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Abstract

Abstract

The main purpose of this doctoral thesis is to synthesize new efficient N-based
ligands, and catalysts, and to explore their applications in the Pd-catalysed cross-coupling
reactions. In addition, we aim to study the mechanistic pathways involved in the cross-
coupling reactions through this work. Therefore, this thesis is comprised of four chapters
including a general introduction on catalysis, focusing organometallic catalysis in
Chapter 1, followed by synthesis and characterization of new N-based ligands and their
potential as ligands in Suzuki-Miyaura cross-coupling reaction in Chapter 2, glycerol as
an efficient reaction medium for Suzuki-Miyaura cross-coupling reactions in Chapter 3,
and finally, Suzuki-Miyaura cross-coupling reaction of aryl halides and aryl boronic
acids using a new ionophillic iminophosphine-Pd-complex and insights about the
mechanism of the reaction has been studied in Chapter 4.

Chapter 2 provides some insights about synthesis of mono- and bis-pyrazoles
bearing flexible p-tolyl ether and rigid 2,7-di-tert-butyl-9,9-dimethyl-9H-xanthene
backbones, as pyrazolyl analogues of DPEphos and Xantphos ligands, respectively. The
synthesis of the new pyrazolyl analogues was accomplished by following an Ullmann
coupling protocol and the resulting products were isolated in good overall yields. In
addition, a hybrid imidazolyl-pyrazolyl analogue and selanyl-pyrazolyl analogue bearing
xanthene backbone were also synthesized in 78% and 58% vyields, respectively. The
compounds were found active as potential ligands in the Pd-catalysed Suzuki-Miyaura
cross-coupling of aryl halides with aryl boronic acids. A simple catalytic system based
on Pd(OAc)./pyrazolyl analogues, efficiently catalyzes the Suzuki-Miyaura cross-
coupling reactions and provides moderate to excellent yields of the corresponding cross-
coupling products.

In chapter 3, the use of glycerol as an efficient reaction medium for the Pd-
catalyzed Suzuki-Miyaura cross-coupling of aryl bromides with arylboronic acids has
been discussed. A simple catalytic system based on PdCl>(PPhz)2 in glycerol offers an
environmentally benign, cheap, and practical protocol for the synthesis of substituted
biaryls. The reaction proceeded smoothly with low catalyst loadings (0.5 mol%)
providing excellent yields (up to 99%), and the cross-coupling products were isolated
easily by simply extracting the reaction mixture with a glycerol-immiscible solvent.
Since, the use of glycerol provides the advantage of using the catalytic system to recycle.

Thus, the glycerol recycling experiments by using 2 mol% of Pd loading revealed that
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the catalytic medium is recyclable up to 8 cycles with a slight loss of catalytic activity
after 8" cycle due to formation of solid inorganic salts, preventing the reaction mixture
from a smooth magnetic stirring. Furthermore, we also have provided some details
regarding the role of glycerol as an in situ source for phosphinte ligand formation by
reaction with PPh,Cl. A very good yield of the cross-coupling product was obtained
using PPh2Cl as a phosphine source in glycerol that can form a phosphinite ligand in situ
by reaction with glycerol. Moreover, we also have provide some details regarding the
role of glycerol as in situ source for oxolone ligand formation by reaction with
Pd(diphenylphosphine-2-benzaldehyde).. A moderate yield of the cross-coupling
product was obtained using Pd(diphenylphosphine-2-benzaldehyde): in glycerol that can
form a oxolone ligand in situ by reaction with glycerol.

Finally, in chapter 4, we intended to study the mechanistic pathway of Suzuki-
Miyaura cross-coupling reaction by identification of key reactive intermediates through
ESI mass spectrometry technique. For this purpose, we have synthesized a new
ionophillic imino-phosphine Pd-catalyst and has been characterized fully using different
spectroscopic and spectrometric technique including the X-ray crystallography. The new
imino-phopsphine-Pd-complex demonstrates an excellent catalytic activity for
catalyzing the Suzuki-Miyaura cross-coupling reactions of aryl halides and aryl boronic
acids. Since, the beneficial aspect of installing charged tag on the catalyst displays an
extraordinary high level of sensitivity towards the electrospray ionization mass
spectrometry (ESI-MS), we were able to detect and identify several reactive

intermediates including a Pd(0) species for the first time through ESI.
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Portuguese Abstract

O principal objetivo desta tese de doutorado é a sintese eficiente de novos ligantes
e catalisadores nitrogenados, aplica-los nas reacfes de acoplamento cruzado catalisadas
por Pd. Além disso, neste trabalho pretendemos estudar os mecanismos envolvidos nas
reacOes de acoplamento cruzado. Portanto, esta tese € composta por quatro capitulos. No
capitulo 1, uma introducdo geral sobre catalise focada em organometélicos. No capitulo
2, a sintese e caracterizacao de novos ligantes nitrogenados e seu potencial como ligantes
na reacao de acoplamento cruzado de Suzuki-Miyaura. No capitulo 3, a utilizacdo de
glicerol como um meio eficiente para a reacdo de acoplamento cruzado Suzuki-Miyaura
e, finalmente, no capitulo 4, a reacdo de acoplamento cruzado do tipo Suzuki com halotos
de arila e &cidos aril bor6nicos usando um novo complexo ionofilico de iminofosfina-Pd
e as propostas de mecanismo das reacGes que foram estudadas.

O Capitulo 2 fornece algumas ideias sobre a sintese de mono e bis-piraz6is com
éter p-tolil flexivel e 4,5-dibromo-2,7-di-terc-butil-9,9-dimetil-9H-xanteno, como
analogos pirazois dos ligantos DPEphos e Xantphos, respectivamente. A sintese dos
novos derivados de pirazois foi realizada seguindo um protocolo de acoplamento
Ullmann e os produtos resultantes foram isolados com satisfatorios rendimentos. Além
disso, um hibrido de imidazo-pirazo xanteno e selenil-pirazo xanteno também foram
sintetizados com rendimentos de 78% e 58%, respectivamente. Os compostos foram
considerados ativos como potenciais ligantes no acoplamento cruzado Suzuki-Miyaura
catalisado por Pd e haletos de arila com &cidos aril borénicos. Um sistema catalitico
simples baseado em Pd(OAc)2/pirazoil catalisa eficientemente a reagdo Suzuki-Miyaura
e fornece rendimentos moderados a excelentes dos produtos correspondentes do
acoplamento cruzado.

No capitulo 3, o uso de glicerol como meio de reacdo eficiente para o
acoplamento cruzado Suzuki-Miyaura catalisado por Pd de brometos de arila com &cidos
aril boronicos foi discutido. Um sistema catalitico simples baseado em PdCI>(PPhs). em
glicerol oferece um protocolo ambientalmente correto, de baixo custo e pratico para a
sintese de bis-arilicos substituidos. A reacdo prosseguiu sem problemas com baixa
quantidade de catalisador (até 0,5 mol%), proporcionando excelentes rendimentos (até
99%), e os produtos de acoplamento foram isolados facilmente, extraindo-os da reacao

com solvente imiscivel em glicerol. Sendo assim, o uso de glicerol fornece a vantagem

VI
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de reciclos do sistema catalitico. Assim, o reuso do glicerol usando 2% molar de Pd
revelou que o meio catalitico € reciclavel até 8 ciclos, com uma leve perda de atividade
catalitica apos o 8° ciclo devido a formacéo de sais inorganicos solidos. Além disso,
também fornecemos alguns detalhes sobre o papel do glicerol como fonte in-situ para a
formacéo de ligantes de phosphinito por reagdo com PPh>CIl. Um rendimento muito bom
do produto de acoplamento cruzado foi obtido usando PPh.Cl em glicerol que pode
formar um ligante de phosphinito in-situ por reacdo com glicerol. Além disso, também
fornecemos alguns detalhes sobre o papel do glicerol como fonte in-situ para a formacao
de ligantes de oxolona por reacdo com Pd(difenilfosfina-2-benzaldeido),. Um
rendimento muito bom do produto de acoplamento cruzado foi obtido usando
Pd(difenilfosfina-2-benzaldeido). em glicerol que pode formar um ligante de oxolona
in-situ por reacdo com glicerol.

Finalmente, no capitulo 4, pretendemos estudar o mecanismo da reagdo de
acoplamento cruzado Suzuki-Miyaura, identificando os principais intermediarios
reativos através da técnica de espectrometria de massa ESI. Para isso, sintetizamos um
novo catalisador ionofilico de imino-fosfina-Pd e foi totalmente caracterizado utilizando
diferentes técnicas espectroscopicas e espectrométricas, incluindo a cristalografia de
raios-X. O novo complexo imino-fosfofina-Pd demonstra uma excelente atividade
catalitica para a reacdo de acoplamento cruzado Suzuki-Miyaura de haletos de arila e
acidos aril borénicos. Com a possibilidade da adicdo de carga no catalisador, é possivel
ter um alto nivel de sensibilidade na espectrometria de massa de ionizacdo por
eletropulverizacdo (ESI-MS), assim, conseguimos detectar e identificar varios

intermediarios reativos, incluindo uma espécie de Pd(0) pela primeira vez através do ESI.
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Chapter 1

1.1 Introduction

The fact that all of the materials and the products that make the foundation of a
modern society, all the way from fuels to fertilizers, materials to pharmaceuticals, all of
that relies on our ability to transform cheap and readily available starting materials into
model products or fine chemicals.® The transition metal catalyzed reactions are among
the best protocols in this context, because they offer broad substrate selectivity and
tolerance, improved product yields, provides opportunity to induce or to obtain regio-
and stereo-controlled organic compounds, etc. Various transition metals have been used
to catalyze a variety of organic reactions in one way or the other, provided the transition
metals have less harmful impact on the human health and the environment.>® These
metal-catalyzed reactions in the last three to five decades have extended a remarkable
level of superiority. Precisely, the Nobel Prize winning research of Knowles, Noyori and
Sharpless in 2001 (Figure 1),%*2 and Chauvin, Grubs and Schrock in 2005 (Figure 2),**
17 for the development and designing of the metal-catalyzed reduction and oxidation
reactions, and the olefin metathesis reactions, respectively, have completely altered the

notions of the present day scientist.

0 Chiral Rh Catalyst : 0
+ H, -~ o
OH OH %\: .

a-phenyl acrylic acid $-(+)-2-phenyl propionic ‘ Ty
acid [15% ee] a

Knowles
0 Chiral Ru Catalyst 0
+H, >
OH
\O OH \o
2-(6-methoxynaphthalen-2-yl)- S-nafroxen
acrylic acid [97% ee]

I/ + \i/ excess TBHP I/
= RO - > g
HO HO' Ti(O'Pr), HO™ ™72

Sisomer R isomer L-diethyl tartrate ‘ '

(Active) (Non reactive) 97% de Sharpless

Figure 1. The 2001 Nobel Prize winning research based on transition metals.
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Since, they offer an extraordinary astonishing reactivity and selectivity towards

the substrates and products, therefore, the transition metals have been widely used as

catalysts in both academia and industry, ruthlessly.® °

Schrock
Ry Ry

Mo and Ta based Catalyst Ry Ry Via Cyclo
I+ > | + |
Metallobutane
R4 R; R4

Ry Ti and Ru based Catalyst Mechanism

Chvin

Grubbs

Figure 2. The 2005 Nobel Prize winning research based on transition metals.

The unique capability of the transition metals to catalyze a variety of organic
reactions is believed to be due to their intrinsic ability of activating organic molecules
via oxidative addition and back donation. Through this activation, the transition metals
can catalyze a variety of reactions for the formation of new C-C or C-X (X = heteroatom)
bonds, which in turn are of profound significance in chemical and life sciences. The
fashionable assembly of these carbon atoms can then be customized to design and create
building blocks and chains and most importantly the lifesaving drugs.?° Thus, one can
say that the transition metal catalysis is playing a vital role in the current world by
extending its applications in almost every field of science.

As far as the history of this remarkable field is concerned, dating back into
centuries ago, researchers were using these procedures to obtain useful organic
molecules. To be more precise, the Glaser homo-coupling of metal acetylides in 1869 is
considered to be among the first examples of transition-metal-promoted coupling
reactions. Using copper as catalyst, Glaser was able to synthesize diphenyldiacetylene
from silver phenylacetylide as coupling partner via oxidative dimerization.?* 22 The
development of this new Csp-Csp bond was well appreciated by the synthetic community

3
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in the following years. Following Glaser, Ullmann successfully reported the dimerization
of 2-bromo-nitrobenzene in 1901, using stoichiometric amounts of copper.?2?°

The significance of catalysis and its role in various fields can be concluded by
citing the following statement in Nature Catalysis.?®

“Historically catalysis has evolved as a set of different fields linked together
by a unifying concept. While the distinctions between the various areas serve a

purpose, exciting work is happening at the interface.”

1.2 The Advent of Palladium Catalysis

The major event that was responsible for the boosting of research into the
palladium chemistry was the discovery of Pd-catalyzed air oxidation of ethylene into
acetaldehyde, popularly known as the Wacker process,?’ Scheme 1. Even though Pd was
discovered in 1802, the importance of Pd in catalyzing organic reactions was realized a
century later, after World War I1. This discovery and its subsequent refinements and
applications on commercial scale, laid the foundation of Pd chemistry as one of the most

powerful tool for the synthesis of a variety of organic molecules.?® 2
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Scheme 1. The Wacker Process.
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Figure 3. Mechanism of Wacker Oxidation.
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Research on Pd-catalyzed new reactions for the formation of carbon-carbon
bonds by Heck who was deeply inspired by Wacker process,® led to the beginning of a
new era in the domain of palladium chemistry, followed by Negishi and Suzuki. That’s
why the 2010 noble prize in Chemistry was awarded to Heck,3** Negishi,®*3¢ and
Suzuki® for their outstanding research on palladium catalyzed cross-coupling

reactions,*> 4! (Figure 4).

X :
©/ + [Pd] \/R\
X = Halides,

Pseudohalides Heck
R =H, alkyl
R™ = alkyl, aryl

Suzuki

Figure 4. The 2010 Nobel Prize winning research based on palladium metal.

Subsequently, the palladium catalyzed cross-coupling reactions with organo-
copper (the Sonogashira),*>*4 organo-tin (the Stille),* ¢ organo-silicon (the Hiyama)*"
8 and many other important Pd-catalyzed reactions,**® were developed along with
excellent achievements of broad substrate selectivity, functional group tolerance and
versatility (Figure 5). A multiple fold increase in the research involving Pd-catalyzed
reaction can be evidenced by a single SciFinder® search using the keyword palladium
which finds more than 354324 research items, whereas the keywords palladium and
coupling reactions together shows 47825 hits, further refining the search to the keywords

palladium, cross-coupling and Suzuki shows 11500 hits, since then.
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Figure 5. Well-known Pd-catalyzed coupling reactions.

1.3 Mechanism of the Pd-Catalysed Cross-Coupling Reactions

The catalytic specie that is responsible for the initiation of the catalytic cycle in
the palladium catalysed reactions has been proposed to be the L,Pd(0) species,>* where
L = any ligand backbone and n = 2, in typical palladium catalysed reactions. The most
commonly accepted mechanism for the Pd-catalyzed coupling reactions is showed in
Figure 6. In general, the aryl halide (or pseudo halide) adds to the catalytically active
LnPd(0) species via oxidative addition and generates L.Pd(ll) intermediate.>® This
LnPd(Il) intermediate then undergoes transmetalation with an organometallic coupling
partner and generates a new L,Pd(lIl) specie bearing two organic coupling fragments at
the same Pd centre.%® Depending on the situation, the two organic fragments undergo

isomerization, followed by the final reductive elimination step which results in the

6
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formation of new C-C bond with the regeneration of the initial L,Pd(0).>" %8 This
catalytically active Ln,Pd(0) species then re-enters into the second catalytic cycle. It is
for the sake of simplicity, the catalytic cycle is commonly described in three major steps,

otherwise further micro-steps exist within the individual steps.

L,Pd(0)

RY, R? = sp?, sp?, sp-C M = B, Cu, Zn, Mg, Sn, Si
X = Halides, Pseudohalides

Figure 6. Proposed catalytic cycle for Pd-catalyzed cross coupling reactions.

It is important to mention that the Heck coupling,®® differs from the other cross-
coupling reaction by the fact that the reaction proceeds by the coordination of the alkene
to the LnPd(Il) species (Figure 7), after oxidative addition. The alkene itself then
undergoes an intramolecular syn-migratory insertion rather than intermolecular trans-
metalation with an organometallic coupling partner. The regioselective outcome of the
Heck reaction largely depends on this insertion step and also depends on the type of
catalyst, the nature of alkene, and reaction conditions used. Finally, the intermediate
generated after migratory insertion step undergoes a syn p-hydride elimination to form
the coupling product and regenerates the L,Pd(0) specie, which re-enters into the second
catalytic cycle.

As the majority of this thesis has been dedicated to the study of cross coupling
reactions, therefore, the individual steps involved in the catalytic cycle will be discussed

in detail in the following section.
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L,Pd(0)

Figure 7. Mechanism of Heck reaction.

1.3.1 Oxidative addition

The catalytic cycle begins with the oxidative addition step via a redox process,
followed by insertion of the organo-halides (pseudo halides).>® © Various factors are
responsible to speculate the tendency of transition metals to undergo oxidative addition;
however, the presence of transition metals in zero or low valent oxidation states is a must
criterion for this step to proceed forward smoothly. In addition, the metal must act as a
nucleophile or as a reducing agent. The coordination number and the ligand framework
also strongly influence the course of the oxidative addition step. For example, ligands
can easily dissociate from the metal centre to create vacant sites for the organo-halides
to undergo oxidative addition. Steric factors are other major contributing factor which
facilitates a smooth oxidative addition step. For instance, bulky ligands with large cone
angles helps oxidative addition by easy dissociation from the metal center.®® Formation
of anionic L,Pd(0) species in situ are known to catalyze the cross-coupling reactions. For
example, Jutand and Amatore reported that the anionic tricoordinated species such as
[PAL>(OAC)] are the active species responsible for the oxidative addition when
Pd(OAC), and PPh; are used as the catalytic system (Scheme 2).5!
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L,Pd(OAC), —\- |L,Pd(0AC)] ~ — L~ [LPd(OAc)|
L= PPh, | Aco—pPh, |
leo

ACOH + PhsPO + H* | LyPd(OAc)|
Scheme 2. Formation of active anionic L,Pd(0) specie from Pd(OAc)2 and PPha.

As far as the organo-halides are concerned, aryl halides undergoe undergo
oxidative addition to the L,Pd(0) specie via two pathways i.e., via a nucleophilic aromatic
substitution pathway, or a three membered metallo-cycle pathway,%® 62 8 (Scheme 3).
These pathways have been supported by the DFT studies as well.®* Moreover, an electron
transfer pathway has also been suggested for oxidative addition, however, such pathways
are not common for the Pd-catalyzed cross-coupling reactions.®® In contrast, the Cu, Ni,
Ir, and Pt catalyzed reactions have been found to follow such pathways. Evidences for
the formation of 5 membered coordinated species have also been proposed for the
oxidative addition.®® Regardless of the pathways, the addition of organic halides to the

metal proceeds either in a concerted or a stepwise addition mechanism manner.5®

Nucleophillic Aromatic Substitution Pathway (a)

X
X

LPd. X L,Pd

Three Membered Metallo Cycle Pathway (b)

X
X

+ k4
LPd:-5X L,Pd
L,Pd(0) + © _ . - - ©

Scheme 3. Mechanistic pathways for oxidative addition.

