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Resumo

O sucesso da teoria dos grafos para descrever sistemas complexos, bem como a onipresenca
destes, deu muito destaque a elaboracao de métodos eficientes para sua analise. No
entanto, varias questoes continuam em aberto. Uma delas, a qual nos dedicamos neste
trabalho, é a obtencao das comunidades presentes nessas redes. Muito embora nao exista
um consenso formal sobre sua defini¢ao, a presenca de comunidades vem da ideia intuitiva
de que nés formam subgrupos dentro da rede. Neste sentido, muitos algoritmos diferentes
foram propostos para identificar tais grupos. Aqui nés atacamos este problema em duas
frentes: primeiro, desenvolvemos um novo algoritmo baseado na fungao Surprise e segundo,
criamos um novo benchmark, um conjunto de redes artificiais com comunidades pré-
estabelecidas, para comparar a performance de diferentes algoritmos. O nosso algoritmo,
chamado Surpriser, foi testado contra sete outros métodos da literatura em trés benchmarks
diferentes. N6s mostramos que métodos baseados na Surprise sao os mais consistentes
nos diferentes benchmarks e que o nosso Surpriser leva uma vantagem sobre os tultimos.
Finalmente, mostramos que o nosso benchmark é o mais dificil dos trés, pois poucos

algoritmos conseguem resolve-lo.

Palavras-chaves: Grafos, Redes, Deteccao de Comunidades, Benchmarks, Surprise.






Abstract

The success of network science to describe many complex systems and their ubiquitous
presence has brought the development of new, more efficient, methods of analysis to the
spotlight. However, some problems still remain open. One of which, the focus of our
work, is the determination of a network’s community structure. Even though there’s no
consensual formal definition, communities come from the intuitive idea that nodes form
subgroups in the larger networks. In this regard, many different algorithms have been
proposed in order to identify such groups. Here we tackle this problem in two different
fronts: first, we developed a new algorithm based on the Surprise function and secondly, we
created a novel benchmark, a set of artificial networks with a seeded community structure,
to compare the performance of competing algorithms. Our own Surpriser algorithm was
tested against seven other methods from the literature in three different benchmarks. We
show that the Surprise based methods are the most consistent among different benchmarks,
with Surpriser having an edge over the competition. Finally, we show that our benchmark

is the hardest of the three as very few algorithms are able to solve it.

Key-words: Graphs, Networks, Community Detection, Benchmarks, Surprise






Figure 1 —

Figure 2 —

Figure 3 —

Figure 4 —

Figure 5 —

Figure 6 —

Figure 7 —

Figure 8 —

Figure 9 —

List of Figures

The seven bridges of Konigsberg. Back on Leonard Euler’s time, a

common riddle was if it was possible to find a path through the city

that contained all the bridges and crossed each bridge exactly once.

This problem inspired Euler to start what we call graph theory today. .

Graph symbolizing the bridges of Konigsberg. Fach vertex from A to

D represents a land mass in the city (as per figure 1) and each edge

represents a bridge (numbers one to seven). . . . ... ... L.

Example of real-world networks in a) we have a directed network, in b) a

directed and weighted network and in ¢) an undirected and unweighted

network. a) Airport Network that has 3425 nodes and 18797 links.

Node sizes as well as their colors scale with the nodes degree. Two
airports, A and B, are connected if a flight starts in A and ends in B. b)
Passing network from Barcelona’s match against Manchester United in
the champions league finals in 2011. Link represent passes between the
players and its weight is given by the number of passes between such
players. ¢) Metabolic Network from Synechocystis, each node represents

a molecule. Two molecules are connected if they form a product-reagent

pair in a chemical reaction. . . . .. ... ... ... ... .. ... ..

Intuitive example of what we call the community structure of a network.

The different communities, nodes A through E, F through I and J to L

are identified by their colors. . . . . . . . ... ... oL

Simple network with 5 nodes and 4 links. Equation 1.1 shows the

associated adjacency matrix. . . . . . . ...

Directed network with 5 nodes and 8 links. The respective adjacency

matrix is in equation (1.4). . . . . . . . ..o

Weighted and undirected network with 6 nodes and 8 links, each edge

is labeled by its weight. Equation 1.7 represents its adjacency matrix. .

Comparison between the real airports network with a random network

created with the appropriate number of nodes and links as predicted by

the Erdos-Rényi model. . . . . . . . ... ... L

a) Histogram of the degree distribution from the airports network, we
see that this distribution appears to follow a power law. b) Histogram
of the degree distribution from a random graph with the same number

of nodes as the airport network from figure 3 and an equivalent number

of links, we see that this distribution is binomial. . . . . . . ... . ..

23



Figure 10 —

Figure 11 —

Figure 12 —

Figure 13 —

Figure 14 —

Figure 15 —

Figure 16 —

Figure 17 —

Figure 18 —

Intuitive example of what we call the community structure of a network.
The different communities, nodes A through E, F through I and J to K
are identified by their colors. Note that there’s no overlap, every single

node needs to be in one and only one community. . . . . .. ... ... 36
Cliques of different sizes . . . . . . . . .. .. ... .. ... ... 37

Veen Diagram. The blue and green circles represent the entropies of
partitions Y (H(Y)) and X (H(X)), respectively. The joint entropy
H(X,Y) is the area enclosed by both circles, whereas VI(X,Y) is the
area outside the intersection between H(X) and H(Y'), the bigger the
intersection the smaller the value of the VI. When the intersection is

maximum, as in, when H(X) and H(Y) are equal, the VI is zero. . . . 39

Example graph to study the resolution limit from the Modularity func-
tion. We want to check the conditions by which the modules 1 (in
blue) and 2 (in red) are connected. The largest group in gray has a

sub-community structure but it’s omitted for clarity. . . . . . .. . .. 43

Partitions found by using the Louvain algorithm for the ring of cliques
network with different numbers of cliques. After a certain point, Modu-
larity starts combining two neighbouring cliques in the same community

(b), we show that this behavior happens for every clique size. . . . . . . 45

(a) and (b) Communities of a network with 11 nodes and 16 links.
Adding a poorly connected node such as 5 or 7 to the four nodes cliques
(nodes 1 through 4 and 8 through 11) lowers the Surprise of the structure.
(b) Partitions (a) and (b) share the same maximum value of the Surprise
function. This is indicative of the degeneracy problem that will be
treated later. . . . . . ..o 51

LFR networks generated with 8 = 1, v = 2, k = 15, kmax = 50 and
N = 1000 nodes. In a) and b) the 10 largest communities were colorized,

we see that the larger the value of i the fuzzier the community structure. 56
Example of a connected caveman graph. . . . . . ... ... ... ... 57

Communities of a RC network generated with N = 512 nodes, 16
cliques and PI = 0.75. In a) and b) the 10 largest communities were
colorized. a) The original community structure, represented as a set
of 16 disjointed cliques. b) The same network after the degradation
process with R = 50%, here 50% of its links were removed and the same

percentage of the remaining links were shuffled in the network. . . . . . 58



Figure 19 —

Figure 20 —

Figure 21 —

Figure 22 —

Figure 23 —

Figure 24 —

Figure 25 —
Figure 26 —

Figure 27 —

Figure 28 —

Different networks created using our novel benchmark. We see the two
ways the community structure is weakened. As ¢ increases the number of
extra-community links grows, shown by the majority of the grey links in
figures 19 ¢) and d), and as p increases the number of intra-community
links diminishes, as given by the fuzziness in the community structure
in b and d. As always the 10 biggest communities were colorized. The
scale-free proprieties are evident, as we have a small number of large

cliques joined by a huge proportion of smaller groups. . . . . . . .. ..

Distribution of the community sizes and the number of communities for
all the LFR networks. . . . . . . .. ... ... ... ... ...

Distribution of the community sizes for all the RC networks, remember
that, by definition the RC networks have 16 communities each so that
the plot of the distribution of number of communities is rather dull (as
it would always be equal to 16). Also, to emphasize that the distribution
in a) is from all the networks, we have the distribution of community

sizes from a single network in b) . . . .. ..o o000 L L

Pielou’s index for the LFR (PI= 0,961 + 0,005) and RC (PI= 0,751 4+
0,003) benchmark networks. The numbers show that the LFR networks
have a much more even distribution of community sizes than the RC
networks. Also remember that the PIgc was set at 0.75 in the networks

creation. . . . . . L

Distribution of the community sizes and the number of communities for

all the networks in our benchmark. . . . . . . . . . .. .. . ... ...

Pielou’s index for the networks in our benchmark. The average PI of
0.87 £ 0.05 is nicely placed in the middle of the interval between the PI
of the RC benchmark (0.75) and the PI of the LFR benchmark (0.96).

Performance of the algorithms in the RC benchmark. . . . . . . .. ..
Performance of the algorithms in the LFR benchmark. . . . .. .. ..

Performance of the algorithms in both benchmarks, we see that only
CPM and Surpriser have a consistently good performance in both

benchmarks. . . . . . . ..

Ratio between the average number of communities found by the al-
gorithms, ¢, with the average number of communities seeded by the
benchmarks ¢;. A ratio of 1, where both ¢} and ¢; match perfectly, is

represented by the yellow lines. . . . .. ... ... ... ........

66

69



Figure 29 —

Figure 30 —

Figure 31 —

Figure 32 —

Figure 33 —

Figure 34 —

Values of ygp in the LFR and RC benchmarks. For reference ygg = 1
recovers the definition of Modularity. The RB algorithm is able to
solve LFR networks withe failing in the RC benchmark. This happens
because in a), the distribution of community sizes is not broad so that the
algorithm is able to find a value of ygp that balances the tension between
splitting large communities and joining smaller ones. In b), conversely,
the distribution of community sizes is wide, so that there’s no clear
value of ygp that balances the tension between dividing and merging
communities. For small values of R we have the ygg = 1 which explains
the equivalent performance between RB and Louvain. Considering that
vrp > 1 in a) and that RB clearly outperforms Louvain, we see that the
communities from the LFR benchmark are smaller than the ones found
by Louvain, and that inserting a variation in ygg makes the algorithm

sensitive to this change. . . . . . . ... .o o Lo

Values of ycpyr in the LFR and RC benchmarks. In a) as the distribution
of community sizes is even across the board we see little variation in
the value of ycpy. In b) we see a major spike in the value of yepy at
R = 70%, this coincides with the spike in the VI obtained and the spike
in number of communities detected by the CPM algorithm. This means

that CPM finds smaller communities but more densely connected ones.

Performance in our benchmark. CPM and Surpriser show the best results,
while the Modularity based methods perform poorly in this benchmark.
The results from Louvain are worse than the singles partition in the
entire range of parameters. Of the three benchmarks, the algorithms
perform worse in ours, which suggest that it’s actually the toughest of
the three. . . . . . . . . . .

Ratio between the average number of communities found by the al-
gorithms, ¢}, with the average number of communities seeded by the
benchmarks ¢;. A ratio of 1, where both ¢, and ¢, match perfectly, is

represented by the yellow lines. . . . .. .. .. ... ... .......

Performances in every benchmark, darker colours represent regions with

weaker community structures. . . . . ... ..o

We go back to the network shown in 15 in order to study the degeneracy

74

81



Figure 35 — Linear embedding of 1317 different partitions from the network in figure
34. Here the distances in the xy-plane represent the VI between the
partitions in partition space, while the z coordinate gives us the value
of Modularity (a) and Surprise (b) associated with each partition. In a)
we see a plateau region, where lots of partitions are close to the global
maximum of Modularity but far apart in the xy-plane. This means that
the Modularity landscape is extremely degenerated, as partitions with a
close to maximum value of Modularity can be structurally very different.
In b), however, we see a peak around the maximum values of Surprise,
which means that, unlike Modularity, the high scoring partitions in a
Surprise landscape are more similar with each other and that a near-
optimal partition is more representative of the networks true community
structure. . . . ... 0oL L

Figure 36 — Best performing algorithms in our benchmark. . . . . . . ... ... ..

Figure 37 — Worst performing algorithms in our benchmark. . . . . . . ... .. ..






List of Tables

Table 1 — Methods of the Surpriser package. The merge function works on a
community level, while Extract and Exchange deal with nodes and
sub-communities. . . . . . ... 52

Table 2 — Values of p and ¢ in the RC and LFR benchmarks. The uncertainties
shown around the average are standard deviations calculated for values
bigger and smaller than the average, respectively. . . . . . . . . .. ... 63

Table 3 — Ranges of community sizes, number of communities and the respective
Pielou’s index for each of the benchmarks. . . . . . .. .. .. ... ... 67

Table 4 — The VI found by each algorithm in the following range of parameters:u <
0.5,R < 50%,q < 0.015 and p < 0.50. In bold are the best performances
in each benchmark. The uncertainties shown around the average are
standard deviations calculated for values bigger and smaller than the
average, respectively. Visual representation in figure 33-a). . . . . . . .. 76

Table 5 — The VI found by each algorithm in the following range of parameters:p >
0.6, R > 60%, ¢ < 0.030 and p > 0.55. In bold are the best performances
in each benchmark. The uncertainties shown around the average are
standard deviations calculated for values bigger and smaller than the
average, respectively. Replicated in figure 33-b).. . . . . . .. . ... .. 7

Table 6 — The average VI using every network. In bold are the best performances
in each benchmark. The uncertainties shown around the average are
standard deviations calculated for values bigger and smaller than the
average, respectively. Numbers from figure 33-c). . . . .. .. ... ... 78

Table 7 — Variation of Information between the initial partitions of the three
different benchmarks. We see that RC and New are much more alike

with a VI of 0.43 & 0.03 between them. . . . . . . . . . . . . ... ... 82






List of abbreviations and acronyms

CPM Constant Potts Model Algorithm

LFR Lancichinetti-Fortunato-Radicchi Benchmark
NMI Normalized Mutual Information

PI Pielou’s Index

RB Reichardt and Bornholdt Algorithm

RC Relaxed Caveman Benchmark

RN Ronhovde and Nussinov Algorithm

SA Simulated Annealing

VI Variation of Information






2.1
2.1.1
2.2
2.3
2.4
2.5
251
252

3.1
3.2
3.3

4.1
4.2
4.3

Contents

Introduction . . . . .. ... . ... e 23
NETWORK BASICS . . . . . . . . e e e et e 31
Communities . . . . . . ... 35
ALGORITHMS . . . . . . e e e e e e e e e e e 41
Louvain . . . . . .. 42
Issues with Modularity . . . . . . . . . ... ... 42
Hierarchical Clustering Algorithms . . . . . . . . . . .. ... .. ... 46
Infomap . . . . . .. 46
Potts Model Algorithms . . . . . . . . . .. ... .. L. 48
Surpriser . . . ... 49
Surprise . . .. L 49
Algorithm . . . . . . . . 51
BENCHMARKS . . . . . . . e e e e e e e et e 55
LFR Benchmark . . . . . . ... .. .. ... 55
RC Benchmark . . . . .. .. ... ... ... 57
New Benchmark . . . . . .. ... ... ... .. ... ... ..., 58
RESULTS AND DISCUSSIONS . . ... ... ... ... ...... 61
Benchmark Networks . . . . . . .. .. ... ... .. ... ... .. 61
Algorithms Performance . . . . . . . .. ... ... 0L 67
Degeneracy Problem . . . . . . . . . ... 83
Conclusion . . . . . . . . . . . e e e 87
HEAT MAPS . . . . . e e e e e e e e e e e 89

BIBLIOGRAPHY . . . . . . e e 93






23

Introduction

The modern network science is rooted in a field of mathematics called graph theory.
This discipline was started by no other than Leonard Euler in 1736 as a way to solve a

rather unusual problem.

