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DECISION MODELS FOR BUSINESS

PART II- APPLIED CALCULUS

I Curves and Slopes — Average rates of change

. The Slope of a Curve

e Q1: Consider the curve y = f(x) = x* (draw a picture). What is its slope?
e Al: Not at all clear! But for sure it’s different at different points on the curve,
since the curve gets steeper and steeper as x gets larger and larger.

. The “Average” Slope of a Curve

e (Q2: Let’slook at an easier question: What’s the average rate of change in y
as x changes from 1 to 2? Here we are looking for the slope of the secant
of the curve joining the 2 points (1,1) and (2, 4).
A2: We know how to do that! m=Ay/Ax=(4-1)/2-1)=3
e Some additional notation: We are looking at the two points:
(X1, y1) = (X1, f(x1)) = (1, 1) and
(%2, ¥2) = (X1 + AX , y1 + Ay) = (X1 + Ax, f(x1 + AX)) = (x1 + Ax, f(x1) + Af)
Put all these labels on the picture!
e With this notation, m = Ay/Ax = Af/Ax
e We’ll also write x + h instead of Ax, Then the slope of the secant joining the
two points (x, f(x)) and (x + h, f(x + h)) is m = (f(x + h) - f(x))/h
e (Q3: What’s the average rate of change in y as x changes from 1 to 1.5?
e A3: m=(fx+h)-f(x))/h=(225-1)/(1.5-1)=2.50

. Moving the 2 points closer and closer to each other. Let’s fix (x;,y;) at(1,1) and
look at the average rates of change of y for various points that get closer and
closer to (1, 1):

X2 Y2=X7 Ax Ay m = Ay/Ax

2 4 1 3 3

1.5 2.25 0.5 1.25 2.5

1.1 1.21 0.1 0.21 2.1
1.01 1.0201 0.01 0.0201 2.01
1.001 1.002001 0.001 0.002001 2.001

0.5 0.25 0.5 ~0.75 15

0.9 0.81 0.1 —0.19 1.9
0.99 0.9801 ~0.01 -0.0199 1.99




0.999 0.998001 —0.001 —0.001999 1.999
1+ Ax 1 + 2Ax + (Ax)® Ax 2AX + (Ax)? 2 + Ax

In the last row of the table, we’ve done the computation symbolically
(algebraically), rather than numerically (arithmetically).

4. Tangent Lines and Instantaneous Rates of Change — The Slope of a Curve at a
Point

e Geometrically, as x, — x; (“as x; gets closer and closer to x;”° or “asx,
approaches x;” or ‘“as Ax — 0”), the secant line gets closer and closer to
(approaches) the tangent line to the curve at the point (x;, y;).

e Thus it makes sense to define the slope of a curve at a point as the slope of
its tangent line at that point, and this slope is also called the “instantaneous
rate of change in y at that point.”

e As we said initially, curves thus have different slopes at different points:

At (1, 1) the slope of the tangent to y = x* is 2. (As Ax — 0, Ay/Ax =2 +

Ax — 2.)

At an arbitrary (x, y) on the curve y = x°, we find that the slope of the
secant is:
Ay  (x+Ax)* —x>  2xAx+(Ax)’
Ax Ax Ax
And letting Ax — 0, we see that the slope of the curve is 2x. Hence:
o At (0, 0), the slopeis 0 (does this make sense geometrically?)
o At (-1,1), the slope is -2 (does this make sense geometrically?)
o At (2,4),theslopeis 4 (does this make sense geometrically?)
o At (-2, 4), the slope is —4 (does this make sense geometrically?)

=2X + Ax

5. Examples from section 11.1 from the textbook (Waner/Costenoble)
14. Average rate of change of f(x) = 2x* + 4 on [-1,2]: (12-6)/(2 - (-1)) =2
16. Average rate of change of f(x) = 1/x on [1,4]: (1/4-1)/(4-1)=-1/4

22. Average rate of change of f(x) = 2/x on [1, 1 +h]. Note that f(1) = 2.

h fA+h)=2/(1+h) Af m = Af/h
1 1 -1 -1
0.1 1.818182 —0.191918 -1.9192
0.01 1.980198 —0.019802 -1.9802
0.001 1.998002 —0.001988 -1.988
0.0001 1.999800 —0.000200 —2.00
-2h/(1+h)| -2/(1+h)

(So,ash - 0, m — -2.)
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24 Average rate of change of f(x) = 3x* - 2x on [0, 0 +h]. Note that £(0) = 0.

h f(h) = 3h® - 2h Af m = Af/h
1 1 1 1
0.1 —0.17 -0.17 1.7
0.01 —0.0197 -0.0197 -1.97
0.001 —0.001997 -0.001997 -1.997
0.0001 —-0.00019997 -0.00019997 | —-1.9997
3h®-2h 3h-2
(So,ash —» 0, m — -2.)
47. R(t) = 95t* + 115t + 150 (millions of $)
year 1997 1998 1999
t 0 1 2
Revenue ($10°) 150 360 760

a. Average rate of change of R from 1997 to 1999: (760 — 150)/(2 - 0) = $305
million/year
b. From 1997 to 1999 revenues
(A) increased at an increasing rate
(B) increased at a decreasing rate
(C) decreased at an increasing rate
(D) decreased at a decreasing rate
c. Predict average rate of change from 1999 to 2000:
[RB3) -R(2))/(3 -2) = (1350 — 760)/1 = $590 million/year

48. P(t) = —0.15t* + 0.50t + 130 (thousands of Roman catholic nuns)

year 1975 1985 1995
t 0 10 20
Population (10°) 130 120 80

a. Average rate of change of P from 1975 to 1995: (80 — 130)/(20 — 0) = -2.5
thousand/year
b. From 1975 to 1995 the number of nuns
(A) increased at an increasing rate
(B) increased at a decreasing rate
(C) decreased at an increasing rate
(D) decreased at a decreasing rate
c. Predict average rate of change from 1995 to 2005:
[P(30) — P(20)]/(30 — 20) = (10 — 80)/10 = -7 thousand/year



IT Curves and Slopes — Instantaneous rates of change (derivatives)

1. The Slope of the Curve y = f(x)

Can be different at different points on the curve!

Average slope:
o slope of a secant to the curve

o m = Ay/Ax = Af/Ax
Instantaneous slope:
o slope of a tangent to the curve
o “limiting value” of Ay/Ax as Ax — 0

2. We did numeric and algebraic examples that all worked nicely. Before we
continue formally, let’s see what can go wrong.

Example 1 — what’s the instantaneous slope of y = [x| at x =0?

A look at the graph shows what the problem is immediately. To the left (right) of
(0, 0), the graph is a straight line with slope -1 (+1):
o For x>0, |x| =x, so with h >0, we have [f(0 + h) —f(0)]/h = h/h = 1, so the
“slope to the right” of |x| at x =0 is +1.
o For x <0, |x|] =—x, so with h <0, we have [f(0 + h) — f(0)}/h =-h/h = -1, so
the “slope to the left” of |x| at x =0 is-1.
o However, to say that a curve has a particular slope at a given point means
that the limiting value is the same regardless of how we approach that point.
The “slope to the right” and the ‘“slope to the left” must have the same
value!
o Geometrically what goes wrong in this example is that the curve comes to a
point (‘“has a kink”) at the origin. (Itisn’t ‘“smooth.””) In fact, the curve has
lots of tangent lines at (0, 0).
o Soy=|x| doesn’t have a well defined instantaneous slope at (0, 0)

Example 2 — what’s the instantaneous slope of y =x" at x=0?

Let’s do this one numerically. Note that £f(0) = 0.

X =1 -0.1 -0.01 [-0.001 [0 [0.001 [0.01 0.1 1
F(x)=x" -1 -0.4642 | —0.2154 | —0.1 0 |0.1 0.2154 [ 0.4642 |1
[f(x) - £(0))/(x - 0)| 1 4.642 [21.54 |100 - 100 2154 |4.642 |1

The average rates of change seem to be growing without bound and not reaching
a limiting value.

Once again, this curve doesn’t have a well defined instantaneous slope at (0,0)
(Even though the graph is smooth!). The problem here is that the ‘“tangent” line
is vertical.




So in order for the slope to be well defined at a point, the curve has to be smooth and
can’t have a vertical tangent.

3. Some more nice examples.

Example 3 — what’s the instantaneous slope of y =5x" at the generic point (x,y)?
Ay/Ax = Af/Ax = (5(x + h)’ - 5x°)/[(x + h) - x]
= (5x° + 15%°h + 15xh’ + 5h° - 5x°)/h
= (15x’h + 15xh’ + 5h%)/h
= 15x> + 15xh + 5h> when h# 0
and this goes to 15x* as h — 0.

Note that we just can’t plugin h=0 at the beginning, because then we’d be
dividing by 0, which we know we can’t do. Instead we do some algebra to get rid
of the h in the denominator, and then let h — 0. Sometimes that algebra can be
very messy!

Example 4 — what’s the instantaneous slope of y =Vx at the generic point (x, y),
with y 2 0? Note that in this case the function isn’t defined for y < 0, so it makes
no sense to ask for its slope except when y > 0.

Ay/Ax = Af/Ax = (N(x + h) = Vx)/h
h

Vx+h++/x
Xx+h-x

B h(vx +h +/x)

when h# 0

1
B Jx+h +\/;

and this goes to 1/2Vx as h — 0.

Note that this is not defined at x = 0 (and in fact the curve is vertical at that
point!) Hence the slope of y = Vx is 1/(2‘/x) atall x> 0.

4. Continuous functions:

In the last line of the proof, I used the fact that Vx+h — +/x as h— 0. When a
function satisfies the condition that f(a + h) — f(a) as h— 0 (or equivalently, that
f(x) — f(a) as x — a), we say that the function is continuous at x = a. Loosely, a
function is continuous if you can draw its graph without lifting your pen from the
paper. Most of the functions we encounter in this class are continuous.

Examples:
e f(x) =|x| is continuous on (—oo, +0) — even though it has a kink at 0!



e f(x) = 1/x is continuous on (0, +) (and on (—, 0)) — it’s not continuous at x = 0,
because f(0) is undefined

e f(x) =Vx is continuous on [0, +o0)

e f(x)=(x*-5x+6)/(x - 3) is not continuous at x = 3, because even though f(x)
—1 as x— 3 (because f(x) = x — 2 when x # 3), f(3) is not defined

5. Derivatives and some notation

Recall that the instantaneous rate of change of a function f(x) at the point (x, f(x)

is defined as lim M

050 h
return is called the “derivative of f(x)” and is denoted f'(x) (ory’). In our
examples, we’ve seen that if
e f(x) = 5%, then f'(x) = 15x
o f(x) =Vx, then f'(x) = 1/(2Vx)
o f(x)=x? then f '(x) =2x

if that limit exists. The instantaneous rate of

If a function has a derivative at a point (is ““differentiable” at that point), then
necessarily it is continuous there (see the definition — the numerator has to — 0 as
h — 0, or else the limit can’t exist. However, as f(x) = [x| demonstrates at x = 0,
continuity alone isn’t enough for the derivative to exist (so “differentiable” is a
stronger property than ‘“‘continuous”).