Among the aryl halides, the relative ease of oxidative addition follows the general
order, Arl > ArBr >> ArCl >>> ArF.%7 This classical order of oxidative addition can be
reversed i.e., ArCl > ArBr > Arl, if electronically rich and bulky ligands such as NHC’s,

P(BuY)s, Buchwald and Hartwig ligands, etc, containing Pd catalysts are used.% It is for

9
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this reason, on the basis of the relative affinity of the aryl halides to undergo oxidative
addition, the oxidative addition is the rate determining step of the catalytic cycle in many
cases. Finally, the addition of aryl halides to the Pd metal initially forms a cis-species
which undergo isomerization to a trans-species at different rates and sometimes the rate
of isomerization is extremely fast. In case, when the rate is extremely fast, the
isomerization step becomes fast too, as a result the initial cis-species cannot be observe

and only the final stable trans-species has been observed.®?

1.3.2 Transmetalation and Isomerization

Once the metal undergoes oxidative addition with the organo halides exchange
of organic coupling partners occurs between the formed L.Pd(I1)RX species and the
organometallic reagent (R>M).%® The difference in the electronegativity of the two metals
is considered to be the driving force responsible for a successful transmetalation step. In
general, the electronegativity of the metal of the organometallic reagent used for the cross
coupling reaction must be less than that of Pd metal for the catalytic cycle to proceed
forward.%® A four-membered cyclic associative pathway has been proposed for the
transmetalation step which after cleavage forms a specie containing both the organic
coupling partners on the Pd metal, i.e., LaPd(I1) R'R? species (Scheme 4). In addition,
dissociative open pathway has also been proposed for the Stille cross-coupling reaction.”
On the basis of kinetic and spectroscopic studies including the nature of the substrate and
the reaction conditions, the transmetalation has also been proposed to be the rate

determining step of the catalytic cycle in some cases.’ 7

/x X
L,Pd
2 L

: |
R @ " @ — OF’F—“Z

L
Scheme 4. Proposed four membered cyclic pathway for transmetalation.

The species formed after cleavage of the four membered intermediate initially
produces a specie with both the organic coupling partners trans to each other i.e., trans-
L.Pd(I)R'R?, yet evidence for the direct cis-L.Pd(I1)R'R? species formation are also
present in the literature.%® The trans-L.Pd(I1)R'R? specie then undergoes isomerization

10
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to form a cis-L.Pd(I))R'R? intermediate, that is why, isomerization has been added
additionally in the title here along with the transmetalation step. Nonetheless, in most of
the catalytic cycles the isomerization step has not been discussed separately mainly
because such events occur in all of the major steps of the catalytic cycle. The preference
of the cis- over trans- before reductive elimination is proposed to be due to the fact that
cis-intermediate allows preferred z-orbital interaction for the new C-C bond formation
(Scheme 5).”

0
1
0

0\5

Scheme 5. Cis-trans Isomerization.

1.3.3 Reductive Elimination

Reductive elimination provides the cross-coupling product in the final step of the
catalytic cycle by the simultaneous detachment of the organic coupling partners from the
Pd metal and regeneration of the L,Pd(0) specie.”® ™ Since, the organic coupling partners
eliminate and the Pd metal is reduced from L,Pd(ll) to L,Pd(0), this step is named
reductive elimination (Scheme 6). The L,Pd(0) specie after reductive elimination renters
into the second cycle and begins the next catalytic cycle. The use of sterically crowded
ligands containing electron donating groups is the major driving force for a smooth
reductive elimination step.”>’® A unimolecular decomposition pathway has been

proposed for the reductive elimination step.’ 8

L
|

@—Pd—L > @Rz + LnPd(0)
|

RZ

Scheme 6. Proposed pathway for reductive elimination.

The p-hydride elimination and the homocoupling product formation are the

common competing side reactions in the catalytic cycle along with the cross-coupling

11
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reaction. The p-hydride elimination side reaction can be prevented by the use of f-
substituted substrates including use of bulky ligands containing strong electron releasing
groups. In the same way, the homo-coupling side reactions are due to the scrambling of
ligands and organic coupling partners on Pd and also can be avoided or at least minimize
by using bulky ligands containing strong electron releasing groups.8%® Depending on
the rate of detachment of organic groups from the Pd-metal, the reductive elimination

has also be proposed to be the rate-determining step by many researchers.8*

1.4 A Brief Literature Survey of Suzuki-Miyaura Cross-coupling

Reaction using Nitrogen (N)-based Ligands

The palladium-catalyzed cross-coupling reaction between aromatic halides or
pseudohalides and organoboronic compounds, is generally known as Suzuki cross
coupling reaction or Suzuki-Miyaura cross coupling reaction. Primarily this method was
introduced as a powerful tool for the construction of substituted biaryl motifs.®® It gain
much attention in both academia and industries, with the passage of time and
advancements in knowledge and techniques (Scheme 7). Today, this method has
deepened its roots in various fields including materials, pharmaceuticals, agricultural
pesticides, dyes and polymer industry, etc. The Suzuki-Miyaura cross-coupling reaction
protocol has been widely studied due to several notable reasons. The mild reaction
conditions, broad accessibility and stability of organoboron coupling partners, display a
wide range of functional group tolerance; and relatively less toxic starting materials and
by-products, are among few of them,26.87. 88

X
S - B(OH), [Pd] / Ligand +—R?

Base, Solvent Rl—.

X = Halides, pseudohalides; R, R? = H, Aryl, Heteroaryl, Alky!

Scheme 7. General protocol for Suzuki-Miyaura reaction.

Although several factors influence the outcome of the cross-coupling reaction,
the most significant factor influencing the successful execution of a cross-coupling
reaction depends largely on the nature and type of ligand used. That is why a huge amount

of efforts have been put in research by both academia and industries to develop novel
12



Chapter 1

and efficient ligands.®%* Despite the use of original phosphine based ligands, including
PPhs, electronically rich sterically bulky dialky biarylphosphines and trialkyl
phosphines, ferrocenyl phosphines, palladacycles, etc, in cross-coupling reactions,*
efforts to synthesize modified and more efficient phosphine based ligands is still active
part of ongoing research (Figure 8).%6% Nevertheless, synthesis of modified ligands
based on phosphines is still part of ongoing research, promising efforts for the
development of phosphine free ligand systems for cross-coupling reactions and other

reactions has also been seen rapidly growing during last 3-5 decades.-1%2

DavePhos: Y = Cy; R; =R3; = H; R, = NMe,
O JohnPhos: Y = t-Bu; R; =R, =R; = H
P(Y),

MePhos: Y =Cy; R; =R3=H, R, =Me

P Ry R,  SPhos: Y=Cy; R;=R,=0Me;Ry=H
O RuPhos: Y=Cy;R;=R;=0i-Pr;R;=H
XPhos:  Y=Cy;R;=R,=Ry=i-Pr
Triphenylphosphine

R
3 Bulky Dialkylbiarylphosphines

Bu-t

== :

R\P/R FE 2 P<
! PR d R

R (&D}/ 2 t-Bu Pd_
27 Br

R = t-Bu or Cy or i-Pr R = t-Bu or Ph R = t-Bu or Ph \/"
Trialkylphosphines Ferrocenylphosphines Palladacycles

Figure 8. Representative phosphine based ligands and palladacycles.

A variety of phosphine-free N-based ligands have been synthesized and reported
in literatures.%*-1% One of the several beneficial aspect of using phosphine-free catalytic
systems is to overcome the difficulty associated with catalyst instability and their impact
on human health and environment, which have been commonly encountered while using
phosphine based catalytic systems.’®® These difficulties increase by many folds when
such catalytic systems are used for the industrial scale production of chemicals and other
useful products. Therefore, development of stable catalytic systems having no or at least
minimum impact on human health and environment are much needed challenges and
tasks for chemists nowadays. One solution chemists have provided so far is the
phosphine-free catalytic systems. The use of N-based ligands and catalytic systems is a
useful alternative in this aspect, thus they are gaining substantial attention currently.
Phosphine free N-based ligands used to achieve such shortcomings includes the simple

13
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N-based alkyl amines,®

aromatic systems containing N- as heteroatom such as
pyridine, ' bis-pyridines, phenanthroline,%® C-based N-heterocyclic carbenes and ionic
liquids,'%5-198 N-based 2-aryl-2-oxazolines,'% 1 CAN-based aryloxime palladacylces,*'
N-based alky or arylimines,'!? NAN-based diimines, N*N”N- and N*C”N-based pincer
type ligands, and their hybrids (Figure 9).1** Since the use of N-based ligands for the
cross coupling reactions exhibit distinctive benefits over corresponding phosphine
ligands, especially considering health and environmental restrictions, their sensitivity
towards air and moisture, sometimes cost issues among other factors.!'41t7 Therefore,
one of the objectives of this thesis was aimed for the synthesis of N-based ligands and
catalysts, and to explore their applications in the cross-coupling reactions. Hence, the
following section has been mainly dedicated for the literatures related to N-based ligands

used for the Pd-catalyzed Suzuki-Miyaura cross-coupling reactions.

L ® ®
[\
NH =N _N /&NVN@\
) N
= | =

N-hetrocyclic carbene

Cyclohexylamine Bispyridine Phenathroline
/ \
0} 0
0} 0]
\ /
7 N K/N N\)
N N / \
—N N= .
Oxazolines

Rigid and flexible Imine ligands

—N

R R
N =N N,
\R —— R —
“N—OH Wa R NN
AN R B v B
a N N, y N,
. .

R R
Oxime palladacycle NACAN- and NANAN-type Pincer ligands (R = Alkyl or Aryl)

Figure 9. Representative phosphine-free ligands and palladacycles.

The alkyl amine based ligand systems are the simplest N-based ligand systems in
terms of both cost and stability used for the cross coupling reactions (Figure 10). Alkyl
and aryl amines have generally been utilized as bases in the cross coupling reactions,

nevertheless they display characteristics of ligands as well by stabilizing the reactive
14
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metal intermediates. Tao and Boykin have used a simple alkyl amine system based on
amines/Pd(OAc): to obtain substituted biaryls form aryl bromides and aryl boronic acids
at room temperature. Excellent yields of the cross coupling products were achieved by
using Dicyclohexylamine and 1-Adamantylamine as ligands.!%® Likewise, Li and Leu
have demonstrated that DABCO/ Pd(OAc). can be used as an inexpensive and highly

efficient catalytic system for the cross-coupling of aryl halides with aryl boronic acids.!*®
119

YO LA

Dicyclohexylamine  1-Admantyl amine DABCO

Figure 10. Representative amine based ligands for Suzuki cross-coupling reaction.

The C-based N-heterocyclic carbenes (VHC'’s) have emerged as a remarkable
new class of ligands for cross coupling reactions since last couple of decades.*?° So far,
the most promising contestants to replace the corresponding phosphine ligands in cross-
coupling reactions are the NHC’s based ligands and catalytic systems.'? Some NHC-
based catalytic systems display outstanding catalytic efficiencies that one can perform
extremely challenging cross-coupling reaction with ease and at room temperature.*?? For
example, Gereon and co-workers were able to successfully synthesize the highly
sterically hindered tetra-ortho-biphenyl in excellent yield by using a simple catalytic
system based on Pd(OAc)2/1box5+HOTT, n = 8 (Figure 11).1%

Ry =Bu; R, =Me; X = Br 0 0 lbox1+HOTf, n = 1

/@\ Ry =Et; Ry =Me; X =Br ( I\ 7 Ibox2+HOTf, n = 2

R NN~R, R, =Mes;R,=Mes; X = OTf NN Ibox3+HOTf, n = 3
X Ry = Ad; R, = Ad; X = OTf oTf Ibox4+HOTf, n = 4

n n  |box5+HOTf, n=8

R, = Cy; R, = Cy; X = OTf

Figure 11. Representative precursors for C-based NHC ligands used for the Pd-catalyzed
Suzuki-Miyaura cross-coupling reaction.

Another fascinating aspect of NHC's is that the cross-coupling products can be
obtained in excellent yields by using a very low catalyst loading, even ppm scale catalyst
loadings are known to catalyze cross coupling reactions using NHC based catalytic
systems. The excellent efficiency of NHC based catalytic systems is due to the strong

15
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NHC-Pd bond, which prevents the inactive palladium black formation. Moreover, the
facile electron donating capability of NHC'’s facilitates a very smooth oxidative addition
step, while the presence of bulky aryl groups such as mesityl group or bulky alkyl groups
such as adamantyl or cyclohexyl groups helps in the smooth reductive elimination step
of the catalytic cycle.!?* Likewise, imidazole based ionic liquids have been used as
solvent medium and ligands for the Suzuki-Miyaura cross-coupling reaction.'® For
example, Xiao and Shreeve have shown that using 2,2 -biimidazole as solvent medium
and ligand and PdCl. as Pd precursor, very good yields of the cross coupling products
can be obtained. In addition, they have demonstrated that the developed catalytic system
can be recycled up to 4 times without any loss in the catalytic activity.?®

The aromatic systems containing N- as heteroatom such as pyridine, bis-pyridines
and phenanthroline though are not so active in catalyzing the Suzuki-Miyaura cross-
coupling reaction directly, nevertheless derivatives of pyridine, bis-pyridine and
phenanthroline have shown excellent results in this regard (Figure 12). Wu and co-
workers have used a 2,2 -bipyridyl system to obtain cross coupling products in excellent
yields, they further showed that the catalytic system can be recycled various times.? In
the same way, a variety of di(2-pyridyl)methylamine based ligand system have been
successfully utilized for Suzuki-Miyaura cross-coupling reaction. These ligands have the
advantage of using water as the solvent medium, since they are soluble in water,
therefore, the probability to recycle the catalytic system maximizes.1% 127 In the context
of phenanthroline, Yang and co-workers have described a Merrifield resin supported
phenanthroline for Suzuki-Miyaura cross-coupling reaction in water. The catalytic

system was recyclable up to 10 cycles with a slight loss in the activity.*?3 129

_ . + -
Br Me;N NMe, Br )J\
HN” "R R=Me, NHCy

N 7N A A
N N | | =
=N N~ |
> N
R (0]
e SN
AN N AN | =
| | ©
=N N =
R = Aryl, Alkyl

Figure 12. Representative bis-pyridine and phenanthroline based ligands.
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Another attractive class of ligands that has fascinated the outcome of the Pd-
catalyzed cross-coupling reactions are imine based ligands. Both mono- and di-imine
based ligands have been successfully utilized in the Suzuki cross coupling reaction
(Figure 13). Yang and co-workers have prepared various Pd complexes derived from a
rigid mono-imine ligands and evaluated their potential in the Suzuki cross coupling of
aryl bromides and aryl boronic acids.**® The diimine dialkyl or diaryl substituted ligands
patented by Nolan and Grasa, have been successfully used in Suzuki-Miyaura cross-
coupling reactions.’®! For instance, very good vyields were obtained when N,N’-
dicyclohexyl-1,4-diazabutadiene was used as the ligand, while the corresponding
aromatic diimines, were slightly inactive and only poor results for the Suzuki-Miyaura

cross-coupling reactions were obtained.% 132133

Ar Ph
\N /RN )
7 N\ Z

I R—N"  "N—R K=

< / Fe

R = Cyclohexyl, N
Ar = Mesityl or Adamantyl, é/ \7
2,6-i-Pr,-CgH, 2,2-(i-Pr),-Ph Ph

Mono-imines Di-imines Ferrocenyldiimine

Figure 13. Representative imine based ligands.

Other families of N-based ligands used for Suzuki-Miyaura cross-coupling
reaction includes oxazoline, imine and oxime based palladacycles (Figure 14).
Oxazoline ligands and the palladacyles derived from oxazolines have been used to
perform Suzuki-Miyaura cross-coupling by Ibrahim and co-workers.’** N-based
palladacycles such as oxime and fluorinone based palladacylces were used by Alonso
and co-workers as versatile and efficient catalysts to perform a variety of C-C bond-
synthesis reactions including Suzuki cross coupling reaction.'*® Moreover, Weissman
and Milstein have used an air and thermally stable cyclometallated imine palladacycle to
perform Suzuki-Miyaura cross-coupling reaction.!!? On the other hand, Luo and co-
workers have demonstrated that novel bis(oxazole) pincer type palladacylces are robust
catalysts for Suzuki cross coupling reaction. The Suzuki-Miyaura cross-coupling
reactions were performed under aerobic conditions with low catalyst loadings and the

corresponding cross-coupling products were obtained in moderate to excellent yields.**

17



Chapter 1

¢ OH
N Pd—N~
,N4< @(NOH A |
Pd
s ™ a
F;COC 7 (o

Imine palladacycle Oxime palladacycle Fluorenone palladacycle
x\
=N——Pd—N=
R R
0] 0]
(o] \ / 0
K/N N\)
R = OEt or Ph: X=H or Br
Oxazolines Oxazoline palladacycle

Figure 14. Representative imine, oxime and oxazoline palladacycles.

Lastly, several NAN~N- and N"C”N-type Pincer ligands have been describe in
literatures to perform Suzuki-Miyaura cross-coupling reaction under mild reaction
conditions (Figure 15).1% For instance, Yadav et. al., reported new phosphine-free 2,6-
bis(pyrrolyl)pyridine based N*N~N-type Pincer ligands and their corresponding Pd (II)
complexes which competently catalyze the Suzuki- cross-coupling reaction of aryl
bromides and phenylboronic acid in aqueous medium.**® In the same way, Jerome et. al.,
have synthesize new phosphine-free N*N”~N-type Pincer ligands and their corresponding
Pd (1) complexes. Their efficiency in the Suzuki- cross-coupling reaction of aryl
bromides and aryl boronic acid in a 1:1 mixture of ethanol and aqueous medium was
evaluated, as a result a moderate to excellent yields of the cross coupling product were
obtained.’®® As far as the NAC”N-type Pincer ligands are concerned, several
bis(oxazoline- and bis(thiazole)-N"C"N-type Pincer ligands and their corresponding Pd
complexes by Luo and co-workers showed excellent activities in the Suzuki—Miyaura
coupling of aryl halides with aryl boronic acids for the synthesis of biaryls. They further
demonstrated that the catalytic system was scalable for the green synthesis of the key

intermediates of bioactive LUF5771 and its analogues.*°
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Figure 15. Representative Pincer type ligands.

In conclusion, the use of phosphine-free N-based ligands surely demonstrate

distinct benefits over the corresponding phosphine based ligand system, in particular

when the reactions are performed for large-scale production of fine chemicals and

pharmaceuticals. Therefore, one part of this doctoral thesis has been aimed for the

synthesis of N-based ligand and to explore their application in the cross-coupling

reactions and other challenging organic transformations. In addition, we aimed to achieve

the following objectives through this doctoral study.
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1.5 Objectives

We have aimed to achieve the following objectives;

Synthesis of new and efficient N-based ligands and Pd-catalysts.
Characterization of ligands and catalysts.

Scope of the ligands and catalysts for the Pd-catalyzed cross-coupling reactions,
focusing Suzuki-Miyaura cross-coupling reaction.

Mechanistic studies of the Suzuki-Miyaura cross-coupling reaction by

identification of key intermediates via ESI mass spectrometry technique.
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Chapter 2 Synthesis of Mono- and Bis-Pyrazoles Bearing Flexible p-
Tolyl Ether and Rigid Xanthene Backbones, and their
Potential as Ligands in the Pd-Catalyzed Suzuki-Miyaura
Cross-coupling Reaction
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2.1 Introduction

The transition metal complexes of phosphorous (P), nitrogen (N), sulphur (S),
and oxygen (O)-based ligands and their hybrids have provided the chemist a wide
opportunity and a quasi-exhaustive tool to create C-C bonds of significant interest.'4% 142
The reactivity and the catalytic behavior of these complexes largely depend on the nature
of the coordinating atoms, their relative position within the molecular architecture, and
the relative flexibility or rigidity of the ligand backbone, as they greatly influence the
steric and electronic properties of the resulting complex.**® 144 Therefore, the fine-tuning
of these properties in order to synthesize ligands of particular interest has been an
interesting strategy, since decades.

