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Abstract

The weak turbulence theory has been an important theoretical tool for the study of nonlinear
kinetic instabilities in plasmas. For a long time, this theory treated exclusively of the study
of oscillatory processes and its influence in the plasma dynamics. The long-lasting timescale
of nonlinear processes, however, suggests that collisional processes might have some effect in
the late plasma dynamics, acting alongside nonlinear collective effects. In a recent work [P.
H. Yoon et al., Phys. Rev. E 93:033203 (2016)], collisional effects and collective processes
were systematically incorporated, starting from first principles, in the weak turbulence theory
equations, considering electrostatic oscillations. The outcome of this innovative approach was a
formal mathematical expression for the collisional damping rate for Langmuir and ion-sound
waves, and the discovery of a new fundamental process of emission of electrostatic fluctuations,
in the ion-sound and Langmuir frequency range, caused by binary interactions of particles,
named electrostatic bremsstrahlung. In the present study, we introduce the first numerical
analysis of these two new equations and discuss the relevance of these numerical results in the
solar physics scope. The first work to be discussed concerns the collisional damping equation,
and in it, we compare the results of numerical integration of the rigorous expression with the
damping rate calculated with the widely applied Spitzer formula. We show that the Spitzer
approximation highly over-estimates the intensity of collisional attenuation of plasma waves.
The lack of relevance of the collisional damping rate gets further demonstrated when we compare
it with the collisionless (Landau) damping rate. In the second work to be discussed, we analyze
the so-far ignored electrostatic bremsstrahlung effect. We show that the presence of electrostatic
bremsstrahlung emission modifies the Langmuir spectrum, which in turn alters the shape of the
initial electron velocity distribution, assumed to be Maxwellian. After a long time-evolution
period (numerical integration), the system seems to arrive at a new quasi-steady state, in which
the shape of the electron velocity distribution resembles the shape of a core-halo distribution
function, i.e., composed by a Maxwellian core and a suprathermal tail. The outcomes of both
analyses are unprecedented; the prospects and possibilities for further studies on this subject
are promising. In the end, we also present an extra result, indirectly related to the main subject
of this doctoral project, regarding the analysis of the complete set of electromagnetic weak
turbulence equations, in the presence of a core-halo velocity distribution function.



Resumo

A teoria de turbulência fraca tem sido uma importante ferramenta teórica para o estudo
de instabilidades cinéticas não lineares em plasmas. Por um longo tempo, esta teoria tratou
exclusivamente do estudo de processos oscilatórios e de sua influência na dinâmica do plasma.
Entretanto, a escala de tempo de longa duração dos processos não lineares sugere que processos
colisionais podem ter algum efeito na dinâmica do plasma, atuando em conjunto com os efeitos
dos processos coletivos não-lineares. Em um trabalho recente [P. H. Yoon et al., Phys. Rev. E
93:033203 (2016)], efeitos colisionais e processos coletivos foram sistematicamente incorporados,
partindo de primeiros princípios, nas equações da teoria de turbulência fraca, considerando
oscilações eletrostáticas. O resultado dessa abordagem inovadora foi uma expressão matemática
formal para a taxa de amortecimento colisional para ondas de Langmuir e íon-acústicas, e a
descoberta de um novo processo fundamental de emissão de flutuações eletrostáticas, na faixa de
frequência das ondas de Langmuir e das ondas íon-acústicas, causado por interações binárias entre
partículas do plasma, nomeado como bremsstrahlung eletrostático. Neste estudo, introduzimos as
primeiras análises numéricas relativas a essas duas novas equações e discutimos a relevância desses
resultados numéricos no contexto da física solar. O primeiro trabalho a ser discutido se refere à
nova equação para o amortecimento colisional, e nele comparamos o resultado da integração
numérica dessa expressão, com a largamente usada fórmula de Spitzer. Com isso conseguimos
mostrar que a aproximação de Spitzer superestima em muito a intensidade da atenuação
colisional das ondas de plasma. Além disso, a falta de relevância da taxa de amortecimento
colisional fica demonstrada quando a comparamos com a taxa de amortecimento não colisional
(de Landau). No segundo trabalho, analizamos o até então ignorado efeito de bremsstrahlung
eletrostático. Mostramos que a presença da emissão de bremsstrahlung eletrostático modifica o
espectro das ondas de Langmuir que, por sua vez, altera a forma da função de distribuição inicial
dos elétrons, suposta Maxwelliana. Após um longo tempo de evolução temporal (integração
numérica), o sistema parece chegar a um novo estado quase-estacionário, no qual a forma da
função de distribuição de velocidades dos elétrons lembra a forma de uma função de distribuição
núcleo-halo, ou seja, composta por um núcleo Maxwelliano e uma cauda supratérmica. Os
resultados de ambas análises são sem precedentes; as perspectivas e as possibilidades para novos
estudos neste assunto são promissoras. No final é também apresentado um resultado extra,
indiretamente relacionado ao assunto principal desse projeto de trabalho de doutorado, relativo
à análise do conjunto completo de equações eletromagnéticas da teoria de turbulência fraca, na
presença de uma função de distribuição de velocidades núcleo-halo.
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Chapter 1

Introduction

In the context of plasma kinetic theory, processes involving waves and kinetic instabilities,
the so-called collective processes, are almost exclusively associated with situations in which the
effects of collisional dissipation can be neglected, what happens when the studied phenomenon
evolves in a much shorter time-scale than the collisional relaxation time of the plasma in
question [1]. In such cases, the plasma dynamics may be described by the Vlasov-Maxwell
system, a complex set of coupled equations whose solution invariably will depend on some degree
of approximation. In the presence of small amplitude oscillations in a fully ionized plasma,
we can make use of perturbation theory in order to solve such complicated system [2]. From
this method, one may obtain simpler approximations like the linear theory and the quasilinear
formalism, and also more complex formulations, like the weak turbulence theory, which takes
into account low-order nonlinearities on the plasma dynamics.

With the lowest order of this chain of perturbative approximations, the linear theory, it
is possible to obtain the dispersion relations, which are mathematical expressions that not only
help us on identifying the different oscillatory modes that may be excited in plasmas, but also
wholly characterize these oscillations. Valuable information like how these waves propagate and
the frequencies that will resonate with the plasma particles, resulting in damping or amplification
of these oscillations [3–5], are given by the dispersion relations. This information, however, is
static. There is no way to know, based solely on the linear formulation, any further development
of the system, how these waves will evolve in time from a given initial state, for instance. Thus,
to clarify if these oscillations will grow until their amplitudes become too large to be treated by
a perturbative method, or if they will rapidly increase and saturate, or if they will be completely
damped, or if they will decrease a little and then saturate, a certain degree of nonlinearity must
be taken into account. That is the purpose of the quasilinear approximation.

In the quasilinear theory, low-order nonlinear terms are kept in the equation for the time
evolution of the velocity distribution function. The velocity distribution will then evolve in time

1
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through a process of diffusion in velocity space, in which the diffusion coefficient depends on
the spectral energy density of the waves. The dispersion relation is formally given by the same
expression obtained under the linear theory, except that now it depends on a time-dependent
velocity distribution function, which must vary in a much slower time-scale than the period
of the plasma oscillations. Under such condition, the gradual changing on the velocity space
shape slowly modifies the shape of the wave spectrum, whose new form will alter the velocity
distribution function and so on, until a new quasi-stationary equilibrium state is attained [5].
However, depending on the phenomenon being described, this saturation state reached under
the quasilinear approximation might keep on evolving if higher order nonlinearities are taken
into account [6]. This kind of nonlinear analysis is given by the weak turbulence theory, which is
the next step in this chain of perturbative approximations.

Mostly developed in the period between the late 1950s and early 1970s [6–14], the
weak turbulence theory has become a valuable theoretical tool for the analysis of nonlinear
phenomena in plasmas since then, being applied in several studies until nowadays [15–21]. Its
complex formulation is constituted by a set of coupled kinetic equations, which describe the time
evolution of the velocity distribution functions of the plasma particles and the time evolution of
the spectral intensities of the plasma wave modes. The development of the weak turbulence
theory was resumed in a relatively recent series of papers, where the author, starting from
first principles, has extended the original formalism in order to include new effects. In the
initial work, it was considered only the propagation of electrostatic oscillations, taking into
account the effects of both wave-wave and wave-particle interactions [22]. Later, the formalism
was expanded, and discrete particle effects, related to spontaneous emission and spontaneous
scattering processes, were included [23]. In a further extension, the effects of the propagation of
electromagnetic waves were incorporated into the revised formulation [24, 25].

The equations of this revised version of the weak turbulence theory have been the subject of
extensive studies involving nonlinear analysis and two-dimensional numerical integration applied
to the time evolution of the Langmuir turbulence [26–30] in a fully ionized and unmagnetized
plasma, and in other studies that also include the emission of electromagnetic waves [31–33].
Some studies using a one-dimensional approach have also been made [34–36]. The Langmuir
turbulence is a by-product of the instability generated when an energetic electron beam interacts
with a background plasma. The electron beam alters the electron velocity distribution triggering
the so-called bump-in-tail instability. Besides being recurrently used in textbooks as an illustrative
example of the quasilinear diffusion process [4–6], the bump-in-tail instability also has an essential
role in the study of type II and type III radio bursts [37–43]. In this context, the relevance of a
more accurate description of nonlinear kinetic instabilities in plasmas, represented here by the
beam-plasma interaction, becomes clear.

The next step towards a more complete description of weakly-turbulent processes in
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plasmas is the inclusion of collisional effects in the formalism. So far, the effects of binary
collisions have been neglected under the time-scale argument, mentioned in the first paragraph.
This assumption can be considered quite precise for the evolution of the bump-in-tail instability
under the quasilinear approximation. In such regimen, the plasma quickly saturates in a quasi-
equilibrium state and the time evolution entirely ceases. However, when nonlinear processes
are considered in the dynamics, one cannot be sure if this argument still holds. Basically, for
the system to evolve inside the weak turbulence theory limitations, the incident beam must
be tenuous, and the oscillations must have low amplitude (after all, the turbulence ought to
be weak). Under such conditions, the time evolution of the system occurs in a time interval
that is way longer than the oscillation period of the plasma waves being studied. In fact, there
are studies that show that nonlinear effects keep acting in the system in a time-scale that goes
far beyond the saturation time of the quasilinear instability, to the extent that an asymptotic
analysis of the new quasi-equilibrium state of the turbulent process becomes relevant [29–32,44].

The hypothesis about the probable relevance of binary collisions in the nonlinear dynamics
of the beam-plasma interaction was numerically tested in [45] (see Appendix D). In this work,
a linearized form of the Landau collision integral was added to the particle kinetic equation,
and the weak turbulence theory’s complete set of self-consistent, electrostatic equations was
numerically integrated in two-dimensions. It was shown that collisions indeed do affect the
plasma dynamics in a time-scale that is very close to the time-scale of action of nonlinear effects.
Beyond the purely theoretical conjecture, combining collective processes and collisional effects
have some important applications in solar physics. In the solar hard X-ray emission analysis,
for instance, the models used for interpreting the spectra measured by the Reuven Ramaty
High Energy Solar Spectroscopic Imager (RHESSI)1 that employ quasilinear/nonlinear wave
instabilities with some kind of collisional dissipation (collisional damping for the waves, binary
collisions for the particles) are usually empirically adapted merely by adding an ad hoc expression
into the particles and wave kinetic equations to fit the observed data [46–51]. However, there
is no rigorous theory to compare and support such models. Moreover, though the formalism
in [45] makes use of the full Landau collision integral in the particle kinetic equation, it does
not take into account collisional damping effects in the wave equation, which is widely used in
these empirical models. The point is: until that moment, there was not a proper theoretical tool
to deal with the combination of collective processes and collisional interaction.

In a recent paper [52], it was presented the first rigorous theory that, starting from first
principles, incorporates collisional effects into the already well established weak turbulence
formalism. The authors used the same standard weak turbulence perturbative method but,
instead of keeping only the collective eigenmodes in the linear and nonlinear wave-particle inter-
actions, they also kept the effects of the non-collective fluctuations emitted by thermal particles.
The outcome is a complete nonlinear description, from first principles, of the propagation of

1For more information about the mission see: https://hesperia.gsfc.nasa.gov/rhessi3/.

https://hesperia.gsfc.nasa.gov/rhessi3/
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electrostatic oscillations in the presence of both wave and particle collisional dissipation and a
new equation describing a hitherto unknown process. This new effect depicts the emission of
electrostatic radiation, in the eigenmode frequency range, caused by particle scattering. Since
this is a form of braking radiation, the authors named it as electrostatic bremsstrahlung.

1.1 Applications to astrophysical plasmas

Astrophysical plasmas are observed in a vast range of densities, temperatures, magnetic
fields, ionization degree, and scale lengths [53]. Starting in the outer layers of Earth’s atmosphere,
passing through the solar wind in the interplanetary space, to the stellar interiors and atmo-
spheres, accretion disks and molecular clouds, it is estimated that something around 99 ∼ 99.9%
of the observable matter in the universe is in the plasma state. Under cosmic conditions, even
the weakly ionized gas of the neutral hydrogen regions around galaxies or in the atmosphere of
cold stars have a strong reaction to electromagnetic fields, exhibiting the characteristic collective
behavior of plasmas and, therefore, are also considered plasmas [53–55].

As soon as the pervasiveness of the plasma state in space came as a fact, plasma
physics began to be recognized as an essential component in the multidisciplinary framework
of astrophysics [56–60]. At the same time, the analysis and interpretation of observational
data started to have increasing relevance in the progress of theoretical, computational, and
experimental plasma physics research [52, 61–64]. In this context of mutual collaboration,
the solar and interplanetary plasma research has a pivotal contribution. The accessibility to
direct, in situ measurements, highly resolved remote sensing and high-resolution spectroscopy,
turned the solar system into a space plasma laboratory. Processes like magnetic reconnection,
particle acceleration, shocks, and turbulence can be closely observed by space probes, and the
understanding acquired may be extended or adapted to address similar phenomena observed in
remote astrophysical environments [65].

The theory developed during this graduate research analyses the combined action of
nonlinear kinetic instabilities and collisional processes in the context of solar physics. To
contextualize our work within the solar plasma research, in Subsections 1.1.1, 1.1.2 and 1.1.3 we
present a brief review of the current research in solar and space physics and the phenomena
related to this work. The corresponding paper is pointed in a footnote.

1.1.1 Solar and space physics

The domain of solar and space physics is the heliosphere, a cavity in the interstellar
medium, created by the constant supersonic flow of solar plasma that permeates the interplane-
tary space. This region encloses the solar system and extends for approximately 140AU2 in the

2An AU (astronomical unit) is defined as the mean distance between the Sun and Earth, 1AU ≈ 150 × 106km.
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surrounding galactic space. Its outer limit is the heliopause, an interface zone where the outgoing
pressure of the solar plasma balances the incoming pressure from the interstellar medium. This
comet-shaped plasma bubble [66], also has an inner boundary, the termination shock, which
delimits the sphere of absolute influence of the solar plasma. Beyond the termination shock, at
roughly 100AU from the Sun, extending out to the heliopause, lies the heliosheath. In this region,
the solar wind particles start being subjected to increasing external pressure, transitioning
to a subsonic, turbulent flow that blends and interacts directly with the matter in the local
interstellar medium [67]. In Figure 1.1, we have a depiction of the regions and boundaries
described above, and the current location of both Voyager missions, that are already outside
the heliosphere, in the interstellar space.

Figure 1.1: Main boundaries of the heliosphere and the location of both Voyager missions.
Credit: NASA/JPL-Caltech, accessed at 08/08/2019.

The ultimate goal of heliophysics can be summarized as the search for a better under-
standing of the solar dynamics and how it affects the Earth, other planetary bodies, and the
interstellar medium. The heliosphere is a coupled system, where different interacting elements
that might look unrelated at first sight are connected by underlying plasma processes [67]. A
great example of this interconnection is the relation between the appearing of sunspots and
the occurrence of non-recurrent geomagnetic storms, which are the most intense space weather
disturbances. Evidence of such relationship started to appear at the end of the 19th century.
However, the correct hypothesis supporting this correlation (coronal mass ejections associated
with solar flares), which depended on advances in plasma physics theory, came along only in
1929 [68, 69].

https://voyager.jpl.nasa.gov/news/details.php?article_id=112
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1.1.2 The Sun and the near-Earth environment

A better comprehension of the Sun and the dynamic space around our planet goes
beyond the pure scientific curiosity. This accessible space physics laboratory can indeed lead to
discoveries that can be applied and extended to remote cosmic systems. However, the primary
reason behind the international effort (see Figures 1.2 and 1.3) on understanding the complex
physics of the Sun and interplanetary space is to unlock means of predicting the occurrence
and intensity of solar activity, and anticipate how the near-Earth environment will be affected.
Reliable forecasting of the space weather is essential for protecting electronic equipment, radio
communications, GPS signal and humans in space from the effects of the interaction between the
dense, magnetized plasma of coronal mass ejections with the geomagnetic field, and also from
the energetic radiation emitted by solar flares3. Extreme coronal mass ejections can also cause
stronger geomagnetic disturbances that may affect terrestrial infrastructure such as electric
power grids [67].

1

Heliophysics System Observatory
• 18 Operating Missions 

with 26 Spacecraft
• 3 Missions in Development
• 2 Missions in Formulation
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Figure 1.2: NASA’s present and future heliophysics system observatory. The number between
parenthesis under the probe’s name is the total number of spacecrafts that compose the mission.

Credit: NASA, accessed at 10/08/2019.

1.1.3 The solar corona

The source of the tenuous magnetized plasma permeating the heliosphere, and also
the origin of solar particles and radiation that may cause disruptive space weather around
Earth, is the outermost layer of the Sun: the solar corona [70, 71]. The solar corona can be

3The emission of hard X-rays and type III radio bursts, both generated during solar flares, are addressed
in [45] (see Appendix D).

https://science.nasa.gov/heliophysics
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Figure 1.3: ESA’s past, present, and future science missions for studying the solar system.
Credit: ESA, accessed at 10/08/2019.

easily recognized as the bright halo that appears around the hidden Sun during solar eclipses.
Figure 1.4 shows two beautiful photographs of the corona, taken in two different solar eclipses,
August 21 2017 and July 2 2019. In both pictures, one can see the moon covering the bright
photosphere, allowing us to have a glimpse of the thin, but ultra-hot coronal plasma.

Counter-intuitively, the solar corona is, at the same time, the most tenuous and the hottest
outer layer of the Sun. At the top of the chromosphere, where the temperature might reach
20, 000 K, in a relatively narrow interface, the solar transition region, the plasma temperature
rises abruptly to ∼ 106 K [72]. It has been almost eighty years since the extreme coronal
temperature came as the only reasonable explanation for the origin of the spectral lines observed
in the solar corona [73], in a classical case of an answer that brings a more troublesome question.
Since then, several mechanisms have been proposed [74–77], not only to comprehend the heating
of the solar corona, but also the acceleration of the solar wind. Another unsolved problem
that is directly connected to the inverted temperature profile of the solar corona and particle
acceleration in the Sun, is regarding where and how the non-Maxwellian velocity distribution
functions with suprathermal tails, observed in the solar wind, are formed4.

4The generation of suprathermal electrons in the lower corona and its consequences to the coronal heating
problem are tackled in [78] (see section 5.2).

https://www.esa.int/spaceinimages/Images/2019/02/ESA_s_fleet_of_Solar_System_explorers
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Figure 1.4: Solar corona captured during the total solar eclipse of 2017 (top panel) and 2019
(lower panel). The reddish contour at some regions is the chromosphere, and the reddish arcs are
solar prominences, chromospheric plasma structures that penetrate the coronal region. Credit:
Nicolas Lefaudeux, accessed at 15/08/2019.

https://hdr-astrophotography.com
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1.2 Thesis organization

Considering the context presented above, the working proposal of this PhD Thesis is
to put forward the first numerical analysis of the new weak turbulence theory for collisional
plasmas [52] and explore its applications in the solar physics scope. In Chapter 2, we make a
brief review of the basic plasma kinetic theory for electrostatic oscillations. Chapter 3 revises
the procedure for obtaining the weak turbulence equations for Langmuir and ion-sound waves
and the quasilinear equation for the particle dynamics.

The main subject of this thesis is discussed in Chapter 4. In Section 4.1 we show the
methodology used in the formulation of this new generalization and the outcome of its inclusion
in the quasilinear wave equation, and in the particle kinetic equation. Section 4.2 describes the
inclusion of the noneigenmode fluctuations in the nonlinear wave equations and the resulting
terms, which are the main concern of the present analysis. In Chapter 5, we contextualize the
present work regarding the theory discussed in the previous chapter and present the results
obtained in appended papers. Chapter 6, summarizes the results and discuss some remarking
conclusions obtained in this analysis. At the end of this chapter, we also elaborate on the
perspectives for this new generalized formalism and its relevance for the next generation of solar
physics research.

In the end, we have four appendices. Appendix A depicts an improved approximation
for the second order susceptibility of the electrostatic bremsstrahlung for Langmuir waves. In
Appendix B we discuss the similarities of the asymptotic equilibrium state of the Langmuir
waves spectrum, considering a combination of an inverse power-law Kappa distribution and a
Maxwellian distribution, in the presence and the absence of the electrostatic bremsstrahlung
effect. The discussion in Appendix B is related to the article appended in Appendix C, which is
parallel research and is only slightly connected to the main subject of this work. Appendix D
shows the paper that summarizes the results of my Masters dissertation, which may be considered
the starting point of this doctoral research.



Chapter 2

Kinetic theory of plasmas

Plasmas are ionized gases that exhibit collective behavior. Composed of positive and
negative charges and neutral particles, a plasma is said to be neutral when the quantity of
particles with opposite charges is the same [79], and nonneutral when it is constituted - or have
a significant excess - of one kind of charge [80]. For the present work, we assume a fully ionized
hydrogen plasma, which is overall neutral and does not contain any neutral particle. In such a
case, half the total number of particles is given by protons and the other half by electrons.

Electrons and ions are sources of electric and magnetic fields. Due to the long-range
nature of these fields, particles can interact simultaneously, at distance, with several other
particles in the system. The effective range of these interactions is determined by the Debye
length

λDe =
√

kBTe

4πne2 , (2.1)

where Te is the electron temperature1, kB the Boltzmann constant, n the plasma density and e

the electron charge. This means that a specific charge will interact effectively only with other
charges that are inside of a virtual sphere with radius given by λDe, being almost completely
shielded from the influence of particles outside the Debye sphere. The self-consistent interaction
between charged particles and electric and magnetic fields, creates fluctuations in the local
neutrality of the plasma, giving rise to the series of oscillations and complex wave phenomena
that characterize the plasma’s collective behavior [4]. Describing the precise state of a plasma, in
a given time, requires the knowledge of the 6N phase-space coordinates of each particle, and also
the microscopic amplitudes of the electric and magnetic fields at each point in space [79]. Such
exact representation is clearly a non-practical approach for a many-body system like the plasma.
However, this microscopic formulation can be approximated to a macroscopic description by
taking the average of the microscopic quantities and making suitable assumptions to truncate

1Due to the high mobility, electrons are the main responsible for maintaining the Debye shielding. There are
specific situations where this is not true [4], but they are outside of the scope of the current study.

10
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the correlation functions at an appropriate point [79]. This will lead to the plasma kinetic
equations, which is the first of a hierarchy of approximations that also includes the multi-fluid
and magnetohydrodynamic theories. The application of each one of these formulations will
depend on the context and the scale of the phenomena being described [4]. In this work we are
interested in small-scale processes that depend on velocity-space properties, requiring a kinetic
description of the plasma.

Based on the concepts and methods of statistical mechanics, together with the Maxwell
equations, the kinetic theory is the most fundamental description of the plasma dynamics,
providing a formal, self-consistent evolution of plasma processes. As in the case of neutral gases,
the kinetic formalism of plasmas takes into account the variations of the velocity distribution
function f(r, v, t) in the phase-space, for each particle species. Statistically, this means that
the product between the distribution function and the volume element in the hexa-dimensional
phase-space fα(r, v, t)d3rd3v represents the probability of finding a particle of species α in a
volume element d3r around r and in a velocity volume element d3v around v, at the instant
t [79].

Like in the case of non-ionized gases, the statistical description of the plasma dynamics
is given by the Boltzmann equation

∂fα(r, v, t)
∂t

+ v · ∇rfα(r, v, t) + F
mα

·∇vfα(r, v, t) =
(

∂fα(r, v, t)
∂t

)
coll

. (2.2)

Above, on the left-hand side, the differential vector operators ∇r and ∇v represent,
respectively, the gradients in (x, y, z) space and (vx, vy, vz) velocity coordinates. The quantity F
is the acting force in the system, and mα is the mass of the particles of kind α, which, in a fully
ionized plasma, can assume two values: electrons α = e and ions α = i. The right-hand side
depicts the temporal variation of the velocity distribution function due to collisions between the
system’s particles.

Collisional interactions are the central point of the present thesis. However, the formalism
presented in Chapter 4, departs from the weak turbulence equations, which are the kinetic
description of nonlinear, low-amplitude instabilities in a collisionless plasma. The contributions
of the correlations between source fluctuations, which account for collisional interactions (see. [79,
81]), are then retrieved with the inclusion of noneigenmode contributions in the wave and particle
kinetic equations2. Therefore, at this point, it will be assumed that collisions can be neglected.

2For instance, in Section 4.1, it will be shown that including the noneigenmode fluctuations in the weak
turbulence’s formal particle kinetic equation leads to an expression that accounts for the collisional interactions
that appear on the right-hand side of equation (2.2).
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2.1 The Vlasov-Maxwell system of equations

In the absence of collisions, the plasma dynamics is given by the Vlasov-Maxwell system,
which is composed of the Vlasov movement equation

∂fα(r, v, t)
∂t

+ v · ∇rfα(r, v, t) + F
mα

·∇vfα(r, v, t) = 0. (2.3)

In the general case, the acting force in Eqs. (2.2) and (2.3) is given by the Lorentz force
added by an external force, which, at kinetic scales, is also of electromagnetic nature. Therefore,
in cgs units3, F has the following form

F =
∑

α

qα

[
E(r, t) + 1

c
v × B(r, t)

]
+ Fext, (2.4)

where qα is the charge of the particles of kind α, and c is the speed of light. The quantities
E(r, t) and B(r, t) are, respectively, the electric and magnetic fields, which are described by the
Maxwell equations

∇ · E = 4πρ (2.5)

∇ · B = 0 (2.6)

∇ × E = −1
c

∂B
∂t

(2.7)

∇ × B = 4π

c
J + 1

c

∂E
∂t

. (2.8)

In a statistical description, the charge density ρ and the current density J depend on the
velocity distribution function

ρ(r, t) =
∑

α

qα

∫
v

fα(r, v, t)d3v (2.9)

J(r, t) =
∑

α

qα

∫
v

vfα(r, v, t)d3v. (2.10)

Together, the expressions (2.3), (2.5), (2.6), (2.7), (2.8), (2.9) and (2.10) form a closed
self-consistent set of coupled nonlinear equations, which is responsible for the description of
a myriad of oscillatory processes that may occur in plasmas and how they affect (and are
affected by) the velocity distribution function, in the absence of collisions. The solution of such
complicated system will invariably depend on some degree of approximation.

Considering the extensive variety of nonlinear processes that might occur in a plasma,
the appropriate way to deal with these equations will depend on intrinsic characteristics of the

3The use of cgs units will be consistent through all this work.
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plasma and the nature of the phenomenon under consideration. For low amplitude oscillations
in a fully ionized plasma, one may employ perturbation theory in order to solve the Vlasov
equation [2].

2.2 Low amplitude electrostatic oscillations

We are interested in the presence of high-frequency electrostatic waves propagating in a
homogeneous, fully ionized and unmagnetized plasma, which is initially in equilibrium. Under
such conditions, we may consider B = 0. Thus, the Vlasov equation takes the following form

∂fα

∂t
+ v · ∇fα + qα

mα

E ·∇vfα = 0, (2.11)

where the electric field is given by

∇ · E = 4π
∑

α

qα

∫
v

fα(r, v, t)d3v. (2.12)

Assuming low amplitude oscillations, we may approximate these equations by introducing
a small first order perturbation into the initial velocity distribution function and, assuming
E0 = 0, we introduce a small first order electric field :

fα(r, v, t) = fα0(v) + fα1(r, v, t), (2.13)

E(r, t) = E1(r, t). (2.14)

Until this point, the linear, quasilinear and nonlinear formulations are identical. For a
further evaluation we must decide if substitute Eqs. (2.13) and (2.14) in Eq. (2.11) as they are
and then eliminate all nonlinear terms in the Vlasov equation. Or if we take the average of
Eqs. (2.13) and (2.14) and use the averaged quantities to keep some degree of nonlinearity in
the movement equation. The subsequent deduction for each case was carefully detailed and
discussed in Chapters 2 and 3 of Ref. [81]. Therefore, in order to maintain the focus on the
objectives of the present work, we reproduce in the next chapter only a brief review of the
deduction of the weak turbulence theory equations.



Chapter 3

Weak turbulence theory

The weak turbulence theory is what we may call a “borderline approach” because, despite
the fact that it deals with some more intense instabilities, we must assure that these fluctuations
are still inside the weak turbulence limit, i.e., that the turbulence is weak enough to be treated
by a perturbative method. Such boundary is defined by a comparison between the averaged
kinetic energy of the particles per volume unity Ekin = n̄m < v2 > /2, and the energy density
Ef , which is associated with the fluctuations of the perturbative electric field. Thus, by “weak
turbulence” we mean

Ef � Ekin, (3.1)

that is, the energy density of the fluctuations must be much smaller than the kinetic energy
density of the particles. This condition is related to the slow wave-growing assumption [11],
which is central for the further development of nonlinear kinetic equations, as will be discussed
further.

