h1 · b)(h2g · c)
= [a(h1 · b)#h2g] ⇀ c
= (a#h)(b#g) ⇀ c.
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And so A is a left A#H-module, as desired.

The next proposition show us an interesting property for the action ⇀. It will be useful
to show that A is a right A#H module as well as in Theorem 4.1.25 where we will show
an isomorphism concerning A.

Proposition 4.1.4. Let A be a partial H-module algebra. Then for all h, k ∈ H,

{(1#h)[(1#k ⇀ 1A)#1H ]}⇀ 1A = (1#h)(1#k) ⇀ 1A.

Proof. In fact,

{(1#h)[(1#k ⇀ 1A)#1H ]}⇀ 1A = {(1#h)[(k · 1A)#1H ]}⇀ 1A
= [(h1 · k · 1A)#h2] ⇀ 1A
= (h1 · k · 1A)(h2 · 1A)
= (h · k · 1A)
= (h1 · 1A)(h2k · 1A)
= [(h1 · 1A)#h2k] ⇀ 1A
= (1#h)(1#k) ⇀ 1A

as desired.

Remark 4.1.5. Clearly, A is a right
H
A-module with action given by

/ : A⊗ H
A → A

a⊗ b 7→ ab.

Theorem 4.1.6. With the maps ⇀ and /, A becomes an (A#H,
H
A)-bimodule.

In fact,
(a#h) ⇀ (b / c) = (a#h) ⇀ bc

= a[h · (bc)]
= a[(h · b)c]
= [a(h · b)]c
= (a#h ⇀ b) / c

for all a, b ∈ A, h ∈ H and c ∈ H
A.

At this point, the savvy readers already noticed that we will use A as one of the modules
of the Morita context. Actually, it is usual to use A as both modules in the Morita context.
For weak Hopf algebras it is not true in general. So our next step is to construct another
module which should be an (

H
A,A#H)-bimodule.

Proposition 4.1.7. Define

Q = {a#h | (1#g)(a#h) = [(g · 1A)#1](a#h), ∀ g ∈ H}
= {a#h | (g1 · a)#g2h = (g · 1A)a#h, ∀ g ∈ H}.

Then Q is a right ideal in A#H.
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Proof. To show that Q is a right ideal we need to show that given a#h ∈ Q and (b#g) ∈
A#H, then (1#k)[(a#h)(b#g)] = ((k · 1)#1)[(a#h)(b#g)] for all k ∈ H.

In fact, using the associativity of the partial smash product and the fact that a#h ∈ Q
we have

(1#k)[(a#h)(b#g)] = [(1#k)(a#h)](b#g)
= [((k · 1)#1)(a#h)](b#g)
= ((k · 1)#1)[(a#h)(b#g)]

as desired.

Remark 4.1.8. By the above proposition Q becomes a right A#H-module with action
defined by (b#h) ↼ (a#g) = (b#h)(a#g).

We can also define
. :

H
A⊗Q → Q

a⊗ (b#h) 7→ (a#1H)(b#h).

To show that Q is a left
H
A-module with this map, it is enough to check that a . (b#h) lies

in Q for all a ∈ H
A and (b#h) ∈ Q.

In fact, let a ∈ H
A and (b#g) ∈ Q, then for all h ∈ H we have

(1#h)[a . (b#g)] = (1#h)(a#1H)(b#g)
= ((h1 · a)#h2)(b#g)

(2.5.8)
= ((h1 · a)#1H)(1A#h2)(b#g)
= ((h1 · a)#1H)((h2 · 1A)#1H)(b#g)

(2.5.7)
= ((h1 · a)(h2 · 1A)#1H)(b#g)
= ((h · a)#1H)(b#g)
= ((h · 1A)a#1H)(b#g)

(2.5.7)
= ((h · 1A)#1H)(a#1H)(b#g)
= ((h · 1A)#1H)[a . (b#g)].

Note that with these actions, Q becomes an (
H
A,A#H)-bimodule.

Now we have two rings and two bimodules, as required in the definition of a Morita
context. It just remains to define the appropriate maps. It is our next goal.

Define

τ : Q⊗A#H A → H

A (4.1)

(d#l)⊗ a 7→ d(l · a)

and

µ : A⊗H
A
Q → A#H (4.2)

a⊗ (d#l) 7→ (a#1H)(d#l).
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Proposition 4.1.9. The following properties hold:

(1) The map τ defines a morphism of
H
A-bimodules

(2) The map µ defines a morphism of A#H-bimodules

Proof. (1) We firstly show that τ is well-defined. In fact, define

τ̃ : Q× A → A
(d#h, a) 7→ (d#h) ⇀ a = d(h · a).

To show that τ is well-defined we just need to check that τ̃ is A#H-balanced.
Let d#l ∈ Q, a#h ∈ A#H and c ∈ A we have that

τ̃((d#h), (a#h) ⇀ c) = (d#h) ⇀ [(a#h) ⇀ c]
= (d#h)(a#h) ⇀ c
= τ̃((d#h)(a#h), c)
= τ̃((d#h) ↼ (a#h), c)

and it means that τ : Q⊗A#H A→ A is well-defined.

Moreover, Im(τ)⊆ H
A. In fact, let h ∈ H, d#l ∈ Q and a ∈ A. Then

h · τ((d#l)⊗ a) = h · [d(l · a)]
= (h1 · d)(h2l · a)
= [(h1 · d)#h2l] ⇀ a

(4.1.7)
= [(h · 1A)d#l] ⇀ a
= (h · 1A)d(l · a)
= (h · 1A)τ((d#l)⊗ a).

It is straightforward that τ is a morphism of
H
A-bimodules.

(2) To show that µ is well-defined, take

µ̃ : A×Q → A#H
(a, (d#l)) 7→ (a#1A)(d#l).

It is enough to show µ̃ is
H
A-balanced. Let a ∈ A, c ∈ H

A and d#l ∈ Q, then

µ̃(ac, d#l) = (ac#1)(d#l)
= (a#1)(c#1)(d#l)
= µ̃(a, c . (d#l))

and it follows that µ is well-defined.

Moreover, it remains to show that µ is A#H-bilinear
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In fact, let (a#h), (c#g) ∈ A#H, b ∈ A and d#l ∈ Q. Then

(a#h)µ(b⊗ (d#l))(c#g) = (a#h)(b#1)(d#l)(c#g)
= (a(h1 · b)#h2)(d#l)(c#g)
= (a(h1 · b)#1)(1#h2)(d#l)(c#g)
= (a(h1 · b)#1)((h2 · 1)#1)(d#l)(c#g)
= (a(h1 · b)(h2 · 1)#1)(d#l)(c#g)
= (a(h · b)#1)(d#l)(c#g)
= µ(a(h · b)⊗ (d#l)(c#g))
= µ(((a#h) ⇀ b)⊗ ((d#l) ↼ (c#g))).

Theorem 4.1.10. The sextuple (
H
A,A#H,A,Q, τ, µ) is a Morita context.