In this perspective, a plethora of ligands with flexible backbones such as
DPEphos and rigid backbones containing bulky substituents such as '‘Bu-Xantphos and
other xanthene scaffolds have been widely described in literature.}*-147 In addition to the
diphosphines bearing xanthene backbone, the corresponding diamido,*® diamine,4
disilyl,*° dithiolates™ as coordination units have also been described. Moreover, these
xanthene-derived ligands possess wide bite angles, they can coordinate with a variety of
metals and the corresponding metal complexes have been successfully applied to a wide
variety of reactions, such as: hydroformylation, alkoxy-carbonylation, hydrocyanation,
cross-coupling reactions (for C-C and C—X bond formation) and carbonylative coupling
reactions.t®2

Phosphine Ligands

PPh, PPh, PPh, PPh,
OO (/O O\I‘O

DFEphos Xantphos

Pyrazolyl Analogues

: e
S 50,

Figure 16. Pyrazolyl analogues of DPEphos and Xantphos.
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Regardless of the undisputed extraordinary and effective tendency of the
phosphine ligands in the Pd-catalyzed cross-coupling reactions, the search for the
synthesis of equally efficient alternate ligands has become indispensable due to the
relative high cost and difficulties associated with their synthesis, handling and moisture
sensitivity, among other factors.1%> 1 Among the cross coupling reactions, the Suzuki-
Miyaura (SM) cross-coupling reaction has been widely explored as a powerful tool for
the C-C bond synthesis due to several reasons.*! 1+15" A huge amount of effort for the
further fine tuning of this protocol by using greener reaction conditions, including the
designing of new nitrogen-based ligands and catalytic systems, has been dedicated in
both academia and industry worldwide, 8 15°

Thus far, the majority of the N-based ligands for the Pd-catalyzed C-C bond
synthesis are based on alkyl or aryl amines,!® 1% pyridines,*! imines,'® imidazoles in
the form of N-heterocyclic carbenes (NHC'’s),'%® oxazolines,** and their hybrids,®*
while the corresponding pyrazole based ligands have been relatively less explored.185 166
Among the few examples reported in the literature, hybrid unsymmetrical
benzimidazolium-pyrazolyl N,N-ligands, pyridine-pyrazolyl N,N-ligands and bulky
monodentate pyrazolyl ligands have been successfully applied for the Pd-catalysed
Suzuki cross-coupling reactions. 6”16 Nevertheless, the pyrazole based catalysts have
been employed in other important C-C bond forming reactions such as

170 polymerizations and copolymerizations.!’* Previously, we have

oligomerizations,
reported some palladium complexes of bis-pyrazolyl tridentate ligands and demonstrated
their application in the Suzuki cross-coupling reaction.’? To the best of our knowledge,
pyrazole ligands based on a flexible p-tolyl ether and rigid xanthene backbone have not
been described in the literatures, inspiring us to synthesize pyrazolyl analogues of the
DPEphos and Xantphos, respectively (Figure 16), and to explore their potential as
ligands in the Pd-catalyzed Suzuki-Miyaura cross-coupling of aryl halides with aryl

boronic acids.

2.2 Results and Discussion
A two-step bromination/Ullmann coupling reaction sequence was designed in
order to achieve the synthesis of new pyrazolyl analogue of DPEphos. p-tolyl ether was

chosen as the starting material to avoid the o/p selectivity issues in the bromination step
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through blockage of the p-position. The dibromination of p-tolyl ether was successfully
accomplished by treating it with NBS using 20 mol% of ammonium acetate as catalyst in
acetonitrile at room temperature, (Scheme 8).1® After chromatographic separation
followed by recrystallization in n-pentane, the titled dibromo product, 1,1’-0xybis(2-
bromo-4-methylbenzene) (1) was obtained in 68% yield. It is important to mention that
this dibromination strategy is a much milder and simpler approach as compared to the

only other protocol reported in literature, which employs an ortho-lithiation strategy.'’

Br Br

0 o}
CHCN, rt

16 h 1 (68%)

Scheme 8. Bromination of p-tolyl ether.

Then 1 was used as substrate for the Ullmann coupling reaction with 1H-pyrazole
(Scheme 9). The reaction of 1 with 1H-pyrazole (a) using a Cu2O/phenanthroline
catalytic system in DMF at 140 °C for 48 hours of magnetic stirring provided the
symmetrical bis-pyrazolyl analogue la in 47% isolated yield, along with 37% of the
dehalogenated mono-pyrazolyl derivative la’ as a byproduct (Table 1, Entry 5).
Attempts to optimize the catalytic system by using different Cu catalysts, and base
screenings provided no significant improvements in the selectivity for compound 1a and
are summarized in Table 1 (Entries 1-4). Despite the moderate yield for 1a, this protocol
additionally allows the isolation of the mono-pyrazolyl derivative 1a’, which will be
useful as a part of a library of pyrazole-based compounds for further investigation in our

group, such as photophysical studies.
LN,
N N

" \ / \
Br Br \ / N
CUZO N’
(0] .
. // \\N Phenanthroline 0 + 0
N7 Cs,CO3, DMF, 48 h
H
1 a

1a (47%) 1a’ (37%)

Reaction conditions: Cu20 (20 mol%), phenanthroline (44 mol%), 1 (1.0 eq.). a (3.2 eq.),
Cs2C0s (3.0 eg.), DMF (4 mL), 140-160 °C, 48 h.

Scheme 9. Synthesis of flexible bis-pyrazolyl ligands 1a and 1a’.
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Table 1: Ullmann coupling reaction between 1 and 1H-Pyrazole.

Yield (%)°
Entry [Cu] (mol%o) Ligand (mol%b) Base T (°C)

la la’

1 Cul (20) - Cs2COs 120 19 -

2 Cul (20) Phenanthroline (44) ~ Cs2COs 130 28 21
3 Cu20 (20) - Cs2COs 130 29 23
4 Cu,0 (20)  Phenanthroline (44)  K,COs 130 31 22
5¢ Cuz0 (20) Phenanthroline (44)  Cs,COs 130 47 37
6° Cu20 (10) Phenanthroline (22)  Cs,COs 140 33 27

a) Reaction conditions: [Cu] (x mol%), Phenanthroline (x mol%) 1 (1.0 eq., 0,5 mmoles
scale), 1H-pyrazole (3.2 eq.), Base (3.2 eq.), DMF (4 mL), 120 - 140 °C, 24 h. b) Isolated
yield. c) 48 h.

Single crystals suitable for X-ray diffraction study were collected from
concentrated pentane and ethyl acetate:hexane (10:90) solutions for compounds 1 and
1a, respectively. The single crystal X-ray diffraction study revealed that 1 crystallizes in
the triclinic P(-1) space group, whereas 1a crystallizes in the monoclinic P(21/c) space
group. The solid-state structures of 1 and la are shown in Figure 17 and the main

crystallographic data and structure refinement parameters are summarized in Table 2.

Br2 N2 v
Br1_ @ /? )
/‘ (‘91 , = \,’ \A
Cer” TN > X
e ~ / e, e
AP GG Lt B0
1 la

Figure 17. Molecular structures of 1 and la with the key atoms labelled (thermal

ellipsoids drawn at 50% probability). For clarity, hydrogen atoms have been omitted.

Next, we have used the commercially available 4,5-dibromo-2,7-di-tert-butyl-
9,9-dimethyl-9H-xanthene (2) as a substrate in the Ullmann coupling step to obtain the

rigid pyrazolyl analogues of 'Bu-Xantphos, 2a-2b*. When the same reaction conditions,
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Table 2. Crystallographic data and structure refinement parameters for 1 and 1a.

1

la

Molecular formula
Formula weight (g mol)
T (K)

Wavelength (A)

Crystal system

Space group

a, b, c(A)

a By (°)

V (A%

7

pealed (g M)

w (mm)

F(000)

Crystal size (mm)

0 range (°)

Limiting indices (h, k, 1)

Reflections collected
Reflections unique (Rint)
Completeness t0 Omax (%)
Data/restraints/param.
Absorption correction
Min. and max. trans.

Ru [1>26(1)]

WR; [I > 26(1)]

Ri (all data)

WR (all data)

S on F?

Largest diff. peak and
hole (e A®)

C14H12Br,0
356.06
293(2)
0.71073
Triclinic

P(-1)

7.439, 7.977, 12.439 (5)
98.873, 100.877, 108.201 (5)

670.4(7)

2

1.764

6.027

348

0.26 x0.19x0.14
2.979 — 27.545
-9<h<9
-10<k<10
-16<1<16
28840

3091 (0.0412)
99.8
3091/0/154
Gaussian
0.5529 and 0.7456
0.0363

0.0943

0.0519

0.1036

1.055

0.693 and -0.683

Ca20H1sN4O
330.38

293(2)

1.54178
Monoclinic

P2i/c

13.5819(2), 8.27900(10), 15.9832(3)
90, 106.8260 (10), 90
1720.28(5)

4

1.276

0.652

696
0.28x0.21x0.14
3.399 - 78.912
-17<h<17
-10<k<10
20<1<18
30475

3688 (0.0463)
100.0
3688/01/226
Gaussian

0.8612 and 0.9389
0.0450

0.1246

0.0585

0.1365

1.044

0.257 and -0.209
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described above for the synthesis of compound la were applied, an incomplete
conversion was observed for the reaction between 2 and a. Therefore, a slight higher
temperature (160 °C) was used, as a result the reaction of 2 with a as the nucleophile

delivered the symmetrical bis-pyrazolyl analogue 2a in 41% isolated yield (Scheme 9).

Single crystals suitable for X-ray diffraction study of 2a were obtained by slow
diffusion of hexane into the concentrated DCM solution of 2a. Moreover, two
independent molecules were found in the asymmetric unit of 2a. Both of them were
identical, therefore, only one of the molecular structures is represented below in Figure
17. In addition, as observed for the dibromo derivative 1, the mono-pyrazolyl
debrominated byproduct 2a’ was also obtained. Unfortunately, the difficulty in
chromatographic separation between 2a and 2a” prevented an accurate quantification of
2a’, nevertheless, a combined yield of approx. 10% for 4 reactions was roughly
calculated (Scheme 10). A lower Cu20 loadings (10 mol%) for the reaction also led to
an incomplete conversion. At this point, it is worthy to mention that the only reported
example of an Ullmann reaction between a related aryl-bridged tetra-bromo-xanthene
scaffold and 1H-pyrazole (a) was achieved by using Cu.O under ligand free and

microwave irradiation conditions.1”

Cu,0 4_( 7_> F(
Phenanthroline
O O ’ Cs,CO,, DMF, 48 h O O O O
‘Bu By

aor b
a:R;=H 2a (41%) (~10%); R, =H
b: R; = Mesityl 2b (63%) 2b (17%) R,=Br

Reaction conditions: Cu20 (10-20 mol%), phenanthroline (22-44 mol%), 2 (1.0 eq.). a
orb (3.2 eq.), Cs.CO3 (3.0 eq.), DMF (4 mL), 140-160 °C, 48 h.

Scheme 10. Synthesis of pyrazolyl analogues of 'Bu-Xanphos 2a - 2b".

Surprisingly, the scenario was different when we used 3-mesityl-1H-pyrazole (b)
as the nucleophile. The synthesis of the symmetrical bis-mesitylpyrazolyl ligand 2b by
reaction of 2 with b was thus accomplished by using a lower Cu2O loading. 2b was
obtained in exceptionally higher yield (63%). Another difference noticed for this reaction

is that the debrominated mono-pyrazolyl byproduct was not obtained. In contrary, the
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byproduct 2b" was isolated in 17% yield and also retained the bromine atom in its
structure (Scheme 10). This result clearly indicated that 3-mesityl-1H-pyrazole (b) is a
better coupling partner for the Ullmann reaction than 1H-pyrazole (a). Hence, the
reaction proceeded under milder conditions, especially with low CuO loadings,
providing both better selectivity and yield of the 2b and preventing the C-Br reduction

after the first Ullmann coupling.

Single crystals suitable for X-ray diffraction of 2b and 2b™ were collected from
concentrated 10% ethyl acetate and hexane solutions of the pure compounds. Both 2b
and 2b" crystallizes in the triclinic P(-1) space group. The solid-state structures are shown
in Figure 18 below and the main crystallographic data and the structure refinement
parameters are summarized in the Table 3. Moreover, two independent molecules were
found in the asymmetric unit of 2b". Both of them were quite similar, therefore, only one
of the molecular structures is represented below in Figure 18.

2b 2b°

Figure 18. Molecular structures of 2a, 2b and 2b" with the key atoms labelled (thermal

ellipsoids drawn at 50% probability). For clarity, hydrogen atoms have been omitted.
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Table 3. Crystallographic data and structure refinement parameters for 2a, 2b and 2b".

AN

2a 2b 2b’
Molecular formula Ca9H34N4O Cu7Hs54N4O CssH41BrN2O
Formula weight (g molt)  454.60 690.94 585.61
T(K) 292(2) 100(2) 100(2)
Wavelength (A) 0.71073 1.54178 0.71073
Crystal system Triclinic Triclinic Triclinic
Space group P(-1) P(-1) P(-1)
2 b.c(A) 12.8681(16), 14.6221  12.1744(3), 12.8278 12.3909(4), 15.3171
(18), 14.7167(17) (3), 14.9523(4) (5), 17.5440(6)
75.649, 72.959, 100.7726(14), 103.3895  70.7230, 79.9150,
ahu? O 89.887(4) (13), 114.1532(12) 76.2150(10)
VvV (A% 2557.4(5) 1965.65(9) 3035.57(18)
z’ 4 2 4
pealed (g cMd) 1.181 1.167 1.281
2« (mm-t) 0.073 0.535 1.384
F(000) 976 744 1232

Crystal size (mm)
0 range (°)
Limiting indices (h, k, I)

Reflections collected
Reflections unique (Rint)
Completeness to Omax (%)
Data/restraints/param.
Absorption correction
Min. and max. trans.

R1 [1>20(1)]

WR2 [1 > 26(1)]

R, (all data)

WR; (all data)

S on F?

Largest diff. peak and
hole (e Ad)

0.394x0.175x 0.126
2.956 to 27.266
-16<=h<=186,
-18<=k<=18,
-18<=I<=18
118038

11384 (0.1467)
99.8
11384/0/613
Gaussian

0.7455 and 0.6524
0.0991

0.2433

0.1825

0.3028

n/a

0.721 and -0.368

0.14x0.14x0.12
3.204 - 62.381
-13<h<13
-14<k<14
-17<1<17
18591

6210 (0.0416)
99.0
6210/0/469
Gaussian

0.8412 and 0.9402
0.0595

0.1497

0.0819

0.1643

1.044

0.577 and -0.576

0.23x0.15x0.10
2.656-26.372
-15<h<i15
-19<k<19
-21<1<21
106878

12409 (0.0618)
99.9
12409/0/725
Gaussian

0.6987 and 0.8279
0.0455

0.1168

0.0598

0.1256

1.022

5.650and -1.896
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The isolation of the byproduct derivative 2b" opens the possibility of expanding
the scope of the reaction, allowing us to synthesize a hybrid imidazolyl-pyrazolyl
xanthene derivative 2bc. In order to demonstrate this, 2b" was treated with 1H-imidazole
(c) under similar conditions described for the synthesis of 2b, as a result hybrid 2b"c was
obtained in 78% isolated yield (Scheme 11).

Mes

Z/ /\N Cu,0 (10 mol%) / /\N <_>
N Br N Phenanthroline (22 mol%) N

0] &‘¥ -

O O Ny Cs,CO, (3 equiv.), DMF O O
(o]
tBy H 140°C, 48 h
(3.2 eq.)
2b' c 2b'c (78 %)

Scheme 11. Synthesis of hybrid analogue 2b"c from 2b".

In addition to this, a selanyl-pyrazolyl hybrid analogue 2a’d was synthesized by
using a C-H activation protocol, recently described in the literature.*’® Using 5 mol% of
PdCl2 and 5 mol% CuCly, the reaction between 2a” and diphenyl diselenide (d) in DMSO
delivered the hybrid analogue 2a’d in 58% isolated yield (Scheme 12).

F\N /@ PdCl, (5 mol%) F\ /@

e CucCl, (5 mol%)

O O Se DMSO, 120 °C, 16h O O
[) (

2.0eq.)
2a' d 2a'd (58 %)

Scheme 12. Synthesis of hybrid analogue 2a’d from 2a’.

With the new pyrazolyl analogues in hand, we then moved to evaluate their
potential as ligands in the Suzuki-Miyaura cross-coupling reaction of aryl halides and
aryl boronic acids using Pd(OAc). as palladium source. For this purpose, we have
selected the symmetrical bis-pyrazolyl analogue 2a for the Pd-catalyzed SM cross-
coupling reaction between 4-bromotoluene and phenylboronic acid as our model ligand

and substrates, respectively (Scheme 13).
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Br B(OH),  Pd(OAc), (1 mol%)
/©/ n ©/ 2a (1.1 mol%)
Base(1 mmol) ‘/‘
0.75 mmol Solvent, 80 °C,

0.5 mmol
Cross- coupllng
product

Homocoupling
byproduct

Scheme 13. Model SM reaction used for optimization and ligand evaluation.

We started to optimize the reaction conditions for the Pd(OAc)2/2a, by screening

different solvent and base combinations (Scheme 13 and Table 4).

Table 4. Solvent, base and Pd-source effects on the model SM cross-coupling reaction.

Br B(OH), [Pd]/ 2a O O
/©/ + ©/ Base, Solvent B O + O
80°C,6h

Conversion CCYield HC Yield

Entry [Pd] Base Solvent %)" (%)" %)"
1 Pd(OAC), KOH MeOH 74 66 1
2 Pd(OAC), K3sPO, Dioxan 48 7 1
3 Pd(OAC), Cs,COs DMF 87 61 1
4 Pd(OAc), K2COs DMF 99 98 1
5 Pd(OAC); K2COs MeOH 75 44 1
6 Pd(OAC); K.COs  THF:MeOH 65 4 2
7 Pd(OAC), K2CO3 THF 49 1 2
8 Pd(OAC), K2CO3 Dioxan 48 2 1
9 PdCl, K2COs DMF 97 88 4
10 PdCI(COD)  K,COs DMF 72 55 3
11 PdCI(PhCN);  K.COs DMF 93 92 2

a) Reaction conditions: [Pd] (1 mol%), 2a (1.1 mol%), 4-Bromotoluene (0.5 mmol),
phenylboronic acid (0.75 mmol), Solvent (4 mL), 80 °C, 6 h. b) GC conversion and yield
based on 4-bromotoluene ¢) Homo-coupling (HC) yield based on phenylboronic acid.
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Initially, we used KOH as base and methanol as solvent based on our studies for
the SM cross-coupling reaction of aryl bromides with an alkyl palladium complex
containing 1,1-(2,2’-oxybis(ethane-2,1-diyl)-bis(3,5-dimethyl-1H-pyrazole).}’> Under
these conditions the cross-coupling product was obtained in 66% yield (Table 4, entry
1). It is important to mention that a control experiment under ligand-free conditions using
KOH as base and methanol as solvent gave high conversion but low yield for the cross-
coupling product (>17%). Therefore, we moved to investigate other common
base/solvent combinations for the SM cross-coupling reaction and we were delighted to
see that by using DMF as solvent and a cheap base such as K>COg, after 6 hours of
magnetic stirring at 80 °C, delivers the cross-coupling product in almost quantitative
yield (Table 4, entry 4). Biphenyl homocoupling byproduct was obtained in very low
yield (<2%) for all the reaction conditions evaluated. All the other solvents provided very
low yields of the cross-coupling product (Table 4, entries 2, 6-8), and most of the 4-

bromotoluene converted was reduced into toluene.

