Universidade Federal do Rio Grande do Sul Instituto de Biociências Programa de pós-graduação em botânica

TESE DE DOUTORADO

Agaricus, Chlorophyllum e Macrolepiota (Agaricaceae, Basidiomycota)
em áreas de Mata Atlântica e Pampa: Contribuição ao
conhecimento de sua diversidade e potencial enzimático.

Eduardo Fazolino Perez

Porto Alegre 2018

Universidade Federal do Rio Grande do Sul Instituto de Biociências Programa de pós-graduação em botânica

Agaricus, Chlorophyllum e Macrolepiota (Agaricaceae, Basidiomycota)
em áreas de Mata Atlântica e Pampa: Contribuição ao
conhecimento de sua diversidade e potencial enzimático.

Eduardo Fazolino Perez

Tese apresentada ao Programa de Pós-Graduação em Botânica, Área de Concentração em Taxonomia Vegetal (Micologia e Ficologia) da Universidade Federal do Rio Grande do Sul (UFRGS) como requisito parcial para a obtenção do título de Doutor em Ciências (Botânica).

Orientadora: Prof^a. Dr^a. Rosa Mara Borges da Silveira Departamento de Botânica – UFRGS

Coorientadora: Prof^a. Dr^a. Marli Camassola Instituto de Biotecnologia da Universidade de Caxias do Sul - UCS

CIP - Catalogação na Publicação

```
Perez, Eduardo Fazolino
Agaricus, Chlorophyllum e Macrolepiota
(Agaricaceae, Basidiomycota) em áreas de Mata
Atlântica e Pampa: Contribuição ao conhecimento de sua
diversidade e potencial enzimático / Eduardo
Fazolino Perez. -- 2018.
164 f.
Orientadora: Rosa Mara Borges da Silveira.

Coorientadora: Marli Camassola.

Tese (Doutorado) -- Universidade Federal do Rio
Grande do Sul, , Porto Alegre, BR-RS, 2018.

1. Taxonomia. 2. Agaricaceae. 3. Basidiomycota.
4. Análises filogenéticas moleculares. 5. Análises
enzimáticas. I. Silveira, Rosa Mara Borges da,
orient. II. Camassola, Marli, coorient. III. Título.
```


ATA PARA ASSINATURA Nº

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

Programa de Pós-Graduação em Botânica BOTÂNICA - Doutorado Ata de defesa de Tese

Aluno: Eduardo Fazolino Perez, com ingresso em 01/04/2014 Título: Fungos agaricoides (Agaricaceae, Basidiomycota) em áreas de Mata Atlântica e Pampa: Contribuição ao conhecimento de sua diversidade e potencial enzimático

Orientador: Profa Dra Rosa Mara Borges da Silveira

Data: 28/09/2018

Horário: 08:30 Local: Auditório 1 do Instituto de Informática, Prédio 43.412 do Campus do Vale

Banca Examinadora	Origem
Paula Santos da Silva	UFRGS
Gilberto Coelho	UFSM
Tatiana Teixeira de Souza Chies	UFRGS

Porto Alegre, 28 de setembro de 2018.

Membros	Assinatura	Conceito
Paula Santos da Silva	Paula Santos Silva	_B
Gilberto Coelho	5º/fort Soffe	4
Tatiana Teixeira de Souza Chies	Tationots Chier	B
Conceito Geral da Banca: (🙆)	Correções solicitadas: (╳) Sim () Não	
Observação: Esta Ata não por concessão de título ao aluno.	de ser considerada como instrumento final do p	processo de
JAN 1	Kunstr	n
Aluno	Orientador	

Programa de Pós-Graduação em Botânica Av. Bento Gonçalves, 9500 Prédio 43433 s 214 - Bairro Agronomia - Telefone 33087686 Porto Alegre - RS

À mínha amada esposa

María Luíza

E aos meus amados filhos e genro

Sara

Lucas

Ageu

AGRADECIMENTOS

Agradeço antes de tudo à "inteligência suprema, causa primária de todas as coisas";

À minha família pelos sacrifícios e compreensão durante esta jornada;

À professora Rosa Mara Borges da Silveira pela orientação e paciência;

À banca examinadora pela por aceitar o convite e principalmente pela colaboração a este trabalho;

À professora Marli Camassola pela coorientação, a Roselei Fontana pela ajuda inestimável, a todos do laboratório de Enzimas e Biomassa da Universidade de Caxias do Sul que me acolheram.