Another notation for the derivative:
m[fEr A=t . Af . Ay_df dy
A4 Ax LTV A= M = g Oy

df/dx or dy/dx is not a fraction (although we shall see later that it often behaves
like one!)

Clearly using the definition to find the formulas for a derivative whenever we need
one is tedious. Next time we’ll look at some general rules for finding derivatives.



III Formulas for derivatives: x", f(x) + g(x), cf(x)

The process of taking the derivative of a function is called differentiation or
differentiating the function. We’ve done a whole bunch of examples already. Today we
want to find differentiation rules, so we don’t always have to fall back on the often
tedious task of using the limit definition of the derivative.

1. If f(x) = c, where c is any constant, clearly changing x has no effect whatsoever on f(x).
Hence:

Differentiation Rule 1: (d/dx)c = 0, for any constant ¢

2. We have already seen that the derivatives of x (=x"), X%, and x° are 1 (= 1x%), 2x,
and 3x%. Do you see a pattern here?

Note also that the derivative of f(x) =1 (=1x%) = 0, since 1 is a constant. Does this fit the
pattern?

We also saw that the derivative of f(x) =\x (=x"?) = 1/(2Vx) = (1/2)x7Y2, Does this fit the
pattern? Of course this holds only for x > 0. For x < 0, f(x) doesn’t exist, so neither does
f(x). And we saw that the slope “blew up” at x = 0, which is exactly what our formula
1/(2Vx) does at x = 0.

How about f(x) =1/x (= x'l)? Let’s see:

[f(x + h) - f(x))/h = [1/(x + h) — 1/x)/h = -h/[bx(x + h)] = -1/[x(x + h)] if h#0
So now letting h — 0, we see that the derivative of x™ = -1/x> (= (~1)x?). Does this
fit the pattern? In fact, this result holds for any constant power of x, positive or
negative, integer or fractional, rational or irrational!

Differentiation rule 2: (d/dx)x" = f'(x") = nx"", for any constant n
A warning: the derivative of x* is not x(x*) = x*, because here the power to
which x is raised isn’t a constant — it depends on x. In a few weeks we’ll learn

how to differentiate functions like x*.

3. If f(x) and g(x) are differentiable functions with derivatives f(x) and g’(x), then f(x)
+ g(x) and f(x) — g(x) are also differentiable. What are their derivatives?

(B g+ M- ) £g0] | _ . (fX+h)—f(x) . g(x+h)—-g(x)
i z I TR

i f(x+h)—f(%) + lim g(x+h)—g(x) — (X0 £ g'(X)
h—0 h h—0 h
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So the derivative of the sum (or difference) of two differentiable functions is the sum or
difference) of their derivatives.

Differentiation rule 3: (d/dx)(f(x) + g(x)) = (f + g)'(x) = f'(x) + g'(x)

If f(x) is a differentiable function and c is any constant, then

Differentiation rule 4: (d/dx)(cf(x) = (cf)’(x) = cf’(x), for any constant ¢

This one is pretty obvious, because it’s really just talking about changing units.

If f(t) is the total revenue in dollars earned by a new product in the first t days
after it is introduced, then f(t) is the marginal revenue in dollars/day at time

t. 100f(t) is the total revenue in cents, and clearly 100f(t) is the marginal
revenue in cents/day.

If £(t) is my distance (in miles) from home at time t hours after I start a trip,
then f'(t) is my speed in miles/hour at time t. Then 1.6f(t) is my distance from
home in kilometers after t hours, and its derivative, 1.6f'(t), is my speed in
kilometers per hour

Examples:
o (ddx)(3x*-5Mx +x) = 12x° - 5(-1/2)x 2 + (V2)x !
(d/dx)[(x* - 3Nx)(2x +Vx)] = (d/dx)(2x> + x*° — 6x*° — 3) = 6x% + 2.55™5 — 3x"5

11.4.67:

11.4.69:

11.4.77:

Find all values of x where the tangent to the graph of y = 2x* + 3x — 1 is
horizontal.

A: The tangent is horizontal if its slope is 0. y =4x + 3 =0 if x =-3/4
Ditto for y =2x + 8.

A: The tangent is never horizontal, because y’ =2 for all values of x

P(t) = -2.6t" + 13t + 19 is approximately the percent of people in the U.S.
who have ever purchased anything on-line t years after January 2000.
P’(t) =-5.2t + 13 and P’(2) = 2.6, which tells us that the instantaneous rate
of increase in the percent of people who have made on-line purchases was
2.6%/year in January of 2002.



IV Marginal Analysis

As we have seen, the derivative, '(x), of a function, f(x), tells us the instantaneous rate
of change of the function - at the value x.

* Geometrically, the derivative is the slope of the tangent line to the curve y=
f(x) at the point (x,y) = (x, f(x)).

e What is the equation of the tangent line at the particular point (x;, y1) = (%1,
f(x1))? Well, we can just use the point-slope form of the equation for a straight
line
(m = (y - y))/x - x1)) to get: y =f(x1) + (x - x)F (x1) = y1 + (X - X1)y1’

Examples:

e 11.4.62. Tangenttoy = x> at 0, 0).
f'(x) = 2%, so £(0) = 0, and the tangent line is y = 0 + (x — 0)(0) = 0
e 11.4.63. Tangenttoy=x + 1/x at (2, 2.5).
f(x)=1-1/x%s0 f(2) = %, and the tangent lineis y =2.5 +0.75x-2)=1 +
0.75x

Economists call f “marginal £ Thus if C(x) (respectively, R(x), P(x)) is the (total) cost of
(respectively revenue from, profit from) making x units of some product, then:
e C’(x) is the marginal cost per unit.
o Itis approximately the additional cost incurred by making one more unit of the
product.
o The exact additional costis C(x + 1) — C(x).
o The marginal cost would be exactly the additional cost if the tangent line and the
cost curve were the same.
o However, since the tangent line is close to the curve near the point of tangency,
the marginal cost is approximately the additional cost of another unit.
e R’(x) is the marginal revenue per unit. Remarks similar to those for C’(x) also apply
here.
e P’(x) is the marginal profit per unit. Once again similar remarks hold.

Economists also talk about ‘“average’ cost per unit, C (x) = C(x)/x (and average revenue and
average profit). Average cost is the cost per unit of all x units made, but marginal cost is
(roughly) the cost of the last unit made (or of the next one to be made).

Now profit is related to cost and revenue by the formula P(x) = R(x) — C(x). Accordingly,
since the derivative of a difference is the difference of the derivatives, it follows that P'(x)=
R’(x) - C'(x), that is, marginal profit = marginal revenue — marginal cost. A similar
relationship holds between average profit, average revenue, and average cost.



Examples:

e 11.5.7.
e 11.5.19.
e 11.5.17.

e 11.5.29.

(Show slide - or draw graph onboard)a. B b. C c. C
Demand curve: p =20000/q™° (200 < q <800) with p =pricein $/Ib and q =
quantity sold in lbs/month.
a) What price leads to a demand of 400 lbs/month?
p = 20000/400™ = 20000/8000 = $2.50/1b
b) What is monthly revenue as a function of q?
R(q) = pq = q(20000/q"*) = 20000\q
¢) What are revenue and marginal revenue at q = 400 Ibs/month?
R(400) = 20000/Y400 = $1000/month = monthly revenue when p =
$2.50/1b (and q = 4001b/month)
R'(q) = (-0.5)(20000)/q", so R'(400) = -10000/8000 = —$1.25/1b. When
q = 400 Ibs/month, the marginal revenue is —-$1.25/1b
d) Increasing q decreases revenue according to (c). So to increase
revenue, they should decrease q, which can be accomplished by
increasing the price.

C(x) =-0.001x> + 0.3x + 500 (in $), so

o marginal cost = C'(x) = -0.002x + 0.3 (in $/unit)

o average cost = C (x) = C(x)/x = —0.001x + 0.3 + 500/x (in $/unit)
a) As x increases, C'(x) decreases

b) As x increases, C (x) decreases
¢ At x=100,
C'(x) =-0.002(100) + 0.3 = 0.1
C (x) =—0.001(100) + 0.3 + 500/100 = 5.2
Hence, marginal cost < average cost at x = 100 units/day.

Marginal product per senior professor (i.e., additional profit in $ from
adding another senior professor) is 50% higher than marginal product per
junior professor. Junior professors are paid half what senior professors
are paid. University’s salary budget is fixed. To maximize profit, how
should the university adjust its staffing?

Answer: If the marginal products apply only at the current staffing
levels, they should reduce the number of senior professors
and replace each one terminated with 2 junior professors.
This will leave salary essentially unchanged, but total
productivity will go up by half a junior professor’s
productivity. If the given relationships hold for all staffing
levels, they should replace each and every senior professor
by two junior professors.

Let’s look ahead a bit. Suppose we want to “optimize” (maximize or minimize) some
differentiable function. Clearly, the tangent to the curve will be horizontal at a maximum or
minimum point on the graph. The tangent is horizontal if and only if its slope (which,
remember is the derivative of the function) equals 0. Such points are called “stationary
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points.” Although maxima and minima of differentiable functions must be stationary points,
the converse is not true:

e Consider f(x) =x" at the origin. Since f(x)> 0 if x>0, and f(x) <0 if x <0, clearly
(0,0) is neither a maximum nor minimum point of the graph. However, f'(x) = 3x%, so
£(0)=0 and (0, 0) is a stationary point! (it is called a “point of inflection.””)

So one way to find maxima and minima is to take derivatives and set them to 0. For
now, looking at the graph will enable us to distinguish between maxima, minima, and
inflection points. Later we’ll see how to do this “analytically,” without drawing
graphs.

V- Derivatives of Products, Reciprocals, and Quotients

We have already seen several differentiation rules:
1. If c is any constant, then dc/dx = 0
2. If n is any constant, then dx"/dx = nx" !
3. If f(x) and g(x) are differentiable functions, then so are f(x) + g(x) and
(d/dx)(f(x) £ g(x)) = (f + g)’ (x) = f'(x) £ g'(x)
4. If f(x) is a differentiable function and c is any constant, then
(d/dx)(cf(x) = (cf)’(x) = cf'(x), for any constant ¢

A. Products — how do we differentiate products like f(x)g(x)?
Example 1: h(x)=02x+3)x-7)?
One way of course is to multiply out to get h(x) = 2x* - 11x — 21, and just use
rules 3 and 4 toget h'(x) = dh/dx = 4x - 11.

Example 2: x> - 2x% + 7 - 3/x)(x* - 6Vx + 3x + 41\x)
Multiplying out would be exceedingly tedious. Is there a formula for

(d/dx)(f(x)g(x)) in terms of the functions and their derivatives? Looking at rules
(3) and (4), you might surmise that

(d/dx)(f(x)g(x)) = f'(x)g'(x)

but you’d be WRONG! Returning to example 1, f(x) =2x + 3 and g(x) =x-7,so
f(x)g’(x) = 2x1 = 2, but (d/dx)(f(x)g(x)) = 4x — 11.

So what is the RIGHT way? Consider the picture below:

11



>g(x)
? g(x + AX) = g + Ag
f(x)

¥

———
fx + AX) = f + Af

Think of the product f(x)g(x) as the area of a rectangle. We want to know how

that area changes as x changes.