Table 5. Temperature effect on the model SM cross-coupling reaction using ligand 2a.

Br B(OH), Pd(OAc), / 2a
/©/ + ©/ K,CO5, DMF
T (°C), Time (h)

Entry Temp. Time Conversion CC Yield HC Yield
(C) (h) (%)° (%)" (%)
1 25 24 73 59 1
2 50 12 92 70 1
3 80 6 99 98 1
4 110 3 90 75 1
5d 80 12 87 82 1
6° 80 24 98 86 16

a) Reaction conditions: Pd(OACc)2 (1 mol%), 2a (1.1 mol%), 4-Bromotoluene (0.5 mmol),
phenylboronic acid (0.75 mmol), temperature, time, K2COz (2 eq.) and DMF (4 mL). b)
GC conversion and yield based on 4-bromotoluene. ¢) HC yield based on phenylboronic
acid. d) 0.5 mol% Pd(OAc)2/2a. e) Aerobic conditions.

32



Chapter 2

Then we investigated the effect of the temperature. When the reaction was
performed at room temperature, a low yield of the cross-coupling product was obtained
(Table 5, Entry 1). Hence, increased reaction temperatures were tested, as a result an
improved conversion and yield was observed, providing the best result at 80 °C (Table
5, Entries 2 and 3). A further increase in the temperature of the reaction to 110 °C led to
both decreased conversion and yield, indicating partial decomposition of the catalytic
system (Table 5, Entry 4). A lower catalyst loading of 0.5 mol% also led to a lower

conversion and yield (Table 5, entry 5).

Table 6: Screening of new pyrazolyl ligands for the SM cross-coupling.

Br B(OH);  pd(0Ac), / Ligand O O
+ K,CO5, DMF O + O
80°C, 6 h

Entry Ligand Conversion (%)® CC Yield (%)® HC Yield (%)°
1 2a 99 98 1
2 2b >99 98 1
3 2b’c 99 98 1
4 2a 87 86 1
5 2ad 46 5 1
6 la 83 47 1
7 la’ 62 29 1
8 - 68 44 2
9 Xantphos 93 92 6

a) Reaction conditions: Pd(OAc)2 (1.0 mol%), Ligand (1.1 mol%), K.COs (2 eq.), DMF
(4 mL), 80 °C, and 6 h. b) GC conversion and yield based on 4-bromotoluene. ¢) HC
yield based on phenylboronic acid.

We concluded that the SM cross-coupling reaction between 4-bromotoluene and

phenylboronic acid proceeds smoothly under reaction conditions of 1 mol% of
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Pd(OAc)2/2a, K2CO3z as base, DMF as solvent at 80 °C for 6h. With the best reaction
conditions established, we then moved to evaluate the potential of the other pyrazolyl
ligands 1a, 1la’, 2a, 2a’, 2b, 2b'c and 2a'd on the model SM cross-coupling reaction.
The results are summarized in Table 6. The symmetrical ligands 2a and 2b, and the
hybrid analogue 2b'c were found very active and selective by providing the
corresponding cross-coupling product in excellent yields (98-99%) (Table 6, Entries 1-
3). Aslightly lower conversion (87%) and yield (86%) was observed in case of the mono-
pyrazolyl ligand 2a" (Table 2.2, Entry 4). In contrast, the hybrid ligand 2a’d was not
active in catalyzing the reaction (Table 6, Entry 5), probably due to the C-Se bond
cleavage by Pd, as it is well known that majority of the C-Se bonds are very sensitive

towards Pd and undergo oxidative addition with Pd metal.*’’

- Ao | e PdCJ'z(COD) e

o e

TR B — .
— Lo I
% %

[z2a” + H]+. ) u‘i_,;]: I; ,

2440209,

249 0021

Figure 19. Oxidative cleavage of ligand 2a'd to 2a" in the presence of Pd(COD)Cl..

To support this hypothesis, a 1:1 mixture of the hybrid ligand 2a'd and
PdCI>(COD) in methanol were mixed and allowed to magnetically stir at room
temperature for 2 hours. The resulting mixture rapidly turned into a black-green solution,
which was then analysed through ESI-MS. The ESI-MS analysis showed several singly
charged ionic species including a species with m/z 389 which was assigned to the

[2a’+H]" and other singly charged ionic Pd-species (Figure 19). This observation clearly
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demonstrated that the Pd-metal after oxidative addition with 2a'd undergoes reductive
elimination to 2a’. Likewise, the flexible ligands 1a and 1a” were also not so active and
provides only low yield of the cross-coupling products (Table 6, Entry 6 and 7). We
hypothesized that the high conformational freedom around the central oxygen atom of
ligand 1a and 1a’ prevents effective chelation with Pd, leading to a much less efficient

catalyst compared to those derived from the ligands with the rigid xanthene backbone.

Finally, we have evaluated the scope of the SM cross-coupling reaction using the
Pd(OAc)2/2a catalytic system under optimized conditions, employing different
haloarenes and arylboronic acids with varying electronic and steric characteristics. The
results are summarized in Table 7. In general, both electron rich and poor bromoarenes
were well tolerated, and provided the corresponding cross-coupling products with
phenylboronic acid in good to excellent yields (Table 7, entries 1-5). Moreover, the
reaction of an electron-rich and an electron-poor arylboronic acid with 4-bromotoluene
was also tested. In both cases, the coupling products were obtained with good yields of
approximately 80% (Table 7, entries 6 and 7). Other two combinations of arylbromides
and arylboronic acids of opposite electronic characters demonstrated no considerable
outcome on the observed yields of the cross-coupling products (Table 7, entries 8 and
9).

Thus, electron-withdrawing substituents on the aryl halide and electron-donating
substituents on the arylboronic acids facilitates smooth SM cross-coupling reaction,
owing to the easy oxidative addition and transmetallation steps, respectively.’® Since,
the developed catalytic system was not drastically influenced by the electronic nature of
the p-substituents, however, it was sensitive towards the steric effects. The steric
hindrance tolerance was thus evaluated by employing some o-substituted substrates. The
introduction of methyl substituents in this position, on either of the coupling partners, led
to a decreased yield of the cross-coupling products (Table 7, entries 10-12). Considering
the similarities in the results obtained with the introduction of o-substituents on the
arylbromide (58% yield, Table 7, entry 10) and on the aryl boronic acid (54% yield,
Table 7, entry 11), one might speculate that the oxidative addition step was not severely
affected, and that the observed decreased yield was probably due to a more difficult

transmetalation or reductive elimination step.
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Table 7: Substrate scope using ligand 2a under optimized reaction conditions.?

R G O el SR Vo P e
7 = K,CO3 (1 mmol) j R h
0.5 mmol 0.75 mmol DMEF, 80 °C
Entry R? X R? Yield (%)°

1 4-Me Br H 94
2 4-CF3 Br H 82
3 4-Ac Br H 92
4 4-OMe Br H 91
5 2-bromonaphthalene H 91
6 4-Me Br 4-OMe 82
7 4-Me Br 4-Ac 78
8 4-OMe Br 4-Ac 73
9 4-Ac Br 4-Me 81
10 2-Me Br H 58
11 4-Me Br 2-Me 54
12 4-Me Br 2,6-diMe 46
13 4-CF3 I H 78
14 4-OMe I H 80
15 4-Ac Cl H 75
16 4-Ac Cl H 3¢
17 4-Me Cl H 25

a) Reaction conditions: Pd(OACc)2 (1 mol%), 2a (1.1 mol%), KoCOs (2 eq), DMF (4 mL),
80 °C, and overnight. b) Isolated yields (average of two reactions). c) Ligand free
conditions, GC yield after 24 h.
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Even though aryl iodides are generally more active than aryl bromides due to the
easy oxidative addition step, we observed slightly lower yields for aryl iodides (80% vs
91%, Entries 14 and 4; and 78% vs 82%, Entries 13 and 2). Also, the homocoupling
byproduct was obtained in less than 2% yield, extensive dehalogenation side reaction in
case of aryl iodides was responsible for the relatively low isolated yields. As far as the
aryl chlorides are concerned, we were pleased to see that p-chloroacetophenone reacted
smoothly under optimized conditions as well (Table 7, Entry 15) and even the
deactivated p-clorotoluene offered the cross-coupling product in 25% yield. A control
experiment for the coupling of p-chloroacetophenone with phenylboronic acid under
ligand-free conditions gave only 3% of the cross-coupling product after 24 h (Table 7,
entry 16). The in situ formation of PdL species must be assumed to explain these results.
There is no direct evidence for their formation, since we were unable to isolate or
characterize any palladium complex with these ligands until now, however, in situ
formation of PdL species responsible for catalyzing the SM reaction can be evidenced by
comparing the results obtained with Pd(OAc)./2a catalytic system and under ligand-free
condition. These results clearly demonstrate the positive effect of the ligands on the

cross-coupling reaction.

2.3 Experimental

2.3.1 Materials and Methods

All the reagents were purchased from commercial suppliers and used without
further purification. p-tolyl ether, 2 and aryl halides were purchased from Sigma Aldrich.
Aryl boronic acids were purchased from Alfa Aesar. The Ullmann and Suzuki-Miyaura
coupling reactions were performed using standard Schlenk tube techniques under an
argon atmosphere. The solvents used for these reactions were degassed by purging with
argon for 20 to 30 minutes prior to each experiment. The progress of the reactions were
monitored by GC. The GC analyses were performed using a Shimadzu GC-2010 plus
equipment fitted with a 30 m DB-17 column and FID detector, while the GC/MS
measurements were performed using a Shimadzu GC/MS-QP2010 SE, (El 70 eV)
equipped with 30 m Rxi-Ims® column. Column chromatography purifications were
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performed using silica gel (230-400 mesh) and mixtures of hexanes/acetate as eluents.
All compound names were assigned using ChemBioDraw Ultra 12.0 software.

Nuclear magnetic resonance (NMR) spectra were recorded in CDCIz solutions
unless noted otherwise, on MR-400-Varian 400 MHz, Bruker Avance-111HD 400 MHz
and Bruker Fourier 300 MHz instruments. The Infrared (IR) spectra were obtained using
attenua-ted total reflectance (ATR) technique, on a Bruker Alpha-P spectro-meter, with
scans between 4000 and 650 cm™, and 4 cm™ resolution. The compounds were analyzed
in its pure form and the maximum absorbing frequencies are reported in cm™, The HRMS
data were obtained on Waters micromass Q-ToF microTM instrument, operating on
positive mode. Finally, the melting points were measured on the Quimis® instrument and

are uncorrected.

2.3.2 Synthesis of Pyrazolyl Analogues
Dibromination of p-tolyl ether (Preparation of 1)

To astirring solution of NH4OAc (20 mol%, 2 mmol) and p-tolyl-ether (1 eq., 10
mmol) in 35 mL of CH3CN, was added NBS (2.5 eq., 25 mmol) portion wise over a
period of 10-15 minutes and left for overnight stirring (16 hours) at room temperature.
After completion of the reaction, the crude reaction mixture was taken in ethyl acetate
and washed with distilled water (3x). The organic phase was then dried over MgSO4 and
evaporated in vacuo. The crude mixture was purified by using flash silica gel column
chromatography (10% ethyl acetate and hexane). Recrystallization in n-pentane furnishes

colourless crystals of dibrominated product (1) in 68% vyield.
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4,4'-oxybis(3-bromo-1-methylbenzene) (1)

Br Br White crystalline solid (m.p. = 74-75 °C); tH-NMR (400 MHz,
/@,0©\ CDCl3) 6 7.45 (dd, J = 2.1, 0.6 Hz, 1H), 7.03 (ddd, J = 8.3, 2.1,

0.6 Hz, 1H), 6.72 (d, J = 8.3 Hz, 1H), 2.32 (s, 3H); 13C-NMR
(100 MHz, CDCls) ¢ 151.41, 134.97, 134.25, 129.30, 119.29,

113.89, 20.56; IR (ATR): 1477, 1247, 1041, 826, 808; HRMS (ESI-TOF): m/z calcd for
C14H12BroONa (M+Na)*; 376.9153, found 376.9140.

Preparation of 3-Mesityl-1H-pyrazole (adapted from literature)’s: 10

To a chilled dry toluene solution in a round bottom flask maintained at 0 °C on
an ice bath, Na metal (2 eg., 200 mmol) was added in portions, followed by dropwise
addition of 2,4,6-trimethyl acetophenone (1 eq., 100 mmol) and allowed to stir for 1.5 h.
To this yellowish reaction mixture, ethyl formate (3.4 eq., 340 mmol) was added
dropwise over a period of 15-20 minutes and left overnight for stirring at room
temperature. After, the reaction was cooled to 0°C on an ice bath and distilled water was
added dropwise to quench the unreacted Na metal (Caution!). After all the unreacted Na
metal was quenched, additional 200 mL of distilled water was added and allowed the
resulting suspension under magnetic stirring for one hour. The resulting mixture was then
transferred to a separatory funnel, and the agqueous layer obtained was washed with
hexanes (3x). The first organic phase and washes contain mainly the byproducts, thus,
can be discarded. The aqueous layer was then acidified with 10 % HCI, followed by
extraction with DCM (3x). Finally, the combined organic phases were dried over MgSQO4
and evaporated under reduced pressure, furnishing yellowish solid product. This crude
product without further purification was treated with hydrazine chloride (1.5 eq. 150
mmol) in ethanol and left under reflux for 2.5 h. After, the reaction mixture was
concentrated under reduced pressure to half of its initial volume, followed by addition of
2 M NaOH solution (1:1 ratio of reaction mixture and NaOH solution). The aqueous
layer was extracted with DCM (3 times). The combined organic phases were dried over
MgSOs and concentrated under reduced pressure. Recrystallization from hot hexane
furnished yellowish crystals of the desired compound in 35% overall yield. The
spectroscopic properties of the compound were consistent with the data available in the

literature.
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3-Mesityl-1H-pyrazole

Yellow crystalline needles; *H-NMR (400 MHz, CDCls) 6 10.77 (br s,
1H), 7.53 (d, J = 1.7 Hz, 1H), 6.91 (s, 2H), 6.19 (d, J = 1.5 Hz, 1H), 2.34
(s, 3H), 2.06 (s, 6H); *C-NMR (100 MHz, CDClIs) ¢ 143.93, 138.01,
/ N 137.71, 135.75, 128.04, 105.61, 21.07, 20.23.

I=

Synthesis of ligands 1a and 1a

A resealable Schlenk flask evacuated and back-filled with argon (3x) was charged
with Cu20 (21.5 mg, 0.15 mmol), 1,10-phenanthroline (59.5 mg, 0.33 mmol), 1 (267.1
mg, 0.75 mmol), 1H-pyrazole (a) (163.5 mg, 2.4 mmol) and Cs>COz (733.1 mg, 2.25
mmol), followed by addition of 4 mL of degassed DMF. The Schlenk was sealed under
inert atmosphere and the reaction was left under magnetic stirring for 20 hours at 140 °C,
on an oil bath. After, the reaction was cooled to room temperature and filtered through a
short plug of celite, followed by washing with CH>Cl>. The filtrate was then washed with
distilled water (3x) and the organic layer was dried over MgSOa, filtered and
concentrated under reduced pressure. The residue was subjected to column
chromatography purification using 10% AcOEt in hexanes as eluent, furnishing bis-
pyrazole 1a in 47% yield along with the mono-pyrazole byproduct 1a" in 37% yield.

1,1'-(oxybis(5-methyl-2,1-phenylene))bis(1H-pyrazole) (1a)

FN Nﬂ White crystalline solid (m.p. = 124-125 °C); H-NMR (400

N N MHz, CDCls) 6 7.88 (d, J = 2.5 Hz, 1H), 7.68 (d, J = 1.7 Hz,
/@O\ij\ 1H), 7.62 (d, J = 1.7 Hz, 1H), 7.03 (ddd, J = 8.4, 1.5, 0.6 Hz,
1H), 6.85 (d, J = 8.4 Hz, 1H), 6.36 (dd, J = 2.4, 1.9 Hz, 1H),
2.36 (s, 3H); 13C-NMR (100 MHz, CDCls) 6 145.71, 140.35, 134.70, 131.41, 131.07,

129.07, 126.22, 119.30, 107.05, 20.81; IR wmax (neat): 1497, 1221, 1034, 809, 761;
HRMS (ESI-TOF): m/z calcd for C20H1sNsONa (M+Na)*: 353.1378, found 353.1369.
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1-(5-methyl-2-(p-tolyloxy)phenyl)-1H-pyrazole (1a")
4—\\ Pale yellow liquid; *H-NMR (400 MHz, CDCls) ¢ 8.09 (d, J
N = 2.5 Hz, 1H), 7.73 (d, J = 1.8 Hz, 1H), 7.68 (d, J = 1.5 Hz,
/©/0 1H), 7.09 (d, J = 8.3 Hz, 2H), 7.06 (dd, J = 8.5, 1.9 Hz, 1H),
\QJ 6.93 (d, J =8.3 Hz, 1H), 6.85 (d, J =8.5 Hz, 2H), 6.37 (t, J =
2.4 Hz, 1H), 2.40 (s, 3H), 2.31 (s, 3H). 13C-NMR (100 MHz, CDClIs) 6 154.76, 145.55,
140.24, 134.26, 132.70, 131.78, 131.12, 130.20, 128.27, 125.35, 120.47, 117.69, 106.67,

20.70, 20.58. IR vmax (neat): 1522, 1496, 1228, 809, 748; HRMS (ESI-TOF): m/z calcd
for C17H1sN2ONa (M+Na)*: 287.1160, found 287.1450.

Synthesis of Ligands 2a and 2a

1H-pyrazole (a) and 4,5-dibromo-2,7-di-tert-butyl-9,9-dimethyl-9H-xanthene (2)
were reacted under similar conditions described above for the synthesis of ligand 1la,
except the reaction was magnetically stirred at 160 °C. The crude residue obtained after
work up was purified using 10% AcOEt and hexanes as eluent, furnishing the bis-
pyrazolyl ligand 2a in 41% yield, along with the mono-pyrazolyl byproduct 2a" in
approx. 10% yield.

1,1'-(2,7-di-tert-butyl-9,9-dimethyl-9H-xanthene-4,5-diyl) bis (1H-pyrazole) (2a)

FN N//—§ Crystalline solid (154 °C - decompose); H-NMR (400
N’ °N MHz, CDClz): 6 7.72 (d, J = 1.8 Hz, 2H), 7.56 (d, J = 2.3
° Hz, 2H), 7.51 (d, J = 2.4 Hz, 2H), 7.46 (d, J = 2.3 Hz, 2H),

- O O tgy| 6.28 (t, J = 2.1 Hz, 2H), 1.74 (s, 6H), 1.37 (s, 18H); 13C-
NMR (100 MHz, CDClz): ¢ 146.70, 140.81, 140.33,
132.10, 131.13, 128.26, 121.82, 121.56, 106.75, 35.32, 34.87, 32.20, 31.54; IR vmax

(neat): 2953, 1469, 1453, 1259, 750; HRMS (ESI-TOF): m/z calcd for C29H3sN4O
(M+H)": 455.2811, found 455.2831.