Proof. It just remains to prove that

µ(a⊗ (d#l)) ⇀ c = a / τ((d#l)⊗ c) (4.3)

and

τ(d#l ⊗ b) . (d′#l′) = (d#l) ↼ µ(b⊗ d′#l′) (4.4)

for all a, b, c ∈ A and (d#l), (d′#l′) ∈ Q. In fact,

µ(a⊗ (d#l)) ⇀ c = (a#1)(d#l) ⇀ c
= (ad#l) ⇀ c
= ad(l · c)
= aτ((d#l)⊗ c)
= a / τ((d#l)⊗ c)

and
τ(d#l ⊗ b) . (d′#l′) = d(l · b) . (d′#l′)

= (d(l · b)#1)(d′#l′)
= (d(l1 · b)#1)((l2 · 1)#1)(d′#l′)
= (d(l1 · b)#1)(1#l2)(d′#l′)
= (d(l1 · b)#l2)(d′#l′)
= (d#l)(b#1)(d′#l′)
= (d#l) ↼ (b#1)(d′#l′)
= (d#l) ↼ µ(b⊗ (d′#l′))

and we have the required result.
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4.1.2 Recalling the classical context

In this subsection H will be a finite dimensional weak Hopf algebra.

Definition 4.1.11 ([9, Lemma 3.2]). An element t ∈ H is a left integral in H if one of the
following equivalent conditions hold:

(1) h t = εL(h) t;

(2) t1 ⊗ h t2 = S(h) t1 ⊗ t2;

for all h ∈ H. Denote by
∫ H
l

the vector space of the left integrals in H.

Remark 4.1.12. If H has an invertible antipode, then applying S−1 ⊗ I in the equality
(2) we obtain

S−1(t1)⊗ h t2 = S−1(t1) h⊗ t2. (4.5)

Proposition 4.1.13. For all h ∈ H

T ∈
∫ H∗

l

⇔ h1T (h2) = εL(h1)T (h2). (4.6)

Proof. Supposing T a left integral in H∗, then for any f ∈ H∗,

f(h1T (h2)) = f(h1)T (h2)
= (f ∗ T )(h)
= (ε∗L(f) ∗ T )(h)
= ε∗L(f)(h1)T (h2)
= f(εL(h1))T (h2)
= f(εL(h1)T (h2))

and so h1T (h2) = εL(h1)T (h2).
Conversely, if h1T (h2) = εL(h1)T (h2), then for any f ∈ H∗

(f ∗ T )(h) = f(h1)T (h2)
= f(εL(h1)T (h2))
= f(εL(h1))T (h2)
= ε∗L(f)(h1)T (h2)
= (ε∗L(f) ∗ T )(h)

and it means that T is a left integral in H∗.

Remark 4.1.14. Recall that H is a left H∗-module with the action given by h → f =
f2(h)f1 and also H∗ is a left H-module with action given by f → h = h1f(h2).

Using the above remark we can define a dual pair of integrals in a weak Hopf algebra.
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Definition 4.1.15. Let t ∈
∫ H
l

and T ∈
∫ H∗
l

we say that the pair (t, T ) is a dual pair of
left integrals if t→ T = 1H∗ and T → t = 1H .

In [9] the definition of dual pair is simplified in a theorem:

Theorem 4.1.16. [9, Theorem 3.18] Let t ∈
∫ H
l

. If there exists T ∈ H∗ such that T →
t = 1H , then it is unique and it is a left integral. Moreover, t→ T = 1H∗.

The above theorem says, in others words, that if T → t = 1H , then (t, T ) is a dual pair
of left integrals.

Remark 4.1.17. If H is a finite dimensional Hopf algebra, it is well known that the space∫ H
l

has dimension 1 over the field k. Moreover, the map

θ : H∗ ⊗
∫ H
l
→ H

f ⊗ t 7→ f → t

is an isomorphism of vector spaces.
Then there exists an element T ∈ H∗ such that T → t = 1H and by Theorem 4.1.16

the pair (t, T ) is a dual pair of left integrals.

The dimension argument does not works for weak Hopf algebras. As an example, note
that for a finite groupoid G, the weak Hopf algebra kG has the integrals te =

∑
gg−1=e

δg and

te′ =
∑

hh−1=e′
δh and they are linearly independent if e 6= e′. Moreover, the dimension of

∫ kG
l

over k is the order of G0.
In [9], the authors show that the existence of a dual pair is equivalent to the weak

Hopf algebra to be a Frobenius algebra. Moreover, in [34], there is an example of weak
Hopf algebra which is not a Frobenius algebra. Hence, there exists a weak Hopf algebra
which do not have a dual pair of left integrals. However, the integrals can be found in the
groupoid algebra, as follows:

Example 4.1.18. Let G be a finite groupoid. Take t =
∑
g∈G

δg in kG and T =
∑
e∈G0

pe in

kG∗. Thus (t, T ) is a dual pair of left integrals.

Remark 4.1.19. Note that, if (t, T ) is a dual pair, then

11 ⊗ 12 = t1 ⊗ t2T (t3). (4.7)

Proposition 4.1.20 ([9, (3.44)-(3.45) with x=1]). Let (t, T ) be a dual pair of left integrals,
so we have the following equality

T (S−1(t1))t2 = S−1(t1)T (t2) = 1H . (4.8)
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Proposition 4.1.21. Let t be a left integral in H and consider

e = 1#t2 ⊗ 1#S−1(t1)

in A#H ⊗A A#H. Then, for any a#h in A#H, we have that

1#t2 ⊗ (1#S−1(t1))(a#h) = (a#h)(1#t2)⊗ 1#S−1(t1).

Proof. Let a#h in A#H, so

1#t2 ⊗A (1#S−1(t1))(a#h) = 1#t2 ⊗A (1#S−1(t1))(a(h1 · 1)#h2)
= 1#t3 ⊗A S−1(t2) · a(h1 · 1)#S−1(t1)h2

= 1#t3 ⊗A [S−1(t2) · a(h1 · 1)#1][1#S−1(t1)h2]
= (1#t3)[S−1(t2) · a(h1 · 1)#1]⊗A 1#S−1(t1)h2

= t3 · S−1(t2) · a(h1 · 1)#t4 ⊗A 1#S−1(t1)h2
(PMA4)

= [t3S
−1(t2) · a(h1 · 1)](t4 · 1)#t5 ⊗A 1#S−1(t1)h2

(1.27)
= [11 · a(h1 · 1)](12 t2 · 1)#t3 ⊗A 1#S−1(t1)h2

(2.1.8)
= a(h1 · 1)(t2 · 1)#t3 ⊗A 1#S−1(t1)h2

= [(a(h1 · 1)#t2)(1#1)]⊗A 1#S−1(t1)h2

= a(h1 · 1)#t2 ⊗A 1#S−1(t1)h2
(4.5)
= a(h1 · 1)#h2 t2 ⊗A 1#S−1(t1)
= (a#h)(1#t2)⊗A 1#S−1(t1)

as desired.

Now let (t, T ) be a dual pair of left integrals and z ∈ HL, so we have the following
equality

(a#z1h1 ⇀ 1)T (z2h2)
(1.7)
= (a#z11h1 ⇀ 1)T (12h2)
= (a#zh1 ⇀ 1)T (h2)
= [(a / z)#h1 ⇀ 1]T (h2),

which means that the following map

Φ : A#H −→ A

a#h 7−→ (a#h1 ⇀ 1)T (h2), (4.9)

is well-defined because it is HL-balanced.

Restricting Φ to A#H we obtain that

Φ(a#h) = Φ(a(h1 · 1)#h2)
= [(a(h1 · 1)#h2) ⇀ 1]T (h3)
= a(h1 · 1)(h2 · 1)T (h2)
= a(h1 · 1)T (h2).
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Proposition 4.1.22. With the above notation, Φ is a map of A-bimodules.