AgQ
Af

I

f(x+ Ax)g(x + Ax) —f(x)g(x)  gAf +fAg + AfAg B £+f£+%
Ax Ax 8 Ax Ax Ax
So now we let Ax > 0. The first term goes to f'g and the second to fg’, but what
about the third? It goes to 0, because the numerator — being the product of two
small terms goes to 0 faster than the denominator does! This gives us
differentiation rule 5:

S. If f(x) and g(x) are differentiable functions, then so is f(x)g(x) and
(d/dx)(f(x)g(x)) = (fg)'(x) = F(x)g(x) + g'(Xf(x)=f'g + fg’

. Reciprocals —we want to find out how to differentiate a quotient, f(x)/g(x). A cute
way to find out what that rule is applies the product rule twice

e once to find the derivative of 1/g(x), the reciprocal of a function, and

e again to find the derivative of f(x)[1/g(x)] = f(x)/g(x)

Notice that 1 = g(x)[1/g(x)], provided g(x) # 0 (in which case 1/g(x) isn’t defined,
so surely it doesn’t have a derivative! So, let’s use the product rule and
differentiate both sides of that equation:

d 1 , 1 d 1
(d/dx)(1) =0 = &[g(X)(@D— g (X)(EKS}‘ &(@}(X)

Now let’s solve for %[&] % %}(X) - _g,(X)Eg_(IX—)} *
d( 1) -gx
dx| g(x) | (g(x))

So now we have our next differentiation rule:

12



6. If g(x) is differentiable and g(x) # 0, then so is 1/g(x) differentiable, and

da( 1) -g&®
dx|g(x) ) (g(x))’

C. Quotients — OK, let’s use rules 5 and 6 to see how to differentiate quotients
(suppressing some of the x’s):

i f(x)
dx| g(x)
7. If f(x) and g(x) are differentiable and g(x) # 0, then so is f(x)/g(x)
differentiable, and

Examples:

12.1.27.

12.1.25.

d 1 f'x) g | fg-fg’
f +f ~f =
walrofn - rofan oalaa o[l

4 (fx) )_ f'(x)g(x) - f(x)g'(x) _ fg—fg’
dx | g(x) (g(x))’ g’

y=&/32+32K) K +1), y=(1/32-32) +1) + (x/32 +
3.2/x)(2x)
y = 2x" - %)% = 2™ - xH)(2x" - %P, ¥ = 2(x*° - 2%)(2x*° - x?)

y = 1/(x% - 3vx), ¥ =-(3x% - 32Vx))/(x° - 3Vx)?

12.1.43.

12.1.63.

12.1.67.

y=@x+1)/x-1), y = [(1/2Vx)(Vx - 1) - (Vx + DA/2V0) (VX - 1)%= —

V[Vx(\x - 1)7]

x months after introducing a product, monthly sales are S(x) =20x -

x” hundred units at a price per unit of p(x) = 1000 — x> dollars, and

monthly revenue is R(x) = S(x)p(x). At x =5, find and interpret S’,

p’sand R’

o §"=20-2x=10 at x=5: after 5 months, sales are increasing by 1000
units/month

o p’'=-2x=-10 at x=5: after 5 months, the price is decreasing by
$10/unit/month

o R’=8p+Sp’=10(975) + 75(-10) = 9000 at x =5: after 5 months, monthly
revenue is increasing by $900,000

t months into the year, a bus company has monthly costs of C(t)=10000

+t* dollars and monthly ridership of P(t) = 1000 + t* passengers. After 6

months how fast is cost/passenger changing?

o Cost per passenger = C(t)/P(t), so its derivative is

(C’P - CP)/P?* = [2t(1000 + t*) — (10000 +2t2)(2t)]/[1000 + 217 = =2t(9000)/ [1000 +

t’]
Plugging in t = 6, we get —108,000/1036 = —0.1006, so it’s
decreasing by about 10¢ per month.
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VI- Composite Functions — the ‘“Chain Rule”

We saw last time how to use the product rule to find the derivative of y = (2x*° — x?)
But what about y = 2x*° - x*)1%? Multiplying that out would be exceedingly tedious!

And how about y =+/2x%° —x> ? That one we can’t even multiply out.

What those two examples have in common is that they first compute the function g(x) =
2x%% — x* and then they apply some other function to : in the first example f(g(x)) =
[g(x)]m, and in the second f(g(x)) = \/g(x). Such functions of functions are known as
“composite functions.”

Examples:
e f(x)=x*+2x-3, g(x)=x"
flgx) = f(x)) = ()" + 2x° - 3
gf(x)) = g(x" +2x - 3) = (x" + 2x - 3)° # f(g(x))
As this example shows, you have to pay attention to the order of composition
o f(t) = 1/(t + 3), h(s) = V(6/s)

f(h(s)) = f(\(6/s)) = 1/(N(6/s) + 3), h(f(t) = h(1/(t + 3)) = 1/(t6+ 3 =+/6t+18

e qr)=r’+3, p(w)=(w-3)"

q(p®) = q(x - 3)™) = (x- 3> +3=x
P(x) =px’+3)= " +3-3)" =x
Functions that “undo” each other are called ‘“inverse functions.”’

. 'We’ll only consider cases where both f(x) and g(x) are differentiable functions. Instead
of writing f(g(x)), we’ll simplify things by defining a new variable u = g(x), and looking
. at f(u).

. We know that f'(u) = df/du tells us how f changes when u changes. Loosely

~ speaking, it’s the number of units that f changes per unit change in u. But, since u
depends on x, when we change x by one unit, u changes by u’ = du/dx units. If we
. put this all together, changing x by one unit changes u by u’ units, and for each of
" those, f changes by f' units. Thus we have differentiation rule #8 — the “chain rule’’:

i(f ()= i(f () xiu(x) or, in a form that’s much more intuitive, ﬁ = ﬁ><d—u .
dx du dx dx du dx

Although df/du and du/dx are emphatically NOT fractions, they sure look like they
. behave like fractions in the chain rule! On occasion you may also see the chain rule
. written as

9 fe) =g’ ()
dx

UFRGS
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df _du,

That says the same thing, but is nowhere near so easy to remember as — = — x— !
dx du dx
Examples:
e fx)=x*+2x-3, gx)=x"=u

(d/dx)f(u) = (df/du)(du/dx) = 2u + 2)(3x%) = (2x°> +2)(3x%) = 6x° + 6x°
Let’s check that directly: f(g(x)) = (x°)* +2x° -3 =x%+2x° — 3, and

(d/dx)( x5 + 2x3 - 3) = 6x° + 6x°

y =0 5(2x°f - xz)m, so y' = 10(2x°5 —x*)°(x%% - 2x) [Here f(u) =u'® and u=
2x ° —x7]

12.2.15.

12.2.25.

12.2.37.

f(x) = 2x* - 2)7, so f'(x) = -(2x* - 2) *(4x).
Check this via the reciprocal rule: (d/dx)(1/g(x)) = —g'(x)/[g(x)]*
f(x) = (1 -x)%, so f'(x) = 0.5(1 - x»)**(2x) = x(1 - ¥*)**

f(z) = (sz , so f'(z) =
1+z

z
3
(1+z2

12.2.55.

12.2.65.

jz A+ z*)(1) - 2(22) :3( z jz -2
(1+22) 1+2* )| (1+22f

Average commission per stock trade is c(u) = 100u® — 160u + 110
($/trade), where u = fraction of trades done online. In 1/1/98, the

fraction of trades done online was given by u(t) = 0.42 + 0.02t, where t =
months since 1/1/98. At what rate was the average commission per trade

changing on 9/1/98?

dc/dt = (dc/du)(du/dt) = (200u — 160)(0.02). On 9/1/98, u = 0.42 + 8(0.02)
= 0.58, so dc/dt = (200(0.58) — 160)(0.02) = —0.88, average commission per

trade was decreasing by $0.88/month
A circular oil slick’s radius is growing at a rate of 2 miles/hour. How
fast is the area of the slick changing when the radius is 3 miles?

A =7, so dA/dt = (dA/dr)(dr/dt) = 2nr(2) = 12, i.e., increasing by
about 37.7 square miles/hour when r = 3 miles.

15



Inverse functions — we saw that q(r) =r* + 3 and p(w) = (w — 3)*5 were inverse
functions, in the sense that they ‘“undid” each other — p(q(x)) =x and q(p(x)) =x. We
denote the inverse function of f(x) by f~ !(x). NOTE: _this is not the same as )] =
Uf(x)! How is the derivative of f(x) related to the derivative of f(x)? Let’s use the
chain rule to find out:

With u=f 1(x), we have f(u) =x,s0 1=1f"(u) % =f'(u) %f 7(x), and hence

if‘l(x): ,1 _ 1
dx f'la) (£ (x)

Another way to write this is % = % , SO once again derivatives, which are not
du

fractions, nonetheless behave like them!

Applying this to our example, with f(x) =x* +3 and f(x) = (x - 3)%5, we get

d _ d ., _ 1 _ 1
dXf(x)—Zx and dxf (x) ) 20=3

e which you can check by differentiating

(X _ 3)0.5. »

16



VII- Implicit Differentiation

Consider the graph of x> + y* = 25:
e It’s a circle of radius 5, centered at the origin.
* What’s the equation of the line tangent to the circle at (x,y) = (3,4)? How
about at a generic (xo, yo) on the circle?
* From elementary geometry, we know that the tangent to a circle at any point
on the circle is perpendicular to the radius to that point.
¢ Recall that two lines, with slopes m; and m, are perpendicular when mym, =
-1.
e The slope of the radius to the point (x, yo) is of course m = yy/xo.
e Hence the slope of the tangent at that point is —xy/yo, and the equation of the
tangent is
Y—Y - _ X_o
X—X, Yo
So at (3, 4), the tangent line is (y — 4)/(x - 3) = -3/4, or y = —(3/4)x + 25/4

But what about the slope and equation of the tangent to the curve y> +2y*—10x =6 at
. (1,2)? Here we don’t have geometry to come to our rescue! We’ll get back to this
 example, but let’s look at the circle a bit more.

~ We could solve the equation of the circle for y to get:
y= + 25 - x2) on the top half of the circle, and
y= - (25 - x*) on the bottom half of the circle
Hence
(dy/dx) = (1/2)(=2x)N( 25 - x%) = —x/y on the top half of the circle, and
(dy/dx) = —(1/2)(—2x)/\/( 25 -x%) = —x/y on the bottom half of the circle

- This won’t work for y* +2y* - 10x =6 at (1, 2), because we can’t solve explicitly for y =
- f(x). But note that the equation of the circle (and of our more complicated example)

- implicitly defines y as some function of x. And that’s all we need — because now we can

. apply the chain rule.

e x’+y*=25,50 2x + 2y(dy/dx) = 0 and hence dy/dx =-2x/2y = —x/y, and surely
this was a lot easier than solving for y as an explicit function of x and then
differentiating!

e ¥y +2y’-10x=6,s0 3y*(dy/dx)+ 4y(dy/dx) - 10 =0 and hence dy/dx = 10/(3y* +
4y), provided y#0 and y #—4/3 (where dy/dx blows up). So, at (1, 2):

the tangent has slope 10/20 = 0.5
and equation (y-2)/(x-1)=0.5,0r y=0.5x + 1.5

What about at the point (0.5, -1)?
dy/dx = 10/(-1) = -10, so the tangent has equation y =-10x - 6

17



Examples:

12.4.1.
- 2/3x)
12.4.5.

