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“Artificial Intelligence

is the new electricity.”

— ANDREW NG
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ABSTRACT

In this work we explore Deep Learning techniques to effectively recognize text in im-

ages given some context, which we call Contextualized Text Recognition (CTR). CTR

arises in many applications, such as Automatic License Plate Recognition (ALPR) and

Racing Bib1 Number Recognition (RBN-R). With the rise of Deep Learning, the results

in many computer vision tasks were improved in the past years. Its astonishing recogni-

tion capacity allowed the enhancement of existing applications and also the emerging of

new challenging ones, such as speech recognition, self-driving cars, black and white im-

age colorization, to name a few. However, this analysis power comes with a price: deep

networks typically present a large number of parameters, meaning that a considerable

amount of data is needed in order to train such models. To overcome these difficulties in

CTR-related tasks where usually there is not much data available, we propose in the first

part of this work clever uses of data augmentation, synthetic images and adaptations over

the fastest models found in the literature. The results achieved are shown in the context

of ALPR, where we demonstrate an approach capable of processing images at around

70 FPS and still achieving state-of-the-art performance. Going further, we noticed that

there is a lack of unified datasets in ALPR encompassing license plates from different

regions and scenarios. Also, there is no dataset exploring multi-regions and challenging

scenarios where the plates are oblique and highly distorted. In the second part of this

dissertation, we propose a dataset containing challenging ALPR images, and developed

a novel Convolutional Neural Network (CNN) that regresses affine parameters responsi-

ble for rectifying license plates, allowing text recognition with high accuracy rates when

compared to state-of-the-art methods. Finally, in the last part, we tackled the problem

of RBN-R. A novel network was proposed to perform many tasks at once without the

need for complex annotations. The network localizes the bib plate, corrects its distortion,

and recognize its digits. For the whole approach, the only annotation required is the bib

bounding box and the identification number. We obtained state-of-the-art results in the

most popular dataset related to this problem.

Keywords: Deep Learning. Computer Vision. Text Recognition. License Plate. Bib

Recognition.

1Bib is the plate attached to athletes body during competitions.



Reconhecimento Rápido de Texto Contextualizado Utilizando Redes Neurais

Convolutivas Profundas

RESUMO

Neste trabalho são exploradas técnicas de Aprendizagem Profunda aplicadas ao reco-

nhecimento de texto em imagens dado um certo contexto, problema aqui chamado de

Reconhecimento de Texto Contextualizado (RTC). Como exemplos de aplicações, po-

demos citar o Reconhecimento Automático de Placas Veiculares (RAPV) e a Identifica-

ção de Atletas por Numeração (IAN). Recentemente, muitas tarefas relacionadas à Visão

Computacional tiveram seus resultados aprimorados devido ao surgimento de técnicas de

Aprendizagem Profunda. A grande capacidade de reconhecimento destas técnicas permi-

tiu o avanço e surgimento de aplicações como Reconhecimento de Fala, Veículos Autô-

nomos, Colorização de Fotos Monocromáticas, entre outras. No entanto, esse poder de

análise traz um custo: redes profundas tipicamente apresentam um grande número de pa-

râmetros, necessitando assim de um grande volume de dados durante o treinamento. Para

superar este problema em tarefas onde não existem muitos dados disponíveis, na primeira

parte deste trabalho, nós propomos o uso cuidadoso de dados aumentados e a adaptação

de modelos rápidos encontrados na literatura. Os resultados obtidos são mostrados no

contexto de RAPC, onde demonstramos a capacidade da nossa abordagem de obter re-

sultados no estado-da-arte a uma frequência de 70 imagens por segundo. Indo além, nós

percebemos que as bases de dados atuais em RAPC não exploram situações desafiadoras,

contendo veículos em ângulos oblíquos, placas distorcidas e com a padronização de múl-

tiplos países ou regiões. Então, como uma segunda parte deste trabalho, nós propomos a

criação de uma base de dados contendo todas estas situações juntas, e apresentamos uma

nova Rede Neural Convolucional para detectas placas ao mesmo tempo em que regride

parâmetros para uma transformação afim de correção da distorção. Esse processo retifica

a placa, auxiliando o reconhecimento dos caracteres e permitindo a obtenção de resul-

tados estado-da-arte em várias bases de dados. Finalmente, na última parte, tratamos o

problema de IAN. Propomos uma nova rede neural para executar várias tarefas de uma

vez, sem necessitar de dados com anotações complexas. Basicamente a rede localiza a

placa de identificação, corrige sua distorção, e reconhece todos os dígitos. De modo ge-

ral, nossa abordagem necessita apenas de duas informações para o treinamento: região

da placa e seu número. Foram obtidos resultados no estado-da-arte durante avaliação na



principal base de dados relacionada ao problema.

Palavras-chave: Aprendizagem Profunda. Visão Computacional. Reconhecimento de

Placas de Carro..
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1 INTRODUCTION

Text Detection and Recognition, sometimes referred to as Optical Character Recog-

nition (OCR), is a notorious research field in Computer Vision and Machine Learning. Its

combination with object detection is the root of many relevant and useful applications

today. As examples, we can cite Automatic License Plate Recognition (ALPR), Credit

Card Identification, Racing Bib Number Recognition (RBN-R), Automatic Meter Read-

ing, among others. In all of these examples, the text of interest is located inside some

object as part of a context, what we call Contextual Text Recognition (CTR). For instance,

the license plate of a car in a traffic application must be associated with a physical vehicle,

not existing by its own. Thus, detecting every text in the scene is a waste of computational

resources and can lead to high false positive rates. Figure 1.1 shows some applications

for CTR. By looking at these examples, we can notice that the text that identifies a car or

a person usually is not the only text in the scene. The presence of other elements, such as

advertising, can introduce errors to retrieve the identification information.

Figure 1.1: Examples of contextualized text detection applications.

The usual pipeline for such applications typically begins with an object detector —

in order to find the object where the text is inserted — followed by an OCR algorithm. Un-

til a couple of years ago, state-of-the-art object detection was performed by using a com-

bination of feature extraction and classification methods. As successful feature extractors,

we can refer to Histogram of Oriented Gradients (HOG) (DALAL; TRIGGS, 2005), Lo-

cal Binary Patterns (LBP) (WANG; HE, 1990) and Haar-like Features (VIOLA; JONES,

2001). For classification, common choices were Support Vector Machines (SVM) and

Cascade of Boosted Classifiers, among others.

The features in the traditional object recognition pipeline are all hand-crafted, i.e.,

carefully engineered based on previous human experience. For instance, HOG was de-

signed to work well when the shape of an object is more informative than its texture (e.g.,

detection of vehicles and pedestrians, or character recognition). On the other hand, LBP
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and Haar-like are more adequate to handle texture (e.g., human face and text detection).

Nowadays, Deep Learning (DL) techniques have dominated this research field. They per-

form end-to-end object recognition, detection, or both, by learning relevant features and

using them to classify the input image. This dominance is also taking place in OCR.

Many classical methods, like Maximally Stable Extremal Regions (MSER) (MATAS et

al., 2004) and Stroke Width Transform (SWT) (EPSHTEIN; OFEK; WEXLER, 2010),

are being replaced by deep networks (JADERBERG et al., 2014; HE et al., 2016b; SHI;

BAI; YAO, 2017; WANG et al., 2018; LIU et al., 2019).

1.1 Deep Learning

In the past couple of years, many computer vision tasks related to pattern recogni-

tion have been improved using DL. The state-of-the-art in some well-known fields, such as

image classification (HE et al., 2016a), image segmentation (CHEN et al., 2016), object

detection (REDMON; FARHADI, 2017; REN et al., 2017), pedestrian detection (AN-

GELOVA et al., 2015), face recognition (TAIGMAN et al., 2014), are now dominated by

DL approaches.

To illustrate how effective DL is and its potential, we can refer to the ImageNet

Large Scale Visual Recognition Challenge (ILSVRC) (RUSSAKOVSKY et al., 2015).

ImageNet consists of over one 1 million images and 1,000 classes. Since 2012, when

competitors started to use deep networks, the error has been dropping substantially as can

be seen in Figure 1.2. The last winner of the ImageNet challenge was the work of (HU;

SHEN; SUN, 2018), that achieved impressive 2.25% in the top-5 classification error. In

2018, ImageNet was replaced by a new dataset called Open Images Dataset (KUZNETSOVA

et al., 2018), which is even bigger and with other tasks besides object recognition.

Figure 1.2: Top-5 ILSVRC error rate achieved by year.
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Historically, the popularity of DL was mainly pushed by the introduction of ef-

ficient learning algorithms (e.g., Stochastic Gradient Descent (LECUN et al., 1998) and

adaptive optimization algorithms such as AdaDelta (ZEILER, 2012), AdaGrad (DUCHI;

HAZAN; SINGER, 2010) and Adam (KINGMA; BA, 2014a)), highly discriminative

models (LECUN; BENGIO; HINTON, 2015) (e.g. Convolutional Neural Networks, Deep

Belief Networks) and the possibility to hugely accelerate the training and testing process

through Graphical Processing Units (GPU). However, despite all of this success, there are

some drawbacks that researchers are yet trying to overcome:

• Lack of data: usually deep networks require huge amounts of labeled training data

in order to perform well. In many fields, to build a large annotated dataset is a

laborious or even impossible task;

• Expensive Hardware: training and (more importantly) executing many state-of-the-

art networks demand high-performance GPUs and large amounts of memory to be

feasible. Those requirements make it hard to embed DL solutions in small devices

(e.g., smart-phones) or tiny computers (e.g., Raspberry Pi);

• Real-time: as DL is hardware demanding, applications requiring fast and accurate

response — for instance, pedestrian detection in an autonomous vehicle — becomes

very costly.

1.2 Applications of Contextualized Text Recognition

This dissertation is focused on two main applications that involve contextualized

text recognition: ALPR and RBN-R. ALPR is an important task in intelligent transporta-

tion and surveillance systems, presenting many practical and relevant applications such

as automatic traffic law enforcement, detection of stolen vehicles, toll violation and traffic

flow control. It has been widely studied for decades, but still is an open problem due to

the large variability in image acquisition conditions (illumination, capture angle, distance

from the camera, etc.) and license plate (LP) layouts, which vary from one country to

another.

A problem similar to ALPR is RBN-R. “Bib” is the plate attached to the body

of athletes for identification purposes during competitions. Every competition presents

its own bib layout and, unlike the relation between vehicles and license plates, we cannot
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assume that all persons found in the scene have a bib attached. These characteristics make

the RBN-R an even harder problem to solve.

1.3 Research Question and Hypothesis

The question we aim to answer in this research is:

Research Question.

Can we avoid the drawbacks of DL and solve complex CTR problems (i.e., large

scale variation, abrupt luminosity changes, partial occlusions, and perspective

deformations) fast and accurately?

Despite the short question, the answer involves solving many difficult problems at

once. A common CTR task has at least two steps: find the context, and detect/recognize

the text within the object. To achieve state-of-the-art results, we used DL in both steps.

Thus, the drawbacks mentioned earlier are replicated twice. Given that, we hypothesize

that:

Research Hypothesis.

The development of suitable loss functions and structural changes in DL models

combined with data augmentation techniques can lead to a fast and accurate

performance in CTR tasks even when there is not much available training data.

This hypothesis was confirmed in the context of ALPR, as demonstrated in our two

works: Silva and Jung (2017) and Silva and Jung (2018). In the first work, we explored

synthetic and augmented data to help enlarge the variability of our small training set of

195 images — which contains only 1 LP per image (max. 3). Both techniques were care-

fully designed to cover deficient parts of our training set, like size and number of samples

per character. Also, we adapted fast DL network models to match the requirements of the

task in hand and transferred as much knowledge as possible from other models. The final

approach was evaluated in standard scenarios, where the LPs appear mostly frontal in the

majority of the images, and with a good illumination condition. For the second work,
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we moved to a more extreme scenario where most of the LPs were in oblique positions,

and without region layout constraints. This new challenge required the development of

a novel detection model to manage a planar object (i.e., the LP) in non fronto-parallel

conditions. To train such network, we carefully designed an augmentation procedure that

altered images through controlled perspective transformations. Furthermore, we gener-

ated synthetic data for the OCR model with multiple font types add variability and hence

improve the ability of the network to recognize characters of different regions. We again

used the same small dataset of 195 images as in the first work.

Supporting our claim for massive use of data augmentation in the training stage is

the work of Varol et al. (2017), where the authors generated a huge synthetic dataset to

tackle human pose estimation. This is a very challenging task and the generation of real

datasets is a particularly laborious process. Furthermore, after the publication of the re-

sults presented in this dissertation, Björklund et al. (2019) demonstrated that it is possible

to create an ALPR detection system based only on synthetic images. This substantially

corroborates our hypothesis.

To tackle the problem of RBN-R, we again explored data augmentation tech-

niques, but also applied structural modifications over existing DL models. The complete

description of our approach is presented in the final part of this work. Besides the chal-

lenges mentioned earlier in this chapter, we can add that bibs are prone to complicated

deformations due to the non-rigid materials used, and they might suffer from abrupt light

changes and partial occlusions as a result of the arms movement. To handle such prob-

lems, we projected a model that automatically corrects distortions (limited by an affine

transformation) without the need of explicitly presenting the expected transformation pa-

rameters during the training phase. In fact, the only cue our model has in the training

stage is the OCR result (i.e., a string with the bib number), and the proposed method

uses this information to find a transformation that maximizes the OCR accuracy. Further-

more, we again faced the problem of relying only on a small dataset, which required the

augmentation of the real samples, and the generation of synthetic ones.

1.4 Chapters Organization

This dissertation is organized as follows: Chapter 2 briefly presents the back-

ground concepts of object detection and recognition with deep learning models, and data

augmentation. Following, Chapter 3 discuss some related works to ours and the tasks
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we want to tackle (ALPR and RBN-R). Concerning ALPR, Chapters 4 and 5 present two

different approaches to solve the problem: the first is focused on real-time processing,

and the later is focused on complex unconstrained scenarios. Chapter 6 describes a DL

approach to solve the RBN-R problem presenting state-of-the-art results. Finally, our

conclusions are presented in Chapter 7.
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2 BACKGROUND

This chapter will provide brief explanations about the main concepts and state-of-

the-art DL techniques related to our research. As object detection is an important task for

CTR, we dedicated the first part of this chapter on reviewing fast CNN-based models and

evaluation metrics for object detection. Next, given our interest and necessity of using

DL techniques without huge amounts of data, we will discuss Data Augmentation and the

generalization improvements it brings to machine learning systems.

2.1 Evaluation Metrics

Before we start showing the main object detection models in the literature, it is

important to understand how detections are evaluated. Basically, there are a few metrics

that the reader needs to be familiar with:

• Intersection over Union (IoU): in the context of object detection, it is a measure

of how a predicted bounding box fits the ground truth annotation. Considering v

and g the predicted and the ground truth bounding boxes, respectively, their IoU is

given by:

IoU(v, g) =
#(v ∩ g)
#(v ∪ g)

, (2.1)

where #(·) denotes the area of a region. Note that the IoU always lies inside the

interval [0, 1], where 0 means a totally disjoint prediction, and 1 means a perfect fit.

In object detection, the threshold value 0.5 is typically used for accepting a candi-

date detection (EVERINGHAM et al., 2007; LIN et al., 2014), although different

values can be considered depending on the task or analysis.

• Precision and Recall: classic prediction measures to describe the relevance and

quantity of information retrieved. Precision measures the rate of relevant informa-

tion, given by:

p =
true_positives

true_positives + false_positives
, (2.2)

while recall correspond to the rate of correct information retrieved:

r =
true_positives

true_positives + false_negative
. (2.3)

Usually, these measures are inversely associated: the more recall, the less precision,
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and vice-versa. A useful way to visualize the performance of a machine learning

model is to plot the precision vs. recall curve. Considering that the output of a

model is a probability of being and not-being the desired class, one can set a mini-

mum threshold (θ) to accept or not the model’s answer. Thus, for each threshold θ

we can compute the corresponding precision and recall values, and varying θ leads

to a curve

• Mean Average Precision (mAP): all object detection models that will be described

in the next section use mAP as an evaluation metric. It is a measure to quantify the

quality of a multi-class classifier in a single number, taking into account the average

precision per class. Thus, before computing mAP, it is necessary to calculate the

Average Precision (AP). Formally, the AP is defined as:

a =

∫ 1

0

p(r)dr, (2.4)

where p(r) is the precision at a given recall value r, i.e. a is the area under the

precision vs. recall curve. The mAP of an N -class classifier is given by:

mAP =
1

N

N∑
c=0

ac, (2.5)

where ac is the average precision for class c. In general, if a classifier presents

several detections for the same object, only one of them is considered correct, and

the remaining are classified as false positives.

2.2 Convolutional Neural Networks

Convolutional Neural Networks were first described by LeCun et al. (1989), in the

context of Zip Code Recognition. Basically, they consist of learning a set of convolutional

filters for each hidden layer of the neural network. These filters are applied successively

to the input data in a process that starts with a high-resolution input image, and ends in a

low-resolution feature map or feature vector, depending on the architecture.

To solve tasks related to classification, CNNs commonly end with a feature vector,

where each position corresponds to a class. The popular architectures are formed by a set



25

of convolutional layers followed by fully connected layers. A classical example is the

LeNet-5, presented in Lecun et al. (1998) and illustrated in Figure 2.1. Note that the

first four layers correspond to two convolutional layers and two sub-sampling layers, and

they are followed by three fully connected layers. The final fully connected layer creates

a feature vector of length 10, i.e., one for each class of hand-written digit the network

proposes to recognize.

Figure 2.1: LeNet-5 architecture. Image taken from Lecun et al. (1998)

An active research field is the development of new layers for Neural Networks.

Therefore, we can find many different kinds of layers in the literature, where many of

them are specifically designed to solve a particular problem. Even so, there are three very

important (an popular) kinds of layers that the reader must be familiar with in order to

understand CNN architectures:

• Convolutional: layers designed to apply multiple convolutional filters in its input.

The filters are learned based on data during the training stage;

• Pooling: layers focused on reducing the input resolution. They do not contain any

parameter and, consequently, do not need to be learned, representing only archi-

tectural artifacts. The most common type of pooling layer is max-pooling, which

simply computes the maximum value in a given window;

• Fully Connected: usually, after a sequence of convolutional and max-pooling lay-

ers, the data start to be treated as feature vectors — instead of maps. Fully connect

layers connect every value in the input vector to every value in the output vector,

just like in the Multi-Layer Perceptron.

Another popular kind of CNN architecture is the Fully Convolutional Network

(FCN). They are simply CNNs without the fully connected layers. Thus, instead of out-

putting a feature vector, FCN outputs a feature map. If we consider the object detection

task, this is a nice property since feature maps can preserve locations. For instance, con-

sidering an FCN designed to detect cars, and an input image containing a vehicle. The
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activations in the feature map will take place mainly in the region proportionally close the

vehicle, as illustrated in Figure 2.2. Note that there is a relation between the input im-

age resolution and the output feature map resolution, which is called network stride. The

network stride is the ratio between the input and the output resolution. In other words, it

measures how many times the input is reduced after forwarding in an FCN.

Figure 2.2: Example of an FCN that detect cars. The output feature map represent the
probabilities of having/not-having a vehicle. Note that the input resolution suffered a
downsize, during the feed-forward, proportional to the network stride of 16.