Proof. It is clear that Φ is left A-linear. Now we will check that it is also right A-linear.

Φ((a#h)(b#1)) = Φ(a(h1 · b)#h2)
= a(h1 · b)(h2 · 1)T (h3)
= a(h1 · b)T (h2)
(4.6)
= a(εL(h1) · b)T (h2)

(2.1.9)
= a(εL(h1) · 1)bT (h2)
(4.6)
= a(h1 · 1)b T (h2)
= Φ(a#h)b

as desired

Proposition 4.1.23. The map Φ and the element e above constructed have the following
compatibility:

(1) (Φ⊗A I)(e) = 1A ⊗A 1#1 ' 1#1;

(2) (I ⊗A Φ)(e) = 1#1⊗A 1A ' 1#1.

Proof. (1)
(Φ⊗A I)(e) = (Φ⊗A I)(1#t2 ⊗A 1#S−1(t1))

= Φ(1#t2)⊗A 1#S−1(t1)
' [Φ(1#t2)#1][1#S−1(t1)]
= [(t2 · 1)T (t3)#1][1#S−1(t1)]

(2.5.8)
= (t2 · 1)T (t3)#S−1(t1)
= (t2T (t3) · 1)#S−1(t1)
(4.7)
= (12 · 1)#S−1(11)

(2.5.3)
= 1 / 12#S−1(11)
= 1#12S

−1(11)
= 1#1.

(2)
(I ⊗A Φ)(e) = (I ⊗A Φ)(1#t2 ⊗A 1#S−1(t1))

= 1#t2 ⊗A Φ(1#S−1(t1))
' 1#t2[Φ(1#S−1(t1))#1]
= (1#t3)[S−1(t2) · 1#1]T (S−1(t1))
= t3 · (S−1(t2) · 1)#t4T (S−1(t1))

(PMA4)
= (t3S

−1(t2) · 1)(t4 · 1)#t5T (S−1(t1))
(1.27)
= (11 · 1)(12t2 · 1)#t3T (S−1(t1))
= (t2 · 1)#t3T (S−1(t1))
= 1#t2T (S−1(t1))
(4.8)
= 1#1.
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Now, we are able to equip A with a structure of right A#H-module, via

↽ : A⊗A A#H → A

given by
a ↽ b#h = Φ{(1#t2)[(1#S−1(t1) ⇀ 1A)a#1H ](b#h)} (4.10)

which is clearly well-defined.

Proposition 4.1.24. With the above definition, A is a right A#H-module.

Proof. In fact, for all a, b, c ∈ A and g, h ∈ H,

a ↽ (1#1) = Φ{(1#t2)[(1#S−1(t1) ⇀ 1A)a#1H ](1#1)}
= Φ{(1#t2)[(1#S−1(t1) ⇀ 1A)a#1H ]}
= Φ{(1#t2)[(S−1(t1) · 1A)a#1H ]}
= Φ{(t2 · S−1(t1) · 1A)(t3 · a)#t4}

(PMA4)
= Φ{(t2S−1(t1) · 1A)(t3 · 1A)(t4 · a)#t5}

(PMA2)
= Φ{(t2S−1(t1) · 1A)(t3 · a)#t4}

(1.27)
= Φ{(11 · 1A)(12t1 · a)#t2}

(2.1.8)
= Φ{(t1 · a)#t2}
= (t1 · a)(t2 · 1A)T (t3)

(PMA2)
= (t1 · a)T (t2)
= t1T (t2) · a
= (T → t) · a
= 1H · a
= a

and moreover

(a ↽ b#h) ↽ c#g =
= Φ{(1#t2)[(1#S−1(t1) ⇀ 1A)a#1H ](b#h)}↽ c#g
= Φ{(1#t2′)[(1#S−1(t1′) ⇀ 1A)Φ{(1#t2)

[(1#S−1(t1) ⇀ 1A)a#1H ](b#h)}#1H ](c#g)}
(4.1.22)
= Φ{(1#t2′)[Φ{[(1#S−1(t1′) ⇀ 1A)#1H ](1#t2)

[(1#S−1(t1) ⇀ 1A) a#1H ](b#h)}#1H ](c#g)}
(4.1.21)
= Φ{(1#t2′)[Φ{(1#t2)[((1#S−1(t1))

[(1#S−1(t1′) ⇀ 1A)#1H ] ⇀ 1A)a#1H ](b#h)}#1H ](c#g)}
(4.1.4)
= Φ{(1#t2′)[Φ{(1#t2)[((1#S−1(t1))(1#S−1(t1′)) ⇀ 1A)a#1H ]

(b#h)}#1H ](c#g)}
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(4.1.21)
= Φ{(1#t2′)[Φ{(1#S−1(t1′))(1#t2)[(1#S−1(t1) ⇀ 1A)a#1H ]

(b#h)}#1H ](c#g)}
(4.1.21)
= Φ{(1#t2)[((1#S−1(t1)) ⇀ 1A)a#1H ](b#h)(1#t2′)

[Φ{(1#S−1(t1′))}#1H ](c#g)}
(4.1.23−2)

= Φ{(1#t2)[((1#S−1(t1)) ⇀ 1A)a#1H ](b#h)(c#g)}
(4.1.23−2)

= a ↽ (b#h)(c#g)

and this shows that A is a right A#H-module.

Theorem 4.1.25. Let H be a finite dimensional weak Hopf algebra, (t, T ) a dual pair of
left integrals and A a symmetric partial H-module algebra. Then A ' Q as (

H
A,A#H)-

bimodules via

α : A → Q

a 7→ α(a) = (1#t2)[(1#S−1(t1) ⇀ 1A)a#1H ]. (4.11)

Proof. First of all, we need to show that α is well-defined, that is, Im(α) ⊆ Q. In fact,

[(g · 1A)#1H ] α(a) = [(g · 1A)#1H ](1#t2)[(1#S−1(t1) ⇀ 1A)a#1H ]
(4.1.21)
= (1#t2){[(1#S−1(t1))[(g · 1A)#1H ] ⇀ 1A]a#1H}
= (1#t2){[(1#S−1(t1))[(1#g ⇀ 1A)#1H ] ⇀ 1A]a#1H}

(4.1.4)
= (1#t2){[(1#S−1(t1))(1#g) ⇀ 1A]a#1H}

(4.1.21)
= (1#g)(1#t2){[1#S−1(t1) ⇀ 1A]a#1H}
= (1#g) α(a).