1-(2,7-di-tert-butyl-9,9-dimethyl-9H-xanthen-4-yl)-1H-pyrazole (2a°)

White powder (m.p. = 139-140 °C); *H-NMR (400 MHz, CDCls): 6 8.15 (d, J =

2.4 Hz, 1H), 7.76 (d, J = 1.7 Hz, 1H), 7.64 (d, J = 2.3 Hz, 1H), 7.43 (d, J = 2.3 Hz, 1H),
7.41 (t, J=2.6 Hz, 1H), 7.21 (dd, J = 8.5, 2.3 Hz, 1H), 6.94 (d, J = 8.5 Hz, 1H), 6.50 (t,
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J = 2.1 Hz, 1H), 1.69 (s, 6H), 1.37 (s, 9H), 1.33 (s, 9H);
/\_\/ \ 13C-NMR (100 MHz, CDCls): & 147.89, 146.39, 145.88,
140.66, 140.21, 131.92, 131.36, 129.29, 127.92, 124.54,

N/
0 122.55, 121.51, 120.57, 115.88, 106.44, 34.97, 34.82,
Bu I I tBu

34.66, 32.25, 31.68, 31.58; IR wmax (neat): 2960, 1455,
1269, 850, 761; HRMS (ESI-TOF): m/z calcd for
C26H33N20 (M+H)*: 389.2593, found 389.2622.

Synthesis of Ligands 2b and 2b

3-mesityl-1H-pyrazole (b) and 2 were allowed to react under identical conditions
described above for the synthesis of ligand 1a, except that the reaction was performed
using a lower catalyst loading (10 mol%). The residue obtained after work up was then
purified using silica-gel column chromatography eluting 5% AcOEt and hexanes. Ligand
2b was isolated in 63% yield, whereas the byproduct 2b™ was obtained in 17% vyield.

1,1'-(2,7-di-tert-butyl-9,9-dimethyl-9H-xanthene-4,5-diyl) bis (3-mesityl-1H-pyra-
zole) (2b)

Mes Mes | White crystalline solid (m.p. =209-210 °C); 'H-NMR (400
m m MHz, CDCls): 6 7.74 (d, J = 2.3 Hz, 2H), 7.64 (d, J = 2.3
N . N Hz, 2H), 7.46 (d, J = 2.3 Hz, 2H), 6.96 (s, 4H), 6.19 (d, J =
O O 2.3 Hz, 2H), 2.33 (s, 6H), 2.24 (s, 12H), 1.77 (s, 9H), 1.37
‘Bu Bul (s, 18H); 3C-NMR (100 MHz, CDCl3): § 151.43, 146.59,
130.84, 137.49, 137.43, 132.57, 130.81, 130.64, 128.14,
128.04, 121.39, 121.32, 107.98, 35.07, 34.68, 32.35, 31.37, 21.09, 20.65; IR vmax (neat):
2950, 1458, 1266, 1238, 849, 761, 741; HRMS (ESI-TOF): m/z calcd for C47HssN4O
(M+H)*: 691.4376, found 691.4397.

1-(5-bromo-2,7-di-tert-butyl-9,9-dimethyl-9H-xanthen-4-yl) 3-mesityl-1H-pyrazole
(2bY)

Mes White crystalline solid (m.p. = 189-191 °C); *H-NMR (400

m MHz, CDCls): 6 8.62 (d, J = 2.4 Hz, 1H), 7.81 (d, J = 2.1

N . Br Hz, 1H), 7.48 (d, J = 1.9 Hz, 1H), 7.40 (d, J = 2.2 Hz, 1H),

O O 7.38 (d, J = 2.5 Hz, 1H), 6.97 (5, 2H), 6.41 (d, J = 2.4 Hz,

‘Bu Bul 1H), 2.34 (s, 3H), 2.25 (s, 6H), 1.71 (s, 6H), 1.37 (s, 9H),

1.34 (s, 9H); BC-NMR (100 MHz, CDCls): § 151.26,
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147.29, 146.43, 144.98, 139.75, 137.68, 137.35, 133.29, 131.17, 130.99, 130.65, 128.46,
128.16, 128.07, 121.79, 120.66, 120.45, 109.98, 107.39; IR vmax (neat): 2960, 1455,
1269, 850, 761; HRMS (ESI-TOF): m/z calcd for CssHa2BrN2O (M+H)™: 585.2480,
found 585.2461.

Synthesis of hybrid Ligand 2b’c

2b" and 1H-imidazole (c) as coupling partners were allowed to react under the
reaction conditions described above for the synthesis of ligand 2b to obtain 2b’c. The
crude mixture after work up was purified by silica gel column chromatography using
10% AcOEt in hexanes as eluent, furnishing the hybrid pyrazole-imidazolyl derivative
2b’c in 78% yield.

1-(2,7-di-tert-butyl-5-(1H-imidazol-1-yl)-9,9-dimethyl-9H-xanthen-4-yl)-3-mesityI-
1H-pyrazole (2b'c)

Mes White powder (m.p. = 263-265 °C); *H-NMR (400 MHz,
m 2@ CDCly): 6 7.69 — 7.65 (m, 2H), 7.53 (d, J = 2.3 Hz, 1H),
N . N 7.44 (d, J = 2.4 Hz, 1H), 7.39 (d, J = 2.4 Hz, 1H), 7.20 (d,
O O J=2.3Hz, 1H), 7.11 - 7.08 (m, 1H), 7.04 (¢, J = 1.3 Hz,
"B Bul 1H), 6.95— 6.93 (m, 2H), 6.19 (d, J = 2.4 Hz, 1H), 2.32 (s,
3H), 2.20 (s, 6H), 1.75 (s, 6H), 1.37 (s, 9H), 1.34 (s, OH);
13C-NMR (100 MHz, CDCls): 6 151.41, 146.83, 146.72, 142.11, 139.56, 137.56, 137.33,
131.82, 131.56, 130.92, 130.65, 129.48, 128.31, 128.09, 124.94, 122.67, 121.94, 120.87,
120.75, 108.26, 35.23, 34.72, 34.70, 32.05, 31.40, 31.39, 21.11, 20.65; IR vmax (neat):
2953, 1497, 1456, 1271, 760; HRMS (ESI-TOF): m/z calcd for CasHasN4O (M+H)*:
573.3588, found 573.3580.

Synthesis of Hybrid Ligand 2a'd

Ligand 2a’d was synthesized following a recently reported method.'8! An overn
dried schelnk flask, evacuated and backfilled with argon 3 times was charged with PdCI.
(5 mol%), CuClz (5 mol%), 2a’ (0.2 mmol), and diphenyl diselenide, d (0.4 mmol).
Finally, added 2 mL of degassed DMSO and allowed the reaction for overnight magnetic
stirring at 120 °C. After cooling to room temperature, the reaction mixture was taken up

in 5 mL of ethyl acetate and filtered through a small plug of celite. The organic phase
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obtained was dried over MgSOa, and evaporation under vacuum provided a crude solid
product. The crude product was then chromatographed using 10% ethyl acetate and

hexanes, to obtain the titled compound 2a'd, in 58% yield.

1-(2,7-di-tert-butyl-9,9-dimethyl-5-(phenylselanyl) -9H- xanthen-4-yl) -1H-pyra-
zole (2a'd)

4—\\ White powder (m.p. = 144-146 °C); *H-NMR (400 MHz,
N s«™ | CDCls): 6832 (d, J = 0.3 Hz, 1H), 7.83 (s, 1H), 7.66 (d, J

o = 2.3 Hz, 1H), 7.44 (d, J = 2.3 Hz, 1H), 7.42 (d, J = 2.3 Hz,
- O O tay| 1H), 7.40 (d, J = 1.7 Hz, 1H), 7.38 (t, J = 1.3 Hz, 1H), 7.25
—7.28 (m, 2H), 7.24 — 7.17 (m, 3H), 6.86 (d, J = 8.5 Hz,
1H), 1.68 (s, 6H), 1.57 (H20), 1.38 (s, 9H), 1.33 (s, OH): & 147.75, 146.60, 146.07,
145.81, 140.72, 137.87, 133.49, 131.57, 129.41, 129.31, 129.22, 127.43, 126.31, 124.62,
122.56, 122.06, 120.29, 115.89, 101.95, 35.01, 34.88, 34.69, 32.25, 31.68, 31.59.; IR

vmax (neat): 2958, 2867, 1497, 1511, 1393, 940, 766; HRMS (ESI-TOF): m/z calcd for
Ca2H3sN20SeNa (M+Na)™: 567.1918, found 567.0428.

X-ray Crystallography of 1, 1a, 2a, 2b and 2b"

Bruker D8 Venture Photon 100 dual source diffractometer was used to collect X-
ray data for the structural analysis of the compounds. Data were collected using Cu-Ka
(A =1.54178 R) or Mo-Ka (1 = 0.71073 A) radiations, and a combination of ¢ and ® scans
was carried out to obtain at least one unique data set. The crystal structures were solved
using direct methods in the SHELXS program.*®? The final structures were refined using
SHELXL, where the remaining atoms were located from difference Fourier synthesis in
which anisotropic displacement parameters were applied to all non-hydrogen atoms,
followed by full-matrix least-squares refinement based on F2. All hydrogen atoms were
placed in ideal positions and refined as riding atoms with relative isotropic displacement
parameters. Crystallographic data for the structures were deposited in the Cambridge
Crystallographic Data Centre as supplementary publication number CCDC 1893376 (1),
1893381 (1a), 1938492 (2a), 1893386 (2b) and 1893396 (2b"). Copies of the data related

to the crystals can be obtained via www.ccdc.cam.ac.uk/data_request/cif.
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General procedure for SM cross-coupling reaction

For a typical SM cross-coupling reaction, an oven dried resealable Schlenk flask,
evacuated and refilled with argon (3 times) was charged with Pd(OAc)2 (1.0 mol%), and
5a (1.1 mol %) and stirred at room temperature in DMF (2 mL) for 15 minutes, until a
yellow solution appears .Then, aryl halide (0.5 mmol), aryl boronic acid (0.75 mmol),
and K2COs3 (1.0 mmol) were added, finally, | DMF (2 mL) was added and sealed under
argon atmosphere. The reaction mixture was heated at 80 °C for 6 hours. After, the
reaction mixture was cooled to room temperature, filtered through a plug of celite and
washed with ethyl acetate, dried over MgSOa4 followed by evaporation under reduced
pressure. The crude product obtained was then purified using flash silica gel column

chromatography.

2.4.3 Spectroscopic Data for Suzuki-Miyaura Cross-coupling Products

4-methyl-1,1'-biphenyl

White powder: m.p. = 48-50°C (Literature 49-50); *H-NMR (400 MHz, CDClz):
§7.57 (dd, J = 7.8, 1.6 Hz, 2H), 7.51 — 7.46 (m, 2H), 7.39 — 7.42 (m, 2H), 7.25 — 7.33
(m, 1H), 7.24 (d, J = 7.9 Hz, 2H), 2.39 (s, 3H); 13C-NMR (100 MHz, CDCls): 6 141.15,
138.35, 136.99, 129.46, 128.69, 126.98, 126.95, 21.09.

4-(trifluoromethyl)-1,1'-biphenyl

White powder: m.p. =59-60°C; *H-NMR (400 MHz, CDCls): 6 7.69 (m, 4H),
5 7.62 — 7.58 (m, 2H), 7.50 — 7.44 (m, 2H), 7.43 — 7.38 (m, 1H); 3C-NMR (100 MHz,
CDCl3): 0 144.74, 139.76, 128.97, 128.17, 127.41, 127.27, 125.71, 125.68.

1-([1,1'-biphenyl]-4-yl)ethan-1-one

White powder: m.p. = 113-114°C (Literature 110-111); *H-NMR (400 MHz,
CDCls): 6 8.04 (dd, J = 8.4, 2.0 Hz, 2H), 7.66 — 7.71, (m, 4H), 7.53 — 7.35 (m, 3H), 2.64
(s, 3H); ¥C-NMR (100 MHz, CDCIls): § 197.89, 145.92, 140.01, 135.99, 129.09,
129.05, 128.37, 127.41, 127.36, 26.81.

4-methoxy-1,1'-biphenyl
Yellow powder: m.p. = 79-81 (Literature = 77-78); 'H-NMR (400 MHz,
CDCls): 6 7.57—-7.50 (m, 4H), 7.44—7.35 (m, 2H), 7.34 - 7.27 (m, 1H), 7.01 — 6.94 (m,
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2H), 3.84 (s, 3H); *C-NMR (100 MHz, CDCls): § 159.13, 140.81, 133.77, 128.70,
128.14, 126.72, 126.64, 114.19, 55.33.

2-phenylnaphthalene

White powder: m.p. = 88-90°C; 'H-NMR (400 MHz, CDCls): 6 8.04 (d, J=1.8
Hz, 1H), 7.94 — 7.83 (m, 3H), 7.78 — 7.69 (m, 3H), 7.54 — 7.45 (m, 4H), 7.38 (t, J = 7.4
Hz, 1H); C-NMR (100 MHz, CDCls): ¢ 141.12, 138.55, 133.67, 132.61, 128.84,
128.40, 128.18, 127.63, 127.42, 127.33, 126.27, 125.91, 125.79, 125.58.

4-methoxy-4'-methyl-1,1'-biphenyl

White powder: m.p. 106-108 (Literature 107-108); *H-NMR (400 MHz, CDCls):
5 7.54—7.48 (m, 2H), 7.44 (d, J = 8.1 Hz, 2H), 7.22 (d, J = 7.9 Hz, 2H), 6.98 — 6.93 (m,
2H), 3.84 (s, 3H), 2.38 (s, 3H); 3 C-NMR (100 MHz, CDCls): § 158.92, 137.96, 136.33,
133.74,129.42, 127.94, 126.57, 114.15, 55.34, 21.05.

1-(4'-methyl-[1,1'-biphenyl]-4-yl)ethan-1-one

White powder: m.p. 122-123 (Literature 118-120); H-NMR (300 MHz,
CDCls): 6 8.02 (d, J = 8.4 Hz, 2H), 7.67 (d, J = 8.4 Hz, 2H), 7.53 (d, J = 8.1 Hz, 2H),
7.28 (d, J = 7.9 Hz, 2H), 2.63 (s, 3H), 2.41 (s, 3H); *C-NMR (75 MHz, CDClg): §
197.78, 145.71, 138.23, 136.93, 135.56, 129.67, 128.90, 127.09, 126.94, 26.66, 21.17.

1-(4'-methoxy-[1,1'-biphenyl]-4-yl)ethan-1-one

Yellow powder: m.p. = 146-148; *H-NMR (400 MHz, CDCls): § 8.04 —7.97 (m,
2H), 7.67 — 7.53 (m, 4H), 7.03 — 6.96 (m, 2H), 3.86 (s, 3H), 2.62 (s, 3H); 1*C-NMR (100
MHz, CDCls): ¢ 197.70, 159.92, 145.36, 135.29, 132.25, 128.94, 128.36, 126.61,
114.41, 55.39, 26.62.

2-methyl-1,1'-biphenyl

Pale yellow oil; 'H-NMR (400 MHz, CDCls): 6 7.40 — 7.34 (m, 2H), 7.32 — 7.27
(m, 3H), 7.23 — 7.19 (m, 4H), 2.25 (s, 3H); 3C-NMR (100 MHz, CDCls): J 142.09,
142.05, 135.41, 130.41, 129.91, 129.30, 128.17, 127.36, 126.87, 125.88, 20.59.
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2,4'-dimethyl-1,1"-biphenyl

Pale yellow oil; *H-NMR (300 MHz, CDCls): 6 7.22 - 7.25 (m, Hz, 8H), 2.40 (s,
3H), 2.28 (s, 3H); 3C-NMR (75 MHz, CDCls): 6 141.84, 138.99, 136.36, 135.38,
130.26, 129.83, 129.05, 128.75, 127.04, 125.72, 21.17, 20.51.

2,4',6-trimethyl-1,1'-biphenyl

Yellowish oil; *H-NMR (400 MHz, CDCls): 6 7.22 (d, J = 7.5 Hz, 2H), 7.08 —
7.16 (m, 3H), 7.02 (d, J = 7.9 Hz, 2H), 2.40 (s, 3H), 2.03 (s, 6H); *C-NMR (100 MHz,
CDCls): 0 141.82, 138.00, 136.20, 136.04, 129.09, 128.86, 127.21, 126.85, 21.23, 20.88.

2.4 Conclusions

In conclusion, this work highlights synthesis of new mono- and bis-pyrazoles
bearing a flexible p-tolyl ether or a rigid xanthene backbone, as pyrazolyl analogues of
DPEphos and Xantphos ligands, respectively, as well as their application in the Suzuki-
Miyaura cross-coupling reaction as active ligands. The synthesis of the mono-pyrazaloyl
analogues 1a’, 2a’, and 2b" and the bis-pyrazolyl analogues 1a, 2a, and 2b, was achieved
by following an Ullmann coupling protocol in good yields. In addition, the hybrid
pyrazolyl-imidazolyl analogue 2b’c was also synthesized in a very good yield of 76%
following Ullmann coupling protocol, while the pyrazolyl-selanyl hybrid anaolgue 2bd
was synthesized using a C-H activation protocol in 58% yield. The new ligands were
then evaluated for their potential as effective ligands in the Pd-catalyzed Suzuki-Miyaura
cross-coupling reaction. For this a simple catalytic system based on Pd(OAc)./2a was
developed which efficiently catalyzes the Suzuki-Miyaura cross-coupling reaction of
aryl iodides and aryl bromides bearing electron rich and poor substituents and provides
the corresponding cross-coupling products in good to excellent yields. In addition,
moderate yields were obtained for the aryl chlorides containing electron-withdrawing
groups at p-position, whereas only poor yields were obtained for the electron-poor
substituents. Furthermore, the developed catalytic system was not severely affected by
the electronic nature of the p-substituents and delivers good to excellent yields of the
cross-coupling products, however, the steric factors prominently affects the outcome of

the reaction and only moderate yields of the cross-coupling products were obtained.
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Chapter 3 Pd-Catalyzed Suzuki-Miyaura Cross-coupling Reaction in
Glycerol; A Green and Non-Innocent Solvent.
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3.1 Introduction

The palladium catalyzed Suzuki-Miyaura cross-coupling reaction are the most
powerful and versatile protocols for the construction of Csp?-Csp? bonds because they
are simple, cost effective, display tolerance for a variety of functional groups, and often
high yielding.?® 18 Research on the fine tuning of this protocol for industrial purposes
for the manufacture of fine chemicals, and useful drugs by using an environmentally
benign reaction medium has always remained under the focus of the synthetic
chemists.'®” On the other hand, the increasing environmental challenges and difficulty of
separation of the desired products from the reaction mixture have restricted the synthetic
utility to some extent, as the majority of the waste generated per gram of the product
includes the solvent waste, in addition to the inorganic salts.3* Taking into account the
impact of these chemical processes on the environment and the cost of the organic
solvents, the search for innovative procedures for the substitution of volatile and
expensive organic solvents has become a big challenge in both academia and industry.®
Therefore, the search for environmentally benign reaction medium has remained an
important issue for the Pd-catalyzed Suzuki-Miyaura cross-coupling reactions.8

In this context, glycerol provides an attractive alternative, since it offers the
desired characteristics of a green solvent including low flammability, high availability,
biodegradability, ecofriendly, and ideally can be obtained from renewable sources.®’
With the increased worldwide biodiesel production, the market saturation of glycerol, a
co-product of biodiesel production (for every 9 kg of biodiesel produced, about 1 kg of
a crude glycerol co-product is formed), is inevitable, especially in Brazil. 188191 Therefore,
the direct utilization of glycerol as a green solvent for organic transformations would be
conceptually interesting, since it can provide a sustainable medium with efficiency to
drive several organic transformations including hydrophilic and hydrophobic substrates
as well as catalysts and also economically affordable.'®? Another valuable aspect of
glycerol is that the products can be easily isolated in high yields by simply extracting
with a glycerol-immiscible solvent such as hexane, and diethyl ether. Recently, glycerol
has been utilize as a green solvent in a variety of organic reactions,*® including Pd-
catalyzed Heck and Suzuki-Miyaura cross-couplings, metal catalyzed transfer
hydrogenation reactions and asymmetric reductions.'®* 1% The Pd-catalyzed Suzuki-

Miyaura cross-coupling reaction in glycerol was first studied by reacting phenyl iodide
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and phenyl boronic acid as coupling partners and very good yields were obtained by
using Pd complexes containing water-soluble triphenylphosphine trisulfonate (TPPS) as
catalysts.*®* Reports of Suzuki-Miyaura cross-coupling reaction studies using glycerol as
solvent medium under ultrasound or microwave irradiations are also found in
literature.1%1% Very recently, a ligand free Suzuki-Miyaura cross-coupling reaction has
been studied by using aryltrifluorborates as coupling partners in deep eutectic solvents

(choline chloride/glycerol).1*®

In the research group of Professor Monteiro on the ongoing project on Pd-
catalyzed cross-coupling reactions, they have used poly(ethylene oxide) (PEO)/methanol
as solvent medium for the Pd-catalyzed Suzuki cross-coupling reaction under mild
conditions. After the end of the reaction the product was extracted with heptane and the
polar phase was reused several times (up to 12) without any change in the activity.?%°
Then, they were interested to evaluate glycerol as an efficient solvent medium for the Pd-
catalyzed Suzuki-Miyaura cross-coupling reaction, and observed that it does not only act
as a solvent. In fact, the reaction of glycerol with phenylboronic acid provided a mixture
of glycerol 1,2-phenylboronate and 1,3-phenylboronate (Scheme 14). Usually,
arylboronic acids are used in excess to ensure the complete conversion of aryl halides
(1.5-2 equivalents). However, excess of glycerol phenylboronates was not required and
the coupling products were obtained in high vyields. Therefore, beside all other
advantages already mentioned, the utilization of glycerol as a solvent can circumvent the

use of boronic acid excess in Suzuki-Miyaura cross-coupling reactions.