The following discussion is a reduced version of the comprehensive demonstration pre-
sented in Section 3.2 of Ref. [81]. We also use the same notation and logic sequence. Any
deviation from [81] will be explained in a footnote.

3.1 Nonlinear kinetic equations

Let us consider the propagation of electrostatic oscillations in a homogeneous, unmag-
netized and fully ionized plasma. Thus, in the absence of collisions, the movement equation is
given by the electrostatic Vlasov equation

∂fa(r, v, t)
∂t

+ v · ∇fa(r, v, t) + ea

ma

E(r, t)·∂fa(r, v, t)
∂v

= 0, (3.2)

14
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where the electric field is given by

∇ · E(r, t) = 4πn̂
∑

a

ea

∫
d3vfa(r, v, t). (3.3)

In the above equations, fa is the velocity distribution function, where the subscript “a” is the
kind of particle: a = i for ions and a = e for electrons. For an overall neutral plasma, the average
number density of the ions and the electrons is the same, n̂ = n̂e = n̂i.

Proceeding under the perturbative approach, we assume small fluctuations and write the
velocity distribution function and the electric field as a sum of an equilibrium zero-order term
and a small first-order fluctuation

fa(r, v, t) = Fa(v) + δfa(r, v, t)

E(r, t) = δE(r, t),
(3.4)

where the zero-order electric field is assumed to be zero and Fa is the equilibrium velocity
distribution function.

Substituting (3.4) in (3.2) we obtain

∂Fa

∂t
+ ea

ma

δE·∂Fa

∂v
+ ∂ δfa

∂t
+ v · ∇δfa + ea

ma

δE·∂ δfa

∂v
= 0. (3.5)

Taking the average1 of Eq. (3.5), we obtain a kinetic equation for the time evolution of
the equilibrium velocity distribution function

∂Fa

∂t
= − ea

ma

〈
δE·∂ δfa

∂v

〉
. (3.6)

Subtracting (3.6) from (3.5) we obtain an equation for the fluctuations

∂ δfa

∂t
+ v · ∇δfa + ea

ma

δE·∂Fa

∂v
+ ea

ma

[
δE·∂ δfa

∂v
−
〈

δE·∂ δfa

∂v

〉]
= 0. (3.7)

It is interesting to mention that at this stage, Eqs. (3.6) and (3.7) are precisely the same
as those leading to the quasilinear approximation. Thus, at this point, one must choose if the
quasilinear approach is enough, or if a nonlinear formulation is necessary. In the first case all
terms proportional to δEδfa are neglected in the equation for the fluctuations2. We shall keep
these terms and proceed with the nonlinear approach.

Now, we assume the that fluctuations may be decomposed in terms of the Fourier-Laplace
1For more details see subsection 3.1.1 of Ref. [81].
2See subsection 3.1.2 of [81].
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transformation over the fast time-scale of the fluctuations, while amplitudes of the spectra vary
in a slow time-scale

δfa(r, v, t) =
∫

d3k
∫

L
dω δfa

k,ω(v, t)ei(k·r−ωt),

δfa
k,ω(v, t) = 1

(2π)4

∫
d3r

∫ ∞

0
dt δfa(r, v, t)e−i(k·r−ωt),

δE(r, t) =
∫

d3k
∫

L
dω δEk,ω(t)ei(k·r−ωt),

δEk,ω(t) = 1
(2π)4

∫
d3r

∫ ∞

0
dt δE(r, t)e−i(k·r−ωt),

(3.8)

where the integration path is taken along L, stretching from ω = −∞+iσ to ω = ∞+iσ, in which
σ > 0 and σ → 0. We should emphasize that we assume slow and adiabatic time-dependence
for the spectral amplitudes δfa

k,ω(v, t) and δE(t)k,ω in the above transformation.

The Fourier-Laplace transformation of nonlinear terms, where we have the product of
two functions, is given by the convolution of these functions

1
(2π)4

∫
d3r

∫
dt δfa(r, v, t) δE(r, t) e−i(k·r−ωt) =

∫
d3k′

∫
dω′ δfa

k′,ω′ δEk−k′,ω−ω′

=
∫

d3k′
∫

dω′ δfa
k−k′,ω−ω′ δEk′,ω′ .

(3.9)

Applying these transformations to the Vlasov-Maxwell system, we obtain a set of hierar-
chic equations composed by the formal particle kinetic equation [22]

∂Fa

∂t
= − ea

ma

∂

∂v
·
∫

d3k
∫

dω
∫

d3k′
∫

dω′
〈
δEk′,ω′ δfa

k,ω

〉
ei(k+k′)·r−i(ω+ω′)t; (3.10)

the equation of the fluctuating distribution evolution
(

ω − k · v + i
∂

∂t

)
δfa

k,ω = −i
ea

ma

δEk,ω·∂Fa

∂v
− i

ea

ma

∂

∂v
·
∫

d3k′
∫

dω′

×
[
δEk′,ω′δfa

k−k′,ω−ω′ −
〈
δEk′,ω′δfa

k−k′,ω−ω′

〉]
;

(3.11)

and the differential form of the Gauss law for the electric field fluctuations

k·δEk,ω = −4πn̂i
∑

a

ea

∫
d3v δfa

k,ω. (3.12)

The bracketed terms in Eqs. (3.10) and (3.11) represent the ensemble averages over the
phases of the perturbation. One may notice that the above set of equations is not closed, since
the solution for δfa

k,ω requires knowing the two-body correlation
〈
δfa

k,ωδfa
k′,ω′

〉
, which depends

on the tertiary correlation
〈
δfa

k,ωδfa
k′,ω′δfa

k′′,ω′′

〉
, and so on.
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On the left-hand side of Eq. (3.10) we have retained the slow adiabatic derivative i(∂/∂t).
To deal with that we employ two-step approximation [22] and redefine the angular frequency
ω → ω + i∂/∂t. Then the equation for the perturbed distribution may be iteratively solved
up to third order in electric field. The solution is then inserted into Eq. (3.12) and, under
the assumption that there are random phases associated with the fluctuations, we take the
appropriated ensembles averages. This procedure results in the nonlinear spectral balance
equation. At this point, according to the two-time approximation, the slow time derivative is
reintroduced [52]. We then obtain the nonlinear spectral balance equation3

i

2
∂ε(k, ω)

∂ω

∂ 〈δE2〉k,ω

∂t
+ Re ε(k, ω)

〈
δE2

〉
k,ω

+ iIm ε(k, ω)
〈
δE2

〉
k,ω

− 2
π

1
k2ε∗(k, ω)

∑
a

e2
a

∫
dv δ(ω − k · v)Fa(v)

= −2
∫

dk′
∫

dω′
{[

χ(2)(k′, ω′|k − k′, ω − ω′)
]2 [〈δE2〉k−k′,ω−ω′

ε(k′, ω′)

+
〈δE2〉k′,ω′

ε(k − k′, ω − ω′)

]
− χ̄(3)(k′, ω| − k′, −ω′|k, ω)

〈
δE2

〉
k′,ω′

}〈
δE2

〉
k,ω

+2
∫

dk′
∫

dω′ |χ(2)(k′, ω′|k − k′, ω − ω′)|2
ε∗(k, ω)

〈
δE2

〉
k′,ω′

〈
δE2

〉
k−k′,ω−ω′

(3.13)

− 4
π

∫
dk′

∫
dω′ 1

k2|ε(k′, ω′)|2

[
[χ(2)(k′, ω′|k − k′, ω − ω′)]2

ε(k − k′, ω − ω′)
〈
δE2

〉
k,ω

−|χ(2)(k′, ω′|k − k′, ω − ω′)|2
ε∗(k, ω)

〈
δE2

〉
k−k′,ω−ω′

]∑
a

e2
a

∫
dv δ(ω′ − k · v)Fa(v)

− 4
π

∫
dk′

∫
dω′ 1

|k − k′|2|ε(k − k′, ω − ω′)2

[
[χ(2)(k′, ω′|k − k′, ω − ω′)]2

ε(k′, ω′)
〈
δE2

〉
k,ω

−|χ(2)(k′, ω′|k − k′, ω − ω′)|2
ε∗(k, ω)

〈
δE2

〉
k′,ω′

]∑
a

e2
a

∫
dv δ(ω − ω′ − (k − k′) · v)Fa(v)

where on the left-hand side we have the expressions that correspond to the linear equation and
on the right-hand side are the nonlinear expressions. The term

ε(k, ω) = 1 +
∑

a

χa(k, ω) (3.14)

is the linear dielectric response function.

In the above equations,∑a χa(k, ω) is the linear dielectric susceptibility,∑a χ(2)
a (k1, ω1|k2, ω2)

is the second order nonlinear dielectric susceptibility and ∑
a χ̄(3)

a (k1, ω1|k2, ω2|k3, ω3) is the
partial third-order nonlinear dielectric susceptibility. For particles of species a, the dielectric

3Equation (3.13) is not in the same form that appears in Refs. [22,81]. The reason for this choice (see Eq.
2.59 of Ref. [52]), will become clear in the next chapter.
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susceptibilities are respectively given by

χa(k, ω) = −4πean̂a

k2

∫
d3v k · gk,ωFa, (3.15)

χ(2)
a (k1, ω1|k2, ω2) = −1

2
4πiean̂a

k1k2|k1 + k2|

×
∫

d3v gk1+k2,ω1+ω2

[
k1(k2·gk2,ω2) + k2(k1·gk1,ω1)

]
Fa,

(3.16)

χ̄(3)
a (k1, ω1|k2, ω3|k3, ω3) = −1

2
4πiean̂a

k1k2k3|k1 + k2 + k3|

×
∫

d3v (gk1+k2+k3,ω1+ω2+ω3·k1)gk2+k3,ω2+ω3 ·
[
k2(k3·gk3,ω3) + k3(k2·gk2,ω2)

]
Fa,

(3.17)

where gk,ω is a differential operator:

gk,ω ≡ − ea

ma

1
ω − k · v + i0

∂

∂v
. (3.18)

Equation (3.13) is a general expression. The usual approach in plasma kinetic theory
is to assume |Im ε(k, ω)| � |Re ε(k, ω)|. Then, the imaginary part of (3.13) leads to the wave
kinetic equation, while the real part leads to the wave dispersion equation, whose solutions are
the wave dispersion relations.

For the generalized particle kinetic equation is used a similar procedure. In this work,
however, we use only the quasilinear approximation for the particle kinetic equation. Therefore,
the nonlinear particle equation will be omitted here4. Then, in the quasilinear approximation,
the particle kinetic equation is given by the following expression5 [52]

∂Fa

∂t
= πe2

a

m2
a

∫
dk

∫
dω

(
k
k

· ∂

∂v

)
δ(ω − k · v)

×
[
Im maε(k, ω)

2π3k |ε(k, ω)|2
Fa +

〈
δE2

〉
k,ω

(
k
k

∂Fa

∂v

)]
.

(3.19)

3.1.1 Wave kinetic equation for linear eigenmodes

Following the standard weak turbulence theory procedure, we assume slow wave amplifi-
cation, which means that the wave growing process does not affect the plasma dynamics. Hence,
the normal modes of oscillation are determined only by the linear response of the plasma, while
the interactions among waves and particles are, in general, described by the nonlinear wave and
particle kinetic equations. Thus, we have a theory that depicts nonlinear interactions between
linear eigenmodes. The dispersion relations for linear normal modes are given by the solutions

4The generalized form can be seen at Refs. [22, 81]
5Equation (3.19) is not in the same form that appears in Refs. [22,81]. The reason for this choice, which is

based in Ref. [52], will become clear in the next chapter.
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of the real part of the first term in Eq. (3.13)

0 = Re ε(k, ω)
〈
δE2

〉
k,ω

. (3.20)

Let us assume ω = ωα
k,ω is the solution of the above expression. Once the dispersion

relation has been calculated, we may write the spectral wave amplitude as follows

〈
δE2

〉
k,ω

=
∑

α

[
I+α

k δ(ω − ωα
k) + I−α

k δ(ω + ωα
k)
]
, (3.21)

where the ± signs represent the propagation direction of their respective normal modes, denoted
by α. The eigenmodes will be given by the oscillation modes that satisfy the following condition

ε(k, ± ωα
k,ω) ≈ 0. (3.22)

In an unmagnetized plasma, there are two possible electrostatic eigenmodes: the Langmuir
(α = L) and ion-sound (α = S) waves. Therefore, after careful considerations and extensive
algebraic manipulations, the following kinetic equation for these waves is obtained6 [22, 23]

∂Iα
k

∂t
= − 2Im ε(k, σωα

k)
ε′(k, σωα

k) Iα
k +

∑
a=e,i

4e2

k2[ε′(k, σωα
k)]2

∫
dv δ(σωα

k − k · v)fa(v)

−
∑
α,β

∑
σ′=±1

∫
dk′ Aα,β(k, k′)Iβ

k′ Iα
k −

∑
a=e,i

16e2
a

ε′(k, σωα
k)

∑
σ′=±1

∑
β=L,S

×
∫

dv
∫

dk′ |χ(2)(k′, σ′ωβ
k′|k − k′, σωα

k − σ′ωβ
k′)|2

|k − k′|2|ε(k − k′, σωα
k − σ′ωβ

k′)|2

×

 Iσα
k

ε(k′, σ′ωβ
k′)

− Iσ′β
k′

ε′(k, σωα
k)

 δ[σωα
k − σ′ωβ

k′ − (k − k′)·v]fa(v)

−4π
∑

α,β,γ

∑
σ′′=±1

∫
dk′ |χ(2)(k′, σ′ωβ

k′ |k − k′, σ′′ωγ
k−k′)|2

ε′(k, σωα
k)

×
(

Iγ
k−k′ Iα

k

ε′(k′, σ′ωβ
k′)

+ Iβ
k′ Iα

k
ε′(k − k′, σ′′ωγ

k−k′)
−

Iβ
k′ Iγ

k−k′

ε′(k, σωα
k)

)
δ
(
σωα

k − σ′ωβ
k′ − σ′′ωγ

k−k′

)
,

(3.23)

where the coefficient Aα,β(k, k′) is given by

Aα,β(k, k′) = 4
ε′(k, σωα

k)Im
(

2
[
χ(2)(k′, σ′ωβ

k′ |k − k′, σωα
k − σ′ωβ

k′)
]2

×P 1
ε(k − k′, σωα

k − σ′ωβ
k′)

− χ̄(3)(k′, σ′ωβ
k′ | − k′, −σ′ωβ

k′ |k, σωkα)
)

,

(3.24)

6Equation (3.23) is not in the same form that appears in Refs. [22,81]. The reason for this choice, which is
based in Ref. [52], will become clear in the next chapter.
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and P is the principal value of the integral where the coefficient belongs. In both expressions
the following short-hand notation has been used

ε′(k, σωα
k) = ∂Re ε(k, σωα

k)
∂σωα

k
. (3.25)

On the right hand side of (3.23), in the first two terms we have the quasilinear wave-
particle interaction, responsible for the induced and spontaneous emission processes. The
third and fourth terms are nonlinear wave-particle interactions accounting for the induced
and spontaneous scattering processes. The last term is the nonlinear wave-wave interaction
describing the induced and spontaneous three wave-decay processes.

3.2 Weak turbulence equations for Langmuir and ion-
sound waves

The further evaluation of Eq. (3.23) demands a careful analysis of the resonance conditions
for each process and will not be addressed here7. In the following equations we show the complete
wave kinetic equation for both (L) and (S) waves, in which the term describing the effects of
spontaneous emission is already included.

For (L) waves we have:

∂

∂t

IσL
k
µL

k
= µL

k
ω2

pe

k2

∫
d3v δ(σωL

k − k · v)
(

n̂ e2 Fe(v) + π (σωL
k ) k · ∂Fe(v)

∂v
IσL

k
µL

k

)

− πσµL
k ωL

k
e2

2T 2
e

∑
σ′,σ′′

∫
d3k′ µL

k′ µS
k−k′ (k · k′)2

k2 k′2 |k − k′|2

(
σ′ωL

k′
Iσ′′S

k−k′

µS
k−k′

IσL
k
µL

k

+ σ′′ωL
k−k′

Iσ′L
k′

µL
k′

IσL
k
µL

k
− σωL

k
Iσ′L

k′

µL
k′

Iσ′′S
k−k′

µS
k−k′

)
δ(σωL

k − σ′ωL
k′ − σ′′ωS

k−k′) (3.26)

+ σωL
k

e2

m2
e ω2

pe

∑
σ′

∫
d3k′

∫
d3v

µL
k µL

k′ (k · k′)2

k2 k′2 δ[σωL
k − σ′ωL

k′ − (k − k′) · v]

×
[

n̂ e2

ω2
pe

(
σωL

k
Iσ′L

k′

µL
k′

− σ′ωL
k′

IσL
k
µL

k

)
[Fe(v) + Fi(v)] + π

me

mi

Iσ′L
k′

µL
k′

IσL
k
µL

k
(k − k′) · ∂Fi(v)

∂v

]
.

In the first line on the right-hand side of (3.26), one may recognize the quasilinear
resonance condition δ(σωL

k − k · v), which is responsible for the spontaneous emission process
and the induced emission process, respectively. In the second and third lines we have the
three wave-decay process, which can be recognized by the wave-wave resonance condition

7A comprehensive description of this process can be seen in subsection 3.2.3 and section 3.3 of [81].
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δ(σωL
k − σ′ωL

k′ − σ′′ωS
k−k′) at the end of the third line. Inside the parenthesis, the first two

terms depicts the induced wave-decay process, and the third term describes the spontaneous
wave-decay process. In the last two lines we have the equations for the induced and spontaneous
scattering processes. At the end of the fourth line is the nonlinear wave-particle resonance
condition δ[σωL

k − σ′ωL
k′ − (k − k′) · v] and, in the last line, are the terms of spontaneous and

induced scattering, respectively.

For (S) waves we have the same effects, in the same order:

∂

∂t

IσS
k
µS

k
= µS

k
ω2

pe

k2

∫
d3v δ(σωS

k − k · v)
[
n̂ e2 [Fe(v) + Fi(v)]

+ π (σωL
k )
(

k · ∂Fe(v)
∂v

+ me

mi

k · ∂Fi(v)
∂v

)
IσS

k
µS

k

]

− πσωL
k

e2

4T 2
e

∑
σ′,σ′′

∫
d3k′ µS

k µL
k′ µL

k−k′ [k′ · (k − k′)]2
k2 k′2 |k − k′|2

(
σ′ωL

k′
Iσ′′L

k−k′

µL
k−k′

IσS
k
µS

k

+ σ′′ωL
k−k′

Iσ′L
k′

µL
k′

IσS
k
µS

k
− σωL

k
Iσ′L

k′

µL
k′

Iσ′′L
k−k′

µL
k−k′

)
δ(σωS

k − σ′ωL
k′ − σ′′ωL

k−k′) (3.27)

+ σωL
k

e2

m2
e ω2

pe

∑
σ′

∫
d3k′

∫
d3v

µS
k µS

k′ (k · k′)2

k4 k′4 λ4
De

δ[σωS
k − σ′ωS

k′ − (k − k′) · v]

×
[

n̂ e2

ω2
pe

Wk,k′

(
σωL

k
Iσ′S

k′

µS
k′

− σ′ωL
k′

IσS
k
µS

k

)
[Fe(v) + Fi(v)]

+ π
me

mi

(
Wk,k′ + σ σ′ k′

k

)
Iσ′S

k′

µS
k′

IσS
k
µS

k
(k − k′) · ∂Fi(v)

∂v

]
.

In the scattering term we have

Wk,k′ =
(

1 + 1
ξ2

)2 1
|k − k′|4 λ4

De |ε‖(k − k′, σωS
k − σ′ωS

k′)|2
, (3.28)

where
ε‖(k − k′, σωS

k − σ′ωS
k′) = 1 + 2 (k · k′ − σ σ k k′)

|k − k′|2 (k − σ σ′ k′)2 λ2
De

(3.29)

+ i

(
π

2
me

mi

)1/2[
exp

(
−me

mi

ξ

2

)
+
(

mi

me

T 3
e

T 3
i

)1/2

exp
(

−Te

Ti

ξ

2

)]
,

with
ξ = (σ k − σ′k′)2

|k − k′|2
. (3.30)

Though Eq. (3.27) depicts the full wave kinetic equation for ion-sound waves, the
scattering term has always been neglected and will not be considered in this work as well. The
reason for that is that the scattering of ion-sound waves caused by other ion-sound waves evolves
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in a very slow time-scale. Indeed, we are interested in describing collisional processes, which act
in a long evolution time. However, one must take one step at a time, and we do not discard
including ion-sound scattering in future analysis.

The particle kinetic equation is given by

∂Fa(v)
∂t

= πe2
a

m2
a

∑
σ

∑
α=L,S

∫
d3k

(
k
k

· ∂

∂v

)
µα

kδ(σωα
k − k · v)

×
(

ma

4π2
σωL

k
k

Fa(v) + Iσα
k
µα

k

k
k

· ∂Fa(v)
∂v

)
,

(3.31)

where a = i for ions and a = e for electrons, and α = L, S.

The following approximations and definitions were used to write the above equations

1
ε′

‖(k, σωL
k ) = σµL

k ωL
k

2 ,
1

ε′
‖(k, σωS

k ) = σµS
k ωL

k
2 ,

µL
k = 1, µS

k = |k|3λ3
De

(
me

mi

)1/2(
1 + 3Ti

Te

)1/2

.



Chapter 4

Weak turbulence for collisional plasmas

In Chapter 3 we made a brief review of the standard weak turbulence theory procedure.
Such procedure takes into account only the contributions from the linear eigenmodes. The
basic premise of this conventional approach claims that only frequencies ω = ωk that satisfy
the dispersion relations are considered significant, even if the general electrostatic fluctuations
〈δE2〉k,ω are characterized by all k and ω. Therefore, the fluctuations with ω 6= ωk, which
characterize the noneigenmodes, are ignored. In Ref. [52] the authors present a generalization
of this customary approach, where, besides the traditional inclusion of the normal modes, it
is also taken into account the contribution from the noneigenmode fluctuations. The result is
a generalized expression for the spectral energy density of the waves, with some remarkable
consequences for the wave and particle kinetic equations.

The generalized spectral energy density, which contains the noneigenmode contribution,
is the central factor of this new kinetic turbulence theory for collisional plasmas. When it is
substituted in the nonlinear terms of the nonlinear spectral balance equation, three new terms
appear in the wave kinetic equation. The first term is an extension for the spontaneous scattering
equation. The second term is a new, rigorous expression for the collisional damping rate of plasma
waves. The third term depicts a hitherto unknown process of electrostatic radiation emission, in
the eigenmode frequency range, due to particle scattering. This underlying electrostatic form of
braking radiation was called electrostatic bremsstrahlung [52]. For the particle kinetic equation,
the application of this generalized expression is responsible for the arising of the Balescu-Lenard
collision integral, without any ad hoc addition.

In this chapter, we provide a basic outline of the elaborated demonstration imparted by
the authors of [52]. We start by showing how the noneigenmodes contribution is included in the
spectral energy density of the waves. Then we show that the inclusion of the noneigenmodes
does not affect the quasilinear wave kinetic equation. In the next two subsections, we exhibit,
without entering in details, the effects of the new contribution to the particle kinetic equation

23
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and the nonlinear particle kinetic equation.

4.1 Inclusion of noneigenmodes

Let us start considering the linear part of the spectral balance equation, which corresponds
to the left-hand side of Eq. (3.13)

1
2

∂ Re ε(k, ω)
∂ω

∂ 〈δE2〉k,ω

∂t
+ Re ε(k, ω)

〈
δE2

〉
k,ω

+ i Im ε(k, ω)
〈
δE2

〉
k,ω

= 2
π

1
k2ε∗(k, ω)

∑
a

e2
a

∫
dv δ(ω − k · v)fa(v),

(4.1)

where the dielectric constant is given by

ε(k, ω) =
∑

a

4πe2
a

mak2

∫
dv

k·∂fa/∂v
ω − k · v + i0 . (4.2)

Then, taking the real part of (4.1), we have

Re ε(k, ω)
[〈

δE2
〉

k,ω
− 2

π

1
k2|ε(k, ω)|2

∑
a

e2
a

∫
dv δ(ω − k · v)fa(v)

]
= 0. (4.3)

In the above equation we have two possibilities for the wave-number frequency space. If
one is interested in the region of (k, ω) in which |ε(k, ω)|2 6= 0, then the left- and right-hand
sides of (4.3) may be balanced by writing

〈
δE2

〉
k,ω

=
〈
δE2

〉0

k,ω
, (4.4)

where 〈
δE2

〉0

k,ω
≡ 2

π

1
k2|ε(k, ω)|2

∑
a

e2
a

∫
dv δ(ω − k · v)fa(v). (4.5)

It is clear that the solution of (4.4) depends on the denominator |ε(k, ω)|2 not being
zero. For eigenmodes, however, ε(k, ωα

k) = 0, meaning the denominator remains nonzero only if
ω 6= ωα

k , i.e., if ω does not satisfy the dispersion relation. Hence, the electric field fluctuation
〈δE2〉0

k,ω must represent noneigenmodes contribution. As exposed in Section 3.1 the standard
theory is concerned only with the normal oscillation modes, which are the solutions of the
dispersion relations, calculated in the vicinity of the zeros of Re ε(k, ω).

Therefore, we have two distinct situations. One is the situation in which collective modes
are not important, and the electric field energy may be expressed by Eq. (4.4) with the electric
field fluctuation 〈δE2〉0

k,ω given by (4.5). The other is the standard situation, in which collective
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modes are important, and the wave electric field is determined by

〈
δE2

〉
k,ω

−
〈
δE2

〉0

k,ω
=

∑
σ=±1

∑
α=L,S

Iσα
k δ(ω − σωα

k)

Re ε(k, σωα
k) = 0.

(4.6)

The theory that we are analyzing is a generalization of the standard weak turbulence
theory, in which both the eigenmode and noneigenmode are included by defining the following
quantity

Ψk,ω ≡
〈
δE2

〉
k,ω

−
〈
δE2

〉0

k,ω
. (4.7)

Thus, the function Ψk,ω becomes the total eigenfunction of Eq. (4.3):

Re ε(k, ω)Ψk,ω = 0, (4.8)

where Ψk,ω can be expressed as

Ψk,ω =
∑

σ=±1

∑
α=L,S

Iσα
k δ(ω − σωα

k), (4.9)

with the eigenvalue σωα
k satisfying

Re ε(k, σωα
k) = 0. (4.10)

The procedure described above encompasses the two possibilities under analysis in this
work by generalizing Eq. (3.21) to take into account the noneigenmode contribution, given by
Eq. (4.5), along with Eq. (4.9) for the collective modes that satisfy the eigenmode condition,
resulting in the following expression

〈
δE2

〉
k,ω

=
〈
δE2

〉0

k,ω
+

∑
σ=±1

∑
α=L,S

Iσα
k δ(ω − σωα

k). (4.11)

4.1.1 Absence of noneigenmode contribution to quasilinear wave ki-
netic equation

Let us start by including the noneigenmode term in the quasilinear wave kinetic equation.
Substituting Eq. (4.11) in the imaginary part of Eq. (4.1), we have

∂ Re ε(k, ω)
∂ω

∂ 〈δE2〉0
k,ω

∂t
+ 2 Im ε(k, ω)

〈
δE2

〉0

k,ω
+

∑
σ=±1

∑
α

[
∂Re ε(k, σωα

k)
∂(σωα

k)
∂Iσα

k
∂t

+ 2 Im ε(k, σωα
k)Iσα

k

]
δ(ω − σωα

k) = Im 4
πk2ε∗(k, ω)

∑
a

e2
a

∫
dv δ(ω − k · v)fa(v).

(4.12)
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Making use of

1
ε(k, ω) = P 1

ε(k, ω) −
∑

σ=±1

∑
α=L,S

iπδ(ω − σωα
k)

ε′(k, ω)
1

ε∗(k, ω) = P 1
ε∗(k, ω) +

∑
σ=±1

∑
α=L,S

iπδ(ω − σωα
k)

ε′(k, ω) ,

(4.13)

where
ε′(k, ω) = ∂ Re ε(k, ω)/∂ω,

we obtain

ε′(k, ω)
∂ 〈δE2〉0

k,ω

∂t
+ Im 4

πk2ε∗(k, ω)
∑

a

e2
a

∫
dv δ(ω − k · v)fa(v)

+
∑

σ=±1

∑
α

[
ε′(k, σωα

k)∂Iσα
k

∂t
+ 2 Im ε(k, σωα

k)Iσα
k

]
δ(ω − σωα

k)

= Im P 4
πk2ε∗(k, ω)

∑
a

e2
a

∫
dv δ(ω − k · v)fa(v)

+
∑

σ=±1

∑
α

4δ(ω − k · v)
k2ε′(k, σωα

k)
∑

a

e2
a

∫
dv δ(ω − k · v)fa(v).