Take β as the restriction of Φ to Q. We are going to show that β is the inverse of α. In
fact, for all a ∈ A

β(α(a)) = Φ(α(a))
= Φ[(1#t2)[(1#S−1(t1) ⇀ 1A)a#1H ]]
= a ↽ 1A#1H
= a

and moreover, if a#h ∈ Q,

α(β(a#h)) = (1#t2)[(1#S−1(t1) ⇀ 1A)β(a#h)#1H ]
= (1#t2)[(1#S−1(t1) ⇀ 1A)Φ(a#h)#1H ]

(4.1.22)
= (1#t2)[Φ{[(1#S−1(t1) ⇀ 1A)#1H ](a#h)}#1H ]
= (1#t2)[Φ{[(S−1(t1) · 1A)#1H ](a#h)}#1H ]

(4.1.7)
= (1#t2)[Φ((1#S−1(t1))(a#h))#1H ]

(4.1.21)
= (a#h)(1#t2)[Φ(1#S−1(t1))#1H ]

(4.1.23−2)
= (a#h).
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It just remains to prove that α is (
H
A, A#H)-bilinear. In fact, let c ∈ H

A and a ∈ A, so

α(ca) = (1#t2)[(1#S−1(t1) ⇀ 1A)ca#1H ]
= (1#t2)[(S−1(t1) · 1A)ca#1H ]

(4.1.1)
= (1#t2)[(S−1(t1) · c)a#1H ]
= (1#t3)[(S−1(t2) · c)(S−1(t1) · 1A)a#1H ]
= (1#t2)[((S−1(t2) · c)#S−1(t1) ⇀ 1A)a#1H ]
= (1#t2)[((1#S−1(t1))(c#1) ⇀ 1A)a#1H ]

(4.1.21)
= (c#1)(1#t2)[((1#S−1(t1)) ⇀ 1A)a#1H ]
= (c#1)α(a)

and this means that α is left
H
A-linear.

For the right A#H-linearity we use a dirty trick which consist in apply β to the element
and discard it later using its injectivity. Moreover, remember that Q is a right A#H ideal.
If a ∈ A and b#h ∈ A#H, then

β(α(a ↽ b#h)) = a ↽ b#h
= Φ{(1#t2)[(1#S−1(t1) ⇀ 1A)a#1H ](b#h)}
= Φ[α(a)(b#h)]
= β[α(a)(b#h)]
= β[α(a) ↽ (b#h)].

Since β is injective, we have α(a ↽ b#h) = α(a) ↽ (b#h) as desired.

The above theorem says that we can see the Morita context from Theorem 4.1.10
switching Q for A.

We will now use the definition of α to make clear who is τ and µ in the Morita context.
Consider ( , ) : A⊗A#H A −→

H
A defined by (a, b) = τ(α(a)⊗ b) and [ , ] : A⊗H

A
A −→

A#H defined by [a, b] = µ(a⊗ α(b)). Then

[a, b] = µ(a⊗ α(b))
= µ(a⊗ (1#t2)[(1#S−1(t1) ⇀ 1A)b#1H ])
= (a#1H)(1#t2)[(1#S−1(t1) ⇀ 1A)b#1H ]
= (1#t2)[((1#S−1(t1))(a#1H) ⇀ 1A)b#1H ]
= (1#t3)[(((S−1(t2) · a)#S−1(t1)) ⇀ 1A)b#1H ]
= (1#t3)[(S−1(t2) · a)(S−1(t1) · 1A)b#1H ]
= (1#t2)[(S−1(t1) · a)b#1H ]
= t2 · ((S−1(t1) · a)b)#t3

(PMA4)
= (t2S

−1(t1) · a)(t3 · b)#t4
(1.27)
= (11 · a)(12t1 · b)#t2

(2.1.8)
= a(t1 · b)#t2
= (a#t)(b#1H)
= (a#1)(1#t)(b#1)
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and
(a, b) = τ(α(a)⊗ b)

= τ((1#t2)[(1#S−1(t1) ⇀ 1A)a#1]⊗ b)
= τ(t2 · [(1#S−1(t1) ⇀ 1A)a]#t3 ⊗ b)
= (t2 · [(1#S−1(t1) ⇀ 1A)a])(t3 · b)
= t2 · [(1#S−1(t1) ⇀ 1A)ab]
= t2 · [(S−1(t1) · 1A)ab]

(PMA4)
= (t2S

−1(t1) · 1A)(t3 · ab)
= (S−1(t1S(t2)) · 1A)(t3 · ab)
= (S−1(S(11)) · 1A)(12t · ab)
= (11 · 1A)(12t · ab)

(2.1.8)
= t · ab.

So the Morita context (
H
A,A#H,A,A, ( , ), [ , ]) for partial actions of weak Hopf algebras

with a dual pair of integrals extends the one described by S. Montgomery in [37] for actions
of Hopf algebras as well as the one described by M. Alves and E. Batista in [3] for partial
actions of Hopf algebras.

Now we are able to start thinking about Galois theory for partial actions of weak Hopf
algebras.

4.2 Galois theory

Galois theory is largely studied is several contexts. Starting from the classical theory,
where the structures are field extensions, several authors gave new approaches to the theory
using groups, groupoids, Hopf algebras, weak Hopf algebras and corings (cf. [3, 7, 13–20,
25–27, 30, 37]) usually acting on algebras. In some cases we can also have partial actions
on algebras.

All those theories are centered in a main theorem which give equivalent conditions for
an extension to be Galois. Our purpose now is to construct such a theorem for partial
actions of weak Hopf algebra.

Along this section H will be a finite dimensional weak Hopf algebra, (t, T ) will be a
dual pair of left integrals and A will be a symmetric left partial H-module algebra and
consequently a symmetric right partial H∗-comodule algebra. We will denote by · the
partial action and by ρ̄ the corresponding partial coaction.

Since T is a left integral in H∗, so T ′ = T ◦ S−1 is a right integral in H∗.
Note that H is a right H∗-module algebra with action given by h← f = f(h1)h2.
Moreover, using the fact that (t, T ) is a dual pair, one can show that t← T ′ = 1H . In

fact,
t← T ′ = t← T ◦ S−1

= T (S−1(t1))t2
(4.1.20)
= 1H .
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To show our main theorem, we first need to show that the reduced tensor product
A⊗H∗ is isomorphic to the partial smash product A#H as vector spaces. We draw the
attention to the fact that the partial smash product was obtained from the tensor product
over HL and no more over the ground field like in the case of Hopf algebras.

To achieve the aim, we should define the following maps:

α : A⊗H∗ → A#H
a⊗f 7→ a#(t← f)

and
β : A#H → A⊗H∗

a#h 7→ a(h1 · 1)⊗T ′1(S(h2))T ′2.

Theorem 4.2.1. With the above notation, α is an isomorphism of vector spaces whose
inverse is β.

Proof. First of all, we need to show that α is well-defined. For it, consider the map

α̃ : A⊗H∗ → A#H
a⊗ f 7→ a#(t← f)

which is clearly well-defined. Now let us see that α̃(A⊗H∗) ⊆ A#H. In fact, for all a ∈ A
and f ∈ H∗,

α̃(a⊗f) = α̃(a10 ⊗ f ∗ 11)

= a10#[t← (f ∗ 11)]

= a10#f(t1)11(t2)t3
= a1011(t2)#f(t1)t3
(∗)
= a(t2 · 1A)#f(t1)t3
= (a#f(t1)t2)(1A#1H)
= a#f(t1)t2
= a#(t← f) ∈ A#H

where in (∗) we used that the partial action and the partial coaction are related to each
other by h · a = a0a1(h).

Note that α can be defined as the restriction α̃|
A⊗H

.

Next, we will prove that β is well-defined. With this aim in view, we will first define a
map

β̃ : A⊗HL
H → A⊗H∗

a⊗ h 7→ a⊗T ′1(S(h))T ′2.

To show that β̃ is well-defined, we just need to show that it is HL-balanced.
Recall from classical linear algebra that for a finite dimensional vector space the map

∧ : H → H∗∗

k 7→ k̂ : H∗ → k
f 7→ f(k).
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is an isomorphism.
Let z ∈ HL and h, k ∈ H.