12.4.19.
or

12.4.35.
(1, _2)
12.4.49.

2x+3y=7,s0 2+3dy/dx =0 or dy/dx =-2/3 (which is obvious from y = 7/3

2x + 3y =xy, so 2 + 3dy/dx = x(dy/dx) +y or dy/dx = (y -2)/(3-x)
Please note that this is a lot easier than solving for y = 2x/(x - 3) and
then differentiating: y’ = [(x — 3)(2) - 2x(1))/(x - 3’ = —6/(x - 3)>. 1
leave it to you to verify that (y - 2)/(3 - x) = -6/(x — 3)%.

P’ - Pq =5p’q’, so 2p(dp/dq) - p - q(dp/dq) = 5(p*(2q) +2p(dp/dq)?),

dp/dq = (10p’q + p)/(2p - q - 10pq?)
4x” +2y* =12; find dy/dx at (1,-2): 8x + 4y(dy/dx) = 0, so dy/dx = —2x/y =1 at

C, the cost in $ of building a house, depends on k and e, the number
of carpenters and electricians used. Specifically, C = 15000 + 50k* +
60e%. If C=$200,000 and e = 15, find and interpret dk/de.

- _ 2
At e=15,and C =200,000,k = \/ =00000 15:;)0 01T ) V3430 =58.566

100k(dk/de) + 120e = 0, so dk/de =-1.2¢/k, and at e = 15
dk/de = -1.2(15)/58.566 = —0.307 carpenter/electrician

This means that an electrician can be replaced by 0.307 carpenters and the cost
of building the house will still be $200,000.

APPLICATION: Rates of substitution
| Suppose that the production of widgets is governed by a production function
that specifies output in terms of inputs.
For simplicity, suppose there are only 2 inputs:

o “labor” (L, measured in, e.g., number of employees) and

o ‘“capital” (K, measured in, e.g., $ invested in plant and equipment)
For any specified level of production (P, in units of output), there may be many
possible combinations of L and K that achieve that level of output.
For a given specified level of production, the production function defines L as
an implicit function of K (and vice versa).
The derivative dL/dK is called the ‘“marginal rate of substitution of labor for

capital.”

j Our last example involved such a marginal rate of substitution (of carpenters for
electricians).

. Economists often use a “Cobb-Douglas production function”

P=cL%K! ¢

 where ¢ and o are constants. In what follows, we’ll assume c = 1 — this just
amounts to redefining the units of output. Note that if we multiply both L and K

" by a constant factor A (called a “scale factor”), then the output P gets multiplied by
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the same factor (because A*A" ~® = A). Economists say the “production function has
constant returns to scale.”

Differentiating with respect to K, we get

0 = L1 - o)K™ + K4~ 9oL Y(@L/d/K), so S = (1=« [L (and
dK o K

= (= ]5)

This has the interesting property that the rate of substitution depends only on the
proportion of labor to capital and not on their levels, i.e., if we double both the labor
and capital inputs, the level of production will be doubled, but the marginal rate of
substitution won’t change.

Example:
e 12.4.53. P=L"K", with P = daily production of CD’s, L = # of workers, K =
annual expenditures ($). Find dK/dL. when P =20000 and L =100
(and K = (20000/100°%)** = $56,568,542)

dK/dL = -(0.6/0.4)(56,568,542/100) = —$848528/worker
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VIII- Maxima and Minima

In all sorts of practical problems, we have some quantity which we wish to optimize,
that is, either to maximize (for instance output, profit, grades) or minimize (for
instance input, cost, time). We can use derivatives to help us find optima.

Interval notation and “open’’ and “closed’’ ends of intervals

(a, b) = {x | a <x < b} - both ends open (end points not included)
[a, b] = {x | a < x < b} - both ends closed (end points included)
[a, b) = {x | a < x < b} - closed at bottom, open at top

(a, b] = {x | a <x < b} - open at bottom, closed at top

(a, +0) = {x | x > a}

[a, +0) = {x | x > a}

(=0, b) = {x | x < b}

(—e0, b] = {x | x < b}

(o0, +00) = the set of all possible values of x

Suppose we have a function, f(x), defined on some interval [a, b], and we wish to find
its maxima and minima (optima or extrema) on that interval. We distinguish

| between:

a global (or absolute) maximum, x, — where no x in the interval has f(x) >
f(xo), and

a local (or relative) maximum, xo — where x, is a global maximum if we
consider only points “close to x,”

. The picture below (slide attached) illustrates the various possible ways extrema can

occur:

0, 0.3, and 1 are local minima (and there is no global minimum)
0.15, 0.4, 0.65, and 0.85 are local maxima ( and 0.85 is the global maximum)

' From this picture, we see that extrema can occur at

(closed) endpoints of intervals (like 1)
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points where the derivative exists and equals 0 (“‘stationary” points, like 0.15 and

0.3)

points where the derivative fails to exist (“‘singular’’ points), either because f(x)
is discontinuous (like 0.65) or because f(x) has a kink (like 0.4 or 0.85)

points where f(x) is discontinuous (like 0 or 0.65)

We saw that f(x) is increasing (respectively, decreasing) instantaneously at points
where f'(x) > 0 (respectively, f'(x) <0). When f(x) = 0, at that instant f(x) is neither
increasing nor decreasing, and we say that f(x) is “stationary” at such a point.

For the most part, we’ll be looking at functions that are continuous and differentiable,
so we’ll look at stationary points and endpoints when looking for extrema. But
remember, even apparently nice functions, like x> on [-2, 2], can turn out to be

kinky!

Examples:

>0

13.1.1, 3,5, 7, 9 — see pictures
e 13.1.23. g(x)=x"-12x on [4, 4]

g’x)=3x*-12=0 at x+2.

Note: g’(x) >0 on [4,-2) and (2,4] andis <0 on (-2, 2).

Also g(x) =-16,16,-16, and 16 at —4,-2,2, and 4.

Hence g(x) has absolute minima at x = -4 and +2, and absolute

maxima at x =-2 and +4.

g(t) =t"/4 - 26%/3 + /2 on (oo, +0)

gt =t -2 +t=t(*-2t+1)=t(t-1)>=0at t=0 and 1

Note: g'(t) <0 on (—o, 0) andis >0 on (0, +) (and strictly > 0, except at

Obviously, g(t) gets big if t is large and negative or large and positive.
Hence, g(t) has an absolute minimum at t = 0.

f(t)=(E+ D/ -1) on [-2,-1) U (-1,1) U(1,2]

(1) = [(* - D2t) - (F + DO - 1)* =—4t/(* —1)> =0 only at t=0.
Note: f'(t) blows up at t =1, but otherwiseis >0 if t<0,andis <0 if t

f(+2) =5/3 and f(0) =-1

Hence, f(t) has local minima at t =12, and a local maximum at t=0. It has
no global maxima or minima.
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Maxima and Minima

To optimize, we look at (DRAW PICTURES!):

A. End points. If f(x) is differentiable, then
1. x>a: f(a*) >0 for a minimum, f'(a*) <0 for a maximum
2. x<b: f(b") <0 for a minimum, f( b") >0 for a maximum

B. Stationary points. If f(x) is differentiable, then f'(x) =0 and
1. f(x)<0 and f(x*) >0 for a minimum

2. f(x)>0 and f'(x*) <0 for a maximum

3. an “inflection point” if f doesn’t change sign

C. Singular points. If f continuous at x and differentiable elsewhere, then the
tests in (B) hold in this case as well.

Examples:

13.2.5.

13.2.11.

minimize x* +y® with x + 2y=10
Since we don’t yet know how to solve optimization problems with 2
variables, solve the constraint to get x = 10 — 2y, and plug back into the
objective to get a one-variable optimization problem:
minimize (10 - 2y)? + y?
Take the derivative and set it to 0: 2(10 — 2y)(-2) + 2y = 0 = 10y — 40
(%, y) = (2, 4) is the only stationary point
Check for minimum: 10y -40<0 at y=4" and 10y-40>0 at y=4*
(Could we have eliminated y instead of x? Yes. I leave it to you to verify
that we’d have obtained the same results.)

Fencing on E&W costs $4/ft, on N&S costs $2/ft. Find the largest fenced
area with an $80 budget.

maximize xy with 2(4x +2y) =80 (or 2x +y = 20) (and, implicitly: x,y >
0, x <10,y <20). Again we solve the constraint for y = 20 — 2x, and plug
back into the objective to get:
maximize x(20 - 2x) = 2(10x - x°)
Take the derivative and set it to 0: 2(10 —2x) =0
(x,y) = (5, 10) is the only stationary point
Check for maximum: 10-2x>0 at x=5 and 10-2x<0 at x=5"
So the largest possible area to fence is 50 square feet, with a 5’x10’ plot.

e 13.2.17. p=500,000/q" = price in $/Ib when q pounds of tuna are sold in a month.
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maximize revenue = pq = 500,000/q"°= r(q) with q>5000.

r'(q) = —250,000/q15 <0 for all q>0,soas q increases, r(q) decreases.

Hence r(q) is maximized at q = 5000 pounds, at which point p =
500000/5000'° = $1.41/1b and r(q) = pq = $7050/month.

13.2.23 p =1000/q">, where p = price per headset in $ and q = weekly sales of
headsets;
total cost per headset is $100
a) profit = n(q) = pq - 100q = 1000q"” - 100q

T(q) =700 -100=0 > " =7 > q = 7>**% = 656.14, or 656 to the
nearest whole unit. (Note that '(q) switches from positive to
negative at q = 656, and there are no other stationary points, so
our point is indeed a global maximum. At this level, T(656) =
1000(656"”) — 65600 = $$28,120.

b) The charge per headset is p = 1000/656" = $142.86, or $143 to the
nearest $

13.2.31. maximize LWH, with H=W and L + W + H = 62 inches. Solving for L =62
— 2H and plugging back in, we want to maximize volume = V(H) = (62 — 2H)H*
= 62H” - 2H°, with the physical constraints that 0 < H < 31 (because H = W).

VH)=124H-6H*=H(124-6H)=0>H=0 (obviously a local
minimum) or H = 124/6 = 20.66667 inches (so W =20.66667, and so is
L). Clearly V’ changes sign from positive to negative at H = 124/6,
and nowhere else does V’ =0, so we have a local maximum which is
also a global maximum.

The resulting maximum volume = 20.66667° = 8827 cubic inches, or
about 5.11 cubic feet.

13.2.45. If x = the number of copies of a graphing program sold to a customer,
then the manufacturer’s revenue in dollars is 500Vx. Production cost
is 10000 + 2x dollars, so profit on an order for x copiesis 7(x) =
500\x — 10000 — 2x.