Ao professor Bernardo Ernesto Lechner da Universidade de Buenos Aires pelo acolhimento e colaboração;

Às professoras Tatiana Teixeira de Souza Chies do Laboratório de Sistemática Molecular da UFRGS e Eudes Maria Stiehl Alves pelo apoio e colaboração preciosos;

A todos os colegas do laboratório de Micologia e do PPG Botânica pela companhia, pelas coletas e por todos os momentos enriquecedores que vivemos;

De uma maneira especial ao Genivaldo Alves Silva pela amizade, inestimável ajuda e pelas parcerias;

Ao CNPQ e a CAPES pelo financiamento da pesquisa.

Sei que estou cometendo injustiça com muitos que não citei nominalmente: meu muito obrigado a todos.

RESUMO

Agaricus, Chlorophyllum e Macrolepiota (Agaricaceae, Basidiomycota) em áreas de Mata Atlântica e Pampa: Contribuição ao conhecimento de sua diversidade e potencial enzimático

A família Agaricaceae (Fr.) Chev. é constituída por macro fungos saprofíticos de ampla distribuição mundial, a qual abriga os gêneros Agaricus, Chlorophyllum e Macrolepiota. O presente estudo ampliou o conhecimento de suas diversidades e potencial enzimático para as áreas de Mata Atlântica e do Pampa. Foram obtidas 123 espécimes, distribuídas nos três gêneros, sendo: 10 novas espécies de Agaricus (A. xanthovolvatus, A. lacaseus, A. reactivus, A. hirsutus, Agaricus sp1, Agaricus sp2, Agaricus sp3, Agaricus sp4, Agaricus sp5 e Agaricus sp6); um primeiro registro para o Brasil (A. tollocanensis) e duas espécies já conhecidas, (A. porphyrizon e A. silvaticus); cinco novas espécies de Macrolepiota (M. cianolamellata, M. sabulosa, Macrolepiota sp1, Macrolepiota sp2 e Macrolepiota sp3), além de três espécies conhecidas (M. bonaerensis, M. kerandi e M. pulchella); três espécies de Chlorophyllum (C. hortense, C. molybdites e C. lilaceum) e uma nova combinação de Leucoagaricus lilaceus. Foram geradas 116 novas sequências para os três gêneros, 47 de nrITS, 37 de nrLSU, 29 de rpb2 e três de tef1. A maior parte representa as primeiras sequências dos gêneros de material brasileiro. Um estudo enzimático quali-quantitativo e quantitativo foi realizado para identificação de lacases, peroxidases totais e manganês peroxidases em 15 isolados obtidos durante o estudo. Agaricus lacaseus se destacou na produção de lacases em cultivo submerso com produção de 357,9 U.mL⁻¹, superando em mais que o dobro a do controle, *Pleurotus albidus* (88-F), evidenciando o potencial enzimático de espécies nativas brasileiras.

Palavras-chave: Taxonomia, *Agaricaceae*, análises filogenéticas moleculares, análises enzimáticas, lacases, Brasil.

ABSTRACT

Agaricus, Chlorophyllum and Macrolepiota (Agaricaceae, Basidiomycota) in areas of Atlantic Forest and Pampa: Contribution to the knowledge of their diversity and enzymatic potential

The family Agaricaceae (Fr.) Chev. consists in saprophytic macro-fungi distributed worldwide, with more than 85 genera and 1,340 species. This work studied the genera Agaricus, Chlorophyllum and Macrolepiota in areas of Atlantic Forest and Pampa, increasing the knowledge of its diversity and enzymatic potential. A total of 123 specimens were obtained distributed in the three genera, being: 10 new species of Agaricus (A. xanthovolvatus, A. lacaseus, A. reactivus, A. hirsutus, Agaricus sp1, Agaricus sp2, Agaricus sp3, Agaricus sp4, Agaricus sp5 and Agaricus sp6); a first record for Brazil (A. tollocanensis) and two species already known, (A. porphyrizon and A. silvaticus); five new species of Macrolepiota (M. cianolamellata, M. sabulosa, Macrolepiota sp1, Macrolepiota sp2 and Macrolepiota sp3), in addition to three known species (M. bonaerensis, M. kerandi and M. pulchella); three species of Chlorophyllum (C. hortense, C. molybdites and C. lilaceum), and a new combination of *Leucoagaricus lilaceus*. 116 new sequences were generated among the three genera, 47 for nrITS, 37 for nrLSU, 29 for rpb2 and 3 for tef1. Most of them represent the first sequences for Brazilian collections of these genera. A qualitative-quantitative and quantitative enzymatic study was carried out to identify laccases, total peroxidases, and manganese peroxidases in 15 isolates achieved during the study. Agaricus lacaseus was observed producing laccases in submerged culture with production of 357.9 U.mL-1, surpassing the control *Pleurotus albidus* by more than twice (88-F), highlighting the enzymatic potential of native Brazilian species.