Back on his time, the port city of Konigsberg enclosed four land masses connected
by seven bridges (figure 1). A popular question was if it was possible to find a route across

the city that passed through all the seven bridges crossing each exactly once.

Euler, without ever visiting the city, solved the problem using only his creativity,
wit and, obviously, mathematics. He realized that the geometry of the city was irrelevant
to the solution, the only thing that mattered was how the land masses were connected.
The significance of this idea is that, instead of analysing the map of the city with all its
roads, squares and buildings, a much simpler structure could be used. Figure 2 represents

this structure, which, nowadays, we call a graph.

Before we go into the specifics of Euler’s solution, we will take a break to present
the most basic proprieties of graphs. Graphs are made of two components: the vertices
and the edges between them. In our example, each dot from A to D represents a vertex
while the numbered lines, from 1 to 7, represent edges. In the real world system, the land

masses form the vertices and the bridges form the edges of the graph.

Vertices A,C and D have 3 edges while B has 5 edges, this number, the quantity of

ROWINGAEMGA

1.5
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Figure 1 — The seven bridges of Konigsberg. Back on Leonard Euler’s time, a common
riddle was if it was possible to find a path through the city that contained all
the bridges and crossed each bridge exactly once. This problem inspired Euler
to start what we call graph theory today.
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Figure 2 — Graph symbolizing the bridges of Konigsberg. Fach vertex from A to D repre-
sents a land mass in the city (as per figure 1) and each edge represents a bridge
(numbers one to seven).

edges a vertex has in the graph, is called the degree k of the vertex. This propriety will be
the key to solve the problem of the bridges of Konisgberg.

In a formal way, the problem is equivalent to finding a path that contains every
edge in the graph and that crosses each edge exactly once. As a vertex degree must always
be an integer, there’s no such thing as a half edge (as there’s no half bridges, either), the
idea behind solving this problem is analysing what happens to the path when we add a

vertex whose degree is even and what happens when the degree is odd.

Euler realized that such path could have any number of vertices with an even
degree. Let’s think about it for a moment, when the number of bridges is even, we can
always enter the land mass by a bridge and leave from another one. This means that we

would never cross the same bridge twice, as intended.

When the number is odd however, things get a little more complicated. For example,
in vertex A, we can enter by bridge 1 and leave by bridge 3 without a problem, but the
next time we enter A we can never leave - because we would be crossing the same bridge
twice. Based on this, we conclude that a graph can have at most two vertices with an odd

degree, the starting point of the path and the ending point.

Recall that all the vertices in figure 2 have an odd degree, hence FEuler proved that
such a path does not exist. This example is interesting because the main idea behind
network science is to study real-world structures. The concepts of network science are so
simple and powerful that we can use them to model systems not only from math, but

from physics, biology, social and computer sciences as well.

The usual nomenclature in network science is slightly different, instead of using
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the word vertices, we will use nodes and instead of edges it’s common to use links or
connections *. To give a bit more color to the wide range of systems described as networks,
we have figures 3 a) to c). In figure 3 a) we have the network of airports, as taken from
the Open Flights website, this network has 3425 nodes and 18797 links (a more complete
visualization is available at (GUIMERA et al., 2005). Every node is an airport. We connect
two airports, A and B, if there’s a flight that starts in airport A and ends in airport B.
The edges here have a direction, connecting A to B means that a flight leaves from A and
arrives at B, while connecting B to A implies that a flight starts in B and ends in A. If A
is connected to B and B is connected to A we say that the edge is bidirectional. Also, the
node sizes in the image are scaled to their degree, meaning higher degree the larger the
node in the figure. Observe that very few nodes have large degree, which is a common

propriety of real-world networks that we will talk about later.

In figure 3-b) we have the passing network of a football team during a match. More
precisely the network from Barcelona on their marvelous champions league win against
Manchester United in 2011. In this network not only the edges are directed, showing the
direction of the pass, but they have different ’strength’, the size of the edge and its strength
is proportional to the number of passes between two players in the match. Formally we
say that this network is both directed and weighted (the strength of the edges). Obviously,
the network can have from 11 to 14 nodes (if we consider substitutions), representing
all the players in the match. It’s also interesting to note that in this representation the
position of the nodes in the diagram is of significance, it represents the average passing
position for each player (there are several works regarding this kind of networks, so for
those interested one can check (GONCALVES et al., 2017; PENA; TOUCHETTE, 2012).

Finally we have a network where the edges are undirected and unweighted, so
node A being connected with node B is the same as node B being connected to node A
and so all the edges have equal weight. This is the metabolic network of Synechocystis
created using data from KEGG (KANEHISA; GOTO, 2000) and represented in Figure
3-c). This unicellular, cyanobacteria has 967 different chemical compounds (metabolites) in
its metabolism — the nodes in the network. Two metabolites are connected in the network
if they form a product reagent pair in a chemical reaction in the organism, i.e., we connect

substances that are on different ’sides’ of a chemical reaction.

Those are just some examples to show the structural diversity of real-world systems
that find representation as networks, their sizes can range between a dozen of nodes -as
the passing networks, to thousands - as the metabolic and airport networks, to billions
-as the web . Apart from those, networks are used to study works of fiction (RIBEIRO
et al., 2016; CARRON; KENNA, 2012), the interaction between proteins (ALDECOA;

L Throughout the text vertices, nodes and edges, connections, links will be used as synonyms to keep

the reading more bearable.
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Figure 3 — Example of real-world networks in a) we have a directed network, in b) a
directed and weighted network and in ¢) an undirected and unweighted network.
a) Airport Network that has 3425 nodes and 18797 links. Node sizes as well as
their colors scale with the nodes degree. Two airports, A and B, are connected
if a flight starts in A and ends in B. b) Passing network from Barcelona’s
match against Manchester United in the champions league finals in 2011. Link
represent passes between the players and its weight is given by the number
of passes between such players. ¢) Metabolic Network from Synechocystis,
each node represents a molecule. Two molecules are connected if they form a
product-reagent pair in a chemical reaction.
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Figure 4 — Intuitive example of what we call the community structure of a network. The
different communities, nodes A through E, F through I and J to L are identified
by their colors.

MARIN, 2010; RIVES; GALITSKI, 2003; ARNAU; MARS; MARIN, 2004), the interactions
between humans (RAMOS et al., 2015; JONES; HANDCOCK, 2003), how our brains
are organized (NICOLINI; BIFONE, 2016; NICOLINI; BORDIER; BIFONE, 2017) and
even how science works (ROSVALL; BERGSTROM, 2008; BARABASI; GULBAHCE;
LOSCALZO, 2011; BARRAT et al., 2004). In resume we have covered that network
science studies very important structures like our brains and our society to the most
important from the unimportant things like football, so we have every base covered. Even
with all this multiplicity, networks still share similar proprieties with one another, in
special, the one that motivated this work is the presence of large-scale structures called
communities (BARABASI; GULBAHCE; LOSCALZO, 2011; BARABASI; OLTVAI, 2004;
FORTUNATO, 2010).

Communities come from the intuitive idea that nodes form subgroups in the larger
network. A very basic example is in figure 4 where we have three communities in the
colors blue (nodes A through E) orange (nodes F to I) and green (nodes J to L). Even
though there’s no consensus formal definition of what a community is, it is accepted that
a community represents a group of nodes more connected between each other than with
the rest of the network. A more grounded example is a group of colleagues or friends in a

social network, or the different plot lines in a history.

Special interest in community detection techniques comes from the field of molecular
biology, where modules relate to specific biological functions (HARTWELL et al., 1999).
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Works have been done in various different fronts, in metabolic networks like example 3-c)
(BARABASI; OLTVAI 2004; PAPIN; REED; PALSSON, 2004; GUIMERA; AMARAL,
2005) , in Protein-Protein interaction networks (RIVES; GALITSKI, 2003; SPIRIN;
MIRNY, 2003; ALDECOA; MARIN, 2010), the name spoils it but, in those networks the
nodes represent proteins and they are connected if they interact through some process,
and in transcriptional regulation networks or gene regulatory networks (ZHU et al., 2008;
SEGAL et al., 2003), in these directed networks genes symbolize the nodes and edges
are placed between genes whenever the product of gene A controls the expression of
gene B (JUNKER; SCHREIBER, 2011). Knowledge over these structures not only sheds
light on the evolution of organisms (BARABASI; OLTVAI, 2004), but could also be
used to diagnose and treat diseases (AZUAJE et al., 2013; BARABASI; GULBAHCE;
LOSCALZO, 2011; ZANZONI; SOLER-LOPEZ; ALOY, 2009).

The hardship to solve this problem is based on two fronts, first there’s an insur-
mountable number of ways to divide a network of N nodes in m modules, the number of
possible partitions (divisions) is proportional to the nth Bell number? for large N, this
makes it impossible to analyze all the partitions as the Bell number grows faster than
exponentially; second, there’s no consensus formal definition of community, this means
that different methods define communities in different ways. Those two conditions have
led to the creation of a diverse number of heuristic algorithms. Here we propose a novel
algorithm based on the Surprise function (ALDECOA; MARIN, 2011) and compare it

with seven other methods from the literature.

An emphasis will be given to methods that maximize the Modularity of the system.
Modularity, like the Surprise, is a quality function. These functions seek to estimate how
good or bad a division of the network in communities is. Every partition of the network
has a given score, the value of the quality function. The higher this score is, the better is
the partition theoretically. Maximization of Modularity is the most popular community
detection method, as such, various works were dedicated to analyse the Modularity
function. In particular, the works by (FORTUNATO; BARTHELEMY, 2007) and (GOOD;
MONTJOYE; CLAUSET, 2010) showed that Modularity suffers from two main problems:
first, it has a resolution limit, being unable to identify smaller communities depending on
the size of the network, and second, the solutions are heavily degenerated, meaning that
there’s a large number of solutions with a high and similar Modularity score and that these
solutions can be structurally very different. Some qualitative analysis of the resolution
limit can be found in the papers (ALDECOA; MARIN, 2011; NICOLINI; BORDIER;
BIFONE, 2017; NICOLINI; BIFONE, 2016).

As for Surprise, the function was first introduced in (ARNAU; MARS; MARIN,
2004) as a way to measure the quality from the partitions found by the UVCluster

2 We give a formal expression for the Bell number in section 1.1.
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algorithm. The authors further expanded this idea in (ALDECOA; MARIN, 2011), where
they propose a meta-algorithm. After applying different methods from the literature, the
best partition would be the one with the highest Surprise. They show that this meta-
algorithm outperforms any individual method. In the same work they make a quantitative
analysis of the resolution limit where they show that Surprise is able to identify the
cliques in the ring of cliques networks and in other examples where Modularity fails. Later,
they introduce an approximation for the Surprise in (TRAAG; ALDECOA; DELVENNE,
2015). We disregard such approximations and aim to maximize the Surprise as defined in
(ALDECOA; MARIN, 2011) with our own greedy algorithm.

Another challenge for community detection methods is that, in general, the com-
munity structure of a real system is not known a priori, which limits the ability to test
the algorithms in real networks. Instead, a few benchmark networks were proposed so
that it’s usual to compare the performance of algorithms in those ’synthetic’ networks. A
benchmark network is a network where the community structure is seeded upon its creation.
This makes it straightforward to compare the results from different algorithms with the
correct (planted) communities. In this work, we limit our analyses to benchmark networks?.
We selected two benchmarks from the literature, Lancichinetti-Fortunato-Radicchi (LFR)
(LANCICHINETTT; FORTUNATO; RADICCHI, 2008) and Relaxed Caveman Graphs
(RC) (ALDECOA; MARIN, 2011), a modification on the Caveman Graphs from (WATTS,

2004), and we also propose a new benchmark to test the community detection algorithms.

This work is divided in four chapters. In the first one, called network basics, we do a
brief review of the mathematical description of networks and some of their proprieties with
a focus on communities and the presentation of useful metrics in the study the community
structure. Next, chapter two contains an explanation of the workings of each algorithm. In
chapter three we present the benchmarks used to test those algorithms and in chapter four

we present the results obtained by applying those methods on the benchmark networks.