Average profit (or profit per copy) is A(x) = T(x)/x = 500/A\x — 10000/x —
2. To maximize average profit: A’(x) = -250/x2 + 10000/x” = (-250Vx +
10000)/x* = 0 > Vx = 10000/250 = 40, or x = 1600 copies, the only
stationary point. Note that the derivative goes from positive to negative
at x = 1600, so we do indeed have a local and global maximum.

At x =1600, A(x) = 500/40 — 10000/1600 — 2 = $4.25 per copy. Marginal
cost is T'(x) = 250/x — 2, so at x = 1600, 7'(x) = 250/40 — 2 = $4.25 per
copy. This is not a coincidence.
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e 13.2.53. With 50 + x apple trees in an orchard, the annual yield per tree is 100 —
x pounds. What size orchard maximizes total yield?

maximize (50 + x)(100 - x) = y(x)

y'(x) = (50 + x)(-1) + (100 - x)(1) =50 - 2x =0 > x =25 more trees.
Since y’(x) goes from + to — as x crosses 25, we do indeed have a
maximum.
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IX- Second Derivatives & Related Rates

Since f(x) is itself a function of x, we can ask how it changes as x changes — that is,
what is the derivative of f'(x)? This quantity is called the “27 derivative of f(x) and is
variously denoted by:

d*£(x)

, 7 dzy
f’(x),y 9 —dX—Z’and S 2

dx?’
(also, we now call f'(x) “the 1% derivative of f(x).)

What does f”(x) tell us? Does it have any applied interpretation? Consider the
example of

f(t) = distance in miles traveled in t hours
f'(t) = rate at which distance is changing = speed (or velocity) at time t
f’(t) = rate at which speed is changing = acceleration at time t

In general. what does f”(x) tell us?

1. If £7(x) > 0, then f'(x) (the slope of the curve) is increasing as x increases, i.e.,
the curve is bending upward. DRAW PICTURES of f” >0 when f >0 and
when f” < 0. We say that the curve is “concave up” or ‘“‘convex.”

2. If £’(x) <0, then f'(x) (the slope of the curve) is decreasing as x increases, i.e.,
the curve is bending downward. DRAW PICTURES of f’ >0 when " > 0 and
when f’ < 0. We say that the curve is “concave up’’ or just simply “concave.”

3. A point at which f”(x) changes sign is called an ““inflection point.”

a. Consider f(x)=x> at x=0. (DRAW A PICTURE!)
f(x)=3x"=0 at x=0,>0 atx#0 > f(x) is always increasing
<0 at x=0 (i.e., if xis close to 0, but negative)
f'"x)=6x\ =0 at x=0,,and >0 if x>0
>0 at x=0" (i.e., if x is close to 0, but positive)
This curve has a “horizontal point of inflection” at x =0

b. Consider f(x)=x"> at x=0. (DRAW A PICTURE!)

f'(x) = (1/3)x*?, which blows up at x =0 at x =0, but whichis >0 atx# 0
2 f(x) is always

increasing
<0 at x=0
f'(x) = (-2/9)x < =0 at x=0,,and >0 if x>0
>0 at x=0"

This curve has a “vertical point of inflection” at x =0
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Second Derivative Test for Optima:

If f(x) is “twice differentiable” (i.e., has a 1st and 2™ derivative), and f'(xg) = 0, then
1. xo is a relative minimum if £”(xo) > 0 (because f'(x) changes from - to + at
Xo)
2. xg is arelative maximum if f”(x¢) < 0 (because f’(x) changes from + to — at
Xo)
3. The test fails if ’(x) =0 (Examples: x°, x*, and —x* at xo = 0)

This is useful in curve sketching:
Recall that we looked at f(t) = (* + 1)/(t*-1) on [-2, 2]
We saw that
e f(+2)=5/3 and £f(0)=-1,
o f(t)=—4t/(t? - 1),
e f(t) blows up at t =1, but otherwiseis >0 if t<0,and <0 if t>0
@

f(t) has local minima at t = +2, a local maximum at t = 0, and no global maxima or
minima.

‘ 2 N2/ z_ 2 >0 if [t|>1
. What about curvature? f”(t) = (£ Sl CUdue =D = L ' I l

t>-n* t*-1> |[<0 if |t|<1

(convex)

(concave)

f(t) = ( + 1)/(%- 1)

f(t)
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Related Rates: Sometimes we have several quantities which are related to each
other by some functional relationship, with each related to some other quantity
(frequently time). We know the rate of change of one and we want to find the rate
of change of the other. Such questions involve “related rates.” They involve no
new theory, but just apply what we’ve seen before, and usually involve implicit
differentiation. Let’s look at some examples in section 13.4.

9. The area of a circular sunspot is growing at a rate of 1200 km?/s = dA/dt.

a) How fast is the radius growing when it (the radius) is 10* km?
‘ A =%, so dA/dt = 2ar(dr/dt) > dr/dt = (1/2ar)(dA/dt) = 1.2x10°/21(10%) = 0.019 km/s
- =19 m/s

13. The average cost of making x CD players/wk is C(x) = 150000/x + 20 + 0.0001x.

Suppose x is now 3000 units/week and %t = 100 units/week/week. What is % 2

% = —ISOOOOX‘Z(;—T +0.0001 %ﬁ = (-150000/3000° + 0.0001)(100) = -1.6567

i.e., average cost is decreasing by $1.6567/player/week

17. D(t) = weekly sales of lemonade at time t (currently at 50 cups/week)
P(t) = price of lemonade at time t (currently at 30¢/cup)
dD/dt = -Scups/week/week

If raising price does not affect demand, by how much must you raise your price to
keep revenue constant?

R(t) =D®)P(t) = 0= D(t)[dP/dt] + [dD/dt]P(t)

> ((11}: ( IdD) = —(30/50)(-5) = 3, so increase prices by

3¢/cup/week

- 23. One ship is 40 miles north of Montauk and sailing north at 20 mph. A second is 50
miles east of Montauk and sailing east at 30 mph. How fast is the distance between
the ships changing? Is it increasing or decreasing?

Let their positions be N(t) and E(t), with D(t) being the distance between them. By
the Pythagorean Theorem, DO = IN®P + [E®)]- Hence, dropping the
common factor of 2:

dD(t) dN(t) dE(t)

D(t)—2 = N(t) + E(t)
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dD(t) _ 40(20) +(50)(30)

So at the current moment,
dt 40? +502

= 35.92 mph > 0; their distance

is increasing.

27. x(t) = number of workers at time t
y(t) = daily operating budget at time t (in $/day)
P(t) = number of automobiles produced per year = 10x*y*’

At the moment, P = 1000 cars/year and x = 150 workers (so y = $84.05/day).
If dx/dt =10 workers/year, by how much will the daily operating budget change if
output is kept constant?

0 = 10[0.3(y/x)(dx/dt) + 0.7(x/y)(dy/dt)]
‘ - dy/dt = —(3/7)(y/x)(dx/dt) = —(3/7)(84.05/150)(10) = —2.40 (i.e., decrease by
$2.40/day/year)
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X- Logarithmic & Exponential Functions

Let’s go back and look at two very important classes of functions — logarithmic and
exponential

Laws of exponents: let b & ¢ be any positive real numbers, and x & y be any real numbers (+,

0, or-)
Law Example
1. b’ =b** 10°10° = 100(1000) = 100,000 = 10°
2. bbb’ =p** 25/2% = 64/4 = 16 = 2°
3. Corollary: b’ =b"b* =1 10°=1, 2°=1
4. Corollary: b™=b%b*= 1/b™ 52=1/5=1/25 = 0.04
5. (b")ﬁy =b¥ (32 =272=729=3° (3)°=9° =729
=3
6. (bc)*=b*c* 23)F = 6° = 216 = 8(27) = 2°3°
7. Corollary: (b/c)* = b*/c* (12/4)° = 3° = 27 = 1728/64 = 12%/4°

An exponential function is a function of the form f(x) = Ab*, where A is any constant

 and b is a positive constant. If you experiment a bit with different values of A and

b, you quickly discover that (DRAW PICTURES!):

e b=1> f(x)=Aforall x

* b>1&A>0 > f(x)>0forall x,and goes to 0 as x goes to —oo, to +oo as X goes
to +oo

* b<1&A>0 > f(x)>0forall x, and goes to + as x goesto —o,t00 as x goes
to +oo (not a surprise: if b <1, then 1/b > 1, and Ab*= A(1/b)™)

e A <0 just flips the previous two cases around the x-axis

. Let’s restrict ourselves to the case where A > 0.

| e If b>1,then f(x) increases as x increases. We say that f(x) is growing
exponentially.

e If b<1,then f(x) decreasesas x increases. We say that f(x) is decaying
exponentially.

' Exponential functions are useful in describing all sorts of natural phenomena
involving growth and decay. A common business growth example is that of
- compound interest. If I put $1000 in a bank account with a 5% annual interest rate,
then:

e after 1 year, I have 1000(1.05) = $1050 in the bank

e after 2 years, I have 1050(1.05) = 1000(1.05)* = $1102.50 (because I earn

interest on the earlier interest as well as on the “principal”
e after n years, I have 1000(1.05)" dollars in the bank

If a battery sits around in an unused portable radio, it loses charge at the rate of 2%
- per month. If its initial charge will provide 10 continuous hours of playing time, then

29



o after 1 idle month, it will provide 10(0.98) = 9.8 continuous hours of playing
time

e after 2 idle months, it will provide 9.8(0.98) = 10(0.98)* = 9.604 continuous
hours of playing time

e after n idle months, it will provide 10(0.98)" continuous hours of playing time

Returning to compound interest, banks typically compound interest more frequently
than annually. If a very generous bank pays interest at a nominal 100% annual rate
and it is compounded:

annually, then at the end of a year, $1 grows to (1 + 1)’ = $2.00

semiannually, then at the end of a year, $1 grows to (1 + 1/2)> = $2.25
quarterly, then at the end of a year, $1 grows to (1 + 1/4)* = $2.44140625
monthly, then at the end of a year, $1 grows to (1 + 1/12)'? = $2.61303529
daily, then at the end of a year, $1 grows to (1 + 1/365)°® = $2.71456748

every second, then at the end of a year, $1 grows to (1 + 1/31,536,000)>'°36.000 —
$2.718281781

So more frequent compounding is better, but after a while, it really doesn’t help in

~ any significant way. In the limit, if they compound continuously, you’ll have

- $2.7182818284590 at the end of one year.

' Mathematicians denote lim [1 + l] by e =2.7182818284590.... This is one of those
n

n—oo

~ incredible numbers like 7 that just seems to pop up all over the place.

. General interest formulas:
| e P =initial amount (“principal’’, or “present value’)
n = number of periods/year
r = interest rate per year (so r/n = interest rate per period)
t = number of years
F = final amount (or “future value”) after t years
=P(1 + r/n)™ with periodic compounding
=Pe™ with continuous compounding

- Examples

e 10.2.49 Find an exponential function, y = Ab*, through (1, 3) and (3, 6)
3=Ab and 6 = Ab’
Dividing these gives us 2 = 6/3 = Ab*/Ab = b*
So b=v2 and A =3A2 D> y=(GBAN2)(V2)* = 2.1213(1.4142%)

e 10.2.53 Find an exponential function, y = Ab*, through (2, 3) and (6, 2)
3=Ab’ and 2 = Ab°
Dividing these gives us 2/3 = Ab%/Ab? = b*

i So b=(2/3)"*=0.9036 and A = 3/0.9036> = 3.6742 > y=

3.6742(0.9036™)

e 10.2.59 r=4.15%,P=£5000,t=5,n=1. Find F to the nearest £.