(4.14)

According to the definition (4.5), the argument of the dielectric constant excludes the
eigenmodes. Hence, the second term on the left-hand side of Eq. (4.14) is implicitly taken with
the principal value, which means it cancels out the first term of the right-hand side. Thus, by
assuming ∂ 〈δE2〉0

k,ω /∂t = 0, and removing the common factor ∑σ=±1
∑

α δ(ω − σωα
k), we are

left with

ε′(k, σωα
k)∂Iσα

k
∂t

+ 2 Im ε(k, σωα
k)Iσα

k = 4
k2ε′(k, σωα

k)
∑

a

e2
a

∫
dv δ(ω − k · v)fa(v). (4.15)

And, rearranging Eq. (4.15), we obtain

∂Iσα
k

∂t
= −2 Im ε(k, σωα

k)
ε′(k, σωα

k) Iσα
k + 4

k2[ε′(k, σωα
k)]2

∑
a

e2
a

∫
dv δ(ω − k · v)fa(v), (4.16)

that is equivalent to the first two terms of Eq. (3.23), which describe the effects of spontaneous
and induced emissions, respectively. Both processes are determined by the linear wave-particle
resonance conditions σωα

k − k · v = 0. Therefore, we may conclude that noneigenmodes do not
alter the quasilinear wave kinetic equation.

4.1.2 Noneigenmode contribution to particle kinetic equation

For the particle kinetic equation, however, the outcome is different. In this case, the
inclusion of noneigenmode field fluctuations leads to the rigorous Balescu-Lenard collision
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integral, resulting in the merge of two essential formulations of the plasma kinetic theory,
without any ad hoc addition. The procedure starts by inserting the generalized wave electric
field intensity, given by Eq. (4.11), in Eq. (3.19)

∂fa

∂t
= πe2

a

m2
a

∫
dk

∫
dω

(
k
k

· ∂

∂v

)
δ(ω − k · v)

[
Im P ma

2π3k ε∗(k, ω)fa(v)

+ 2
πk2|ε(k, ω)|2

∑
b

e2
b

∫
dv′δ(ω − k · v′)fb(v′)

(
k
k

· ∂fa(v)
∂v

)

+
∑

σ

∑
α

πma δ(ω − σωα
k)

2π3k ε′(k, σωα
k) fa(v) +

∑
σ

∑
α

Iσα
k δ(ω − σωα

k)
(

k
k

· ∂fa(v)
∂v

)]
.

(4.17)

Proceeding with the ω integration, we redefine the velocity distribution function by
taking the ambient density factor out

fa(v) = n̂Fa(v),
∫

d3v Fa(v) = 1, (4.18)

and, making explicit use of the definition for Im ε(k, ω):

Imε(k, ω) = −π
∑

α

4n̂πe2
a

mak2

∫
dv k·∂Fa

∂v
δ(ω − k · v),

we obtain the following form of the generalized particle kinetic equation including both the
eigenmode and noneigenmode contributions [52]

∂Fa(v)
∂t

=
∑

b

2e2
ae2

bnb

ma

∂

∂vi

∫
dk

∫
dv′ kikj

k4
δ(k · v − k · v′)

|ε(k, k · v)|2

×
(

∂

∂vj

− ma

mb

∂

∂v′
j

)
Fa(v)Fb(v′)

+ πe2
a

m2
a

∑
σ

∑
α=L,S

∫
dk
(

k
k

· ∂

∂v

)
δ(σωα

k − k · v)

×
(

ma

2π2kε′(k, σωL
k )Fa(v) + Iσα

k
k
k

· ∂Fa(v)
∂v

)
,

(4.19)

where the first term on the right-hand side is the contribution of the noneigenmode inclusion
in the particle kinetic equation and, as mentioned before, corresponds to the Balescu-Lenard
collision integral. The other term is the usual quasilinear particle equation, which contains the
velocity friction term, related with the spontaneous emission process, and the velocity space
diffusion term.

In Eq. (4.19), the linear response |ε(k, k · v)|2 in the denominator of the Balescu-Lenard
integral can be approximated under the assumption that the most important contributions to
the noneigenmode fluctuations is in the region around v = 0 , i.e., the region with the highest
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concentration of particles in the velocity distribution function. Therefore, we may treat these
various angular frequency arguments as if they have the basic form of k · v ≈ 0 and approximate
the collision integral as

ε(k, k · v) ≈ ε(k, 0) = 1 +
∑

a

2ω2
pa

k2v2
Ta

= 1 +
2ω2

pe

k2v2
T e

(
1 + Te

Ti

)
, (4.20)

where ωpe =
√

4πnee2/me is the plasma frequency, vT e =
√

2Te/me is the electron thermal
velocity, and Te and Ti are, respectively, the electron and ion temperature expressed in units of
energy. This leads to

∂Fa(v)
∂t

=
∑

b

2e2
ae2

bnb

ma

∂

∂vi

∫
dk

∫
dv′ kikjλ

4
Deδ(k · v − k · v′)

|1 + Te/Ti + k2λ2
De|2

×
(

∂

∂vj

− ma

mb

∂

∂v′
j

)
Fa(v)Fb(v′)

+ πe2
a

m2
a

∑
σ

∑
α=L,S

∫
dk
(

k
k

· ∂

∂v

)
δ(σωα

k − k · v)

×
(

ma

2π2kε′(k, σωL
k )Fa(v) + Iσα

k
k
k

· ∂Fa(v)
∂v

)
,

(4.21)

where λDe =
√

Te/4πnee2 is the Debye length.

The collision integral also has a further approximation where, assuming 2[ωpe/kvT e]2 � 1,
the linear response function can be written as ε(k, k · v) ≈ 1. In such case, the wave number range
of noneigenmode fluctuations must be restricted to the short wavelength regime, k2λ2

De � 1.
This approximation leads to the well known Landau collision integral, which is the approximation
used in Refs. [45, 78]. A very detailed discussion about the limits and assumptions of the weak
coupling approximation, which leads to the Landau collision integral, can be seen in Chapter
4 of Ref. [81]. In Ref. [81] the Balescu-Lenard collision integral was obtained through the
Klimontovich statistical formalism [2, 79], which is also the starting point for the derivation of
the weak turbulence theory [52] and the basis of the simplified approach presented in Section 3.1.
The implementation depicted in Ref. [81] did not make any mention about the connection of
the eigenmode and noneigenmode contributions to each term of the particle kinetic equation.
However, the final result was exactly the same, which means that the real novelty here are not
the equations, but it is this eigenmode/noneigenmode relationship with collective and collisional
processes, respectively. The truly innovative outcome regarding new equations and the inclusion
of noneigenmode fluctuations will appear in the wave dynamics, as will become clear in the next
section.
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4.2 Noneigenmode contribution to nonlinear wave kinetic
equation

For the nonlinear wave kinetic equation, the implementation is far more extensive and
complicated than the two previous cases. In this text, we provide a brief explanation of the
method, which is not very different from the quasilinear case, though it is way more complex,
and present some critical remarks regarding the inclusion of noneigenmodes in the nonlinear
wave equation. It is worth to mention again, that a more detailed description of the procedure
for the inclusion of the noneigenmode contribution in the weak turbulence’s equations can be
seen in [52].

Now, let us consider all terms in Eq. (3.13). On the left-hand side, we have the quasilinear
equations that, as discussed before, are not altered by the inclusion of the noneigenmode
fluctuations. Thus, we can call the left-hand side as “NL”, and work only with the nonlinear
part, on right-hand side of (3.13), and substitute the total electric field fluctuation, given by
Eq. (4.11), in these terms. Moreover, we are interested in how the noneigenmode contribution
affects the emissions in the eigenmode frequency range, i.e., ω = σωk. Therefore, all the
noneigenmode fluctuations 〈δE2〉0

k,ω, with superscript 0 and subscript k, ω to be more specific,
can be neglected at this point since, by definition, they are excluded from the region that satisfies
the ω = σωk condition. The noneigenmode fluctuations with different arguments (〈δE2〉0

k′,ω′ and
〈δE2〉0

k−k′,ω−ω′), though, must be retained. After all these considerations, we have a generalized
form of Eq. (3.13):

NL = −2
∫

dk′
∫

dω′
{[

χ(2)(k′, ω′|k − k′, ω − ω′)
]2

×
[〈δE2〉0

k−k′,ω−ω′ +∑
σ′′
∑

γ Iσ′′γ
k−k′δ(ω − ω′ − σ′′ωγ

k−k′)
ε(k′, ω′) (4.22)

+
〈δE2〉0

k′,ω′ +∑
σ′
∑

β Iσ′β
k′ δ(ω′ − σ′ωβ

k′)
ε(k − k′, ω − ω′)

]
− χ̄(3)(k′, ω| − k′, −ω′|k, ω)

×
[〈

δE2
〉0

k′,ω′
+
∑
σ′

∑
β

Iσ′β
k′ δ(ω′ − σ′ωβ

k′)
]}∑

σ

∑
α

Iσα
k δ(ω − σωα

k)

+2
∫

dk′
∫

dω′ |χ(2)(k′, ω′|k − k′, ω − ω′)|2
ε∗(k, ω)

[〈
δE2

〉0

k′,ω′
+
∑
σ′

∑
β

Iσ′β
k′ δ(ω′ − σ′ωβ

k′)
]

×
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δE2
〉0

k−k′,ω−ω′
+
∑
σ”

∑
γ

Iσ”γ
k−k′δ(ω − ω′ − σ”ωγ

k−k′)
]

− 4
π

∫
dk′

∫
dω′ 1

k2|ε(k′, ω′)|2

{
[χ(2)(k′, ω′|k − k′, ω − ω′)]2

ε(k − k′, ω − ω′)
∑

σ

∑
α

Iσα
k δ(ω − σωα

k)

− |χ(2)(k′, ω′|k − k′, ω − ω′)|2
ε∗(k, ω)

[〈
δE2

〉0

k−k′,ω−ω′
+
∑
σ”

∑
γ

Iσ”γ
k−k′δ(ω − ω′ − σ”ωγ

k−k′)
]}
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×
∑

a

e2
a

∫
dv δ(ω′ − k · v)Fa(v)

− 4
π

∫
dk′

∫
dω′ 1

|k − k′|2|ε(k − k′, ω − ω′)2

{
[χ(2)(k′, ω′|k − k′, ω − ω′)]2

ε(k′, ω′)

×
∑

σ

∑
α

Iσα
k δ(ω − σωα

k) − |χ(2)(k′, ω′|k − k′, ω − ω′)|2
ε∗(k, ω)

×
[〈

δE2
〉0

k′,ω′
+
∑
σ′

∑
β

Iσ′β
k′ δ(ω′ − σ′ωβ

k′)
]}∑

a

e2
a

∫
dv δ(ω − ω′ − (k − k′) · v)Fa(v).

In the above equation, the noneigenmode fluctuations are represented by the terms
〈δE2〉0

k′,ω′ , and 〈δE2〉0
k−k′,ω−ω′ . It is important to reinforce that if one is interested only in

nonlinear terms related to collective and spontaneous fluctuations in the eigenmode frequency
range, then all of these terms might be ignored. In such case, we are back to the standard weak
turbulence theory.

After an extensive algebraic manipulation that involves making explicit use of definition
(4.5) in the noneigenmode field fluctuations, carrying out the ω′ integrations, then using Eq.
(4.13) to decompose the denominators 1/ε(k − k′, σωα

k − k′ · v) and 1/ε∗(k, ω) into principal
parts and imaginary terms, and taking the imaginary part of the resulting equation, we finally
obtain the noneigenmode corrections to the nonlinear wave kinetic equation:

corr = −
∑
σ′

∑
β

∑
a

8πe2
a

∫
dk′

∫
dv

|χ(2)(k′, σ′ωβ
k′ |k − k′, (k − k′)·v)|2

|k − k′|2|ε[k − k′, k − k′, (k − k′)·v]|2

×

 Iσα
k

ε′(k′, σ′ωβ
k′)

− Iσ′β
k′

ε′(k, σωα
k)

 δ[σωα
k − σ′ωβ

k′ − (k − k′)·v]fa(v)

−
∑

a

4e2
a

π

∫
dk′

∫
dv Im

[
P 2[χ(2)(k′, k′ · v|k − k′, σωα

k − k′ · v)]2
ε(k − k′, σωα

k − k′ · v)

− χ̄(3)(k′, k′ · v|−k′, −k′ · v|k, σωα
k)
]

Iσα
k

k′2|ε(k′, k′ · v)|2 fa(v)

+
∑

a

∑
b

24e2
ae2

b

π

∫
dk′

∫
dv
∫

dv′ |χ(2) [k′, k′ · v′|k − k′, (k − k′)·v] |2

k′2|k − k′|2|ε(k′, k′ · v′)|2|ε(k − k′, (k − k′)·v)|2

× δ [σωα
k − k · v + k′·(v − v′)]

ε′(k, σωα
k) fa(v)fb(v′).

(4.23)

At this point, we have to define an approximation for the various response functions
with the angular frequency replaced by k · v, appearing in the denominator of the correction
terms. To do so, we must remember that waves are not subjected to Debye screening, therefore
we cannot assume k2λ2

De � 1, that would lead to the same approximation ε(k, 0) ≈ 1, which
reduces the Balescu-Lenard collision integral to the Landau collision integral. Instead, we make
use of Eq. (4.20), ε(k, k · v) ≈ ε(k, 0) = 1 + (2ω2

pe/k2v2
T e) (1 + Te/Ti), which is the same we
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applied to the collision integral in the previous subsection. Thus, applying this approximation
and then adding the right-hand side of (4.23) to the right-hand side of Eq. (3.23), we obtain
a generalized wave kinetic equation, which includes both the eigenmode and noneigenmode
fluctuations:

∂Iα
k

∂t
= −2Im ε(k, σωα

k)
ε′(k, σωα

k) Iα
k +

∑
a

4e2

k2[ε′(k, σωα
k)]2

∫
dv δ(σωα

k − k · v)fa(v)

−4π
∑

α,β,γ

∑
σ′,σ′′

∫
dk′ |χ(2)(k′, σ′ωβ

k′ |k − k′, σ′′ωγ
k−k′)|2

ε′(k, σωα
k)
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(

Iγ
k−k′ Iα

k

ε′(k′, σ′ωβ
k′)

+ Iβ
k′ Iα

k
ε′(k − k′, σ′′ωγ

k−k′)
−

Iβ
k′ Iγ

k−k′

ε′(k, σωα
k)

)
δ
(
σωα

k − σ′ωβ
k′ − σ′′ωγ

k−k′

)
−
∑
α,β

∑
σ′

∫
dk′ Aα,β(k, k′)Iβ

k′ Iα
k −

∑
a

16e2
a

ε′(k, σωα
k)
∑
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∑
β

×
∫

dv
∫

dk′ |χ(2)(k′, σ′ωβ
k′|k − k′, σωα

k − σ′ωβ
k′)|2

|k − k′|2|ε(k − k′, σωα
k − σ′ωβ

k′)|2

×

 Iσα
k

ε(k′, σ′ωβ
k′)

− Iσ′β
k′

ε′(k, σωα
k)

 δ[σωα
k − σ′ωβ

k′ − (k − k′)·v]fa(v)

−
∑

a

16e2
a

ε′(k, σωα
k)
∑
σ′

∑
β

∫
dk′

∫
dv

|k − k′|2λ4
De|χ(2)(k′, σ′ωβ

k′|k − k′, 0)|2
|1 + Te/Ti + |k − k′|2λ2

De|2

×

 Iσα
k

ε′(k′, σ′ωβ
k′)

− Iσ′β
k′

ε′(k, σωα
k)

 δ[σωα
k − σ′ωβ

k′ − (k − k′)·v]fa(v)

−
∑

a

8e2
a

π

∫
dk′

∫
dv

k′2λ4
De

|1 + Te/Ti + k′2λ2
De|2

×Im
[
P 2[χ(2)(k′, 0|k − k′, σωα

k)]2
ε(k − k′, σωα

k) − χ̄(3)(k′, 0|−k′, 0|k, σωα
k)
]
Iσα

k fa(v)

+
∑

a

∑
b

48e2
ae2

b

π[ε′(k, σωα
k)]2

∫
dk′

∫
dv
∫

dv′ k′2|χ(2) (k′, 0|k − k′, 0) |2

|1 + Te/Ti + k2λ2
De|2

× |k − k′|2λ8
De

|1 + Te/Ti + |k − k′|2λ2
De|2

δ [σωα
k − k · v + k′·(v − v′)] fa(v)fb(v′), (4.24)

where the coefficient Aα,β(k, k′) is given by Eq. (3.24).

Above, looking at the first noneigenmode term, in blue, one may notice the extreme
similarity with its previous expression, which describes the spontaneous scattering process. In
fact, this term is nothing but a correction to the spontaneous scattering process. Colored in
dark-green is the new, rigorous expression for the collisional damping. The pink equation in the
end, depicts the so-far unknown electrostatic bremsstrahlung process. The final expressions for
the three new contributions to the wave kinetic equation are given below.
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Correction for the spontaneous scattering

The blue term in Eq. (4.24), which depicts the correction for the spontaneous scattering
term is:

∂IσL
k

∂t

∣∣∣∣∣
corr

= −4n̂e2∑
σ′

∫
dk′

∫
dv

|k − k′|2λ4
De |χ(2)(k′, σ′ωL

k′ |k − k′, 0)|2
|1 + Te/Ti + |k − k′|2λ2

De|2

× σωL
k

(
σ′ωL

k′IσL
k − σωL

k Iσ′L
k′

)
δ[σωL

k − σ′ωL
k′ − (k − k′)·v] [Fe(v) + Fi(v)] ,

∂IσS
k

∂t

∣∣∣∣∣
corr

= −4n̂e2µkµk′σωL
k
∑
σ′

∫
dk′

∫
dv

|k − k′|2λ4
De |χ(2)(k′, σ′ωS

k′ |k − k′, 0)|2
|1 + Te/Ti + |k − k′|2λ2

De|2

×
(
σ′ωS

k′IσS
k − σωS

kIσ′S
k′

)
δ[σωS

k − σ′ωS
k′ − (k − k′)·v] [Fe(v) + Fi(v)] ,

(4.25)

where µk = |k|3λ3
De (me/mi)1/2 (1 + 3Ti/Te)1/2.

After a careful analysis on the second order susceptibility, we have the following expressions
for L and S waves

u
L (corr)
k,k′ = − n̂e2

m2
eω

4
pe

σωL
k
∑
σ′

∫
dk′

∫
dv

(k − k′)2

k2k′2|1 + Te/Ti + (k − k′)2λ2
De|2

×
(
σ′ωL

k′IσL
k − σωL

k Iσ′L
k′

)
δ[σωL

k − σ′ωL
k′ − (k − k′)·v] [Fe(v) + Fi(v)] ,

(4.26)

u
S (corr)
k,k′ = − n̂e2

m2
eω

4
pe

µkµk′σωL
k
∑
σ′

∫
dk′

∫
dv

1
k2k′2λ4

De

(
1 − Te

Ti

k · k′

k′2

)2 [
1 + Te

Ti

+ (k − k′)2λ2
De

]−2

×
(
σ′ωS

k′IσS
k − σωS

kIσ′S
k′

)
δ[σωS

k − σ′ωS
k′ − (k − k′)·v] [Fe(v) + Fi(v)] .

(4.27)

The corrected expression for the spontaneous scattering of L and S waves are

uL
k,k′ = σωL

k
n̂e4

m2
e ω4

pe

∑
σ′

∫
dk′

∫
dv

(k · k′)2

k2 k′2 δ[σωL
k − σ′ωL
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(
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k Iσ′L
k′ − σ′ωL

k′ IσL
k

) [
1+ 1

|1 + Te/Ti + (k − k′)2λ2
De|2

]
[Fe(v) + Fi(v)],

(4.28)

uS
k,k′ = σωL

k
n̂e4

m2
eω

4
pe

µkµk′

k2λ4
De

∑
σ′

∫ dk′

k′2

∫
dv δ[σωS

k − σ′ωS
k′ − (k − k′) · v]

(
σωL

k
Iσ′S
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µk′
− σ′ωL
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IσS

k
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)

×

(k · k′)2

k2k′2 Wk,k′+

(
1 − Te

Ti

k·k′

k′2

)2

|1 + Te/Ti + (k − k′)2λ2
De|2

 [Fe(v) + Fi(v)],

(4.29)

where the blue term is the noneigenmode contribution.
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Collisional damping for L and S waves

The collisional damping expression is given by the dark-green term in Eq. (4.24):

∂IσL
k

∂t

∣∣∣∣∣
coll

= −
∑

a

4n̂e2
a

π
σωL

k

∫
dk′ k′2λ4
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|1 + Te/Ti + k′2λ2
De|2

×
∫

dv Im
[
P 2[χ(2)(k′, 0|k − k′, σωL

k )]2
ε(k − k′, σωL

k ) − χ̄(3)(k′, 0|−k′, 0|k, σωL
k )
]
Fa(v) IσL

k ,

∂IσS
k

∂t

∣∣∣∣∣
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= −
∑

a

4n̂e2
a

π
σµkωL

k

∫
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×
∫

dv Im
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k )]2
ε(k − k′, σωS

k ) − χ̄(3)(k′, 0|−k′, 0|k, σωS
k )
]
Fa(v) IσS

k .

(4.30)

With the appropriate approximations for the second order and partial third order
susceptibilities carefully analyzed [52], we obtain the following expressions for L and S waves

γ
σL (coll)
k = σωL

k
4n̂e4ω2

pe

T 2
e

∫
dk′ (k · k′)2λ4

De

k2k′4|ε(k′, σωL
k )|2 (4.31)

×
(

1 + Te

Ti

+ (k − k′)2λ2
De

)−2 ∫
dv k′ · ∂Fe(v)

∂v
δ[σωL

k − k′ · v]

γ
σS (coll)
k = σµkωL

k
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T 2
e

∫
dk′ 1

k2k′4|ε(k′, σωS
k )|2

×
(

1 + Te

Ti

+ (k − k′)2λ2
De

)−2 (
1 + 2Te

Ti

k · k′

k2

)
(4.32)

×
∫

dv k′ · ∂

∂v

(
Fe(v) + me

mi

Fi(v)
)

δ[σωS
k − k′ · v].

Electrostatic bremsstrahlung for L and S waves

The electrostatic bremsstrahlung equations are given by the pink term in Eq. (4.24):

∂IσL
k

∂t

∣∣∣∣∣
brem

=
∑
a,b

12nee
2
ae2

bω
2
pe

π

∫
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∫
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∫
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× δ
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(4.33)

∂
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IσS
k
µk

∣∣∣∣∣
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=
∑
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12nee
2
ae2

bω
2
pe

π

∫
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∫
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∫
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k′2|k − k′|2|ε(k′, 0)|2|ε(k − k′, 0)|2

× δ
[
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k − k · v + k′ · (v − v′)
]

Fa(v)F (v′).
(4.34)

In Ref. [52], the following approximation for the second order susceptibility of both L
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and S waves was employed

χ(2)(k′, 0|k − k′, 0) = −i
∑

a

ea

Ta

ω2
pa

kk′|k − k′|
1

v2
T a

= ie

Te

1
v2

T e

(
1 − T 2

e

T 2
i

ω2
pe

kk′|k − k′|

)
. (4.35)

In the present work, however, we have revisited the subject, and found that an improved
approximation could be employed for the L waves. The derivation of this alternative approach,
where we basically make the same assumption k · v ≈ 0, k′ · v′ ≈ 0 and k′ · v ≈ 0 but a few
steps later, is detailed in Appendix A. For the S waves we keep the original approximation.
Then, after applying the respective approximation for the second order susceptibility for the L

and S waves, we have

P σL
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∫
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k − k · v + k′·(v − v′)]

∑
a

Fa(v)
∑

b

Fb(v′)
(4.36)
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(4.37)

4.2.1 Generalized wave kinetic equation for L and S waves

Adding Eqs. (4.31) and (4.36) to Eq. (3.26), and Eqs. (4.32) and (4.37) to Eq. (3.27),
and then substituting the spontaneous scattering term of both equations with their respective
corrected expressions, (4.28) and (4.29), we obtain the following generalized wave kinetic
equations for L and S waves, respectively:
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(4.38)
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(4.39)

where the coefficient W is given by Eq. (3.28).
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Weakly turbulent processes in the
presence of collisional interactions

The generalization introduced in [52] and summarized in Chapter 4, is an innovative
approach, in which the contribution of the usually neglected noneigenmode fluctuations is
taken into account along with the well-known eigenmodes contribution. The outcome of this
new formulation is a first principles theory that combines both collective and non-collective
processes, assuming the propagation of electrostatic oscillations in unmagnetized plasmas,
without any ad hoc addition. Such theory is the basis of the present research, in which the
primary objective is performing numerical analysis of the generalized weak turbulence equations,
and then investigate its applications on the description and interpretation of space plasma
phenomena. More specifically, the solar plasma, where the results of the first two studies [78,82]
have shown a promising perspective.

From the three new terms presented in the last chapter, we analyzed two: the collisional
damping [82] and electrostatic bremsstrahlung [78]. The third term is a correction for the
spontaneous scattering effect, which is a nonlinear process. The first study, however, analyses
only the intensity of the collisional damping spectrum for L and S waves by numerically
integrating Eqs. (4.31) and (4.32), respectively. Regarding the second study, the time evolution
analysis was made using quasilinear approximation, which does not involve nonlinear wave-
particle interaction, like the scattering effect. Besides that, a small correction to a nonlinear
term does not seem to justify a whole study dedicated only to it.

In this chapter, we discuss some essential aspects regarding the results obtained in both
studies mentioned above. The results are presented in the form of appended papers, using
chronological order, in Sections 5.1 and 5.2.

36
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5.1 Collisional damping rates for plasma waves

In this first analysis, presented in Ref. [82], we have numerically integrated Eqs. (4.31)
for L waves, and (4.32) for S waves, considering Maxwellian velocity distribution function for
the particles, without including the new effects in the time evolution subroutine. The main
objective here was to comprehend important aspects of these so-far unknown expressions, how
they relate to other equivalent plasma processes and with the heuristic Spitzer formula, for
collisional damping. The main question was: “Are they equivalent?”, more specifically, “Are
their magnitudes, at least, in the same order of magnitude?”. The answer was no. We found
out that the Spitzer formula overestimates the collisional damping effect in several orders of
magnitude in comparison with the new expression. Further, the insignificance of the collisional
damping became even more evident when we compared its damping rate with the collisionless
(Landau) damping rate in the same figure.

The following paper1 is fairly self-sustained regarding the theory and methods applied. All
important equations are there, including their normalized form and the normalization constants.

1Credit: Reproduced from Physics of Plasmas 23, 064504 (2016);https://doi.org/10.1063/1.4953802,
with the permission of AIP Publishing.

https://doi.org/10.1063/1.4953802
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The distinction between the plasma dynamics dominated by collisional transport versus collective

processes has never been rigorously addressed until recently. A recent paper [P. H. Yoon et al.,
Phys. Rev. E 93, 033203 (2016)] formulates for the first time, a unified kinetic theory in which

collective processes and collisional dynamics are systematically incorporated from first principles.

One of the outcomes of such a formalism is the rigorous derivation of collisional damping rates for

Langmuir and ion-acoustic waves, which can be contrasted to the heuristic customary approach.

However, the results are given only in formal mathematical expressions. The present brief commu-

nication numerically evaluates the rigorous collisional damping rates by considering the case of

plasma particles with Maxwellian velocity distribution function so as to assess the consequence of

the rigorous formalism in a quantitative manner. Comparison with the heuristic (“Spitzer”) formula

shows that the accurate damping rates are much lower in magnitude than the conventional expres-

sion, which implies that the traditional approach over-estimates the importance of attenuation of

plasma waves by collisional relaxation process. Such a finding may have a wide applicability rang-

ing from laboratory to space and astrophysical plasmas. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4953802]

In a recently published paper,1 the formalism of plasma

kinetic theory was revisited, and a set of coupled equations

were derived, which describe the dynamical evolution of the

velocity distribution functions of plasma particles and the

spectral wave energy densities associated with electrostatic

waves. Reference 1 follows the standard weak turbulence

perturbative ordering, except that unlike the textbook

approaches, which take into account only the collective

eigenmodes in the linear and nonlinear wave-particle inter-

actions, the new formalism includes the effects of non-

collective fluctuations emitted by thermal particles. It is

shown that the non-collective fluctuations, which had been

largely ignored in the literature hitherto, are responsible for

collisional effects in both the particle and wave equations.

Specifically, Ref. 1 demonstrates that the inclusion of non-

collective part of thermal fluctuations leads to the collision

integral, while the collective eigenmodes are responsible for

the usual quasi-linear diffusion (plus the velocity friction)

term(s) in the particle kinetic equation. As for the collec-

tively excited waves, which satisfy the dispersion relations,

and are thus eigenmodes, the influence of non-collective

thermal fluctuations rigorously lead to the collisional wave

damping of the collective waves, as well as the emission of

these waves by particle collisions (i.e., bremsstrahlung

emission of electrostatic eigenmodes). Such a derivation,

without any ad hoc additions, was done for the first time.

If one is interested only in the collisional relaxation for

collision-dominated plasmas, then transport processes can be

legitimately discussed solely on the basis of well-known col-

lisional kinetic equation.2,3 Collisional transport is important

for high density plasmas such as in the solar interior. In the

opposite limit, if one’s concern is only on relaxation proc-

esses that involve collective oscillations and waves, then

various nonlinear theories of plasma turbulence may be

employed.4–7 Collective processes dominate rarefied plas-

mas, which characterize most of the heliosphere, interstellar,

and intergalactic environments.

It is the dichotomy that separates the purely collisional

versus purely collective descriptions that had not been rigor-

ously bridged until the recent work.1 There are intermediate

situations where both collisional and collective processes

must be treated together, such as the solar x ray bremsstrah-

lung radiation sources,8–10 or in the Earth’s ionospheric

plasma where collisional conductivity becomes important.11

(Note that for the Earth’s ionosphere, the dominant colli-

sional process is the charged particle collisions with the neu-

trals, however.) For such situations, there was a general lack

of satisfactory theories, which one may bring to bear in order

to address the necessary physics, until recently. Instead, it

had been a common practice to introduce collisional damp-

ing in the wave evolution as an indirect effect of assuming

a collisional operator in the particle equation, and define

an effective collision frequency.8–10,12–16 However, such a

procedure is tantamount to inserting the collisional dissipa-

tion by hand, as it were, to the governing microscopic equa-

tion which describes fundamentally collision-free situation.
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c)Electronic mail: yoonp@umd.edu
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Consequently, strictly speaking, the method is at best, heuris-

tic. Nevertheless, such an ad hoc prescription is widely prac-

ticed in the plasma physics literature.