OH
HO OH
THF /_( Ar-B
PhB(OH), + HO— ————= G 6 , 0 0 —— = ArPh
r ~p~ ~
B B PdCl,(PPhs),
HO Ph Ph KOH
(20%) (80%)

PhB(glycerol) is slightly more reactive
than PhB(OH), or PhB(pinacol)

Scheme 14. Phenylboronic esters from glycerol as active coupling partners for the
Suzuki-Miayura cross-coupling reaction.?%!

In this context, our research group has already explored the use of glycerol as a
green solvent for the Pd-catalyzed Suzuki-Miyaura cross-coupling reaction.?® Thus, a

typical Suzuki-Miyaura cross-coupling reaction was performed using 4-bromotoluene
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and phenyl bromide as model substrates to react with phenyl boronic acid at 80 °C, as it
is sufficient enough to engender a homogenize reaction medium of glycerol (Scheme
15).

Br B(OH), [Pd] O
+ -
R ©/ Glycerol, Base O
R

R= Me, H 80 OC, Time (h)
Scheme 15: Model Suzuki-Miyaura cross-coupling reaction in glycerol.

In order to identify the optimum reaction conditions, initially the reaction of aryl
bromides (0.5 mmol) with phenylboronic acid (0.55 mmol), using Pd(dba). as Pd source
without using any ligand was investigated (Table 8). Based on the idea previously
established in our lab that glycerol despite being solvent and a good source to form
glycerol boronates,?? this study is based on the assumption that glycerol would also act
as a ligand and assist Pd in catalyzing the reaction effectively. So, a model reaction of 4-
bromotoluene or bromotoluene with phenylboronic acid using 1.0 mol% of Pd(dba), was
magnetically stirred for 4 hours in the presence of various bases in 4 mL of glycerol
under inert conditions. Promising results were obtained with all bases (Table 8, Entries
1-4), however, KOH was selected as the base of choice considering its better solubility
in glycerol. We believed that the yield of the cross-coupling product could significantly
increase if the reaction will be allowed to react for longer reaction time, therefore, the
reaction of phenyl bromide with phenyl boronic acid under identical conditions was
allowed to stir for 24 hours, as a result a moderate yield was obtained (Table 8, Entries
5). We were pleased to see that the GC analysis of the reaction mixture provided the
homo-coupling by-product only in negligible amounts of less that 1% yield, when 4-
bromotoluene was used as our aryl halide source, suggesting that the observed yield

mainly corresponds to the cross-coupling yield.

The ligand free Pd-catalyzed thus motivated us to screen different sources of
phosphine based Pd-sources and ligands, including a study based on 3P-NMR for the
formation of an in situ phoshinite ligand which can be formed from the reaction of PPh,Cl
with glycerol. Furthermore, we also have provide some details regarding the role of
glycerol as in situ source for oxolone ligand formation by reaction with

Pd(diphenylphosphine-2-benzaldehyde),. A very good vyield of the cross coupling
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product was obtained using Pd(diphenylphosphine-2-benzaldehyde). in glycerol that can

form a oxolone ligand in situ by reaction with glycerol.

Table 8. Pd-catalyzed Suzuki—Miyaura cross-coupling reaction in glycerol .2

Br B(OH), [Pd] O
+ »-
R ©/ Glycerol, Base O
R

R = Me, H 80 °C, Time (h)
Entry [Pd] (mol%) R Base Time (h)  Yield (%0)°
1 Pd(dba)2 (1) Me K3PO4 4 50
2 Pd(dba)2 (1) Me Na.COs 4 54
3 Pd(dba)2 (1) Me KOH 4 54
4 Pd(dba)2 (1) H KOH 4 46
5 Pd(dba)2 (1) H KOH 24 70
7 PdCI2(PCys)2 (1) H KOH 24 81
8 PdCI2(PPhs)2 (1) H KOH 24 99

@ Reaction conditions: 1 mol% Pd(dba)2, 0.5 mmol aryl bromide, 0.55 mmol
phenylboronic acid, 1 mmol base, 4 mL glycerol, 80°C. ® Isolated yield.

3.2 Results and Discussion

Glycerol is an attractive and an alternative green solvent to perform metal
catalyzed cross-coupling reactions and provides both economic and eco-friendly
benefits. Water has been extensively explored in this regard, however, the necessity of
hydrophilic catalysts have restricted the scope of water as an efficient reaction medium.
For this purpose, glycerol offers a viable alternative as it can tolerate both hydrophilic
and hydrophobic catalysts, and substrates, therefore, we intended to explore the scope
and limitations of glycerol as an alternative green reaction medium for the Suzuki-

Miyaura cross-coupling reaction.
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Our investigation for the Suzuki-Miyaura cross-coupling reaction were started by
reproducing and comparing the results above presented in Table 8. Identical results were
obtained by using the reaction conditions previously established in our lab.?%* For
instance, when the model reaction was performed using 1mol% of Pd(dba)., the cross-
coupling product was obtained in81% yield (Table 9, entry 1). Similarly, when the model
reaction was performed using 1mol% of PdCI2(PCys)., 81% (Table 9, entry 2) yield of
the cross-coupling product was obtained, while a quantitative yield was obtained using
PdCI,(PPhs). (Table 9, entry 3).

Table 9. Screening of different Pd Sources and Ligands catalyzed Suzuki—Miyaura
reaction in glycerol.

Br B(OH), [Pd] / Ligand O
+ »
Glycerol, KOH O

80°C, 24 h
Entry [Pd] (mol%) Ligand (mol%b) Yield (%)®
1 Pd(dba) (1) - 70
2 PdCI»(PCys). (1) - 81
3 PdCI,(PPhs), (1) - 99
4 PdCl,(dppf) (2) - 76°
5 PdCl,(dppf) (2) - 86
6 PdCl,(2-PPh,-benzaldehyde), (1) - 79
7 Pd(OAc) (1) - 62
8 Pd(OAc): (2) PPh,CI (4) 98
9 Pd(OAC). (1) 2-PPh;-benzaldehyde (2) 68

2 Reaction conditions: 0.5 mmol aryl bromide, 0.55 mmol phenylboronic acid, 1 mmol
KOH, 4 mL glycerol, 80°C, 24 h. © Isolated yield. ¢ 4 h.

In order to compared the results obtained by Wolfson and co-workers,** the
model reaction was performed under the similar conditions described i.e., using 2 mol%

of PdCl(dppf), only 76% of yield was obtained after 4h (Table 9, entry 4). When the
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reaction of was allowed for 24 hours of magnetic stirring 86% of yield was obtained
(Table 9, entry 5). PdCl2(2-PPhz-benzaldehyde), as Pd source provided 89% of isolated
yield (Table 9, entry 6). To compare the result obtained using ligand free Pd(dba)z, a
ligand free Pd(OAC), system was also tested, only a yield of 62% cross-coupling product
was obtained.

Finally, we were delighted to see that when 2.0 mol% Pd(OAc)2 and PPh,ClI (4.0
mol%) based catalytic system was used the coupling product was obtained in excellent
yield (Table 9, entry 8). We assume that the quantitative yield of the cross-coupling
product is attributed towards the formation of an in situ phosphinate ligand capable of
forming a complex in situ with the Pd precursor, that’s why the cross-coupling product
was obtained in quantitative yield. This result further motivated us to use a catalytic
system based on the similar assumption that 2-PPhz-benzaldehyde would form an in situ
oxolone ligand and would provide a similar result. Thus, a catalytic system based on
Pd(OAc)2 and 2-PPh,-benzaldehyde was also evaluated, however, in contrast to our
expectations, only a moderate yield of the cross coupling product was obtained (Table
9, entry 9). It is very important to mention that the cross-coupling product was isolated
easily by simply extracting the reaction mixture with a glycerol-immiscible solvent such

as hexane in this case.

3.2.1 Recycling Studies of Glycerol

The glycerol recycling experiments were studied initially by using the reaction
conditions developed previously in our lab. For this, a glycerol-soluble phosphine was
investigated, such as the triphenylphosphine monosulfonate sodium salt (TPPMS) based
on the hypothesis that it could improve the catalyst homogenization and solubility in the
reaction medium. A moderate yield was obtained when 1.0 mol% of Pd(OAc)./TPPMS
was used. Increasing Pd(OAc)./TPPMS loading to 2.0 mol% although increases the
product yield, but sharp deactivation of the catalytic glycerol media after the first cycle
was observed again. Interestingly, when 2.0 mol% PdCIl2/TPPMS combination was
tested, the catalytic glycerol media entered into the fourth cycle, whilst formation of
palladium black prevent the reaction medium from further recycling after the fourth

cycle.?0!

54



Chapter 3

The glycerol catalytic media recycling experiments were then performed using
PdCl2(PPhs). based under optimized conditions described above. After the extraction of
the biaryl product from the first reaction using hexane several times (5 times), the
catalytic glycerol medium was dried under vacuum. Then, identical amount of
bromobenzene, phenylboronic acid and KOH were added to the glycerol and the reaction
was carried out under similar conditions. The results of the recycling catalytic glycerol

media experiments are summarized in Table 10.

Table 10. Catalyst recycling for Suzuki-Miyaura reaction of bromobenzene with
phenylboronic acid in glycerol.2

Ph-Ph Yield (%)

Cycle
PdCl2(PPha)2 PdCl2(dppf) PdClIz(PPhz); ©
1 88 86 89
2 89 28 92
3 85 19 86
4 65 - 99
5 30 - 99
6 ] - 77
7 - - 62
8 ] - 31

a Reaction conditions: [Pd] (2 mol%), 0.5 mmol bromobenzene, 0.55 mmol arylboronic
acid, 1 mmol KOH, 4 mL glycerol, 80°C, 24h. ® Isolated yield. ¢ Glycerol:Methanol (1:1).

We started the recycling studies using 1 mol% of PdCI>(PPhs). that gives a
quantitative yield of the cross-coupling product for the first run . Only a 56% yield of the
cross-coupling product was obtained for the second cycle of and the reaction stopped in
the third cycle. We then increased the PdCI>(PPhs). loadings to 2.0 mol% and we were
delighted to see that under these conditions the catalytic system is recyclable up to 4
cycles smoothly, however a sharp decrease in the yield of the cross-coupling in the 5

cycle stopped us to further recycle the catalytic media due to high excessive inorganic
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salt formation, preventing the reaction mixture from smooth magnetic stirring in addition
to the high viscosity of glycerol. Therefore, we decided to use a 50:50 solution mixture
of glycerol and methanol, to decrease the viscosity and to increase the solubility of the
organic substrates in the glycerol catalytic media. Under these conditions we observed a
smooth catalytic performance of the catalytic glycerol media. Up to 7 cycles, the catalytic
media delivered excellent yields of the cross-coupling products, however, a sharp
decreased in the yield of the cross-coupling product in the 8" cycle. We observed
formation of solid inorganic salts which prevent the reaction mixture from a smooth

magnetic stirring, in addition to the catalyst decomposition after the 8" cycle.

In addition to this, the catalyst decomposition might be another reason for the
observed low yield of the cross-coupling product in the 8" run. One of the drawbacks is
the lixiviation of the organic part of catalyst to the non-polar organic phase during
extraction causing a sharp decrease in the catalytic activity of the catalyst, which in turn
might affect the number of recycles. It has been reported that in the presence of
PdCl2(dppf) (2 mol%) the reaction between iodobenzene and phenyl boronic acid in
glycerol kept the catalytic activity for 3 cycles.’® However, we did not find similar
behaviour for the coupling with bromobenzene, and the yield drops to only 28% for the

second cycle.

The reaction of chlorodiphenylphosphine (PPh2Cl) with alcohols (ROH) to give
the corresponding phosphinite (Ph.POR) ligands is already a known reaction.2%% 203 So,
we expected that the treatment of PPh>Cl with glycerol would form an in situ phosphinite
ligand (Ph2P-Glycerol) with two free hydroxyl groups, improving the solubility of the
catalyst in the glycerol phase and subsequently will offer a better catalyst recycling
(Scheme 16).

HO 0—PPh, OH

ol /PPhZ
PPh,C HO e 0 0
25T rt, 1h Ho

OH OH

HO

Scheme 16. Expected reaction of PPh>Cl with glycerol.
To support this assumption, PPh2Cl (20 mol%) and glycerol (4 mL) were mixed
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directly under argon and allowed to magnetically stir for 1 hour at room temperature. All
of the PPh,Cl was consumed within the first hour, supported by the up field shift of the
PPh,Cl signal from 81.8 ppm (Figure 20-a) to 21.7 and 25.9 ppm in the 3P-NMR of the
crude reaction mixture (Figure 20-b). Then a mixture of glycerol and PPh.Cl under inert
atmosphere were magnetically stirred for 1 hour, followed by addition of 1 mol% of
Pd(OAC)2, and stirred for additional 3 hours. The 3'P-NMR of the crude reaction mixture
showed some downfield signals at 36.3, 33.1 and 28.5 ppm including the signals for the
tagged glycerol-PPh; signals at 21.7 and 25.9 ppm supporting a partial in situ complex
formation with Pd (Figure 20-c).

PPh2CI (a) 2
by
A
T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T
150 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -15(
PPh2CI + Glycerol (b) a R
QR
\ o
| 1
T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T
150 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -15C
PPh2CI + Glycerol + Pd(OAC)2 (c) m2n o
S 0 6 18| o
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Figure 20: 3P-NMR of PPh.Cl (a), PPh,Cl + Glycerol (b), and PPh,Cl + Glycerol +
Pd(OAC): (c).

Although, we tried many times to isolate the phosphinte ligand and Pd-complex
formed in situ, but our attempts remained unsuccessful, nevertheless, our objective here
was to increase the number of recylces by improving the solubility of the catalyst in the
glycerol phase and not the isolation of the phosphine ligand and the corresponding Pd
catalyst formed in situ. Hence, for the glycerol recycling experiment, PPh2Cl (2 mol%)
and the glycerol (4 mL) were directly mixed and allowed to stir for 1 hour at room

temperature before starting the cross-coupling reaction. Then 4-bromotoluene (0.5
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mmol), phenylboronic acid (0.55 mmol), 1 mol% Pd(OAc)2, 1 mmol KOH were added
and magnetically stirred under argon at 80°C during 24 h. The coupling products were
obtained in 98% and 83% yield in the first and second run respectively, but the yield was
dropped to only 10% in the third cycle, (Table 10a). The sharp decrease in the yield of
the cross-coupling product after the third cycle was attributed towards the formation of
palladium black and catalyst decomposition. Since, glycerol does have water in small
quantities even after careful drying, therefore, the observed sharp decrease in the yield
might also be due to presence of water, preventing the reaction of PPh,Cl and the glycerol

to proceed as proposed.

Table 10a. Catalyst recycling in the Suzuki-Miyaura reaction using Pd(OAc)2/PPhxCl
system in glycerol.

Br B(OH), Pd(OAc), / PPh,Cl O
. -
Glycerol, KOH O

80°C,24h

Cycle 1 2 3

CC Yield (%) 98 83 10

Reaction Conditions: 1 mol% Pd(OAc)2, 20 mol% PPh,Cl, 0.5 mmol 4-bromotoluene,
0.55 mmol phenylboronic acid, 4 mL glycerol, 1 mmol KOH, 4 mL glycerol, 80°C, 24
h; P Isolated yield.

Furthermore, we also have provide some details regarding the role of glycerol as
in situ source for oxolone ligand formation by reaction with 2-PPhz-benzaldehyde,
(Scheme 17). Again we have used the 3P-NMR to follow the in situ ligand formation.
For this, we first mixed glycerol and diphenylphosphine-2-benzaldehyde in presence of

catalytic amounts of p-toluene sulphonic acid.

HO 0 H OH OH
H M/ ) O/j%
N0, HO p-TSA o o
Reflux, 24h +
PPh, HO PPh, PPh,

Scheme 17. Reaction of glycerol and 2-PPh,-benzaldehyde.

The reaction after 24 hours of magnetic stirring using a Dean-Stark apparatus was

filtered and analyzed the crude reaction mixture directly by using 3P-NMR which
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suggested formation of oxolone intermediates (Figure 21-a). The formation of oxolone
ligand was confirmed by comparing the literature data related to oxolone ligands with

the observed values.?4 20°

OH OH

o] H oH o
H H H
0 ©ﬁ\o PdCIz(CH3CN)2
+
CH,CL,, rt, 2h PdCI
PPh, pp 2~ PdCI2

h,

Scheme 18. Reaction for oxolone ligands with PdCI>(CH3CN)s.

Glycerol + 2-PPh2-Benzaldehyde (a)

L
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Figure 21. 3'P-NMR of 2-PPh,-benzaladehyde + Glycerol (a), and 2-PPh,-benzalade-
hyde-Glycerol + PdCI2(CH3CN)2 (b).

To this reaction mixture we then added PdCI2(CHsCN)2 and allowed to
magnetically stir for 2 hours in dichloromethane under argon atmosphere at room
temperature (Scheme 18). The reaction mixture on overnight standing undisturbed
produced fine yellowish crystals. The crystals were washed with minimum amount of
dichloromethane and submitted for X-ray crystallography and 'P-NMR. The *'P-NMR
suggested presence of two phosphorous signals (Figure 21-b), while the X-ray analysis

though suggested complex formation with Pd, however, the X-ray crystal data was not
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completely resolved and revealed co-crystallization of five and six-membered oxolone
ligands attached to the Pd-centre. When the Suzuki-Miyaura cross-coupling reaction was
performed under optimized conditions using 2-PPhz-benzaladehyde as ligand, only a
moderate yield was obtained, therefore, we stopped the reaction for further evaluation in

the glycerol recycling experiments.