3 Some work has already been done with the use of Surprise in real networks, for that check (NICOLINI;

BORDIER; BIFONE, 2017; NICOLINI; BIFONE, 2016).






31

1 Network Basics

Networks come in different shapes and sizes: they can be directed or undirected,
be weighted or unweighted or combinations of both !. All of those, however, can be drawn
as nothing but pair of dots coupled by lines. This visual representation is translated by
what we call the adjacency matrix A. Each network has an adjacency matrix associated
with it. The properties of those matrices however, will depend on the characteristics of the

network.

In an undirected and unweighted network, an element A;; from the adjacency
matrix is equal to one when nodes ¢ and j are connected and zero otherwise. Saying that
a network is undirected is the same as saying that all its connections are bidirectional,
this means that if ¢ is connected with j, j is also connected with 7. Next, an unweighted
network is one where every single link has the same strength or weight w;; (the convention

is to use w;; = 1).

B

Figure 5 — Simple network with 5 nodes and 4 links. Equation 1.1 shows the associated
adjacency matrix.

An example of undirected and unweighted network is figure 5 with its respective
adjacency matrix represented in equation 1.1. Note that, in this case, the matrix will be

symmetric and N x N, where N is the number of nodes in the network.

01100
10100

A=|1 1010 (1.1)
00101
00010

L There are other classifications, but to keep it short we will stick to these ones
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Figure 6 — Directed network with 5 nodes and 8 links. The respective adjacency matrix is
in equation (1.4).

The number of links each node has, also known as the node’s degree k;, is easily
obtained in terms of the adjacency matrix (the index i represents the row and the index j

represents the column):

Jj=1

Furthermore a sum over all the k; is related to the total number of links L in the
network by the handshake lemma (EULER, 1741):

L=>%k. (1.3)

i=1

DO | —

If a network has unidirectional connections, we say that the network is directed.
The best way to explain this concept is through an example. Consider the web. Here we
have two websites, ¢ and j. If website ¢ has a link to website j, we say that an edge comes
out from node 7 to node j. Further, if website j does not have a link to website 7, we say
that the connection (the edge) between i and j is unidirectional. If website ¢ has a link to
j and website j has a link to ¢, we say that the connection is bidirectional (in the same

vein as undirected networks).

Figure 6 shows an example of a directed network. The main difference between

the undirected and directed networks adjacency matrix is that the later is not necessarily
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Figure 7 — Weighted and undirected network with 6 nodes and 8 links, each edge is labeled
by its weight. Equation 1.7 represents its adjacency matrix.

symmetric (in most cases it isn’t) as seen in equation (1.4) bellow.

01000
10001
A=]1 0010 (1.4)
10000
01010

In these networks the nodes degrees are divided in two: k;,, that measures the
number of links that point towards the node and k,,; that measures the number of links

that come out from the node. Explicitly,

N
kin =Y Ay, (1.5)
j=1
and
N
Kout = ZAZ] (16)

In weighted networks each edge is given a weight w;; to express its strength in the

network (w;; can be any real number). The adjacency matrix becomes something like:

0 314 15 5 1
3.14 0 0 0 0
. 1.5 0 0 0 30 O (1.7)
5 0 0 0 0 12
0 30 0 0 O
1 4 0 12 0 O

In resume the adjacency matrix A;; is as follows:

w;j,if  and j are connected,
Aij -
0, otherwise.
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keeping in mind that if the network is unweighted w;; = 1.

Another common propriety in the literature is the so called scale-freeness of
the networks. Many works have claimed that the web, airports, scientific collaboration
network, human sexual relationships (BARABASI; GULBAHCE; LOSCALZO, 2011;
CALDARELLI, 2007; BARABASI; BONABEAU, 2003; BARRAT et al., 2004) share
this quality, even though there’s some recent controversy to the validity of these claims
(BROIDO; CLAUSET, 2019; GAMERMANN; TRIANA; JAIME, 2019). A scale-free
network is one where the probability distribution of their nodes degree follows a power
law:

P(k) = Dk™. (1.8)

Here k is the degree of the node and D and y are constants. In general, on real networks
2<y<3 (BARABASI; GULBAHCE; LOSCALZO, 2011). This means that the probability
of finding a node with a low degree is much higher than the probability of finding a node
with a high degree. In other words, a large portion of the network has very few neighbours
while a small fraction, the so called hubs, are highly connected. This is what we saw in
figure 3-a) where the hubs, the largest and dark colored nodes, are few and far between in

the network.

We call this distribution scale-free because scaling the degree by a constant factor

¢ produces a proportionate scaling on the distribution itself:
P(ck) = D(ck)™ = ¢ "P(k). (1.9)

The pattern above resembles what is seen in fractals (CALDARELLI, 2007), where a
small fraction of the system, when enlarged, forms a copy of the whole. Observe that when

plotted in a logarithmic scale, expression (1.8) turns into the equation of a line
log P(k) =log D — ~vlogk, (1.10)
and that plugging the scaling factor ¢ just changes the intersection with the x and y axes

log P(ck) =log D — y(logk + log c). (1.11)

This behavior is very different from what is expected from a random graph as
studied by Erdos-Rényi. In that model edges emerge at random with a constant probability
p. To directly compare the models we built a random graph with the same number of
nodes as the airports network and with the appropriate value of p to assure a comparable
number of links. Here p is given by p = 2L/(N(N — 1)), where N is the number of nodes
in the network (3425) and L is the number of links (18797), plugging those values gives
p = 0.00320570. Figure 8 represents the resulting network which has 3425 nodes and 19024
links (the coloring and scaling scheme is the same as in figure 3). Clearly the distribution of

nodes degrees is way more even than in the real network, where we had few hubs and lots
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(a) Aiports Network. (b) Random graph with an equivalent number of
nodes and links.

Figure 8 — Comparison between the real airports network with a random network created
with the appropriate number of nodes and links as predicted by the Erdos-Rényi
model.

of nodes with few links. We compute that by making a histogram of the degree distribution
(figures 9-a) and 9-b)).

Those results are not surprising as it would be a really poor example otherwise.
The real-world network appears to follow a power-law while the random graph follows a
binomial distribution. Due to its ubiquitousness one of the benchmarks that we will use

creates networks whose degree distribution follows power laws.

1.1 Communities

After this brief review it’s finally time to talk about the property that motivated
this study in the first place: the presence of communities in the networks. Intuitively, when
we talk about communities we think in tightly-knit groups of people, be it by a common
interest or goal, affinity or simply by physical location. In spirit, the concept remains the
same when viewed in the context of networks. Instead of looking for tightly-knit groups of

people, we are searching for tightly-knit groups of nodes, but what it means exactly to be
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(a) Airports Network. (b) Random Network

Figure 9 — a) Histogram of the degree distribution from the airports network, we see that
this distribution appears to follow a power law. b) Histogram of the degree
distribution from a random graph with the same number of nodes as the airport
network from figure 3 and an equivalent number of links, we see that this
distribution is binomial.

Figure 10 — Intuitive example of what we call the community structure of a network.
The different communities, nodes A through E; F through I and J to K are
identified by their colors. Note that there’s no overlap, every single node needs
to be in one and only one community.

tightly connected in terms of a network? While there’s no consensual formal answer to
that question, all definitions agree that members of a community must be more connected

between themselves than with the rest of the network.

The community structure of a network is defined by a partition P: to every node
in the network a number between 1 and m is assigned indicating to which one of the
¢, communities it belongs. Each node can only be assigned to one community so that
¢;Nec; =0 for i # j and that U2, ¢; = N. Also, if every community has n. nodes, the

expression Y .n. = N is true. With this definitions the number of possible ways to divide
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Figure 11 — Cliques of different sizes

a network in m clusters in the limit of large N is the n-th Bell number (LOVASZ, 2007):

By = ;N/\(N)N“/%MN)—N*, (1.12)
where A\(N) is defined by A(N)log A\(N) = N. This means that the number of partitions
grows faster than exponentially, which in turn makes it impossible to evaluate all the
partitions computationally. Because of that, communities are often defined by an algorithm.
For example, we will have a quality function that measures how good or bad a partition
of the network is, and an algorithm will look for partitions that best fit this criteria,
thus returning the community structure. Different algorithms may have different quality
functions. Going back to our analogy with groups of people, an algorithm may group them
by location, another by common goals and interests, the result of the algorithms will still
be communities even though the methods didn’t start with the same definition of what a

community is.

The concept of community closely relates to the idea of density of connections,
a clique, a structure where every pair of distinct vertices is connected, represents the
maximal possible density of connections in a graph and is, therefore, of great significance
in the context of community detection. The RC and our benchmark use cliques to seed the

initial community structure in the networks. Some examples for different sized cliques are

N2_N

shown in figure 11 bellow, each clique has L = =

connections, where NN is the number

of nodes inside the clique.

To shed light in the community structure of the different benchmarks, we will use
the following metrics: the number of communities, the distribution of community sizes and
the Pielou’s Index, PI (PIELOU, 1966). Additionally, in order to compare the community
structure among different partitions we will use the Variation of Information, VI (MEILA,

2003). From those, the latter two deserve a proper explanation.
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The Pielou’s Index was introduced as a way to measure the diversity of species
in a population. As the interpretation is pretty straightforward in an ecological frame,
we’ll start by borrowing those terms and then translate them to a network science point

of view.

Diversity in a biological population is related to the uncertainty in predicting the
species of a single individual chosen at random from that population. The higher this
uncertainty the more diverse the population is. A simple example is a population consisting
of only one species, say 1000 dogs, if we pick a member at random from this set, we are
100% sure that it’ll be a dog, hence it’s the least diverse population possible. If instead we
had, 30 dogs and 20 cats, we can certainly say that the chance of picking a dog at random
is higher that picking a cat, however there’s an uncertainty associated with this claim,
hence this population is more diverse than the first one, in fact, we will later see that a
population with an equal number of cats and dogs is the most diverse possible in this case.
In short, Pielou’s index is a way to quantify this uncertainty and by extension to measure

how diverse a population is.

In mathematical terms, the Pielou’s index is related to the Shannon entropy H by

H

Pl = ,
Hmax

(1.13)

this value ranges from 0 to 1, when PI= 1, we have the most diverse population possible. To
define Shannon entropy we need some extra assumptions, let’s assume that the population
contains S different species, and that the individuals of each of those species compose a

fraction p; of the overall population, Shannon entropy is then

S
H == p;logp, (1.14)
i=1
this expression reaches its maximum when an individual has an equal chance of being

from any of the species in S, in other words, when all p; are equal, we have then

S
1 1
Hoox = — —log — =log S. 1.15
a ; g log 5 = log (1.15)
Pielou’s index, also called Pielou’s evenness index, reaches its maximum when H = H,,y,
this means that, when we have a large number of species evenly distributed, diversity is at
its highest, conversely, when individuals of only a single species compose a major fraction

of the population diversity is compromised.

Going back to the network notation, suppose we have a partition P with m

communities, the chance of a node being in a certain community j is given by:

P(j) = = (1.16)
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Figure 12 — Veen Diagram. The blue and green circles represent the entropies of partitions
Y (H(Y)) and X (H (X)), respectively. The joint entropy H(X,Y) is the area
enclosed by both circles, whereas VI(X,Y) is the area outside the intersection
between H(X) and H(Y'), the bigger the intersection the smaller the value of
the VI. When the intersection is maximum, as in, when H(X) and H(Y') are
equal, the VI is zero.

this value represents precisely the p; from equation 1.14, so that H of partition P becomes:

m

H(P)=—=>_P(j)logP(j). (1.17)

j=1

As an example, a partition where every node is in it’s own individual community has a

PI of one, whereas the network of cliques in figure 11 has a PI = 0.74. Shannon’s entropy

will also be the basis for the definition of the variation of information. Imagine we have

two partitions X and Y, with {¢;,..., ¢} and {c, ..., ¢, } communities respectively, the

probability that a given node belongs to community ¢,, in partition X and community
/

¢, in partition Y is given by:

P y) = b0l 1

the associated entropy H(X,Y') is called the joint entropy and is defined as

HX,Y)==-> Y P(X,Y)logP(X,Y), (1.19)

the variation of information can be written as a function of the joint entropy and the
entropies of partitions X, H(X), and Y, H(Y), respectively. In this form, the variation of
information is:

VI(X,Y)=2H(X,Y)— H(X)— HY). (1.20)

The variation of information is always non-negative, assuming values from 0 to log N, we
can construct a normalized version of the VI easily by dividing equation 1.20 by log N.
After the division the VI will always be between 0 and 1.

To get an intuitive feel for the VI we can use the Veen diagram depicted in figure 12.

The entropy H (X) is represented as the green circle, while H(Y") is the blue one. The joint
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entropy H(X,Y) is the area enclosed by both circles, and VI(X,Y) is the area outside the
intersection of H(X) and H(Y). If H(X) and H(Y') are equal, which means they intersect

completely, VI is zero. This is easy to see from expression 1.20, in this case H(X,Y) =
H(X)= H(Y), so the equation resumes to VI(X,Y)=2H(X) - H(X) — H(X) = 0.

If the intersection between H(X) and H(Y) is zero, VI is maximum. Again we
use equation 1.20, but now we have H(X,Y) = H(X) + H(Y) so that VI(X,Y) =
20HX)+H(Y))—HX)-HY)=H(X)+ H().
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2 Algorithms

We tested our Surprise maximization algorithm against 7 others from the literature.
Those seven algorithms are divided in four categories, the ones based on Potts models,
consisting of CPM, from Constant Potts Model (TRAAG; DOOREN; NESTEROV, 2011),
RB, from Reichardt and Bornholdt (REICHARDT; BORNHOLDT, 2006), and RN,
from Ronhovde and Nussinov (RONHOVDE; NUSSINOV, 2010), the ones based on
Hierarchical Clustering, SCluster (ALDECOA; MARIN, 2010) and UVCluster (KING;
PRZULJ; JURISICA, 2004), the ones based on optimization of a quality function, Louvain
(BLONDEL et al., 2008) and our own Surpriser, and the one based on information theoretic
principles, Infomap (ROSVALL; BERGSTROM, 2008).