224

128
stride: 16
FCN

input output
14

8

vehicle probability map

The massive use of CNNs began in the early 2010s, when efficient GPU imple-

mentations started to appear. The networks used since then have several parameters in

the order of hundreds of millions to billions, and they started to be called deep networks.

Training them is hardware demanding and the use of CPU is usually impractical.

2.3 Feature Extraction Sub-Networks (Backbones)

Training a deep CNN with the ImageNet dataset can take minutes or hours in a

massive cluster of GPUs, or days on high-end machines (GOYAL et al., 2017; YOU et

al., 2017). Taking in mind that the dataset presents a huge amount of annotated images

and 1,000 classes, it is assumed that a network that performs well on ImageNet has learned

how to extract very informative features, particularly in the first layers. Thus, a common

practice – namely Transfer Learning (YOSINSKI et al., 2014) – is to use the initial layers

of models trained on ImageNet to compose new models developed for other specific tasks.

The part of these new models related to pre-trained models is called backbone.

Below we briefly comment a few widely used backbone models:

• AlexNet (KRIZHEVSKY; SUTSKEVER; HINTON, 2012): one of the first net-

works to augment the number of layers to improve accuracy on ImageNet. The

authors successfully created a deep CNN that, at the time, improved substantially

the results on the dataset. Structurally, the top layers of AlexNet architecture con-

tain large convolutional filters of size 11× 11 and 5× 5, and the network has a total

of 8 layers: 5 convolutional and three fully connected;
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• VGG (SIMONYAN; ZISSERMAN, 2014): short for Visual Geometry Group, VGG

is a classical model of deep CNNs. One of the main differences to AlexNet is the

total depth. This model replaced the large sized filters used by AlexNet to smaller

ones (3× 3), allowing to build an even deeper network by increasing the number of

layers. The two most used VGG configurations are the VGG-16 and VGG-19, with

16 and 19 layers respectively;

• ResNet (HE et al., 2016a): following the tendency of further increasing the depth,

ResNet employed a block of layers called residual blocks, that only change the data

coming from the preceding layer or block if needed, otherwise act as an identity

function. This allowed for much deeper networks and breaking through results on

ImageNet. The model with best results presented by the authors have 110 layers,

called ResNet-110;

• MobileNet (HOWARD et al., 2017): devised targeting efficiency concerning size

and speed. MobileNets use special kinds of convolutional layers, called depthwise

and pairwise convolutions, in which the computation is much faster. The network

has 28 layers and was also trained on ImageNet, achieving strong results when com-

pared to VGG-16, for instance. VGG-16 have a total of 138 millions of parameters

and achieved 71.5% accuracy on ImageNet, and MobileNet-224 1 has 4.2 millions

of parameters and achieved 70.6% accuracy.

2.4 Object Detection with Convolutional Neural Networks

In order to perform object detection with deep networks, the common sliding-

window strategy is onerous due to the number of computations needed over the whole

search space. Therefore, many architectural modifications and the use of external pre-

and post-processing steps (e.g. object proposal methods and SVMs) were employed in an

attempt to overcome this issue. To exemplify, we briefly describe three of the first most

popular methods, highlighting their weakness:

• OverFeat: despite being relatively old, OverFeat (SERMANET et al., 2013) gave a

valuable insight which is used today in state-of-the-art models, like YOLO (see Sec-

tion 2.4.3). The authors noted that a Fully Connected (FC) layer could be seen as a

1In this case, 224 stands for the input size resolution (224× 224), and not the number of layers.
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1×1 convolutional layer. Thus, an arbitrary sized image can feed any CNN, produc-

ing an output feature map proportional to its size. This allows us to efficiently run

a kind of sliding-window approach with just a fraction of the computations needed,

by reusing most of the information from the previous window, as explained in Fig-

ure 2.3. Nevertheless, OverFeat employs multi-scale sliding window detection and

uses a second network for regression of object bounding-boxes, which significantly

increase the detection time;

• R-CNN: as a predecessor of Fast R-CNN and Faster R-CNN, the Regions with

CNN features model (GIRSHICK et al., 2014) is a backbone CNN - the authors

used AlexNet (KRIZHEVSKY; SUTSKEVER; HINTON, 2012) - coupled with a

trained SVM plugged after the penultimate FC layer. The model includes an object

proposal method to search the input image for object candidates. The selected can-

didates are then fed to the network and the features in its penultimate layer are used

as input for the SVM classifier. This strategy is much better than a sliding-window

procedure. However, it is still very slow for training and testing. For instance,

the training process of an R-CNN for PASCAL-VOC 2007 (EVERINGHAM et

al., 2007) can take 3.5 days, and the testing for a single image can take up to 47

seconds 2;

• SPP-net: the Spatial Pyramid Pooling (SPP) Network (HE et al., 2015) basically

consists of adding an SPP layer after the last convolutional layer of a backbone

CNN. Knowing that a convolutional layer can receive an input of arbitrary size,

and the fully connected layer must receive an input of a fixed size, the SPP works

by converting an arbitrarily sized feature map to a fixed size. Thus, it is suitable

to detect objects of different aspect ratios without the need for scaling and warp-

ing. Similarly to R-CNN, the authors coupled a backbone network - in this case,

the ZF (ZEILER; FERGUS, 2014) - with an object proposal method and an SVM

classifier, instead of FC layers. The ZF network is much smaller than AlexNet,

and plugging it on the SPP-net scheme made the model several times faster than

R-CNN, but still far from real-time.

In the networks mentioned above, training and testing are slow processes even

through the use of modern GPUs. Moreover, due to dependence on external pre- and

post-processing steps, their training is complex and not end-to-end.

2Using an NVIDIA K40 GPU (GIRSHICK, 2015)
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Figure 2.3: Simple demonstration of the difference between sliding window and fully
convolutional approaches. Considering a 5 × 7 input image (the boat), a 2 × 2 filter
(yellow grid) and a window size of 5× 5, computing the output using an sliding window
approach adds 50% more computation than a fully convolutional way.

Saved

Sliding window

Fully convolutional

Given the need for faster and more elegant DL models, some interesting methods

arose in the last couple of years. Three of them will be shortly described next.

2.4.1 Faster R-CNN

The Faster R-CNN is the result of successive enhancements in the R-CNN model.

One can refer to Fast R-CNN (GIRSHICK, 2015) and R-CNN minus R (LENC; VEDALDI,

2015) for the previous model enhancements. More specifically, the R-CNN has two main

problems:

• It is not end-to-end: the training process is complicated and requires three stages.

The first stage fine-tunes the chosen backbone CNN (with FC layers) using object

proposals. The second stage trains an SVM given the output of the penultimate FC

layer of the backbone, hence acting as an object detector. And finally, a bounding-

box regressor is trained aiming to improve candidate regions;

• It relies on object proposal methods: with more proposals, more time is needed

since it is necessary to forward every proposal through a backbone network, in

order to generate features for the SVM.

A previous work to Faster R-CNN is the Fast R-CNN. There, the authors proposed

some modifications that were adopted for Faster R-CNN. The main modification was the

inclusion of a ROI Pooling Layer (a special case of the SPP layer) to reduce computations

for each object proposal. In this new approach, the feature maps are computed once

for the whole image, and pooled according to the proposed object region. For instance,

suppose the object proposal method generated 2000 proposals. In R-CNN model, the
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feature maps should be computed 2000 times. In Fast and Faster R-CNN, it is computed

just once, generating a significant speed up.

Another enhancement from R-CNN to Faster R-CNN is the use of FC layers with

Softmax, instead of SVM. The authors demonstrated that there is no significant differ-

ence by using one or another. Considering that FC layers can be directly attached to the

network, it saves one stage of training, letting the model be more elegant.

The final modification, now presented in Faster R-CNN paper (REN et al., 2017),

is the use of a Region Proposal Network (RPN) in replacement to object proposal meth-

ods. The RPN is a second network that receives as input the feature map obtained by

forwarding the input image through the backbone CNN, and outputs object/non-object

probabilities and their bounding boxes.

The bounding box regressor in RPN uses anchors to improve the final detection.

To clarify, anchors are predefined bounding boxes with just two parameters: width and

height. Its center is assumed to be the same as the feature cell being analyzed. During test-

ing, the model analyses the RPN output and selects the anchor that best fits (Higher prob-

ability). the object found, and regresses (x, y) offsets for the anchor center and (sw, sh)

scales for the anchor dimensions. Hence, the final bounding box is a translated and scaled

version of the chosen anchor.

Figure 2.4: Overview of Faster R-CNN: first, an arbitrary sized image is forwarded
through a backbone network (the authors mentioned the use of VGG-16). Second, the
output feature map is used by the RPN to find proposals. Then, a ROI Pooling layer con-
verts these proposals to a smaller and fixed size feature maps, by cropping and pooling
from the backbone feature map. Finally, those small feature maps are passed through a
range of FC layers, which outputs the probabilities for each class.
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The Faster R-CNN still presents a 2-stage training process, thus it is not fully

end-to-end. However, the two networks (CNN and RPN) can be merged after training,

allowing 1-stage testing. These performance gains granted a huge speedup over R-CNN,

from 1 frame every 47 seconds to 5 frames per second. An overview of the Faster R-CNN

model is given in Figure 2.4.
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2.4.2 Single Shot Detector (SSD)

The SSD (LIU et al., 2016) is an end-to-end CNN model for object detection. Its

elegant architecture performs training and testing in single stage each. Also, this network

achieves a frame rate of 59 FPS 3 with comparable results to Faster R-CNN (5 FPS).

In SSD there is only one CNN, which basically is the result of merging a backbone

CNN with a classifier and bounding box regressor. This is the main difference from

Faster R-CNN, where the bounding boxes are processed by another CNN (the RPN).

Therefore, the whole SSD network is trained in the same process, which is beneficial since

all the weights - including the weights in the backbone - are fine-tuned to better regress

the bounding boxes. Such improvements allowed the authors to significantly shrink the

input image, which reduces the forwarding cost and time, while keeping a good detection

accuracy. For instance, in the fastest version of SSD the input is a 300× 300 pixels image

(SSD300).

To precisely output bounding boxes in multiple resolutions, the authors proposed

a combination of feature maps from successive convolutional layers with sub-sampling

(stride > 1), as illustrated in Figure 2.5. Note that from the backbone CNN output on-

wards, the feature map resolution starts to decrease at every convolutional layer, and a

connection between each feature map to the first FC layer is made.

Figure 2.5: SSD overview: a fixed sized image is forwarded through a backbone CNN.
The output feature map starts passing through sequences of convolutional layers with 3×3
filters and stride equals to 2. Hence, those layers output lower resolution feature maps,
which are routed to the first FC layer, and to the next convolutional layer. According to
the authors, this routing enables the network to correctly regress small and big objects,
since each layer process the feature map in a different resolution. In the end, the FC
layers regress both class probabilities and bounding boxes for thousands of detections
simultaneously.
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The illustration in Figure 2.6 demonstrates how the SSD model is expected to

work. There are two images depicting two different objects (a locomotive and humans).
3Using an NVIDIA Titan X GPU.
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Due to perspective, the locomotive occupies most of the first image, and the humans

occupy just a small portion of the second image. In SSD300, the first feature map after the

backbone CNN is of resolution 38×38, the fourth, 10×10, and the sixth, 3×3. Drawing

an imaginary grid over the input image with the size of the respective feature map provides

an idea of the region where each detector is acting on. We can see that detectors on the

first and fourth feature maps lack of enough information to infer the locomotive class

and its bounding box. However, the regressors on the sixth layer have a more adequate

size for this task, since they accumulate information from other resolutions. The inverse

scenario can be seen for the detection of humans in the second picture (and second row).

It is impossible for the sixth layer to regress all three humans. This happens because each

detector can output just one object. However, all humans fall inside the central detector.

Figure 2.6: Different feature map resolutions for two images containing very different
sized objects. The yellow rectangles show the desired detection.

A drawback of SSD is the use of FC layers at the end of the model. This re-

quires the input image to be of a fixed size. We will see next that other models such as

YOLO (REDMON et al., 2016) use this restriction for training, but it is not necessary for

testing.

2.4.3 You Only Look Once (YOLO)

The YOLO model was first described in Redmon et al. (2016), improved less than

a year later, in YOLOv2 (REDMON; FARHADI, 2017), and recently evolved again to

version 3 (REDMON; FARHADI, 2018). Although there is a reasonable intersection

between these three models, in this section we will describe only version 2, which is
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faster, intuitive, and contains the major updates among all three models.

In terms of model design, the YOLOv2 is closer to SSD than Faster R-CNN,

being capable of performing both training and testing in a single stage each. The model

overview is shown in Figure 2.7. The main difference from SSD is that YOLO eliminated

the multi-resolution convolutional layers scheme and the FC layers. Also, the authors

preferred to not use common backbones available, and trained their model from scratch.

They argue that common backbone models, like VGG-16, are slow to compute and do not

bring improvements in accuracy.

Figure 2.7: YOLO overview.
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The final layers of YOLOv2 model are a sequence of 3 × 3 convolutional layers,

without sub-sampling or max-pooling. They process an input 13 × 13 feature map and

outputs a same 13 × 13 resolution map, containing the class probabilities and bounding

boxes at each point. This makes the network even more elegant than SSD and, as all the

layers are convolutional, allowing arbitrary size images as input.

Comparing to SSD, one can think that a fixed output resolution of 13×13 might not

be adequate to detect bigger objects, like the locomotive example in Figure 2.6. However,

this set of convolutional layers propagates information through adjacent points. This is il-

lustrated in Figure 2.8. Note that the first layer does not have enough information to detect

the whole locomotive, but adjacent information is aggregated as it is propagated through

these layers, allowing a single predictor to accurately infer the locomotive bounding box.

Anchor boxes are also used by YOLOv2, but they are not manually defined as in

other models. The dimensions of all the annotated bounding boxes in the training set were

used by a k-means algorithm - with (1 − IoU) as distance measure - to infer a good set

of anchor boxes (k-means centroids). This allowed reducing from 9 to 5 the number of

anchors without mAP loss.

Those modifications allowed YOLOv2 to achieve state-of-the-art object detection

on PASCAL-VOC 2007 at 40 FPS. Furthermore, a much faster and lightweight version,

called Fast-YOLO, was demonstrated achieving 213 FPS in the same scenario, but with a
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Figure 2.8: Information propagation example through three layers of same input and out-
put dimensionality, and filter size.

lower mAP.

2.5 Recurrent Layers For Neural Networks

Among many different kinds of layers that are possible to couple with Neural

Networks, a recurrent layers is a particular class that interprets the feature map as se-

quences of temporally aligned data. As such, this kind of layer is useful in areas such as

word recognition from images, syllable recognition in speech analysis, and text analysis

in Natural Language Processing. In all these tasks, there is a relation between the current

information (e.g., a character or phoneme) and the past ones.

To exemplify how recurrent layers work, imagine that we have a feature matrix

AM×N . A recurrent layer considers this data as M feature vectors of size N that are

temporally aligned from 1 to M . Recurrent layers process each feature vector indepen-

dently, but using information obtained from the previous feature vector — the output of

the mthvector is used to process vector m+ 1, and so on.

Mathematically, a simple Neural Network layer is represented by a matrix of

weights W , a bias vector ~b and an activation function σ. Given an input vector ~x at

time t, the layer output ~ht is:
~ht = σ(W~xt +~b). (2.6)

Diferently, recurrent layers also consider the last output into the calculations. For instance,

a simple recurrent layer can be modeled as:

~ht = σ(W ~xt + U~ht−1 +~b), (2.7)
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where U is a matrix that combines the last output with the new input. Such junctions are

called gates.

Nowadays, two common and more sophisticated types of recurrent layers are

widely employed: the Long-Short Term Memory (LSTM) and the Gated Recurrent Unit

(GRU).

The LSTM (HOCHREITER; SCHMIDHUBER, 1997) is a block formed by sev-

eral gates with specific roles:

• Forget gate: receives ~xt and ~ht−1 as input, sum them and pass through a sigmoid

function. It is expected that the sigmoid generate values close to zero in areas that

must get forgotten;

• Input gate: it is similar to the forget gate with the addition of a hyperbolic tangent

function (tanh) at the end. The sigmoid function filters the values that are important

to persist, and the tanh enhances them;

• Output gate: receives ~xt and~ht−1 and also the input gate output. This information is

processed and multiplied together in order to filter relevant features for the output.

Every gate in an LSTM model has its own set of weights that are applied to the

data. Hence, the layer by itself is large in terms of the number of parameters, which

also impacts the computational cost. In Cho et al. (2014), the authors proposed the GRU

layer, which is a simplified version of the LSTM that does not present the output gate. It

reduces the model complexity and also the number of parameters to be trained, allowing

the GRU to be faster in the number of computations needed. Originally it was tested in

the context of machine translation, achieving superior results when compared directly to

LSTM. Later, a wide range of applications appeared, such as video sequences (BALLAS

et al., 2015), image segmentation (VISIN et al., 2016) and speech analysis (IRIE et al.,

2016; RANA, 2016).

2.6 Spatial Transformer Networks (STN)

The STN (JADERBERG et al., 2015) is a module that can be placed inside a

network to perform spatial transformations on a given feature map. It operates by inter-

polating part of this feature map into a predefined grid, generating an output with the same
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size of the grid and having the same number of channels of the input feature map. The

interpolation uses a bilinear scheme based on an affine (or perspective) transformation

whose parameters were inferred by some sequence of layers, called localization network.

In other words, the STN can perform a non-trivial (non-rectangular) crop focusing on a

specific part of the feature map, giving attention to that region.

The STN scheme is summarized in Figure 2.9a: a localization network is used to

analyze the feature map U and regresses the affine parameters θ; then, a bilinear algorithm

employs these parameters, along with the predefined gridG, to interpolate U into V using

the transformation Tθ. This last process is exemplified closely in Figure 2.9b. During the

network instantiation, every layer in the localization network is initialized with random

weights, except the last one. In this layer, the parameters must be set to generate the

identity matrix as output, initially predicting the identity transform.

Figure 2.9: Spatial Transformer Networks (Source: Jaderberg et al. (2015))

(a) STN module. (b) Affine attention.

Tasks such as character recognition manage to substantially benefit from spatial

transformations, as rotated characters can potentially drop the OCR accuracy. Moreover,

object detection and fine-grained classification can also be performed by an STN due

to its attention mechanism: the network can localize the object before performing the

classification.

2.7 Data Augmentation

Data Augmentation is a common practice in Machine Learning systems and is

present in the training process of all the models described in the previous section. Due

to the huge number of parameters, DL techniques tend to overfit if the database used is

not big enough. However, creating such big databases can be immensely laborious or, in

many cases, impossible. The three most common techniques for augmenting an image
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dataset (PÉREZ; WANG, 2017) are:

• Affine Transformations: consists of simply applying random affine transforma-

tions (which include rotation, scaling and translation) to an image, allowing the

system to be robust to spatial transformations. The degree of randomness must be

controlled depending on the problem and network used;

• Color Space Perturbation: perturbing the color space is beneficial to improve the

system robustness to illumination changes and small color variations. A common

process adopted is to convert an RGB image to the HSV colorspace, and alter in-

tensities by summing a random value for each channel;

• Noise addition: adding noise can be helpful to handle images of different qualities.

The most common types of artificially injected noise are the Salt & Pepper and

Gaussian noise.

In YOLOv2 and SSD, the authors used affine transformations and color space per-

turbation during the training stage. The inclusion of noise can also be advantageous, as

pointed by Nazaré et al. (2017). In Figure 2.10 we show an example of a data augmenta-

tion pipeline, where successive changes were made resulting in a much different image.