Thus, in the literature, often a governing equation is

adopted

@

@t
þ v � r þ ea Eþ v

c
� B

� �
� @
@p

� �
fa ¼ Ca fað Þ; (1)

where CaðfaÞ represents the collision integral and a denotes

particle species (a¼ e for electrons, a¼ i for ions). If fa, E

and B in the above represent the averaged one-particle distri-

bution function and average fields, then Eq. (1) represents

the correct collisional kinetic equation.2,3 However, if these

represent the total (average plus fluctuation), then they

become microscopic one-particle distribution function and

microscopic fields. For such a case, the right-hand side of

Eq. (1) should be zero, since microscopic equations are re-

versible. As shown in Ref. 1, the irreversibility (signified by

collision operator on the right-hand side) enters the problem

only as a result of statistical averages and the loss of infor-

mation. Nonetheless, the standard procedure in the literature

is to interpret fa and field vectors as microscopic quantities,

and employ expansion for small-amplitude perturbations.

Upon replacing the collision operator by an effective colli-

sion frequency, CaðfaÞ � ��collfa, the effective particle colli-

sion frequency is absorbed into the wave-particle resonance

condition, and ends up as part of the imaginary part of the

wave frequency, corresponding to a damping effect on the

waves. As a consequence of the above-described recipe,

known as the “Spitzer approximation” in the literature, one

may obtain the collisional damping rate for Langmuir waves,

given by

ccoll ¼ �
pnee4 ln K

m2
ev

3
Te

; (2)

where vTe ¼ ð2Te=meÞ1=2
is the electron thermal speed and

K ¼ kDeTe=e2 ¼ 4pnek
3
De is a constant. Note that K repre-

sents the total number of electrons in a sphere whose radius is

equal to the Debye length, kDe ¼ ½Te=ð4pnee2Þ�1=2
. Here, me,

Te, and ne stand for electron mass, electron temperature (in the

unit of energy), and electron density, respectively. Note that

Eq. (2) implies that the collisional damping rate is constant

and does not depend on wave vector (or wave frequency).

Reference 1, in contrast, shows that the accurate colli-

sional damping rates for plasma waves, that is, Langmuir (L)

and ion-acoustic (S) waves, are much more complicated that

is indicated by the approximate formula (2) in that the cor-

rect formulae exhibit dependence on wave number (and thus,

frequency). However, the final results were given only in

terms of formal expressions so that it is difficult to assess the

consequence of the new formulation. The purpose of the

present brief communication is to carry out numerical analy-

sis so that one may understand the significance, or lack

thereof, of the new findings in a quantitative way.

We start with the formal and rigorous expression for the

collisional damping rates for L and S waves, as given by Eq.

(4.44) in Ref. 1

cL collð Þ
k ¼ xL

k

4nee4x2
pe

T2
e

ð
dk0

k � k0ð Þ2k4
De

k2k04j� k0;xL
k

� �
j2

� 1þ Te

Ti
þ k� k0ð Þ2k2

De

� ��2

�
ð

dv k0 � @Fe vð Þ
@v

d xL
k � k0 � v

� �
; (3)

cS collð Þ
k ¼ lkx

L
k

nee4x2
pe

T2
e

ð
dk0

1

k2k04j� k0;xS
k

� �
j2

� 1þ Te

Ti
þ k� k0ð Þ2k2

De

� ��2

� 1þ 2Te

Ti

k � k0
k2

� �ð
dv d xS

k � k0 � v
� �

� k0 � @
@v

Fe vð Þ þ me

mi
Fi vð Þ

� �
: (4)

In the above equations, xL
k ¼ xpe 1þ 3

2
k2k2

De

� 	
and xS

k

¼ xpekkDe

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
me

mi

1þ3Ti=Te

1þk2k2
De

q
designate Langmuir and ion-sound

mode dispersion relations, respectively, mi and Ti being

the ion (proton) mass and temperature, respectively, and

xpe ¼ ð4pnee2=meÞ1=2
is the plasma frequency. The

ensemble-averaged one-particle distribution function FaðvÞ
is normalized to unity,

Ð
dvFaðvÞ ¼ 1. The quantity lk is

defined by lk ¼ k3k3
De

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
me

mi
1þ 3Ti

Te

� 	r
, and �ðk;xL

kÞ and

�ðk;xS
kÞ are the dielectric constants

� k;xð Þ ¼ 1þ
X

a

x2
pa

k2

ð
dv

k � @Fa=@v

x� k � vþ i0
:

Evidently, Eqs. (3) and (4) are far more sophisticated than

the simple expression (2). The question is what is the

actual implication of these results? Specifically, to what

extent does the approximation (2) conform with the rigor-

ous results (3) and (4), and if not, what is the extent of the

discrepancy?

In order to quantitatively analyze Eqs. (3) and (4), it is

advantageous to introduce suitable dimensionless quantities

u ¼ v

vTe
; z ¼ x

xpe
; q ¼ kvTe

xpe
¼ k

ffiffiffi
2
p

kDe (5)

and rewrite the collisional damping rates (3) and (4) in nor-

malized form

cL collð Þ
q � cL collð Þ

k

xpe
¼

2gzL
q

q2

ð
dq0

q � q0ð Þ2

q04j� q0; zL
q

� �
j2

� 1þ Te

Ti
þ q� q0ð Þ2

2

 !�2

�
ð

du q0 � @Ue uð Þ
@u

d zL
q � q0 � u

� 	
; (6)
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cS collð Þ
q �

cS collð Þ
q

xpe
¼

2gzL
q

q2

ð
dq0

q04j� q0; zS
q

� �
j2

� 1þ Te

Ti
þ q� q0ð Þ2

2

 !�2

� 1þ 2Te

Ti

q � q0
q2

� �ð
du d zS

q � q0 � u
� 	

� q0 � @
@u

Ue uð Þ þ me

mi
Ui uð Þ

� �
; (7)

where in dimensionless form, the dispersion relations are

given by zL
q ¼ 1þ 3q2

4
and zS

q ¼ q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
me

mi

1þ3Ti=Te

2þq2

q
. In Eqs. (6) and

(7), the quantity g is defined by

g ¼ 1

23=2 4pð Þ2nek
3
De

¼ 1

23=2 4pKð Þ ; (8)

which is related to the parameter K discussed earlier. The

quantity g is an effective “plasma parameter” in that it is

related to the inverse of the number of particles in a “Debye

sphere.”

Let us assume that ions and electrons have isotropic

Maxwellian velocity distributions

Ua uð Þ ¼ v3
eFa vð Þ ¼ 1

p3=2

ma

me

Te

Ta

� �3=2

exp �ma

me

Te

Ta
u2

� �
:

(9)

Then the dielectric constants appearing in the denominators

of Eqs. (3) and (4) are given by the following:

� q0; zL
q

� 	
¼ 1þ 2

q02
1þ

zL
q

q0
Z

zL
q

q0

 !" #
; (10)

� q0; zS
q

� 	
¼ 1þ 2

q02
1þ

zS
q

q0
Z

zS
q

q0

 !" #

þTe

Ti

2

q02
1þ mi

me

Te

Ti

� �1=2 zS
q

q0
Z

mi

me

Te

Ti

� �1=2 zS
q

q0

" #( )
:

(11)

For Maxwellian velocity distribution (9), the velocity in-

tegral
Ð

du in Eqs. (6) and (7) can be carried out analytically

upon making use of the resonance delta function conditions.

One may also perform the angular integration associated

with the q0 vector integral, which reduces Eqs. (6) and (7) in

the form that involves a single q0 integration

cL collð Þ
q ¼ � 16p1=2g

� � zL
q

� 	2

q2

ð1
0

dq0

j� q0; zL
q

� �
j2

� 2B2 � A2

B2 � A2
� B

A
ln

Bþ A

B� A

� �
1

q03
exp �

zL
q

� 	2

q02

0
@

1
A
;

(12)

cS collð Þ
q ¼ � 16p1=2g

� �lqzL
qzS

q

q2

ð1
0

dq0

j� q0; zS
q

� �
j2

� 4

B2 � A2
� Te

Ti

q0

q

1

q2q02
2AB

B2 � A2
� ln

Bþ A

B� A

� �" #

�
X
a¼e;i

Te

Ta

ma

me

Te

Ta

� �1=2
1

q03
exp �ma

me

Te

Ta

zS
q

� 	2

q02

0
@

1
A
;

(13)

where we have defined

A ¼ �2qq0;

B ¼ 2 1þ Te

Ti

� �
þ q2 þ q02:

(14)

For reference, the customary heuristic collisional damping

rate (2), derived under the “Spitzer approximation,” which

is applicable for Langmuir wave, is given in normalized

form by

�ccoll �
ccoll

xpe
¼ �pnee4 ln K

m2
ev

3
Texpe

¼ �pgln
1

23=2 4pgð Þ

 !
: (15)

For comparison, we also discuss the collisionless damp-

ing, also known as Landau damping, which is well-known.

From Eq. (3.24) of Ref. 1, we have the Landau damping rates

for L and S waves

cL
k ¼

pxL
kx

2
pe

2k2

ð
dv k � @Fe vð Þ

@v
d xL

k � k � v
� �

;

cS
k ¼

plkx
L
kx

2
pe

2k2

ð
dv k � @

@v
Fe vð Þ þme

mi
Fi vð Þ

� �
d xS

k � k � v
� �

;

(16)

which are textbook results. Making use of dimensionless var-

iables, the above expressions are rewritten as

cL
q ¼ �

p1=2 zL
q

� 	2

q3
exp �

zL
q

� 	2

q2

0
@

1
A
;

cS
q ¼ �

p1=2lqzL
qzS

q

q3

X
a¼e;i

Te

Ta

ma

me

Te

Ta

� �1=2

exp �ma

me

Te

Ta

zS
q

� 	2

q2

0
@

1
A
:

(17)

In Fig. 1, we plot the normalized collisional L mode

damping rate divided by g, cLðcollÞ
q =g, as a function of dimen-

sionless wave number q, for three values of the temperature

ratio Te=Ti ¼ 10 (red), 7 (black), and 4 (blue). It is shown

that for the range of temperature ratios considered, the damp-

ing rate is maximum for q between 5 and 9, approximately,

and that the growth rate increases with decreasing tempera-

ture ratio Te=Ti, for the entire range of wavelengths. In con-

trast, the approximate collisional damping rate divided by g,

�ccoll=g ¼ p ln½23=2ð4pgÞ�, is independent of the normalized

wave number q, but the result depends on g. In general, the
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plasma parameter g must be small by definition, so we con-

sider several different choices, g ¼ 10�10; 10�8; 10�6, and

10�4. For these choices, we find that �ccoll=g � �61:12,

�46.6524, �32.1849, and �17.7173, which are all far higher

in absolute value than those depicted in Fig. 1. This shows

that the use of incorrect collisional damping rate may greatly

over-estimate the actual damping rate.

We also superpose in Fig. 1, the collisionless (Landau)

damping rate for Langmuir wave [i.e., the first equation in

(17)] vs q (green). We multiplied the damping rate by factor

2 for visual reason. Note that the Landau damping rate is not
divided by the plasma parameter g, so that the actual magni-

tude of the “collisionless” damping rate will greatly exceed

that of the “collisional” damping rate by factor 1=g	 1.

This shows that over the range of wave numbers over which

the most important linear and nonlinear wave-particle inter-

actions are expected to take place, the collisional damping of

the Langmuir wave will be practically ignorable. However,

it is interesting to note that for small wave number domain

(q
 1) for which the Landau damping rate becomes negli-

gible, the collisional damping rate remains finite. In the colli-

sionless plasmas, the undamped Langmuir waves in the long

wavelength regime are supposed to lead to the so-called con-

densation phenomenon, where the wave energy accumulates

without undergoing Landau damping. Over a long time pe-

riod, the Zakharov strong turbulence effect is supposed to

come into play in order to dissipate the accumulated wave

energy.17 However, the present finding suggests that the col-

lisional damping may contribute to the dissipation of the

Langmuir wave energy in such a wavelength regime. We

also note that for large q, the collisionless (Landau) damping

rate eventually becomes exponentially weak. In contrast, the

collisional damping rate may overcome the Landau damping

rate, which makes sense, since for extremely short wave-

length the binary collisions may lead to the damping of

plasma waves.

Before we close and for the sake of completeness, we

plot in Fig. 2 the normalized collisional damping for S waves

divided by g, cSðcollÞ
q =g, as a function of wave number q, for

the same three values of the temperature ratio considered in

Fig. 1, that is, Te=Ti ¼ 4, 7, and 10. The same color scheme

is used to indicate the three cases. Unlike the case of L
mode, the collisional damping rate for S mode does not

asymptotically approach a finite value for q! 0. We also

superpose the collisionless (Landau) damping rates for S
waves vs q, but since cS

q depends on Te=Ti, we use the same

color scheme to indicate the three difference choices of

Te=Ti, except that we plot the collisionless damping rate with

dashes. Again, we note that cS
q is not divided by g, so that the

actual damping rate is much higher in magnitude than the

collisional damping rate cSðcollÞ
q . In the case of S mode, it

becomes evident that the collisional damping plays no signif-

icant role whatsoever when compared against the collision-

less damping, and thus the dynamical role of collisions on

the dissipation of ion-sound mode damping becomes totally

negligible.

In the present brief communication, we have investi-

gated the formal collisional damping rates derived in Ref. 1,

by numerical means. It is found that the collisional damping

rates for Langmuir and ion-acoustic waves are much smaller

than the conventional expressions, which means that the col-

lisional damping has been over-estimated in the literature.

While the collisional damping for ion-sound wave is totally

negligible, the same for Langmuir wave becomes finite,

albeit small, in the region of infinite wave length regime

where collisionless Landau damping rate vanishes. Such a

property may potentially provide the necessary dissipation

mechanism in order to prevent the unchecked accumulation

of wave energy for the long wavelength regime, known as

the Langmuir condensation problem.

The importance of the present work is quite obvious.

There are many physical situations where collisional and col-

lective effects are both important, both in laboratory and space

applications. The present analysis is based upon the recent

work,1 which makes a simplifying assumption of electrostatic

interaction in field-free plasmas. For more realistic applica-

tions, electromagnetic interaction in magnetized plasmas must

be considered within the framework of the collisional weak

turbulence theory. Reference 1 and the present work may rep-

resent the beginning of a new research paradigm.

FIG. 2. Normalized collisional damping for S waves, cSðcollÞ
q =g, vs normal-

ized wavenumber q, for three values of the ratio Te=Ti.

FIG. 1. Normalized collisional damping for L waves, cLðcollÞ
q =g, vs normal-

ized wavenumber q, for three values of the ratio Te=Ti. The dimensionless

Landau damping rate cL
q is also plotted in green. Note that the Landau damp-

ing rate is not divided by the factor g. The factor 2, which multiplies cL
q is

for the sake of visual presentation.
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Chapter 5. Weakly turbulent processes in the presence of collisional interactions 43

5.2 Generation of suprathermal electrons by collective
processes in collisional plasmas

For the analysis of the electrostatic bremsstrahlung, the simple integration of Eqs. (4.36)
and (4.37) was not very clarifying since we did not have any equivalent effect for comparison.
So we had to perform the time evolution of the system and analyze the outcome. However, in
order to put in evidence the action of the new effect, is useful to start with the simplest possible
situation. Therefore, instead of using the complete set of nonlinear weak turbulence equations
given by Eqs. (4.38) and (4.39), we restrict our analysis to the quasilinear formalism, which
includes single particle spontaneous emission and wave-particle induced emission, and add the
collisional damping and electrostatic bremsstrahlung effects. The particle kinetic equation is
given by the usual quasilinear equation, where we included the Landau collision integral (the
same used in [45]). After a long evolution period, the system reaches a steady state where the
electron velocity distribution strongly resembles a core-halo distribution. An interesting and
surprising detail is that this suprathermal electron population grows even in the presence of
binary collisions. In the next two subsections we provide some helpful information regarding the
equations and methods employed in [78].

Furthermore, an extra result is presented in Appendix B, where we compare the stationary
state of the L waves spectrum obtained after the time evolution (using the results discussed
in [45]), with the asymptotic Langmuir spectrum generated by a theoretical core-halo distribution,
composed 95% by a Maxwellian core and 5% by a Kappa tail, in the presence and in the absence of
bremsstrahlung emission, for several values of the κ index. It is shown that the asymptotic spectra
obtained in the case of distributions with low κ indexes are less affected by the electrostatic
bremsstrahlung emission than the spectra generated in the presence of higher κ indexes, and
in the Maxwellian case. These findings suggest that core-halo distributions may represent the
asymptotic equilibrium when the electrostatic bremsstrahlung is taken into account.

5.2.1 Dimensionless equations

In order to simplify the numerical analysis, it is convenient to write the equations in
terms of dimensionless variables. Thus, let us start by some important definitions

z ≡ ω

ωpe

, τ ≡ ωpet, q ≡ kve

ωpe
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ve
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mev2
e
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k
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k
, P α
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2
e

(2π)2g
ωpeP

α
q ,
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where g = 1/[23/2 (4π)2 n̂ λ3
De] is the plasma parameter, λDe = Te/(4πn̂e2) = v2

e/(2ω2
pe), ve =

(2Te/me)1/2 is the electron thermal velocity and Te is the electron temperature.

In terms of the normalized variables and quantities, the equations for L and S waves,
including the contributions from non-eigenmode fluctuations, become

∂EσL
q

∂τ
= µL

q
π

q2

∫
du δ(σzL

q − q · u)

×
(

g Φe(u) + (σzL
q )q · ∂Φe(u)

∂u
EσL

q

)
+ 2EσL

q γσL
q + P σL

q ,

(5.1)

∂EσS
q
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q
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q2
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[
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q

]
+ 2EσS

q γσS
q + P σS

q ,

(5.2)

where γσL
q and γσS

q are the dimensionless form of Eqs. (4.31) and (4.32), which describe the
collisional damping rate for L and S waves, respectively
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q2
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(5.4)

The terms P σL
q and P σS

q are the normalized versions of Eqs. (4.36) and (4.37), that depict the
electrostatic bremsstrahlung effect for L and S waves, and are respectively given by
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The dimensionless form of the particle kinetic equation has the following form
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where θab(Φa, Φb) is the linearized Landau collision integral, which, for a = e, is given by
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(5.8)

where ueb ≡ u(vte/vtb
), u = v/vte , with vte and vtb

representing the thermal velocity of electrons
and thermal velocity of the particles of species b, with b = e, i. The quantity Ψ(x) ≡ Φ(x)−xΦ′(x)
is an auxiliary function [83], in which Φ(x) ≡ 2√

π

∫ x
0 e−t2

dt is the error function and Φ′(x) =
2√
π
e−x2 is its derivative. The factor Γeb is given by Γeb = 2πgZ2

b ln Λ, where g = 1/[23/2(4π)2n̂λ3
De]

is the plasma parameter, ln Λ is Coulomb logarithm, and Zb=e,i is the charge number of ions
and electrons, with Ze = 1. The dispersion relations for L and S waves in dimensionless form
are given by

zL
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(
1 + 3

2q2
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, zS
q = q A

(1 + q2/2)1/2 , A = 1√
2

(
me

mi

)1/2 (
1 + 3 Ti

Te

)1/2
. (5.9)

The above set of integro-differential equations was numerically solved in 2D wave-
number space and 2D velocity space, respectively. For the wave kinetic equations, it was used
a fourth-order Runge-Kutta method and, for the partial differential equation describing the
electron dynamics, we employed the splitting algorithm. In both cases we used fixed time step
∆τ = 0.1. The wave number space grid has been assumed with 71 × 71 points in k⊥ and k‖,
with 0 < k⊥ve/ωpe < 0.6 and 0 < k‖ve/ωpe < 0.6. In the velocity space, the grid configuration
was 71 × 141 for v⊥/ve and v‖/ve, with velocity range 0 < v⊥/ve < 16 and −16 < v‖/ve < 16.

The outcome of this analysis, along with a detailed discussion about their importance in
the context of solar and space physics can be seen in the following paper2.

2Credit: S. F. Tigik et al 2017 ApJL 849 L30; https://doi.org/10.3847/2041-8213/aa956f, reproduced
by permission of the AAS.
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Abstract

The ubiquity of high-energy tails in the charged particle velocity distribution functions (VDFs) observed in space
plasmas suggests the existence of an underlying process responsible for taking a fraction of the charged particle
population out of thermal equilibrium and redistributing it to suprathermal velocity and energy ranges. The present
Letter focuses on a new and fundamental physical explanation for the origin of suprathermal electron velocity
distribution function (EVDF) in a collisional plasma. This process involves a newly discovered electrostatic
bremsstrahlung (EB) emission that is effective in a plasma in which binary collisions are present. The steady-state
EVDF dictated by such a process corresponds to a Maxwellian core plus a quasi-inverse power-law tail, which is a
feature commonly observed in many space plasma environments. In order to demonstrate this, the system of self-
consistent particle- and wave-kinetic equations are numerically solved with an initially Maxwellian EVDF and
Langmuir wave spectral intensity, which is a state that does not reflect the presence of EB process, and hence not in
force balance. The EB term subsequently drives the system to a new force-balanced steady state. After a long
integration period it is demonstrated that the initial Langmuir fluctuation spectrum is modified, which in turn
distorts the initial Maxwellian EVDF into a VDF that resembles the said core-suprathermal VDF. Such a
mechanism may thus be operative at the coronal source region, which is characterized by high collisionality.

Key words: solar wind – Sun: corona – Sun: particle emission

1. Introduction

Inverse power-law velocity or energy distributions of
charged particles are either directly observed or inferred in
various regions of the universe accessible to either direct or
remote observations, which includes 4–5MeV protons accel-
erated at the heliospheric termination shock and detected by the
Voyager 1 and 2 spacecraft (Stone et al. 2008), tens of MeV
electrons energized at the magnetic-field loop-top X-ray
sources during solar flares (Krucker & Battaglia 2014; Oka
et al. 2015), energetic ions and electrons measured in the
geomagnetic tail region during disturbed conditions (Christon
et al. 1991), etc. The solar wind is also replete with background
populations of protons and electrons featuring inverse power-
law tail distributions even in extremely quiet conditions
(Vasyliunas 1968; Feldman et al. 1975; Lin 1998; Gloeckler
2003; Fisk & Gloeckler 2012).

In particular, the solar wind electron velocity distribution
function (EVDF) is composed of a Maxwellian core ( 95% of
the total density), with energies around 10 eV, a tenuous
(4 5%~ ) high-energy halo with energies up to 10 10 eV2 3~ ,
and a highly energetic “superhalo” population with the density
ratio of 10 109 6~- - and with energies up to 100 keV~
(Lin 1998). For fast wind, sometimes a narrow beam-like
structure called the strahl, which is aligned with the magnetic
field and streaming in the anti-sunward direction, is also
measured (Feldman et al. 1976, 1978; Pierrard et al. 1999).

Given the prevalence of non-thermal distributions in nature,
the study of the charged particle acceleration mechanisms that
produce such distributions is of obvious importance and has a
wide-ranging applicability across different sub-disciplines in
astrophysical and space plasma physics. One of the first kinetic
models on how suprathermal electron populations are generated
involves the assumption that a sub-population of suprathermal

electrons in low coronal regions exists, which is “selected” by
Coulomb collisions and interacts with the thermal core and the
surrounding environment in order to form the power-law EVDF
at 1 au (Scudder & Olbert 1979a, 1979b). Later improved
models generally rely on Coulomb collisional dynamics at the
coronal base and phase-space mapping along inhomogeneous
solar magnetic field lines (Lie-Svendsen et al. 1997; Pierrard
et al. 1999, 2001). Collisional effects, however, become rather
insignificant for solar altitudes higher than, say, 10 solar radii. In
order to explain the observed quasi-isotropic nature of EVDF
near 1 au, wave-particle resonant interaction must be important.
Thus, the collective effects on the EVDF have been considered
with or without other global features (Vocks et al. 2005;
Vocks 2012; Pavan et al. 2013; Seough et al. 2015; Kim
et al. 2016).
An outstanding issue is whether the suprathermal EVDFs are

generated at the coronal source region in the first place. This
issue may have important ramifications on the coronal heat flux
and inverted temperature profile. If an enhanced number of
high-energy particles is assumed to be present in the low
transition region of the Sun, more particles are capable of
escaping the gravitational potential, unleashing the so-called
“velocity filtration effect,” which is shown to produce the
observed temperature inversion in the solar corona, a feature
that may be relevant to the coronal heating (Scudder 1992a,
1992b; Teles et al. 2015). In this regard, Che & Goldstein
(2014) proposed a scenario in which electron streams
accelerated by nanoflares can lead to the two-stream instability,
and ultimately produce a core-halo distribution in the inner
corona. According to their model, the core-halo population is
simply convected outward along open field lines while
preserving the phase-space properties.
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In this Letter we propose an alternative mechanism. This is
not an acceleration in the traditional sense, but rather it is a
mechanism that relies on a new fundamental plasma process
involving the wave-particle interaction in a collisional plasma.
Our theory is based on a recent paper by Yoon et al. (2016),
where the kinetic theory of collective processes in collisional
plasmas was formulated. The problem of combined collisional
dissipation and collective processes had not been rigorously
investigated from first principles in the literature. This is not to
say that collisional dissipation processes or collective processes
are not understood separately. On the contrary, each process is
well understood. Indeed, if one is interested in the situation
where the binary collisional relaxation is dominant, then
transport processes can be legitimately discussed solely on the
basis of the well-known collisional kinetic equation (Helander
& Sigmar 2002; Zank 2014). Conversely, if one’s concern is
only on relaxation processes that involve collective oscillations,
waves, and instabilities, there exists a vast amount of literature
on linear and nonlinear theories of plasma waves, instabilities,
and turbulence. It is the dichotomy that separates the purely
collisional versus purely collective descriptions that had not
been rigorously bridged until Yoon et al. (2016).

Among the findings of Yoon et al. (2016) is a hitherto-
unknown effect that came out without any ad hoc assumption.
The first principle equation of this new effect depicts the
emission of electrostatic fluctuations, in the eigenmode
frequency range, caused by particle scattering. This electro-
static form of “braking radiation” was appropriately named
electrostatic bremsstrahlung (EB) by the authors of Yoon et al.
(2016), which is not to be confused with a process sometimes
known in the literature by the same terminology. In the
literature, the process of relativistic electrons scattering
Langmuir waves into transverse radiation is also called the
“electrostatic bremsstrahlung” (Gailitis & Tsytovich 1964;
Colgate 1967; Melrose 1971; Windsor & Kellogg 1974;
Akopyan & Tsytovich 1977; Schlickeiser 2003), which is
actually an induced scattering of transverse radiation off of
relativistic electrons mediated by Langmuir waves. The
“electrostatic bremsstrahlung” of Yoon et al. (2016) is the
emission of electrostatic eigenmodes by collisional process,
which is analogous to but distinct from the emission of
transverse electromagnetic radiation by collisional process.

As will be demonstrated subsequently, the combined effects
of Langmuir wave-electron resonant interaction in the presence
of the new EB process leads to the self-consistent formation of
the core-halo EVDF, which is a process that may be operative
pervasively in the lower coronal environment. We thus suggest
that the present mechanism may be the most widely operative
process that is responsible for the formation of non-thermal
EVDFs, not only in the solar environment, but also in other
astrophysical environments. In the rest of this Letter, we detail
the present finding.