F=P( +r/m)™ =5000(1.0415)° = £6127
What if interest was compounded continuously?
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F =Pe™ = 5000e°**" = £6153
e 10.2.61 How much would have been needed at start in 10.2.59 to get £250,000 in 5
years?
F =P(1 + r/n)™: 250000= P(1.0415)%, so P =250000/(1.0415)° =
£204,006
What if interest was compounded continuously?
F =Pe™: 250000 = Pe’**1% 50 P = 250000/e°*%1 = £203,153
e 10.2.69 After taking an aspirin, a patient absorbs 300 mg into her bloodstream.
Aspirin has a half life of 2 hours in the bloodstream (i.e., 50% is removed
every 2 hours). How much is left after 5 hours?
300(0.5)°* = 53.03 mg
e 10.2.79 Global Warming: According to a UN report, atmos 0pherlc CO,
content in ppm by volume is given by C(t) = 277¢""** where t =
years since 1750.
a. Estimate CO, content in 1950, 2000, 2050, and 2100
1950: 277e™0953C00 _ 56116 ppm, 2000: 2776090353050 _ 669 49

ppm
2050: 277e"053C% — 798 73 ppm, 2100: 277e*00353350) _ 957 91

ppm
b. To nearest decade, when will it surpass 700 ppm?
We’ll come back to this after we’ve discussed logarithms

e 10.2.69 After taking an aspirin, a patient absorbs 300 mg into her bloodstream.
Aspirin has a half life of 2 hours in the bloodstream (i.e., 50% is removed
every 2 hours). How much is left after 5 hours?

300(0.5)°* = 53.03 mg

Logarithmic & Exponential Functions

Logarithms (“logs” for short), as we shall shortly see are the inverse of exponential
 functions. Given a base b, an exponential function (b") tells you what number you get if you
 raise the base to some power x. A logarithmic function (logpx) tells you to what power you

' have to raise b in order to get x. This gives us the important relationships:

logyb*=x and b"®*=x

- which confirm that logs and exponentials are inverse functions — i.e., they undo each other

Examples:
e 3'=81,s0 4=1logs81
e 4°=64,s0 3=1log,64
e 0.001=107,10g;00.001 = -3
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Laws of logarithms (in what follows all numbers whose logs are being taken are > 0)

Law Example
0. logy(b)=1 10" =10,0.5'= 0.5
1. logp(xy) = logp(x) + logp(y) 100,000 = 100(1000) and
log10 100,000 = 5 = 2 + 3 =log;o 100 + log;o
1000
2. logy(x/y) = logn(x) — logy(y) 16 =64/4 and log, 16 =4 =6 -2 =log, 64 —
10g2 4
3. Corollary: log,(1) = 0 10°=1, 2°=1
4. Corollary: log,(1/x) = -logy(x) 0.04 =1/25 and logs 0.04 = -2 = —logs 25
5. logy(x") = ylogy(x) (3% =27"=729=3% (3)°=9=729 = 3¢

If you think carefully about these, you’ll realize that they’re just restatements of the
. laws for exponents — because logs are exponents!

. The two most commonly encountered logarithmic functions are:

e “Common” logs (b = 10), and we usually write log(x) rather than logi0(x)

e “Natural” logs (b = e = 2.71828...), and we usually write In(x) rather than

| log.(x)

- Finding logarithms is not usually so easy as it was in our examples. Fortunately,

. calculators have single buttons for common and natural logs, and Excel has built-in
~ functions (In and log10) for calculating logs.

' Sometimes you need to convert from logs in one base to another base. Let’s see how to
- do that. Suppose you want logyx and you already know log.x. Let’s see how to do
- that.

log, x
X = blogbx — (clogcb) L c(log,: b)(logy, x) _ logc , SO lOch (logcb)(logbx), or lOng =

log.x/log.b
and in particular, logpx = In(x)/In(b)

- Examples
e 10.2.79 Global Warming: According to a UN report, atmospheric CO,
content in ppm by volume is given by C(t) = 277¢"%%% where t =
years since 1750.
b. To nearest decade, when will it surpass 700 ppm?
277e"%%%% =700, so "% = 700/277 = 2.5271. Now take
natural logs:
0.00353t = In(2.5271) = 0.9271, so t = 0.9271/0.00353 = 262.63 (or
260 to the nearest decade > 1750 + 260 = 2010)
e 10.3.19 Invest $500 at 10% compounded continuously. How long until you have at least
$700?
500¢*'* =700 > €™ =700/500 = 1.4 > 0.1t =In(1.4) = 0.3365 > t=
3.36 years
What about if compounded annually?
500(1.1)' =700 > 1.1'=700/500 = 1.4 > tIn(1.1) = In(1.4)
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10.3.23

10.3.27

10.3.39

10.3.45
Joules.

2> t =In(1.4)/In(1.1) = 0.3365/0.0953 = 3.53 > it will take 4 years

Carbon-14 Dating: C(t) = A(0.999879)" = amount of Cy4 left after t
years if initial amount of Cy4 was A. If 99.95% of a skull’s original
Ci4 is gone, how old is the skull?

0.0005A = A(0.999879)" > In(0.0005) = t In(0.999879)

> t=1In(0.0005)/In(0.999879) = —7.6009/(-0.000121) = 62813.6

> itis 62,814 years old

$10400 is invested at 5.2% per year compounded monthly. How many
months until you have at least $20,000?

10400(1 + 0.052/12) = 20000 > 1.004333* = 20000/10400 = 1.9231

2> xIn(1.00433) = In(1.9231) > x =In(1.9231)/In(1.00433) = 0.6539/0.00432
=151.4 > it will take 152 months (at the end of 151 months, it will still be a
bit short)

300 mg of aspirin in the blood decays exponentially with a half-life of 2

hours. How long before only 100 mg are left?

300(0.5)*=100 > z=In(0.3333)/In(0.5) = -1.0987/(-0.6931) = 1.585
two-hour intervals, or 3.2 hours

Richter earthquake scale: R = (2/3)(log; E — 4.4), with E = released energy in

a. 1906 SF earthquake had R = 8.2. How much energy did it release?
8.2 =R =(2/3)(log E - 4.4) > log;oE =1.5(8.2) + 4.4 = 16.7,
so E =10"*7 = 5.012(10°) joules
(To give some meaning to this, 4.2(10") joules is the energy released by a
megaton of TNT, so the earthquake was the equivalent of about 12 one-
megaton atomic bombs. The bombs dropped on Hiroshima and Nagasaki
were approximately 20-kiloton bombs, making the SF earthquake the
equivalent of 600 such bombs!)

c. What is the energy released ratio, Eo/E;, of quakes with readings R, and

9

gl=' 101.5R + 4.4, S0 E?/EI — 101.5R2 + 4.4/101.5R1 +44 — 101.5(R2 -R1)

b. 1989 SF quake measured 7.1. What percentage of the 1906 released
energy did it release? 10'°71-32 = 10716 - 0.0224, or about 2.24%

d. If quake 2 measures 2 points higher than quake 1, how much more
energy does it release? 10"°®2-*V = 103 5 1000 times as much!
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XI- Derivatives of Logarithmic & Exponential Functions

Derivatives of log functions:
1. Natural logs: (d/dx)(In(x)) = 1/x (if x> 0)
2. Chain rule: (d/dx)(In(u)) = (1/u)(du/dx)
Corollary: If x<0,then —x> 0 and (d/dx)(In(-x)) = (1/(=x))(-1) = Ux.
Putting this together with (1) gives us:
1. (d/dx)(In[x]) = 1/x (if x#0)
3. Other bases: recall that logyx = In(x)/In(b), so (d/dx)(log,(x)) = 1/[x In(b)]

. Derivatives of exponential functions: Since x = In(e*), the chain rule tells us: 1=
(1/e*)(de*/dx), so

4. Natural exponential function: (d/dx)e* = e*

5. Chain rule: (d/dx)e" = e"(du/dx)
6. Other bases: recall that b* = e¥*®_ go (d/dx)b* = e""®In(b) = b*In(b)
Examples:

e Recall that the power rule says that (d/dx)x" = nx"'l, when n is a constant, but we
said that didn’t work for x". So what is the derivative of x*? Well, x* = e™*®, ¢ let’s
apply the chain

. i xIn(x) = xIn(x) i = xIn(x) 1 — xX
rule.(dx}e )=e (dx}xln(x)) e (X(X)+ln(x)] x*(1+In(x))

e 12.39. (d/dx)(€™)=-e*
o 12.3.11. (d/dx)(4") = (d/dx)(e™?) = e*®In(4) = 4"In(4)

o 123.13. %2"2-1 = %e“’-”“‘m = e DD (2xIn(2)) = 2° (2xIn(2))

e 12.3.19. (d/dlx)?‘[lglx(; ;f 1)’In(x)] = (% + 1)%x + 5(x* + 1)*2x)In(x) = (x* + 1)*/x + 10x(x* +
o 12.3.27. (d/dx)In|(-2x + 1)(x + 1)| = (d/dx){ln|-2x + 1| + In|x + 1|} = -2/(~2x + 1) +

e 12.3.31. (d/d::{i(lxnitxli 1)(x - 3)/(-2x - 9)| = (d/dx) {In|x + 1| + In|x - 3| -In|-2x —

=1/(x+1)+1/(x-3)+2/(-2x-9)

The last example suggests a way to differentiate expressions like (x> + 2x — 3)>(3x +
- 5)Y@2x*-5)°

. That’s a total mess if we use the product and quotient rules. (Try it if you don’t

- believe me!) Instead, we use a technique called “logarithmic differentiation’:

(d/dx)In(f(x)) = f'(x)/f(x) > f'(x) = f(x)(d/dx)In(f(x))
' Hence,
(d/dx)[(X> + 2x — 3)°(3x + 5)Y/(2x% - 5)°]
= [(x° + 2x - 3)*(3x + 5)*/(2%* - 5)°)(d/dx)In[(x’ + 2x - 3)°(3x + 5)*/(2%* - 5)°]
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= [(x* + 2x — 3)’(3x + 5)Y/(2x* - 5)°1(d/dx)[2In(x" + 2x — 3) + 4In(3x + 5) — S5In(2x>
-5)]

=[x + 2x - 3)*3x + 5)Y/(2x* = 5)°1[2(3x* + 2)/(x> + 2x — 3) + 12/(3x + 5) -
20x/(2x* - 5)]

o 12.3.55. (d/dx)(x’e™ ") = 2x’e™ ! + 2xe®* !
12.3.77. $10,000 at 4%/yr compounded continuously. How fast is it growing after
3 years?
| F(t) = 10000e*™, so F'(t) = 400", and F'(3) = 400e*'* =
 $451.00/year
e 12.3.79. What if it’s compounded semiannually?
F(t) = 10000(1.02)*, so F'(t) = 10000(1.02)*(2In(1.02)),
and F'(3) = 10000(1.02)%(2In(1.02)) = $446.02/year
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XII- Applications of Logarithmic & Exponential Functions

e 12.3.89.