Figure 2.10: Example of a data augmentation pipeline.

2.7.1 Synthetic Data Generation

The augmentation processes previously described are used to modify images, gen-

erating outputs that resemble in some way the original input. Differently, synthetic data

generation approaches are focused on creating new artificial data. Depending on the com-

bination of parameters and methods used in the synthetic pipeline, there is no limit for

the number of outputs it can generate. This is beneficial when training DL based mod-

els for problems where the datasets available are small or nonexistent, and demands high
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variability. For instance, in Jaderberg et al. (2014) the authors generated totally artificial

words (Figure 2.11a) and characters datasets for text recognition, based on spatial trans-

formations and blending modes. They trained a CNN with only these synthetic data, and

were able to achieve state-of-the-art accuracy in many text recognition datasets.

In Gupta, Vedaldi and Zisserman (2016), a synthetic text detection dataset was

created by inserting text into images after analyzing the scene geometry. Considering that

text usually does not appear in areas with strong discontinuity, they used a segmentation

algorithm to select homogeneous areas. Furthermore, to determine the text perspective,

the image depth map information, originated from a CNN, was used.

Another interesting example is the generation of a dataset for human pose esti-

mation, proposed in Varol et al. (2017). The manual labeling of such data includes 3D

pose and depth, which is impractical for humans. The authors then proposed a pipeline

where synthetic humans were rendered over arbitrary images from house environments

without real humans. Therefore, the 3D pose and depth map were precisely extracted. In

Figure 2.11b we show a sample from their dataset along with its ground truth pose and

depth images. Regarding ALPR, Björklund et al. (2019) presented an approach trained

only with synthetic data. Their work will be addressed in the next chapter.

Figure 2.11: Examples of synthetic data generation.

(a) Text. (b) 3D human pose.

(c) Licence plates.
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3 RELATED WORK

In this chapter, we present a literature review of topics related to our problem. Al-

though there is no baseline work directly tackling the CTR problem, we can find abundant

material related to associated tasks. Hence, we organized this chapter by the tasks that we

will address during this dissertation.

We start by reviewing works related to the Automatic License Plate Recognition

(ALPR) problem in Section 3.1. Despite the vast literature on this subject, we focused

our attention on Deep Learning methods. Next, in Section 3.2, we briefly describe a

few Racing Bib Number Recognition (RBN-R) approaches, since this problem is far less

popular than ALPR. In Section 3.3 we briefly describe another application that involves

CTR: automatic meter reading, and finally we present, in Section 3.4, a review of generic

purpose OCR works, again focusing on new DL approaches.

3.1 Automatic License Plate Recognition (ALPR)

Automatic License Plate Recognition (ALPR) is the task of finding and recog-

nizing license plates in images. It is commonly broken into four subtasks that form a

sequential pipeline: i) vehicle detection; ii) license plate detection; iii) character segmen-

tation and iv) character recognition. For simplicity, we call OCR the combination of the

last two subtasks.

In the past decades, many different ALPR systems or related subtasks were pro-

posed using a variety of computer vision and machine learning techniques, as pointed

out by the reviews of Anagnostopoulos et al. (2008) and Du et al. (2013). Earlier meth-

ods were commonly based on image binarization or gray-scale analysis to find candidate

proposals (e.g. LPs and characters), followed by a handcrafted feature extractor, such as

Local Binary Patterns (LBPs) or Histograms of Oriented Gradients (HoG), and a classi-

cal machine learning classifier, such as Support Vector Machine (SVMs), AdaBoost or

Neural Networks. With the rise of DL, the state-of-the-art started moving to another di-

rection, and nowadays many works employ CNNs due to its high accuracy for generic

object detection and recognition, as mentioned in the previous chapter.

Knowing that vehicle is a classical type of object present in many popular object

detection datasets, such as PASCAL-VOC (EVERINGHAM et al., 2007), ImageNet (RUS-

SAKOVSKY et al., 2015) and COCO (LIN et al., 2014), we will omit this part of the
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pipeline to focus on a more specific subtask: License Plate Detection. Furthermore, this

section also reviews some approaches that handle the ALPR problem in an end-to-end

fashion. It is important to clarify that here that “end-to-end” means treating the ALPR

problem from the input image to the final LP number (i.e., the whole pipeline), and not

the usual interpretation of “end-to-end” in the context of DL approaches (i.e., a single

network that handles all the problems).

3.1.1 License Plate Detection

The success of YOLO networks for fast and accurate object detection and recogni-

tion inspired many recent works to use their architecture, targeting real-time performance

for LP detection (SILVA; JUNG, 2017; HSU et al., 2017; XIE et al., 2018; LAROCA

et al., 2018). A slightly modified version of the YOLO and YOLOv2 networks were

used by Hsu et al. (2017). The authors enlarged the networks output granularity to im-

prove the number of detections and set the probabilities for two classes (license plate and

background). Furthermore, they trained the networks using a dataset with high illumi-

nation variability. Their network achieved a good compromise between precision and

recall; however, the paper lacks a detailed evaluation of the extracted bounding boxes.

For instance, there is no information about the threshold used when evaluating the Inter-

section over Union (IoU). Moreover, it is known that YOLO networks struggle to detect

small-sized objects, so that further evaluations over scenarios where the car is far from

the camera (for instance, in the SSIG Dataset) are needed.

In Xie et al. (2018) a setup of two YOLO-based networks was trained with the

goal of detecting rotated LPs. The first network is used to find a region containing the LP,

called “attention model” (in a similar manner to frontal-views detection in Silva and Jung

(2017) and Chapter 4), and the second network captures a rotated rectangular bounding-

box of the LP. Nonetheless, they considered only on-plane rotations, and not more realistic

deformations caused by oblique camera views. Also, as they do not present a complete

ALPR system, it is difficult to evaluate how well an OCR method would perform on the

detected regions.

License plate detectors using sliding window approaches or candidate filtering

coupled with CNNs can also be found in the literature (KURPIEL; MINETTO; NASSU,

2017; BULAN et al., 2017; SELMI; HALIMA; ALIMI, 2017). However, they tend to

be computationally inefficient as a result of not sharing calculations like in modern meta-
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architectures for object detection such as YOLO, SSD and Faster R-CNN.

3.1.2 End-to-end ALPR

The work of Laroca et al. (2018) used five networks to build a complete ALPR

system. The first three networks are focused on detecting objects, which in this case is:

vehicles, license plates and characters. They represent a considerable part of the ALPR

pipeline, remaining only the segmented characters to be recognized, which is performed

by two other specialized networks, being one for letters and another for digits. The re-

sulting system is focused only on Brazilian LPs, where the authors reported real-time

performance. This approach was not trained to capture oblique and distorted LPs.

Another complete ALPR system was presented by Selmi, Halima and Alimi (2017).

The authors used a series of pre-processing approaches based on morphological operators,

Gaussian filtering, edge detection, and geometry analysis to find LP candidates and char-

acters. Then, two distinct CNNs were used to (i) classify a set of LP candidates per image

into one single positive sample, and (ii) to recognize the segmented characters. There is

no vehicle detection and it is assumed that every input images contains one LP. Thus, the

system fails to identify multiple vehicles in the scene. Moreover, according to the authors,

distorted LPs and poor illumination conditions can compromise the performance.

An interesting approach based on the idea of using just a single network to perform

the whole ALPR pipeline was presented by Li, Wang and Shen (2017), based on the

Faster R-CNN model architecture. Shortly, a Region Proposal Network is assigned to find

candidate LP regions, whose corresponding feature maps are cropped from the backbone

by a RoI Pooling layer. Then, these candidates are fed into the final part of the network,

which computes the probability of being/not being an LP, and performs OCR through a

Recurrent Neural Network. Despite promising, the evaluation presented by the authors

shows a lack of performance in most challenging scenarios containing oblique LPs.

Region proposals along with rectification were used by Dong et al. (2017). In

their paper, the authors described an ALPR system divided into to stages: (i) a LP de-

tector based on R-CNN and Region Proposal Networks, which recovers the four corner

points of a LP; and (ii) a recognition scheme that performs LP rectification based on the

regressed corners, and character segmentation and recognition with an ensemble of spatial

transformer networks and CNN recognizers. Their method is focused on Chinese license

plates, and the dataset used (containing 18k images) and implementation were not made
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publicly available.

Recently, the massive use of synthetic data was explored by Björklund et al.

(2019). The authors proposed a complete ALPR system trained only with synthetic li-

cense plates (an example of a license plate generated by their method was shown earlier

in Figure 2.11c of the last chapter). They argue that geometric features are essential fea-

tures for the network to learn, and by artificially generating data it is possible to create

license plates in any geometric view. Two networks were designed and trained using

the artificially generated samples: the first detects the license plate by outputting its four

corner points, and the second is responsible for detecting and recognizing the characters.

Commercial systems are also good reference points to the state-of-the-art. Al-

though the companies usually provide only partial (or no) information about their product

architecture, we still can use them as black boxes to evaluate the final output. In this

dissertation, we considered the following three commercial systems:

• Sighthound: few details were given in Masood et al. (2017). The system uses CNNs

throughout the entire pipeline for detection and recognition tasks, and it is trained

with huge private databases composed by around 20,000 vehicle images and 25,000

cropped LPs;

• OpenALPR: there is no detailed information available, but the system massively

uses deep learning and it is an official NVIDIA partner in the Metropolis platform1;

• Amazon Rekognition: it is a more general purpose AI engine. It performs many

kinds of visual analysis, and in its text detection and recognition module, the com-

pany informs that it can be used for LP recognition as well.

Despite the existence of several academic and commercial systems for ALPR,

most of them focus on camera setups that capture mostly frontal LPs, not being suited

for unconstrained scenarios with highly distorted LPs. Also, most of these methods are

designed for a specific LP region (e.g., Brazilian, European, etc.), which limits their appli-

cation. Later in this work, we present a method designed to detect, unwarp and recognize

LPs in a wide variety of camera setups, and that is generic enough to capture LPs from

different regions. We also show that our generic approach can be fine-tuned to a specific

scenario (e.g., only Brazilian LP models) to yield even better results.

1NVIDIA platform for video analysis in smart cities (<https://www.nvidia.com/en-us/
autonomous-machines/intelligent-video-analytics-platform/>).

https://www.nvidia.com/en-us/autonomous-machines/intelligent-video-analytics-platform/
https://www.nvidia.com/en-us/autonomous-machines/intelligent-video-analytics-platform/
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3.2 Racing Bib Number Recognition

Racing Bib Number (RBN) is the identification attached to an athlete’s body dur-

ing a competition. It usually consists of a card with the ID printed inside, and its material

should be resistant to sweat and constant deformations. The identification is typically a

number, but in some restricted competitions it can be a name. Recognizing RBNs is a

challenging task in CTR due to many factors, such as:

• Camera movement;

• Deformations (a result of the athlete’s movement or the location where the card was

pinned in his/her body);

• Oblique angles;

• Illumination variation;

• Presence of irrelevant text near the ID (such as sponsors or clothing details).

To the best of our knowledge, there are only three approaches in the literature that

tackle this problem directly, as it does not attract much attention compared to ALPR.

Moreover, the only existing publicly available dataset 2 specific for RBN (to our kn-

woledge) is small, imposing additional challenges to train robust classifiers.

The first work on RBN-R was presented in Ben-ami, Basha and Avidan (2012).

The authors proposed a multi-staged pipeline that starts by detecting the athlete’s face.

Then, a rough estimate of the torso area was generated based on a scaling and translation

transformation of the face region. Given that in most cases the Bib is attached to the

torso, this estimation greatly reduces the search area for the number ID. Next, a modified

version of the Stroke Width Transform (EPSHTEIN; OFEK; WEXLER, 2010) was used

to detect text regions. The resulting detections, if more than one, were filtered based on

a size assumption and average confidence. Finally, the Tesseract OCR engine (SMITH,

2007) was used to recognize the segmented characters.

More recently, Shivakumara et al. (2017) presented an approach based on HoG+SVM,

GrabCut segmentation (ROTHER; KOLMOGOROV; BLAKE, 2004) and Conditional

Random Fields. First, a HoG+SVM classifier was used to detect upper body parts in

the image (i.e., a rectangular area containing the face and shoulders). Then, using Grab-

Cut and a larger area, the athlete (foreground) is segmented and its parts separated using
2Available at <http://people.csail.mit.edu/talidekel/RBNR.html> .

http://people.csail.mit.edu/talidekel/RBNR.html
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Pictorial Structural Models. The torso part, which is where the bib is usually pinned in,

is selected and a pyramidal HoG+SVM is used to select text areas. Finally, a set of mor-

phological operators were used to segment the characters, and the resulting binary image

sent to Tesseract for recognition.

In Kamlesh et al. (2017), the authors adapted existing text spotting/recognition

methods in the context of RBN-R. More precisely, they adapted the TextBoxes (LIAO et

al., 2017) network to carry out bib number detection, and re-trained the CRNN model to

perform number recognition (explanation about TextBoxes and CRNN is in Section 3.4)).

Despite the good results, the authors only compared to variations of their work and a

baseline CNN. Moreover, their dataset was not published until the publication of this

dissertation.

3.3 Other Applications

Another example of CTR is the Automatic Meter Reading (AMR) problem. AMR

aims to recognize information related to consumption of water, electricity or gas, given

an image from a local meter. This is useful, for instance, for fraud monitoring or billing.

An AMR approach for electricity meters was presented in Laroca et al. (2019).

Similarly to their previous work on ALPR, the authors used two networks based on the

YOLO architecture: one to detect the counter region in the image (i.e., the context), and

another to detect and recognize digits. The evaluation was performed in a dataset with

2,000 images and achieved an impressive 97.30% of accuracy.

Another application for AMR concerns gas meter. In this context, Gallo, Zamber-

letti and Noce (2015) used a neural network to perform meter localization, and a mixture

of MSER and HoG+SVM to detect and recognize digits. For water meter, Gao et al.

(2018) presented an approach convenient for mobile devices. The meter detection, which

usually is the most onerous part in terms of computation, used handcraft features along

with a boosted classifier for fast performance. A CNN feature extractor coupled with a

variation of LSTM that computes recurrently in both horizontal directions was employed

to recognize digits. The authors conclude that this bidirectional LSTM was able to better

model dependencies between digits.
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3.4 Optical Character Recognition (OCR)

Optical Character Recognition (OCR) is a classical task in computer vision, where

the first reading machine dates from the 50s (EIKVIL, 1993). As there is a vast literature

on this subject with many different approaches, we suggest the reading of Ye and Doer-

mann (2015) for further information. In recent years, due to the advance of DL techniques,

the research attention in this field moved to Scene Text Recognition (STR). This is a par-

ticularly complex task due to the amount of background area, large variety of font-types

and, many times, absence of high contrast between text and background. The STR task is

commonly divided into two subtasks: text detection and word spotting.

3.4.1 Text Detection

Starting with text detection, He et al. (2016b) proposed an enhancement of the

classical MSER algorithm (MATAS et al., 2002) coupled with a so-called Text-CNN. The

network was used to eliminate false-positives coming from the MSER-enhanced algo-

rithm. It is interesting to note that the network achieved a high discriminative text/non-

text accuracy by using many different annotated information during the training stage, like

character label and region mask at the character level. The authors argue that this joint

training produced a more robust text/non-text classifier than training with single binary

text/non-text labels.

Liao et al. (2017) presented a network inspired by the SSD architecture, which

they called TextBoxes. Originally, SSD was developed for object detection, meaning,

among many things, that its anchor boxes cover a variety of aspect ratios. However, when

applied to text detection, the failure cases occur mainly due to the wider aspect ratio of

text. Hence, the authors proposed a new output for the network that manages wider aspect

ratios, improving text detection.

Wang et al. (2018) presented an approach to detect text in a variety of geometric

positions. It is basically a composition of three CNNs, namely Instance Transformation

Network (ITN). The first network is a backbone (e.g., VGG or ResNet) that computes

the feature map M from an input image. The second network uses M to infer affine

transformations that warp squared grids of fixed size, centered in the cell being analyzed,

into the text area (see Figure 3.1a). These new warped grids are used to sample from

M and feed a third network that performs classification. An overview of ITN is shown
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Figure 3.1: Figures taken from Wang et al. (2018) presenting the warping grid process (a)
and an overview of ITN (b).

(a) (b)

in Figure 3.1b. The authors reported state-of-the-art results in the classical ICDAR 2015

dataset (KARATZAS et al., 2015).

In (DENG et al., 2019), a simple but efficient approach was presented. The authors

presented a single architecture that can capture word candidates, and, through a called

Corner-based Region Proposal Network, find the corners of that word to retrieve a precise

bounding box.

The detection of highly distorted text (e.g., curved) is a new trend, and was recently

tackled by Liu et al. (2019) and Baek et al. (2019). In the work of Liu et al. (2019), the

authors presented an architecture that recovers a polygon of 14 points, where half of these

points correspond to the top part of the text line, and the other half to the bottom part.

To train such network, the authors also presented a new dataset with 1,500 annotated

images, where the annotations follow the same protocol of the architecture output: 14

points surrounding the text area. A few results of this approach are shown in Figure 3.2.

In the work of Baek et al. (2019), the authors also demonstrated a method for

detection of curved text that analyses an input image to character level. To this end,

Figure 3.2: Image taken from Liu et al. (2019) showing a few outputs from their curved
text detection approach.
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they developed a novel network which outputs two distributions: one to represent the

characters, and another to represent the space between characters. Together, they provide

enough information to post-processing procedures that infer character deformation and

their relation to neighbor characters, which allows to precise draw a polygon around text

regions.

3.4.2 Word Spotting

Word spotting techniques are used after text detection to isolate and recognize

words. A successful use of CNNs for word spotting can be found in (JADERBERG et al.,

2014), where the authors proposed a CNN model with three different kinds of encoding

for the output layer:

• Dictionary encoding: it outputs one among 90k different words (in this case, classes)

in a lexicon;

• Character sequence encoding: the layer outputs the sequence of characters (given a

maximum word length) and “null” when it does not apply;

• N-gram encoding: the output layer is composed of 10k different English N-grams.

As a word can contain multiple N-grams, high probabilities ideally must be as-

signed only to the N-grams composing the word.

The use of recurrent networks along with CNNs was also explored in text recog-

nition by Shi, Bai and Yao (2017). The authors used Long-Short Term Memory (LSTM)

layers at the end of a sequence of convolutional layers to handle character sequences. The

network was named das Convolutional Recurrent Neural Network (CRNN) One advan-

tage of this approach is that the training stage is simplified, needing only words as labels,

instead of complicated annotation like segmented characters. We investigate a similar

approach in the context of RBN-R in Chapter 6.

Despite being accurate for text recognition, the approaches based on lexicons or

N-grams are not directly applicable to our target tasks (e.g., ALPR or RBN-R) since the

number of combinations to build a lexicon is immense. However, the character sequence

encoding used by Shi, Bai and Yao (2017), Jaderberg et al. (2014) or Jaderberg et al.

(2015) may be suitable if not applied directly and submitted first to a retraining stage. In

fact, we tried to apply these methods directly to images containing license plates or bibs,
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and noticed that a network trained for word recognition intrinsically learns to consider

the information of the characters around. This is not desirable for license plates or bib

numbers as this information is usually not valid.