(I ⊗ k̂)(β̃(a⊗ zh)) = (I ⊗ k̂)(a⊗T ′1(S(zh))T ′2)

= (I ⊗ k̂)(a10 ⊗ T ′1(S(zh))T ′2 ∗ 11)

= a10T ′1(S(zh))[T ′2 ∗ 11](k)

= a10T ′1(S(zh))T ′2(k1)11(k2)

= a1011(k2)T ′(S(zh)k1)
= a(k2 · 1)T ′(S(h)S(z)k1)
= a(12k2 · 1)T ′(S(h)S(z)11k1)

(1.29)
= a(z12k2 · 1)T ′(S(h)11k1)
= a(zk2 · 1)T ′(S(h)k1)

(2.1.10)
= a(z · k2 · 1)T ′(S(h)k1)

(2.1.10)
= a(z · 1)(k2 · 1)T ′(S(h)k1)

(2.5.3)
= (a / z)(k2 · 1)T ′(S(h)k1)

= (a / z)1011(k2)T ′(S(h)k1)

= (a / z)10T ′1(S(h))T ′2(k1)11(k2)

= (I ⊗ k̂)[(a / z)10 ⊗ T ′1(S(h))T ′2 ∗ 11]

= (I ⊗ k̂)[(a / z)⊗T ′1(S(h))T ′2]

= (I ⊗ k̂)(β̃((a / z)⊗ h))

then clearly β̃ is well-defined, i.e., it is HL-balanced. Note that β = β̃|
A#H

and so it is also
well-defined. Now just remains to show that β is the inverse of α. In fact, for all a ∈ A,
k ∈ H and f ∈ H∗,

(I ⊗ k̂)[β ◦ α(a⊗f)] = (I ⊗ k̂)[β(a#(t← f))]

= (I ⊗ k̂)[β(a#f(t1)t2)]

= (I ⊗ k̂)[a(t2 · 1)⊗f(t1)T ′1(S(t3))T ′2]

= (I ⊗ k̂)[a(t2 · 1)10 ⊗ f(t1)T ′1(S(t3))T ′2 ∗ 11]

= a(t2 · 1)10f(t1)T ′1(S(t3))T ′2(k1)11(k2)

= a(t2 · 1)1011(k2)f(t1)T ′(S(t3)k1)
= a(t2 · 1)(k2 · 1)f(t1)T ′(S(t3)k1)
= a(f(t1)t2 · 1)(k2 · 1)T ′(S(t3)k1)
= a[(t1 ← f) · 1](k2 · 1)T ′(S(S−1(k1)t2))

(4.1.11−2)
= a[((k1t1)← f) · 1](k2 · 1)T ′(S(t2))
= a[((k1t1)← f) · 1](k2 · 1)T (t2)
= a[((k1t1T (t2))← f) · 1](k2 · 1)
= a[((k1(T → t))← f) · 1](k2 · 1)
= a[(k1 ← f) · 1](k2 · 1)
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= a(f(k1)k2 · 1)(k3 · 1)
= a(f(k1)k2 · 1)
= a(k2 · 1)f(k1)

= a1011(k2)f(k1)

= (I ⊗ k̂)(a10 ⊗ f ∗ 11)

= (I ⊗ k̂)(a⊗f)

and
α(β(a#h)) = α(β(a(h1 · 1)#h2))

= α[a(h1 · 1)⊗T ′1(S(h2))T ′2]
= a(h1 · 1)#(t← T ′1(S(h2))T ′2)
= a(h1 · 1)#T ′(S(h2)t1)t2

(4.1.11−2)
= a(h1 · 1)#T ′(t1)h2t2
= a(h1 · 1)#h2T

′(t1)t2
= a(h1 · 1)#h2(t← T ′)
= a(h1 · 1)#h2

= a#h

Therefore, A⊗H∗ ' A#H as vector spaces.

For a partial H-comodule algebra A, the subalgebra of the partial coinvariants is defined
as

AcoH = {a ∈ A | ρ̄(a) = (a⊗ 1H)ρ(1A)}.
Note that if A is a partial H-module algebra, then it is a partial H∗-comodule algebra

and
H
A = AcoH

∗
.

Consider now the following maps:

Can : A⊗AcoH∗ A → A⊗H∗
a⊗ b 7→ ab0 ⊗ b1

and
[ , ] : A⊗H

A
A → A#H

a⊗ b 7→ (a#1)(1#t)(b#1).

Then:

Lemma 4.2.2. The image of [ , ] is a left ideal in A#H.

Proof. It is enough to show that (A#H)(1#t) ⊆ (A#1)(1#t).
In fact,

(a#h)(1#t) = a(h1 · 1)#h2t
= a(h1 · 1)#εL(h2)t
= [a(h1 · 1)] / εL(h2)#t
= a(h1 · 1)(εL(h2) · 1)#t
(1.9)
= a(11h · 1)(12 · 1)#t

(2.1.8)
= a(h · 1)#t
= (a(h · 1)#1)(1#t).
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Now we are able to announce the main theorem of this section:

Theorem 4.2.3. Let A be a partial H-comodule algebra. The following statements are
equivalent:

(1) Can is surjective;

(2) [, ] is surjective;

(3) There exists {xi, yi}ni=1 in A such that
n∑
i=1

xi(h · yi) = T ′(h1)h2 · 1A.

Moreover, in this case the maps [ , ] and Can are bijective.

Proof. Note that the following diagram is commutative:

A⊗AcoH∗ A
Can //

[ ,]

��

�

A⊗H∗

α

��
A#H

In fact,
α(Can(a⊗ b)) = α(ab0⊗b1)

= ab0(t← b1)

= ab0#b1(t1)t2
= ab0b1(t1)#t2
= a(t1 · b)#t2
= (a#t)(b#1)
= (a#1)(1#t)(b#1)
= [ , ](a⊗ b).

Since α is bijective, it is clear that (1)⇔ (2).
Moreover, from the usual Morita theory if [ , ] is surjective then it is bijective. Using

again that α is bijective we have Can is bijective.
Supposing that (3) holds, then

[ , ](
n∑
i=1

xi ⊗ yi) =
n∑
i=1

(xi#1)(1#t)(yi#1)

=
n∑
i=1

xi(t1 · yi)#t2
= T ′(t1)t2 · 1A#t3
= 1#T ′(t1)t2
= 1#t← T ′

= 1#1
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and this implies 1#1 ∈ Im([ , ]). By Lemma 4.2.2, it is clear that [ , ] is surjective.

Conversely, if Can is surjective then there exists {xi, yi}ni=1 such that Can(
n∑
i=1

xi⊗yi) =

1⊗T ′. So,
n∑
i=1

xi(h · yi) =
n∑
i=1

xiyi
0yi

1(h)

= (I ⊗ ĥ)(
n∑
i=1

xiyi
0 ⊗ yi1)

= (I ⊗ ĥ)(Can(
n∑
i=1

xi ⊗ yi))

= (I ⊗ ĥ)(I⊗T ′)
= (I ⊗ ĥ)(10 ⊗ T ′ ∗ 11)

= 1011(h2)T ′(h1)
= T ′(h1)h2 · 1

and this means that (3) holds.

The elements in item (3) of the above theorem are called the Galois coordinates of A.

4.3 Morita Theory for partial comodule algebras

4.3.1 Some categorical results

We saw in Section 3.4 that C = A⊗H = (A ⊗ H)ρ̄(1A) is an A-coring. We will first
discuss the relation between comodules over C, whose categories will be denoted by CM
and the relative partial Hopf module.