in 2000

N(t) = 39t + 68 = millions of Chinese cell-phone subscribers, with t =0

Average annual revenue per subscriber in 2000 was $350. Suppose
revenue decreases continuously at 10% per year.
a) Find R(t) = annual revenue in year t: R(t) = 350(39t + 68)e "
b) Find R(2) and R’(2) to nearest billions

R(2) = 350(78 + 68)e " = 41837, i.e., $42 billion

R'(t) = 350[-0.1(39t + 68)e "'t + 39¢7"1] = 350e7"14(32.2 - 3.9t)

R'(2) = 350e °%(32.2 - 7.8) = 6992, i.e., revenues are increasing by $7
billion/year

e 12.3.91 P(t) = 150/(1 + 14999¢ %) = 10° people with flu t weeks after start of an
epidemic
How fast is it growing after 20, 30, and 40 weeks? (Answer to 3 significant
figures)
P'(t) = 150(14999)(0.3466)e *>55"/(1 + 1499903466
P'(20) = 150(14999)(0.3466) ¢ ">*520/(1 + 14999¢ 70346202 — 3 11 million new
cases/wk
P'(30) = 150(14999)(0.3466) ¢ *>*63Y/(1 1 14999¢703466C)2 = 11.2 million new
cases/wk
P'(40) = 150(14999)(0.3466) e *>*10/(1 + 14999¢0346640\2 — 0,722 million new
cases/wk
e 12.4.21. xe’ —ye*=1. Find dy/dx.
xe'dy/dx + €' — ye* — e*"dy/dx = 0, so dy/dx = (¢' - ye*)/(e* — xe")
e 12.4.29. In(xy +y*) = ¢’. Find dy/dx.
(xdy/dx + y + 2ydy/dx)/(xy + ¥*) = €'dy/dx, so dy/dx = y/[(xy + y*)e’ —x
- 2y]
e 13.1.41. Find local and global exterma of f(x)=x-In(x) on (0, )
fx)=1-1/x=0 > x=1. f'"(x)=1/x*>0 forallx>0.
Hence, x = 1 is a global minimum on (0, )
e 13.2.37. Refer to 12.3.89, but now revenue/customer is decreasing at 30% per
year.
Annual revenue is R(t) = 350(39t + 68)e "> $millions
When will it peak (to the nearest 0.1year) and at what value?
R'(t) = 350[(39t + 68)e"'(=0.3) + 39¢ "] = 350e "*'(-11.7t + 18.6)
R'(t)=0 when -11.7t + 18.6 = 0, or when t = 1.6 years
R(1.6) = 350(39(1.6) + 68)e "9 = 28241.3, i.e., $28,241 million ($28.241
billion)
e 13.2.41. The value t years from now of a classic car collection will be
v(t) = 300000 + 1000t* dollars.
With general inflation at a continuous 5% per year, the collection’s present
value is

p(t) - v(t)e—0.0St - (300000 i 1000t2)e—0.05t
When should you sell to maximize the present value?
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, p'(t) = (300000 + 1000t*)e "%%4(=0.05) + 2000te "% = 50 *"'(-300 + 40t —
t)

p'(t) =0 when —300 + 40t — t* = (30 — t)(t -10) = 0, or when t=10 or t

=30.

Now p'(t) switches from — to + at t=10 and from + to — at t= 30,
so we have local maxima at t =30 and t=0. (Where did the latter
come from?)

p(0) = $300,000 and p(30) = (300000 + 900000)e '~ = $267,756

Hence they should sell now! (The answer in the back of the book is
wrong!)
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XIII- Functions of Several Variables, Partial Derivatives

So far we’ve been looking at functions of a single variable, f(x). But most real-world
phenomena are more complex than that, so we want to be able to handle things that
depend on several variables. We’ll look at:

e modeling

e rates of change (“partial derivatives’)

e unconstrained optimization

e constrained optimization

The text (section 16.2) discusses graphs of functions of two variables and has lots of
pretty pictures. I can’t draw them as nicely, so I’ll let you just read that material. If
you have any questions about it, please bring them to class.

Examples
e 16.1.39
e 16.141
e 16.1.45
e 16.1.51

| output?

C(x, y) = 240,000 + 6000x + 4000y = weekly cost in $ to manufacture
x cars and y trucks. Find marginal costs of a car; of a truck

We’re asking how C(x,y) changes as x and y change individually.
For a linear function, this is easy: $6000/car and $4000/truck. These
rates of change are clearly related to the derivatives we’ve been
studying.

C(v, a) = monthly costin $ of v video clips (@ $0.03/clip) and a
audio clips (@ $0.04/clip), with $10 set-up cost
C(v,a) =10 + 0.03v + 0.04a

f(a, c,n) = 3.1a - 0.27c + 0.87n — 36.7 = Fox’s prime-time rating, given
those of ABC, CBS, and NBC
a) Which competitor is the most serious threat? As that competitor’s
rating increases by 1 point, how does Fox’s change?
CBS; decreases by 0.27 points
b) Who presents the least competition? Why?
ABC, because Fox goes up 3.1 points for each point ABC increases.
¢ Ifa=12.2,c=11.3,n=11.3, find f.
f=3.1(12.2)-0.27(11.3) + 0.87(11.3) - 36.7=17.9
d) Find a(f, n, ¢) = (1/3.1)(f + 0.27¢c - 0.87n + 36.7) =0.32f + 0.087c — 0.28n
+11.8

U(x, y) = 6x*%y*? + x = productivity of a newspaper (pages/day) if they use
x copies of Macro Publish and y copies of Turbo
Publish

If they use 10 copies of each, how does increasing x by 1 unit affect
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U(10, 10) = 6(10*%)(10°%) + 10 = 70, U(11, 10) = 6(11*%)(10°%) + 11 = 75.75,
so the marginal productivity of another copy of Macro Publish is about
5.75 pages/day

Partial Derivatives — when asking how a function of several variables changes when its
variables change, we have to ask about how those variables are changing.
e Is just one changing?
e Are several changing at the same time, and if so, in what direction is the joint
change?
The first of these is the simpler question, and let’s do it by an example.

How does f(x, y) = sqrt(x* + y*) change as x changes?

Well, if only x is changing, then y should be treated as a constant, so that just
reduces us to taking the derivative of f(x,y) with respect to x. However, to
recognize the fact that f(x,y) depends on both variables, we call this derivative the
partial derivative of f(x,y) with respectto x, and we denote it by f, =

1\ 2x X
o ( 2) iyt Yy

And if only y is changing, we have the partial derivative of f(x,y) with respectto y,
2y

_ Y
}\/x +y’ \/x2+y2

- So taking partial derivatives involves nothing new. You just treat all the variables but one
as constants and take the ordinary derivative with respect to that singled-out variable.

a—

and we denote it by f; = d f(x y)= (

- Examples
o 1635 f(x,y)=10000 — 40x + 20y + 10xy
fx =-40 + 10y, f, =20 + 10x

e 1639 f(x,y)=xy -xy’ —Xxy
f, = 2xy° - 3x’y* -y, f, = 3x’y* — 2x°y —x

e 16335 f(x,y,2z)= x°1 04,05
fx—le yMZOS,f O4x°1y'06z05, f,= 05x°1 04,-05

e 16.3.43 x3=0.66-2.2x; — 0.02x,, with X1, X,, and x3 being domestic market shares
for Chrysler, Ford, and GM
0x3/0x; = 2.2 If C share goes up by 1% (and F share is unchanged),
GM share goes down by 2.2%
To get dx1/0x3, you could solve for x; = 0.3 — (0.2/0.22)x; — (1/2.2)x3.
From that, you get 0x;/0x3 = -1/2.2 = 0.455, meaning that if G share
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goes up by 1% (and F share is unchanged), C share goes down by
0.455%.

(Or you could just use the following result, which is pretty obvious when
you stop to think about it: 9x1/0x3 = 1/(dx3/9x;). Once again,
derivatives aren’t fractions, but they surely do behave like fractions!)

e 16.3.45 C(x,y) = 240,000 + 6000x + 4000y — 20xy = weekly costin $ to
manufacture x carsand y trucks. At (x,y) = (10, 20), find marginal
cost of a car; of a truck.

Cx = 6000 - 20y = $5600/car
C; = 4000 - 20x = $3800/truck

e 16.3.49 z(t,x)=13000 + 350t + 9900x + 220xt = median family incomes in US,
with t=01in 1950 and x =0 or 1 to indicate that the family is black or
white.

a) Estimate black family median income in 1960
13000 + 350(10) + 9900(0) + 220(0)(10) = $16500
b) Estimate white family median income in 1960
13000 + 350(10) + 9900(1) + 220(1)(10) = $28600
z: = 350 + 220x
¢) How fast is black median income increasing in 1960:
z¢ = 350 + 220(0) = $350/year
d) How fast is white median income increasing in 1960:
z¢ = 350 + 220(1) = $770/year
e) Is the gap between black and white median incomes increasing or
decreasing? by how much?
Increasing by $220/year

e Let’s revisit 16.1.51.

U(x, y) = 6x™%y*? + x = productivity of a newspaper (pages/day) if they use

x copies of Macro Publish and y copies of Turbo Publish

If they use 10 copies of each, what is the exact marginal productivity of Macro
. Publish?

U, = 4.8x "%y*? + 1 = 5.8 pages per day
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XIV- Functions of Several Variables — Unconstrained Optimization

Consider the function z = f(x, y) = x* + 8xy* + 2y*. Its graph is a surface in 3-dimensional

space, with x- and y-axes on the floor and the z-axis vertical. Think of the graph as a

mountain range. We would like to locate the maxima (mountain tops) and minima (valley
bottoms) of the function. How do we find such points?

A bit of reflection suggests that if a point is a relative maximum (mountain top), then in
whatever direction we approach it, we have to be climbing. In particular, if we hold x

- fixed, it has to be a maximum in y, and vice versa. In other words, it must be true that
~ of/ox = df/dy = 0, and the same is true for relative minima. OK, so let’s look at those
partial derivatives:

f, = 4x° + 8y* and fy = 16xy + 8y> = 8y(2x + y%)

~ Setting f, = 0, we see that either
e y =0 (in which case f;=0 > x=0, so (0,0) is a stationary point), or
e x=-y"/2. Plugging that into f, =0, we get 0= 4(-y*12)° + 8y = -y%/2 + 8y* = (Vo)y*(-
4
y +16)
The roots of that equation are y =0 (which we’ve already examined) and y =12, so
x =-2. Thus (-2,2) and (-2,-2) are also stationary points.

.~ What’s the nature of these stationary points?
A. (0,0)
o Fixing y =0, we see that f, =4x> and this goes from — to + as x crosses 0.
Thus the origin is a minimum in x.
o Fixing x =0, we see that f, = 8y’, and the same argument says it’s a minimum
in y.
o So does it follow that the origin is a local minimum? Well, remember it has to
be a valley in all directions. Off the top of my head, let’s look at the line x =y =
t, where we now have
h(t) = f(t, t) = 3t + 8, with h'(t) = 126> + 24t% = 12¢%(t + 2)
This is >0 on both sides of t =0, so the origin is rot a local minimum along the
line x =y.