2. Theoretical Formulation

The essential idea behind the new process responsible for
taking a fraction of the electron population out of thermal
equilibrium and redistributing it to suprathermal velocity and
energy ranges is that the presence of the EB emission term (as
well as the collisional damping term) in the wave-kinetic
equation, combined with the particle kinetic equation, leads to a
new steady-state electron distribution function, which corre-
sponds to a Maxwellian core plus a quasi-inverse power-law

tail. Conceptually, such a state is a new quasi-equilibrium that
is distinct from thermodynamic equilibrium. In such a state,
enhanced electrostatic fluctuations coexist with a population of
charged particles while maintaining a dynamical steady state.
In order to demonstrate this process, we numerically solve
the system of particle- and wave-kinetic equations of the
generalized weak turbulence theory (Yoon et al. 2016), starting
with an initially Maxwellian electron velocity distribution and
Langmuir wave spectral intensity that reflects the presence of
only the customary spontaneous and induced emissions, but not
the EB or the collisional damping. Of course, such an initial
state is out of force balance. The EB and collisional damping
terms subsequently drive the system to a new force-balanced
steady state for the wave intensity. The initial Langmuir
fluctuation spectrum is thus significantly modified as a result of
the additional terms in the wave-kinetic equation. The modified
Langmuir wave spectrum in turn distorts the initial Maxwellian
electron distribution, and transforms it into a new quasi-steady-
state velocity distribution function (VDF) that superficially
resembles the core-suprathermal velocity distribution function.
In what follows, we discuss the details of this numerical
demonstration.
We perform the self-consistent numerical analysis on the EB

emission in the Langmuir L( ) electrostatic eigenmode
frequency range by including the new mechanism in the
wave-kinetic equation. Instead of making use of the complete
set of nonlinear weak turbulence equations presented in Yoon
et al. (2016), we restrict our analysis to the quasi-linear
formalism, which includes single-particle spontaneous emis-
sion and wave-particle induced emission. We also take into
account in the wave equations the effects of collisional
damping. Such a simplified approach allows the study of the
time evolution of the system, and puts in evidence the new
mechanisms that have been introduced in Yoon et al. (2016).
Besides, in the absence of free-energy sources, with which the
present Letter is not concerned, the nonlinear mode-coupling
terms are not expected to play any important dynamical roles.
The equation describing the dynamics of L waves is therefore
given by

v k v

v k
v

v

I

t k
d

n e
F I

F

I P2 , 1

k
k

k k

k k k

L
p L

e
L L e

L L L

2

2

0
2

ò
pw

d sw

p
sw

g

¶
¶

= -

´ +
¶
¶

+ +

s

s

s s s

⎛
⎝⎜

⎞
⎠⎟

( · )

( ) · ( )

( )

where Ik
Ls is the wave intensity associated with the Langmuir

wave defined via E Ik k k
L L

,
2

1 d w sw= å -w s
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= ( ), Ek,w is the
spectral component of the wave electric field, and the

dispersion relation is given by k1k
L

pe D
3

2
2 2w w l= +( ). Here,

n e m4pe e0
2w p= and T n e4D e 0

2l p= ( ) stand for the
plasma frequency and Debye length, respectively, and n0, e, me,
and Te are the ambient density, unit electric charge, electron
mass, and electron temperature, respectively.
The first term on the right-hand side of Equation (1) contains

two contributions: the first term within the large parenthesis,
proportional to the EVDF, vFe( ), represents the discrete-particle
effect of spontaneous emission; the second term, proportional
to the derivative, v vFe¶ ¶( ) , represents the induced emission.
The second line of Equation (1) on the right-hand side includes
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the collisional wave damping rate, k
Lgs , obtained in the same

context as the EB (Yoon et al. 2016), and numerically analyzed
and discussed in Tigik et al. (2016a). The collisional damping
is defined by
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where Ti is the proton temperature, and k, w( ) is the linear
dielectric-response function. In the literature, the collisional
damping rate of plasma waves are often computed by heuristic
means. That is, the collisional operator is simply added to the
exact Vlasov (or Klimontovich) equation by hand, as it were,
and the small-amplitude wave analysis is carried out, leading to
the so-called Spitzer formula for the collisional damping rate
(Lifshitz & Pitaevskii 1981). A similar heuristic and ad hoc
recipe is also applied even for a turbulent plasma (Makhankov
& Tsytovich 1968). Such approaches are at best heuristic and,
strictly speaking, incorrect, as the collisionality represents
dissipation and irreversibility, whereas the Vlasov or Klimon-
tovich equation exactly preserves the phase-space information,
and thus is reversible. In the non-equilibrium statistical
mechanics it is well known that the irreversibility enters the
problem only as a result of statistical averages and the
subsequent loss of information. The authors of Yoon et al.
(2016) carried out the rigorous analysis of introducing the
collisionality starting from the exact Klimontovich equation
and taking ensemble averages. The collisional damping rate
that emerged, namely Equation (2), is the correct expression
that replaces the heuristic Spitzer formula, and it was found in
Tigik et al. (2016a) that the heuristic Spitzer collisional
damping rate grossly overestimates the actual rate.

The term Pk
Ls in Equation (1) describes the EB emission

process, which is new and is the subject of this Letter. In Yoon
et al. (2016) a specific approximate form of Pk

Ls was derived. In
this Letter we have revisited the approximation procedure, and
find that a more appropriate form is given by
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where mi is the proton mass and v T m2e e e= stands for
electron thermal speed. The detailed derivation of the above-
improved formula is reserved for another full-length article, as
it is too lengthy for the present Letter.

The dynamical equation for EVDF vFe( ) is given by the
particle kinetic equation, which includes the Coulomb collision

operator written in the form of the velocity-space Fokker-
Planck equation,
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where the coefficient vAi ( ) represents the velocity-space
friction, and the coefficient vDij ( ) describes the velocity
diffusion. The distribution functions, vFa ( ) and vFb ( ), are both
normalized to unity, v vd F 1a b,ò =( ) , where a e i,= and
b e i,= represent the interacting particles. The term

F F,ab a bq ( ) depicts the effects of Coulomb collisions between
particles of species a and b.
For the present analysis, we adopt a linearized form of the

Landau collision integral for F F,ab a bq ( ), in which it is assumed
that the evolving EVDF collides with a Maxwellian back-
ground distribution. This assumption relies on the fact that the
growing tail population of the EVDF has a much lower density
than the core electrons, so that the effects of collisions between
the tail electrons with the background EVDF are more
significant than the effects of collisions among electrons of
the tail population. The lengthy linearization procedure can be
found in detail in Tigik et al. (2016b) and will not be repeated
here for the sake of space economy. In short, the linearized
collision operator is given by
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where x v vab a tbº , vtb is the thermal velocity of the particles of
species b, ne m4 ln e

4 2pG = L , and x x x xY º F - F¢( ) ( ) ( ) is
an auxiliary function (Gaffey 1976), in which xabF º( )

e dt
x t2

0

2

òp
- is the error function and x eab

x2 2F¢ =
p

-( ) is its
derivative.

3. Numerical Analysis

The set of integro-differential equations for waves and
particles, (1) and (4), was numerically solved in 2D wave-
number space and 2D velocity space, respectively. The purpose
of the numerical analysis is to demonstrate that the coupled
system of equations leads to an asymptotically steady-state
EVDF that resembles the core-halo distribution, regardless of
how the solution is initiated. As a concrete example, we
assumed an initial state of isotropic Maxwellian VDF for both
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ions and electrons, given by

vF
v

v

v

1
exp , 6a

a a
3 2 3

2

2p
= -

⎛
⎝⎜

⎞
⎠⎟( ) ( )

where v T m2a a a
1 2= ( ) , with a i e,= . The ion VDF is

assumed to be constant along the time evolution, which is a
reasonable assumption as we are working in the much-faster
timescale of electron interactions. The electron-ion temperature
ratio of T T 7.0e i = is adopted, and the plasma parameter of
n 5 10D0

3 1 3l = ´- -( ) is used. This choice represents a
relatively high collisionality. For the coronal-base source
region, at the point where the plasma becomes fully ionized,
the electron density is of the order 10 10 cm9 11 3-– and the
electron temperature may reach 10 10 K4 6~ – (Aschwanden
2005) [or equivalently, 10 10 eV0 2~ - ]. If we assume a
central value for the density and the temperature,10 cm10 3- and
10 K5 , for instance, the corresponding plasma parameter would
be n 10D0

3 1 5l »- -( ) , more than two orders of magnitude below
the value, which we have used for the numerical analysis. Such
a higher value was purposely utilized in order to reduce the
computational time necessary to obtain the results. The final
outcome of the time evolution, however, is not affected by the
inflated plasma parameter.

The initial Langmuir wave intensity was chosen by
balancing only the spontaneous- and induced-emission pro-
cesses in the equations for the wave amplitudes, namely,

I
T

k0
4

1 3 . 7k
L e

D2
2 2

p
l= +s ( ) ( ) ( )

Because the VDF and the Langmuir spectrum have azimuthal
symmetry, we plot the results of numerical solution by using a
1D projection on the parallel direction of the velocity and wave
number.

It is important to note that the initial electron distribution and
Langmuir wave spectral intensity, (6) and (7), do not satisfy the
steady-state condition t 0¶ ¶ = in the particle- and wave-
kinetic Equations (4) and (1), respectively. This is purposeful,
since our aim is to demonstrate that the set of Equations (4) and
(1) do not permit the electron distribution and Langmuir wave
spectral intensity, (6) and (7), respectively, as the legitimate
steady-state solution, and so the equations will force the initial
state to make a transition to a new steady state or, equivalently,
a new quasi-equilibrium state.

For the numerical analysis, we take into account the new
effects of collisional damping and EB, starting from the above
initial condition. With the addition of these new terms, the
initial wave spectrum is no longer in equilibrium with the
particle distribution, triggering an interesting evolution. Let us
define normalized Langmuir wave intensity

g

m v
I

2
,q k

L

e e

2

2
E

p
=s sa( )

where g n2 4 e D
3 2 2 3 1p l= -[ ( ) ] . We also define the normalized

temporal variable, tpet w= , and the normalized wave number

kve pew . Figure 1 shows the time evolution of q
LEs . It is seen

that the bremsstrahlung radiation emitted in the frequency
range corresponding to L waves alters the spectrum, creating a
modification that starts at q 0.4» and ends in a peak around

q=0. The wave growth appears early in the time evolution
and evolves rapidly, as can be seen in Figure 1. After

5000t = , the shape of the curve starts to change and the wave
growth becomes slower. At τ=50,000, the Langmuir
spectrum appears to be very close to an asymptotic state.
The early stages of the time evolution of the EVDF are quite

gradual, but the first signs of modification start to appear
around 2000t = and are almost imperceptible. In Figure 2, the
earliest indication of change is shown at 4000t = . At this time
an energized tail becomes apparent. The demarcation between
the core and tail occurs around u v v 4.6e= » . The velocity
spectrum associated with the energetic tail population con-
tinues to harden as time progresses, while the core defined for
u 4.6 remains essentially unchanged. In short, we have
demonstrated that the initial Maxwellian electron distribution

Figure 1. Time evolution of the Langmuir spectrum, taking into account the
influence of the bremsstrahlung emission.

Figure 2. Time evolution of the electron velocity distribution function.

4

The Astrophysical Journal Letters, 849:L30 (5pp), 2017 November 10 Tigik, Ziebell, & Yoon



(6) has made a transition to a new quasi-equilibrium state in
which the electron distribution function bears a superficial
resemblance to the Maxwellian core plus a quasi-inverse
power-law tail population.

4. Final Remarks

The results obtained suggest that, in the presence of EB
emission, the wave-particle system attains a state of
asymptotic equilibrium, in which the EVDF possesses a
feature of core-halo distribution that is highly reminiscent of
the solar wind EVDF. We thus conclude that the present
mechanism of the collective wave-particle interaction process
that takes place in a collisional environment, such as the
coronal source region, may be a highly efficient and common
process in many astrophysical environments. Before we close,
we note that we have also analyzed the particle kinetic
equation in which the collisional operator is not present on the
right-hand side of (4). The result (not shown) is not very
different from the present result, which indicates that the
mechanism of generating the suprathermal electrons mainly
comes from the wave dynamics that operate in a collisional
environment.

We have also checked the overall energy budget of the
system. Since the initial state, comprised of Maxwellian
distribution and Langmuir spectral intensity that does not
reflect the bremsstrahlung emission, is not in force balance,
there is a transfer of energy between the particles and waves
early on, but over a longer time period the system enters a state
where the net exchange between the particles and waves
gradually settles down to a minimal level. Note that in terms of
the total energy content, the tail portion of the EVDF contains a
relatively low proportion of the net energy, as the number
density is several orders of magnitude lower than the core
distribution. Although it is not so easy to verify by visual
means, there is a slight cooling associated with the core part of
the EVDF. This shows that the present process is not an
acceleration mechanism, but rather involves the redistribution
of particle population in velocity or energy space in order to
form a new quasi-equilibrium.
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Chapter 6

Final remarks

In this thesis, we have presented the results of the first analyses of a new theory, depicted
in Chapter 4, which combines collective processes (eigenmodes) and collisional interactions
(noneigenmodes), for Langmuir and ion-sound waves, without any ad hoc addition. The impor-
tance of this formalism, became clear right in the first study, presented in Section 5.1, where it
was shown that the collisional damping rate calculated with the heuristic Spitzer formula, that
is independent of the wave-number, is highly overestimated when compared with the rigorous
expression, which has to be integrated in the wave-number space. The Spitzer approximation
is largely applied to the modeling and interpretation of several solar phenomena observed by
space-probes [38, 39, 42, 76, 84–86], a fact that emphasizes the necessity of the development of a
mathematically rigorous theory able to describe hybrid situations involving collective oscillations
and collisional interactions.

The second study, discussed in Section 5.2, focused on the consequences of including the
hitherto unknown effect of electrostatic bremsstrahlung in the time evolution of a Maxwellian
electron velocity distribution, under the quasilinear regime. The unexpected outcome of this
analysis revealed an underlying process responsible for taking the electron velocity distribution
out of its initial equilibrium state, leading it to a new quasi-equilibrium state that is satisfied by
a velocity distribution composed by a Maxwellian core with a suprathermal tail. Such velocity
distributions are pervasively observed in space plasmas [87–97]. However, until these days,
despite several attempts of explaining how they form and why space plasmas are particularly
prone to develop a suprathermal tail while retaining the thermal core, no existing theory is
capable of describing self-consistently its origin and evolution. Again, the relevance of this
research becomes evident.

The ubiquity of inverse power-law velocity distribution in space plasmas indicates
the action of a fundamental physical process that might -or might not- be the electrostatic
bremsstrahlung. For instance, the possibility of the formation of suprathermal electron veloc-
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ity distributions in a mildly collisional environment, as demonstrated in [78], has a positive
correlation with the velocity filtration model, which relies on the existence of a high energy
electron population in the solar transition region, located between the chromosphere and the
solar corona, to explain the temperature inversion observed in the solar corona [75, 98–104].

It is important to emphasize the fundamental aspect of the theory presented in Ref.
[52]. The rigorous analysis performed during this doctoral research, suggests that collisional
interactions involving charged particles enfold physical processes that go beyond the Coulomb
collisions effects. An enthralling prospect of this study lies in the possibility of these underlying
kinetic processes being connected to unexplained phenomena observed in space plasmas. On that
regard, the electrostatic weak turbulence theory for collisional plasmas is a first step towards a
more accurate description of the microscopic physics of plasmas. Further development should
extend this formalism to include electromagnetic waves and, in the long term, the influence of
ambient magnetic field.

These efforts on improving the theoretical description of kinetic processes in plasmas and
numerically analyzing the equations are just in time with current technological progress in the
resolution capability of spacecraft measurement equipment. A great example of this new trend
is NASA’s Magnetospheric Multiscale (MMS) mission that investigates the physics of magnetic
reconnection in the Earth’s magnetosphere. Equipped with high-precision instruments [105,106],
MMS was capable of directly measure wave-particle energy exchange process in the ion kinetic
scale [107], for the first time. Therefore, it is becoming evident that the kinetic scale is the next
frontier in observational plasma physics, and this will require a more accurate and comprehensive
theory.



Appendix A

Improved approximation for the second
order susceptibility

In this appendix, we present two different approximations applied to the second-order
susceptibility in the electrostatic bremsstrahlung equation for Langmuir waves. Initially, for
comparison, we show the original simplification used in Ref. [52]. In the sequence, we introduce
an improved approximation for the same expression, highlighting the main differences. This new
version, though, is only suitable for fast-waves, which is the case of Langmuir oscillations, but
does not apply to the case of ion-sound waves. Moreover, the results for ion-sound waves are
quite well behaved with the original approximation, which is the same that was initially used
for L waves in Ref. [52]. Therefore, S waves will be considered only in Appendix A.1, while
Appendix A.2 will be directed solely to the expression for L waves.

A.1 Original approximation

The initial expressions for L and S waves, still in terms of the second order susceptibility
are given by:

∂IσL
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=
∑
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12nee
2
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∂

∂t

IσS
k
µk

∣∣∣∣∣
brem

=
∑
a,b

12nee
2
ae2

bω
2
pe

π

∫
dk′

∫
dv
∫

dv′ |χ(2)(k′, 0|k − k′, 0)|2
k′2|k − k′|2|ε(k′, 0)|2|ε(k − k′, 0)|2

× δ
[
σωS

k − k · v + k′ · (v − v′)
]

Fa(v)F (v′).
(A.2)

Assuming that the most important contribution comes from the region where k · v ' 0,
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k′ · v′ ' 0, and k′ · v ' 0,
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Simplifying, and writing the coefficient in front of the expression in a different way,
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(A.6)

where we have used fa = n̂Fa.

The term containing v′′ vanishes, for distribution function which depends only on the
absolute value of the velocity, like the Maxwellian distribution. Therefore,
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Defining ei = e, ee = −e and assuming ne = ni = n, we have
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Finally we have the original approximation:
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and the resulting expressions
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A.2 Alternative approach

From Eq.(4.24) in Ref. [52] we have
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which depends on the second-order susceptibility, defined as follows,
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with α(2)
a given by,
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q given by,
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Notice that we used variable v′′, since v and v′ already appear in Eq. (A.13).

Therefore, using Eq. (A.14) in Eq. (A.13),
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By using Eq. (A.15),
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Assuming a Maxwellian velocity distribution function

χ(2)
a [k′, k′ · v′|k − k′, (k − k′) · v] = − 2πie3

a
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a

m2
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T 2
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∫
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ma
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}
fa(v′′)

(A.19)

Here, instead of making the early assumption that k · v ' 0, k′ · v′ ' 0 and k′ · v ' 0,
we take into account the fact that Eq. (A.12) contains a delta function:

k′ · v′ + (k − k′) · v = σωα
k . (A.20)

With this small change we obtain a quite different expression than that obtained at the
same point in the previous approach:

χ(2)
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+ 1
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}
fa(v′′).

(A.21)

And it is just after the previous assumption that we assume that the most important
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contribution comes from the region where k · v ' 0, k′ · v′ ' 0, and k′ · v ' 0, then

χ(2)
a [k′, k′ · v′|k − k′, (k − k′) · v] = − 2πie3
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+ 1
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(A.22)

For L waves, we can assume that the factor σωL
k is dominant on the denominators,

χ(2)
a [k′, k′ · v′|k − k′, (k − k′) · v] = − 2πie3
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(A.23)

Due to their asymmetry, the terms which are linear in v′′ will vanish when integrated,
leading to the following expression
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(A.24)

As an approximation, we write
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(A.25)
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Defining ei = e and ee = −e, and assuming ne = ni = n, we have

χ(2)[k′, k′ · v′|k − k′, (k − k′) · v] =
∑

a

χ(2)
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(A.27)
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2e
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ω2
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k(ωL
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(
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(A.28)

Therefore, the resulting expression for the electrostatic bremsstrahlung of L waves in the
new approximation is

P σL
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4π3
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Ti

)2 v4
e
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×
(
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)−2 ∫
dv
∫

dv′ δ[σωL
k − k · v + k′·(v − v′)]

∑
a

Fa(v)
∑

b

Fb(v′)
(A.29)

Since this approximation assumes that the dominant frequency range on the denominators
is given by the dispersion relation of Langmuir waves (see Eq. (A.23)), which are high frequency
oscillations near the electron plasma frequency, it is not suitable for use in the bremsstrahlung
expression for S waves.



Appendix B

Asymptotic equilibrium

The results presented in Ref. [78] suggest that in the presence of electrostatic bremsstrahlung
emission, the wave-particle system evolves to a state of asymptotic equilibrium, in which the
velocity distribution resembles the ubiquitous core-halo velocity distribution. To test this assump-
tion, we search for the steady state solution of the kinetic equation for Langmuir waves, taking
into account the effects of collisional damping and electrostatic bremsstrahlung, in addition to
the spontaneous and induced emission processes,

∂EσL
q

∂τ
= µL

q
π

q2

∫
du δ(σzL

q − q · u)
(

g Φe(u) + σzL
q EσL

q q · ∂Φe

∂u

)
+ P σL

q + 2γσL
q EσL

q ≈ 0, (B.1)

For use in this asymptotic equation, let us assume isotropic distributions for ions and elec-
trons, which are the summation of Maxwellian and Kappa distributions. In terms of dimensionless
variables, we have
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(
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(B.2)
where
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ve
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, u2
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β. (B.3)

The equilibrium is obtained setting expression (B.1) equal to zero, leading to
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where
Iβα

M =
∫

d3u Φβ,M(u)δ(σzα
q − q · u), (B.5)
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Iβα
1 =

∫
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The integrals Iβα
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1 and Iβα
2 can be evaluated analytically, resulting in
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Using the expressions given by the equations (B.8), the numerator of the expression for
the asymptotic wave spectrum becomes

(
1 − nκe

ne

) 1
π1/2ue

1
q

exp
(

−
(zL

q /q)2

u2
e

)
+ nκe

ne

1
π1/2κ

1/2
e ue,κ

Γ(κe)
Γ(κe − 1/2)

1
q

(
1 +

(zL
q /q)2

κeu2
e,κ

)−(κe)

+ 1
µL

qg

q2

π
P σL

q .

Proceeding in the same way, the expression for the denominator of the asymptotic wave
spectrum becomes
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where
P̂ σL
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Figure B.1 shows the normalized value of the asymptotic spectrum of L waves, obtained
with the use of Eq. (B.9), considering a plasma in which the ion population is described by a
Maxwellian velocity distribution, and the electron population is described by a distribution as
defined in equation (B.2), with nκe/ne = 0.05. That is, the electron distribution is a core-halo
distribution, with 5% of the particles in the halo population. For the evaluation of the collisional
damping and electrostatic bremsstrahlung terms, appearing in Eq. (B.9), we used Eqs. (5.3) and
(5.5), taking into account only the Maxwellian distribution, which is a reasonable approximation
due to the smallness of the halo population. Figure B.1(a) shows the spectra obtained considering
several values of the index κe, from κe = 2.5 to κe = 40. It is seen that the wave amplitude
increases at the region of small values of q, with the increase of κe. It is also seen that in the
case of fairly large value of κe, as κe = 40, the spectrum obtained in the case of a core-halo
distribution is very close to the spectrum obtained in the case of a purely Maxwellian electron
distribution, which can be obtained from equation (B.9) by taking nκe = 0. It is also seen that
in the case of small values of κe the asymptotic spectrum is qualitatively very similar to the
spectrum obtained after the time evolution of the system, taking into account the new effects
of electrostatic bremsstrahlung and collisional damping, shown in Figure 1 of Ref. [78]. For
comparison, we show in figure Figure B.1(b) the asymptotic spectrum of L waves which would
be obtained by neglecting the new effects, of collisional bremsstrahlung and collisional damping.

The equations presented in this appendix and, more important, the ideas about the
asymptotic state of the eigenmodes of an unmagnetized plasma considering several values of the
kappa coefficient, were developed in parallel with another work, which slightly deviates from the
main subject of this PhD research, but had a big contribution on the development of the work
presented in Ref. [78]. The work in question, whose title is “Weakly turbulent plasma processes
in the presence of inverse power-law velocity tail population” [108], investigates the modifications
on the spectra of the Langmuir, ion-sound and transverse waves caused by different kappa
indexes in a core-halo velocity distribution function. The full article can be seen in Appendix C.
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Figure B.1: Asymptotic spectrum of Langmuir waves for several values of κ index and Maxwellian
distribution. (a) With electrostatic bremsstrahlung emission and collisional damping. (b) Without
bremsstrahlung emission and collisional damping.
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Extra publication

This publication1 is mainly related with the results presented in Ref. [78]. It can be said
can say that most of the ideas about the physical processes occurring in [78], regarding the
formation of the core-halo velocity distribution and the fact that the electrostatic bremsstrahlung
could be the underlying process behind the ubiquity of such velocity distribution in the space
environment, came from the analysis of the results presented in [108].

1Credit: Reproduced from Physics of Plasmas 24, 112902 (2017);https://doi.org/10.1063/1.5009931,
with the permission of AIP Publishing.
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Observations show that plasma particles in the solar wind frequently display power-law velocity

distributions, which can be isotropic or anisotropic. Particularly, the velocity distribution functions

of solar wind electrons are frequently modeled as a combination of a background Maxwellian dis-

tribution and a non-thermal distribution which is known as the “halo” distribution. For fast solar

wind conditions, highly anisotropic field-aligned electrons, denominated as the “strahl” distribu-

tion, are also present. Motivated by these observations, the present paper considers a tenuous

plasma with Maxwellian ions, and electrons described by a summation of an isotropic Maxwellian

distribution and an isotropic Kappa distribution. The formalism of weak turbulence theory is uti-

lized in order to discuss the spectra of electrostatic waves that must be present in such a plasma,

satisfying the conditions of quasi-equilibrium between the processes of spontaneous fluctuations

and of induced emission. The kappa index and relative density of the Kappa electron distribution

are varied. By taking into account the effects due to electromagnetic waves into the weak turbu-

lence formalism, we investigate the electromagnetic spectra that satisfy the conditions of “turbulent

equilibrium,” and also the time evolution of the wave spectra and of the electron distribution, which

occurs in the case of the presence of an electron beam in the electron distribution. Published by
AIP Publishing. https://doi.org/10.1063/1.5009931

I. INTRODUCTION

Observations made in the space environment consis-

tently show plasma particles with velocity distributions that

have non-thermal tails, and frequently with anisotropies.1–6

Characteristically, observed solar wind electrons are mod-

eled by a combination of the Maxwellian core population

(with energy in the range of tens of eV) and a tenuous but

energetic halo distribution that contains a power-law veloc-

ity distribution in the suprathermal range (�102–103 eV). For

energy range even higher than that of the halo population,

that is, for �20–200 keV range, superhalo electrons are also

observed.7 The halo and superhalo distributions are often

modeled by the Kappa distribution.7–15 For the fast solar wind

condition,16 a field-aligned electron beam called the strahl is

often observed to stream away from the Sun. The strahl is

characterized by the similar energy range as that of the halo

electrons. Observations show that the number density of strahl
decreases as one moves away from the Sun while the halo

density increases,17 but their combined density remains con-

stant, being �4%–5% of the total density. The energetic

superhalo electrons contribute very little to the net electron

content, as their number density amounts to not more than

10�6 of the total electron density, but owing to their high

energy, their presence is evident in the velocity or energy

spectrum. The observations thus suggest that the strahl elec-

trons are but a field aligned portion of the halo population,

which are gradually pitch-angle scattered/diffused back to the

isotropic halo by some unknown processes, of which the whis-

tler wave fluctuations are the prime candidate.15,18

The Kappa distribution was introduced to phenomeno-

logically describe the non-thermal feature of the electron

velocity distribution,8 but appears nowadays in the literature

in a framework of non-extensive thermo-statistical equilib-

rium.19 Possibly the first time that a Kappa distribution was

mentioned in such a context was about 20 years ago, in Ref.

20. A family of Kappa distributions is used in the literature,

which include isotropic or anisotropic Kappa models.

Isotropic Kappa distributions are usually written in terms of

two different forms, one which can be found in Refs. 8–10

and the other which can be found in Refs. 13 and 14. These

two different forms of Kappa distributions have been used

by the plasma physics community and have been the subject

of a number of theoretical discussions in recent years.21–25 In

the present paper, we use a generic form of Kappa distribu-

tion, which, in particular cases, can reproduce the two widely

used forms mentioned earlier, and use such a distribution to

describe the halo distribution in the electron population.

Velocity distributions with power-law tails also appear

mentioned in the context of turbulence theory, as in the pio-

neering work of Ref. 26, dealing with the velocity distribu-

tions in the presence of a superthermal radiation field.

Recently, one of us put forth a rigorous theory of Kappa

a)Electronic mail: sabrina.tigik@ufrgs.br
b)Electronic mail: larissa.petruzzellis@ufrgs.br
c)Electronic mail: luiz.ziebell@ufrgs.br
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distribution from the viewpoint of weak turbulence theory,

rather than treating the Kappa distribution as simply a phe-

nomenological tool.27,28 In such a theory, it was shown that a

quasi-stationary state of electrons and a spectrum of electro-

static Langmuir fluctuations form a self-consistent pair of

solutions of the stationary weak turbulence kinetic equations.

A rather remarkable finding is that such a solution permits

only the Kappa distribution as the legitimate solution, but

nothing else, if the nonlinear interaction terms in the wave

kinetic equation are considered. This finding may explain the

physical origin of the pervasive Kappa-like electron distribu-

tion functions observed in the space environment. The

accompanying Langmuir fluctuation spectrum, according to

the above-referenced papers,27,28 is significantly modified

from the thermal equilibrium form of the spectrum in that

the long wavelength regime of the fluctuation spectrum

exhibits an inverse power-law behavior, / k�2, while for

high k, the spectrum approaches a constant value. These find-

ings and discussions were, however, carried out on the basis

of the simplifying assumption of a single electron species.

This was done for the sake of simplicity. For the actual situa-

tion, as overviewed earlier, the solar wind electrons are com-

posed of several components, typically a quasi isotropic

Maxwellian core plus a quasi isotropic halo population,

which is often modeled by a Kappa distribution. In view of

this, it is timely and appropriate to revisit the problem of

solar wind such as electron distribution and the associated

Langmuir fluctuation spectrum for multi- or, at least, a two-

component electron plasma.

Ideally, one must obtain the electron distribution and the

Langmuir fluctuation spectrum in a self-consistent manner

without making any assumption at the outset. This is possible

if one makes a simplifying assumption of single component

electrons.27,28 However, if one is to consider multiple (or

two component) electrons, then the situation becomes rather

complex. Even if one ignores the nonlinear coupling term,

the self-consistent solution for both electron distribution and
the Langmuir spectrum must be obtained by numerical itera-

tion scheme.29 In the present analysis, we are interested in

revisiting the approach taken in Ref. 29 but within the con-

text of the analytical method. In order to reduce the complex-

ity of the problem to some extent, we approach the problem

by allowing a two component electron distribution function

model and seeking the Langmuir spectrum intensity, which

is consistent with the model electron distribution function.

Thus, in the first part of the present analysis, we will

investigate the spectral form of the electrostatic fluctuation

intensity that exists in a plasma, satisfying equilibrium con-

ditions between the processes related to spontaneous fluctua-

tions and the processes induced by the waves themselves.