Methods based on Potts models (CPM,RB, and RN) aim to find the ground state
of the Hamiltonian of a spin glass associated with the network. Infomap on the other hand,
seeks to minimize the description length of a random walk through the networks links !.
UVCluster and SCluster, perform an iterative hierarchical clustering in the network, then
group nodes that stay close together in those different clusterings. Lastly, Louvain and

Surpriser maximize a quality function called the Modularity and the Surprise, respectively.

The implementation of Louvain algorithm is available in the Python NetworkX
package (HAGBERG; SWART; CHULT, 2008), whereas the other algorithms, with the
exception of Surpriser, can be found in the SurpriseME Python distribution (ALDECOA;
MARIN, 2013b). The distribution contains an implementation of the meta-algorithm
described in (ALDECOA; MARIN, 2011). Here different algorithms are run and the
partition that yields the highest value of Surprise is chosen. Because of that, some
algorithms (CPM, RB, UVCluster and SCluster), already use the Surprise function as an

auxiliary criteria. We will describe that in greater detail in the next sections.

This chapter is divided as follows, first, we have a section on the Louvain algorithm,
as it is the most popular one, then UVCluster and SCluster are clustered together in
the Hierarchical Clustering section, next, Infomap, as the only informational theoretical
method, gets a section of its own, CPM, RB and RN are grouped in the Potts Model

subsection and lastly we have a section dedicated to our own Surpriser.

L The Potts Models and Infomap also aim to optimize a quality function, in this sense, the division in

different sections is purely didactic and based on the way the quality functions are defined.
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2.1 Louvain

Before delving in the algorithm it is interesting to spend a few words describing the
Modularity @ function(NEWMAN, 2006). Considering unweighted networks, Modularity

is defined as

1 kikj
Q= ﬁ Z <Aij - oL ) 5(%0]’), (2-1)

where k; and k; are the degree of nodes 7 and j respectively, L is the number of links in

the network, d(c;.c;) is a Kronecker delta and A;; is an element from the adjacency matrix

A.

This definition uses a null model where the network retains its degree distribution

but each link emerges at random. In this scenario the probability, P;;, of a link between
kik;

nodes 7 and j existing is given by P;; = =7*. This is the second term from equation 2.1

and means that good modules, in a Modularity landscape, are modules where the actual

number of links (first term in equation 2.1) exceed the expected number of links in the

null model (the second term in equation 2.1).

Now we can talk about the algorithm itself. In the beginning each node is in its
own community, so that there is N communities in the partition. Nodes are moved to
the community that produces the highest gain in Modularity. To do that, for every node
1 and for each of its j neighbours, the change in Modularity caused by moving i to the
community of j is calculated. The node 7 is then placed in the community that increases
the Modularity the most. Note that this is a greedy algorithm so only positive changes in
the quality function are accepted. Once no single movement can increase the Modularity,
Louvain enters its second phase. The network is collapsed, communities found in the
first phase become nodes in the new network, the edges of this network are weighted
according to the number of existing links between the original communities, connections
inside communities become self-loops in this network?. Nodes in the collapsed network are
moved in the same way as before, as in, to produce the largest gain in Modularity. The
two phases are repeated until no increase in Modularity is possible. One can consider the
networks formed by collapsing the communities into single nodes as intermediate solutions,

which one can represent as a dendrogram and use to study the networks hierarchy.

2.1.1 Issues with Modularity

Modularity maximization methods are the most widespread form of community
detection and as such Modularity deserves a more detailed analysis. It has already been
shown that, despite its popularity, Modularity suffers from a resolution (FORTUNATO;
BARTHELEMY, 2007; GOOD; MONTJOYE; CLAUSET, 2010) and a degenerancy

2

Adapting equation 2.14 for weighted networks is really simple. In place of the degree k; we use w; (the
sum of the weights of node ¢) and in place of L we use the sum of the weights over the entire network.
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Figure 13 — Example graph to study the resolution limit from the Modularity function.
We want to check the conditions by which the modules 1 (in blue) and 2 (in
red) are connected. The largest group in gray has a sub-community structure
but it’s omitted for clarity.

problem (GOOD; MONTJOYE; CLAUSET, 2010; NICOLINT; BIFONE, 2016). We will

start by discussing the former.

The resolution limit comes from the null model used in the definition of Modularity
(GOOD; MONTJOYE; CLAUSET, 2010). In order to show it mathematically, imagine we
have a structure as figure 13. We seek to find the necessary conditions to join communities
1, in blue, and 2, in red. As the best partition is the one that maximizes Modularity,
combining 1 and 2 will be optimal if AQ > 0, we need therefore to find the scenarios

where this happens.

Before that, let’s rewrite the expression from equation 2.1 in a more convenient
form. The first term is equivalent to the number of edges in a given community e,, and
is written as e, = >_;; Ai;0(c;, m)d(c;, m) / 2 While the second term is equivalent to the
square of the sum of the nodes degrees d?, = > kikjé(ci,m)d(cj,m). Equation 2.1

then becomes:
Q= Z Em _ % (2.2)
S\ L 4Lr) ‘

The initial Modularity value (before joining) is given by:

e di e "o (e d?
G-I +"m+2( ) (23)
after joining them we have:
er+ex+en  (dy+ d2)2 = (e d?
_ N fi_ G 2.4
@ L iz 2 L 4L? (24)

note that the number of intra-community links is now equal to the number of links in

modules 1 and 2 plus the number of links between them (e;3), to compute AQ we subtract
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equation 2.3 from equation 2.4:
AQ =2 0172 (2.5)

As we seek to maximize the Modularity a change is accepted whenever AQ > 0, using
this and putting the expression 2.6 in a general form, yields:
d;d;
2L

€ij > (26)

Modularity will join two groups whenever the number of connections between them, e;;,
exceeds the expected number of edges in a random graph with the same degree distribution
(the term on the right). This is a problem because as the network gets bigger, and hence

dido

L increases, the expected value of “72 gets smaller to a point where (e;;) < 1, in this case

only one edge between two modules e;; = 1 is enough for Modularity to join them.

We can show this problem explicitly by analysing the ring of cliques network. In this
case, we have a set m of cliques with the same size n, each connected to their neighbours
in such a way as to form a ring (figure 14). The ideal partition should keep the cliques
separated, let’s check the conditions for joining them as given by equation 2.6. First we
know that, by definition, the number of edges between each clique is always one, hence
ei; = 1, further, the quantity d; is equal for each of the m cliques, so we have:

d;?
1> oL (2.7)
The total number of edges L is given by m times the number of connections inside each
clique plus the m connections joining them. As each clique has n(n — 1)/2 internal edges,
L is given by L = m(n(n —1)/2+ 1). By using equation 1.3, we obtain the sum of the
nodes degrees d; = n(n — 1) + 2 (the ’extra’ two comes from the two external edges in

each clique). Plugging these results in 2.7 gives

om <”<”2_1> + 1)) > (n(n—1) +2)% (2.8)

solving for m, yields:
m>n(n—1)+2. (2.9)

This means that for every size of clique n, Modularity will start joining them after a
certain value of m. Cliques of size 6 will be united for m bigger than 32, as we see in
figure 14 b). In resume, the bigger the network the bigger the communities. A qualitative
analysis of this problem can be seen in (ALDECOA,; MARIN, 2013a; NICOLINI; BIFONE,
2016) and a similar analytical proof is given in (GOOD; MONTJOYE; CLAUSET, 2010).

Regarding the degeneracy problem (GOOD; MONTJOYE; CLAUSET, 2010)
whenever two or more partitions have the same (or a similar) value of Modularity and

those values are very close (or equal) to the global maximum we say that those partitions
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(a) Ring of cliques network with 8 cliques of size 6.(b) Ring of cliques network with 33 cliques of size 8.

Figure 14 — Partitions found by using the Louvain algorithm for the ring of cliques network
with different numbers of cliques. After a certain point, Modularity starts
combining two neighbouring cliques in the same community (b), we show that
this behavior happens for every clique size.

are degenerated. The work by Good, et al(2010) showed that in Modularity’s case this
problem is very pervasive, occurring to both benchmark networks, consisting of hierarchical
random graphs (CLAUSET; MOORE; NEWMAN;, 2008) and ring of cliques networks,
and to real networks, consisting of the metabolic networks from T. palli- dum,Mycoplasma

pneumoniae and Ureaplasma parvum.

What this means is that, for every network there is a plethora of different partitions
that have a Modularity value very close to the global maximum of the function,but, not
only that, upon comparing the different near-optimal solutions they showed that the
discrepancies arise from the largest modules identified, or in other words, the different
near-optimal partition do not agree on the large scale community structure of the networks.
Lastly, they tested if some simple statistics remained consistent between these degenerated
solutions, namely the average module density and the distribution of modules sizes. The
result was that, while the average value of those parameters was similar, their variance

was large.

In resume, although wildly used, Modularity suffers from two main problems, it has
a resolution limit, where smaller modules may be merged into larger ones even if they are
poorly connected and its solutions are highly degenerated, meaning that many different
partitions have values of Modularity close to optimum and that the discrepancy between
those nearly-optimal partitions is large. Surprise on the other hand, does not seem to

suffer from these problems in quite the same way, as we will discuss later.
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2.2 Hierarchical Clustering Algorithms

The concept of hierarchy in community detection algorithms relates to the existence
of communities within communities, that small groups of nodes can be joined to form
bigger ones in a structured manner. One way to represent the hierarchy is to construct
a dendrogram or a tree of the system, both UVCluster and SCluster use this idea. First
the actual clustering algorithms are applied on the network then based on their results a

second algorithm creates the tree (or dendrogram) of the partition found.

The networks adjacency matrix A;; is the input for both algorithms, from this,

each algorithm performs the following:

e UVCluster: The nodes are ordered randomly in a list then the first node from this
list is selected. The largest possible clique is made from that node neighbours. All the
nodes in this clique form a community and are removed from the list. This process

is repeated until no nodes are left without a community.

e SCluster: Also starts with a random ordered list of the nodes. The first node is
selected then all of the neighbouring nodes are joined in a community and removed
from this list. Once again this process is repeated until no nodes are left without a

community.

Those methods are applied until N solutions are obtained, in our runs we set
N = 10000. The goal here is to combine those results to find the ideal partition. To do
that, a distance matrix is defined in the following way: the distance between two nodes
is equal to the number of times they were placed in different communities divided by
the total number of runs N. With this matrix the dendrograms are created using the
UPGMA (SOKAL, 1958) algorithm. After all is said and done, the division of the tree

that maximizes the Surprise is chosen.

2.3 Infomap

The gist of the Infomap algorithm is to recover the network’s communities from
the analysis of the information flow in the network. A community in this regard is a group
of nodes where the information flows easily and quickly between its members, furthermore
the links between those modules represent the pathways from which the information travels
between communities (ROSVALL; BERGSTROM, 2008).

The question is, then, how to represent the information flow in a network. Rosvall
and Bergstrom propose that a random walk among the network’s nodes reflects the
information flow, because a random walk is defined by the networks topology and nothing

else and it offers a quick way to generate the dynamics with only the network description.
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With that in mind the problem of identifying the community structure boils down to
finding an efficient way to describe the paths that arise from the random walks performed
in the network. In computational terms, the aim is to find the code that allow us to
describe the entirety of random walk in the least amount of bits, i.e., to minimize the

per-step description length (£) of the random walk.

The most straightforward way to describe a random walk is to assign a different
name (or code) to each node and then write a sequence where each term is the name of

the node visited in each instant of time. In their work, this idea is improved in two ways.

First, the name of the nodes are set based on the Huffman Code (HUFFMAN,
1952), which gives longer names to rarer events and smaller names to more frequent
(common) events. As we are talking about a random walk, the node’s names are given

based on their visit frequencies in an infinitely long walk (their ergodic visit frequencies).

Second, they opt for a two-level description: communities and nodes are named.
Each community is assigned an unique name and exit code -used whenever the random
walker moves from a community to the next. Nodes receive unique names inside the
communities, but names are repeated among different communities. Borrowing the analogy
made in their original paper, think of communities as cities and nodes as street names,
it’s very common for cities to have streets with the same name but its very rare for

neighbouring cities to have the same name.

Working this all out we obtain the expression for the average per-step description
length of the random walk

m
L=qH(Q)+ > p'H(PY, (2.10)

i=1
the first term is the entropy of movement between communities and the second is the
entropy of movement inside communities. They represent the average length in bits for
movements between and inside modules, respectively. In this expression, H(Q) is the
entropy of community names, H(P?) is the entropy of movements within communities, p’
is the fraction of within-module movements that occur inside community ¢ and ¢ is the

probability that the random walker switches communities on any given step.

Before continuing it’s important to note that the algorithm does not perform a
random walk on the network per se, but rather models the random walk mathematically
and uses this model to calculate £. The random walker movement is described as follows:
with a probability 7 the random walker will teleport to a random node in the network
(if the node does not have any link 7 = 1), then with the remaining 1 — 7 probability,
the random walker will move to one of the node’s neighbours with a 1/k; chance of
going to each one (remember we're considering undirected and unweighted networks here).
Given this considerations the process can be modelled as an irreducible and aperiodic

Markov-Chain. This means that, by the Perron-Frobenious theorem, the system has a
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unique steady state that describes the ergodic node visit frequencies p;. Now here’s the
catch, the expression (2.10) can be written as a combination®of p; and ¢, which can be
easily obtained. The algorithm uses the power method to find the values of p; (note that
p; does not depend on the actual partition of the network) and with them calculate £ for

a given partition.