3.4.3 Joint Detection and Spotting

Following the path of simple annotation, we can refer to the work of Jaderberg et

al. (2015), where the authors presented a CNN-based detector and recognizer for numbers

trained with only digit sequence strings as an annotation. Their approach, called Spatial

Transformer Networks, was used by many authors referenced throughout this disserta-

tion, and also inspired our ALPR and RBN-R approaches, presented in Chapters 5 and

6. Basically, they propose the use of networks as layers inside the main network. These

networks regress spatial transformation parameters (for instance, affine parameters) and

use them to transform the input feature map. Tests performed in the Street View House

Numbers (WANG et al., 2011) dataset demonstrated the ability to learn digit sequence

detection without any spatial annotation when plugged into a recognition network. Its

worth to mention that the STN was able to perform such detection in small patches and

containing a single piece of text, so it does not mean that it can handle the detection of

multiple text instances on entire images.

3.5 Chapter Conclusions

This chapter presented existing works for ALPR, RBN-R, AMR and OCR. We can

note that the ALPR, AMR and RBN-R problems are closely related. Solutions to these

problems share the common characteristic of first detecting the license plate, meter or

bib (i.e., the contextual information), and then finding the identification string or number

through some OCR method. In all cases, the use of OCR methods directly to the full

input image might generate many false positives that are not present in the corresponding

context, so that using contextual information might be crucial.

Although ALPR is a well known and studied problem, there is a lack of approaches

that correctly recognizes license plates in more complex scenarios, with less constrains,

and at a reasonable computational cost. For instance, scenarios where the vehicles are

oblique to the camera are still challenging.
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Considering the RBN-R problem, the few existing approaches rely on old de-

tection and recognition methods, like HoG+SVM for object detection and the Tesseract

engine for OCR. With the rise of Deep Learning, state-of-the-art detectors and OCR ap-

proaches started to use deep CNNs, achieving impressive results. Hence, there is a need

for a more modern look at this problem, taking care of the challenges described in Sec-

tion 3.2.

Finally, OCR (its broad context that encompasses detection and recognition) is one

of the oldest problems in computer vision. However, the focus of modern approaches are

on word and text detection/recognition, and not characters. This line of research limits its

use to recognize identification strings, since they often are not words but a sequence of

characters not following comprehensive semantic rules. In the next chapters, we present

our approaches for ALPR and RBN-R.
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4 REAL-TIME ALPR FOR MOSTLY FRONTAL CAPTURES

Our first attempt towards real-time CTR was in the context of ALPR, in which

the text to be detected (related to the license plate) is contextually related to a vehicle.

This chapter describes a real-time ALPR approach suited for mostly frontal views, as in

applications such as parking or toll monitoring. Part of this approach was published in a

conference paper (SILVA; JUNG, 2017), which was extended and submitted to a journal.

4.1 Overview

Although vehicle detection might be an optional task for some ALPR methods,

it is essential in our CNN-based approach. Taking into account that we are using DL

techniques known to be computationally expensive, avoiding small objects becomes even

more important when one seeks for a real-time application. Shrinking the image is not

an alternative, because the plate may become excessively small to the point of being un-

detectable (in the SSIG Dataset (GONÇALVES et al., 2016), focused on Brazilian plates

and used in this work, the average size of the vehicles LPs is 0.26% of the full image area).

Nonetheless, vehicles are larger objects and therefore less affected by downsampling, so

our strategy is to hierarchically detect the vehicle and then the license plate. Figure 4.1

presents an overview of the proposed method, each step is briefly described next, and then

detailed in the following sections.

Another decision concerning real-time performance is the chosen network model.

We need to use a DL model capable of performing detection and recognition in a very

Figure 4.1: Proposed system pipeline: a frontal-rear view detector is applied to the input
image (1 and 2) and a crop of each detection is re-submitted to the same network in order
to locate LPs (3 and 4). Next, the detected LPs are scanned by a character recognition
network (5 and 6) and the characters found are sorted left-to-right to compose the system
output (7).
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short time. In order to accomplish this goal, we choose to use YOLO-based networks

(Section 2.4.3), which are the fastest networks reported in the literature as far as we know.

In our tests, the Fast-YOLO network (a reduced version of YOLO) performed a 20-class

detection and classification in an 416 × 416 image in less than 5.5ms1, or around 180

frames per second (FPS). The precision reported (mAP) for this network was 57.1% on

PASCAL-VOC 2007 database. This is not much when compared to other deeper networks

like YOLO (76.8%) and Faster-RCNN (76.4%). However, YOLO has 3× more param-

eters than Fast-YOLO, which makes it slower and data-hungry for training. This is not

convenient when aiming a real-time application with just a small set of training samples.

As our intention is to tackle a two-class problem (car frontal/rear views and license

plates) instead of twenty, we hypothesized that refining the Fast-YOLO network would

be fast and accurate enough to detect both classes in a sequential manner: first the car

frontal/rear views are detected, and then its corresponding bounding boxes are fed to the

same CNN to extract the license plate, as described in Section 4.3.

For the detection and recognition of characters, we built a new network inspired

on the YOLO architecture, with fundamental technical differences to accommodate 35

classes (0-9, A-Z except the letter O, which is detected jointly with the number 0) and to

output a feature map having the same aspect ratio of the LP (width is three times larger

than height). The details of this network are presented on Section 4.4.

Optionally, a post-processing step is performed in order to swap class of highly

confused letters to digits and digits to letters. This is useful in the context of Brazilian

LPs since they are formed by exactly three letters followed by four digits, as illustrated in

Figure 4.2.

Figure 4.2: Brazilian LP layout: 3 letters followed by 4 digits.

3 letters 4 digits

4.2 Frontal/Rear-View Extraction

The farther the vehicle is from the camera, the smaller its LP will appear in the im-

age. As pointed by Zhu et al. (2016) and Redmon et al. (2016), deep learning techniques

1Hardware used: Intel Xeon E5620 2.4GHz processor, 12GB of RAM, and NVIDIA TITAN X GPU.
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struggle to detect small objects. As a rule of thumb, larger input images are required to

allow the detection of smaller objects, which increases the computational cost (HUANG

et al., 2017). Thus, directly locating the LP may not be a good strategy when targeting

a wide range of scenarios. For the sake of curiosity, we trained a Fast-YOLO network

to directly detect the LPs in the Brazilian SSIG Database (GONÇALVES et al., 2016)

(where the LPs represent typically just a small portion of the image), and the result was

a low recall rate of 82% (which tends to be further reduced after adding the character

recognition errors).

Although “vehicle” (or subtypes such as “car”, “bus”, etc.) is a typical class in ob-

ject detection/recognition datasets (EVERINGHAM et al., 2007; RUSSAKOVSKY et al.,

2015; LIN et al., 2014), only roughly frontal and rear views are adequate in the context

of ALPR, so that the corresponding LP is visible and readable. However, ALPR datasets

typically present annotation only for the LP region, not for the vehicle (GONÇALVES et

al., 2016; HSU; CHEN; CHUNG, 2013; OPENALPR, 2014). To cope with these issues,

we propose a simple method to extract the frontal/rear portion of the cars only based on

the annotated LP. This is a semi-automatic way of generating new annotations to aggre-

gate information to the datasets in hands. We start by manually annotating frontal/rear

views (FRV) regions around the LP in a small set of 40 images from the SSIG Database

(where the LP region is also known). Then, we assume that both regions are related by an

anisotropic scaling and translation. More precisely, let us consider a 4-dimensional vector

~p = (px, py, pw, ph) encoding an annotated LP, where (px, py) are the center coordinates

and (pw, ph) are the width and height. We assume that the FRV bounding box is given by

an affine transformation

~v = ~f(~p, ~α) =


px + αxpw

py + αyph

αwpw

αhph

 , (4.1)

where ~α = (αx, αy, αw, αh) contains the scaling and translation parameters. The esti-

mated mapping from LPs and FRVs is encoded by

~α∗ = argmax
~α

Nlp∑
i=1

IoU (f(~pi, ~α), ~vi) , (4.2)
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where Nlp is the number of images with annotated LP and FRV bounding boxes. We

used the Gradient Descent with a learning-rate of 0.01 as the optimization algorithm.

Figure 4.3 shows a few examples of estimated FRV bounding boxes on images that were

not present in the training set, indicating that the FRV can be roughly extracted using

the proposed approach. It is worth mentioning that related approaches can be found in

Psyllos, Anagnostopoulos and Kayafas (2011) and Yang et al. (2013), where LP regions

where used to estimate car frontal-views in order to recognize their model/manufacturer.

Figure 4.3: Example of Vehicle Frontal/Rear bounding box estimation (yellow rectangle)
based on the annotated LP region (in red).

4.3 Frontal/Rear-View and License Plate Detection CNN

In this work, the car FRV and its LP are detected using a single classifier arranged

in a cascaded manner (see Figure 4.1): the first layer (arrows 1 and 2) detects the FRV

from the input image, and the second layer (arrows 3 and 4) extracts the LP from the

detected FRV image.

To achieve a good compromise between accuracy rates and running times, our

classifier is based on the Fast-YOLO network architecture. We hypothesized that such

network customized for 2 classes only could have the capacity to accommodate both

tasks in a single network when executed in a cascaded way. Besides, if we trained two

networks separately for each class, the top layers would probably be similar, as they are

feature extractors from the same backbone. The proposed network is shown in Table 4.1,
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and the only modification to the original architecture was made in layer 15, where we

reduced the number of filters from 125 to 35 in order to output 2 classes instead of 20

(please refer to Redmon et al. (2016) for more information about the detection layer).

Table 4.1: Frontal/Rear-View and License Plate Detection Network (FRV/LPD-NET):
basically a Fast-YOLO network adjusted to output 2 object classes (FRV and LP).

no Layer Filters Size Input Output

1 conv 16 3 × 3 / 1 416 × 416 × 3 416 × 416 × 16

2 max 2 × 2 / 2 416 × 416 × 16 208 × 208 × 16

3 conv 32 3 × 3 / 1 208 × 208 × 16 208 × 208 × 32

4 max 2 × 2 / 2 208 × 208 × 32 104 × 104 × 32

5 conv 64 3 × 3 / 1 104 × 104 × 32 104 × 104 × 64

6 max 2 × 2 / 2 104 × 104 × 64 52 × 52 × 64

7 conv 128 3 × 3 / 1 52 × 52 × 64 52 × 52 × 128

8 max 2 × 2 / 2 52 × 52 × 128 26 × 26 × 128

9 conv 256 3 × 3 / 1 26 × 26 × 128 26 × 26 × 256

10 max 2 × 2 / 2 26 × 26 × 256 13 × 13 × 256

11 conv 512 3 × 3 / 1 13 × 13 × 256 13 × 13 × 512

12 max 2 × 2 / 1 13 × 13 × 512 13 × 13 × 512

13 conv 1024 3 × 3 / 1 13 × 13 × 512 13 × 13 × 1024

14 conv 1024 3 × 3 / 1 13 × 13 × 1024 13 × 13 × 1024

15 conv 35 1 × 1 / 1 13 × 13 × 1024 13 × 13 × 35

16 detection

4.3.1 Training

The weights from layers 1 to 14 were transfered (YOSINSKI et al., 2014) from a

pre-trained YOLO backbone 2 and refined using samples containing FRV and LP images.

More precisely, the training data is provided as a combination of two subsets: (i) images

from vehicles having annotated FRVs, where the FRVs were obtained with the weak la-

beling process described previously; and (ii) cropped FRV regions with their respective

annotated LP regions. In both cases, the images were augmented (see Section 4.5) and

rescaled to match the network input size of 416× 416.

2Pre-trained YOLO models for Darknet framework are available at <https://pjreddie.com/darknet/yolo/
>.

https://pjreddie.com/darknet/yolo/
https://pjreddie.com/darknet/yolo/
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4.3.2 Test

The full license plate detection process consists of two passes of the network, as

follows:

• The first pass involves the whole image and retrieves only detected FRV: any LP

found is discarded;

• Each detected FRV is cropped and fed to the same network; the resulting FRVs – if

there is any – are ignored and the LP detection with highest probability is kept.

Note that if we have N LPs in the scene, the network is expected to run N + 1

times: one to detect theN frontal or rear views, andN to detect LPs (one for each detected

vehicle). Nonetheless, in several ALPR applications, such as parking or toll monitoring,

there is only one vehicle at a time.

The advantages of having the same network for two different tasks are two-fold:

• Simplified training process: both classes (FRV and LP) can be trained together in a

single step;

• Less physical storage: despite using high-end hardware to achieve real-time per-

formance, it might still be possible to run in mobile devices with far less FPS, but

still reasonably fast. Therefore, as DL networks usually consume a considerable

amount of memory to be stored, using a single network can bring a huge advantage

in dynamic and permanent memory consumption.

4.4 Character detection and recognition

Although each country/region around the world presents specific regulations con-

cerning the layout of LPs, they share common properties: the LP is rectangular, width

larger than height, it is formed by letters and numbers distributed horizontally (except for

motorcycles), and the font types and sizes do not present a significant variability. If the LP

region is correctly detected, a generic OCR algorithm might be used. In this work, how-

ever, we present a new character segmentation and recognition algorithm that accounts

for the characteristics typically present in license plates.

As in the LP detection stage, our OCR network is inspired in the YOLO architec-

ture. However, we made more substantial structural changes. The network input is now
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an horizontally elongated rectangular region that mimics the expected aspect ratio of a LP

set as 3 : 1 (based on Brazilian LPs). Although the actual LP aspect ratio might change

from region to region, YOLO-based architectures present a good detection performance

for varying aspect ratios of the same object (in this case, characters), as demonstrated in

Redmon and Farhadi (2017). More precisely, we chose to use 240 × 80 images as input,

which outputs a 30 × 10 feature map due to the network stride of 23. This input size

was empirically set to achieve a good compromise between speed and accuracy. Just for

the record, we also tried different input → output sizes, such as 144 × 48 → 18 × 6,

192× 64→ 24× 8 and 288× 96→ 36× 12. The first 2 networks performed worse than

the chosen one, and the last one performed equally well, but being slower.

To accommodate a smaller input than the original proposal (240×80 against 416×

416), other layers had to be modified to keep the architecture consistent. First, we need to

cut down the number of max pooling layers from five to three, in order lower the network

stride and keep the fine output granularity by avoiding many dimensionality reductions. In

this way, there are enough space in the feature map to avoid overlap between characters.

Second, to maintain the network depth equal to Fast-YOLO and yet being allowed to use

as much transfer learning as possible, we used the first eleven layers of original network

(YOLO for PASCALVOC), stopping on the twelfth layer, since it contains the fourth max

pooling in that network. If we had applied the same idea of capturing all layers before the

fourth max pooling to Fast-YOLO, we would end up using just seven layers, reducing the

network depth. Lastly, four more layers were added and trained from scratch to improve

non-linearity.

Since the characters are distributed horizontally along the LP, the granularity of

the output layer should also be finer along the horizontal direction to better detect and

recognize the characters. More precisely, we almost tripled the horizontal granularity

compared to original YOLOv2 models (13× 13), letting the final network output as 30×

10. This slight decrease in vertical size output did not affect the network performance,

since the LPs have no vertical sequence of objects to detect. The final architecture of the

proposed network and the comparison to YOLOv2 is provided in Figure 4.4, and the loss

function remained the same as YOLO, presented in Redmon et al. (2016).

As a final note, in YOLO models the number of filters in the last layer corresponds

to the number of anchors, multiplied by the number of classes we want to detect plus

five — related to the offset, scale, and probability parameters of an anchor. Since the

size of characters does not vary much for LPs, we opted to use only 2 anchors to better
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Figure 4.4: Optical Character Recognition Network (OCR-NET): All layers from 1 to 11
were transferred from YOLOv2 network. The input image is a 240 × 80 gray scaled LP
patch with replicated channels, and the output is a 30 × 10 feature map ensuring enough
horizontal granularity for all characters.

Layer Filters Filter size W H

1 conv 32 3 x 3 / 1 416 416

2 max 2 x 2 / 2 416 416

3 conv 64 3 x 3 / 1 208 208

4 max 2 x 2 / 2 208 208

5 conv 128 3 x 3 / 1 104 104

6 conv 64 1 x 1 / 1 104 104

7 conv 128 3 x 3 / 1 104 104

8 max 2 x 2 / 2 104 104

9 conv 256 3 x 3 / 1 52 52

10 conv 128 1 x 1 / 1 52 52

11 conv 256 3 x 3 / 1 52 52

12 max 2 x 2 / 2 52 52

27 conv 1024 3 x 3 / 1 13 13

28 conv 125 1 x 1 / 1 13 13

Layer Filters Filter size W H

1 conv 32 3 x 3 / 1 240 80

2 max 2 x 2 / 2 240 80

3 conv 64 3 x 3 / 1 120 40

4 max 2 x 2 / 2 120 40

5 conv 128 3 x 3 / 1 60 20

6 conv 64 1 x 1 / 1 60 20

7 conv 128 3 x 3 / 1 60 20

8 max 2 x 2 / 2 60 20

9 conv 256 3 x 3 / 1 30 10

10 conv 128 1 x 1 / 1 30 10

11 conv 256 3 x 3 / 1 30 10

12 conv 512 3 x 3 / 1 30 10

13 conv 256 1 x 1 / 1 30 10

14 conv 512 3 x 3 / 1 30 10

15 conv 80 1 x 1 / 1 30 10

T
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YOLOv2 OCR-NET

input resolution changed

fit wide and thin characters, such as “W” and “I”. The final number of parameters are

2× (35 + 5) = 80, where 35 accounts for the number characters we want to detect.

4.4.1 Training

The training procedure regarding transfer learning was similar to FRV/LPD-NET

presented in Section 4.3.1. However, the amount of annotated characters in our database

was very small and imbalanced, as shown in Figure 4.5. For instance, there are 14 charac-

ters with less than 20 samples each. Hence, we strongly relied on synthetic and augmented

data, as explained next.

Figure 4.5: Histogram of characters occurrence in the training database.
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4.5 Synthetic and Augmented Training Data

In this work, we created a new dataset for training our networks that consists of

a mixture of 195 images obtained from other three publicly available databases: AOLP

database (HSU; CHEN; CHUNG, 2013), law enforcement subset (50 images used); SSIG

(GONÇALVES et al., 2016), training subset (40 images used); and Cars Dataset (KRAUSE

et al., 2013) (105 images used). As each of these databases represents a different scenario,

this selection has a positive bias by enhancing the variability. Originally, the LP annota-

tion from those images, when existent, was composed by a rectangular (2-point) bounding

box. Although this representation looks adequate for roughly horizontally aligned LPs,

when the LP is oblique or rotated, this representation ends up capturing surrounding areas.

Thus, a quadrilateral (4-point bounding box) seems to be a more suitable representation.

Therefore, this dataset manually replaced the 2-point representation by the 4-point rep-

resentation, allowing to capture different distortions and rotations, as illustrated in the

second row of Figure 4.6a, where a rectification turns out to be possible due to the 4-

point annotation. We took advantage of this to greatly augment the dataset for training.

Moreover, the dataset also contains 4-point annotations for the characters. The first row

of Figure 4.6a shows a sample and its annotations.

Rectifying the entire image based on its LP is the first step to generate samples for

FRV, LP and character detection. For each image, we fixed the new LP size and shape to

be a 240 × 80 rectangle centered in the origin (see the second row of Figure 4.6a). With

the 4-annotated LP points from the dataset, and the desired new points, we generated

an homography transform matrix used to interpolate the image and its annotations. The

empty regions were filled with grey — as it becomes zero when scaling the pixel values

between (−1, 1). Finally, an FRV annotation was generated using the new rectified LP

coordinates.