The analysis is made in the framework of weak turbulence

theory including spontaneous effects. We consider an

unmagnetized plasma with plasma particles described by

velocity distributions, which are a summation of an isotropic

Maxwellian background and a “halo” characterized by iso-

tropic Kappa distributions of generic form. The analysis to

be made under the framework of weak turbulence theory

shows that electrostatic waves, i.e., Langmuir (L) and ion-

sound (S) waves, can be naturally occurring in a plasma as a

result of spontaneous and induced effects. Electromagnetic

waves, i.e., transverse waves (T), cannot be generated by

these mechanisms, but can appear due to nonlinear interac-

tions involving other types of plasma waves.

In the second part of the present paper, we also investi-

gate the generation of electromagnetic waves, and the possi-

bility of an approximated asymptotic solution for the

spectrum of transverse waves, obtained as the outcome of

nonlinear processes described by weak turbulence theory.

Investigations on the equilibrium spectra of electrostatic

waves and on the spectrum of T waves at turbulent equilib-

rium have already been made in the case of Maxwellian plas-

mas, but to the best of our knowledge, they have not yet

been made taking into account the presence of a tenuous but

energetic population of Kappa distributed particles. In addi-

tion to the investigation of the equilibrium spectra, we also

investigate using weak turbulence theory the time evolution

of the wave-particle system when an electron beam is

assumed to exist in the medium.

The equations of weak turbulence theory can be found

in the literature and will not be reproduced here for brevity.

For the present paper, we utilize the formalism as presented

in Ref. 30, and only comment on the basic features of these

equations, which will be useful for the analysis of the results

appearing in the present paper. We start by commenting on

the equation that describes the time evolution of L waves.

In the context of weak turbulence theory, the time evolu-

tion of L waves is ruled by terms associated with spontaneous

and induced emission, three-wave decay, and spontaneous

plus induced scattering. The emission terms satisfy the wave-

particle resonance condition, rxL
k � k � v ¼ 0, where xL

k is

the dispersion relation for L waves, and r¼61 represent for-

ward or backward propagation of the waves. The three-wave

decay processes involve interactions between different types

of waves, satisfying the following resonance conditions:

rxL
k � r0xL

k0 � r00xS
k�k0
¼ 0; rxL

k � r0xL
k0 � r00xT

k�k0 ¼ 0,

rxL
k � r0xT

k0 � r00xT
k�k0 ¼ 0, and rxL

k � r0xS
k0
� r00xT

k�k0

¼ 0, where xS
k and xT

k are the dispersion relations for ion-

acoustic waves (S) and for transverse waves, respectively.

The scattering processes involve waves with two different

wavelengths and frequencies, interacting with plasma par-

ticles, satisfying the following resonance conditions: rxL
k

�r0xL
k0 � ðk � k0Þ � v ¼ 0 and rxL

k � r0xT
k0 � ðk � k0Þ � v

¼ 0. Detailed expressions for these terms can be found, for

instance, in Ref. 30.

The equation that describes the time evolution of S
waves presents a similar structure, containing spontaneous

and induced emission terms, which satisfy the resonance

condition, rxS
k � k � v ¼ 0; three-wave decay terms satisfy-

ing the resonance conditions, rxS
k � r0xL

k0 � r00xL
k�k0 ¼ 0,

and rxS
k � r0xL

k0 � r00xT
k�k0 ¼ 0; and a scattering term that

satisfies rxS
k � r0xL

k0 � ðk� k0Þ � v ¼ 0. The scattering pro-

cesses are deemed to be extremely slow in the case of S
waves and are usually neglected.30

The equation for the T waves can be considered of a dif-

ferent nature, in the sense that the superluminal T waves do

not satisfy the wave-particle resonance condition, and there-

fore, there is no emission terms, either spontaneous or
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induced. The equation that describes the time evolution of T
waves features three-wave decay terms with resonance con-

ditions given by rxT
k � r0xL

k0 � r00xL
k�k0 ¼ 0; rxT

k � r0xL
k0

�r00xS
k�k0 ¼ 0, and rxT

k � r0xT
k0 � r00xL

k�k0 ¼ 0, and a scat-

tering term satisfying rxT
k � r0xL

k0 � ðk� k0Þ � v ¼ 0.30

In addition to the wave equations, the set of weak turbu-

lence equations also contains equations for the time evolu-

tion of the particle distribution functions. In collisionless

plasmas, the equation for the time evolution of the particle

distribution function is well-known [see, for instance, Eq. (1)

of Ref. 30] and includes a quasilinear diffusion term and a

term originated from spontaneous fluctuations, both satisfy-

ing the wave-particle resonance conditions rxa
k � k � v ¼ 0,

where a can be L or S

@faðvÞ
@t
¼ pe2

a

m2
a

X
r¼61

X
a¼L;S

ð
dk

k2
k � @
@v

dðrxa
k � k � vÞ

� marxa
k

4p2
faðvÞ þ Ira

k k � @faðvÞ
@v

� �
: (1)

In Eq. (1), fa(v) is the distribution function for particles of

species a (a¼ e for electrons and a¼ i for ions), normalized

as
Ð

dv faðvÞ ¼ 1.

The present paper is organized as follows: In Sec. II, we

introduce a generic form of isotropic Kappa distribution and

describe the distribution function for plasma particles, consti-

tuted by a summation of a Maxwellian distribution and an iso-

tropic Kappa distribution, with much lower number density than

the Maxwellian population. In Sec. III, we briefly derive the

expressions that give the spectra of L and S waves and that sat-

isfy equilibrium conditions. In doing so, we take into account

the velocity distributions presented in Sec. II. In Sec. IV, we dis-

cuss the possibility of an asymptotic spectrum of transverse

waves (T), which is the result of nonlinear interaction in the

wave-particle system. We derive an expression, which approxi-

mately describes this asymptotic state. In Sec. V, we present

some results that show the wave spectra, taking into account

parameters which are compatible with conditions in the solar

wind. We also present in Sec. V some results that show the time

evolution of the wave spectra and of the particle distribution

function, obtained by numerical solution of equations of weak

turbulence theory. Section VI summarizes the results obtained.

II. THE VELOCITY DISTRIBUTIONS FOR PLASMA
PARTICLES

Let us assume that isotropic distributions for ions and

electrons are made of the summation of Maxwellian and

Kappa distributions. In three dimensions (3D), considering a

generic form for the Kappa distribution, we may write

fbðvÞ ¼ 1� njb

ne

� �
fb;MðvÞ þ

njb

ne
fb;jðvÞ; (2)

where

fb;MðvÞ ¼
1

p3=2v3
b

exp � v2

v2
b

 !
; (3)

fb;jðvÞ ¼
1

p3=2j3=2

b v3
b;j

Cðjbþ abÞ

C jb þ ab�
3

2

� � 1þ v2

jbv2
b;j

 !�ðjbþabÞ

;

(4)

where vb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Tb=mb

p
is the thermal velocity of particle spe-

cies labeled b, and vb,j is a parameter with the same physical

dimension as the particle thermal velocity, and reduces to

the thermal velocity in the limit jb ! 1. The distribution

functions given by Eqs. (3) and (4) are normalized such thatÐ
d3v fb ¼ 1.

Particular cases of the distribution (4) that correspond to

the forms of Kappa distributions which are widely used in

the literature can be obtained by a suitable choice of parame-

ters ab and vb,j. Namely, if ab¼ 1, and

v2
b;j ¼

jb �
3

2
jb

v2
b; (5)

then Eq. (4) becomes a form of isotropic Kappa distribution,

which is widely used in the literature8–10

fbðvÞ ¼
1

p3=2j3=2

b v3
b;j

Cðjb þ 1Þ

C jb �
1

2

� � 1þ v2

jbv2
b;j

 !�ðjbþ1Þ

: (6)

The average value of the kinetic energy, in the case of distri-

bution (6), leads to the usual notion of temperature, since it

is easily obtained that�
1

2
mv2

�
b

¼ 3Tb

2
: (7)

In the above, h� � �ib ¼
Ð

dv � � � fb.

Another customary choice is to take ab¼ 0 and vb,j¼ vb.

This corresponds to the case in which Eq. (4) becomes the

isotropic Kappa distribution, which is used, for instance, in

Refs. 13 and 14

fbðvÞ ¼
1

p3=2j3=2

b v3
b

CðjbÞ

C jb �
3

2

� � 1þ v2

jbv2
b

 !�jb

: (8)

For distribution function (8), the average value of the kinetic

energy does not lead to the usual notion of temperature, since

it is easy to obtain that�
1

2
mv2

�
b

¼ 3Tb

2

jb

jb � 5=2
: (9)

It can also be noticed that the distribution given by (8)

can be obtained as a result of the use of the non-extensive

statistical mechanics as formulated in Refs. 13, 31, and 32,

while the distribution function given by (6) results from a

modified approach to non-extensive statistical mechanics,

which utilizes the so-called escort probability functions.33,34

For convenience, we define dimensionless velocities, by

division of the velocity by the electron thermal velocity ve,
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u¼ v/ve, the normalized wavenumber q¼kve/xpe, the nor-

malized wave frequency for waves of type a, za
q ¼ xa

q=xpe

(where a¼ L, S, or T), and the dimensionless time variable,

s¼xpet, with xpe ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pnee2=me

p
being the electron plasma

frequency. We also define the normalized wave intensity for

waves of type a

Era
q ¼

ð2pÞ2g

mev2
e

Ira
k

la
k

; (10)

and introduce other useful dimensionless quantities

u ¼ v

ve
; ub;j ¼

vb;j

ve
; ub ¼

vb

ve
;

l ¼ me

mi
; de ¼

nje

ne
; di ¼

nji

ne
:

(11)

In terms of the dimensionless variables, the dispersion

relations for the waves and the velocity distribution functions

become

zL
q ¼ 1þ 3

2
q2

� �1=2

; (12)

zS
q ¼

qffiffiffi
2
p me

mi

� �1=2

1þ 3
Ti

Te

� �1=2

1þ 1

2
q2

� ��1=2

; (13)

zT
q ¼ 1þ c2

v2
e

q2

 !1=2

; (14)

Ub;MðuÞ ¼
1

p3=2u3
b

exp � u2

u2
b

 !
; (15)

Ub;jðuÞ ¼
1

p3=2j3=2

b u3
b;j

Cðjbþ abÞ
C jb þ ab � 3

2

� � 1þ u2

jbu2
b;j

 !�ðjbþabÞ

:

(16)

III. INITIAL L AND S WAVE INTENSITIES

Making use of the equations of weak turbulence theory,

the spectra of electrostatic waves may be initialized by

neglecting the nonlinear interactions and balancing the

spontaneous and induced emission terms, and by taking

into account only the background populations. For the L
waves, using the symbol Ue(u) for the electron distribution

function in terms of normalized quantities, we utilize the

wave equation without the nonlinear terms, written in terms

of the dimensionless quantities

@

@s
ErL

q ¼
p
q2

ð
du dðrzL

q � q � uÞ

� g UeðuÞ þ ðrzL
qÞ q �

@UeðuÞ
@u

ErL
q

� �
: (17)

Using spherical coordinates in velocity space, with the z
axis along q, and considering distribution (2) written in terms

of dimensionless variables, we obtain

@

@s
ErL

q ¼
p
q2

(
g 1� deð ÞIeL

M þ deIeL
1

	 


�2ðrzL
qÞ

2
1� deð ÞIeL

M þ
deu2

e

u2
e;j

ðje þ aeÞ
je

IeL
2

" #
ErL

q

)
;

(18)

where

Iba
M ¼

ð
d3u Ub;MðuÞdðrza

q � q � uÞ;

Iba
1 ¼

ð
d3u Ub;jðuÞdðrza

q � q � uÞ;

Iba
2 ¼

ð
d3u 1þ u2

jbu2
b;j

 !�1

Ub;jðuÞdðrza
q � q � uÞ:

(19)

The equilibrium is obtained by setting the expression for

the time derivative equal to zero, which leads to

ErL
q ¼

g

2ðzL
qÞ

2

1� deð ÞIeL
M þ deIeL

1

1� deð ÞIeL
M þ

deu2
e

u2
e;j

ðje þ aeÞ
je

IeL
2

: (20)

The integrals Iba
M ; Iba

1 , and Iba
2 can be evaluated analyti-

cally. For the case b¼ e, it is possible to obtain

ErL
q ¼

g

2ðzL
qÞ

2
1� deð Þexp �neð Þ þ deue

j1=2
e ue;j

Cðje þ ae � 1Þ
Cðje þ ae � 3=2Þ

1

1þ ne;j
� �jeþae�1

" #

� 1� deð Þexp �neð Þ þ deu3
e

j3=2
e u3

e;j

Cðje þ aeÞ
Cðje þ ae � 3=2Þ

1

1þ ne;j
� �jeþae

" #�1

;

ne ¼
ðzL

q=qÞ2

u2
e

; ne;j ¼
ðzL

q=qÞ2

jeu2
e;j

: (21)

For the S waves, we obtain the following equation:

@

@s
ErS

q ¼ lS
q

p
q2

ð
du dðrzS

q � q � uÞ g UeðuÞ þ UiðuÞð ÞþðrzL
qÞ q � @UeðuÞ

@u
þ me

mi
q � @UiðuÞ

@u

� �
ErS

q

� �
; (22)
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where

lS
q ¼

q3

23=2

ffiffiffiffiffiffi
me

mi

r
1þ 3Ti

Te

� �1=2

: (23)

Following steps are similar to those employed in the

case of L waves, and the initial spectrum of S waves is seen

to obey the following expression:

ErS
q ¼

g

2ðzL
qÞðzS

qÞ
Ns

Ds
; (24)

where

Ns ¼ 1� deð ÞIeS
M þ deIeS

1 þ 1� dið ÞIiS
M þ diI

iS
1 ;

Ds ¼ 1� deð ÞIeS
M þ

deu2
e

u2
e;j

ðje þ aeÞ
je

IeS
2

þ l 1� dið Þ u
2
e

u2
i

IiS
M þ

dilu2
e

u2
i;j

ðji þ aiÞ
ji

IiS
2 :

After the evaluation of the Iba
M ; Iba

1 , and Iba
2 integrals, one

obtains the following:

ErS
q ¼

g

2ðzL
qÞðzS

qÞ

"
1� deð Þexp �neð Þ þ deue

j1=2
e ue;j

Cðje þ ae � 1Þ
Cðje þ ae � 3=2Þ

1

1þ ne;j
� �jeþae�1

þ 1� dið Þexp �nið Þ þ diue

j1=2
i ui;j

Cðji þ ai � 1Þ
Cðji þ ai � 3=2Þ

1

1þ ni;j
� �jiþai�1

#

�
"

1� dð Þexp �neð Þ þ du3
e

j3=2
e u3

e;j

Cðje þ aeÞ
Cðje þ ae � 3=2Þ

1

1þ ne;j
� �jeþae

þl 1� dið Þ u
3
e

u3
i

exp �nið Þ þ dilu3
e

j3=2
i u3

i;j

Cðji þ aiÞ
Cðji þ ai � 3=2Þ

1

1þ nið Þjiþai

#�1

; (25)

where ne and ne,j are defined in (21) and

ni ¼
ðzL

q=qÞ2

u2
i

; ni;j ¼
ðzL

q=qÞ2

jiu2
i;j

: (26)

This brings a closure to the first part of the present

paper, namely, to theoretically discuss the self-consistent

form of electrostatic Langmuir and ion-sound wave fluctua-

tion intensities that arise when the electron velocity distribu-

tion function is composed of a Maxwellian core plus a

“halo” component given by a Kappa distribution. In Ref. 29,

a similar problem was approached (minus the discussion of

ion-acoustic wave intensity) by considering the iterative

numerical solution of the self-consistent set of particle and

wave kinetic equations. The present discussion complements

Ref. 29 in that our approach has been within the context of

an analytical method. The analytical solution, while less rig-

orous that the iterative solution obtained in Ref. 29, is never-

theless useful in the subsequent discussion of transverse

wave intensity, which we turn to next.

IV. ASYMPTOTIC WAVE LEVEL FOR TRANSVERSE
WAVES

The time evolution of transverse T waves, which are

electromagnetic waves, is governed by an equation that con-

tains the terms related to three wave decay involving a T
wave and two L waves: a T wave, an L wave, and an S wave,

and two T waves and a L wave, and also a scattering term

involving a T wave, a L wave, and particles.30 The evolution

equation does not feature a quasilinear term, such as those

appearing in the equations for L and S waves, given by Eqs.

(17) and (22), because the linear resonance condition with

the particles is not satisfied by the superluminal T waves.30

The occurrence of decay processes involving L and S
waves, and also of scattering processes, has as a consequence

that T waves are generated by these nonlinear mechanisms,

even if they are not considered present as an initial condition.

It is therefore pertinent to investigate the asymptotic state

attained by the spectrum of T waves, due to the nonlinear pro-

cesses. This asymptotic state characterizes what can be called

a “turbulent equilibrium” and has already been investigated

by us considering an equilibrium plasma in which the plasma

particles are described by Maxwellian distributions.35,36 In the

present investigation, we consider the case in which the veloc-

ity distributions of plasma particles contain a population

described by Kappa distributions, as given by Eq. (2).

At the asymptotic state, it may be considered that the

decay terms are not very effective in changing the wave level,

since they do not involve particles and represent just an

exchange of momentum and energy among different waves.

The scattering term can therefore be considered to be the

dominant term for late evolution of the system. This conjec-

ture has already been used in the case of Maxwellian velocity

distributions, and has been well supported by numerical analy-

sis of the time evolution considering the complete weak turbu-

lence equation for the T waves.35,36 Consequently, using this

approximation and adopting normalized variables, the equa-

tion for late stages of the time evolution of T waves can be

written as follows:30
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@

@s
ErT

q ’
X
r0

ð
dq0
ð

du
ðq� q0Þ2

q2 q02
d rzT

q � r0zL
q0 � ðq� q0Þ � u

h i

� gðrzT
qÞ rzT

q Er0L
q0 � r0zL

q0
ErT

q

2

 !
Ue þ Uið Þ�Er0L

q0
ErT

q

2
ðq� q0Þ � @

@u
ðrzT

q � r0zL
q0 ÞUe �

me

mi
ðrzT

qÞUi

� �2
4

3
5: (27)

The asymptotic state is obtained by taking the time derivative equal to zero. Doing this, and using the distribution func-

tions given by Eq. (2), we obtain

X
r0

ð
dq0
ðq� q0Þ2

q2 q02

(
gðrzT

qÞ r0zL
q0
ErT

q

2
� rzT

q Er0L
q0

 !
1� deð ÞIe

M þ de Ie
1 þ 1� dið ÞIi

M þ diI
i
1

	 


þme

mi
Er0L

q0
ErT

q

2
ðrzT

q � r0zL
q0 ÞðrzT

qÞ
2

u2
i

1� dið ÞIi
M þ di

2

u2
i;j

ðji þ aiÞ
ji

Ii
2

" #

�Er0L
q0
ErT

q

2
rzT

q � r0zL
q0

 �2 2

u2
e

1� deð ÞIe
M þ de

2

u2
e;j

ðje þ aeÞ
je

Ie
2

" #)
¼ 0: (28)

Making use of the analytical expressions for the quantities Ib
M; Ib

1 , and Ib
2 , one arrives at the following:

ErT
q ¼ 2ðrzT

qÞ
2
X
r0

ð
dq0
ðq� q0Þ2

q02jq� q0j gEr0L
q0

X
b¼e;i

1� db

ub
e�fb þ db

j1=2

b ub;j

Cðjb þ ab � 1Þ
Cðjb þ ab � 3=2Þ

1

1þ fb
� �jbþab�1

 !

�
(X

r0

ð
dq0
ðq� q0Þ2

q02jq� q0j

"
g�ðrzT

qÞðr0zL
q0 Þ
X
b¼e;i

1� db

ub
e�fbþ db

j1=2

b ub;j

Cðjb þ ab � 1Þ
Cðjb þ ab � 3=2Þ

1

1þ fb;j
� �jbþab�1

 !

þl Er0L
q0 ðrzT

q � r0zL
q0 ÞðrzT

qÞ
2 1� dið Þ

u3
i

e�fi þ 2di

j3=2
i u3

i;j

Cðji þ aiÞ
Cðji þ ai � 3=2Þ

1

1þ fið Þjiþai

 !

�Er0L
q0 ðrzT

q � r0zL
q0 Þ

2 2 1� deð Þ
u3

e

e�fe þ 2de

j3=2
e u3

e;j

Cðje þ aeÞ
Cðje þ ae � 3=2Þ

1

1þ fe;j
� �jeþae

 !#)�1

;

fb ¼
ðrzT

q � r0zL
q0 Þ

2

u2
bjq� q0j2

; fb;j ¼
ðrzT

q � r0zL
q0 Þ

2

jbu2
b;jjq� q0j2

; ðb ¼ e; iÞ: (29)

This is a fairly complex expression. However, one notices that the contributions due to the Maxwellian population feature

an exponential factor, which is very peaked with maximum occurring for r0 ¼ r and q0 ’ qm, the value of q for which

zL
q0 ¼ zT

q . The contributions due to the Kappa distribution are also proportional to a factor which is unity for r0 ¼ r and

q0 ’ qm, and decrease rapidly away from this point. As a consequence, the terms corresponding to the induced scattering can

be neglected, since they are proportional to ðrzT
q � r0zL

q0 Þ, and the asymptotic spectrum of T waves can be approximated by the

following:

ErT
q ’ 2ðrzT

qÞ
2
X
r0

ð
dq0
ðq� q0Þ2

q02jq� q0j gEr0L
qm

X
b¼e;i

1� db

ub
e�fb þ db

j1=2

b ub;j

Cðjb þ ab � 1Þ
Cðjb þ ab � 3=2Þ

1

1þ fb;j
� �jbþab�1

 !

�
"X

r0

ð
dq0
ðq� q0Þ2

q02jq� q0j g�ðrzT
qÞ

2
X
b¼e;i

1� db

ub
e�fb þ db

j1=2

b ub;j

Cðjb þ ab � 1Þ
Cðjb þ ab � 3=2Þ

1

1þ fb;j
� �jbþab�1

 !#�1

: (30)

As a result of these approximations, and assuming that

in the absence of particle beams, the spectrum of L waves

remains nearly the same as in the initial state, and is there-

fore symmetrical, E�L
qm
¼ EþL

qm
, it is seen that the asymptotic

spectrum of T waves can be simplified by

ErT
q ’ 2ErL

qm
; qm ¼

ffiffiffi
2

3

r
c

ve
q: (31)

To sum up the second part of the present analysis, by mak-

ing use of the equations of electromagnetic weak turbu-

lence, we have derived the asymptotic form of the
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transverse wave intensity, which is given in terms of the

Langmuir wave intensity. The Langmuir wave fluctuation

intensity, however, was already discussed in Sec. III so that

we may readily obtain the explicit form of the transverse

wave intensity.

V. NUMERICAL RESULTS

In order to illustrate the effects of the presence of a

Kappa population of electrons on the spectrum of waves,

which satisfy the conditions of equilibrium with the particle

distribution, we consider that the electron population is

described by distribution function (2), with a¼ 1, and u2
e;j

¼ u2
eðje � 3=2Þ=je. The ion distribution is assumed to be

described by an isotropic Maxwellian distribution, i.e., we

assume di¼ 0. Finally, we use Te/Ti¼ 2, a value for the elec-

tron and ion temperature ratio which is within the range of

values observed in the solar wind.37

In Fig. 1, we show the initial spectrum of electrostatic

waves divided by g, as a function of normalized wavenum-

ber q¼ kve/xpe, for several values of the index je. We

assume that the electron population described by a Kappa

distribution constitute 10% of the electron population, i.e.,

de¼ 0.1. Figures 1(a) and 1(b) show the initial spectra of L
and S waves, obtained using Eqs. (21) and (25), respec-

tively. The spectra obtained in the case of purely

Maxwellian distribution, with nje/ne¼ 0.0, are also shown

in Figs. 1(a) and 1(b), for reference. In Figs. 1(a) and 1(b)

are shown the curves corresponding to several values of je

(je¼ 40, 20, 10, 5, and 2.5).

Figure 1(a) shows that the value of EL
qð0Þ in the case of

the presence of Kappa population is higher than the value

obtained in the case of a purely Maxwellian distribution,

with a difference that is already noticeable in the scale of the

figure even for the upper limit shown, q¼ 0.6, and increases

for smaller values of q, featuring a peak that diverges for q
! 0. For larger values of je, the shape of the L spectrum is

similar to the shape exhibited in the case of small values of

je, but the magnitude of the spectrum at a given value of q is

smaller for increasing values of je. It is noticed, however,

that the peak at q! 0 is present even for large values of je.

The presence of the peak in the L spectrum, for q! 0,

can be understood by the analysis of Eq. (21). In the

presence of a population of kappa electrons, even for a

small value of nje/ne, it is seen that for a sufficiently small

value of q the contribution due to the Maxwellian

population vanishes, due to the factor exp ð�ðzL
q=qÞ2=u2

eÞ.
For the region of q values where this occurs, the contribu-

tion of the Kappa population is dominant, and the

equilibrium spectrum can be given by the approximated

expression

ErL
q ’

g

2ðzL
qÞ

2

u2
e;j

u2
e

1þ
ðzL

q=qÞ2

jeu2
e;je

 !
: (32)

In the case of je ! 1, this expression reduces to

g=ð2ðzL
qÞ

2
, which is the expression obtained in the

Maxwellian case, as expected. However, for finite values of

je, no matter how large, Eq. (32) is seen to diverge at q! 0.

The explanation for this is as follows: For large values of je,

the Kappa distribution coincides with a Maxwellian distribu-

tion, in the region of velocity space with significant electron

population. However, the initial spectra of waves are

obtained from Eq. (17), which for equilibrium requires a bal-

ance between the term associated with spontaneous fluctua-

tions, which is proportional to the distribution function, and

the term associated with induced emission, which is propor-

tional to the velocity derivative of the distribution function

and to the value of the wave spectra at the resonant velocity.

For q ! 0, the resonant velocity becomes progressively

larger. Since for very large velocities the derivative of the

Kappa distribution is smaller than the derivative of the

Maxwellian distribution, the wave spectra for small q have

to be higher in the case of Kappa distribution than in the case

of Maxwellian distribution, in order to satisfy the equilib-

rium condition.

Figure 1(b) shows the values of ES
qð0Þ=g vs. q¼ kve/xpe.

In fact, the figure shows the values of ES
qð0Þ multiplied by

lS
q, but we continue to denote the quantity as ES

qð0Þ, for sim-

plicity. The figure displays the results obtained for several

values of je, but the different curves cannot be distinguished

in the scale of the figure. It is seen that the kappa index of

the Kappa distribution is not relevant for the initial spectrum

of S waves, while it was seen to be relevant for the initial

spectrum of L waves.

FIG. 1. Initial spectrum of electrostatic waves divided by g, as a function of normalized wavenumber q¼ kve/xpe, for several values of the index je. The case

of Maxwellian distribution, nje/ne¼ 0.0, is also shown for reference. (a) L waves and (b) S waves. For S waves, all curves overlap. Electron distribution given

by Eq. (2), with ae¼ 1 and u2
b;j ¼ u2

bðje � 3=2Þ=je, for nje/ne¼ 0.1. The ion distribution is an isotropic Maxwellian, and Te/Ti¼ 2. The spectra of L and S
waves are given by Eqs. (21) and (25).

112902-7 Tigik et al. Phys. Plasmas 24, 112902 (2017)



We have also obtained the initial spectrum of electro-

static waves by assuming a fixed value of the index je and

considering different values of the relative number density of

the Kappa population, nje/ne. The results obtained, both for

large and for small values of je, show that the spectra

obtained for L and S waves are almost independent of the

value of the number density of the Kappa population, as long

as it is not zero. These results are not shown here for the

sake of brevity, since the curves obtained for different values

of nje/ne are basically the same as the curves shown in

Fig. 1, for each value of je. The important point to be

emphasized is that the presence of a small population of

electrons described by a Kappa population is sufficient to

significantly affect the equilibrium spectrum of L waves in

the region of small wave numbers, leading to the formation

of the peaked feature at q ’ 0.

Figure 2 displays the asymptotic spectrum of T waves,

obtained using Eq. (31). Figure 2(a) shows ET
q=g as a func-

tion of normalized wavenumber, for nje
=ne ¼ 0:1, and sev-

eral values of je, and also present a curve obtained

considering a purely Maxwellian electron distribution,

obtained with nje/ne¼ 0. The conditions and parameters are

the same as those used to obtain the spectrum of L waves in

Fig. 1. Let us first comment on the result obtained consider-

ing nje
=ne ¼ 0, given by the red line in Fig. 2(a). This result

is explained by the analysis of Eq. (31), which shows that

the spectrum of T waves is proportional to the spectrum of

L waves, given by Eq. (21), evaluated at q¼ qm. If the

Kappa population is vanishing, nje=ne ¼ 0, the Kappa con-

tributions vanishes in Eq. (21), and the contributions due to

the Maxwellian population in the numerator and in the

denominator cancel out, and the spectrum turns out to be

given by

ErT
q ’ 2

g

2ðzL
qm
Þ2
¼ g

2þ 3q2
m

:

At q¼ 0, the amplitude of the spectrum of T waves in

the case of Maxwellian electron distribution is therefore

twice the magnitude of the spectrum of L waves, but decays

faster for larger values of q, since qm� q. With the presence

of a population described by a Kappa distribution, Fig. 2(a)

shows that the spectrum of T waves is modified in the region

of small wave numbers, in comparison with the spectrum

obtained in the Maxwellian case. In the scale of the figure,

the modification is noticeable for normalized wavenumber

q< 0.1, with a difference that increases with the decrease in

the je index, i.e., increases with the increase in the non-

thermal character of the electron distribution. The spectrum

features divergent behavior for q! 0, as already noticed for

the L waves in Fig. 1.