After that the task of minimizing £ becomes simple. The algorithm starts by
calculating the ergodic visit frequencies by the power method, then the nodes are placed
in their own community (there’s an equal number of communities and nodes). The values
of p; are used to calculate the exit probabilities ¢ of this initial partition. Then a greedy
algorithm is used: partitions are merged in a way that decreases the value of £ the most.
Once no merge is able to decrease the per-step description length, the partition obtained by
the greedy algorithm is refined by a simulated annealing (SA) method. The SA algorithm
is run from 10 different starting temperatures. From those results, the partition with the

lowest value of L is returned by Infomap.

2.4 Potts Model Algorithms

All of the following algorithms aim to find the ground state of a Hamiltonian
associated with the network. As it is usual with community detection methods we want to
reward connections inside communities while penalizing the missing links in those groups
(TRAAG; DOOREN; NESTEROV, 2011; REICHARDT; BORNHOLDT, 2006). Of course,
each algorithm will define its Hamiltonian in a different way. We start by presenting the
Constant Potts Model (CPM), which is formalized as

Hepn = — (A — verm)d (i, ¢), (2.11)

ij
where A;; is the adjacency matrix, (¢;, ¢;) is a Kroenecker delta and ycpy is a constant.
Hence the name Constant Potts model. Continuing with our analogy the first term in
equation 2.11 is reward for intra-community links and ~ is the cost for missing links. In
this model v acts as a threshold by which communities are formed or dismantled. Every
group inner link density must be higher than ycpy whilst the outer link density remains

smaller than vyopyr.

The algorithm by Reichardt and Bornholdt(REICHARDT; BORNHOLDT, 2006)
uses the following Hamiltonian
Hes = — > _(Aij — ymepij)d(c, ¢j), (2.12)
tj
to avoid confusion we call the constant vgrp in this case, all the other terms are the same
from equation 2.11 with exception of p;; that represents the probability of having a link

3 For the details of this calculation refer to the supporting material from (ROSVALL; BERGSTROM,
2008).
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between nodes ¢ and j. The choice of p;; depends of the null model chosen, in the scenario
where all links occur with the same probability we can simply write p;; = p = 1/2L where

L is the number of links in the network. A more interesting formulation establishes a
kik;
oL
note that we still assume that the nodes occur randomly, however, nodes with higher

dependence of p;; with the degrees of the nodes ¢ and j. This is done in the form p;; =

degrees should have a higher chance of being connected. If we plug this definition of p;; in

2.12 it yields
kik;
HRB = — Z (AZ] — Y/RB 2L]> 5(Ci,0j), (213)

]

from here if we set vgg = 1 and rearrange the remaining terms we obtain the formulation
of Modularity (Q)

1
Q=—71. (2.14)

The implementation of RB we ran uses the null model defined by equation (2.13). It’s
trivial to see the relationship between the CPM and RB models, just set ycpm = YrBPi;-
The last of the algorithms based on Potts model is the one by RONHOVDE; NUSSINOV,
which has the form

1
HRN == —5 Z (Az](]- + ’YRN) — ’YRN) 5(0,‘7 Cj). (215)
ij

We've seen the form of the Hamiltonian for each of the three algorithms, though two
questions still remain. How each of these algorithms seeks the minimum value of H and
how to choose the best value of v in each case. CPM and RB use a greedy algorithm
akin to Louvain in order to minimize the Hamiltonian, while RN performs a Simulated
Annealing to search for the minima. Furthermore, in the implementation used all three
algorithms test different values of v and choose among them using the following criteria:
CPM and RB, return the v that yields the highest value of Surprise, while RN returns
the partition with the best and most stable value of the Normalized Mutual Information

(NMI). *

2.5 Surpriser

2.5.1 Surprise

Surprise is an accumulated hyper-geometric distribution that measures how sur-

prising (unlikely) it is to find the same distribution of intra and extra-community links in

4 The Normalized Mutual Information is another information theoretic index that compares two different

clusters. It can be written in terms of the VI by using:

H(X)+ H(Y)-VI(X,Y)
2v/H(X)H(Y) '

NMI =

(2.16)

Note that the NMI takes values from 0 to 1. Whenever the clusters are identical we have NMI = 1.
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a random network with the same community structure. It is defined as follows:

min(M,L) (M) (IZiM)
S=—log > ~A3A (2.17)
J=¢ (L)
where F' represents the total number of possible links in the network (it’s equivalent to
the number of links in a clique of size N, FF = (N(N — 1)/2)), and L represents the
actual number of links in the network. As F' and L are characteristics of the network
size, equation (2.17) is in fact a function of only two variables, ¢ and M, that depend on
the network’s actual community structure. Here M represents the maximum number of
intra-community links and ¢ the actual number of intra-community links in the partition.

For a network with m communities where each community has n. nodes, M is given by:
c\lte ™ 1
M=3 M (2.18)

M is maximum whenever all communities are fully connected (formed by cliques of size
n.). Going back to equation 2.17, the term on the denominator represents the number of
ways to draw L links from F' possible links,; i.e., the number of different ways to draw the
actual network. The first term in the numerator depends only on M and ¢ and as such
refers to the intra-community links in the network. It represents the number of ways to
draw j intra-community links from a pool of M possible intra-community links. In the
last term, note that F' — M represents the maximum number of extra-community links
whereas L — j represents the actual number of extra-community links. The combination of

both is equivalent to the number of different ways to draw the extra-community links.

The formulation of equation 2.17 is also equivalent to an urn problem. In this
scenario every possible link F' represents a ball in the urn, a number of them is red
(F— M) and a number of them is blue (M). Red balls represent failures (extra-community
links) and blue balls represent successes (intra-community links). For every partition
the proportion of blue and red balls is different (as M is a function of the community
structure). Surprise measures the probability of obtaining at least ¢ successes (the number
of intra-community links in the partition) in L draws (as there’s L links in the actual

network) without replacement.

In resume, it is not worthwhile to add a poorly connected link into a community
because, while there will be an increase in the value of { the induced change in M will
be far greater. To give an example we have the network of figure 15. The structure that
maximizes the Surprise is composed by 4 communities: two cliques formed by nodes 1
through 4 and 8 through 11, nodes 5 and 6 grouped together and node 7 by itself in
another community. Trying to add nodes 7 or 5 to any of the cliques lowers the value of

Surprise found, this happens because as much as there’s an increase in the number of
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intra-community links, from 6 to 7 in each case, the number of potential intra-community

links goes from 6 to 9 which yields a lower Surprise overall.

A more diligent reader might ask why nodes 5 and 6 are coupled together and not
nodes 6 and 7?7 Well, truth is, both nodes 5 and 7 are indistinguishable. The partition
that joins nodes 6 and 7 and leaves node 5 alone also maximizes the Surprise (figure 15 a).
When different solutions represent the same maximum value of the quality function, or
values very close of that maximum, we say that those solutions are degenerated. Good et al.
(2010) did a wonderful work analysing the degeneracy problem in the context of Modularity
maximization methods. Here we apply similar principles to Surprise maximization and

will later show that this problem is not as prominent in a Surprise landscape.

(a) Partition a. (b) Partition b.

Figure 15 — (a) and (b) Communities of a network with 11 nodes and 16 links. Adding
a poorly connected node such as 5 or 7 to the four nodes cliques (nodes 1
through 4 and 8 through 11) lowers the Surprise of the structure. (b) Partitions
(a) and (b) share the same maximum value of the Surprise function. This is
indicative of the degeneracy problem that will be treated later.

2.5.2 Algorithm

Before getting into the details of our algorithm, we will do a brief review of the
earlier work in relation to the usage of the Surprise as quality function. In their initial works,
Aldecoa and Marin (2011), created a meta-algorithm using the Surprise function. Surprise
was the criteria by which they selected the best result among many different algorithms.
They showed that, this meta-algorithm outperformed any individual algorithm (ALDECOA;
MARIN, 2011). Later, they attacked the problem of Surprise maximization by proposing
an asymptotic approximation for the function (TRAAG; ALDECOA; DELVENNE, 2015).
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Methods Description

Merge Combines two communities. Two communities, A and B,
are joined to form a new community C.

Extract Removes an element from a community and forms a

new community with it. For example, a node or sub-
community from community A is removed to form a new

community B.
Exchange An element is moved from a community to another one.

A sub-community from A is removed and placed in com-
munity B.

Table 1 — Methods of the Surpriser package. The merge function works on a community
level, while Extract and Exchange deal with nodes and sub-communities.

We don’t use those puny tactics, our greedy algorithm aims to maximize the Surprise as
defined by equation 2.17.

The core of our algorithm is made of three basic operations, which we call merge,
extract and exchange (described in table 1). Merge works on a community level, while
extract and exchange may be used in a sub-community level as well. The merge operation
joins two communities together, i.e., members of modules A and B are grouped to form a
new community C. The extract operation removes an element from a given community
and creates a new, separated community with it. Finally, the exchange operation moves
an element from a community to another one. The extract and exchange methods don’t
deal with communities as a whole, so in this context an element may be either a single
node or a sub-community (the sub-communities of a community are determined applying

recursively the algorithm to the sub-graph formed by the community elements alone).

The algorithm starts with a loop over all communities. First it performs all the
possible merges that increase the Surprise. This is done as follows: in each community it
runs a loop over its members and try, until exhaustion, to merge the current community
to one of its members neighbours. If it fails (there is no merge that increases the Surprise)
it tries to exchange nodes between them. Once no improvement can be made by merging
communities nor exchanging nodes between communities, it executes the extract operation
over every community. It begins by extracting nodes and then sub-communities. Finally it
tries to exchange sub-communities between different communities. The respective pseudo
code can be found in algorithm 1, in this case, a success means that an operation was
able to increase the value of the Surprise. As it’s a greedy algorithm, a change in the
community structure is only accepted if the value of Surprise increases. So when there’s no
possible merge left, we mean that no merge increases the Surprise value of the partition.
Further, at each step we perform the change that increases the Surprise the most from all

possible options.

In greater detail, we begin with the operations on a community level, so we make all
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Data: input is a network with a partition;
while Any change done to the partiton do
for every community in the partition do
for every node in the community do
for every neighbour of the node do

if community of neighbour # community then
try to merge communities and if fails, try to exchange element

between them:;
end if

end for

end for
end for

while successful do
| try to extract an element from community;

end while

while successful do
| try to extract a sub-community from community;

end while
while successful do

for every other community in partition do
| try to exchange a sub-community with the other community;

end for

end while
end while

Algorithm 1: Surpriser Algorithm

the merges until no improvement is possible. With this result we move to operations in the
sub-community level. First, we try to exchange and then extract nodes until exhaustion.
Lastly, we try to extract and then exchange sub-communities. Note that, unlike the
Louvain algorithm, that basically only merge communities, our Surpriser may also divide

communities into smaller groups with the extract and sub-community extract operations.

For the initial conditions of the network we choose to put each node in it’s own
individual community, so that in the beginning of the algorithm there is the same number
of communities as there are nodes. This choice is also very common in the literature, being
the initial conditions of Louvain, RB, RN, CPM, UVCluster, SCluster.
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3 Benchmarks

As we saw previously a definitive formal definition of community does not exist.
Because of that most algorithms have their own definition of a proper community or
partition. This becomes a problem when we want to compare results among different
algorithms as each algorithm will find good modules given their own definition, but which

solution is the best overall?

The easiest way would be to find real world networks where the communities are
already known, run the algorithms and finally compare the results. However, in most
networks the community structure is not known a priori, so this kind of data is not readily
available. We are limited to networks where the modules are a given, this happens in
social networks where its members (humans) actively know their associations. As there
aren’t many works in this respect, the most common way to evaluate the performance of
the algorithms - and the one we will use in this work, is through the usage of benchmark
networks. A benchmark network is an artificially created network with an embedded
community structure, i.e, each of the benchmark networks is created with an initial
partition that represents its community structure. This is advantageous because it allows
us to perform a direct comparison, through the VI, between the results of the algorithms

and the planted partition. The closer to zero the VI is, the better the result of the algorithm.

We will study three different benchmarks, LFR (from Lancichinetti-Fortunato-
Radicchi), RC (Relaxed Caveman) and a novel benchmark proposed by us. The next
sections are a review of both LFR and RC benchmarks, followed by an explanation of our

new method.

3.1 LFR Benchmark

The LFR benchmark (LANCICHINETTI; FORTUNATO; RADICCHI, 2008) cre-
ates networks that are scale-free. Even though there are discussions about the pervasiveness
of this characteristic in real world networks, this benchmark is a hallmark in the literature
being used in a plethora of works (TRAAG; DOOREN; NESTEROV, 2011; ALDECOA;
MARIN, 2011; YANG; ALGESHEIMER; TESSONE, 2016).

Both the degree distribution and the community sizes distribution of these networks
follow power-laws. Their exponents [ and ~, respectively, are parameters of the benchmark
and can be set by the user. Yang et al. (2016) have shown, however that the most important
feature of this benchmark is the mixing parameter p. This value, that ranges from 0 to 1,

represents the fraction of links that each node has with elements outside its community.
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(a) p=0.1. (b) pu=10.5

Figure 16 — LFR networks generated with 8 =1, v = 2, k = 15, kmax = 50 and N = 1000
nodes. In a) and b) the 10 largest communities were colorized, we see that
the larger the value of u the fuzzier the community structure.

Conversely, the number 1 — pu, represents the fraction of links between members of the
same community. In a sense, for values above p > 0.5, we don’t have a strong definition
of community anymore, as every single node will have more connections with members
outside its community than with members inside its community. That hasn’t stopped us

to create networks with p bigger than 0.5, but this factor has to be kept in mind.