A detailed description of how data is generated for each detection part after this

rectification process is described below. Nonetheless, a summarized overview is depicted

in Figure 4.6b.

4.5.1 Frontal/Rear Views and License Plates Samples

The whole transformed image and its FRV annotation is used as input to train the

FRV detector, and the cropped FRV region with its LP annotation is used to train the
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Figure 4.6: Augmentation pipeline.
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(b) Brief overview of the data generation pipeline after the homography transformation.

LP detector. As explained in Section 4.3.1, during the training stage these samples are

merged together to compose the same set, since there is a single network for both tasks.

The network input is fixed in 416× 416, thus every sample must be of this resolu-

tion. The first step in the augmentation is to create a canvas and resize the image to fit its

center. Them, a random translation, scaling and rotation operation (altogether in a single

affine matrix) is performed inside the canvas area. This process is depicted in Figure 4.7.

It is important to note that we used small angles to avoid aggressive perturbations that

do not bring any improvement since the test scenarios only involve frontal (or rear) LP

images. Actually, the performance suffers degradation when using high angle values as

end up forcing the network to the accommodate unusable patterns.

In the final step, we transferred the sample from the RGB domain to HSV, per-
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Figure 4.7: Sequence of tasks to create a randomly modified sample.
Canvas Centering Translation Scaling Rotation Canvas fill

416

41
6

formed a slight and fixed modification in its colorspace, and brought it back to RGB.

4.5.2 Characters Samples

To train the OCR network, we mixed real augmented data to synthetically gener-

ated ones. The real augmented samples are simply a crop of the LPs passed through a set

of affine transformations and colorspace modification procedures, similar to FRV and LP

samples described above.

The synthetic samples, however, are generated by a more sophisticated process.

After the rectification, we end up with well aligned LP and characters. Thus, it is easier

to extract the text area and replace its content by a new synthetic sequence of characters.

To avoid having a plain synthetic text pasted over a real image (which could bias the

network), we mixed real and synthetic data using Poisson Blending (PÉREZ; GANGNET;

BLAKE, 2003), which is a traditional method in image composition used for blending

contents from two different images.

The steps for generating a synthetic LP are shown in Figure 4.8. First, we generate

a random sequence of characters of length varying from 5 to 10 (since LPs from different

regions might have a different number of characters). The used font is randomly chosen

from two types: European and Brazilian (which are our target scenarios), but other fonts

might be easily included into the pipeline. The new string then is re-scaled to match the

text area size, and blended with the real image containing the original LP using Poisson

Blending. As illustrated in Figure 4.8, this step propagates the information from the real

image onto the synthetic text, capturing information such as illumination and texture.

Finally, we apply random amounts of Salt & Pepper noise, Gaussian blur (since images

captured by video cameras might present some motion blur artifacts) and γ-correction

(to modify the illumination). The output samples are also submitted to the same affine

transformations of the real augmented samples.
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Figure 4.8: Synthetic LPs generated.

Poisson Blending > Salt & Pepper > Gaussian Blur > Gamma-Correction

Original LP:

Rendered string:

Synthetic:

4.6 Post-Processing

As previously mentioned in this chapter, several pairs of characters present visual

similarity and tend to generate ambiguities. In some countries/regions, the LPs present

specific combinations of digits and letters. For instance, Brazilian LPs are formed by

exactly three letters followed by four numbers. In those cases, a set of rules can be

used to disambiguate and correct classification errors. Other LP regions (e.g. in Europe)

do not present a pre-defined order of characters/digits, so that the same disambiguation

procedure cannot be applied.

In this work, we present a set of rules designed for Brazilian LPs only as a proof

of concept. We used two heuristic rules to filter the results: i) from all characters detected

by the network (we set the threshold close to zero for maximum recall), only the seven

most probable are kept. ii) from left to right, the first three characters are assumed to be

letters, and the following four, digits. This assumption is used to swap letters by numbers

and vice-versa, depending on the character position. In summary, if a letter is recognized

in the LP block related to digits, it is swapped by the digit that presented the largest

occurrence in the confusion matrix obtained with the validation data. A similar process is

applied when a digit is recognized in the LP block related to letters. The specific swaps

are given by:

• Swap rules for the first 3 positions (letters): 5 ⇒ S, 7 ⇒ Z, 1 ⇒ I , 8 ⇒ B,

2⇒ Z, 4⇒ A and 6⇒ G;

• Swap rules for the last 4 positions (numbers): Q ⇒ 0, D ⇒ 0, Z ⇒ 7, S ⇒ 5,

J ⇒ 1, I ⇒ 1, A⇒ 4 and B ⇒ 8.
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4.7 Experimental Results

In this section we evaluate the proposed method in two steps. First, we performed

individual assessments in each ALPR subtask to verify their performance and set values

for fixed (default) parameters. Then, we evaluated the full ALPR system and compared

to state-of-the-art academic methods and commercial systems.

To train our LPD and OCR networks, the following parametrization was used:

10k iterations on Stochastic Gradient Descent algorithm, with mini-batch size of 64, and

learning rate of 10−3 for the first 1k iterations, and 10−4 after them. The validation set

was used to select thresholds to filter the outputs. Basically, all segments found by adopt-

ing a threshold λ, were submitted to a Non-Maximum Suppression algorithm in order to

filter out overlapped detections (considering an IoU of 0.45). We set λFRV = 0.2 and

λchars = 0.6 for FRV and European characters detection, respectively. For LP and Brazil-

ian characters thresholding is not necessary, since we can assume one LP per FRV, and

seven characters per LP. Thus, in those cases, we only select the detections with highest

probabilities.

The LP detection was evaluated in terms of Average Precision (AP). Using the

typical IoU threshold of 0.5 for validating a detection, the average LPD precision for the

European and Brazilian datasets were 90.94% and 96.09%, respectively. Using a higher

threshold 0.6 (which provides a tighter detection rule), the AP values are 88.28% and

86.73%, respectively. It is important to note that these values do not provide an upper

bound to the full ALPR system: a candidate LP detection presenting an IoU lower that

the threshold might be considered a miss in terms of LPD, but it might generate a correct

final LP recognition result if all the characters are still inside that region and correctly

recognized.

For the Optical Character Recognition Network (OCR-NET), we retrieve always

the seven most probable detections for Brazilian LPs (as described in Section 4.6). For

the European scenario, we set the detection threshold to 0.6 based on experiments, and all

detections above this threshold are kept. The input for OCR-NET is the cropped region

related to the LP detected by FRV/LPD-NET. This leads to 783 (out of 804) Brazilian

and 106 (out of 108) European LPs to be recognized. Considering the Brazilian scenario,

our network (OCR-NET) achieved more than 99% of recall and precision (for an IoU

of 0.5) to segment the characters, with just a few position mistakes. We compared the

segmentation to the method presented in GonÇalves, Menotti and Schwartz (2016) in
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terms of F-measure (which combines precision and recall) for different IoU acceptance

thresholds. The results are shown in Figure 4.9. In particular, for an IoU of 0.5, our

network achieved an F-measure of 99.82% against 41.96% of GonÇalves, Menotti and

Schwartz (2016), showing that it successfully segmented most of the characters.

Figure 4.9: Character Detection performance in the SSIG-test dataset: F-Measure
comparison with the segmentation method presented in (GONÇALVES; MENOTTI;
SCHWARTZ, 2016).
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Regarding the proposed full ALPR pipeline, most existing approaches present

their results on specific databases, so that a comprehensive evaluation is jeopardized. In

this section, we compared our results with Sighthound (MASOOD et al., 2017)3 and

Amazon Rekognition 4. For the Brazilian dataset SSIG, we have also compared with our

previous conference paper (SILVA; JUNG, 2017) and the recent work of Laroca et al.

(2018). It is important to mention that Sighthound was trained using large private datasets

(over 20,000 images). On the other hand, the proposed approach was trained using only

195 real images, and strongly relied on synthetic images and data augmentation to gener-

alize the network.

The final results are presented in Table 4.2. In the Brazilian scenario, our system

successfully recognized 89.15% of the license plates present in the test set, resulting in a

relative improvement of 9.4% when compared to Sighthound. We also performed better

than the work of Laroca et al. (2018), using only two CNNs against five, and our previous

approach (in this case by a large margin). Moreover, the same system can also work for

European LPs. In our tests we closely outperformed Sighthound system in the OpenALPR

European benchmark. Examples of ALPR results produced by our system are depicted in

3State-of-the-art commercial system, which has a cloud service available at <https://www.sighthound.
com/products/cloud.>. The results presented here were collected on March, 2018.

4The results presented here were collected on March, 2018.

https://www.sighthound.com/products/cloud.
https://www.sighthound.com/products/cloud.
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Table 4.2: Evaluation of the full ALPR pipeline considering the percentage of fully correct
recognized LPs.

ALPR SSIG (Brazilian) OpenALPR (European)
Ours 89.15% 85.19%
Sighthound* 81.46% 83.33%
Amazon Rekognition* 31.21% 69.44%
Laroca et al (2018) 85.45% –
Silva and Jung (2017) 63.18% –

*Data collected on February, 2018.

Figure 4.10.

Our final evaluation is regarding execution time. In Table 4.3 we show the average

time needed for each network to process an input, and the total time for the whole system

(assuming that a single vehicle is being processed). Our ALPR system was implemented

using the Darknet framework 5, and it runs at 76 FPS using a high-end GPU, and it can

achieve around 9 FPS with a cheaper mid-end GPU, which is also feasible in several

applications such as parking and toll monitoring systems.

Table 4.3: Execution time: networks feed forward times for high and mid-end GPUs.

Network
Time (FPS)

High-end GPU Mid-end GPU

(NVIDIA TITAN X) (GeForce GT 750M)

FRV/LPD-NET 5.4ms (185) 47.2ms (21)

OCR-NET 2.2ms (448) 20.1ms (47)
Total

(2× FRV/LPD-NET + OCR-NET)
13.0ms (76) 114.5ms (9)

5Darknet website: <https://pjreddie.com/darknet/>.

https://pjreddie.com/darknet/


65

Figure 4.10: Examples of detected and recognized LPs. The images are the detected LPs
using FRV/LPD-NET, and the segmented characters are represented by the red rectangles.
The final LP string is shown above each image (characters in red were wrongly classified).
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5 ALPR IN UNCONSTRAINED SCENARIOS

Chapter 4 presented an ALPR approach focused on mostly frontal/rear views. In

more generic capture situations, such as a mobile camera held by a law/traffic enforcement

agent, the images could produce very oblique views of the vehicles and the LPs, such

as the ones shown in Figure 5.1. In these situations, the (rectangular) bounding box

representation for the LP is not adequate, since it might either crop part of the text in

the LP or encompass a considerable background region. This chapter presents an ALPR

approach suited for unconstrained capture scenarios, and a paper that reflects most of the

chapter (SILVA; JUNG, 2018) was published at ECCV 2018.

Figure 5.1: Examples of challenging oblique license plates present in the proposed eval-
uation dataset.

5.1 Overview

The proposed approach is composed of three main steps: vehicle detection, LP de-

tection and OCR, as illustrated in Figure 5.2. Given an input image, the first step is to find

vehicles in the scene. Within each detected vehicle, our proposed Warped Planar Object

Detection Network (WPOD-NET) searches for LPs (even distorted and oblique ones),

and returns a set of quadrilaterals whose corners approximately match the LP corners. A

Non-Maximal Suppression algorithm is applied to filter out overlapping detections, and

the final detections are unwarped to be a fixed aspect ratio rectangle (3:1), emulating a

frontal view. These positive detections are fed to an OCR Network for final character

recognition.
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Figure 5.2: System pipeline.
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5.2 Vehicle Detection

Recall that Chapter 4 focused on mostly frontal/rear views, and a weak labeling

procedure was applied to train a vehicle detector in such views. For unconstrained sce-

narios, however, a generic vehicle detector can be used directly. In fact, vehicles are

one of the popular objects present in many classical detection and recognition datasets,

such as PASCAL-VOC (EVERINGHAM et al., 2010), ImageNet (RUSSAKOVSKY et

al., 2015), and COCO (LIN et al., 2014). Hence, we decided not to train a detector from

scratch, and instead chose an existing model to perform vehicle detection.

On the one hand, a high recall rate is desired, since any miss-detected vehicle

having a visible LP leads directly to an overall LP miss-detection. On the other hand,

high precision is also desirable to keep running times low, since each falsely detected

vehicle must be verified by WPOD-NET. Based on these considerations, we decided to

use the YOLOv2 object detection network due to its fast execution (around 70 FPS) and

good precision and recall compromise (76.8% mAP over the PASCAL-VOC dataset). We

did not perform any change or refinement to YOLOv2, just used its PASCAL-VOC pre-

trained model as a black box, and merged the classes related to cars and buses, ignoring

the others.

The positive detections are resized before being fed to WPOD-NET. As a rule

of thumb, larger input resolutions allow the detection of smaller objects but increase the

computational cost (HUANG et al., 2017). In roughly frontal/rear views, the ratio between

the LP and the vehicle bounding box (BB) areas is relatively high. On the other hand, this

ratio tends to be much smaller for oblique/lateral views, since the vehicle BB tends to be

larger and more elongated. Hence, oblique views should be resized focusing on having

a better granularity than frontal views, to keep the LP region recognizable. Figure 5.3

shows examples of oblique and frontal views, along with the LP dimensions relative to
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the whole vehicle image crop.

Although 3D pose estimation methods such as (ZHOU et al., 2017) might be used

to determine the resize scale, this work presents a simple and fast procedure based on the

aspect ratio of the vehicle BB. When it is close to one (1:1), a smaller dimension can be

used, and it must be increased as the aspect ratio gets larger. More precisely, the resizing

factor fsc is given by

fsc =
min

(
Dmin

max(Wv ,Hv)
min(Wv ,Hv)

, Dmax

)
min(Wv, Hv)

, (5.1)

where Wv and Hv are the height and width of the vehicle BB, respectively. Note that

Dmin ≤ fscmin(Wv, Hv) ≤ Dmax, so that Dmin and Dmax delimit the range for the

smallest dimension of the resized BB. Based on experiments and trying to keep a good

compromise between accuracy and running times, we selected Dmin = 288 and Dmax =

608 (these values are multiples of the stride 24 = 16 of the network, as it will be discussed

next). A drawback of this solution is when the car is not appearing entirely in the scene,

like in close captures. In this situation, the LP might be much larger than in a normal

capture, needing a re-calibration of the parameters, for instance a reduction of Dmin.

5.3 License Plate Detection and Unwarping

License plates are intrinsically rectangular and planar objects, which are attached

to vehicles for identification purposes. In order to take advantage of its shape, we pro-

posed a novel CNN called Warped Planar Object Detection Network. This network learns

to detect LPs in a variety of different distortions, as well as the coefficients of an affine

transformation that “unwarps” the distorted LP into a rectangular shape resembling a

frontal view. Although a planar perspective projection could be learned instead of the

affine transform, it presents two extra DOFs (6 vs. 8), which typically implies in larger

training datasets. Furthermore, the division involved in the planar perspective might lead

to numerical instabilities when training the network.

WPOD-NET was developed using insights from YOLO, SSD and Spatial Trans-

former Networks (STN) (JADERBERG et al., 2015). On the one hand, YOLO and SSD

perform fast object bounding box detection and recognition, but they do not take spatial

transformations into account, generating only rectangular bounding boxes for every de-
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Figure 5.3: Examples of vehicles in different capture angles. In oblique views (first and
third pictures), the LP area related to the whole crop tends to be small. In mostly frontal
captures (middle), LP proportional area tends to be larger. Also, note that the aspect ratio
of the vehicle crop region relates to the capture angle.

LP area
crop area

lowhigh highDesired
resolution

Aspect
ratio

tection. On the other hand, STN can be used for detecting non-rectangular regions, but

cannot be used in a fully convolutional fashion as in YOLO or SSD, since it performs a

single spatial transformation over the entire input. As the scene may contain multiple LPs

laid on different planes, this behavior is not desired.

The detection process using WPOD-NET is illustrated in Figure 5.4. Initially, the

network is fed by the resized output of the vehicle detection module. The feedforwarding

results in an 8-channel feature map that encodes the two probabilities (object/non-object)

and the six affine transformation parameters. To extract the warped LP, let us first con-

sider an imaginary square of fixed size around the center of a cell (m,n). If the object

probability for this cell is above a given detection threshold, the regressed parameters are

Figure 5.4: Fully convolutional detection of planar objects. The input is the BB corre-
sponding to a detected vehicle, but we show here just a cropped region around th LP for
visualization purposes.

Affine parameters
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used to build an affine matrix that transforms the fictional square into an LP region. Thus,

we can easily unwarp the LP into a horizontally and vertically aligned object.

5.3.1 Network architecture

In the previous approach focused on frontal/rear views, we used an adaptation of

the YOLO model, which is fast and presented good results. For the task of learning the

affine transformation of distorted LPs, however, our tests with YOLO-based backbones

failed to either converge during the training process, or caused the loss function not to

decrease enough, leading to a poor inference of the affine transformation. We have also

tried other fast backbones, such as Mobilenet, and faced the same difficulties. Based

on these observations, we have explored Residual Networks (HE et al., 2016a) to infer

complex non-linear patterns, as explained next.

The proposed architecture presents a total of 21 convolutional layers, where 14 are

inside residual blocks. The size of all convolutional filters is fixed to 3 × 3. ReLU acti-

vations are used throughout the entire network, except in the detection block. There are

four max-pooling layers of size 2× 2 and stride two that reduces the input dimensionality

by a factor of 16. Finally, the detection block presents two parallel convolutional layers:

(i) one for inferring the probability, activated by a softmax function, and (ii) another for

regressing the affine parameters, without activation (or, equivalently, using the identity
~F (~x) = ~x as the activation function).

Figure 5.5: Detailed WPOD-NET architecture.
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5.3.2 Loss function

Let ~pi = [xi, yi]
T , for i = 1, · · · , 4, denote the four corners (top-left, top-right,

bottom-right and bottom-left, respectively) of an annotated LP. Also, let ~q1 = [−0.5,−0.5]T ,

~q2 = [0.5,−0.5]T , ~q3 = [0.5, 0.5]T , ~q4 = [−0.5, 0.5]T denote the corresponding vertices

of a canonical unit square centered at the origin.

For an input image with height H and width W , and network stride given by

Ns = 24 (recall that there are four max pooling layers), the network output feature map

consists of an M × N × 8 volume, where M = H/Ns and N = W/Ns. For each point

cell (m,n) in the feature map, there are eight values to be estimated: the first two values

(v1 and v2) are the object/non-object probabilities, and the last six values (v3 to v8) are

used to build the local affine transformation Tmn given by:

~Tmn(~q) =

max(v3, 0) v4

v5 max(v6, 0)

 ~q +
v7
v8

 , (5.2)

where the max function used for v3 and v6 was adopted to ensure that the diagonal is

positive (avoiding undesired mirroring or excessive rotations).

To transfer the annotation domain (pixels) to the network output domain (feature

map size), the points ~pi are re-scaled by the inverse of the network stride, and re-centered

according to each point (m,n) in the feature map. This is accomplished by applying a

normalization function:

~Amn(~p) =
1

α

 1

Ns

~p−

n
m

 , (5.3)

where α is a scaling constant that represents the side of the fictional square. We set

α = 7.75, which is the mean point between the maximum and minimum LP dimensions

in the augmented training data divided by the network stride.