Keywords: Taxonomy, *Agaricaceae*, molecular phylogenetic analyses, enzymatic laccases, Brazil.

SUMÁRIO

AGRADECIMENTOS	vii
RESUMO	ix
ABSTRAT	xi
LISTA DE FIGURAS	xvii
LISTA DE TABELAS	ixx
1. INTRODUÇÃO	21
1.1. A família <i>Agaricaceae</i>	23
1.2. Caracterização dos <i>Agaricaceae</i> pileados	23
1.3. Importância Ecológica e Econômica	24
1.4. Os gêneros <i>Agaricus</i> , <i>Chlorophyllum</i> e <i>Macrolepiota</i>	25
1.4.1. Agaricus	26
1.4.2. Chlorophyllum	28
1.4.3. Macrolepiota	33
2.OBJETIVOS	36
2.1. Objetivo geral	36
2.2. Objetivos específicos	36
3.MATERIAIS E MÉTODOS	37
3.1. Área de estudo	37
3.2. Coleta e preservação dos espécimes	38
3.3. Análises morfológicas	39
3.4. Análises moleculares	41
3.5. Identificação do material	44
3.6. Análises enzimáticas	44

4. RESULTADOS E DISCUSSÃO	50
4.1. Coletas	50
4.2. Análises moleculares	50
4.3. Revisão de herbários	50
4.4. Análises enzimáticas	59
4.5. Lista de manuscritos	60
4.5.1. Manuscrito I	61
4.5.2. Manuscrito II	73
4.5.3. Manuscrito III.	89
4.5.4. Manuscrito IV	118
5. CONSIDERAÇÕES FINAIS	136
6.REFERÊNCIAS	138
7.ANEXOS	149
7.1. Arquivos Suplementares do Manuscrito II	149
7.2. Arquivos Suplementares do Manuscrito III	155

LISTA DE FIGURAS

Figura 1. Tipos morfológicos de <i>Agaricaceae</i> : A – agaricoide (<i>Macrolepiota</i> spp.)	.21
Figura 2 – Características do morfotipo agaricoide da família <i>Agaricaceae</i>	23
Figura 3. Agaricus – Vista geral dos basidiomas	27
Figura 4. <i>Chlorophyllum</i> – Vista geral dos basidiomas	29
Figura 5. <i>Macrolepiota</i> – Vista geral dos basidiomas	34
Figura 6. Mapa mostrando os principais locais de coleta	.37

LISTA DE TABELAS

Tabela 1. Classificação baseada em análises morfológicas	22
Tabela 2. Classificação infragenérica dos gêneros Agaricus, Chlorophyllum	n e Macrolepiota
	31
Tabela 3. Relação dos municípios onde foram realizadas coletas	38
Tabela 4. Unidades de Conservação (UC)	39
Tabela 5. Espécies identificadas	52

1. Introdução

1.1. A família Agaricaceae

A família *Agaricaceae* (Fr.) Chev. é constituída por macrofungos saprofíticos de ampla distribuição mundial, com uma grande diversidade de cores, formas, tamanhos de basidiomas e basidiósporos. Inclui aproximadamente 85 gêneros (Kirk *et al.*, 2008), formando um grupo monofilético distribuído em três diferentes grupos morfológicos (Fig. 1): os agaricoides, que são pileados, conhecidos popularmente por cogumelos, que apresentam basidiomas com o himenóforo aberto (lamelas), expondo os basidiósporos antes da maturação; os gasteroides, onde os basidiomas permanecem fechados até a completa maturação dos basidiósporos; e os secotioides, forma intermediária entre gasteroides e agaricoides, que apresentam as lamelas imperfeitas ou anastomosadas (Moncalvo *et al.*, 2002).

Figura 1 – Tipos morfológicos de *Agaricaceae*: A – agaricoide (*Macrolepiota* sp.1) Foto de Magnago, A.C.; B – secotioide (*M. turbinata*), foto de Lebel e Syme (2012); C – gasteroide (*Morganella* sp.) Foto de Fazolino E.P. Escala (A) 5 cm, (B e C) 1 cm.