To create the networks, six parameters are used. The network’s average degree k,
the network’s maximum degree k., the number of nodes N, the power-laws exponents,
for the community sizes and ~ for the degree distribution, and the mixing parameter p of
the network. The process can be described as follows, first, to each node i a number of links
k; is assigned to fit the power-law distribution and the average and maximum values of k.
Next, the communities are assigned, until no node is left without a community. Finally,
the connections are rewired so that the value of y is respected. In this last step, the degree
k; of each node remains the same, only the proportion of intra and extra-community links

is altered (the connections are ’shuffled’ in the network until u is reached).

In our examples we set the node degree exponent v as 2, the community sizes
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Figure 17 — Example of a connected caveman graph.

exponent 3 as 1, N = 1000, kmax = 50, and k& = 15. Figure 16 shows the effect of the

increase in p in the community structure.

3.2 RC Benchmark

The Connected Caveman Graphs (figure 17) come from the social sciences and are
defined by a set of connected cliques. To draw them we remove a link from each clique

and use it to connect the neighboring cliques in such a way as to form a ring.

The RC benchmark as proposed in (ALDECOA; MARIN, 2011; ALDECOA;
MARIN, 2010) also starts with a set of cliques, in this case however, they are isolated.
Note that this is the strongest possible definition of community, a set of fully connected
subgraphs isolated from each other (figure 18-a). As identifying these communities is
trivial, the RC benchmark degrades these networks. The degradation process is made
in the following way: a percentage R of its links are randomly removed and the same
percentage R of the remaining links are shuffled between the nodes. This means that for
each network created we have the original structure, that represents the isolated cliques,
and a number n of additional structures, one for every value of R, that represent the
network in different stages of the degradation process (figure 18-b). The task presented

here is for the algorithms to identify this original structure in the degraded networks.

The RC' benchmark uses three parameters to create the networks, the number of
nodes N, the number of cliques N, and the Pielou’s index (PI) for the distribution of
clique sizes. We set these parameters to 512, 16 and 0.75, respectively. Theses choices
were made to create networks that differ greatly from the LFR benchmark ones (a more
detailed discussion on the PI of both benchmarks is made on the results section) and to
minimize the computational time, as the number of connections grows with the square of

the clique size.
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(a) R =0. (b) R =50

Figure 18 — Communities of a RC network generated with N = 512 nodes, 16 cliques and
PI = 0.75. In a) and b) the 10 largest communities were colorized. a) The
original community structure, represented as a set of 16 disjointed cliques. b)
The same network after the degradation process with R = 50%, here 50% of
its links were removed and the same percentage of the remaining links were
shuffled in the network.

3.3 New Benchmark

The new benchmark we propose share some similarities with both the LFR bench-
mark and the RC benchmark. As the RC benchmark we start with a set of cliques, however
their sizes are given by a power law distribution ! in the same way as the communities
sizes from the LFR benchmark. To that set of cliques a fraction r of nodes is randomly
connected to the network. Intuitively, we are trying to combine a perfect definition of

community, a fully connected clique, with a much weaker one, a single link node.

Unlike the other benchmarks we implemented two parameters to control the
degradation process of the initial communities. First, a link may be created between any
pair of nodes from two different cliques with probability ¢, and then each link inside a

community may be removed with a second probability p. Without further ado, the creation

1 Note that the minimum size of a clique and, by extent, the minimum value of the power law distribution

are equal to 2.
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of a benchmark network follows the steps:

e Creation of N, cliques with sizes given by an scale-free distribution with parameters
xo = 2 (minimum click size) and ygr. Remember that a clique with size 1 is a single

disconnected node.

e A fraction r of nodes is randomly connected to the network. Each of those nodes

has exactly one link
e Fach link inside each clique ¢ with size ¢; may be lost with probability p.

e Given any two cliques of sizes ¢; and c;, each one of the c¢;c; possible connections
between the two is created with probability ¢. In other words, any pair of nodes i

and j from any two cliques ¢; and c¢; has a probability ¢ to be connected.

So the benchmark network starts from a sequence of N, clicks sizes, ¢y, ca, ..., cn,.
The number of nodes in a network is

1 X

N = (1_T)Zci, (3.1)

i=1

the expected number of links inside communities is

Ne

(L) =3 (g 2L, (32)

and the expected number of links between communities is

Ne Ne

(Lowt) = q Z Z cic; +rN. (3.3)

i=1 j<i
Combining both we have, for the total expected number of links:
N¢ Nc Ne

<L>:Z(1—p)w+q22qq+rl\f (3.4)

i=1 2 i=1 j<u
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(a) ¢ = 0.001 p = 0.10 (b) ¢ =0.001 p = 0.50

(¢) ¢ =0.015p=0.10 (d) ¢ =0.015 p = 0.50

Figure 19 — Different networks created using our novel benchmark. We see the two ways
the community structure is weakened. As ¢ increases the number of extra-
community links grows, shown by the majority of the grey links in figures 19
c) and d), and as p increases the number of intra-community links diminishes,
as given by the fuzziness in the community structure in b and d. As always the
10 biggest communities were colorized. The scale-free proprieties are evident,
as we have a small number of large cliques joined by a huge proportion of

smaller groups.
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4 Results and Discussions

We start this chapter with a statistical description of the benchmark networks
created (section 4.1). Next, we present the results (sections 4.2 and 4.3). We compare the
performances of the different algorithms and then study the degeneracy problem in the

landscape of the Surprise function.

4.1 Benchmark Networks

In total, we created 13200 networks: 900 from the LFR benchmark, 3300 from the
RC benchmark and 9000 networks from our benchmark. Before we dig into the statistics

let’s describe our choice of parameters for each of the benchmarks.

The 900 networks from the LFR benchmark share the following characteristics: the
node degree exponent 7 is equal to 2, the community sizes exponent (3 is equal to 1, the
number of nodes N is equal to 1000, the maximum degree k.. is equal to 50 and the
average degree k is equal to 15 '. The mixing parameter p takes values between 0.1 and

0.9, so that © = 0.1,0.2,0.3,...,0.9. For each of those values of 1, 100 networks were created.

Regarding the RC benchmark, we start with 500 different networks. They are
formed by 512 nodes divided into 16 cliques. Further, the distribution of clique sizes is
given in such a way that the networks Pielou’s index is approximately 0.75. To get the
3300 RC networks, we degrade the 500 initial networks to various points. A percentage
R of links were removed and the same percentage R of the remaining links were shuffled
among the network’s nodes. For values of R between 10% and 50% all of the 500 networks
were degraded (accounting for 2500 of the 3300), while for R > 60% we only degraded
200 of those networks (the remaining 800). We limited our analysis at large values of R
because most algorithms perform very badly in that region, as the definition of community

no longer holds.

For our benchmark we have two parameters: p (the probability that a link is
removed from a clique) and ¢ (the probability that a link is created among nodes from
different cliques). We varied p from 0 to 0.95 in intervals of 0.05, and ¢ from 0.000 to 0.016
in intervals of 0.001. Alongside that interval we also studied ¢ = 0.020 and ¢ = 0.030. For
q bigger than 0.030 the number of links grows rapidly which makes the analysis costly in
terms of computational time. At ¢ = 0.030 the number of extra-community links is around

six times the number of intra-community links in our benchmark, i.e., we are already

L Upon further analysis, even tough similar choices of parameters are quite common in the literature

(TRAAG; DOOREN; NESTEROV, 2011; ORMAN; LABATUT, ; GREGORY, 2010), the values of k
and kpax may be a poor choice for this value of ~.
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delving in a weak definition of community. In resume, we have 20 possible values of p and
18 possible values of ¢, for each combination of ¢ and p 25 networks were created, this

yields a total of 9000 networks from our benchmark.

We can compare the parameters of the three different benchmarks by calculating
the values of p and ¢ for the RC and LFR networks. In table 1 we present those results. To
find p we determine the ratio between the actual number of links inside a community (1)
and the maximum possible number of links inside that community (n.(n. — 1)/2). This
ratio is the fraction of existing links inside a community, as p represents the fraction of
missing links inside a community, we subtract the value obtained from one. Writing this

out gives:
21,
ne(ne — 1)’

p=1-— (4.1)

We then take the average over all the communities to obtain the value of p for a given
network. Table 2 shows the average value of p among the networks with a given value of

R or p. For ¢ we have:
_ L=q
CF-M

putting into words, ¢ is the ratio between the actual number of extra-community links and

q (4.2)

the maximum possible number of extra-community links. Here we borrowed the terms from
the definition of Surprise, F' is the maximum possible number of links, M is the maximum
possible number of intra-community links, whereas L and ( are the actual number of links
and the actual number of intra-community links, respectively. Again, table 2 shows the

average of those values.

In the RC networks, we see that ¢ increases for R < 50%, and starts decreasing
after that threshold. This happens because R influences the value of ¢ in two antagonistic
ways: on one hand as the links are randomly shuffled among nodes, ¢ has a tendency to
increase, alternatively, as R increases, more and more links are removed from the network,
so that L gets smaller in relation with I (that remains constant) and so ¢ decreases. For
R < 50% the number of links shuffled balances the number of links being taken out of the
network, but for higher values of R, the decrease in L is to steep to be overcome. Those
two behaviors contribute to the increase in p seen in table 2, as links are being shuffled
among communities, intra-community links are becoming extra-community links, further,
when links are removed from the network the actual number of links inside a community

decreases while the maximum number of links stay the same.

Regarding the LFR benchmark we see steady increases in both p and ¢ as p gets
bigger. This comes directly from the definition of u. Higher values of p mean that the
fraction of extra-community links increases in comparison with the intra-community links,
this yields higher values of p, as more intra-community links are missing, and ¢, as we

have more extra-community links.
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(a) Community sizes. (b) Number of communities.

Figure 20 — Distribution of the community sizes and the number of communities for all
the LFR networks.

Now we can talk about the statistics. Remember that each network has a seeded
community structure given by the benchmark (which we will call initial partition from
now on) and that our goal is to compare the partitions obtained from each algorithm
with the initial ones. Because of this, we are particularly interested in the statistics that
involve the community structure, hence we will analyse the community sizes, the number

of communities and the Pielou’s index of the networks.

As always, we will start by commenting on the LFR and RC benchmarks and
then we’ll talk about the results from our benchmark. In figure 20 b) we see that the
LFR benchmark produces partitions with something around 45 communities and that
those communities share a similar size, ranging from 7 to 56 nodes in each. For the RC
benchmark we have a smaller number of communities, by definition each network has 16
communities (the initial cliques), but with a much wider range of sizes, from 2 to 234
nodes (figure 21).

Pielou’s index (PI) measures how even is the distribution of community sizes. An
index equal to one means that all the communities have the same size. In agreement with
figures 20 and 21, we see that the LFR networks (figure 22-a) have a PI close to one,
Plipr = 0,96140, 005, whilst RC networks (figure 22-b) have a PI of PIgc = 0, 75140, 003
(this result is expected as we set PI= 0.75 when we created the RC networks).

In our networks, the clique sizes follow power laws (for sizes equal to, or higher
than 2), which we can clearly see from the figure 23-a). Alongside that, a fraction of the
initial partition is made from isolated nodes in their own communities, this makes it so
that the average number of communities is the highest among the benchmarks as shown
in figure 23 b). This two characteristics yield an average PI of 0.87 + 0.05.

In resume, RC benchmarks have the smallest number of communities and the
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Figure 21 — Distribution of the community sizes for all the RC networks, remember that,
by definition the RC networks have 16 communities each so that the plot of
the distribution of number of communities is rather dull (as it would always
be equal to 16). Also, to emphasize that the distribution in a) is from all the
networks, we have the distribution of community sizes from a single network

in b)
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(a) LFR benchmark.
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(b) RC benchmark.

Figure 22 — Pielou’s index for the LFR (PI= 0,961 £ 0,005) and RC (PI= 0,751 + 0,003)
benchmark networks. The numbers show that the LFR networks have a
much more even distribution of community sizes than the RC networks. Also
remember that the PIrc was set at 0.75 in the networks creation.
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Figure 23 — Distribution of the community sizes and the number of communities for all
the networks in our benchmark.
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Figure 24 — Pielou’s index for the networks in our benchmark. The average PI of 0.87+0.05
is nicely placed in the middle of the interval between the PI of the RC
benchmark (0.75) and the PI of the LFR benchmark (0.96).
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Pielou’s Index | Number of Communities | Community Sizes
LFR | 0.961 + 0,005 [34, 58] [2,234]
RC | 0.751 £0,003 16 [7,56]
New | 0.87 £ 0,005 [108,372] [1,844]

Table 3 — Ranges of community sizes, number of communities and the respective Pielou’s
index for each of the benchmarks.

smallest Pielou’s index, this means that the distribution of community sizes is the most
uneven of the three benchmarks. The LFR benchmarks have an intermediary number of
communities but they all have a similar size as they have the highest PI. Figure 20-a)
also shows that the communities are relatively small if compared to the other benchmarks.
Our benchmark, on the other hand, has the highest number of communities with an
intermediary value of PI, this means that we have lots of very small communities but some

very large ones as well. Table 3 contains a summary of the statistics.

4.2 Algorithms Performance

We quantify the quality of the results using the VI between the two partitions, the
one found by the algorithm and the one seeded by the benchmark. A value of VI equal to
zero means that the two partitions coincide perfectly, whereas a value of 1 means that no
information can be learned from one partition using the other one. The ultimate goal is to
create an algorithm that is able to find a VI very close to zero for each network in every
benchmark. Here what we truly seek is consistency, as the community structure of real
networks is most often unknown a priori, an algorithm that has a good performance in
every benchmark is preferable over an algorithm that is great in some benchmarks but

that performs poorly in another ones.

Keep in mind while reading through those results that some methods, CPM, RB,
UVCluster and SCluster, already use the Surprise as a criteria to choose among different
partitions. None of them seek to maximize the Surprise heads-on, as our Surpriser does, but
YrB,YcpM are choosen because they give the partition with the highest value of Surprise.
The same is true for UVCluster and SCluster, where they pick the partition that maximizes
the Surprise after applying the tree making algorithm. Infomap, Louvain and RN do not

use the Surprise at all.