Figure 2(b) shows an expanded view of the region of

small values of q, for the conditions that have been discussed

in Fig. 2(a). The expanded view clearly shows the increase

in the magnitude of the T wave spectrum at small values of

q. For instance, it is seen that for q ’ 0.02, the intensity of

the spectrum of T waves in the case of je¼ 2.5 is about one

order of magnitude above the intensity displayed in the case

of je¼ 40.

We have also investigated the dependence of the T spec-

trum on the relative number density nje/ne, for a fixed value

of je. The results obtained have shown that the T wave spec-

trum obtained in the presence of a Kappa distribution is

almost independent of the number density of the Kappa pop-

ulation. The only noticeable feature in the spectra is the pres-

ence of the peak around q¼ 0, which occurs for any finite

value of nje/ne, and vanishes in the purely Maxwellian case

(nje/ne¼ 0).

In addition to these results concerning the initial spectra

of electrostatic waves and the asymptotic spectrum of trans-

verse waves, we also present some results which show the

time evolution of the wave-particle system, comparing a sit-

uation in which the background electron velocity distribution

is a Maxwellian distribution with a situation in which an

“halo” population described by as isotropic Kappa distribu-

tion is also present.

For the study of the time evolution of the system, we uti-

lize the set of weak turbulence equations, with some addi-

tional approximations. Regarding the plasma particles, we

assume that the ion velocity distribution remains constant

along the evolution and that in the case of the equation for

the electron distribution, the quasilinear diffusion due to S
waves can be neglected in comparison with the diffusion

caused by the L waves. Regarding the waves, we describe

the evolution of the L waves by including the spontaneous

and induced emission processes, the three-wave decay pro-

cesses involving L and S waves, and the scattering process

involving two L waves and the particles. Nonlinear interac-

tion involving T waves are neglected in the equation for the

time evolution of the L waves, for simplicity, which is com-

mon practice in the literature. The evolution of S waves is

described in the present analysis by taking into account the

emission terms and the three-wave decay term involving L

FIG. 2. Asymptotic spectrum of T
waves, ET

q , characterizing a state of

“turbulent equilibrium,” vs normalized

wavenumber q. (a) ET
q , for nje/ne¼ 0.1,

and several values of je. The case of

Maxwellian distribution, nje/ne¼ 0.0,

is also shown for reference; (b)

expanded view of the region of small

values of q in Fig. 3(a). Other parame-

ters and conditions are as in Fig. 1.
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and S waves, and neglecting the effect of the decay term

involving S, L, and T waves, and also the scattering term. In

the equation for the T waves, however, which contains only

nonlinear effects, we keep all the terms that have already

been described in Sec. I, namely, the decay involving a T
wave and two L waves, the decay involving a T wave, a L
wave, and a S wave, the decay involving two T waves and a

L wave, and the scattering term.

We utilize a two-dimensional approximation (2D), con-

sidering a grid of 51� 101 points in (u?, uz) space, with

0� u?� 12 and –12� uz� 12, a grid of 51� 51 points in

(q?, qz) space for L and S waves, and a grid of 71� 71 points

in (q?, qz) space for the T waves, which develop fine features

that require a better resolution than the L and S waves, con-

sidering the evolution in the interval 0� q?� 0.6 and

0� qz� 0.6 for all waves. The normalized time step has

been adopted as Ds¼ 0.1, and the equations were solved

using a fourth-order Runge-Kutta procedure for the wave

equations and the splitting method for the equation describ-

ing the time evolution of the electrons.

As starting conditions, we assume that the background

electron population is described by distribution function (2),

with the 2D versions of Eqs. (3) and (4), with the Kappa dis-

tribution defined using a¼ 1 and u2
e;j ¼ u2

eðje � 1Þ=je,

which is the proper value of u2
e;j for 2D distributions. We

assume that the ion distribution is described by an isotropic

Maxwellian distribution, with Te/Ti¼ 2. We also assume that

the plasma parameter is ðnk3
DÞ
�1 ¼ 5:0� 10�3, and

v2
e=c2 ¼ 4:0� 10�3, values that have already been used in

the analyses of the plasma emission without taking into

account the presence of a Kappa distribution.36,38

A further approximation is made for the numerical anal-

ysis, regarding the initial wave spectra. As already discussed

in the initial paragraphs of this section on numerical results

[see Eq. (32) and the accompanying comments], in the pres-

ence of a Kappa distribution, the initial spectrum of L
diverges for q ! 0. This divergence, although consistent

with the non-relativistic approach, is not appropriate for the

numerical analysis. In our numerical implementation of the

formalism, the initial spectrum of L waves is given by Eq.

(21) down to the value of q such the resonant velocity

becomes equal to c, i.e., the value of q for which

zL
q=q ¼ c=ve. It is assumed that for values of q smaller than

this value, the initial L wave spectrum is given by the same

value obtained at the limit value of the resonant q. With such

approximation, when a Kappa distribution is assumed to be

present, the initial spectrum of L has significant growth in

the region of small values of q, in comparison with the spec-

trum in the case of a Maxwellian plasma background, but the

divergence is avoided. The initial spectrum of L waves is

therefore given by Eq. (21), with an approximation in the

region of small values of q, and the spectrum of S is given by

Eq. (25). The T waves are assumed not present at initial

time.

Figure 3 shows one dimensional (1D) representations of

the spectrum of T waves, i.e., obtained after integration of ET
q

along the perpendicular component of normalized wavenum-

ber, q?. The spectra are shown for different values of s and

show the evolution of the T wave spectrum. Figure 3(a) dis-

plays the wave spectra obtained in the case of purely

Maxwellian electron distribution, i.e., nje/ne¼ 0.0. Figure

3(b) depicts the wave spectra obtained when the electron dis-

tribution contains a Kappa population, with nje/

ne¼ 5.0� 10�2, and je¼ 5.0. In panel (a), it is seen that the

amplitude of the waves increases for all values of qz and

gradually evolves toward the asymptotic solution described

by Eq. (31) in the case of nje¼ 0.0, and which appears as the

red lines in Fig. 2. The situation depicted in Fig. 3(a) corre-

sponds to the initial stages of the evolution, which is dis-

played up to a longer time in Fig. 2 of Ref. 36. In the

presence of a small Kappa population, the spectrum of T
waves evolves as shown in Fig. 3(b). The spectrum grows

for all values of qz, much as seen in Fig. 3(a), but there is a

difference. A peak is seen to appear near qz¼ 0 and grows in

time. What is seen in Fig. 3(b) are some steps in the time

evolution of the spectrum that is asymptotically given by Eq.

(31), and represented in Fig. 2. It must be noticed that the

peak near qz¼ 0 in Fig. 3(b) has a finite height. It does not

diverge as the peaks appearing in 2, because for the numeri-

cal analysis of the equation which describes the time evolu-

tion, we have assumed that the L wave spectrum saturates

for sufficiently small value of q, instead of growing infinitely

for q! 0.

The growth of the peak near q¼ 0 in the T wave spec-

trum can be explained as follows. The dominant process for

the formation of background spectrum of T is the scattering

involving L waves. The scattering effect is maximum for

wavelengths which satisfy zT
q ¼ zL

q0 , which means q0 ¼ qm,

where qm is defined by Eq. (31). As seen in Fig. 1(a), in the

case of a small population described by a Kappa distribution,

the spectrum of L waves is above the spectra obtained in the

purely Maxwellian case for q0 � 0:2. The scattering process

is therefore most effective to generate T waves with

q� 0.02, for the value of ve/c which we have assumed. The

FIG. 3. (a) 1D spectrum of T waves vs.

qk, for several values of s, for nje/

ne¼ 0.0; (b) 1D spectrum of T waves

vs. qk, for several values of s, for nje/

ne¼ 5.0� 10�2 and je¼ 5.0. Other

parameters and conditions are as in

Fig. 1.
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scattering of L waves is mainly responsible for the formation

of the spectrum of T waves, and the peak for large wave-

lengths, which is seen in the L wave spectrum that occurs in

the presence of Kappa distributed electrons, is the cause for

the growth of the peak for large wavelengths in the T wave

spectrum.

In what follows, we investigate the time evolution of the

beam-plasma instability, comparing the situation in which

the background electron distribution is purely Maxwellian

with a case in which there is also a “halo” population

described by a Kappa distribution. We assume a beam popu-

lation described by a displaced Maxwellian distribution, with

a normalized beam velocity ub¼ 6.0, number density given

by nb/ne¼ 1.0� 10�3, and temperature Tb¼ Te. Figure 4

shows 2D plots of the electron velocity distribution. Due to

the presence of the beam, the background electron distribu-

tion is slightly displaced in velocity space so that the average

velocity of the complete electron velocity distribution is

zero.

Figure 4 shows 2D plots of the electron velocity distri-

bution, the spectrum of L waves, and the spectrum of T
waves, at s¼ 500. The spectrum of S waves remains very

similar to the initial shape and is not shown. The three panels

at the left column were obtained considering that the back-

ground electron distribution is a Maxwellian distribution,

i.e., considering nje/ne¼ 0.0, and the panels at the right col-

umn were obtained assuming nje/ne¼ 0.05, with je¼ 5.0.

For the parameters chosen, at such a point in the time evolu-

tion, the quasilinear process has already transferred a signifi-

cant part of the energy available in the beam to the waves,

creating a peak in the spectrum of L waves. The nonlinear

processes are already operative, creating a ring-like structure

in the spectrum of L waves, creating a spectrum of T waves

over the whole grid of q values, and creating some peaked

features for the T waves, in the region of small values of q.

The situations depicted in Figs. 4(a), 4(c), and 4(e) corre-

spond to those appearing in Figs. 1(b), 2(b), and 4(b) of Ref.

39, which is dedicated to the study of emission by nonlinear

processes in a plasma with Maxwellian background distribu-

tions. It can be noticed in Figs. 4(a) and 4(b) that the region

between the core of the velocity distribution and the peak of

the beam distribution is already quite flattened, correspond-

ing to the formation of the peak in the L spectrum which is

centered at (q?, qz) ’ (0, 0.2) in Figs. 4(c) and 4(d).

The results appearing in Fig. 4 can be considered as rep-

resentative of the time evolution of the wave-particle system.

FIG. 4. (a) Electron distribution func-

tion at s¼ 500, vs. uk and u?, for nje/

ne¼ 0.0; (b) electron distribution func-

tion at s¼ 500, vs. uk and u?, for nje/

ne¼ 5.0� 10�2; (c) spectrum of L
waves at s ¼ 500, vs. qk and q?, for

nje/ne¼ 0.0; (d) spectrum of L waves

at s ¼ 500, vs. qk and q?, for nje/

ne¼ 5.0� 10�2; (e) spectrum of T
waves at s ¼ 500, vs. qk and q?, for

nje/ne¼ 0.0; and (f) spectrum of T
waves at s¼ 500, vs. qk and q?, for

nje/ne¼ 5.0� 10�2. Input parameters

are as follows: Te/Ti¼ 2.0, Tb/Te¼ 1.0,

nb/ne¼ 1.0� 10�3, vb/ve¼ 6.0, g¼ 5.0

� 10�3, and je¼ 5.0.
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For further analysis of the time evolution, we show in Fig. 5

1D representations of the electron distribution and of the

wave spectra, obtained after the integration of the 2D quanti-

ties, along u? in the case of the velocity distribution and

along q? in the case of the wave spectra. As in Fig. 4, the

left column displays the results obtained assuming nje/

ne¼ 0.0, and the right column shows the results obtained

assuming nje/ne¼ 0.05, with je¼ 5.0. The electron distribu-

tion function in each case is shown in Figs. 5(a) and 5(b),

respectively, for several values of s, between s¼ 100 and

s¼ 2000. In both panels, the gradual flattening of the peak of

the beam distribution and the formation of a plateau in the

region of velocities between the beam and the core distribu-

tion can be noticed. In Fig. 5(a), the appearance of a small

population of backscattered electrons is also noticed, which

start to become distinguishable at s ’ 1000. In panel 5(b),

these backscattered electrons are not noticeable in the scale

of the figure, because the Kappa distribution already had a

sizeable population at that region of velocity space.

Figures 5(c) and 5(d) show a 1D projection of the L
wave spectrum. In panel (c), one notices that at s¼ 100, the

only distinctive feature in the spectrum is the primary peak

generated at qz ’ 0.2, at the spectral region where the waves

are in resonance with electrons in the region of positive

velocity in the velocity distribution. At s¼ 200, there is

already a hint of a backward peak, at qz ’ �0.2. At s¼ 500,

and beyond that, the backward peak appears well developed,

and there is a profile in the wave spectrum, continuous

between the forward peak and the backward peak. This is

only a 1D projection of the ring formed by scattering and

FIG. 5. (a) 1D electron distribution

function vs. uk, for several values of s,

for nje/ne¼ 0.0; (b) 1D electron distri-

bution function vs. uk. for several val-

ues of s ¼ 500, for nje/ne¼ 5.0

� 10�2; (c) 1D spectrum of L waves

vs. qk, for several values of s, for nje/

ne¼ 0.0; (d) 1D spectrum of L waves

vs. qk, for several values of s, for nje/

ne¼ 5.0� 10�2; (e) 1D spectrum of T
waves vs. qk, for several values of s,

for nje/ne¼ 0.0; (f) 1D spectrum of T
waves vs. qk, for several values of s,

for nje/ne¼ 5.0� 10�2. (g) Spectrum

of T waves vs. q, for several values of

s, for nje/ne¼ 0.0. (h) Spectrum of T
waves vs. q, for several values of s, for

nje/ne¼ 5.0� 10�2. The parameters

are the same as those used in Fig. 4.
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decay, which is seen in the 2D representation appearing in

Fig. 4(c). On the other hand, when the electron distribution

function features the presence of a Kappa distribution, the L
wave spectrum at s¼ 100 features the peak generated by

quasilinear effect at qz ’ 0.2, and also the peak around q¼ 0,

characteristic of the spectrum at equilibrium in the presence

of a Kappa distribution. Due to the approximation that we

have adopted, of a limiting resonant velocity, the spectrum at

q¼ 0 is finite instead of divergent. The 1D projection at Fig.

5(d) shows at s¼ 200, there is already a hint of the backward

peak. At s¼ 500, and beyond, the 1D spectrum of Fig. 5(d)

becomes similar to that appearing in Fig. 5(c), but this is

only the effect of the 1D projection. The actual spectrum in

the case of Fig. 5(d) is constituted by the primary and

the back-scattered peaks, by the peak around q¼ 0, and by

the ring structure formed by nonlinear effects, as shown

in Fig. 4(d).

The 1D projection of the spectrum of T waves appears

depicted in Figs. 5(e) and 5(f), for several values of s. In

both panels, the sequence of lines show initially the forma-

tion of a background spectrum of T waves, added of the

growth of a wave peak around qz¼ 0. Between s¼ 500 and

s¼ 1000, other peaked structures appear in the 1D represen-

tations of Figs. 5(e) and 5(f), which are the projections of the

narrow ring structure shown in Figs. 4(e) and 4(f). The 1D

representations in Fig. 5, as well as the 2D representations in

Fig. 4, show that the T wave spectrum obtained in the case of

Maxwellian electron distribution is very similar to the T
wave spectrum obtained in the case of the presence of a

“halo” described by a Kappa distribution. The only notice-

able difference is that the peaks appearing in the T wave

spectrum are slightly higher in the case of nje 6¼ 0, panel (e),

than in the case of nje¼ 0, panel (f), for the same value of s.

Another representation of the T wave spectrum appears

in Figs. 5(g) and 5(h), which display the spectrum of T waves

after integration along the pitch angle. That is, Figs. 5(g) and

5(h) show the quantity

Eq ¼
ð2p

0

dh qET
q

as a function of the normalized wave frequency. This repre-

sentation clearly shows the early formation of the T wave

background, then the onset of the primary peak of fundamen-

tal emission, with the frequency equal to the electron plasma

frequency, and later on the onset of harmonic emission, with

the peak of emission at 2xpe clearly emerging between

s¼ 500 and s¼ 1000. The comparison between Figs. 5(h)

and 5(g) show that the curves obtained in both cases are

qualitatively the same, with the sole difference that the peaks

are slightly higher in the case of nje 6¼ 0, shown in Fig. 5(h).

VI. FINAL REMARKS

In the present paper, we have discussed the spectra of

electrostatic and electromagnetic waves, which may be pre-

sent at quiescent situation in plasmas whose particles have

velocity distribution functions which are a combination of a

thermal background and an energetic “halo” distribution.

The motivation for the study has been the abundance of

measurements made in the solar wind environment, by satel-

lites at different orbits, which show the occurrence of parti-

cle distribution functions with these characteristics. For the

analysis presented in the paper, the electron velocity distri-

bution has been represented as a summation of a Maxwellian

distribution function and an isotropic Kappa distribution,

with the fraction of population having the Kappa populations

assumed as a free parameter.

The investigation has been conducted using the theoreti-

cal framework of weak turbulence theory. We have briefly

discussed basic features of the equations of weak turbulence

theory, and we have initially used these equations to obtain

expressions for the spectra of electrostatic waves, obtained

as the outcome of the balance between spontaneous fluctua-

tions and induced emission. These equilibrium spectra, for

high frequency Langmuir waves (L) and for low frequency

ion-acoustic waves (S), have been routinely discussed in the

literature for the case of Maxwellian plasmas, but this paper

presents as a novel feature a description of the effects of the

presence of a population of particles described by a Kappa

velocity distribution. Theoretical expressions for the spectra

of L and S waves have been obtained considering that both

ions and electrons can be described by a combination of

Maxwellian and Kappa distribution. Some numerical results

have also been presented, considering the case of

Maxwellian distribution for the ions and the combined distri-

bution for electrons, and considering different values of the

je index. These results show that the effect of the presence

of the Kappa distribution is noticeable in the spectrum of L
waves in the region of large wavelengths, with difference

relative to the spectrum obtained in the case of purely

Maxwellian distribution which increases for decreasing val-

ues of the index je in the energetic population. The distinc-

tive feature, which exists even for very tenuous Kappa

population, is the presence of a peak of wave intensity for

very large wavelengths (wavenumber k! 0).

We have also discussed the characteristics of the spec-

trum of electromagnetic waves (T), which is presented in the

plasma as the outcome of nonlinear processes involving L
and S waves, and particles. These spectra can be character-

ized as a state of “turbulent equilibrium.” The turbulent equi-

librium spectra have already been discussed for the case of

Maxwellian velocity distributions, and the present paper

extends the discussion for the case in which an energetic

“halo” described as a Kappa distribution is also present in

the plasma. The results obtained show that the spectrum of T
waves has the general features similar to those obtained in

the case of Maxwellian distributions, with the effect of the

presence of the Kappa population appearing as a peak of T
waves in the large wavelength region, much narrower than

the peak obtained in the spectrum of the L waves.

In addition to the results concerning the equilibrium

spectra, we have also presented some results, which show

the time evolution of the spectra of L and T waves, and the

time evolution of the electron distribution function, as a

result of the presence of a tenuous electron beam travelling

in the plasma. We have followed the time evolution of the

wave-particle system up to the formation of the plateau in

112902-12 Tigik et al. Phys. Plasmas 24, 112902 (2017)



the electron distribution function, which indicates the satura-

tion of the induced processes described by quasilinear the-

ory. The results shown in the paper compared with the

results obtained in the case in which the background electron

population is described by a Maxwellian distribution, with

the results obtained in the case of a background distribution

described as a core population with Maxwellian distribution

and a tenuous population with isotropic Kappa distribution.

It is shown that the time evolution of the spectrum of L
waves obtained in the presence of the “halo” distribution is

qualitatively very similar to the spectrum obtained in the

case of thermal background distribution, except for the

occurrence of the enhanced wave intensity for k! 0, charac-

teristic of the presence of a Kappa population of particles.

The spectra obtained for the T waves along the time evolu-

tion, in the two situations which have been considered, are

also qualitatively very similar, with the difference that the

peak corresponding to the harmonic emission is slightly

more pronounced in the presence of a tenuous Kappa distri-

bution, in comparison with harmonic emission obtained in

the case of Maxwellian background population.
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Appendix D

Two-dimensional time evolution of
beam-plasma instability in the
presence of binary collisions

The paper1 included in this appendix is the complete text of Ref. [45], which summarizes
the outcomes of the Masters dissertation [81] that led to the current doctoral research. This text
was included here with the intention to give the reader a complete view of the work developed
during my graduate studies.

1Credit: S. F. Tigik et al, A&A Volume 586, February 2016, https://doi.org/10.1051/0004-6361/
201527271, reproduced with permission, © ESO.
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ABSTRACT

Energetic electrons produced during solar flares are known to be responsible for generating solar type III radio bursts. The radio
emission is a byproduct of Langmuir wave generation via beam-plasma interaction and nonlinear wave-wave and wave-particle
interaction processes. In addition to type III radio bursts, electrons traveling downwards toward the chromosphere lead to the hard
X-ray emission via electron-ion collisions. Recently, the role of Langmuir waves on the X-ray-producing electrons has been identified
as important, because Langmuir waves may alter the electron distribution, thereby affecting the X-ray profile. Both Coulomb collisions
and wave-particle interactions lead electrons to scattering and energy exchange that necessitates considering the two-dimensional
(2D) problem in velocity space. The present paper investigates the influence of binary collisions on the beam-plasma instability
development in 2D in order to elucidate the nonlinear dynamics of Langmuir waves and binary collisions. The significance of the
present findings in the context of solar physics is discussed.

Key words. Sun: radio radiation – Sun: particle emission – methods: numerical

1. Introduction

The beam-plasma interaction between the energetic electrons
produced during the solar flare and the background coronal
plasma is a source of rich nonlinear phenomena. A number of
solar radio bursts are associated with non-thermal electron pop-
ulations and associated Langmuir waves. One of the most im-
portant and well-studied phenomena is the generation of solar
type-III solar radio bursts (Wild & McCready 1950; Wild 1950).
Fast electrons escaping from active regions in the Sun to the
corona and interplanetary space generate Langmuir turbulence,
which partially converts to radiation at the local plasma fre-
quency and/or its harmonic(s). A nonlinear conversion process
involves sophisticated wave decay and wave scattering. This is
the well-known plasma emission, and it is the basic radio emis-
sion mechanism for type III radio bursts and for the reverse slope
bursts (see, e.g., Tang & Moore 1982; Dennis et al. 1984).

The first theory of plasma emission was put forth by
Ginzburg & Zhelezniakov (1958) and many modifications and
improvements have been made over the past six decades
(Tsytovich 1967; Kaplan & Tsytovich 1968; Zheleznyakov
& Zaitsev 1970; Melrose 1982; Goldman & Dubois 1982;
Goldman 1983; Cairns 1987; Robinson & Cairns 1998; Mel’Nik
et al. 1999; Kontar 2001; Ledenev et al. 2004; Li et al. 2005,
2006a,b, 2008a,b; Li & Cairns 2013; Ratcliffe & Kontar 2014).
Although the essential theoretical framework based upon EM
weak turbulence theory, which describes the entire process start-
ing from the beam-generated Langmuir turbulence to the radi-
ation generation, was available, complete numerical solution of

the entire set of EM weak turbulence equations have not been
done until quite recently, when Ziebell et al. (2014a,b,c, 2015)
numerically solved the complete equations of EM weak turbu-
lence theory for the first time. It should be mentioned that a few
authors carried out direct EM particle-in-cell (PIC) simulations
to characterize the nonlinear behavior of the plasma emission
process (Kasaba et al. 2001; Karlický & Vandas 2007; Rhee et al.
2009a,b; Umeda 2010; Ganse et al. 2012a,b, 2014). The full nu-
merical solution of the analytical EM weak turbulence equations
by Ziebell et al. (2014a, 2015) complements these PIC simula-
tion efforts.

The type III radio bursts are not the only process of impor-
tance associated with solar flares. For electrons traveling down
to the chromosphere, they generate X-rays via bremsstrahlung
when they collide with plasma. The approximate treatment of the
electron dynamics by only considering the Coulomb collisions
is known as the thick target model (e.g., Holman et al. 2011, as
a recent review). Under such a simplifying assumption, Brown
(1971) and Syrovatskii & Shmeleva (1972) analyzed the dynam-
ics of electron distribution and the related bremsstrahlung X-ray
spectrum from accelerated/injected electrons. In the literature,
however, there are discussions of the importance of Langmuir
wave generation on the underlying non-thermal electron energy
distribution. Emslie & Smith (1984) first considered the effects
of wave generation on the electron beam propagation toward the
chromosphere. Hamilton & Petrosian (1987) and McClements
(1987, 1989) reconsidered the same problem but found that
the influence of wave-particle interactions was insignificant for
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stationary electron injection. However, recent works by Hannah
et al. (2009, 2013) and Karlický & Kontar (2012) demonstrate
that the collective effects are sufficiently significant after all, es-
pecially for transient sources of nonthermal electrons, such that
without these effects, the solar hard X-ray spectra measured by
RHESSI spacecraft may not be interpreted correctly. Zharkova
& Siversky (2011) also studied a similar problem. Moreover,
Kontar et al. (2012) have shown that the presence of plasma in-
homogeneity and/or nonlinear wave-wave interactions can lead
to an overestimated number and energy of energetic electrons
accelerated in the corona even in the case of stationary electron
injection.

As noted above, the problem of flare-generated nonthermal
electrons and X-ray emission from the same source that also gen-
erates type III radio bursts is a complicated one, which requires
simultaneous time-dependent treatment of various processes that
include Coulomb collisions, collective Langmuir wave genera-
tion, and nonlinear wave-wave interactions. In addition, the evo-
lution of electrons not only in energy but also in collisional
pitch-angle scattering is important for interpreting some X-ray
observations (e.g., MacKinnon 1991; Jeffrey et al. 2014).

The purpose of the present paper is not to revisit the plasma
emission, which has recently been discussed by Ziebell et al.
(2014a, 2015) and by Ratcliffe & Kontar (2014) in application
to flaring loops, or to address the issue of the influence of collec-
tive processes on the X-ray generation by bremsstrahlung per se,
which was addressed by Hannah et al. (2009) and Kontar et al.
(2012). Instead, we address a fundamental 2D plasma physics
problem that may be related to both the type-III-generating elec-
trons and the X-ray-generating non-thermal electrons. That is,
we consider the influence of both Coulomb collisions and the
collective effects in two-dimensional (2D) electron beam-plasma
interaction problem, taking only the evolution of the particle dis-
tribution and of the spectra of electrostatic waves into account,
without incorporating the effects associated to electromagnetic
oscillations.

Unlike previous works related to this type of analysis where
the effects of Coulomb collisions have normally been ignored
(Ziebell et al. 2008), the present paper includes electron-electron
and electron-ion collisions. On the other hand, unlike the previ-
ous works related to the solar X-ray problem where, in addition
to collisional effects, quasilinear effects are included consider-
ing one-dimensional (1D) wave excitation, we now consider the
nonlinear dynamics associated with the wave scattering and de-
cay in two dimensions, along with the collisional dynamics. The
2D evolution is particularly important since collisional scatter-
ing and collisional energy loss operate on the same time scales.
Moreover, radioemission and Langmuir wave evolution depend
on angular distribution of plasma waves. The objective with
such relatively limited analysis that only includes electrostatic
waves is to gather information about the effect of collisions on
the time evolution of the beam-plasma system, on the relative
roles of collisions and nonlinear mechanisms of three-wave de-
cay and wave-particle scattering, and on the possibly different
time scales of the different physical processes when evolving
self-consistently. The information to be obtained with such study
may be useful for future analysis of the time evolution of more
complex processes, in which other nonlinear mechanisms have
to be taken into account, such as the actual production of fun-
damental and harmonic emission that characterize type III emis-
sions and the complicated interaction between energetic elec-
trons, background plasma, and waves, which is associated to the
solar X-ray emission.

The structure of the paper is as follows. In Sect. 2 we
briefly describe the theoretical formulation and the setup for the
numerical analysis. In Sect. 3 we present and discuss the results
of the numerical analysis. Finally, in Sect. 4 we conclude the
paper and comment on the results obtained.

2. Theoretical formulation and numerical setup

The wave kinetic equations for L and S waves that describe
quasilinear process as well as nonlinear decay and scattering
processes are given in terms of the spectral wave energy density,
IσL

k =
〈
Eσ2

L (k)
〉

and IσS
k =

〈
Eσ2

S (k)
〉
, where Eσ

L (k) and Eσ
S (k)

represent the spectral electric field component associated with
L and S waves, respectively, and where σ = ±1 stands for the
sign of wave phase velocity. The wave kinetic equations for these
waves are given by Yoon (2006) and Ziebell et al. (2008):

∂IσL
k

∂t
=
πω2

p

k2

∫
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) (n0e2

π
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 , (2)

where ωp = (4πn0e2/me)1/2 is the electron plasma frequency,
and e, me, and n0 stand for the unit electric charge, electron mass,
and the ambient particle number density, respectively. The dis-
persion relations for L and S modes are well-known:

ωL
k = ωp

(
1 +

3
2

k2λ2
D

)
,

ωS
k = ωp

kλD

(1 + k2λ2
D)1/2

(
me

mi

)1/2 (
1 +

3Ti

Te

)1/2

,

where ve = (2Te/me)1/2 is the electron thermal speed, and
λD = ve/(

√
2ωp) is the electron Debye length, with Te being
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the electron temperature. In (1) and (2) we have also introduced
a quantity

µk = |k|3λ3
D

(
me

mi

)1/2 (
1 +

3Ti

Te

)1/2

·

The first terms on the righthand sides of (1) and (2) describe the
spontaneous emission and quasilinear effects. The second terms
contain the energy conservation condition, δ(σωL

k − σ
′ωL

k′ −

σ′′ωS
k−k′ ), for L mode and a similar three-wave resonance con-

dition for S mode, and describe the three-wave decay processes.
The third term in (1) contains the nonlinear wave-particle reso-
nance condition δ[σωL

k − σ
′ωL

k′ − (k − k′) · u], and it depicts the
scattering of L waves by the ions. We have neglected the scatter-
ing effects for (2), which rules the evolution of S waves, since
the scattering processes involving S waves are extremely slow
processes.