São decompositores de matéria orgânica, encontrados em diferentes substratos, sendo frequentes no solo, húmus e algumas vezes em madeira. Não apresentam relações micorrízicas com vegetais (Singer, 1986; Vellinga, 2004).

A base para a classificação dos fungos agaricoides e de outros basidiomicetos foi construída por Fries (1821), utilizando-se principalmente dos caracteres macroscópicos dos basidiomas. Seu sistema facilitou muito a identificação no campo, sendo amplamente utilizado (Kirk et al., 2008). Singer (1986) fez uma importante obra sobre a classificação da ordem Agaricales baseada em caracteres morfológicos (Tab. 1A), em boa parte utilizada até hoje (Kirk et al., 2008). Com a introdução das análises moleculares (Moncalvo et al., 2002; Vellinga et al., 2003) verificou-se uma grande mudança na classificação de Agaricaceae com a entrada de espécies secotioides e gasteroides que eram consideradas como outras famílias. Vellinga (2004) propôs uma nova classificação (Tab. 1B) com base em análises moleculares e morfológica e um grande rearranjo vem ocorrendo na posição dentro e mesmo fora da família. De qualquer modo, relacionamentos dentro de Agaricaceae continuam em grande parte não resolvidos, devido à pequena amostragem desta família tão diversa (Vellinga et al., 2003) e à carência de estudos moleculares. O que melhor se conhece atualmente são espécies de regiões do hemisfério norte, principalmente Ásia, Europa e América do Norte, com escassos estudos em ambientes tropicais como América Central e América do Sul.

 $Tabela\ 1.\ A\ -\ Classificação\ baseada\ em\ análises\ morfológicas\ (inclui\ apenas\ espécies\ pileadas\ -\ agaricoides); \\ B\ -\ Classificação\ baseada\ em\ análises\ moleculares\ (inclui\ os\ morfotipos\ agaricoide,\ secotioides\ e\ gasteroide).$

A Sing	er, 1986		В	Vellinga, 2004
Tribos	Gêneros	Clados		Clados
Agariceae Pat.	Agaricus	1	1	Agaricus
	Melonophyllum	5	2	Chlorophyllum
Lepioteae Fayod	Lepiota	5	3	Macrolepiota
	Cystolepiota	5	4	Leucoagaricus / Leucocoprinus
	Chamaemyces	8	5	<u>Lepiota</u>
	Smithiomyces		6	<u>Podaxis</u>
Leucocoprineae Sing.	Leucoagaricus	4	7	Lycoperdaceae
	Leucocoprinus	4	8	Chamaemyces
	Chlorophyllum	2	9	Tulostomataceae
	Macrolepiota	2-3	10	Coprinus comatus
	Volvolepiota	3		
Cystidermateae Sing.				

1.2. Caracterização dos Agaricaceae pileados

Os representantes agaricoides de *Agaricaceae*, ou seja aqueles pileados e com o himenóforo exposto, caracterizam-se por apresentarem hábito principalmente lepiotoide (Fig. 2) com lamelas livres e anel persistente, algumas vezes pluteoides quando o anel é esvaesente ou efêmero e raramente amanitóide quando possuem volva (Largent, 1986). Os basidósporos podem ser hialinos, castanhos ou de outras colorações, de parede fina ou espessa, com ou sem poro germinativo visível, metacromáticos ou não, amiloides, inamilóides ou dextrinóides. Basídios geralmente tetrasporados com algumas exceções. Cistídios presentes ou ausentes. A esporada, deposição em massa dos basidiósporos, é muito variada, podendo ser branca, creme, ocrácea, verde, rosa, castanha, violeta ou sépia. (Singer 1986, Kirk et al 2008, Wright & Albertó, 2002). Estípite central, fibroso, e algumas vezes mais alargado na base, facilmente separável do píleo. Véu membranoso ou cortinóide e em muitos casos efêmero, podendo ser móvel em alguns gêneros. Volva geralmente ausente, apresentando algumas exceções. Fíbulas ausentes ou presentes. Encontrados em diferentes substratos, sendo freqüentemente no solo (terra ou areia), húmus e madeira, também em estufas, desertos e campos. Não apresentam relações micorrízicas com vegetais (Singer 1986).

Algumas características importantes, que em conjunto separam as *Agaricaceae* de outros grupos e podem ser reconhecidas ainda no campo durante as coletas (Fig. 2): presença de anel; lamelas sempre livres; e ausência de volva (com algumas exceções).