Definition 4.3.1. Let M a vector space and A a symmetric partial H-comodule algebra.
We say M is a relative partial Hopf module if

(PRHM1) M is a right A-module;

(PRHM2) There exists ρM : M →M ⊗H such that:

(a) (I ⊗ εH)ρM = IM ;

(b) (ρM ⊗ I)ρM(m) = m0 · 10 ⊗m1
111 ⊗m1

2;

(PRHM3) ρ(m · a) = m0 · a0 ⊗m1a0.

Definition 4.3.2. Let M and N relative partial Hopf modules. A morphism of relative
partial Hopf modules is a linear map f : M → N such that

(i) f(m · a) = f(m) · a;

(ii) ρN ◦ f = (f ⊗ I) ◦ ρM .
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It is clear that MH
A = {M | M is a relative partial Hopf module} becomes a category

with the morphism given in Definition 4.3.2.

Our next aim is to show that the categories MC and MH
A are equivalent.

Let M be an object inMC, i.e., there is a coaction ρ̃ : M →M ⊗A C(= M ⊗A (A⊗H)).

Supposing ρ̃(m) =
n∑
i=1

mi ⊗A (ai⊗hi) we have

ρ̃(m) =
n∑
i=1

mi ⊗A (ai⊗hi)

=
n∑
i=1

mi ⊗A (ai1
0 ⊗ hi11)

=
n∑
i=1

mi ⊗A ai10 · (1A ⊗ hi11)

=
n∑
i=1

mi · ai10 ⊗A 1A ⊗ hi11,

then we can define
ρ : M → M ⊗H

m 7→
n∑
i=1

mi · ai10 ⊗ hi11.

Conversely, given ρ : M →M ⊗H with ρ(m) = m0 ⊗m1 we can define

ρ̃ : M → M ⊗A C
m 7→ m0 ⊗A 1A⊗m1.

Remark 4.3.3. Using the notation ρ(m) = m0⊗m1 and ρ̃(m) = m0̃⊗m1̃, ρ and ρ̃ satisfy
the following relation:

m0̃ ⊗m1̃ = m0 ⊗A (10⊗m111)

= m0 ⊗A (1A⊗m1) (4.12)

= m0 ⊗A (10 ⊗m111).

Remark 4.3.4. Note that from the definition of ρ we have ρ(m) = m0 ·10⊗m111. In fact,

ρ̃(m) =
n∑
i=1

mi ⊗A (ai⊗hi)

=
n∑
i=1

mi ⊗A (ai1
0 ⊗ hi11)

=
n∑
i=1

mi ⊗A (ai1
0′10 ⊗ hi11′11)

=
n∑
i=1

mi · ai10′10 ⊗A 1A ⊗ hi11′11

=
n∑
i=1

mi · ai10′ · 10 ⊗A 1A ⊗ hi11′11

= m0 · 10 ⊗A 1A ⊗m111
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then
m0 ⊗A 1A ⊗m1 = ρ̃(m)

= m0 · 10 ⊗A 1A ⊗m111

and so ρ(m) = m0 · 10 ⊗m111.

Proposition 4.3.5. With the above construction, (M,ρ) is a relative partial Hopf module
if and only if (M, ρ̃) lies in MC.

Proof. Note that M is an A-module by construction. Then (PRHM1) is satisfied.
(PRHM2)(a) ⇔ (CM2)

(I ⊗A εC)ρ̃(m)
(4.12)
= (I ⊗A εC)(m0 ⊗A 1⊗m1)
= m0 ⊗A εC(1⊗m1)
= m0 · εC(1⊗m1)⊗A 1A
= m0 · 10εH(m111)⊗A 1A

(4.3.4)
= m0εH(m1)⊗A 1A.

Then (I ⊗A εC)ρ̃(m) = m⊗A 1A if and only if m0εH(m1) = m.

(PRHM3)⇔ (CM1) We have

ρ̃(m · a) = (m · a)0̃ ⊗A (m · a)1̃

(4.12)
= (m · a)0 ⊗A 1A⊗(m · a)1

= (m · a)0 · 10 ⊗A 1A ⊗ (m · a)111

(4.3.4)
= (m · a)0 ⊗A 1A ⊗ (m · a)1

and, on the other hand

ρ̃(m) · a = (m0̃ ⊗A m1̃) · a
(4.12)
= m0 ⊗A (1A⊗m1) · a
= m0 ⊗A (a0⊗m1a1)

= m0 · a0 ⊗A 1A ⊗m1a1,

then ρ(m · a) = (m · a)0 ⊗ (m · a)1 = m0 · a0 ⊗m1a1 if and only if ρ̃(m · a) = ρ̃(m) · a.

(PRHM2)(b) ⇔ (CM3) Note that

(I ⊗A ∆C)ρ̃(m)
(4.12)
= m0 ⊗A ∆C(1A⊗m1)
= m0 ⊗A (1A⊗m1

1)⊗A (1A⊗m1
2)

= m0 ⊗A (10′ ⊗m1
111′)⊗A (10 ⊗m1′

211)

= m0 ⊗A (10′100 ⊗m1
111′101)⊗A (1A ⊗m1

211)

= m0 ⊗A (100 ⊗m1
1101)⊗A (1A ⊗m1

211)

= [m0 · 100 ⊗A (1A ⊗m1
1101)]⊗A (1A ⊗m1

211)

= [m0 · 10′10 ⊗A (1A ⊗m1
111′

111)]⊗A (1A ⊗m1
211′

2)
(4.3.4)
= [m0 · 10 ⊗A (1A ⊗m1

111)]⊗A (1A ⊗m1
2)
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and, on the other side

(ρ̃⊗ I)ρ̃(m) = ρ̃(m0)⊗A 1A⊗m1

= m0 ⊗A 1A⊗m01 ⊗A 1A⊗m1

= [m0 · 100 ⊗A (1A ⊗m01101)]⊗A 1A ⊗m111

(PRHM3)
= [m0 ⊗A (1A ⊗m01)]⊗A 1A ⊗m1

then (ρ⊗ I)ρ(m) = m0 · 10⊗m1
111⊗m1

2 if and only if (I ⊗A ∆C)ρ̃(m) = (ρ̃⊗ I)ρ̃(m).

Using the above stated we have the functor

F :MC → MH
A

(M, ρ̃) 7→ (M,ρ)
f 7→ f,

remaining only to prove that if f : M → N is a morphism inMC then f is a morphism in
MH

A , and that given f : M → N a morphism in MH
A then f is a morphism in MC.

In fact,

ρ̃N(f(m)) = f(m)0̃ ⊗A f(m)0̃

(4.12)
= f(m)0 ⊗A 1A⊗f(m)1

= f(m)0 · 10 ⊗A 1A ⊗ f(m)111

(4.3.4)
= f(m)0 ⊗A 1A ⊗ f(m)1

and on the other hand

(f ⊗ I)ρ̃M(m) = (f ⊗ I)(m0̃ ⊗A m1̃)
= (f ⊗ I)(m0 ⊗A 1A⊗m1)

= (f ⊗ I)(m0 · 10 ⊗A 1A ⊗m111)

= f(m0 · 10)⊗A 1A ⊗m111

(4.3.4)
= f(m0)⊗A 1A ⊗m1.