For the time evolution of the particle distribution, we con-
sider the effects of spontaneous fluctuation, the quasilinear dif-
fusion effect, and the effect of binary collisions. The particle ki-
netic equation is thus given by

∂Fa(u)
∂t

=
∂

∂vi

(
Ai(u) Fa(u) + Di j(u)

∂Fa(u)
∂v j

)
+

∑
b

θab(Fa, Fb),

Ai(u) =
e2

a

4πma

∫
dk

ki

k2

∑
σ=±1

σωL
k δ(σω

α
k − k · u),

Di j(u) =
πe2

a

m2
a

∫
dk

ki k j

k2

∑
σ=±1

δ(σωαk − k · u) Iσαk , (3)

θab(Fa, Fb) = −
2πn0an0be2

ae2
b ln Λ

ma

∂

∂vi

×

∫
du′ Ui j

(Fa(u)
mb

∂Fb(u′)
∂v′j

−
Fb(u′)

ma

∂Fa(u)
∂v j

)
,

Ui j =
w2 δi j − wiw j

w3 , w = u − u′.

The term with coefficient Ai describes the effects of spontaneous
fluctuations, and the term with coefficient Di j rules the quasi-
linear diffusion process. The symbol α represents either L or S ,
depending on whether the particle species a in the above particle
kinetic equations stands for a = e (electrons) or a = i (ions). The
quantity θab(Fa, Fb) represents the binary collisions of particles
of species a with particles of species b. The quantity ln Λ is the
Coulomb logarithm.

In the set of wave kinetic Eqs. (1) and (2), we do not (yet)
include a collisional damping term. The collisional effect is only
incorporated through the particle kinetic equation (3), which
contains the collision operator

∑
b θab(Fa, Fb). Upon lineariza-

tion of the governing particle kinetic equation and coupling to
the wave equation, then the collision frequency νcoll broadens
(Dupree 1966; Ishihara & Hirose 1985; Bian et al. 2014; Pécseli
2014) the wave-particle resonance conditions,ω−k·u, where νcoll
is the effective collision frequency that is obtained from the par-
ticle equation. In this way, the collisional damping rate for the
collective wave phenomena is calculated by the particle collision
term in an indirect way. However, a more complete treatment
should contain explicit collisional damping term for the wave ki-
netic equation. In a recently submitted work, Yoon et al. (2015)
address this issue by reformulating the standard weak turbulence
theory to include contributions from those electrostatic fluctua-
tion spectra (ω, k) for which ω and k do not satisfy the plasma

wave dispersion relations. They show that these so-called “non-
eigenmode” contributions, which are typically ignored in the lit-
erature, are not only responsible for the same collision integral∑

b θab(Fa, Fb) in the particle kinetic equation, as in Eq. (3), but
also they lead to the collisional damping term, as well as the
electrostatic analog of the bremsstrahlung. One could, however,
include the collisional damping term heuristically, as in the re-
cent paper by Ratcliffe & Kontar (2014).

We introduce the following dimensionless variables and
definitions:

z ≡
ω

ωpe
, τ ≡ ωpet, q ≡

kvte

ωpe
, u ≡

u

vte
,
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Te
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te
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pe
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1
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De

,

Fa(u) = v3
te fa(u), Eσαq =

(2π)2g

mev
2
te
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µαk
·

In terms of the normalized variables and quantities, the equation
for Langmuir (L) waves is expressed as
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q′ (q · q′)2

q2 q′2
δ[σzL

q−σ
′zL

q′ − (q − q′) · u] (4)

×

[
g
(
σzL

q E
σ′L
q′ − σ

′zL
q′ E

σL
k

)
[Fe(u) + Fi(u)]

+
me

mi
Eσ

′L
q′ E

σL
q (q − q′) ·

∂Fi(u)
∂u

]}
LsLL

.

The equation for ion-acoustic (S ) waves is likewise expressed in
terms of dimensionless quantities,

∂EσS
q

∂τ
=

{
µS

q
π

q2

∫
du δ(σzS

q − q · u)
[
g[Fe(u) + Fi(u)]

+ (σzL
q)

(
q ·

∂Fe(u)
∂u

+
me

mi
q ·

∂Fi(u)
∂u

)
EσS

q

]}
S ql

+

{
σzL

q

∑
σ′,σ′′

∫
dq′

µS
q µ

L
q′ µ

L
q−q′ [q′ · (q − q′)]2

q2 q′2 |q − q′|2

×

(
σzL

q E
σ′L
q′ E

σ′′L
q−q′ − σ

′zL
q′ E

σ′′L
q−q′E

σS
q − σ

′′zL
q−q′ E

σ′L
q′ E

σS
q

)
× δ

(
σzS

q − σ
′zL

q′ − σ
′′zL

q−q′
)}

S dLL
. (5)
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The dimensionless particle kinetic equation is given by

∂Fa(u)
∂τ

=
e2

a

e2

m2
e

m2
a

∑
σ

∑
α=L,S

∫
dq

( q
q
·
∂

∂u

)
µαq δ(σzαq − q · u)

×

(
g

ma

me

σzL
q

q
Fa(u) + Eσαq

q
q
·
∂Fa(u)
∂u

)
+

∑
b

θab(Fa, Fb). (6)

Finally, the dispersion relations in dimensionless form are
given by

zL
q =

(
1 +

3
2

q2
)1/2

,

zS
q =

q A
(1 + q2/2)1/2 , A =

1
√

2

(
me

mi

)1/2 (
1 + 3

Ti

Te

)1/2

,

where vte = (2Te/me)1/2 is the electron thermal speed, and
λDe is the electron Debye length, with Te being the electron
temperature.

For further reference, in the equation for the L waves, Eq. (5),
the term that describes the spontaneous emission and the quasi-
linear effects has been denoted Lql, the term that describes
the three-wave decay involving L and S waves has been de-
noted LdLS , and the term describing scattering involving L
waves has been denoted LsLL. In the equation for the evolu-
tion of S waves, namely Eq. (6), the first term describes the
spontaneous emission and quasilinear effects and is denoted S ql,
and the second term describes the three-wave decay involving L
waves and is denoted S dLL.

In the equation for the particle distribution functions (7), the
term with g describes the effects of spontaneous fluctuations, and
the term with the velocity derivative describes the quasilinear
diffusion process.

For a detailed derivation of the above equations without the
term that represents the collisional effects, the reader is referred
to Yoon (2000, 2005, 2006). The collisional term is essentially
the Landau collision integral, which is well known in the litera-
ture (e.g., Lifshitz & Pitaevskii 1981; Karney 1986; Jeffrey et al.
2014, see also Appendix A). Assuming that both ion and elec-
tron background distributions are Maxwellian distributions, the
kinetic equation describing the evolution of electron distribution
function Fa in fully ionized hydrogen plasma can be written in
spherical coordinates (v, θ),∑

b

θab(Fa, Fb) =
Γ

2v2

{
∂

∂v

(
2 vG(u)

∂ f
∂v

+ 4 u2 G(u) f
)

+
1
v

∂

∂µ

(
(1 − µ2)

[
erf(u) −G(u)

]
∂ f
∂µ

)}

+
Γ

2v3

∂

∂µ

(
(1 − µ2)

∂ f
∂µ

)
, (7)

where, µ = v‖/v =cos(θ), u =
√

mv2/2kBTe, Γ = 4πne4 ln Λ /m2
e ,

erf(u) is the error function, and G(u) is the Chandrasekhar func-
tion, given by

G(u) =
erf(u) − u erf

′

(u)
2u2 · (8)

The first term on the righthand side of Eq. (7) describes electron-
electron collisions, while the second is due to electron scattering
by ions. One can combine the collisional terms (Eq. (7)) with
the collective terms (Eq. (6)) and define generalized friction and
diffusion coefficients.

The initial electron distribution function is assumed to be
made of a Maxwellian background and a forward beam distri-
bution with number density nf . In 2D, the assumed distribution
function is given as

Fe(u, 0) =
1 − nf/n0

πv2
te

exp
(
−
v2
⊥

v2
te
−

(v‖ − v0)2

v2
te

)

+
nf/n0

πv2
t f

exp

− v2
⊥

v2
t f

−
(v‖ − v f )2

v2
t f

 · (9)

Here v2
te = 2Te/me and v2

t f = 2T f /me are the background and the
beam thermal velocities squared, respectively. The quantities v0
and v f are the drift velocities of the background and forward
beam, respectively. The background drift velocity v0 is such that
it guarantees zero net drift velocity for the electron distribution,
i.e., v0 = −(v f nf)/(n0 − nf). The initial ion distribution in 2D is
given by Fi(u) = (mi/2πTi) exp

[
−miv

2/(2Ti)
]
, where Ti and mi

are the ion temperature and the proton mass, respectively. For
the present study, we assume that the ion distribution remains
constant along the time evolution.

The intensities of L and S waves are initialized by balancing
the spontaneous and induced emissions, taking the background
population into account:

IσL
k (0) =

Te

4π2

1
1 + 3k2λ2

D

,

IσS
k (0) =

Te

4π2 k2λ2
D

√
1 + k2λ2

D

1 + 3k2λ2
D

×

∫
du δ(σωS

k − k · u) (Fe + Fi)∫
du δ(σωS

k − k · u) [Fe + (Te/Ti) Fi]
· (10)

3. Numerical analysis

The set of Eqs. (4), (5), and (8)–(10) have been solved in 2D
wave number space and 2D velocity space by employing a split-
ting method with fixed time step for the equation for evolu-
tion of the electron distribution and a fourth-order Runge-Kutta
method for the wave equations. The 2D version for the parti-
cle equation is shown by Eq. (A.11), with the coefficients com-
ing from weak turbulence theory as given by (A.12), and the
collision term given by Eqs. (A.9) and (A.10). Similar equa-
tions for the wave evolution can be obtained by converting
Eqs. (4) and (5) to 2D coordinates. For all the cases, we have
used ∆τ = 0.1. We employed a 51×51 grid for k⊥ and k‖
with 0 < k⊥vte/ωp < 0.6, and 0 < k‖vte/ωp < 0.6. For the
velocities, we used a 51 × 101 grid for v⊥/vte and v‖/vte, cov-
ering the velocity range 0 < v⊥/vte < 12 and −12 < v‖/vte < 12.
For the subsequent numerical solutions to be discussed, we as-
sume a forward beam with the same temperature as the back-
ground population, T f /Te = 1.0, electron-to-ion temperature ra-

tio Te/Ti = 7.0, plasma parameter
(
n0λ

3
D

)−1
= 5.0 × 10−3, and
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electron temperature, such that v2
te/c

2 = 4.0 × 10−3. We also as-
sume v f /vte = 5.0 and nf/n0 = 1.0 × 10−3, a value that is rel-
atively high for the case of solar wind beam electrons, but has
been assumed in order to reduce the computational time required
to obtain the numerical results.

The characteristics of the grids used for the numerical anal-
yses were also chosen as a compromise between the resolution
obtained and the performance of the numerical code. The grid
used in wave number space resolves some fundamental details in
the wave spectra, such as (a) the primary peak that grows due to
quasilinear interaction between L waves and the beam particles
in the region of the positive derivative of the distribution func-
tion and (b) the peak corresponding to backwardly propagating L
waves, which are generated by nonlinear interaction between L
and S waves. In velocity space, the grid used allows for a smooth
description of the distribution function and of the beam, includ-
ing the important region of transition between the core distribu-
tion and the beam. Even with use of the chosen grids, the code
needs to run for a few days in a personal computer with updated
technology. Owing to the 2D nature of the problem investigated,
a twofold increase in resolution would require nearly a fourfold
increase in computational time. We have reached the conclusion
that such a costly enhanced resolution would not be needed to
describe the relevant features of the time evolution of the system
under investigation.

As one application of the numerical code, we studied the
time evolution of the system in two situations. The first situation
neglects the influence of collisions, which can be easily done just
by turning off the collisional term in the equation for the evolu-
tion of the electron distribution function. In the second situation,
we took the effect of binary collisions into account. For compar-
ison, we also added some results that show the time evolution of
the distribution function that is only subject to collisions.

Figure 1 shows the time evolution of electron velocity dis-
tribution function by plotting Fe in 2D velocity space at dif-
ferent time steps corresponding to ωpet = 500, 1000, 2000,
5000, 104, 1.5 × 104, and 2 × 104. The lefthand panels de-
pict solutions with only collisions; the middle panels correspond
to the self-consistent solution without collisional effects, as in
the type III beam case (Ziebell et al. 2008); and the righthand
panels show solutions that contain both collisional effects and
self-consistent Langmuir wave dynamics. As the lefthand panels
show, the collisional relaxation of the beam leads to the system-
atic energy losses and isotropization of the beam. Eventually,
the beam merges with the Maxwellian background. In contrast,
collisionless quasilinear relaxation, appearing in the middle pan-
els, shows that slowing down the beam proceeds via the velocity
space plateau formation.

The total electron distribution undergoes some heating, but
the overall shape of the distribution is quite different from the
collision-only case. In these middle panels, it is noticeable that
an X-shaped band of irregular features appears near the core of
the distribution in the late stages of the time evolution. These
irregular features in the distribution function are apparently con-
nected with irregular features that appear near the edge of the
grid representing the spectrum of L waves and must be due to
accumulation of numerical imprecision. These irregular features
do not spread and do not produce any perceptible effect on the
relevant features of the distribution, such as the formation of the
plateau joining the core and the beam distributions or the overall
broadening of the velocity distribution.

In accordance with this interpretation, one sees that the irreg-
ular features do not appear in the left- and righthand panels, since
they are washed out by the effect of collisions. At the end of the

computational period, it is seen that the net electron distribution
is still anisotropic, with the 2D distribution elongated along the
beam direction. In the case of collisions plus the Langmuir wave
dynamics (the righthand panels), the early evolution is similar
to the purely quasilinear case, but the later evolution is affected
by the Coulomb collisional dynamics. Such a combined beam-
plasma dynamical interaction showing the transition from the
collective dynamics to collisional dynamics has not been done
in the literature.

In the context of the solar applications, the third panels are
similar to those considered (e.g., Hamilton & Petrosian 1987;
McClements 1989; Hannah et al. 2009; Hannah & Kontar 2011;
Zharkova & Siversky 2011), in that both the Coulomb colli-
sional dynamics and self-consistent Langmuir wave dynamics
are considered. The above references, however, also heuristi-
cally included collisional damping term for the Langmuir waves,
whereas in the present approach, the collisional effects influence
the Langmuir dynamics indirectly and only through the electron
distribution function evolution. In spite of this caveat, however,
our work is more general in the sense that we consider two-
dimensional dynamics and also allow nonlinear wave processes,
such as the decay interaction and nonlinear wave-particle scatter-
ing similar to Kontar et al. (2012) and Karlický & Kontar (2012).
Also, the above references employed simplified Coulomb colli-
sional integral for the particles, whereas our numerical solution
is based upon the Landau operator. In the context of solar X-ray,
however, inhomogeneity effects is important. In addition, for the
solar X-ray problem different initial electron velocity distribu-
tions should be adopted, such as the power-law distribution. We
do not have inhomogeneity effects (see, e.g., Kontar & Pécseli
2002), and our choice of initial electron distribution is a sim-
ple Gaussian core plus a drifting beam. As such, our calculation
is not meant to represent the solar X-ray problem. Instead, our
interest has been on understanding the 2D evolution.

Figure 2 shows the spectrum of Langmuir (L) waves, as a
function of normalized components of a wave vector in 2D space
for several values of the normalized time between τ = 500 and
τ = 20 000. Since the purely collisional dynamics involves no
waves by default, the Langmuir spectrum is absent in that case.
As such, Fig. 2 only shows two situations. The lefthand panels
show Langmuir wave spectra when only self-consistent collec-
tive effects are considered without the collisional terms in the
particle equation, and the righthand panels solutions that contain
both collisional dynamics and self-consistent wave dynamics in
the particle kinetic equations. Of course, for both cases, the ion-
sound wave intensity is also self-consistently calculated, but the
results are not shown. Both cases exhibit similar early-time dy-
namics of the Langmuir wave time evolution.

The forward-propagating “primary” Langmuir waves are the
direct result of bump-on-tail instability by the electron beam.
For ωpet = 500, the nonlinear decay and scattering off thermal
ions (these are nonlinear processes depicted in the wave kinetic
equations) already begin to produce weak backward-traveling
Langmuir waves. These “backscattered” Langmuir waves form a
semi-arc shaped spectra as time proceeds, eventually distributing
the wave momentum in the quasi circular area in 2D wave num-
ber space. For later dynamics, such as beyond ωpe = 15 000,
however, the evolution of the wave spectra for two cases are
quite distinct. In the pure collective dynamic case, one notices
that there is an appreciable gap along the parallel wave num-
ber; in contrast, in the general case where both collective dy-
namics and collisions are included, the primary Langmuir waves
undergo spreading at a wave vector azimuthal angle so that the
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Fig. 1. Time evolution of electron velocity distribution function is shown in 2D velocity space plot at different time steps. The lefthand panels
depict solutions with only collisions (as in the thick target approximation), the middle panels correspond to the self-consistent solution without
collisional effects (as in the type III beam case), and the right panels show solutions that contain both collisional dynamics and self-consistent
Langmuir wave dynamics.

A19, page 6 of 10



S. F. Tigik et al.: 2D evolution of beam-plasma instability

k ||v
th

/
pe

No Collision

pet = 500
 

 

0.4

0.2

0

0.2

0.4

5

4

3

2

1

k ||v
th

/
pe

1000 

 

0.4

0.2

0

0.2

0.4

5

4

3

2

1

k ||v
th

/
pe

2000 

 

0.4

0.2

0

0.2

0.4

5

4

3

2

k ||v
th

/
pe

5000 

 

0.4

0.2

0

0.2

0.4

5

4

3

k ||v
th

/
pe

10000 

 

0.4

0.2

0

0.2

0.4

5.5

5

4.5

4

3.5

3

k ||v
th

/
pe

15000 

 

0.4

0.2

0

0.2

0.4

5.5

5

4.5

4

3.5

k ||v
th

/
pe

k vth/ pe

20000 

 

0.4 0.2 0 0.2
0.4

0.2

0

0.2

0.4

5.5

5

4.5

4

With Collision

pet = 500
 

 

0.4

0.2

0

0.2

0.4

I L
(k

)

5

4

3

2

1

1000 

 

0.4

0.2

0

0.2

0.4

I L
(k

)

5

4

3

2

1

2000 

 

0.4

0.2

0

0.2

0.4

I L
(k

)

5

4

3

2

5000 

 

0.4

0.2

0

0.2

0.4

I L
(k

)

5

4

3

10000 

 

0.4

0.2

0

0.2

0.4

I L
(k

)

5.5

5

4.5

4

3.5

3

15000 

 

0.4

0.2

0

0.2

0.4

I L
(k

)

5.5

5

4.5

4

3.5

k vth/ pe

20000 

 

0.4 0.2 0 0.2
0.4

0.2

0

0.2

0.4

I L
(k

)

5.5

5

4.5

4

Fig. 2. Time evolution of Langmuir wave spectrum as a 2D wave number space plot at different time steps. The lefthand panels depict solutions
with only self-consistent collective effects without the collisional terms in the particle equation, and the right ones show solutions that contain both
collisional dynamics and self-consistent wave dynamics.
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wave spectrum appears to be much more symmetric throughout
the semi-circular area.

In the context of solar applications, Hamilton & Petrosian
(1987), McClements (1989), Hannah et al. (2009), Hannah &
Kontar (2011), and Zharkova & Siversky (2011), solved self-
consistent Langmuir wave kinetic equations. Kontar et al. (2012)
also demonstrate numerically that nonlinear wave-wave interac-
tions are important. However, since these authors did not con-
sider nonlinear mode coupling physics in 2D, the Langmuir
spectrum in such a scheme does not give the wave vector pitch
angle evolution. The evolution in pitch angle affects the level of
Langmuir waves and generally reduces peak values of spectral
energy density of plasma waves.

4. Final remarks

The energetic electrons produced during the solar flare lead to
the generation of solar type III solar radio bursts and/or re-
verse slope bursts when the fast electrons escape the accelera-
tion region. Electrons propagating downwards are responsible
for reverse slope bursts (e.g., Tang & Moore 1982) that generate
Langmuir waves in collisional plasma. These electrons travel-
ing down towards the chromosphere are responsible for X-rays
emitted via bremsstrahlung (see, e.g., Holman et al. 2011). There
have been recent discussions (Hannah et al. 2009; Hannah &
Kontar 2011; Zharkova & Siversky 2011; Kontar et al. 2012)
that show that the collective Langmuir-wave dynamics of the
X-ray generating electrons may be important for interpretations
of X-ray spectra from RHESSI spacecraft (Lin et al. 2002).

In the present paper, we have addressed a fundamen-
tal plasma physics problem that is related to both the
type III-generating electrons and the X-ray-generating non-
thermal electrons. We considered the influence of Coulomb
collisions and the self-consistent collective effects in the elec-
tron beam-plasma interaction problem in 2D velocity space. In
the past, the present authors investigated the electron-Langmuir
wave collective dynamics, which is relevant to the type III burst
electrons, by ignoring the effects of Coulomb collisions (Ziebell
et al. 2008). On the other hand, early works on solar X-ray emis-
sion ignored the collective dynamics and only considered colli-
sional dynamics. Later works include wave-particle interactions
and included Langmuir wave generation, but they only consid-
ered the 1D problem, although they included other effects rele-
vant to the solar X-ray problem, such as the inhomogeneity and
phenomenological collisional damping. In contrast, we consid-
ered the full nonlinear dynamics in the wave kinetic equation
without explicit collisional damping (yet), but which included
nonlinear wave-particle scattering and three-wave decay inter-
actions in 2D wave number space.

Upon comparing the electron distribution evolution among
three situations, namely, one in which only the collisional ef-
fects are included, another with only collective dynamics, and
the third in which both collisions and waves are incorporated, we
found that the early dynamics in the general case follows the col-
lective dynamical pattern, whereas for later times, the dynamics
closely matches the collisional case. This transitional behavior
has not been demonstrated clearly in the literature (Fig. 1). The
comparison between results obtained considering the collision-
less weak turbulent dynamics and the collisional weak turbulent
dynamics shows that for τ ' 2000, a normalized time for which
the primary Langmuir peak excited by the beam is fully devel-
oped and the backward propagating Langmuir peak is already
well established, the effect of collisions is already noticeable,

leading to a wider plateau in the distribution function and in-
creased tendency to isotropization, as compared to the collision-
less case. For a much longer evolution time, the results show
that the distribution function obtained in the collisional case is
clearly more isotropic than was obtained in the case without the
effect of collisions and also show a noticeable decrease in the
energetic tail. Considering the effect of the wave spectra as well,
the general comment is that collisions lead to a wider angular
spread of both Langmuir waves and electron beam on compara-
ble time scales.

When we compared the wave dynamics between the pure
collective case and the general case (for collision only case
there is no wave), we found that the late time evolution of the
wave spectra also shows a marked difference between the two
cases. Specifically, the general case in which both collisions
and collective effects were considered shows more symmetric
Langmuir wave spectrum at late time periods. The overall con-
clusion to be drawn from both analyses of the time evolution
of the velocity distribution function and of the spectrum of
Langmuir waves is that the collisional processes, even if irrel-
evant on the time scale of the development of quasilinear pro-
cesses, may lead to effects that are comparable in magnitude to
effects of the nonlinear processes on a time scale that is compati-
ble to the time scale of evolution of nonlinear processes in space
plasmas.

As noted, the actual application of the present analysis to
the solar X-ray problem requires additional effects that are not
included here: inhomogeneous density profile, explicit colli-
sional damping terms in the wave kinetic equations, and prob-
ably different initial non-thermal electron distribution functions.
However, we believe that future applications can be built upon
the present formalism.
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Appendix A: Fokker-Planck equation coefficients

Here we specifically follow the notations and conventions that
can be found in Gaffey (1976), which can be summarized as
follows. Starting from the Landau form of the Fokker-Planck
collision operator defined in Eq. (3) and absorbing the ambi-
ent density into the definition for particle distribution function,
fa = n̂aFa, we have

θab( fa, fb) =
2πe2

ae2
b ln Λ

ma

∂

∂ua
·

∫
d3vb

↔

U ·
(

1
ma

∂

∂ua
−

1
mb

∂

∂ub

)
fa fa,

↔

U=
∂2w

∂ua∂ua
=

1
w3

(
w2 ↔1 −ww

)
,

w = |w| = |ua − ub|. (A.1)

Integrating by parts we obtain

θab( fa, fb) =
2πe2

ae2
bn0b ln ΛvTb

m2
a

∂

∂ua

×

(
∂ fa
∂ua
·
∂2G(xab)
∂ua∂ua

−
ma

mb
fa
∂

∂ua
·
∂2G(xab)
∂ua∂ua

)
, (A.2)

where

G(xab) =
1

n0bvTb

∫
d3vb fbUabwab, (A.3)

and xab ≡ va/vTb, with vTb denoting the thermal velocity for
particle species b, vTb = (2Tb/mb)1/2. Here, n0b is the number
density of particles of species b.

At this point we introduce the simplifying argument that in
the beam-plasma instability, the most significant evolution oc-
curs in the tail of the particle distribution function, involving
particle densities that are much lower than the background den-
sity. If so, then it is justified to assume that the most significant
collisional effect will be due to collisions between tail particles
with particles of the background distribution. Assuming that the
background distribution is a Maxwellian distribution, the func-
tion G in Eq. (3) may be written as (Gaffey 1976)

G(xab) =

(
xab +

1
2xab

)
Φ(xab) +

1
2

Φ′(xab), (A.4)

where Φ(xab) is the error function, and Φ′(xab) its derivative,

Φ(xab) ≡
2
√
π

∫ x

0
e−t2

dt,

Φ′(xab) =
2
√
π

e−x2
. (A.5)

Making use of the auxiliary function Ψ,

Ψ(x) ≡ Φ(x) − xΦ′(x), (A.6)

and performing some simple algebra, one obtains the following
form for the collisional term (Gaffey 1976),

θab( fa, fb) = Γab

[
∂

∂ua
·

(
2

ma

mb
Ψ(xab)

ua

v3
a

fa

)

+
∂

∂ua
·


Φ(xab) −

1
2x2

ab

Ψ(xab)
 ∂2va

∂ua∂ua

 · ∂ fa
∂ua


+
∂

∂ua
·

 1
x2

ab

Ψ(xab)
uaua

v3
a

 · ∂ fa
∂ua

 · (A.7)

Henceforth, we concentrate on the collision term affecting the
electron distribution, so that fa = fe. Let us write the electron
velocity simply as v, use the non-dimensional variables τ = ωpet
and u = u/vte, and write the term describing binary collisions
between electrons and particles of species b as

θab(Fe, Fb) = (2π)gZ2
b ln Λ

[
∂

∂u
·

(
2

me

mb
Ψ

(
u
vte

vtb

)
u
u3 Fe

)

+
∂

∂u
·


Φ (

u
vte

vtb

)
−

1
2u2

v2
tb

v2
te

Ψ

(
u
vte

vtb

) ∂2u
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 · ∂Fe

∂u


+
∂

∂u
·

 1
u2

v2
tb

v2
te

Ψ

(
u
vte

vtb

)
uu
u3

 · ∂Fe

∂u

 , (A.8)

where we have considered ne ' ni, introduced Zi and Ze as the
ion and electron charge number, respectively, with Zi = Ze = 1
and used g, as defined in Eq. (6).

In the present application, we consider a 2D system,
which serves as a good approximation for the fully 3D case
with azimuthal symmetry. In the 2D case, we make use of
(∂2/∂ux∂ux)u = u2

z/u
3, (∂2/∂ux∂uz)u = (∂2/∂uz∂ux)u =

−uxuz/u3, (∂2/∂uz∂uz)u = u2
x/u

3 and write Eq. (7) in the fol-
lowing form,

θab(Fe, Fb) =
∂

∂ux

(
ab

xFe + bb
xx
∂Fe

∂ux
+ bb

xz
∂Fe

∂uz

)

+
∂
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(
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+ bb
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∂Fe
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)
, (A.9)

where

ab
i = (2π)gZ2

b ln Λ
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me
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) . (A.10)

In addition, it is easy to verify that the equation for the electron
distribution function, obtained from (6), can be written for the
case 2D in the following form:

∂Fe

∂τ
=

∂

∂ux

(
Ael

x Fe + Del
xx
∂Fe

∂ux
+ Del

xz
∂Fe

∂uz

)
+
∂

∂uz

(
Ael

z Fe + Del
zx
∂Fe

∂ux
+ Del

zz
∂Fe

∂uz

)
+

∑
b

θab(Fe, Fb), (A.11)

where, as a further and usual approximation, we have neglected
the effect of S waves. Making use of µL

q = 1, the coefficients Ae
i

and the De
i j can be written as

Ael
i = g

∫ ∞

−∞

dqx

∫ ∞

−∞

dqz
qi

q2
x + q2

z
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Del
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−∞

dqx

∫ ∞

−∞

dqz
qi q j
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