Assuming that there is an object (LP) at cell (m,n), the first part of the loss func-

tion considers the error between a warped version of the canonical square and the normal-

ized annotated points of the LP, given by

faffine(m,n) =
4∑
i=1

‖~Tmn(~qi)− ~Amn(~pi)‖1. (5.4)
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Figure 5.6: Binary cross-entropy values.
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(b) When y = 0.

We opted to use the L1-norm , like SSD and Faster R-CNN, instead of a quadratic func-

tion, like YOLO. In empirical tests, the average IoU was slightly better.

The second part of the loss function handles the probability of having/not having

an object at (m,n). For this we used the binary cross-entropy, which is similar to the SSD

confidence loss (LIU et al., 2016), and basically is the sum of two log-loss functions 1:

cross_entropy(y, p(y)) = − (y log(p(y)) + (1− y) log(1− p(y))) (5.5)

where y is the true probability ∈ {0, 1} and p(y) is the predicted probability. Figure 5.6

depicts the values assumed by the cross-entropy w.r.t. y. We can note that, when p(y)

and y are close, the entropy tends to zero. When they are very different (i.e. p(y) ≈ 0 or

p(y) ≈ 1 when y = 1 and y = 0, respectively), then the entropy grows asymptotically to

infinity with log(p(y)) or log(1− p(y)).

Since v1 and v2 are related through the softmax function, where v1 + v2 = 1, our

loss considers the value of v1, which is the object probability:

fprobs(m,n) = cross_entropy(Iobj, v1), (5.6)

where Iobj is the object indicator function that returns 1 if there is an object at point (m,n)

or 0 otherwise. An object is considered inside a point (m,n) if its rectangular bounding

box presents an IoU larger than a threshold γobj (set empirically to 0.3) w.r.t. another

1logloss(y, p) = −y log(p).
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Figure 5.7: Examples of the annotated LPs in the training dataset.

bounding box of the same size and centered at (m,n).

The final loss function is then obtained by adding the partial terms defined in

Eqs. (5.4) and (5.6):

loss =
M∑
m=1

N∑
n=1

[Iobjfaffine(m,n) + fprobs(m,n)]. (5.7)

5.3.3 Training Data

For training the proposed WPOD-NET, we created a dataset with 195 images, be-

ing 105 from the Cars Dataset (KRAUSE et al., 2013), 40 from the SSIG Dataset (training

subset), and 50 from the AOLP Dataset – LE subset (HSU; CHEN; CHUNG, 2013). For

each image, we manually annotated the four corners of the LP in the picture (sometimes

more than one). The selected images from the Cars Dataset are mostly European, but

there are many US LPs as well as LPs from other countries. Images from SSIG and

AOLP contain Brazilian and Chinese LPs, respectively. A few annotated samples are

shown in Figure 5.7.

Given the reduced number of annotated images in the training dataset, and the fact

that we need to train our model from scratch, the use of data augmentation is crucial. It

takes as input an image from our training dataset, and performs the following sequence of

modifications:

• Rectification: the entire image is rectified based on the LP annotation, assuming

that the LP lies on a plane;

• Aspect-ratio: the LP aspect-ratio is randomly set in the interval [2, 4] to accommo-

date sizes from different regions;

• Centering: the LP center becomes the image center;
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Figure 5.8: Different augmentations for the same sample. The red quadrilateral represents
the transformed LP annotation.

• Scaling: the LP is scaled so its width matches a value between 40px and 208px (set

experimentally based on the readability of the LPs). This range is used to define the

value of α used in Eq. (5.3);

• Rotation: a 3D rotation with randomly chosen angles is performed, to account for

a wide range of camera setups;

• Mirroring: 50% chance 2;

• Translation: random translation to move the LP from the center of the image, lim-

ited to a square of 208× 208 pixels around the center;

• Cropping: considering the LP center before the translation, we crop a 208 × 208

region around it;

• Colorspace: slight modifications in the HSV colorspace;

• Annotation: the locations of the four points related to LP corners are adjusted by

applying the same spatial transformations used to augment the input image.

From the chosen set of transformations mentioned above, a great variety of aug-

mented test images with very distinct visual characteristics can be obtained from a single

manually labeled sample. For example, Figure 5.8 shows 20 different augmentation sam-

ples obtained from the same image.

5.3.4 Training Protocol

We initialized the network weights using Glorot’s method (GLOROT; BENGIO,

2010), and trained for 100k mini-batches iterations of size 32 using the ADAM opti-
2Mirroring might sound counter-intuitive since the characters will be mirrored too. However, at this

point, we are not performing OCR yet, so it is more important to have richer information about the vehicles
and the surrounding region of the LP than the characters themselves.
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Figure 5.9: Artificially created LP samples with the proposed generation pipeline (bot-
tom).

Font Selection
(European, American or Brazilian)

7 characters
string

Foreground
Background

colors

Rotation
and

Translation

Background image
overlay from

PASCAL-VOC
Salt and Pepper

noise
Gaussian

Blur Inversion

mizer (KINGMA; BA, 2014b). The learning rate was set to 0.001 and its β1 and β2

parameters were set to 0.9 and 0.999, respectively. The mini-batches were created by

randomly choosing and augmenting samples from the training set, being tensors of size

32× 208× 208× 3. After the feed-forwarding, the network outputs a 32× 13× 13× 8

tensor for each mini-batch. Note that this is just the training set up, and it does not mean

that the network input must be a fixed 208 × 208 image. In fact, the input image can be

of any size multiple of 16 (stride). However, the width for any LP inside the input image

must be higher than 40 and lower than 208 pixels (see “Scaling” in the data augmentation

process).

5.4 Character Detection and Recognition

Since the output of WPOD-NET is a rectified version of the LP emulating a frontal

view, character detection and recognition is performed using the network presented in

Section 4.4. However, the training dataset was considerably enlarged in this part of the

work by using synthetic and augmented data to cope with LP characteristics of different

regions around the world (Europe, the United States and Brazil)3.

The artificially created data consist of pasting a string of seven characters onto

a textured background, and then performing random transformations such as rotations,

translations, noise contamination and blur. Some generated samples and a short overview

of the pipeline for synthetic data generation are shown in Figure 5.9. As shown in Sec-

tion 5.5.2, the use of synthetic data helped to greatly improve the network generalization,

so that the exact same network performs well for LPs of different regions around the

world.

3Although we also used Chinese LPs, we could not find information in English about the font type used
by this country in order to include in the artificial data generation.
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5.5 Experimental Results

This section covers the experimental analysis of our full ALPR system, as well as

comparisons with other state-of-the-art methods and commercial systems. Unfortunately,

most academic ALPR papers focus on specific scenarios (e.g., single country or region,

environment conditions, camera position, etc.). As a result, there are many scattered

datasets available in the literature, each one evaluated by a subset of methods. Moreover,

many papers are focused only on LP detection or character segmentation, which limits

even more the end-to-end comparison possibilities. In particular, the LP detection pro-

cedure proposed in this chapter generates a quadrilateral region as output, while typical

LP annotations are provided as rectangular BBs. As such, the experimental analysis in

this chapter will focus on the final LP recognition result. Next, we describe the chosen

datasets used in the experimental validation. We also present, at the end of the section, an

evaluation considering the scenario where our system was tuned to deal with LPs from a

single country (Brazil).

5.5.1 Evaluation Datasets

One of our goals is to develop a technique able to perform well in a variety of

unconstrained scenarios, but that should also work well in controlled ones (such as mostly

frontal views). We chose four datasets available online, namely OpenALPR (BR and EU),

SSIG and AOLP (RP), which cover many different situations, as summarized in the first

part of Table 5.1. We consider three distinct variables: LP angle (frontal and oblique),

distance from vehicles to the camera (close, intermediate and far), and the region where

the pictures were taken.

Table 5.1: Evaluation databases.
Database (subset) LP angle Vehicle Dist. #images Region
OpenALPR (EU) mostly frontal close 108 Europe
OpenALPR (BR) mostly frontal close 114 Brazil
SSIG (test-set) mostly frontal medium,far 804 Brazil
AOLP (Road Patrol) frontal + oblique close 611 Chinese
Proposed (CD-HARD) mostly oblique close,medium,far 102 Various

The more challenging dataset currently used in terms of LP distortion is the AOLP

Road Patrol (RP) subset, and it tries to simulate the case where a camera is installed in
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a patrolling vehicle or hand-held by a person. In terms of distance from the camera to

the vehicles, the SSIG dataset appears to be the most challenging one. It is composed of

high-resolution images, allowing that LPs from distant vehicles might still be readable.

None of them presents LPs from multiple (simultaneous) vehicles at once.

Although all these databases together cover numerous situations, to the best of our

knowledge there is a lack of more general purpose dataset with challenging images in the

literature. Thus, an additional contribution of this work is the manual annotation of a new

set of 102 images (named as CD-HARD 4 5) selected from the Cars Dataset, covering

a variety of challenging situations. We selected only images that pose difficulties to be

detected, and where the LPs are still readable for humans. In fact, some of these images

(crops around the LP region) are shown in Figure 5.1, which was used to motivate the

problem tackled in this chapter.

Figure 5.10: Samples from the private dataset. For legal reasons the license plates were
covered.

(a) (b)

(c) (d)

Finally, we also evaluated our approach using a private dataset with over 50, 000

images. It contains only Brazilian vehicles with pictures taken from security cameras
4Acronym for Cars Dataset Hard.
5Available at <http://www.inf.ufrgs.br/~crjung/alpr-datasets/>.

http://www.inf.ufrgs.br/~crjung/alpr-datasets/


78

and toll plazas spread along the country. Although this dataset does not present many

oblique views as the CD-HARD dataset does, it depicts a wide variety of real-life capture

situations, such as varying illumination conditions, LPs with worn-out characters, motion

blur, etc. A few samples from this dataset were shown in Figure 5.10 (LP characters were

artificially blurred). The majority of the images (92%) present dimensions of 640 × 480

and 1280× 945, which are not large considering modern cameras.

5.5.2 Comparison with Competitive Approaches

Here we present the result produced by the proposed technique and competitive

approaches using the datasets describe in Table 5.1. Our approach presents three networks

in the pipeline, for which we empirically set the following acceptance thresholds: 0.5 for

vehicle (YOLOv2) and LP (WPOD-NET) detection, and 0.4 for character detection and

recognition (OCR-NET). Also, it is worth noticing that characters “I” and “1” are identical

for most Brazilian LPs. Hence, they were considered as a single class in the evaluation of

the OpenALPR BR and SSIG datasets. No other heuristic or post-processing was applied

to the results produced by the OCR module, except when explicitly mentioned.

We evaluate the system in terms of the percentage of correctly recognized LPs.

An LP is considered correct if all characters were correctly recognized, and no (wrong)

additional characters were detected. It is important to note that the exact same networks

were applied to all datasets: no specific training procedure was used to tune the networks

for a given type of LP (e.g., European or Chinese). The only slight modification performed

in the pipeline was for the AOLP Road Patrol dataset. In this dataset, the vehicles are very

close to the camera (and the vehicle detector fails in several cases), so that we applied the

LP detector (WPOD-NET) directly to the input images, bypassing the vehicle detection

step.

To show the benefits of including fully synthetic data in the OCR-NET training

procedure, we evaluated our system using two sets training data: (i) real augmented data

plus artificially generated ones; and (ii) only real augmented data. These two versions

are denoted by “Ours” and “Ours (no artf.)”, respectively, in Table 5.2. As can be ob-

served, the addition of fully synthetic data improved the accuracy in all tested datasets

(with a gain ≈ 5% for the AOLP RP dataset). Moreover, to highlight the improvements

of rectifying the detection bounding box provided by WPOD-NET, we also present the

recognition results using a regular non-rectified bounding box in “Ours (Unrect.)”. As
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Table 5.2: Full ALPR results for all 5 datasets.
OpenALPR SSIG AOLP Proposed AverageEU BR Test RP CD-HARD

Ours 93.52% 91.23% 88.56% 98.36% 75.00% 89.33%
Ours (no artf.) 92.59% 88.60% 84.58% 93.29% 73.08% 86.43%
Ours (Unrect.) 94.44% 90.35% 87.81% 84.61% 57.69% 82.98%
Ours (Chapter 4) 85.19% 90.35% 89.15% 69.56% 46.29% 76.10%

Commercial systems
OpenALPR* 96.30% 85.96% 87.44% 69.72% 67.31% 81.35%
Sighthound* 83.33% 94.73% 81.46% 83.47% 45.19% 77.64%
Amazon Rekog.* 69.44% 83.33% 31.21% 68.25% 30.77% 56.60%

Literature
Laroca et al. (2018) - - 85.45% - - -
Li et al. (2016) - - - 88.38% - -
Li et al. (2017) - - - 83.63% - -
Hsu et al. (2013) - - - 85.70%** - -

*Data collected on February, 2018.
**In Hsu et al. the authors gave an estimative, and not the real evaluation.

Figure 5.11: Detection results of WPOD-NET: unwarped LPs and final ALPR result pro-
duced by OCR-NET for the images shown in Figure 5.1.
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*missed*

expected, the results do not vary much for the mostly frontal datasets (and results were

even slightly better for ALPR-EU). However, using unrectified LPs lead to huge perfor-

mance drops in more challenging datasets containing oblique views, such as AOLP-RP

and CD-HARD. Finally, for the sake of comparison, we showed the results from Chap-

ter 4 to all datasets. It is important to note that the approach from Chapter 4 was focused

on real-time performance and trained specifically for Brazilian and European LPs.

Table 5.2 also shows the results from competitive (commercial and academic) sys-

tems. They indicate that the method proposed in this chapter achieved recognition rates

comparable to best systems in databases representing more controlled scenarios, where

the LPs are mostly frontal (OpenALPR EU and BR, and SSIG). More precisely, it was the

second best method in both OpenALPR datasets (BR and EU), as well as in SSIG (being

inferior only to the method proposed in the previous chapter). In the challenging scenar-

ios (AOLP RP and the proposed CD-HARD dataset), however, our system outperformed

all compared approaches by a significant margin (over 7% accuracy gain when compared

to the second best result).

It is worth mentioning that the works of Li et al. (LI; SHEN, 2016; LI; WANG;
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SHEN, 2017), Hsu et al. (HSU; CHEN; CHUNG, 2013) and Laroca et al. (LAROCA et

al., 2018) are focused on a single region or dataset. By outperforming them, we demon-

strate the strong generalization capacity of the presented method. It is also important to

note that the full LP recognition rate for the most challenging datasets (AOLP-RP and

CD-HARD), shown in Table 5.2, was higher than directly applying the OCR module to

the annotated rectangular LP bounding boxes (79.21% for AOLP-RP and 53.85% for CD-

HARD). This gain is due to the unwarping performed by WPOD-NET, which greatly

helps the OCR task when the LP is strongly distorted. To illustrate this behavior, we show

in Figure 5.11 the detected and unwarped LPs for the images in Figure 5.1, as well as

the final recognition result produced by OCR-NET. Also, a few outputs of the whole sys-

tem are shown in Figures 5.12 and 5.13. In Figure 5.12, an example of a miss detection

and a bad alignment generated by WPOD-NET are shown. Despite the bad alignment in

Figure 5.12b, the OCR-NET was still able to recover the correct characters.

Figure 5.12: WPOD-NET miss-detection and miss-alignment.

(a) Miss-detection. (b) Miss-alignment.

The proposed CNN (WPOD-NET) was implemented in the TensorFlow frame-

work, while the initial YOLOv2 vehicle detection and OCR-NET were performed using

the DarkNet framework. A Python wrapper was used to integrate the two frameworks.

The hardware used for our experiments was an Intel Xeon processor, with 12Gb of RAM

and an NVIDIA Titan X GPU. With that configuration, we were able to run the full ALPR

system with an average of 5 FPS (considering all datasets). This time is highly dependent

on the number of vehicles detected in the input image. Hence, increasing the vehicle de-

tection threshold reduces the number of detections, culminating in a higher FPS but lower

recall rates.
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Figure 5.13: ALPR results of the proposed method for some images of the CD-HARD
dataset. The yellow rectangles represent the car detection from YOLOv2 network, the red
polygons are the LP detection from WPOD-NET, and the strings above the LPs are output
of the OCR-NET given a rectified LP.

(a) (b)

(c) (d)

(e) (f)

(g) (h)
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5.5.3 Accuracy vs. License Plate Size

In both ALPR methods proposed in this dissertation, the input to OCR-NET is a

240 × 80 image representing the LP. However, the actual size of a detected LP is highly

dependent on the image. For a given detection provided by WPOD-NET, we first unwarp

it based on the estimated affine parameters and then resize it to the desired resolution

(240 × 80) using bilinear interpolation, which might generate distortions (particularly

for small LPs). The goal of this section is to evaluate how the initial LP size (before

interpolation) affects the quality of the OCR.

From each image of the CD-HARD dataset, we generated another set of images

with sizes varying from 30% to 100% of their original size. By reducing the image res-

olution, this controlled down-sampling causes loss of information. The modified dataset

was used to evaluate the system by measuring the OCR accuracy as a function of the

original area (in pixels) of each detected license plate. Figure 5.14a shows a histogram of

the recall rate for different LP sizes. We can note that the license plates whose areas fall

between 0−2, 000 pixels were poorly recognized, license plates from 2, 000−5, 000 have

a small performance decrease and, from 5, 000 and so on, the performance stabilizes.

The number of samples per area bin used to calculate the recall rate are shown in

Figure 5.14b. As we only performed size reduction, larger LP areas had progressively

fewer samples. Therefore, the confidence for areas close to 20, 000 pixels is weak, mean-

ing that the high recall obtained in such areas was computed with just a few samples. For

instance, only 6 samples were used to calculate the last bin in Figure 5.14a.

5.5.4 Brazilian Dataset Evaluation

Now we evaluate our system using a private dataset of Brazilian license plates.

This dataset presents around 50k images with the annotated license plate number (but no

localization), and a few samples of this dataset were shown previously in Figure 5.10.

When there is additional knowledge on the structure of the LP (as in this database), our

OCR approach can be fine-tuned to yield improved accuracy. For Brazilian LPs, the

following rules can be applied:

1. Fixed number of characters: since Brazilian LPs present exactly seven characters,

we lowered the OCR detection threshold (to 0.1) and retrieve the seven most prob-
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Figure 5.14
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(a) Recall of fully recognized LPs by the OCR-NET, considering the input area in the
original image. After the 5, 000 pixels, the resolution seems not to interfere, neither
positively nor negatively.
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(b) Number of samples per area bin that were used to calculate the recall rate in (a).

able characters, after non-maxima suppression;

2. Digit-to-letter and letter-to-digit replacement: as shown previously in Figure 4.2,

the license plates in Brazil have 3 letters followed by 4 digits. Considering that our

OCR returns a character that can be a digit or a letter, by taking into account the

position of the character we can infer if it should be a letter or a digit. Based on a

confusion matrix obtained from a test set (shown in Figure 5.16), we devised two

heuristics to exchange digits for letters and letters for digits when it is needed due

to character position;

3. Due to the nature of the dataset, each image is expected to present at least one

LP. However, in several images the vehicle is only partially visible, so that bound-

ing box produced by the vehicle detector might be highly distorted (an example is

shown in Figure 5.15). In such cases, applying WPOD-NET to the vehicle detection

leads to a missed LP. In this experiment, a vehicle is detected but no LP is detected

within the vehicle crop, WPOD-NET is applied to the full image.
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Figure 5.15: Bad LP detection example: applying WPOD-NET to the the vehicle bound-
ing box (green rectangle) returns no LP. The LP is correctly detected when apllying
WPOD-NET to the full image.