Then ρN(f(m)) = (f ⊗ I)ρM(m) if and only if (f ⊗ I)ρ̃M(m) = ρ̃N(f(m)).
And this completes the proof of the following theorem:

Theorem 4.3.6. The categories MC and MH
A are isomorphic.

4.3.2 Morita theory

Recall now that if M ∈ MC where C is any coring with a fixed grouplike x, then the
corresponding subcomodule of coinvariants is M coC = {m ∈M | ρ̃(m) = m⊗A x}.

On the other side if M ∈MH
A then M coH

A = {m ∈M | ρ(m) = m · 10 ⊗ 11}.
Then, for the coring C = A⊗H and the grouplike ρ(1) we have M coH

A = M coC. In fact,
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M co(A⊗H) = {m ∈M | ρ̃(m) = m⊗A ρ(1)}
= {m ∈M | m0̃ ⊗A m1̃ = m⊗A 10 ⊗ 11}
= {m ∈M | m0 ⊗A 1A⊗m1 = m · 10 ⊗A 1A ⊗ 11}
= {m ∈M | m0 ⊗A 10 ⊗m111 = m · 10 ⊗A 1A ⊗ 11}
= {m ∈M | m0 · 10 ⊗A 1A ⊗m111 = m · 10 ⊗A 1A ⊗ 11}
= {m ∈M | m0 · 10 ⊗m111 = m · 10 ⊗ 11}
= {m ∈M | m0 ⊗m1 = m · 10 ⊗ 11}
= {m ∈M | ρ(m) = m · 10 ⊗ 11}
= M coH

A .

Note that A ∈MH
A and the action of A on A is given by multiplication. So

AcoH = AcoHA = Aco(A⊗H).

Consider now the set ∗(A⊗H) =A Hom(A⊗H,A) with an associative product # defined
by (γ#ξ)(a⊗h) = ξ[(a⊗h1) · γ(1⊗h2)].

We also have the algebra Hom(H,A) with a multiplication # given by f#g(h) =
f(h2)0g(h1f(h2)1).

Note that it is associative. In fact,

[(f#g)#k](h) = (f#g)(h2)0k(h1(f#g(h2))1)

= [f(h3)0g(h2f(h3)1)]0k(h1[f(h3)0g(h2f(h3)1)]1)

= f(h3)010g(h2f(h3)1
2)0k(h1f(h3)0

111g(h2f(h3)1
2)1)

= f(h3)0g(h2f(h3)1
2)0k(h1f(h3)0

1g(h2f(h3)1)2
1)

= f(h2)0g((h1f(h2)1)2)0k((h1f(h2)0)1g((h1f(h2)1)2)1)

= f(f2)0(g#k)(h1f(h2)1)
= [f#(g#k)](h).

Consider Hom(H,A) = {f ∈ Hom(H,A)| f(h) = 10f(h11)} that is a subalgebra of
Hom(H,A). In fact, let f, g ∈ Hom(H,A), so

(f#g)(h) = f(h2)0g(h1f(h2)1)

= [10f(h211)]0g(h1[10f(h211)]1)

= 100f(h211)0g(h1101f(h211)1)

= 1010′f(h211
2)0g(h111

110′f(h211
2)1)

= 10f(h211
2)0g(h111

1f(h211
2)1)

= 10f((h11)2)0g((h11)1f((h11)2)1)

= 10(f#g)(h11).

Now given an element ξ ∈ ∗(A⊗H) we can consider the map αξ : H → A given by
αξ(h) = ξ(1⊗h).
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Note that αξ lies in Hom(H,A), in fact

10αξ(h11) = 10ξ(1⊗h11)

= ξ(10 · (1⊗h11))

= ξ(10⊗h11)
= ξ(1⊗h)
= αξ(h).

Therefore, we can define the following map

α : ∗(A⊗H) → Hom(H,A)
ξ 7→ αξ.

Converselly, given a map f in Hom(H,A) we can define a map βf in ∗(A⊗H) by

βf (a⊗h) = a10f(h11) = af(h), so we have

β : Hom(H,A) → ∗(A⊗H)
f 7→ βf .

Proposition 4.3.7. With the above notation, we have that Hom(H,A) isomorphic to
∗(A⊗H) as algebras.

Proof. Consider the maps α : ∗(A⊗H) → Hom(H,A) and β : Hom(H,A) → ∗(A⊗H)
given above. Let f ∈ Hom(H,A) and h ∈ H, so

α(β(f))(h) = β(f)(1⊗h)
= 1Af(h)
= f(h)

and for ξ ∈ ∗(A⊗H) and a⊗h ∈ A⊗H,

β(α(ξ))(a⊗h) = aα(ξ)(h)
= aξ(1⊗h)
= ξ(a · (1⊗h))
= ξ(a⊗h).

Now, let γ, ξ ∈ ∗(A⊗H) and h ∈ H, so

α(γ#ξ)(h) = (γ#ξ)(1⊗h)
= ξ[(1⊗h1) · γ(1⊗h2)]

= ξ[γ(1⊗h2)0⊗h1γ(1⊗h2)1]

= ξ[γ(1⊗h2)0 · (1⊗h1γ(1⊗h2)1)]

= γ(1⊗h2)0ξ[1⊗h1γ(1⊗h2)1]

= α(γ)(h2)0α(ξ)[h1α(γ)(h2)1]
= [α(γ)#α(ξ)](h).

Since α is an isomophism that respects the product, clearly α(εC) = 1Hom(H,A), therefore
an algebra isomorphism.
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In [14], Caenepeel constructed the subalgebra Q = {q ∈ ∗C| c1 · q(c2) = q(c) ·x, ∀c ∈ C}
where x is a group-like element in C. In our case, we have that

Q = {ξ ∈ ∗(A⊗H)| (a⊗h1) · ξ(1⊗h2) = ξ(a⊗h) · ρ(1A)}
= {ξ ∈ ∗(A⊗H)| a ξ(1⊗h2)0⊗h1ξ(1⊗h2)1 = ξ(a⊗h)10⊗11}
= {ξ ∈ ∗(A⊗H)| a α(ξ)(h2)0⊗h1α(ξ)(h2)1 = a α(ξ)(h)10⊗11}.

Now consider

Q̃ = α(Q) = {q ∈ Hom(H,A)| q(h2)0⊗h1q(h2)1 = q(h) · ρ(1)}

and
j : A → Hom(H,A)

a 7→ j(a)(h) = [α(ε
A⊗H

)(h)]a

= 10a εH(h 11)

= a0εH(h a1)

which is clearly well-defined and, moreover, an algebra morphism. In fact, let a, b ∈ A and
h ∈ H, so

(j(a)#j(b))(h) = j(a)(h2)0 j(b)[h1j(a)(h2)1]

= [a0εH(h2 a
1)]0 j(b)[h1[a0εH(h2 a

1)]1]

= a00 j(b)[h1a
01] εH(h2 a

1)

= a00b0εH(h1a
01b1) εH(h2 a

1)

= a010b0εH(h1a
1

111b1) εH(h2 a
1

2)

= a0b0εH((ha1)1b
1) εH((h a1)2)

= a0b0εH(ha1b1)
= j(ab)(h).

Clearly, j(1A) = α(ε
A⊗H

) = 1Hom(H,A) and, moreover, since a = j(a)(1H), we have that
j is injective.