3.3 Experimental
3.3.1 Materials and Methods

All reactions were carried out under an argon atmosphere in resealable Schlenk
tubes. All the chemicals were purchased from commercial sources and used without
further purification. Glycerol was degassed by purging a layer of argon for 15 to 20
minutes before using in a reaction. 'H-, and 3C-NMR spectra of the cross coupling
products were recorded on a Varian XL300 and Varian 400 MHz NMR spectrometer.
Chemical shifts are reported in ppm downfield to TMS. Mass spectrometry analyses were
performed on the GC-MS Shimadzu QP-5050 (El, 70 eV) equipped with a 30 m long
DB-5 column. Gas chromatography analyses were performed on a HP-5890A instrument
fitted with a FID detector and a 30 m long DB-17 column.

3.3.2 General Procedure for the Suzuki-Miyaura cross-coupling reaction
For a typical Suzuki-Miyaura experiment, an oven-dried resealable Schlenk flask
capacity 10 mL was evacuated and back-filled with argon and charged with PdCl2(PPhs).
(0.5 mol%; 1.8 mg), aryl bromide (0.5 mmol), followed by addition of arylboronic acid
(0.55 mmol), KOH (1.0 mmol, 56 mg), and glycerol (4.0 mL). The reaction mixture was
allowed to magnetically stirr at 80°C for 24h. After, the solution was cooled to room
temperature and was extracted 3 times with a glycerol-immiscible solvent, in this case,
hexane. The hexane phase was separated, dried over MgSOa4, and concentrated under
vacuum. The products were then purified by using silica gel flash chromatography
eluting hexane only. The spectral data of the obtained products were in agreement with

those described in the literature.
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3.3.3 Glycerol Recycling Experiments

Recycling of catalytic glycerol media containing different Pd sources

For the recycling experiment, an oven-dried resealable Schlenk flask was
evacuated and refilled with argon and charged with [Pd] (1.0 or 2.0 mol%), and ligand
(2.0 or 4.0 mol%). Then aryl bromide (0.5 mmol), followed by addition of aryl boronic
acid (0.55 mmol), KOH (1.0 mmol), and glycerol (4.0 mL). The Schlenk tube was then
sealed and the reaction mixture was allowed to magnetically stirr at 80°C for 24h. After
5 times extraction with hexane, the resulting glycerol phase was then dried under
vacuum, reused for next reaction without further purification. Then, equal amounts of
aryl bromide (0.5 mmol), arylboronic acid (0.55 mmol) and potassium hydroxide were
added and the reaction was stirred under optimized conditions for further 24 hours.

Recycling of PdCI2(PPhs)2 catalytic glycerol media

For the recycling experiment with, an oven-dried resealable Schlenk flask was
evacuated and refilled with argon and charged with PdCl2(PPhz)2 (2.0 mol%). Then aryl
bromide (0.5 mmol), followed by aryl boronic acid (0.55 mmol), and KOH (1.0 mmol),
were added in 1:1 mixture of glycerol and methanol (2 + 2 mL). The Schlenk tube was
then sealed under argon and the reaction mixture was allowed to magnetically stirr at
80°C for 8h. After 5 times extraction with hexane, the resulting glycerol and methanol
based catalytic medium was then evacuated and backfilled with argon three times to
make sure oxygen free catalytic medium, and reused for next reaction. Then, equal
amounts of aryl bromide (0.5 mmol), arylboronic acid (0.55 mmol) and potassium
hydroxide were added and the reaction was stirred for overnight. In this way, alternative

8 and 16 hours cycles i.e., two cycles per day were performed up to 8 cycles.

Recycling of catalytic glycerol media using Pd(OAc)2/PPh2Cl

To an oven dried resealable Schlenk tube, evacuated and back filled with argon,
PPh2Cl (2.0 mol%) and the glycerol (4 mL) were directly mixed before starting the cross-
coupling reaction and magnetically stirred for 1 hour at room temperature. Then 4-
bromotoluene (0.5 mmol), phenyl boronic acid (0.55 mmol), 1 mol% Pd(OAc)., and 1.0
mmol KOH were added and stirred at 80°C for 24 h. The reaction was allowed to achieve
room temperature, after 3 times extraction with hexane, the resulting glycerol phase was
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then dried under vacuum and reused for next reaction without further purification. Then,
equal amounts of 4-bromotoluene (0.5 mmol), phenyl boronic acid (0.55 mmol) and 1.0

mmol KOH were added and the reaction was stirred for further 24 hours.

Recycling of Glycerol using Pd(OAc)2/ 2-PPh2-benzaldehyde

An oven dried resealble Schlenk tube was evacuated and back filled with argon,
was charged with Pd(OAc)2 (1 mol%) and 2-PPhy-benzaldehyde (2 mol%) and the
glycerol (4 mL) were mixed and magnetically stirred for 1 hour at room temperature.
Then 4-bromotoluene (0.5 mmol), phenyl boronic acid (0.55 mmol), 1 mol% Pd(OAc),
and 1.0 mmol KOH were added and stirred at 100°C for 6 h. The reaction was allowed
to achieve room temperature, after 3 times extraction with hexane. A moderate yield of
cross-coupling product in the first cycle forced us to stop the catalytic media for further

recycles.

3.4 Conclusions

In conclusion, a simple catalytic system based on PdCl2(PPhs). in glycerol
efficiently catalyzes the Suzuki-Miyaura cross-coupling reaction of aryl bromides with
aryl boronic acids. The cross-coupling products were obtained in good to excellent yields
and the products were easily isolated by extraction with hexane. Since, the use of glycerol
provides the advantage of using the glycerol catalytic media to recycle, therefore,
recycling studies using a 50:50 solution mixture of glycerol and methanol demonstrates
a smooth catalytic performance of the catalytic glycerol media. Up to 7 cycles the
catalytic media delivered excellent yields of the cross-coupling products, however, a
sharp decreased in the yield of the cross-coupling product in the 8" cycle was observed
due to formation of solid inorganic salts which prevent the reaction mixture from a
smooth magnetic stirring. In addition to this, the catalyst decomposition might be another
reason for the observed low yield of the cross-coupling product in the 8" run. We also
attempted to study the recycling of glycerol by using a mixture of Pd(OAc). and
chlorodiphenylphosphine in glycerol which also catalyzes the reaction efficiently. We
believe that in the presence of glycerol, PhoPCI can be converted in situ into a phosphinite

ligand. The attempts to recycle the catalytic system suggested that it is recyclable up to
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3 cycles and rapidly loss its catalytic activity in the fourth cycle. Furthermore, we also
have studied role of glycerol as an in situ source for oxolone ligand formation by reaction
of glycerol with Pd(diphenylphosphine-2-benzaldehyde).. Only a good yield of the cross
coupling product was obtained using Pd(diphenylphosphine-2-benzaldehyde). in
glycerol that can form a oxolone ligand in situ by reaction with glycerol. However, the
catalytic system was not so effective for further evaluation, therefore, we did not explored

it for the recycling studies.
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Chapter 4 Suzuki-Miyaura Cross-Coupling Reaction of Aryl Halides
and Aryl Boronic Acids Catalyzed by Using a New
lonophllic Imino-phosphine-Pd-Complex and Mechanistic
Insights Using ESI Mass Spectrometry
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4.1 Introduction

Introduction of charged tags (ionophillic fragments) at remote sites as a strategy,
in order to immobilize the catalyst enhances the retention and stability of the catalyst
vividly and prevents lixiviation from the reaction medium.2%6-2%° |n addition, the catalytic
behaviour enhances several folds, facilitates improved solubility in a variety of polar and
green solvents including water, along with the beneficial aspects of facile product
separation from the reaction mixture and catalyst recyclability.?2%?% The
physicochemical properties like thermal stability and electrochemical properties of the
catalyst also modify dramatically by using ionic tags. Thus, the use of inherent
ionophillic tag provides a well-designed and straightforward pathway for the fine-tuning
of the properties of a catalyst which in turn display an enhanced catalytic behavior as a
payoff.?’> Therefore, strategic functionalization of ligands and catalysts using charged
tags for the stereoselective reactions, and cross-coupling reactions has gained much

popularity among the scientific community during the last few decades.?16-220

The use of ionophillic tags bestowed upon the catalyst provides the unique
advantage of their detection easily and rapidly with a high level of sensitivity in the ESI
mass spectrometry analysis, then their corresponding neutral counterparts.??22°
Introduced for the first time by Adlhart and Chen, the charged tagged catalysts as
fishhooks are powerful tools in organometallic catalysis for the detection of key
intermediates formed during the reaction.??® Since, ESI is a soft ionisation technique and
the probability of neutral intermediates to undergo ionisation in many cases might be
rare, the use of ionic tag ensures a permanent charge which in turn allows the facile
detection of the key intermediates involved in the reaction.??: 227 In addition, the
ionisation process in ESI transfers only a limited amount of energy into the probed ions
and does not significantly alter the nature of the species detected. That is why ionophillic
charged tag catalysts have been widely employed as ionic probes to get insights about

the mechanism for several catalytic reactions using ESI mass spectrometry as a fishing
t00|_228-233

There are several reports described in literature about the Suzuki cross-coupling
reaction catalyzed by using charged-tagged ligands and ionophillic Pd-catalysts.?> 219

234236 | jkewise, several reports on the use of charged-tagged catalysts to get insights
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about the mechanism through detection of key intermediates of Suzuki cross-coupling
reactions using ESI mass spectrometry are also described.??> 235 237. 238 Majority of these
reports have provided a significant information about the key intermediates related to
oxidative addition step of aryl halides or pseudo-halides to the very reactive Pd (0) specie,
transmetalation step and reductive elimination step, however, to the best of our
knowledge there is no report that provides the direct evidence for the formation of a
stable Pd (0) specie using ESI-MS yet. Therefore, in continuation of our research work
on finding active Pd-catalysts for cross-coupling reactions and understanding the
mechanistic pathways involved in the Pd-catalyzed cross-coupling reactions using ESI-
MS, 3% 240 we herein describe synthesis and characterization of an ionophillic imino-
phosphine-Pd catalyst previously synthesized in our research group which demonstrates
an excellent catalytic activity in catalyzing the Suzuki-Miyaura cross-coupling reaction.
The ionophillic Pd-catalyst was further used as an ionic probe to get some insights about
the mechanism of Suzuki-Miyaura cross-coupling reaction through detection of key

reactive intermediates using ESI mass spectrometry technique.

4.2 Results and Discussion
In order to obtain the ionophillic imino-phosphine-Pd-complex 2 previously
synthesized in our lab, first 2-aminoethyl-triphenylphosphonium bromide was
synthesized by following the same protocol described and cited with a slight
modification.?> 201 By refluxing a mixture of 2-aminoethyl bromide-HBr salt and
triphenylphosphine in acetonitrile for 48 hours delivered 76% yield of desired product,

Scheme 19,21
CH,CN

NH, - HBr PPh =
PPh A2 - ST By
3 + Br Reflux, 48 h HN

Scheme 19. Synthesis of 2-aminoethylphosphonium bromide.

Then a mixture of 2-aminoethyl-triphenylphosphonium bromide (2.9 mmol), 2-
diphenylphosphino-benzaldehyde (2.9 mmol), KPFs (5,8 mmol) and a pinch of NaxSO4
as a dehydrating agent in 50 mL toluene was magnetically stirred under reflux for 24

hours by using a typical Dean-Stark apparatus (Scheme 20). The titled compound 2-
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diphenylphosphino-1-iminoethyltriphenylphosphonium hexafluorophosphate (1), after

work up was obtained as a yellow powder in 73% yield.

Br >
PPh Toluene, Refulx, 24 h PFe
2 PPh,

Scheme 20. Synthesis of lonophillic Iminophosphine Ligand 1.

H N/\/Pphg
2

Then a mixture of 1 (2.4 mmol) and PdCI2(CH3CN)2 (2.4 mmol) were mixed to
a Schlenk tube under argon in 50 mL of dry CH.Cl, and magnetically stirred at room
temperature for 12 h (Scheme 21). The crude product obtained was filtered through a
plug of celite followed by solvent evaporation under argon atmosphere. Washing with
several fractions of Et.O and solvent evaporation, delivered the desired complex 2 in
76% yield.

+
N PPh PPh
N7 PCI,(CH4CN), \I\IJ/E/ 3
e CHCL, it _PdZ Pre
PPh, 2t P~ ¢l
12h Ph,

1 2 (76%)

Scheme 21. Synthesis of lonophillic Iminophosphine-Pd Complex, 2.

The formation of the complex was confirmed first by using *H- and *'P-NMR,
followed by HR-ESI mass spectrometry and by comparing the spectroscopic data with
the data reported by our research group.?* In the *H-NMR spectrum, the characteristic
proton singlet resonating at 8.33 ppm was assigned to the imine proton, while the two
signals at 4.63 (dt, J = 10.4, 5.0 Hz, 2H), and 3.57 — 3.33 (m, 2H) were assigned to the
two methylene group protons, respectively. Other proton signals were assigned to the
aromatic protons. In the *!P-NMR, the signals at 22.7, and 31.3 ppm were assigned to the
PPh2 and PPhs groups, respectively, while the signals resonating at -154.7, -148.9, -
143.0, -137.2, -131.8 ppm were assigned to the PFe group. The HRESI-MS in the
positive-ion mode ESI mass spectrum showed the molecular ion peak at m/z 756.0596
which was in consistent with the proposed molecular formula Cz9H34CI2NP2Pd (calcd.
756.0598) (Figure 22).
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Figure 22. HRESI-MS and Isotopic distribution of 2: a) Experimental, b) Simulated.

Finally, the X-ray diffraction data reported by our research group previously
revealed that the new ionophillic iminophosphine Pd-complex (2) crystallizes in a
triclinic P-1 space group.2®* The solid-state structure of 2 is shown in Figure 23 (Adapted
from ref. 201).

Figure 23. Molecular structure of lonophillic Iminophosphine-Pd-complex, 2 with the
key atoms labelled (thermal ellipsoids drawn at 50% probability) (Adapted
from ref. 201).

The complex was then evaluated for its catalytic efficiency in the Suzuki-Miyaura
cross-coupling reaction. For this, 4-bromotoluene and phenyl boronic acid were chosen
as our model substrates and diphenyl ether was used as internal standard for GC analysis.

The investigation for the Suzuki-Miyaura cross-coupling reaction was initially started by
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using the reaction conditions optimized in our group for the Suzuki-Miyaura cross-

coupling reaction of aryl halides and arylboronic acids using 1 mol% of Pd.

We started our investigation by performing the model reaction at 80 °C using
dioxane as the solvent after 24 hours of magnetic stirring, as a result the model reaction
provided a 98% conversion with a cross-coupling yield of 81% (Table 11, entry 1). The
result motivated us to increase the reaction time under similar conditions, an improved
conversion of 98% along with a cross-coupling yield of 94% was obtained (Table 11,
entry 2). We were very delighted to see that under similar reaction conditions with an
increase in reaction time, an excellent yield of the cross-coupling product was obtained
after 24 hour of magnetic stirring along with the complete conversion of aryl bromide
(Table 11, entry 3). Then, we expected that allowing the reaction to stir for 4 hours with
a slight increase in the reaction temperature (100 °C) will also provide better results,
however, in contrary to our expectations, both the conversion and the yield of the cross-

coupling product decreased (Table 11, entry 4).

Table 11: Temperature and time effect on the model SM cross-coupling reaction.

Br B(CH), [Pd] (2) O O
/©/ + © K,CO,, Dioxane O + O

T (°C), Time (h)
Conversion CC Yield HC Yield
Entry Temp.(°C) Time (h)
(%0)° (%0)° (%0)°
1 80 8 90 81 1
2 80 16 98 94 1
3 80 24 100 96 2
4 100 4 90 80 1
5 100 8 94 85 1
6 100 16 100 96 2

a) Reaction conditions: KoCOs (2 eq.) and Dioxane (4 mL). b) Determined by GC, based
on 4-bromotoluene. ¢) HC biphenyl product yield based on phenyl boronic acid.

When the reaction was allowed for 8 hours of magnetic stirring at 100 °C, a 94%
conversion of the aryl halides with 85% yield of the cross-coupling product was observed

(Table 11, entry 5). Further increasing the reaction time for 16 hours, presented 100%
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conversion of aryl halide with an excellent cross-coupling yield i.e., 96% (Table 11,
entry 6). A similar result to entries 3 and 6 (Table 11) was observed when the temperature
of the reaction was increased i.e., 100 °C (Table 11, entry 7). Therefore, we concluded

that the model reaction after 16 hours at 100 °C provides best results.

We then investigated the effect of different solvent and base combinations on the
model Suzuki-Miyaura cross-coupling reaction. All the bases evaluated provided a
complete conversion and excellent yields of the cross-coupling product (Table 12,
entries 1-3), however, K2COs and Cs,CO3 showed the best result, (Table 12, entry 2).

Table 12: Base and solvent effect on the model SM cross-coupling reaction.

Br B(OH), [Pd] (2) O O
/©/ + ©/ Base, Solvent : O + O
100°C, 16h

Conversion CC Yield HC Yield
Entry Base Solvent
(%0)° (%0)° (%0)°
1 K2COs Dioxane 100 96 2
2 Cs2C0O3 Dioxane 100 97 2
3 KOH Dioxane 100 92 5
4 KOH MeOH 99 98 4
5 K2COs3 MeOH 99 85 2
6 KOH Glycerol 67 58 5
7 K2COs Dioxane 92 89 2

a) Reaction conditions: 0.5 mmol aryl bromide, 0.65 mmol arylboronic acid, 1 mol% Pd,
4 mL Solvent, 1 mmol base, 100 °C, 16h; b) Determined by GC, based on aryl bromide.
¢) HC biphenyl product yield based on phenyl boronic acid. d) 0.5 mol% Pd.

The effect of different solvents on the reaction showed that both dioxane and
methanol can be used as solvent, as the conversion and yield of the cross-coupling
product is high in both cases (Table 12, entries 1 and 5). The reaction with glycerol as a
solvent provided a low conversion and yield (Table 12, entry 6). A low Pd loading (0.5
mol%) was also tested and observed a relative low yield and conversion, (Table 12, entry

7). The Suzuki-Miyaura cross-coupling reaction using 1 mol% Pd loading, K-COs as
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base, dioxane as solvent at 100 °C for overnight magnetic stirring was therefore

concluded as the optimized conditions to explore the scope of the reaction.

Table 13: Substrate scope under optimized reaction conditions.

X B(OH), =
I (A r2_ X 2 (1.0 mol%) +—R?
| / ] / : = \ \
K,CO,, Dioxane Rl——
0.5 mmol 0.75 mmol 100 °C, 16h =

Entry R! X R?  Conv. (%)? CC Yield (%)* HC Yield (%)

1 4-Me Br H 100 96 (95) 2
2 4-Me I H 100 96 2
3 4-Me Cl H 0 0 8
4 4-OMe  Br H 100 91 2
5 4-Ac Br H 100 98 2
6 4-Me Br 2-Me 100 77 1
7 4-Me Br 4-Ac 100 96 2
4-
8 4-Me Br OMe 100 94 2

a) Reaction conditions: 0.5 mmol aryl bromide, 0.65 mmol arylboronic acid, 1 mol% 2,
4 mL Dioxane, 1 mmol K2CO3, 100 °C, 16h; b) Determined by GC (Isolated yield), based
on aryl bromide. c) HC biphenyl product yield based on phenyl boronic acid.

By employing different haloarenes and arylboronic acids with varying electronic
and steric characteristics, we observed that both electron rich and poor bromoarenes were
well tolerated, providing the excellent conversions and yields of the corresponding cross-
coupling products (Table 13, entries 2, 3, 7, 8). The reaction was however sensitive
towards the steric effects (Table 13, entries 6). Unfortunately, the catalyst was inactive
for the cross-coupling reaction between aryl chlorides and aryl boronic acids (Table 13,
entries 3). In conclusion, the new ionophillic Pd-catalyst (2) is an efficient catalyst for
the Suzuki-Miyaura cross-coupling of aryl iodides and bromides with aryl boronic acids

and gives excellent yields of the cross coupling products however, the catalyst was
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inactive in catalyzing the reaction when aryl chlorides were as aryl halide equivalents of

aryl iodides and bromides.