Figure 5.16: Visualization of the normalized confusion matrix per character.

The results using our approach combined with the heuristics described above are

shown in Table 5.3. Considering the size of the dataset (≈ 50k images) and the fact

that we did not fine-tune any model to this scenario, the results demonstrates a strong
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generalization capacity of our approach. When analyzing the overall performance, almost

88% of all license plates were correctly recovered (recall). Among all detections, in

89.53% of them all seven characters were correctly recognized (precision). Furthermore,

the accuracy of OCR-NET in a per-character evaluation within all detected LPs (i.e., the

percentage of correctly recognized characters) was 97.39%.

We also carried a more careful analysis considering a tolerance of n of incorrect

characters to consider a given recognition result correct, noting that n = 0 relates to

validating a result only when all characters were correctly recognized. These results are

shown on the second part of Table 5.3, and it can be noticed that the accuracy increases

to 96.74% by allowing a tolerance of a single character (n = 1), which is close to the

per-character accuracy.

Table 5.3: Results for the Brazilian scenario. The precision by character tolerance means
the final precision if we ignore 0− 7 mistaken characters. On the one hand, if we ignore
zero characters, it corresponds to the system accuracy, and on the other hand, by ignoring
seven characters, we have 100% accuracy as the license plates have no more than this.

Accuracy: 89.53% Recall: 87.87% Characters 97.39%
Accuracy by allowing errors in 0 to 7 characters:
0: 89.53% 3: 98.84% 6: 99.80%
1: 96.74% 4: 99.16% 7: 100.00%
2: 98.25% 5: 99.46%

5.5.5 Mercosur License Plates

In this section, we present some considerations related to the new license plate

model adopted by the countries in Mercosur. This model also consists of 7 characters, but

now there are four letters and three digits in the format LLLDLDD, where L stands for

“letter” and D stands for “digit”6. It uses a new font type, where the digit 1 and letter I are

now different from each other. The predominant colors for the most common model are

white and blue with black striped characters (an example is shown in Figure 5.17). This

new LP model is still being implemented in Brazil, and to the moment of this publication

there is no evaluation dataset available in the literature.

To evaluate how well the proposed method would generalize to the new Mercosur

LP model, we ran our approach on about a dozen of images captured from the internet or

6<http://www.denatran.gov.br/images/Resolucoes/Resolucao7412018.pdf>

http://www.denatran.gov.br/images/Resolucoes/Resolucao7412018.pdf
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Figure 5.17: Brazilian license plate model implemented in 2019.

taken on the street. A few of them are shown in Figure 5.18 along with the system output,

where a single character on each image was deliberately blurred to preserve anonymity. In

general, our approach recognized most of the tested license plates without any adaptation

on WPOD-NET or OCR-NET. However, we noticed that the font used in some Mercosur

LPs is “striped”, in which a Mercosur logo is embedded in the font, as shown in Fig-

ure 5.18(f), being particularly hard to read under some lighting conditions. In those cases,

OCR-NET did not produce good results. Moreover, it also false-detected a few numbers

“3” at the end of the license plate, as shown in Figure 5.18(e). We associate this to the

adornments present at the right end of some license plates, which caused the confusion.



87

Figure 5.18: Recognition results for a few images of the new Mercosur license plate
model.

(a) (b)

(c) (d)

(e) (f)
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6 RACING BIB NUMBER RECOGNITION

In every marathon or urban racing, there is a plate attached to each athlete, called

bib, that contains their identification number. These events can involve thousands of peo-

ple, like the Boston Marathon, in the USA, or the Saint Silvester Road Race, in Brazil.

In 2018, they united 30,000 athletes each 1,2. During these events, a huge amount of data

is generated by professional photographers, video makers, and spectators. The computa-

tional process of indexing such data by bib number is the subject of study in this chapter.

Besides drawing much less attention than ALPR, Racing Bib Number Recognition

(RBN-R) is a challenging problem related to contextualized text recognition. In Figure 6.1

we show a few samples of our training dataset that present problems that do not exist (or

are uncommon) in ALPR, such as:

• Deformation: due to its soft and flaccid material, the bib fits the athlete body and

becomes subject to deformations during movement;

• Sweat: perspiration causes changes in color, sometimes adding transparency to col-

ored regions;

• Layout: every event presents its own layout, hardening the task of separating the

identification number from the background and other adornments;

• Location: bibs are usually pinned in the torso region, most likely in the chest or

belly, and a few athletes pin on their thigh;

• Athlete vs. Spectators: not every person in a picture has a bib. In fact, a common

scenario presents athletes surrounded by spectators during some parts of the event.

State-of-the-art techniques assume that the bib is attached to the upper body part.

They typically start by detecting the torso and then extract the bib number, which relates

to the notion of contextual text already described before. However, we argue that using

such a broad context (pedestrian/torso) for RBN-R might not be the best idea, since there

are typically several spectators (without bibs) in the input image. This approach would

increase the search space and could also lead to more false-positives, since spectators

often wear T-shirts that present letters and numbers in their stamps.

1Saint Silvester: <https://bit.ly/2kZeBQJ>.
2Boston Marathon: <https://www.baa.org/races/boston-marathon/results/participation>.

https://bit.ly/2kZeBQJ
https://www.baa.org/races/boston-marathon/results/participation


89

Figure 6.1: Examples of difficult to recognize bib images.

In the ALPR approaches presented in the previous chapters, we used three “con-

textual stages”: vehicle (or frontal/rear views) detection, license plate detection, and OCR.

A direct analogy to RBN-N would imply in pedestrian (or torso) detection, bib detection,

and OCR. However, the approach we present in this chapter considers only two stages: bib

detection and OCR, based on the previous discussion. Taking into account that a bib occu-

pies a large part of the torso, we hypothesized that, when detecting the bibs, the network

intrinsically learns features related to the pedestrian/torso. At the end of Section 6.1.1.5,

we show examples that corroborate with our hypothesis.

In this chapter, we present in details our proposed solution to the problem of RBN-

R, and describe the datasets used for training and testing it. Results and comparisons with

other approaches are presented and discussed at the end.

6.1 The Proposed Approach

Our approach consists of a two-stage pipeline: bib detection and number recog-

nition, both performed by deep CNNs. The first network resembles YOLO in the way

the detection is performed. However, the network backbone and input granularity were

changed. The second network uses STN and GRU (Gated Recurrent Units) layers to infer

the number without needing complex annotations during training. The system overview

is presented in Figure 6.2.

In the previous chapter, the concept of STN was explored in the detection stage

by taking advantage of the fact that license plates present four distinct corners that can

be used to learn the affine translation. For bibs, however, recovering the corners is often
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impossible due to the many factors mentioned earlier. Thus, we decided to explore STN

in the recognition stage and let the network learn the affine transformation from the data,

without using corner annotations.

Figure 6.2: RBN-R proposed pipeline.

10145

Crop, resize and stretch

Number Recognition Network

STN GRUCNN

19078

Number Recognition Network

STN GRUCNN

Bib Detection
Network

Regressed bounding boxes

1 2

1

2

6.1.1 Bib Detection

Given an input image, we opted to detect the bib directly, instead of looking for

any human body part like the face (BEN-AMI; BASHA; AVIDAN, 2012) or torso (SHIV-

AKUMARA et al., 2017). This choice leads us to the problem of detecting small objects,

commented at the beginning of this dissertation. There is a considerable variation in bib

size when the athlete is close or far from the camera. Actually, even when it is close,

the bib does not occupy the majority of the scene, as often happens to vehicles. This is

because the focus or the main context of a picture is not the bib, but the athlete.

We know that, for networks of the depth, there is an inverse relationship between

the number of parameters from a network, and how fast the feed-forward is. Thus, more

parameters mean a slow feed-forward. Considering our goal of fast detection, and the
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need for a higher input/output granularity to keep track of small objects, we targeted a

backbone model with as few parameters as possible.

By reminding this work so far, the reader might be inclined to think that we, once

again, opted to use FAST-YOLO. FAST-YOLO works very well to detect larger objects,

like vehicles, but bibs are generally much smaller in pictures. For instance, a 48× 48 bib

in a 1200 × 800 picture can still be readable. Thus, we opted to use an even smaller and

faster network, the MobileNet (HOWARD et al., 2017), which was designed, as the name

suggests, to run in smartphones and embedded devices.

MobileNet does not perform as well as other state-of-the-art networks on the Im-

ageNet dataset. For instance, it achieved 72% (mAP) against 80.6% from ResNet. How-

ever, MobileNet presents a very good ratio between the number of parameters, depth and

performance. Thus, we once more hypothesized that by lowering the number of classes

to detect — from 1, 000 to 1 (a single bib) — the network could accommodate nicely.

We created the network architecture shown in Table 6.1, where the first 23 layers

were directly transferred from MobileNet. They consist of sequences of convolution and

depthwise convolution layers. Details about the Depthwise Convolution layer can be

found in MobileNet paper. Shortly, a depthwise convolution uses a single 1-channel filter

per input channel. This operation is much faster than traditional convolution and can

be fastly performed even by a CPU. The last two layers were created and trained from

scratch, and are responsible for regressing the object/non-object probabilities (layer 24)

and bounding-boxes (layer 25).

6.1.1.1 Our Regression scheme

The regression scheme used for bib detection is inspired in SSD and YOLOv2

models, and uses the concept of anchor boxes. First we describe a generic multi-class

solution that explores C classes and A anchor boxes, where each anchor presents one pa-

rameter for objectness, C parameters for class probabilities, and 4 parameters for bound-

ing box regression. We then focus on the single-class problem (C = 1) related to the bib

only, and experimentally defined A = 3 (3 anchor boxes) based on our training dataset.

For this reason, layer 24 outputs a feature map of 6 channels (3 anchors × 2 probabil-

ities) and layer 25 outputs a feature map of 12 channels (3 anchors × 4 bounding box

parameters).

It is important to note that changing the number of classes and anchors does not

impact the network architecture, only the final two layers. The use of more classes could
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Table 6.1: Bib Detection (BD) Network architecture.
# Layer Size Stride Filters Input Output Function

M
ob

ile
N

et
B

ac
kb

on
e

1 Convolution 3× 3 2 32 input image ReLU
2 Depthwise 3× 3 1 32 previous layer ReLU
3 Convolution 1× 1 1 64 previous layer ReLU
4 Depthwise 3× 3 2 64 previous layer ReLU
5 Convolution 1× 1 1 128 previous layer ReLU
6 Depthwise 3× 3 1 128 previous layer ReLU
7 Convolution 1× 1 1 128 previous layer ReLU
8 Depthwise 3× 3 2 128 previous layer ReLU
9 Convolution 1× 1 1 256 previous layer ReLU
10 Depthwise 3× 3 1 256 previous layer ReLU
11 Convolution 1× 1 1 256 previous layer ReLU
12 Depthwise 3× 3 2 256 previous layer ReLU
13 Convolution 1× 1 1 512 previous layer ReLU
14 Depthwise 3× 3 1 512 previous layer ReLU
15 Convolution 1× 1 1 512 previous layer ReLU
16 Depthwise 3× 3 1 512 previous layer ReLU
17 Convolution 1× 1 1 512 previous layer ReLU
18 Depthwise 3× 3 1 512 previous layer ReLU
19 Convolution 1× 1 1 512 previous layer ReLU
20 Depthwise 3× 3 1 512 previous layer ReLU
21 Convolution 1× 1 1 512 previous layer ReLU
22 Depthwise 3× 3 1 512 previous layer ReLU
23 Convolution 1× 1 1 512 previous layer ReLU
24 Convolution 3× 3 1 6 layer 23 Sigmoid
25 Convolution 3× 3 1 12 layer 23 Linear

be explored for the detection of complementary cues related to the athlete’s identity, such

as the face and body, and then be used to devise a multimodal identification scheme.

However, this dissertation focuses only on bib detection and recognition.

6.1.1.2 Objectness and class probabilities

In layer 24, the outputs are fed to a sigmoid function, returning values between

0 and 1 and used as probabilities for objectness and classes. For each anchor, there is a

single objectness probability that tells if an arbitrary object exists or not in that cell, plus

an independent probability parameter for each class (yielding C + 1 parameters for a C-

class problem). The choice for the sigmoid function was mainly motivated by the findings

of Redmon and Farhadi (2018), who argued that using softmax for the anchors instead of

sigmoid does not necessarily lead to good accuracy. Moreover, employing softmax with

anchors poses some implementation difficulties as it needs to be applied per anchor, and
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not point-wise in the whole output.

Hereafter, we will call the output of layer 24 the volume P with dimensions M ×

N × A(C + 1), where A is the number of anchors. For each spatial cell Pmn there is a

vector of length A(C + 1), called ~pmn3, containing all probabilities for that region. We

can say that ~p is a concatenation of A vectors ~pa, where a ∈ {1, ..., A}. Each vector ~pa

presents C + 1 parameters corresponding to objectness plus class probabilities. Hence,

we can write ~pa = [paobj , pa1 , ..., paC ]
T , where paobj stands for the objectness probability,

and pa1 to paC to the class probabilities. Finally, we have ~p = concat(~p1, ..., ~pA), where

concat stands for the concatenation operator.

6.1.1.3 Bounding-box regression

The output of layer 25 is a volume B of size M ×N × 4A. An arbitrary cell Bmn

of this volume is represented by a vector of length 4A, containing A encoded bounding-

boxes, each one presenting 4 parameters. We call this vector~b = concat(~b1, ..., ~bA), where
~ba = [bya , bxa , bha , bwa ]

T , for a ∈ {1, ..., A}. Thus, for each anchor4, the bounding box in

image coordinates is encoded by

ya = (m− byaHa),

xa = (n− bxaWa),

ha = ebhaHa,

wa = ebwaWa,

(6.1)

where the point (xa, ya) is the final anchor box center point with dimension wa × ha

relative to the spatial resolution M ×N of the feature map.

We used the same method of YOLOv2 (REDMON; FARHADI, 2017) to obtain

the constants Ha and Wa related to the anchor boxes. In a nutshell, it consists of k-means

clustering with IoU as distance measure applied over all bounding boxes in the training

data. As mentioned before, we set A = 3 based on experiments with our datasets, and the

obtained values for the three anchors were (2.0, 1.7), (3.1, 2.6) and (1.3, 1.1).

3We omit the indices mn for simplicity.
4We omit the indices mn of amn a in cell (m,n) for notation simplicity.
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6.1.1.4 Loss function

A loss function for the problem of classification and detection must handle both

tasks at once. For clarity purposes, we will break it into probabilities and bounding box

regression, and then merge the pieces together.

Similarly to the ALPR approach described in the previous chapter, we also used

the binary cross-entropy function (Equation 5.5) to evaluate each output parameter com-

puted by layer 24. Taking cell (m,n) as a reference, this choice leads to:

lossprob(m,n) =
A∑
a=1

C∑
c=1

cross_entropy(prob∗(a, c), prob(a, c)), (6.2)

where prob∗() and prob() denote the expected and the inferred probabilities for anchor a

and class c, respectively.

In the bounding box regression problem, we used the L1 norm to estimate the

error in regressed parameters, which was successfully used in SSD (LIU et al., 2016). It

is given by

lossreg(m,n) =
A∑
a=1

(|y∗a − ya|+ |x∗a − xa|+ |h∗a − ha|+ |w∗a − wa|) , (6.3)

where (ya, xa, ha, wa) are the inferred bounding box parameters, and (y∗a, x
∗
a, h

∗
a, w

∗
a) the

corresponding ground-truth values.

The final loss is a weighted sum of the probability and regression losses per cell,

averaged by the number of cells in the feature map, given by

loss =
1

MN

(
M∑
m

N∑
n

lossprob(m,n) + γlossreg(m,n)

)
, (6.4)

where γ controls the regression weight. Since the probability parameters seems to con-

verge faster than the regression parameters, we set γ = 2 to enhance the regression loss.

6.1.1.5 Visual Analysis

In Figure 6.3, we show two examples of bib detection using the proposed approach

in images of the test set. Figure 6.3(a) shows mostly athletes in the scene, and the pro-

posed method was able to successfully detect most (or all) bibs. Figure 6.3(b) shows a

few athletes and several spectators (without bibs), along with textual information (on the
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vertical banners). Despite these challenges, all real bibs were correctly retrieved along

with a single and small false positive in the spectators. That false detection could easily

be removed by a simple post-processing step based on the region size.

Figure 6.3: Examples of bib detection on images taken from test set. Automatically
detected bibs are shown in red.

(a)

(b)

To demonstrate that our network can often understand a broader context beyond

the bib and differentiate it from other similar objects, like a license plate, we created a

simple test that consists of using an image editor software 5 to synthetically implant a

bib (that was previously detected by our network) to a different place of the same image,

and see if the bib can still be detected without the context. Also, we implanted this same
5GNU Image Manipulation Program (Gimp): <https://www.gimp.org/>.

https://www.gimp.org/
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bib over the passenger’s door of a car in another picture, and check if our network would

detect this contextless bib or even the license plate. The test images and output of our BD

network are shown in Figure 6.4, and we can observe that the implanted bibs were not

detected indeed. Moreover, Figures 6.4b and 6.4d shows the respective probability maps

for bibs. Figure 6.4b shows a strong activation region around the actual bib and some

activation close to the implanted bib (but not enough to break the 50% threshold). In

Figure 6.4d, neither the vehicle LP not the implanted bib showed response in the activation

maps, corroborating the hypothesis that a broader context related to the athlete’s body was

learned by the network.

Figure 6.4: Detected images where a bib was implanted on non usual places (a and c) and
their respective probability maps (b and d).

(a) Implanted bib. (b) Probability Map.

(c) Implanted bib. (d) Probability map.
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6.1.2 Number recognition

The works of Ben-ami, Basha and Avidan (2012) and Shivakumara et al. (2017)

detect first the torso6, and then perform the character segmentation and recognition using

binarization techniques. The disadvantage of this approach is that the torso usually con-

tains other textual information besides the bib, like T-shirt drawings, sponsorship logos,

event name, etc. Furthermore, considering the spectators, one can see that not all torsos

will be from athletes. This may lead to unnecessary computation and a higher number of

false positives. Besides, Shivakumara et al. (2017) do not perform any kind of rotation

correction, and Ben-ami, Basha and Avidan (2012) correct the rotation in a per-character

basis. If we consider that the numbers are aligned and inside the same bib, a single ro-

tation over all characters might be more effective as characters with a different rotation

angle are probably not part of the bib. Although this may not be true when the bib de-

formation is excessive, such assumption holds for the majority of the situations in the

datasets used for evaluation.

We partially solved these problems using the BD Network, which detects the bib

instead of the whole torso, and hence eliminates a substantial part of misleading informa-

tion not related to the characters in the bib. For the recognition step, we developed a novel

network that crops only the digits of the bib, corrects the bib rotation, and recognizes its

characters, everything at the same time in a single pass. As an additional and very impor-

tant advantage, this network only needs the full number inside the bib as an annotation

instead of complex annotation like per-character 2 or 4-point bounding boxes and labels.

We used a Spatial Transformer Network (STN) to crop out unwanted parts of the

input image and give focus to the bib number region only, and at the same time correcting

its rotation and some deformation in the process. This step represents the first part of the

network. In the second part, the unwarped and focused patch is fed to the rest of the CNN,

which presents a recurrent layer at the end. It is important to note that although there is

no expected order in the digits of a bib number, they all share common features such

as background and foreground colors, size, and font-type. Therefore, we hypothesized

that this information could be passed from one character to another, helping the overall

recognition process.