B. (-2,%2)
o Fixing y =2, we see that f, = 4x> + 16 and this goes from — to + as x crosses
—2. Thus both (-2,-2) and (-2, 2) are minima in Xx.
o Fixing x =-2, we see that f; = 8y(—4 + y®), and this goes from — to + as y
crosses —2 or +2. Thus both (-2,-2) and (-2, 2) are minima in y.
o So does it follow that (-2, -2) and (-2, 2) are local minimum? By now you’re
getting suspicious, so it’s time to look at some pictures! (16.4.19.xls)

The pictures verify what we said about the origin, and they seem to indicate pretty strongly

that the other two stationary points are indeed minima, but can we be sure that there isn’t
some direction floating around along which our points aren’t minima? There is a second
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derivative test that can often be helpful. For a function of 2 variables there are 4 different
second partial derivatives:

o f = d*/(0x%) = of,/ox 0(4x° + 8y?)/dx = 12x* in our example
o f,, = 3f/(3y?) = of, /Ay d(16xy + 8y>)/dy = 16x + 24y* in our example

fyy = N = of,/dy 9(4x’ + 8y*)/dy = 16y in our example
dy | ox

afar

ox| dy

The first two are called pure 2" partial derivatives, and the last two are called mixed 2™
partial derivatives. For the last two, the notation is potentially confusing when you try to
keep straight the order of the differentiation. But note the fortunate coincidence that f,, =
- f;x in our example, so the order doesn’t matter! In fact, this is not a coincidence. For every
' function we’ll encounter, the two mixed 2°¢ partial derivatives will always be equal. (In fact,
one has to work hard to construct weird functions for which the mixed 2™ partials are not
equal.)

® fyx=

J = ofy/ox d(16xy + 8y°)/9x = 16y in our example

- OK, so how do we distinguish maxima, minima, and whatever other weird kinds of
stationary points may be out there? Remember the 2™ derivative test for functions of a
- single variable, say g(t)?
e g'=0 and g'">0 > local minimum
e g'=0 and g'"'<0 > local maximum
e g'=0 and g'"=0 > all bets are off

. We have similar results for f,; and f;; to determine local maxima and minima with
- respect to each variable individually. But our example showed us we had to worry about
~ other directions. The mixed partials help us out:

Second Derivative Test for Optima

1. Find a stationary point, where f,=f, =0
2. Compute H =ff,, - (f,)
a. If H =0, the test fails
b. If H <0, the point is a saddle point (i.e., a max in some directions and a min in
others)
c. If H>0 and
i. fi> 0, the point is a local minimum
ii. fix <0, the point is a local maximum

' Let’s apply this to our example:

A. (0,0): fox =fyy =f; =0,s0 H=0 and the test fails.
B. (-2,12): fiy = 12x* = 48, f,;, = 16x + 24y” = 64, f,; = 16y =+32
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Hence, H = 48(64) — (+32)” = 2048 > 0, so both points are local minima as
our pictures suggested.

Examples
| e 16.4.23 Find and characterize the stationary point(s) of f(x,y)=e * 2
fi=-(2x+2)fx,y) =0 > x=-1 fy =2yf(x,y)=0 > y=0
Hence (x,y) = (-1, 0) is the only stationary point.
fo = [(2x +2)* - 2]f(x, y) fyy = (4y* - 2)f(x, y)
fiy = 2y(2x + 2)f(x, y) = 4y(x + Df(x, y)
At (x,y) = (-1, 0), f(x, y)=e, fx = -2e < 0, fy, = —2¢, f;; = 0, so H =2e(2e) — 0’=
4e* > 0.

Hence (-1, 0) is a local (and global) maximum.
(Global because x* +y* +2x = (x + 1)* + y* - 1, so f(x, y) = e {0’11

e 16.4.27 Likewise for g(x,y) =x* +y* + 2/xy
g, = 2x - 2/x%y g, = 2y - 2/xy*
Setting g, =0 and solving for y gives y = 1/x".
Plugging that into g, =0 gives 2/x’-2x°=0,0r x*°=1 > x =1
Hence there are two stationary points, (1, 1) and (-1, -1).

g =2 + 4/X°y = 6 > 0 at both points gyy =2 +4/xy° = 6 at both points

gy = 2/x’y?* =2 at both points H = 6(6) — 2> = 32 > 0 at both points
Hence, both stationary points are local minima, but not global minima.

(Not global because g(x, —x) = 2(x* - 1/x*) which — —0 as x — 0.)

e 16.4.35 (modified a bit) C(s,p) = daily cost ($) of removing s pounds of sulfur
and p pounds of lead from a firm’s smokestack
gases

= 4000 + 100s” + 50p* — 100sp
To help mitigate this expense, the government gives subsidies of $500 ($100)
per pound of sulfur (lead) removed. How much of the pollutants should be
removed to minimize net costs, N(s, p) = 4000 + 100s” + 50p* — 100sp — 500s —

100p?

N; =200s - 100p — 500 Np =100p — 100s — 100

Setting both to 0 and solving the simultaneous linear equations yields (s, p) =
(6, 7).

Nss = 200 > 0, Ny = 100, Ny, = -100, H = 200(100) — 100> > 0 > we have found a
minimum

They minimize their daily net cost by removing 6 pounds of sulfur and 7
pounds of lead, giving a daily net cost = 4000 + 3600 + 2450 — 4200 — 3000 — 700 =
$2150
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XV- Functions of Several Variables — Constrained Optimization

Examples

* 16.4.39 For a checked bag, L + W + H <62 inches. Find the largest acceptable
volume.
We want to maximize f(L, W, H) = LWH, subject to the constraint L + W +
H = 62. (With implicit additional constraints L, W, H> 0. Why is the other
constraint an equation?)

Perhaps the easiest way to handle the constraint is to use it to eliminate one
variable and then do unconstrained optimization on the remaining two
variables:

L = 62 — W - H, so maximize g(W, H) = (62 - W - H)WH = 62WH - W’H
- WH

gw = 62H - 2WH - H? = H(62 - 2W - H)

g = 62W — W - 2WH = W(62 - W - 2H)

Setting gw = 0, we see that either H=0 (which is clearly a minimum volume
bag!), or else 62 —-2W — H = 0. Similarly, setting g; = 0, we see that either W
=0 (which is clearly a minimum volume bag!), or else 62 - W —-2H = 0.
Hence we must solve the two equations 62-2W-H=0 and 62-W-
2H=0

The solution to this system is W =H = 62/3 (> L =62/3).

Is this a maximum? gww =-2H, gy = -2W, gwu = 62 -2W - 2H

At our stationary point, gy = —124/3 < 0, guy = —124/3, gwy = —62/3, so
Bww 8rm — (gwa)” = (124/3)” - (62/3)* > 0

and we do indeed have a maximum! Volume = (62/3)° = 8827 in® = 5.1 ft3

e 16.4.41 For abox shipped via UPS L +2W + 2H < 108 inches. Find the largest
acceptable volume. We want to maximize f(L, W, H) = LWH, subject to the
constraint L + 2W + 2H = 108. (With implicit additional constraints L, W, H

2> 0. Why is the other constraint an equation?)

Once again, we eliminate L =108 — 2W - 2H, and maximize
g(W, H) = (108 - 2W - 2H)WH = 108WH - 2W’H - 2WH” = 54WH -W’H
2
Comparing this with 16.4.39, we see (without doing any of the work!) that W
=H=54/3=18 (> L =36) yields the maximum volume of 36(18%) = 11,664
in® = 6.75 ft’

Lagrange multipliers — to optimize f(x, y) subject to the constraint g(x,y) =b, one can
- proceed formally by introducing a new variable, A (called a Lagrange multiplier, after the
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great French mathematician, Joseph Louis Lagrange (1736-1813), whom Frederick the Great
 called “the greatest mathematician of Europe [of the 18" century]”’). We form the
“Lagrangian function”
£(x, Y, ;") = f(X, Y) - k[g(X, Y) -b]
and then take the partials of £(x,y, A) with respect to x,y, and A. We set all 3 of them to 0,
and solve the resulting system of equations. With more than two variables, we proceed in
similar fashion. The biggest problem with the method is that we have no simple way to
- distinguish between maxima, minima, and saddlepoints. However, in many problems, the
physical aspects of the system help us decide that.

.~ Example: 16.5.31 (slightly generalized)

‘ The top and bottom of a closed box cost $0.20/ft?, but the sides cost only $0.10/ft>.
What are the dimensions of a least cost box with volume of V ft*? We want to
minimize 20(2)LW + 10(2LH + 2WH) = 202LW + LH + WH), subject to the constraint
LWH = V. To make life easier, we’ll drop the factor of 20, since it affects only the
objective value, but not the location of the optimal point(s).

Solution with a Lagrange Multiplier
1. Form ¢, W, H,A) =2LW + LH + HW - A(LWH - V)

2. Take all the partials and set them to 0:

G =2W+H-AWH=0 @
tw=2L+H-ALH=0 2)
=L+ W-ALW=0 3)
6H=LWH-V=0 4)

" 3. Now solve the resulting system. This may require some ingenuity to avoid getting all

twisted up!

Multiply (1) by L: 2WL +HL -ALWH=0 (1’

Multiply (2) by W: 2WL + WH-ALWH=0 (2°)

Subtract (1’) from (2’): H(W-L)=0 > H =0 (which is impossible if the box is to
have volume of 2 cubic feet) or W=L.

Plug W=L into (3): 0=2L-AL>’=L(2-AL) > L=0 (again impossible) or A =
2/L.

Plug A=2/L into (2°): 2L+H-2H=0 > H=2L

Plug W=L and H=2L into 4): 2L°-V=0> L=3V/2,s0W=L=
AV/2,and H=2L = 3/4V . While we’re at it, A = 2/L = 23/2/V .
Thus the box should be 3/V/2 foot square at the base and twice as high. Its cost (in “20-
cent pieces) is:

C(@L, W,H; V) =2LW + LH + HW =33/2V? =332 V??

Notice that 3—5 =3@R/2)(2/3)V™"> = A. This is not a coincidence. The value of the

Lagrange multiplier is always the derivative of the objective function with respect to the
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constraint right-hand-side. Does this remind you of anything? Right — shadow prices in
linear programming.

Solution by Elimination

0.

1.

2.

Minimize 2LW + LH + HW, subject to LWH =V

Solve for H = V/LW, and plug into objective function: minimize 2LW + V/W + V/L = f(L,
W).
Take both partials and set them to 0:

fL=2W-V/L*=0 > W=V2L?

fw = 2L - V/W* = 0, and plugging W = V/2L?, yields 2L - 4LY/V=2L(1-2L%V)=0 >
L =0 (which we’ve already dismissed) or L =3/V/2,s0 W=V/2L*=3/V/2,and H=

V/LW = {4V .
Looking at the 2"%-order partials:

fi,=2V/L’=4 when L=3V/2 fyww=2V/W>=4 when W= 3/V/2 fow
=2

frofww — (fow)’ =16 -4>0 at (L, W) =(3/V/2,3/V/2), so we do indeed have a
minimum.
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