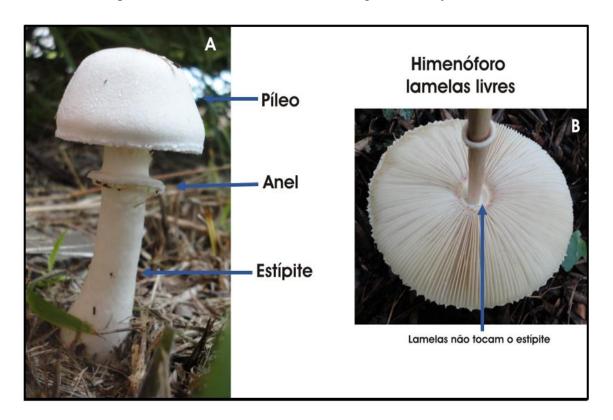


Figura 2 – Características do morfotipo agaricoide da família *Agaricaceae*. A – cogumelo típico (*Leucoagaricus leucothites* (Vittad.) Wasser; B – himenóforo com detalhe mostando as lamelas livres (*Macrolepiota* sp.). Fotos de Fazolino E.P.

1.3. Importância Ecológica e Econômica

Os fungos desempenham um papel fundamental dentro dos ecossistemas como decompositores, mutualistas e/ou agentes patogênicos, mas na maioria dos casos o potencial individual dos fungos na natureza é ainda pouco conhecido. Cabe lembrar também que apresentam grande importância econômica como agentes de biocontrole e produtores de metabólitos para o setor industrial (Alexopoulos *et al.*, 1996). São importantes como fonte de alimento, muito apreciados na Europa, Ásia e América do Norte. No Brasil, o consumo ainda é bastante restrito, com um mercado promissor ainda pouco explorado. Os cogumelos são alimentos com características nutricionais excelentes, com alto teor de proteínas e fibras alimentares, além do baixo teor de lipídios, sem colesterol e fonte considerável de fósforo (Furlani & Godoy, 2007; Colak, 2009; Cheung, 2013).

Mesmo sendo conhecido o imenso potencial dos fungos e dos representantes da família *Agaricaceae*, as pesquisas ainda são poucas e têm sido focadas preferencialmente na descoberta de processos biotecnológicos e ligados à gastronomia. Além do valor nutricional, os cogumelos são fonte de compostos bioativos, utilizados como medicamentos, e de enzimas ligninolíticas com potencial industrial (Bala *et al.*, 2011).

Informações relativas à produção de enzimas ligninolíticas por parte dos fungos degradadores de serrapilheira ainda são escassas (Durrant *et al.*, 1991; Steffen *et al.*, 2000). As principais enzimas ligninolíticas produzidas pelas espécies de *Agaricaceae* já analisadas são manganês peroxidase e lacases (Hatakka, 2001; Steffen, 2003). Como exemplos, temos espécies de *Agaricus* e *Coprinus* que produzem diferentes tipos de lacases e uma peroxidase funcional e estruturalmente semelhante a bem conhecida peroxidase de Rábano Silvestre, utilizada como marcador histoquímico em microscopia óptica e eletrônica, e também, como antígeno em experimentos de imunologia (Morita *et al.*, 1988; Baunsgaard *et al.*, 1993; Heinzkill *et al.*, 1998) e antitumorais (Sovrani *et al.*, 2017). As fenol oxidases são enzimas ligninolíticas de interesse industrial com uma série de aplicações, tais como: branqueamento de polpa de celulose, descoloração de corantes têxteis, remoção de fenóis, tratamento de

efluentes, degradação dos herbicidas (que são potenciais poluentes do solo), tratamento de alimentos, oxidação de hidrocarbonetos policíclicos aromáticos, e transformação de antibióticos e esteroides. As celulases hidrolisam a celulose e seus derivados, sendo responsáveis pela biodegradação de componentes de indústrias de polpa de celulose e de papel (Queiroz *et al.*, 2002). As lacases também apresentam capacidade ligninolítica e já foram descritas para outros basidiomicetos, sendo estas aplicadas na indústria têxtil e de detergentes (Arora & Sharma, 2010).

1.4. Os gêneros Agaricus, Chlorophyllum e Macrolepiota

Neste trabalho foram estudados os gêneros *Agaricus*, *Chlorophyllum e Macrolepiota* do morfotipo agaricoide, conhecidos popularmente por cogumelos, uma vez que o morfotipos gasteroide e secotioide não possuem registros para o Brasil.