Our choice to explore sequential information in our network was a GRU layer.

6Actually Ben-ami, Basha and Avidan (2012) detects the face first, but they infer the torso region based
on the face region.
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Although the popular Long Short-Term Memory (LSTM) layer could be used, our choice

for GRU is due to the following factors:

• GRU layers have fewer parameters per unit than LSTM, which makes the training

less complex and facilitates the convergence and generalization when there is not

much data available, making a perfect link with the goals of this work. Moreover,

Chung et al. (2014) demonstrates that GRU, besides less complex, can outperform

LSTM in various tasks.

• In theory, LSTM should have an advantage when the task requires keeping track of

long sequences, or “old memories”. This characteristic is useful in tasks such as

text and speech processing, but not in our scenario where there are only five steps

to keep track in the worst case (see Section 6.1.2.1).

The network architecture and the customized loss function developed for this pur-

pose are described next.

6.1.2.1 Network Architecture

The CNN architecture for number recognition (NR-NET) is more complex than

the one for bib detection. There are several tasks that must be accomplished at once with

only weak annotation.

Initially, the first task is to isolate the number from the rest of the bib. This can

be performed by an affine transformation if set correctly. Therefore, our network starts

with a backbone (MobileNet) followed by a Spatial Transformer (ST) layer. To recall,

an ST layer converts an input volume of size H ×W × Ch into a new volume of size

H ′ ×W ′ × Ch by using an affine transformation that was also provided as input. Seeing

the ST layer as a function, we can say that FST : H ×W × Ch −→ H ′ ×W ′ × Ch.

Ideally, given our scenario, the FST should find a transformation that outputs a

horizontally aligned crop of the bib number. In our approach, the parameters of this trans-

formation are trained implicitly by maximizing the success rate of the final OCR result.

As a consequence, if the ST layer fails to frame the number, the recognition will also

fail. This poses a constraint that allows the network to learn localization without complex

annotation. In this sense, our approach is similar to the one presented in Jaderberg et al.

(2015) for house number recognition, but with several differences in the architecture and

objective function.
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Our ST layer is characterized by a function FST : 128×128×3 −→ 32×160×3,

so that an RGB input image of size 128 × 128 is converted into a 32 × 160 patch. We

set the output size assuming that the ST layer is able to find a single transformation that

places each digit inside a fixed square of size 32 × 32. By setting to 5 the maximum

number of digits (which can accommodate races with up to 100,000 participants), and

assuming they will be horizontally spread in the ST output patch, we obtain the 32× 160

output resolution with all digits ideally cropped and horizontally aligned. This process is

depicted in Figure 6.5. On the one hand, we are not adding any information by enlarging

the number region (from 128 −→ 160 pixels in the best case). On the other hand, we

are framing each digit in a 32× 32 square. This digit size was defined based on previous

successful research on character recognition using Neural Networks (LECUN et al., 1998;

JADERBERG et al., 2014).

Figure 6.5: Desired behavior of the learned affine transformation. Note that the transfor-
mation should ideally frame each digit inside a 32× 32 division.

Enforce digit
position

ST Layer

ST Layer

32

32

The final part of our network is fed with a 32 × 160 image patch from the initial

part and, after a sequence of convolutional layers and a single GRU layer, outputs a 5×11

matrix. Each row of this matrix represents a digit (maximum of 5 digits), and the columns

are the class probabilities for the ten possible digits (0 − 9), plus one when there is no

digit in that position. This “no digit” class is crucial to deal with smaller numbers, noting

that not significant zeroes are typically not shown in racing bibs.

The full network architecture is described in Table 6.2. The long sequences of

layers from MobileNet were omitted, but the reader can easily find this information by

exploring the MobileNet model (HOWARD et al., 2017).



100

Table 6.2: Number Recognition (NR) Network architecture.

Layer Input Size Output Size Stride
Filter
Size Input

Output
Function

Input Layer - 128× 128× 3 - - - -
Avg. Pooling 128× 128× 3 64× 64× 3 2 2 IL -

...
MobileNet Backbone

...
Flatten 2× 2× 512 2048 - - PL -
Fully Connected 2048 512 - - PL ReLU
Fully Connected 512 512 - - PL ReLU
Fully Connected 512 256 - - PL ReLU
Fully Connected 256 128 - - PL ReLU
Fully Con. 128 6 - - PL ReLU
Spatial Trans. (6, 128× 128× 3) 32× 160× 3 - - (PL,IL) -

...
Another MobileNet Backbone

...
Convolution 2× 10× 256 1× 5× 256 2 2 PL ReLU
Convolution 1× 5× 256 1× 5× 256 1 1 PL ReLU
Convolution 1× 5× 256 1× 5× 256 1 1 PL ReLU
GRU 1× 5× 256 1× 5× 256 - - PL -
Convolution 1× 5× 256 1× 5× 11 1 1 PL Softmax
Reshape 1× 5× 11 5× 11 - - PL -

(IL: Input Layer, PL: Previous layer)

6.1.2.2 Loss Function and Training

Although we expect the ST layer to geometrically rectify the bib to a frontal view,

this is not its main goal. We want to find an adequate affine transformation such that the

rectified image leads to correct recognition of numbers in the bib. Hence, the geometric

transformation should be learned by using only classification loss function. To formulate

our loss, let us denote by M5×11 the output matrix from NR-NET, where Mij is the prob-

ability of class j for digit i. Similarly, let us denote by M∗
5×11 the ground truth annotation,

where M∗
ij = 1 if j is the correct class for digit i and zero otherwise. The proposed loss

function is the entropy computed only in positions having a digit or background:

loss(M,M∗) = −
5∑
i=1

11∑
j=1

M∗
ij log(Mij), (6.5)

which means that Mij is expected to increase when M∗
ij = 1 (i.e., at the correct class j for

each digit i), but not explicitly enforced to decreased when M∗
ij = 0. If it was enforced,

the negative samples would dominate the loss function, as 50 out of 55 positions in matrix
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M are expected to be 0. Since the loss function is fed with a softmax activation function

from the previous layer, the sum of responses across different classes must be one. Hence,

if the response for the winning class is increased, the remaining responses must decrease.

It is important to note that we also tested the widely used cross-entropy loss function

between M∗
ij and Mij , but results were inferior to the proposed loss.

In compliance with the STN formulation, the weights of the fully connected layer

just before the spatial transformer layer were initialized to generate the identity transfor-

mation. To train the network, we used the Adam solver (KINGMA; BA, 2014b) with a

learning rate of 10−3 and batch size of 128, running this configuration for 100k iterations7.

Moreover, the first half of the layers from each backbone were frozen or prevented from

learning. A private dataset was used for training, and data augmentation was used to scale,

rotate, translate, and modify the color space from images before being fed to the network.

The data augmentation parametrization is similar to the one presented in Chapter 5 for

ALPR, also including off-plane rotations. The main difference is related to scaling: in the

bib recognition case, this variation needs to be much less aggressive to couple with the

detection step, keeping the final size close to the original. Our dataset presents around

2, 000 annotated bib crops, with an average bib size of 60 × 72 pixels. A few samples

of this dataset is shown in Figure 6.6. Moreover, Figure 6.7 presents a histogram of the

number of digits per annotated bib, and it can be observed that the majority (52%) of bibs

present four digits.

Figure 6.6: Samples of the training dataset.

7Training took around 12 hours using an NVIDIA Titan X GPU.
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Figure 6.7: Normalized histogram (in %) of the number of digits per bib in our training
dataset.
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6.1.2.3 Synthetic Data

One problem observed with our architecture during testing is the difficulty to han-

dle five-digit numbers, as they are considerably less frequent in the training dataset. In

fact, one can imagine that every race will (most likely) have an athlete wearing the number

1 racing bib, but the probability of having the numbers 100, 1, 000 and 10, 000 becomes

progressively lower as they rely upon the number of registrations to the event. Therefore,

building a dataset for RBN-R with such variability is a very challenging and laborious

process. To overcome this issue, we opted to generate synthetic data to help improving

variability and, ultimately, alleviate overfitting of the GRU layer.

We created a synthetic dataset similar to the one presented in Section 5.4 in the

context of license plates. Basically, we rendered numbers uniformly distributed from 1

to 99,999 over a crop of a random image from the PASCAL-VOC dataset. The rendered

numbers are arbitrarily colored and rotated by an angle between −20 and 20 degrees, and

there is a chance of including a rectangular solid background aligned with the bin number,

as are several race templates. Figure 6.8 shows a few examples of generated images, all

of them with 128× 128 pixels, which is the input size of NR-NET.

While the NR-NET is focused on recognizing the number from a small patch, it

does not handle the context where the number is inserted, as mentioned in the network

for bib detection. Thus, randomly cropping image patches to use as a background is not

an issue.
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Figure 6.8: Synthesized data for bib recognition.

6.2 Experimental Results

6.2.1 Evaluation dataset and metrics

To evaluate our experiments, we used the publicly available dataset proposed

by Ben-ami, Basha and Avidan (2012). It is composed of three subsets containing 92,

67 and 58 images respectively, in a total of 217 images. Each set corresponds to a dif-

ferent race, and bib sizes in the dataset vary from 13 × 28 to 120 × 182 pixels. In order

to keep conformity with their evaluation protocol, we also used the same metrics, which

are the precision, recall and F-score over the number of bibs correctly retrieved, i.e., bibs

where all digits were correctly recognized. The F-score is given by:

F = 2
pr

r + p
, (6.6)

which is the harmonic mean between the precision p and recall r.

6.2.2 Individual Analysis

We begin the evaluation by detailing the results obtained by our approach over

each subset of the test set, which is shown in Table 6.3. We considered two scenarios

for NR-NET: trained with and without synthetic data. In the synthetic data case, we used

70% of real augmented images, and 30% of synthetic images. This was empirically set

based on the convergence of the network in the training set. Using less or more than 30%

seemed to lead to a larger asymptotic loss value.

The most important metric, which is also relevant when evaluating license plates,
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is the recall rate — or the percentage of correctly recovered bibs. By analyzing such

metric, we noticed that our approach had a poor performance in subset 2 when using the

network trained without synthetic data. Furthermore, the precision over subset 3 was also

low in both scenarios.

Table 6.3: Final RBNR results per subset.
Subset Recall Precision F-Score

No synthetic data
#1 0.88 0.76 0.81
#2 0.50 0.30 0.38
#3 0.84 0.50 0.62

With synthetic data
#1 0.90 0.78 0.83
#2 0.64 0.39 0.49
#3 0.87 0.52 0.65

The errors in subset 2, when using only real data, were caused by the fact that

this subset presents many 5-digit numbers. As mentioned earlier, this is a drawback of

our training dataset, which motivated us to include synthesized data among real ones.

Essentially, the GRU layer learned to ignore not frequent digits in the most significant

position and considered them as a background.

In subset 3, the reason for the low precision rate was not related to our method,

but to the annotations instead. Some images in this subset contain multiple athletes, and

not all of them were annotated in the ground-truth data provided by Ben-ami, Basha and

Avidan (2012). For instance, Figure 6.3a shows an example of an image from subset 3,

along with bibs detected by our approach. Although there are eight clearly visible bibs,

only four of them were annotated. From these eight visible bibs, our method was able to

correctly recognize seven. However, the four bibs correctly recognized but not present in

the annotation were considered as errors, deteriorating the precision rate.

The issue related to 5-digit bibs in subset 2 motivated us to perform a new analysis

by computing the recall rate separated by the number of bib digits in the dataset. These

results are shown in Table 6.4, with and without using synthetic training data. There is

a clear advantage of using synthetic data in all scenarios, but the recognition of 5-digit

numbers was the one that benefited the most.
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Table 6.4: Recall rate per number of bib digits. Bibs with 1 or 2 digits were omitted, as
they relate to a total of only three samples in the entire dataset.

Digits per number: 3 4 5
Without Synthetic 77.55% 87.27% 50.68%
With Synthetic 81.63% 89.70% 65.75%

6.2.3 Comparative Analysis

We compared the proposed approach to the works of Ben-ami, Basha and Avidan

(2012) — our baseline — and Shivakumara et al. (2017) in terms of the weighted average

of recall, precision and F-score from all subsets. The weights reflects the relative size of

each subset, i.e. w1 = 92
217
, w2 = 67

217
, w3 = 58

217
. The results are presented in Table 6.5,

were the competitors accuracy were extracted from the paper of Shivakumara et al. (2017).

These results show that our results without using synthetic data for training are already

better than competitive approaches in both precision and recall rates (and, consequently,

in the F-score). When using synthetic data for training we boost our recall rate in subset

2, and get even better overall results. Considering only the precision metric, the low

rate among all methods – including ours – reinforces the annotation problems previously

described. Still, by achieving the highest precision, we can say that our method could

avoid more false positives than the others.

Table 6.5: Overall comparison.
Recall Precision F-Score

Ours (no synthetic) 76.48% 53.50% 62.35%
Ours (with synthetic) 81.17% 59.01% 67.69%
Ben-ami, Basha and Avidan (2012) 69.00% 39.00% 50.00%
Shivakumara et al. (2017) 72.00% 41.00% 52.00%

A few results from the entire pipeline are shown in Figure 6.9. We can observe

that these images present several artifacts that might compromise the final result, such as

spectators (without bibs), textual information (e.g., sponsor advertising) and WC cabin

plate. Our approach was able to correctly detect the racing bib and recognize the corre-

sponding bib number in most cases, and the only (in these images) visual false positive in

the detection stage was the WC cabin plate in Figure 6.9d. For the sake of curiosity, in

the top-left corner of Figure 6.9d we show the output of the ST layer in NR-NET when

forwarding the WC false-positive. Note that, in this case, the transformation focused on

the central text, and slanted the image to the left in an attempt to achieve vertical align-

ment. It is important to mention that approaches based on torso/pedestrian detection could
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potentially detect false bibs in images with several spectators (e.g. Figure 6.9c), which is

not the case of the proposed method. Finally, regarding system performance, considering

a single bib per picture, our approach runs at 3 FPS in a CPU (Intel Core I7 8600). Each

additional bib sums 0.03s in the final time.
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Figure 6.9: Final results over a few samples from each subset.

(a) Set 1. (b) Set 1.

(c) Set 2. (d) Set 2.

(e) Set 3. (f) Set 3.



108

7 CONCLUSIONS AND FUTURE WORK

This dissertation presented different approaches based on deep learning to tackle

the problem called Contextual Text Recognition (CTR), in which the goal is to extract

a string of text attached to a contextualized object. Examples of CTR are Automatic Li-

cense Plate Recognition (ALPR), in which the license plate text is attached to the physical

license plate, which in turn is related to a single vehicle; and Racing Bib Number Recog-

nition (RBN-R), in which the number identifying the racer is attached to a bib, which in

turn is attached to a person.

In this dissertation we presented enough information to demonstrate that the clever

usage of augmentation techniques, and the design of careful network structures, allows

to solve Contextualized Text Recognition problems through Deep Learning techniques,

without being excessively slow or data hungry. Although CTR problems share the same

common issues, they also differ in terms of the variability of the font shapes and sizes,

and also of the contextual object.

We designed two different approaches to solve the ALPR problem, being one fo-

cused on real-time performance, and the other focused on accuracy and less constrained

capture scenarios. The first, which was presented in Chapter 4, used two YOLO-based

models, trained using a small dataset with augmentation, along with synthetic license

plates based on the Brazilian and European layouts. As a result, we achieved more than

real-time performance (70 FPS) over datasets of frontal and rear images, obtaining state-

of-the-art accuracy.

For the second approach, we considered complex scenarios in ALPR which are

far less studied than frontal/rear ones. For that end, we created a new dataset contain-

ing mostly oblique vehicles, which is not frequent even among challenging datasets. If

we compare to the detection of faces-in-the-wild, this complexity usually demands huge

quantities of data during training in order to obtain a good set of weights without over-

fitting. Following our dissertation hypothesis, we once again used a clever augmentation

scheme, this time based also on off-plane rotations. Moreover, we designed a new net-

work to regress affine transformations that fits canonical squares into the license plate

regions. The affine transformation was also used to rectify the license plate, facilitating

the work of the OCR. The resulting system achieved state-of-the-art results in the tested

datasets, and also a better or at least competitive results to commercial systems.

Finally, in Chapter 6 we presented a third CTR approach focused on the task of
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RBN-R. Comparing directly to ALPR, this task can be even more challenging due to fac-

tors like sweat, non-rigid materials (subject to movement), different layouts and constant

occlusions. We demonstrate that a pipeline of two carefully designed networks, along

with synthetic and augmented data, can again be sufficient to achieve state-of-the-art ac-

curacy results. In particular, due to the lack of annotated datasets for RBN-R, the loss

function of the recognition network was designed to work only with the bib number, in-

stead of laborious annotation schemes that capture bounding boxes of each digit.

The approaches presented have many common factors related to the use of syn-

thetic and augmented data, and architectural modifications over CNNs. Despite feature

engineering is now in disuse due to the self learning filters of neural networks, there is

still a substantial room for the development of data generation methods and architectural

artifacts to make them learn faster and efficiently.

7.1 Future Work

Regarding ALPR, we plan to make adjustments to the approach presented in Chap-

ter 5 in order to reduce computation without suffering loss of accuracy, and consequently,

improving FPS. Moreover, by using the private dataset of Brazilian license plates, we

want to expand the vehicle detection network by also classifying brand and model, since

we have over 50,000 annotated images with this information.

Another usage for the approach presented in Chapter 5 that can be explored relates

to camera calibration and pose estimation. Once it detects the four corners of distorted

license plates and allows correction through affine transformation, we can also use such

information coupled with real world data (e.g. license plate official size) to infer camera

parameters, as done in techniques that explore planar patterns such as (ZHANG, 2000).

In particular, the knowledge of external parameters can be explored to check the vehicle

speed and also its direction when temporal information is available.

In the context of RBN-R, there are several possibilities to improve the overall

result. Regarding OCR, the work of Baek et al. (2019) presents some useful insights

that can be applied to character segmentation, as the text deformation is usually high.

Also, we intend to bring Connectionist Temporal Classification (CTC) (GRAVES et al.,

2006) to help improving character recognition when there is no annotation of the character

position, only the string. This technique is suitable for recognizing characters as it learns

to detect in-between character spaces. Similarly, the CTC can be applied to license plates
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as well, which is also a posterior research effort. We believe that our RBN-R method

could be applied to similar tasks, like a soccer player or racing car identification, through

simple fine-tuning of the networks.

Videos were not addressed in this work, and extending the current approaches in

both ALPR and RBN-R is another future work. We understand that substantial improve-

ments can be obtained by addressing temporal coherence, when applicable. In the case

of ALPR, computationally efficient algorithms can be developed by lowering the search

space using information from previous frames (if one knows the velocity of a vehicle at

a given frame, we can infer its location in the next frame to reduce the search space).

Furthermore, corrections over wrongly recognized characters can still be performed. For

instance, when the vehicle is approaching the camera, the detection and OCR confidence

tends to increase since the LP region is larger in image coordinates, as shown in Fig. 5.14.

Thus, the detection size is also a piece of important information to be explored in a tempo-

ral coherence algorithm. Finally, in RBN-R, identifying the athletes by their appearance

may help recover missing digits or detections. In this direction, works in the field of

person re-identification, such as Li et al. (2014), can be employed to boost results.
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