Note that, for all q ∈ Q̃, f ∈ Hom(H,A), h ∈ H and a ∈ A, we have that

(q#j(a))(h) = q(h)a (4.13)

(j(a)#f)(h) = a0f(h a1). (4.14)

In fact,
(q#j(a))(h) = q(h2)0j(a)(h1 f(h2)1)

Q̃
= q(h)10j(a)(11)

= q(h)10εH(11)a
= q(h)a
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and
(j(a)#f)(h) = j(a)(h2)0f(h1j(a)(h2)1)

= [a0εH(h2a
1)]0f(h1[a0εH(h2a

1)]1)

= a00f(h1a
01)εH(h2a

1)

= a010f(h1a
1

111)εH(h2a
1

2)

= a010f(ha111)

= a0f(ha1).

Proposition 4.3.8. With the above notation, Q̃ is a (Hom(H,A), AcoH)-bimodule via

f . q / a = f # q # j(a). (4.15)

Proof. First of all, we need to show that f . q / a lies in Q̃. In fact, for f ∈ Hom(H,A)

and q ∈ Q̃, we have

(f#q)(h2)0 ⊗ h1 (f#q)(h2)1

= [f(h3)0q(h2 f(h3)1)]0 ⊗ h1 [f(h3)0q(h2 f(h3)1)]1

= f(h3)00q(h2 f(h3)1)0 ⊗ h1 f(h3)01q(h2 f(h3)1)1

= f(h3)010q(h2 f(h3)1
2)0 ⊗ h1 f(h3)1

111q(h2 f(h3)1
2)1

= f(h2)0q((h1 f(h2)1)2)0 ⊗ (h1 f(h2)1)1q((h1 f(h2)1)2)1

Q̃
= f(h2)0q(h1 f(h2)1)10 ⊗ 11

= (f#q)(h)

and, for a ∈ AcoH ,

(q # j(a))(h2)0 ⊗ h1(q # j(a))(h2)1 (4.13)
= [q(h2) a]0 ⊗ h1[q(h2) a]1

= q(h2)0 a0 ⊗ h1q(h2)1 a1

Q̃
= q(h)10 a0 ⊗ 11 a1

= q(h) a0 ⊗ a1

AcoH

= q(h) a 10 ⊗ 11

(4.13)
= (q#j(a))(h) 10 ⊗ 11.

Since j is an algebra morphism and Hom(H,A) is an associative algebra, then Q̃ is a
(Hom(H,A), AcoH)-bimodule.

Proposition 4.3.9. A is an (AcoH , Hom(H,A))-bimodule via

a→ b← f = ab0f(b1). (4.16)

Proof. Let a be an element in AcoH , b in A and f in Hom(H,A), then

b← 1
Hom(H,A)

= b← α(εA⊗H)

= b0α(εA⊗H)(b1)

= b0εA⊗H(1⊗b1)

= εA⊗H(b0⊗b1)

= b0εH(b1)
= b
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and, for f, g ∈ Hom(H,A),

(b← f)← g = (b0f(b1))← g

= (b0f(b1))0g((b0f(b1))1)

= b00f(b1)0g(b01f(b1)1)

= b010f(b1
2)0g(b1

111f(b1
2)1)

= b0f(b1
2)0g(b1

1f(b1
2)1)

= b0(f#g)(b1)
= b← f#g.

Clearly, it is a bimodule, as follows

(a→ b)← f = a b← f

= a0 b0f(a1 b1)
AcoH

= a 10 b0f(11 b1)

= a b0f(b1)
= a→ (b← f).

Now consider the following maps

τ : A⊗Hom(H,A) Q̃ → AcoH

a⊗ q 7→ a0q(a1) (4.17)

µ : Q̃⊗AcoH A → Hom(H,A)

q ⊗ a 7→ q#j(a). (4.18)

First of all, we need to check that τ and µ are well-defined. In fact,

ρ̄(τ(a⊗ q)) = ρ̄(a0q(a1))

= a00q(a1)0 ⊗ a01q(a1)1

= a010q(a1
2)0 ⊗ a1

111q(a1
2)1

= a0q(a1
2)0 ⊗ a1

1q(a
1

2)1

= a0q(a1)11 ⊗ 11

= τ(a⊗ q)11 ⊗ 11.

Therefore Im(τ) ⊆ AcoH . Now let us see that τ and µ are “balanced” maps. Let
f ∈ Hom(H,A), then

(a← f)0q((a← f)1) = (a0f(a1))0q((a0f(a1))1)

= a00f(a1)0q(a01f(a1)1)

= a010f(a1
2)0q(a1

111f(a1
2)1)

= a0f(a1
2)0q(a1

1f(a1
2)1)

= a0(f#q)(a1)
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and taking b ∈ AcoH
q#j(b→ a) = q#j(b a)

= q#j(b)#j(a)
= (q ← b)#j(a).

Therefore τ and µ are well-defined.

Proposition 4.3.10. With the above notation, τ is a (AcoH , AcoH)-linear map and µ is a
(Hom(H,A), Hom(H,A))-linear map.

Proof. By the above discussion, τ and µ are well-defined.
For the linearity of τ , suppose a, a′ ∈ AcoH and b⊗ q ∈ A⊗Hom(H,A) Q̃. Then

τ(a→ (b⊗ q)← a′) = τ((a→ b)⊗ (q ← a′))
= τ(ab⊗ q#j(a′))
= a0b0(q#j(a′))(a1b1)

(4.13)
= a0b0q(a1b1) a′

AcoH

= a10b0q(11b1) a′

= a b0q(b1) a′

= a τ(b⊗ q) a′.

Now, given h ∈ H, f, g ∈ Hom(H,A) and q ⊗ a ∈ Q̃⊗AcoH A, we have that

[f → µ(q ⊗ a)← g](h) = [f#µ(q ⊗ a)#g](h)
= [f#q#j(a)#g](h)

= (f#q)(h2)0(j(a)#g)[h1 (f#q)(h2)1]

= (f#q)(h)10(j(a)#g)[11]

= (f#q)(h)10a0g(11a1)

= (f#q)(h)a0g(a1)

= (f#q)#j(a0g(a1))(h)
= (f → q)#j(a← g)(h)
= µ[(f → q)⊗ (a← g)](h)
= µ[f → (q ⊗ a)← g](h)

and it shows the desired.

Theorem 4.3.11. Let H be a weak Hopf algebra, and A a symmetric partial H-comodule
algebra. Then

(AcoH , Hom(H,A), A, Q̃, τ, µ)

defines a Morita context.

Proof. It just remains to prove the relation between τ and µ.
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In fact,
a← µ(q ⊗ b) = a0µ(q ⊗ b)(a1)

= a0(q#j(b))(a1)

= a0q(a1) b
= τ(a⊗ q)→ b

and
[µ(q ⊗ a)→ q′](h) = (q#j(a)#q′)(h)

= (q#j(a))(h2)0q′[h1 (q#j(a))(h2)1]

= [q(h2) a]0q′[h1 [q(h2) a]1]

= q(h2)0a0q′[h1 q(h2)1a1]

= q(h)10a0q′[11a1]

= q(h)a0q′[a1]

= [q#j(a0q′[a1])](h)

= [q ← (a0q′[a1])](h)
= [q ← τ(a⊗ q′)](h).

Now it is clear that Theorem 1.2.7 can be simply applied to the above context, giving
rise to some new Galois correspondences.
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[8] G. Böhm, Doi-Hopf modules over weak Hopf algebras, Comm. Algebra 28 (2000), no. 10, 4687–4698.
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