First let’s analyze the results for the RC benchmark as replicated in figure 25.
In the figure each dot represents the average VI found at each stage of the degradation
parameter R. While it’s clear that the smaller the value of the VI the better, the point

where the results start to become unacceptable is not a clear-cut. To get some intuition
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about it we will use an idea from the SurpriseME paper (ALDECOA; MARIN, 2013b).
They created two additional partitions for each network, the first one called Singles and
the later called One. In the Singles partition every node is in its own individual community,
while in the One partition, every single node is in the same community (so that there’s
only one group that encompass every node). In figure 25 they represent the two horizontal
lines. Whenever the VI found by every algorithm crosses any of those two lines we consider
that they failed miserably to find the community structure of those networks. For the RC
benchmark, every algorithm passes this threshold for values of R equal to, and higher
than 70%. For R > 70% a huge part of the networks links has already been removed, this
explains why the VI found tends to be closer to the single partitions, as the network has

fewer links, the communities start to become smaller and less defined.

Focusing at R < 70% we see that CPM and Surpriser have the best performances.
Notice that the VI found by Infomap and RN stabilizes for values of R > 50%. In this
range these algorithms begin to join all the nodes in the same community, obtaining a VI
identical to the One partition, which hints that this is a limit behavior of these algorithms

and therefore, they are actually failing beyond this point.

Methods that use Modularity (Louvain and RB) perform poorly in this benchmark
as even for small R the VI is already big. This has to deal with the resolution limit of
Modularity and will be discussed later. The limit also explains why they have a nearly

identical performance for R < 50%.

About the LFR networks (figure 26), RB and Louvain show an improvement in
performance compared to the RC benchmark, with RB outperforming Louvain for the
entire range of parameters. The best performance, though, is reached by Infomap. This
algorithm still tends to find only one community when p > 0.8. Surpriser and CPM, on
the other hand, stay in the middle of the pack. Finally, SCluster and UVCluster show the
worst results. In contrast with the RC benchmark, the difference in VI between Singles and
One partitions is much smaller. Splitting the nodes in individual communities is actually
better than merging all the nodes in a single community in the LFR benchmark. We
don’t aim to do a quantitative analysis as to why this is the case, but these results match
our intuition. The number of communities and the Pielou’s index are higher for the LFR
benchmark, this means that the partition is made of many small communities, in such a
way that splitting the nodes individually is closer to the real community than merging all
the nodes together, hence the VI should be lower for the Singles partition. Later we will

show that this is the case in our benchmark as well.

Figure 27 summarizes the results from both benchmarks. Here we take the average
VI over a range of parameters, u < 0.5 for the LFR benchmark and R < 50% for the RC
benchmark. A pattern is evident here: algorithms that are great in one benchmark suffer

in the other one, with two exceptions, our own Surpriser and CPM are able to function in
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Figure 26 — Performance of the algorithms in the LFR benchmark.

both LFR and RC networks. It’s important to note that Infomap, RB and RN, perform
superbly in the LFR benchmark, being better than CPM and Surpriser in those cases,

however no single algorithm surpasses them in the RC benchmarks.

We also analysed the number of communities found by each algorithm compared
to the number of communities created by each benchmark. Figures 28-a) and b) show this
ratio ¢, /cx, where ¢, is the average number of communities found by the algorithms and

¢k is the average number of communities created by the benchmarks. We seek to find a
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Figure 27 — Performance of the algorithms in both benchmarks, we see that only CPM
and Surpriser have a consistently good performance in both benchmarks.

value close to one (the yellow line in both figures).

Infomap further proves its great performance on the LFR benchmark by matching
the number of communities perfectly for small values of u, however we see that this
algorithm has a tendency to start merging communities together when the structure
gets fuzzier, this problem boils down to joining every node in a single community as
seen in figures 25 and 26. The difference in VI found by CPM and Surpriser in the LFR
benchmarks seem to be caused by an overestimation of the number of communities in those
networks, this starts slightly but as we cross the line at © = 0.6 and begin to have a weak
definition of community (for values of x> 0.5 each node has more connections outside
its initial community) both algorithms grossly miss evaluate the number of communities,
with Surpriser finding 10 times more communities for p = 0.9. In the RC benchmark,
conversely, Surpriser is the algorithm that stays closest to the initial number of cliques,
only passing a factor of two for R > 70%, this correlates to the strong performance of this
algorithm in the benchmark. Even CPM, the second best performing algorithm, already
finds 6 times more communities for R = 70%, because of this we see the spike in the VI at

R =70% in figure 25.

Both RB and Louvain are based on maximization of Modularity, but they show very
different behaviors in the different benchmarks, with Louvain consistently underestimating
the number of communities in RC and LFR networks, while RB is able to solve the LFR
benchmark with ease. This distinction is closely related to the resolution limit of Modularity.
To show that let’s analyse the values of ygp obtained in both benchmarks (figure 29). The

higher the value of ygrp the smaller are the communities found. Furthermore, whenever



72 Chapter 4. Results and Discussions

10 { —®— Surpriser
~»— Louvain
—— CPM
8 —&— Infomap
—%— RB
—+— RN
—4— SCluster
N 61 v uvCluster
3
O
4-
2-
0-
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
u
(a) LFR Benchmark.
—8— Surpriser
g8 4 —»— Louvain
- CPM
—&— Infomap
—— RB
64 —+— RN
~— SCluster
o —¥— UVCluster
o~
U 4

10 20 30 40 50 60 70 80 90
R(%)

(b) RC Benchmark

Figure 28 — Ratio between the average number of communities found by the algorithms,
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ratio of 1, where both ¢, and ¢ match perfectly, is represented by the yellow
lines.
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~vrp is equal to one we recover the definition of Modularity used in the Louvain algorithm.
We see in figure 29 that the values of ygp are way higher than one, this means that RB
finds smaller communities and by extension more communities than Louvain in those
networks. This matches perfectly with the plot in 28 a), where Louvain under evaluates
the number of communities in the entire range of p. This means that ygp = 1 is too small
for those networks and that smaller modules are being wrongfully merged into bigger ones

by the Louvain algorithm.

On the other hand, we see that ygp = 1 for smaller values of R (figure 29 b) which
explains the mostly identical performance of both RB and Louvain in the RC benchmark
(figure 25). As we increase R we should expect the communities to get smaller, as many links
are being removed from the network (and some nodes might even become disconnected),

the RB algorithm is sensitive to that and the ideal value of ygp also increases.

If we combine our analysis of the values of ygp (figure 29), with the number of
communities found by the algorithms (figure 28) and the distribution of community sizes
in both benchmarks (figures 20 and 21), we can clearly see the impact of the resolution
limit in the performance of those algorithms. Networks in the LFR benchmark have a
smaller range in community sizes, (also justified by the very high Pielou’s Index) so that
the RB algorithm is able to find a value of vgp that perfectly balances the tension between
splitting larger communities into small ones and joining smaller communities into larger
ones. That’s why the VI found is so small for this algorithm. The ideal value of vgzp,
though, is way larger than the one used in Louvain, which is fixed at one. Because of that
Louvain finds a smaller number of communities and has a worse performance in the LFR
benchmark overall. The RC benchmark, conversely, has a wide range of community sizes
with a PI = 0.75, because of that RB is not able to find a resolution that manages to
solve both the very small communities and the very large ones successfully, hence the

resolution limit truly hampers the application of Modularity based methods.

In relation to ycpy, the most interesting detail is in figure 30 b), where we see a
spike in the value of ycpy at R = 70%. This peak coincides with the increase in the VI
figure 25 a) and with the increase in the number of communities detected figure 28. As
~vcpum is the threshold for the density of links inside communities p;, and the density of
links between communities pout, Pout < Yopm < Pin, @ higher value of yepy and a larger
number of communities means that CPM finds smaller communities but more densely

connected ones.

In general, the best performing algorithms in the LFR benchmark, Infomap, RN
and RB, tend to underestimate the number of communities in the RC benchmark, with
Infomap and RN being the most egregious cases as both algorithms tend to group every
node in the same community for large values of R. From those two, the tendency to

merge communities together seems to be more pervasive in the Infomap’s case as it has
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the definition of Modularity. The RB algorithm is able to solve LFR networks
withe failing in the RC benchmark. This happens because in a), the distribution
of community sizes is not broad so that the algorithm is able to find a value of
vrp that balances the tension between splitting large communities and joining
smaller ones. In b), conversely, the distribution of community sizes is wide, so
that there’s no clear value of ygp that balances the tension between dividing
and merging communities. For small values of R we have the ygg = 1 which
explains the equivalent performance between RB and Louvain. Considering
that ygp > 1 in a) and that RB clearly outperforms Louvain, we see that the
communities from the LFR benchmark are smaller than the ones found by
Louvain, and that inserting a variation in ygg makes the algorithm sensitive
to this change.
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Figure 30 — Values of ycpy in the LFR and RC benchmarks. In a) as the distribution

of community sizes is even across the board we see little variation in the
value of yepy. In b) we see a major spike in the value of ycpy at R = 70%,
this coincides with the spike in the VI obtained and the spike in number of
communities detected by the CPM algorithm. This means that CPM finds
smaller communities but more densely connected ones.
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this behavior in both benchmarks, whenever the community structure gets fuzzier the

algorithm will lump all the nodes in a single group.

Surpriser and CPM, on the other hand, overestimate the number of communities
in the LFR benchmark while providing the best results in the RC benchmark. These
algorithms seem to be way more affected by changes in the value of p. When we start to
have 1 > 0.6 both algorithms have big spikes in the number of communities found, this
isn’t entirely bad as for those values of p a strong definition of community isn’t present
anymore, so in a sense we would expect the algorithms to behave poorly. We don’t see a
resolution limit in these results, unlike those from Louvain that consistently underestimate

the number of groups in both benchmarks.

The top algorithms in the RC benchmarks can, reasonably, solve the community
structure of the LFR benchmarks, however, the opposite isn’t true. The best algorithms
in the LFR benchmark vastly underestimate the number of communities in the RC
benchmark, even merging all the nodes in a single community for large values of R. From
this analysis if the network has an unknown community structure both CPM and Surpriser
are recommended over Infomap, RN and RB. Remember that the implementation of CPM
obtains the community structure for different values of vycpy (figure 30 a and b) and then

returns the partition with the highest value of Surprise.

The results of our benchmark will be presented as line plots for different values of
q (figures 31 a,b,c and d), this will help with the readability and make it easier to compare
with the results of both LFR and RC benchmarks. The the full heat maps for the VI in
terms of both p and ¢ are shown in appendix A. In figure 31 each point represents the

average over 25 different networks with the same values of p and gq.

We see that Modularity based methods perform very poorly in this benchmark.
RB only finds partitions better than Singles for small values of both p and ¢ while Louvain
is always outperformed by the Singles partition. Methods that use the Surprise, directly or
indirectly, seem to perform best with SCluster, CPM and Surpriser having the top three

results.

In regard to the number of communities, recall figure 23, b), our benchmark has
the highest number of communities with many of them representing single nodes, the ratio
of communities found by the algorithms ¢} with the number of communities seeded by the
benchmark ¢y, is in figures 32 a), b), ¢) and d). The algorithms underestimate the number
of communities in our benchmark, as the value of p increases, however, we have fewer and
fewer links in the network, as this happens nodes become disconnected and the community
structure gets weaker, which in turn increases the number of communities found by the

algorithms.

Figures 33 a), b) and c¢) as well as tables 4,5,6 summarize our results from all the
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Algorithms LFR RC New
Surpriser 0.017528818?2%8 0.02 76978:835g§i 0.0678058:8228%8
Louvain 0.0429109538819 0.1495937 941186 0.4738987-975717
CPM 0.0180473.925981 | 0.0305820:964456 | 0.075278) 955977
Infomap | 0.001649g:501655 | 0-0936450:575500 | 0-1610087:053567
RB 0.0045999-077874 | 0.1397869-957920 | 0.2758889-417593
RN 0.0019260 538379 | 0.144426187276 | 0.5026699-123336
SCluster 0.0925199:095622 | () 0456449-9823%0 | 0.0751179-055589
UVCluster | 0.1726673983308 | 0.085508)43L14% | 0.1013509:979299

Table 4 — The VI found by each algorithm in the following range of parameters:u <
0.5,R < 50%,q < 0.015 and p < 0.50. In bold are the best performances in each
benchmark. The uncertainties shown around the average are standard deviations
calculated for values bigger and smaller than the average, respectively. Visual
representation in figure 33-a).
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Algorithms LFR RC New
Surpriser 0.39924181532%3 0.5289238%%%57’ 0.2646948:%832%
Lowvain | 0.508040023492 | (5115000122748 | ( 556637011228
CPM 0.4392018:5%328 0.5969978%‘3%5%? 0.2882948:}‘218‘11%2

Infomap | 0.3316950:583758 | 0.4337250307505 | 0.37017757953%

RB 0.4390680 234718 | 0.6276850.98593% | 0.41032039956

RN 0.3944790130547 | 0.3361533:935244 | 0.514620030%431

SCluster | 0506017042320 | 0.60830804349% | 0.205673¢ 134904

UVCluster | 0.514003392338¢ | 0.6872880:953996 | 0.3492810194142

Table 5 — The VI found by each algorithm in the following range of parameters:u > 0.6,
R > 60%, g < 0.030 and p > 0.55. In bold are the best performances in each
benchmark. The uncertainties shown around the average are standard deviations
calculated for values bigger and smaller than the average, respectively. Replicated
in figure 33-b).
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Algorithms LFR RC New

Surpriser 0.187178)-312171 1 0.1492060-45295% | 0.1604250- 371539
Louvain 0.2496340447642 | (0.2373300:356356 | (0.517615)-198132
CPM 0.2052279-339638 | (). 1678959488192 | (.1759220-188736
Infomap | 0.1483360: 131507 | 0.176089975157 | 0.2772215:75335
RB 0.197696049410% | 0.2580640430385 | 0.336432) 135647
RN 0.1763940-346608 | (0.1909050 143340 | (0.5164659119914
SCluster 0.2762960- 257934 0.1820489-420071 0.1787159-184581
UVCluster | 0.3243729-215133 0.2313949-388237 0.2174159-176365

Table 6 — The average VI using every network. In bold are the best performances in each
benchmark. The uncertainties shown around the average are standard deviations
calculated for values bigger and smaller than the average, respectively. Numbers
from figure 33-c).
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Vi

Vi

Figure 31 — Performance in our benchmark. CPM and Surpriser show the best results,

benchmarks. In a) we consider only the cases where there’s a clear definition of community
structure, u < 0.50 and g < 0.015, and cases where the degradation is smaller than 50%,
so R < 50% and p < 0.50, while in b) we have the complementary interval, ;1 > 0.60,
R > 60%, ¢ < 0.030 and p > 0.55, finally in ¢) we have the performance over all networks.
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while the Modularity based methods perform poorly in this benchmark. The

results from Louvain are worse than the singles partition in the entire range of
parameters. Of the three benchmarks, the algorithms perform worse in ours,

which suggest that it’s actually the toughest of the three.