Eles são encontrados em diferentes substratos, sendo frequentes no solo (terra ou areia), húmus, também em estufas, pastagens, jardins, praças, dunas e campos (Singer, 1986). São de grande interesse por serem utilizados como alimento, por apresentar espécies tóxicas para os seres humanos e animais ou ainda por produzirem metabólitos de interesse industrial (Singer, 1986; Durrant *et al.* 1991; Steffen *et al.* 2000; Wright & Albertó, 2002; Vellinga, 2004; Furlani & Godoy, 2007; Bala *et al.* 2011;).

No Brasil, *Agaricus bisporus* (J.E. Lange) Imbach, conhecido como *champignon* de Paris, ou simplesmente *champignon*, é o principal cogumelo cultivado e também o mais consumido. Algumas espécies nativas de *Agaricus* (*A. argentinus* Speg., *A. campestris* L., *A. silvicola* Bohus & Locsmándi, entre outros.), *Chlorophyllum* (*C. rhacodes*. Vittad.) e *Macrolepiota* (*M. bonaerensis* (Speg.) Singer, *M. colombiana* Franco-Mol., *M. kerandi* (Speg.) Singer) também são nativos e consumidos aqui, especialmente na Região Sul, onde existem pesquisadores que divulgam o conhecimento da micobiota local (Meijer, 2001, 2006, 2008; Rother & Silveira, 2008; Putzke *et al.*, 2014; Putzke & Putzke, 2017; Alves *et al.*, 2016).

Alguns são utilizados pela indústria, quer para obtenção de fármacos como o cogumelo do Sol, *Agaricus blazei* Murrill, ou em testes de toxidade com *A. Silvaticus* Schaeff. (Bach *et al.*, 2008), ou ainda como produtores de enzimas e utilizados em processos industriais ou de biorremediação de ambientes contaminados (Espinosa-Ortiz *et al.*, 2016).

Diversos estudos sobre o potencial enzimático em *Agaricaceae* vêm sendo realizados incluindo os gêneros *Agaricus* (Lincy & Gnanadoss, 2014; Valle *et al.*, 2015), *Chlorophyllum* (Kumari *et al.*, 2012) e *Macrolepiota* (Rosa L.O., 2013).

Dentro das espécies tóxicas encontramos, em *Agaricus*, a seção *Xanthodermatei* Sing., que é reconhecida pela mudança de coloração ao se cortar, quebrar ou raspar os basidiomas, e também por um odor fenólico característico. Wright & Albertó (2002) citam *A. xanthodermus*, *A. placomyces* Peck. e *Agaricus heinemannii* Albertó & G. Moreno para a região pampeana da Argentina, o que sugere que temos essa espécie no Brasil e o risco potencial de intoxicações.

Em *Chlorophyllum*, a espécie *C. Molybdites* (G. Mey.) Massee é tóxica e *C. rhacodes* é comestível. Essas duas espécies são muitas vezes confundidas, causando graves intoxicações alimentares (Wright & Albertó, 2002; de Meijer, 2001, 2007).

Em *Macrolepiota* não há registros de espécies tóxicas, se bem que para várias das espéies conhecidas ainda não se tem estudos sobre a comestibilidade. Muitas espécies nativas de *Macrolepiota* são comestíveis como *M. bonaerensis*, *M. kerandi*, *M. procera* (Scop.) Singer , *M. gracilenta* (Krombh.) Wasser, entre outras (Wright & Albertó, 2002; Putzke & Putzke, 2014; Suaza Blandón, 2016).

1.4.1 Agaricus L.

O gênero *Agaricus* foi descrito por Linnaeus em 1753, com cerca de 200 (Kirk *et al.*, 2008) a 400 espécies (Karunarathna *et al.*, 2016) de distribuição cosmopolita. Apresenta hábito predominantemente lepiotoide, com basidioma carnoso, anel membranoso e uma esporada bastante característica variando de castanho a marrom-escuro (Fig. 3). A superfície pode ser glabra, fibrilosa, escamulosa a escamosa, de formato que varia de convexo a hemisférico tornando-se plano a plano-convexo na maturidade, algumas vezes umbonado. As lamelas são próximas e sempre livres, de coloração branca a rosada, tornando-se castanhas a marrom-escuras conforme amadurecem. O estípite é central, com superfície lisa a escamulosa, com base regular ou bulbosa, raramente apresenta volva. O anel está sempre presente, geralmente membranoso, podendo conter escamas na superfície inferior, (Heinemann, 1956; Singer, 1986; Zhao *et al.*, 2016). Em algumas espécies o contexto do píleo e estípite e a superfície do píleo podem sofrer alterações na cor quando cortadas, quebradas ou raspadas.