Finally, we have attempted to obtain some insights about the mechanism of the
Suzuki-Miyaura cross-coupling reaction through detection of the key intermediates
involved in the catalytic cycle. The catalytic reactions performed for the positive-ion ESI
based experiments were performed using an oven dried Schlenk flask evacuated and
backfilled with argon and charged with 2 (5 mg, 2 mol%) and 0.25 mmol scale reagents
in 3 mL methanol. After 2 hours of magnetic stirring at room temperature or 50 °C, the
reaction mixture was introduced into the mass spectrometer directly by a syringe filled
with argon at a rate of 30 mL.min initially, which was reduced to 5.0 mL.min" soon

after characteristic ionic species were acquired by the mass spectrometer.

First we investigated the behavior of ionophillic Pd-catalyst (2) in methanol. A
solution mixture of 2 mol% ionophillic Pd-complex (2) in 2 mL methanol stirred at room
temperature for 1 hour was injected in the ESI mass spectrometer. Figure 24 presents
the ESI mass spectrum of 2 in methanol at room temperature that displays several singly
charged ionic species. Structural assignments were therefore established on the basis of
exact mass measurements and similarities in the characteristic isotopic distribution
patterns for the different ionic species. For simplification purposes, the m/z value without
decimal point values for the ionic species has been adopted here. The proposed hydrolytic

pathway of the Pd-complex 2 in methanol is shown in Scheme 22.

The species with m/z 756 corresponds to the precursor ionophillic Pd-complex,
2 used here as a probe for ESI detection of ionic species. An adduct species of the 2 with
CO2 ([2 + CO2]") was assigned for the m/z 800. The methanolic solution of 2 also
contains species with m/z 306 which corresponds to the 2-aminoethyl-
triphenylphosphonium ion (4) which undergo further cleavage to the species with m/z
277 that corresponds to the methyl-triphenylphosphonium ion (5). The species with m/z
610 is consistent with the mass of a methanol adduct of ionophillic ligand (3) indicating

leaching of PdCI, from 2 in methanol.
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Scheme 22. Proposed hydrolytic pathway of 2 in methanol at room temperature.

Then, mixing 2 (2 mol%) with 4-bromotoluene (0.25 mmol) in 3 mL methanol
at 50°C acquired after 2h showed three key reaction intermediates in the ESI mass
spectrum. 2 and [2 + CO2]* as observed for the mixing of 2 and methanol at room
temperature, including a species at m/z 321 corresponding to 7. The mass spectra
acquired after 2 hours of mixing 2 and K>.COs in methanol afforded a complex mixture
of products and showed species related to 7, and no other species related to the Pd-

complex or ionophillic ligand were observed.
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Figure 25 shows the ESI mass spectrum acquired after 2h reaction of 2 with
phenyl boronic acid in the presence of base in methanol at 50°C. We were delighted to
see an unprecedented key intermediate (6), a Pd(0) specie analogous to m/z 684. The
characteristic m/z ratios and isotopic distribution patterns were in complete consistence
with the proposed structure as shown in Figure 26. In addition to this, the positive ESI
mass spectrum also showed two additional reaction intermediates containing ionophillic
backbone at m/z 699 and 760. The species with m/z 699 was in consistent to an adduct
of [1 + B3sOsHK], while the species with m/z 760 corresponds to an ortho-metalation
intermediate, 8.

1004 321.0473

\O/\/';Ph;
7
322.0182

+
Cor
|
—Ph
=] P,Pd

3

Ph

4 PPh, ]+

HN PP DU (\ j or E

’ B,0,HK PP
4 P 303
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1+ B,0,HK P

306.1584 13222352
108.9780 259 0633._ b
i l

178 952z 248 9383 684.1237 760.2494
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Figure 25. Positive-ion ESI mass spectrum of 2 and phenylboronic acid in methanol
acquired after 2h at 50°C.

The following pathway has been thus proposed for the formation of Pd(0) specie
(6) and other related species during the reaction based on the positive-ion ESI mass
spectrum, Scheme 24. We believe that transmetalation with phenylboronic acid in the
presence of base initially forms a very reactive intermediate 9, which might undergo a
fast reductive elimination to the stable Pd(0) species (6). In addition, the species with m/z
760 is proposed to be form via an ortho-metalation pathway. Two different structures
have been proposed for the formation of the species with m/z 760 i.e., 8. We expect that
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the Pd-complex 2 first forms a very unstable reactive intermediate 10, which then

undergoes transmetalation in the presence of phenylboronic acid to 8.

684.1212
| 684.1216
683213 || 5361485 6a3 1221 |686.1212
‘ 682 1207 689.1226
£82.1398 688.1508 . 7
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I | 689.1530 | /
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680 685 690 Ph" Ph 580 685 600
a 6 b

Figure 26. Positive-ion ESI mass spectrum of 6, a) Experimental and b) Simulated.
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Scheme 23. Proposed pathways for the formation of stable Pd(0) (6) intermediate.

Based on these observations, we propose the following catalytic cycle for the
ionophillic imino-phopshine Pd-catalyzed Suzuki-Miyaura cross-coupling of aryl halides
and aryl boronic acids (Scheme 24). According to the proposed mechanism, the Pd-
complex 2 (Pd-II) in the presence of K>COs and phenylboronic acid first undergoes
reduction into the active Pd(0) specie, followed by oxidative addition of aryl halide. The

Pd(Il)-complex after oxidative addition then undergoes transmetalation in the presence
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of phenylboronic acid. Finally, the active Pd(0) specie is regenerated through reductive
elimination of the desired cross-coupling product and re-enters into the second catalytic

cycle.

Transmeta”ation

KB(OH), PhB(OH), + K,CO,

Scheme 24. Proposed catalytic cycle for the Suzuki-Miyaura cross-coupling reaction.

4.3 Experimental

4.3.1 Materials and Methods

All reactions were carried out under an argon atmosphere in oven-dried resealable
Schlenk tubes. All the chemicals were purchased from commercial sources and used
without further purification. *H-, *C-, and 'P-NMR spectra were recorded on a Varian
XL300 MHz and 400 MHz spectrometer. Chemical shifts are reported in ppm downfield
to TMS. Melting points were determined by using the Quimis apparatus. Gas
chromatography analyses were performed on a HP-5890A fitted with a FID detector and
a 30 m long DB-17 column. ESI mass spectra were obtained in both negative and positive
ion mode on a Micromass Q-TOF instrument with a 7000 mass resolving power in the

TOF mass analyzer.
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Preparation of lonophilic Imino-phosphine-Pd-Complex (3)
Synthesis of 2-aminoethyltriphenylphosphonium bromide (1)

A Schlenk flask equipped with a magnetic stirrer was charged with 16 mmols of
triphenylphosphine (3.3 g) and 16 mmols of 2-bromoethylamine bromohidrated (4.2 g).
This reaction mixture was refluxed in acetonitrile for 48 h. After cooling to room
temperature, the white precipitate formed was filtered, dissolved in water and treated
with saturated Na>COz solution until pH = 11. The resulting solution was washed with
CHCIs (3 x 50 mL) and the organic phase was dry with anhydrous MgSO4 and filtered.
The solvent was evaporated in a vacuum and the 2-aminoethyltriphenylphosphonium

bromide was obtained as a white solid in 76 % yield (4.7 g).

2-aminoethyltriphenylphosphonium bromide

Melting point: 222-228 °C; 'H-NMR (300 MHz, CDCls): & (ppm) 2.1 (s, 2H),
3.1 (m, 2H, dt, 2H, J = 7.0 e 13.7 Hz), 3.9 (dt, 2H, J = 7.0 e 13.7 Hz), 7.2-7.5 (m, 3H),
7.4-8.0 (m, 12H); 3C-NMR (APT) (75 MHz, CDCls): & (ppm) 26.1, 26.8, 36.7, 118.5,
119.6, 128.6, 128.7, 128.8, 130.3, 130.5, 133.7, 133.9, 134.9; 3'P-NMR (121 MHz,
CDCls, H3POqs, 25 °C): & (ppm) 23.7

Synthesis of 2-diphenylphosphino-1-iminoethyltriphenylphosphonium hexafluoro-
phosphate ligand (1)

A mixture of 2-aminoethyltriphenylphosphonium bromide (2.9 mmol, 1.1 g), 2-
diphenylphosphinobenzaldehyde (2.9 mmol, 842 mg), KPFs (5,8 mmol; 1,1 g) and a
small amount of Na2SOg in toluene (50 mL) was stirred under reflux for 24 h by using a
typical Dean-Stark apparatus. After the reaction was cool to room temperature, the
orange precipitate formed was filtered and washed with Et,O several times. The crude
solid product was then dried under vacuum to obtain 2-diphenylphos-phino-1-
iminoethyltriphenylphosphonium hexafluorophosphate (1) as a yellow solid in 73 %
yield (1.7 g).

2-diphenylphosphino-1-iminoethyltriphenylphosphonium hexafluorophosphate (1)
IH-NMR (400 MHz, CDCls) 6 (ppm) 8.62 (s, 1H), 7.95 (dd, J = 7.8, 4.1 Hz, 1H),

7.86 — 7.80 (m, 3H), 7.73 (td, J = 7.8, 3.6 Hz, 7H), 7.63 (m, 5H), 7.52 (dd, J = 12.0, 7.8
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Hz, 7H), 7.44 (d, J = 2.7 Hz, 5H), 6.80 (dd, J = 11.0, 7.6 Hz, 1H), 4.64 (dt, J = 10.5, 4.7
Hz, 2H), 3.38 — 3.17 (m, 2H); 3'P-NMR (121 MHz, CDCls, HsPOa): & (ppm) -156.0, -
150.1, -144.2, -138.4, -132.5, 14.4, 24.7; ESI-MS (+) : Anal. Calcd. for CagHasNPy:
578.2166. Found: 578.2179 [M"*].

Synthesis of lonophilic Iminophosphine-Pd-Complex (2)

A mixture of 1 (2.4 mmol, 1.7 g) and PdCIl2(CH3CN)2 (2.4 mmol, 0.7 g) were
added to a resealable Schlenk flask evacuated and back-filled with argon. Then 50 mL
of dry CH2Cl> was added and magnetically stirred at room temperature for 12 h. The
crude product was filtered and washed with Et2O several times. The desired complex 2

was obtained as a yellow pale solid in 76 % yield (1.6 g).

lonophilic Iminophosphine-Pd-Complex (2)

IH-NMR (400 MHz, CDsCN): & (ppm) 8.33 (s, 1H), 7.94 — 7.84 (m, 4H), 7.78 —
7.64 (M, 17H), 7.57 — 7.46 (m, 7H), 7.08 (dd, J = 10.7, 7.6 Hz, 1H), 4.63 (dt, J = 10.4,
5.0 Hz, 2H), 3.57 — 3.33 (M, 2H); 31P-NMR (121 MHz, CDsCN, HsPO4): §(ppm) -154.7,
-148.9, -143.0, -137.2, -131.8, 22.7, 31.3; ESI-MS (+) [PdCI2(PAN)*]: Anal. Calcd. for
CaoHasCl2NP2Pd: 756.0598. Found: 756.0596 [M*].

4.3.2 General procedure for the Suzuki-Miyaura cross-coupling reaction

An oven-dried resealable Schlenk flask was evacuated and back-filled with argon
and charged with ionophillic imino-phosphine Pd-complex 2 (1 mol%), followed by
addition of aryl bromide (0.5 mmol), arylboronic acid (0.75 mmol), base (1 mmol, 56
mg), and solvent (4 mL). 20 uL diphenyl ether was used as an internal as an internal
standard. The reaction mixture was allowed to magnetically stir at 100°C for specified
time. After, the solution mixture was cooled to room temperature, analyzed by GC to
calculate conversions and yields. For purification, the organic phase was filtered, treated
with aqueous 10% KOH solution and brine solution and extracted by dichloromethane.
The organic phase obtained after extraction was then dried over MgSQOa and concentrated
under vacuum. The pure product was obtained by performing flash silica gel flash

chromatography eluting 5% ethyl acetate and hexanes.
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4.3.3 General procedure for the ESI based experiments

All the mass spectra experiments were performed on a Micromass Q-ToF micro
hybrid Quadrupole/Time-of-Flight mass spectrometer in positive-ion mode using a
pneumatically assisted electrospray ionisation. Conditions used; Capillary voltage: 3500
V. Cone voltage: 35 V. Extraction voltage: 3.0 V. Source temperature: 80 °C.
Desolvation temperature: 80 °C. Cone gas flow: 50 L ht. Desolvation gas flow: 500 L h-
! For each experiment, Pd-complex (2) (5 mg, 2 mol%) and aryl halide (0.25 mmol),
aryl boronic acid (0.3 mmol), K2CO3 (0.5 mmol) were added in an oven dried Schlenk
flask evacuated and backfilled with argon, in 3 mL methanol. After 2 hours of magnetic
stirring at room temperature or 50°C, the reaction mixture was introduced into the mass
spectrometer directly by a syringe filled with argon at a rate of 30 mL min initially,
which was reduced to 5.0 mL min as soon as appropriate peaks were detected by the

ESI spectrometer.

4.4 Conclusions

In conclusion, the current study describes synthesis and characterization of a new
ionophillic imino-phosphine-Pd-complex (2) and its catalytic efficiency in the Suzuki-
Miyaura cross-coupling reaction of aryl halides with aryl boronic acids. The complex
demonstrates an excellent catalytic activity for the reaction and provides excellent yields
of the cross coupling products. Since, the beneficial aspect of installing charged tags on
the catalyst displays an extraordinary high level of sensitivity towards the electrospray
ionization mass spectrometry (ESI-MS). Therefore, the complex was further utilized to
study the mechanism of the Suzuki cross-coupling reaction. We were able to fish out and
characterize several reactive intermediates based on exact mass measurements and
characteristic isotopic distribution patterns, including a stable Pd(0) specie for the first
time using ESI mass spectrometry. A direct or transmetalation/reductive elimination n
pathway has thus been proposed for the formation of the stable Pd(0) species based on

our ESI based experiments.
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Conclusion and Future Prospective

In conclusion, we have demonstrated the synthesis and characterization of new
N-based ligands and their potential as effective ligands in Suzuki-Miyaura cross-
coupling reaction. The synthesis of the new pyrazolyl analogues and the hybrid
imidazolyl-pyrazolyl analogue were thus synthesize by following an Ullmann coupling
protocol as a result overall good yields of the products were obtained. In addition, a
hybrid selanyl-pyrazolyl analogue was also synthesized 58% vyields using a C-H
activation protocol. Some of the ligands were found very active among the synthesized
ligands in the Pd-catalyzed Suzuki-Miyaura cross-coupling reaction. Thus, a catalytic
system based on Pd(OAc)./pyrazolyl ligands catalyzes the Suzuki-Miyaura cross-
coupling reaction of aryl halides and aryl boronic acids efficiently and delivered
moderate to excellent yields of the cross-coupling products. We further intend to explore
the photophysical properties, biological activity studies, applications in other challenging
organic transformations, and coordination chemistry of these compounds, including the
isolation of palladium complexes and its structural correlation with catalytic activities as
a sequence of this work. We also have extended the work of one of our senior lab member
who demonstrated that glycerol is an efficient reaction medium for the Pd-catalyzed
Suzuki-Miyaura cross-coupling reactions of aryl bromides and aryl boronic acids and
explored the scope of glycerol by synthesizing a variety of substituted biaryls of different
electronic nature. Since, the recycling studies were not well studied, therefore, we
attempted to improve the glycerol catalytic media recycles in our study. Thus, we
demonstrated successfully that a 50:50 solution mixture of glycerol and methanol can
effectively tolerate the recycling of the catalytic media up to 7 cycles, however, a sharp
decreased in the yield of the cross-coupling product in the 8" cycle was observed due to
formation of solid inorganic salts which prevent the reaction mixture from a smooth
magnetic stirring. Further studies on the development of novel ligands, catalytic
precursors and binders for the use of glycerol as a green solvent for cross coupling
reactions are the future prospects of our lab. Finally, the Suzuki-Miyaura cross-coupling
reaction of aryl halides and aryl boronic acids using a new ionophillic iminophosphine-
Pd-complex already synthesized by our group has been described. In addition, by taking
advantage of the ionophillic charge on the Pd-complex, we have demonstrated some
insights about the mechanism of the Suzuki-Miyaura cross-coupling reaction through
detection of the key intermediates formed during the reaction via ESI mass
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spectrometery. We fished out and characterized several reactive intermediates based on
exact mass measurements and characteristic isotopic distribution patterns, including a
stable Pd(0) specie for the first time using ESI mass spectrometry. Based on our ESI mass
spectrometry studies, we have proposed a direct or transmetalation/reductive elimination
pathway for the formation of the stable Pd(0) species. We further intend to explore the
applications of this ionophillic charged Pd-catalyst in other catalytic reactions and

mechanistic studies using ESI or NMR.
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'H- and 3C-NMR Spectra for Synthetic Precursors and Pyrazolyl Ligands
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1.2

'H- and 3C-NMR Spectra of 3-Mesityl-1H-pyrazole (b)
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'H- and 3C-NMR Spectra of 1a
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'H- and 3C-NMR Spectra of 1a’
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'H- and 3C-NMR Spectra of 2a
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'H- and 3C-NMR Spectra of 2a
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1.7  'H- and ®*C-NMR Spectra of Ligand 2b
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'H- and 3C-NMR Spectra of 2b
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'H- and 3C-NMR Spectra 2b'c
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'H- and *C-NMR Spectra of 2a’d
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Spectroscopic Data of Cross-Coupling Products
'H- and B*C-NMR of 4-methyl-1,1°-biphenyl:
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'H-) and *C-NMR of 4-(trifluoromethyl)-1,1'-biphenyl.
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'H- and *C-NMR of 1-([1,1'-biphenyl]-4-yl)ethan-1-one.
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'H- and *C-NMR of 4-methoxy-1,1'-biphenyl.
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'H- and B*C-NMR of 2-phenylnaphthalene.
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'H- and *C-NMR of 4-methoxy-4'-methyl-1,1'-biphenyl.
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'H- and B*C-NMR) of 1-(4'-methyl-[1,1'-biphenyl]-4-yl)ethan-1-one
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'H- and *C-NMR of 1-(4'-methoxy-[1,1'-biphenyl]-4-yl)ethan-1-one
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'H- and B*C-NMR of 2-methyl-1,1'-biphenyl.
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'H- and B*C-NMR of 2,4'-dimethyl-1,1"-biphenyl.
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'H- and ¥*C-NMR of 4,2',6'-trimethyl-1,1'-biphenyl.
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'H-, 13C- and *'P-NMR of 2-aminoethyltriphenylphosphonium bromide.
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'H- and 3!P-NMR spectra of 2-diphenylphosphino-1-iminoethyltriphenyl-
phosphonium hexafluorophosphate.
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'H-and 3'P-NMR spectra of lonophillic Pd-Complex.
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Positive mode ESI-MS Spectra of lonophillic Pd-Complex (2)
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Positive ion ESI-MS Spectra of lonic Specie Corresponding to m/z 800 ([2 + COz]*).
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Positive-ion ESI mass spectrum of [2 + COz2]*, a) Experimental and b) Simulated.
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Positive ion ESI-MS Spectra of lonic Specie Corresponding to m/z 760 (10).
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Positive mode ESI-MS Spectra of lonic Specie corresponding to m/z 699 (11).
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