In figure 33 a), the algorithms that solve LFR superbly, Infomap, RN, and RB,

have a very poor performance in the other benchmarks. Louvain, on the other hand, has an

and UVCluster form a second echelon, being somewhat consistent in the three benchmarks

but having inferior performances than Surpriser and CPM, the clear winners when you

consider consistency and performance together.

It’s not particularly useful to rank the algorithms based on their performances
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Figure 32 — Ratio between the average number of communities found by the algorithms,
¢, with the average number of communities seeded by the benchmarks ¢;. A
ratio of 1, where both ¢} and ¢; match perfectly, is represented by the yellow
lines.

shown in figure 33 b) as we have extremely degraded networks and networks with a weakly
defined comunity structure by default. This figure is most useful as a tie-break for the
best performing algorithms in figure 33 a). From the best performing algorithms in the
LFR benchmark (Infomap, RB and RN) Infomap is the best, followed by RB and RN. In
the case of the RC benchmark, both RB and Infomap have a misleading performance, as
those algorithms tend to stabilize in a structure were every node is in the same community,
which does yield a smaller value of VI (around 0.3) but hardly represents the real structure
of the system. The difference between Surpriser and CPM is more prominent here, with

Surpriser outperforming CPM in every benchmark.

Figure 33 c) is the combination of all the results, here Surpriser is once again
the best, followed by CPM and Infomap. One could argue that if we remove our new

benchmark, Surpriser has a worse overall performance than Infomap and that it could
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Figure 33 — Performances in every benchmark, darker colours represent regions with weaker

community structures.
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LFR RC
0.65+0.02 | 0.43 +=0.03
0.70 = 0.02

Table 7 — Variation of Information between the initial partitions of the three different
benchmarks. We see that RC and New are much more alike with a VI of
0.43 £ 0.03 between them.

suggest a bias from our benchmark towards our algorithm. This argument has a couple
of problems. First, the results in figure 33 c¢) are tainted in much the same way as in
figure 33 b), because we are considering regions with weak communities structures and
vastly degraded networks, no algorithm has an optimal performance in such regions. The
strongest and most representative results are those from figure 33 a). If we remove our

benchmark in that scenario Surpriser vastly outperforms Infomap, and has an ever so
slightly lead on CPM (in the order of 0.01).

Another point that must be raised is that from the methods that use the Surprise
as a criteria to choose among different partitions (RB, CPM, UVCluster and SCluster),
we see that only CPM is comparable to Surpriser and that a heads-on approach, that
seeks to maximize the Surprise directly is preferable over the indirect methods. In general,
the methods that use the Surprise function are the most consistent among the different
benchmarks, with the exception of RB that is bound by the resolution limit of Modularity.
In the last case, utilizing the Surprise as the basis to choose among different values of ygp

does improve the results of Louvain significantly.

Our results show a correlation between the performances in the RC and New
benchmark where algorithms that perform greatly in one have the same behavior in the
other. Conversely, the best performing algorithms in the LFR benchmark fail to solve
the community structure from the other benchmarks. To study why this is the case we
calculated the VI between the initial partitions from each network and each benchmark. In
order to make this work, we created 500 additional RC networks? with 1000 nodes divided
in the same 16 cliques with the same Pielou’s index of 0.75, the results are in table 7. The
LFR benchmark is the most different among them, with a VI of 0.70 & 0.02 in relation to
the RC benchmark and a VI of 0.65 4+ 0.02 in relation to our benchmark. RC and new
have, on the other hand, a VI of 0.43 4+ 0.03. This shows why some algorithms perform
superbly in the LFR benchmark but poorly in the other ones, as the LFR is very different
from RC and New.

2 We can only measure the VI between two clusters if the number of elements is equal. The original RC

networks had 512 nodes, whereas the New and LFR networks had 1000.
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4.3 Degeneracy Problem

When different partitions yield a similar, close to the maximum value of the quality
function we say that those solutions are degenerated. In a more formal way, it’s the problem
of not having a clear global maximum, and instead having many different local maxima

very close together.

We will analyse this problem in the context of Modularity and Surprise. To do
that we will go back to the network of figure 15 (reproduced again bellow), we've already
shown that two different partitions attain the maximum value of Surprise, but in order to
study the degeneracy problem further we’ll need lots of different partitions that have a
wide range of Surprise and Modularity values. We obtain those partitions by performing
an annealing in the quality functions. Here we want a more throughout sample of the
partition space, we obtain that by stopping the annealing process at different steps. In the

next examples we used 1317 different partitions from the network in figure 34.

Figure 34 — We go back to the network shown in 15 in order to study the degeneracy
problem.

The goal is to analyse the difference between the partitions in partition space and
the relationship between their values of Surprise and Modularity. Comparing different
partitions is easy, we will use the VI for that. In particular, we created a distance matrix
d;j, where every element is the VI between partitions ¢ and j. To make the visualization of
this matrix easier we made a linear embedding of all the partitions. A vector 7; = (z;,v;)
is associated to each partition in such a way that the euclidean distance between two
different vectors 7; and 7, each representing a different partition, is as close as possible to

the VI between partitions ¢ and j.

The embedding was created using a steepest descent algorithm that walks over the
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7; parameter space searching for the minimum of x? defined as:

N 2

=Y Y (- e ) (4.3

i=1 j>i|di; <diim

where the first sum runs over all partitions while the second sum runs over the partitions
whose distance to the ¢ partition is less than some predetermined value dy;,,,. The smaller
the value of x? the closer the euclidean distances are to the VI between partitions i and j
(dij). To minimize y? we evaluate the gradient of y? in parameter space and then update
the values of all x; and y; in the direction opposite of this gradient, so going towards
smaller x?. Figures 35 a) and b) show the embedding, note that the z-axis represents the

value of Modularity and Surprise respectively.

If we compare figures 35 a) and b) 35 we see that in Modularity’s case the degeneracy
problem is accentuated, as there’s a plateau region where many different solutions lie really
close to the global maximum in the z-axis, but are far apart in the xy-plane. Because the
distance in the xy-plane mimics the VI between two partitions, this plateau region contain
partitions that are close to the global maximum but that are very different from each
other. Surprise, on the other hand, has a very sharp peak around the optimal value. As the
points near the maximum are closer to each other, this means that the close-to-optimal

partitions are also more similar.

This does not mean that Surprise does not suffer from a degeneracy problem at
all, what it does mean is that partitions with a value close to the maximum are similar
with each other so that even if we don’t find the global maximum, the partitions that
are nearby that point are representative of the networks true community structure. Both
Surprise and Modularity suffer from the degeneracy problem in the sense that there’s no
guarantee that the global maximum is unique, however partitions close to the maximum
of Surprise are similar with each other, unlike Modularity, where those partitions can
represent very different structures (GOOD; MONTJOYE; CLAUSET, 2010)).
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Figure 35 — Linear embedding of 1317 different partitions from the network in figure 34.
Here the distances in the xy-plane represent the VI between the partitions
in partition space, while the z coordinate gives us the value of Modularity
(a) and Surprise (b) associated with each partition. In a) we see a plateau
region, where lots of partitions are close to the global maximum of Modularity
but far apart in the xy-plane. This means that the Modularity landscape
is extremely degenerated, as partitions with a close to maximum value of
Modularity can be structurally very different. In b), however, we see a peak
around the maximum values of Surprise, which means that, unlike Modularity,
the high scoring partitions in a Surprise landscape are more similar with each
other and that a near-optimal partition is more representative of the networks
true community structure.
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Conclusion

Throughout the text we talked about the three main challenges for community
detection methods. The first being that the number of possible partitions grows faster
than exponentially for large networks (with the N — th Bell number). This makes it
computationally impossible to enumerate and to analyse every single partition of a
network. Second, while the intuitive idea behind communities is well understood, there’s
no consensus formal definition. The discussion then resumes to which of the many heuristic
functions would best represent the community structure of a network. The third and final
challenge is that, in most cases, there’s no information about the community structure of
real world networks a priori. To circumvent this problem, various different benchmarks
were proposed. Those benchmarks use our intuitive ideas about the concept of communities
to create their networks with seeded community structure and make it easy to compare

the differences between competing algorithms.

This work dealt with the last two challenges (as the first is inherent to the definition
of a partition, so we just have to cope with it). In regard to the quality functions, we
proposed a novel algorithm (Surpriser) based on the Surprise function. We compared the
Surprise directly with Modularity, the most used function in the literature, and showed
that the degeneracy problem is much less pervasive in a Surprise landscape. While both
functions have degenerated solutions, i.e., different partitions yield values very close or
equal to the global maximum of the function, the near-optimal partitions found by Surprise
are structurally much more alike than the ones found by Modularity. This bodes well for
Surprise maximization algorithms because, even if different methods find slightly different
partitions, if those partitions are close to the global maximum, those partitions will be
similar with each other. Alongside that, Surprise does not seem to be affected by the

resolution limit that haunts Modularity (more on that shortly).

With respect to the benchmarking problem, we proposed a novel benchmark. Our
benchmark starts with sets of cliques, whose sizes are set according to a power law, and
sets of isolated nodes. On one hand we have the strongest definition of a community,
a clique, and on the other we have the weakest possible one, a single node. Alongside
those intuitive ideas we created two parameters ¢, that controls how fuzzy the community
structure is, and p that controls how degraded the communities are. While our benchmark
networks are closer to the ones from the RC benchmark, our results show that this novel

benchmark is the hardest of the three for the algorithms to solve.

Our Surpriser algorithm was tested against 7 other algorithms from the literature

in three different benchmarks: LFR, RC and our own. As real word networks come in
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various shapes and sizes (figure 3), the best community detection algorithm should be able
to perform reasonably in the widest range of conditions. Consistency is the name of the
game. We seek an algorithm that is able to solve every benchmark. Our results, however,
show that most algorithms tend to perform greatly in one benchmark but poorly in the
other ones. This is the case of Infomap, RB and RN, that solve the community structure
for the LFR networks but fail in the other ones, and of SCluster and UVCluster, that
perform better in our own and RC networks but fail in LFR networks. Of note, Infomap
has the best overall performance in LFR networks, with the caveat that as the networks
community structure gets fuzzier, Infomap has a tendency to merge every node in one

community.

Two Modularity based methods were tested: Louvain, with a fixed resolution
parameter, and RB, with a varying resolution parameter. While allowing the resolution
parameter to vary does improve the results, it’s not enough to circumvent the known
resolution limit of Modularity. Whenever the distribution of community sizes is wide
(as in a system that has very large communities but also very small ones) Modularity
based algorithms fail to find a balance between merging small clusters into larger ones
and splitting big clusters into smaller ones. This is clearly reflected in the performance of
both Louvain and RB. They perform best in the LFR networks, which have a very high
Pielou’s Index of 0.95. In those networks, the range of community sizes goes from as few
as 7 nodes to as much as 53, because this range is so small RB is able to find a resolution
parameter that perfectly fits those networks and thus has one of the top performances in
this benchmark.

Conversely, our own and RC benchmarks have community sizes that range from
one node to more than two hundred. Because of this unevenness, reflected in the smaller
Pielou’s indexes of 0.86 and 0.75 respectively, Modularity completely fails to find the
community structure of those networks. It will wrongly merge smaller communities in to
larger ones, in much the same way as in the ring of cliques network. Depending on the
network size, Modularity stops to identify the smallest communities joining them into

bigger ones.

Only two algorithms perform consistently in every benchmark: our own Surpriser
and CPM. Both seek to maximize the Surprise function, while one does so directly
(Surpriser) and the other indirectly (CPM). The heads-on approach slightly outperforms
the indirect one in every case, with a difference in order of 0.01 in the VI. This difference
gets bigger for fuzzier networks, as both algorithms perform admirably well for less

degenerated, better defined community structures.
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A Heat Maps

Our benchmark has two main degradation parameters: p and ¢q. The former rep-
resents the probability that a link is removed from a clique, while the later represents
the probability that a link is created between two nodes (from different cliques). We can
represent the Variation of Information as a function of both p and ¢ by constructing a
heat map. Figure 36 from a) to d) show the top performers, while figure 37 from a) to d)

show the worst performing algorithms.

Once again we have Surpriser and CPM as the front runners, followed by SClus-
ter,Infomap and UVCluster. RN,RB and Louvain perform miserably in this benchmark.
The Modularity based methods suffer specially, with Louvain failing to solve the community
structure in the whole range of parameters, and RB being able to solve the communities

only for small values of both p and q.
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Figure 36 — Best performing algorithms in our benchmark.
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Appendixz A. Heat Maps
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Figure 37 — Worst performing algorithms in our benchmark.
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