Os basidióporos são lisos, de parede espessa ou simples, com coloração castanha a marromescura em KOH, sem poro germinativo, inamiloides, não metacromáticos, geralmente menores que 10 µm. Os basídios clavados, principalmente tetrasporados, podendo ser biesporados. Camada cortical do píleo formada geralmente por hifas paralelas prostradas. Não apresentam pleurocistídios, com uma exceção, *A. globocystidiatus* Drewinski & M.A. Neves (Drewinski *et al.*, 2017), queilocistídios quando presentes são largos e vesiculosos ou clavados a piriformes. Trama himenoforal regular a levemente irregular. Não apresenta fíbulas.

A identificação morfológica ao nível de gênero é fácil, no entanto, para se chegar às espécies é bastante difícil e requer exames em materiais frescos com a observação de mudanças na coloração do basidioma quando tocado, raspado ou cortado, odor, sabor, e reações químicas, microscopia, além de análises moleculares, o que dificulta o trabalho de taxonomistas, especialmente com materiais de herbário, onde essas características já foram perdidas ou em coletas pequenas com apenas um ou dois exemplares.

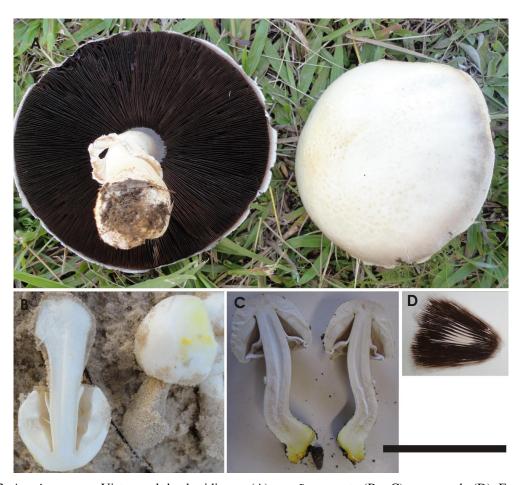


Figura 3. *Agaricus* spp. – Vista geral dos basidiomas (A), reação ao corte (B e C), e esporada (D). Escala 5 cm. Fotos Fazolino E.P.

Muitos nomes de espécies européias têm sido usados erroneamente para espécies brasileiras baseados unicamente em análises morfológicas.

A utilização da biologia molecular e do aperfeiçoamento dos estudos filogenéticos têm ajudado na delimitação de espécies e na compreensão das relações entre os táxons de diferentes regiões. Zhao *et al.* (2016) fizeram uma grande revisão taxonômica para o gênero utilizando dados moleculares e morfológicos. Eles analisaram sequências de ITS de 745 coleções, sendo 600 novas extraídas por eles, e nesse montante foram examinados 86 tipos de diversos herbários, além de uma análise multigênica utilizando ITS, LSU, rpb2 e Tef1-α. Com esse trabalho eles propuseram a separação de *Agaricus* em cinco subgêneros e 20 seções (Tab.1).

Estudos para o Brasil

Diversos pesquisadores têm contribuído para os estudos do gênero no Brasil: Rick (1939, 1961), Singer (1953), Heinemann (1962, 1993), Putzke (1994), Pegler (1997), de Meijer (2006, 2008), Rother e Silveira (2008), Wartchow et al., (2008), Rosa e Capelari (2009), Alves et al., (2012), Drewinski (2017), Drewinsk et al., (2017), entre outros. Putzke & Putzke (2017) fizeram uma revisão bibliográfica do gênero levantando 32 espécies para o Brasil, além de apresentar uma chave e descrições para as principais espécies, sendo elas A. argentinus Speg, A. argyropotamicus Speg., A. bisporus (J. Lange) Imbach, A. brunneostictus Heinem., A. cf. bugandensis Pegler, A. campestris L. Ex Fr., A. cheilotulus Heinem., A. dennisii Heinem., A. dicystis Heinem., A. dulcidulus Schulzer., A. purpurellus Heinem., A. endoxanthus Berk., A. fiardii Pegler, A. cf. fuscofibrilosus (Moeller) Pilát, A. hornei Murr., A. junquitensis Heinem., A. cf. litoralis (Wakef. E A. Pearson) Pilát, A. martineziensis Heinem., A. mediofuscus (Moeller) Pilát, A. meijeri Heinem., A. nigrescentulus Heinem., A. cf. nivescens, A. cf. ochrascens Heinem., A. ochraceosquamulosus Heinem., A. pampeanus Speg., A. parasilvaticus Heinem., A. porosporus Heinem., A. porphyrizon P.D. Orton, A. pseudoargentinus Albertó e J.E. Wright, A. purpurellus (Moeller) Moeller, A. puttemansii Pegler.

1.4.2 Chlorophyllum Mass.

O gênero *Chlorophyllum* foi proposto por Massee em 1898, apresenta distribuição cosmopolita e conta atualmente com aproximadamente 18 espécies, tanto em regiões

temperadas, da América do Norte, Ásia e Europa como em regiões tropicais no hemisfério Sul (Kirk *et al.*, 2008; Ge *et al.*, 2018). É um grupo monofilético de hábito que varia de agaricoide (a grande maioria) a secotioide. (Ge & Yang 2006; Vellinga 2003a; Vellinga *et al.*, 2003). As espécies com himenóforo aberto apresentam hábito lepiotoide, com basidioma carnoso, anel simples ou duplo, podendo ficar solto na maturidade e esporada que varia de tons de verde, castanho creme a branco (Fig. 4). Apresenta a cobertura do píleo himenodermal, mas com algumas espécies tricodermal (Ge *et al.*, 2018). O estípite, se presente, pequeno em relação ao píleo. Outra característica marcante é a mudança de coloração do basidioma quando cortado ou quebrado (Fig. 4B), que pode variar de vermelho vivo a laranja e a tons de marrom (Vellinga, 2006; Ge *et al.*, 2018). Seus basidiósporos variam de pequenos a grandes, podendo ser hialinos a levemente castanhos ou esverdeados em KOH, dextrinoides, congófilos, metacromáticos em azul de cresil e o poro germinativo pode estar presente ou ausente, mas quando presente nunca coberto por uma capa hialina. Trama da lamela é trabecular e apresentam queilocistídios, mas não pleurocistídios.

Figura 4. *Chlorophyllum* – Vista geral dos basidiomas (A e D), reação ao corte (B), e esporada (C). Escala 5 cm. Fotos Fazolino E.P.

Foi considerado por muito tempo um gênero monoespecífico com *Chlorophyllym molybdites*, um cogumelo tóxico, facilmente reconhecido por sua esporada verde quando maduro. No entanto, estudos realizados por Vellinga (2002, 2003) baseados em ITS e LSU, mostraram que *Chlorophyllum molybdites* formava um clado com *Macrolepiota*, seção *Laevistipedes*, juntamente com *Leucoagaricus hortensis* (Murrill) Pegler e *Endoptychum agaricoides* Czern. uma espécie secotioide. Recentemente, Ge *et al.*, (2018), com base em um

abrangente estudo para o gênero, incluindo espécies tropicais com dados moleculares multigênicos, propuseram uma nova classificação para o grupo, dividindo-o em seis seções (Tab. 1).

Estudos para o Brasil

Estudos realizados para o Brasil registram apenas três espécies: *C. hortense* (Murrill) Vellinga, *C. molybdites* (G. Mey.) Massee e *C. rhacodes* (Vittad.) Vellinga (Rick, 1906, 1907, 1961; Singer, 1953; Raithelhuber, 1987; Albuquerque, 2006; de Meijer *et al.*, 2007; Rother & Silveira, 2008; Nascimento e Alves; 2014, Alves *et al.*, 2016).

Suaza Blandón (2016) em seu trabalho sobre a biodiversidade de fungos lepiotáceos na Argentina encontrou três novas espécies (ainda não publicadas), e Ge *et al.* (2018) apresentaram duas espécies novas para a região tropical, o que sugere que existam ainda muitas espécies desconhecidas, além de outras identificadas em outros gêneros, antes da utilização de análises moleculares.

Tabela 2. Classificação infragenérica dos gêneros *Agaricus*, *Chlorophyllum* e *Macrolepiota*. Abaixo do nome dos gêneros, o nome dos autores das seções.

A	ualx	to a	э по	me (os §	gene	eros, c	по	me	uos	auto	ores (uas	seço	es.									
											(Agaricus L.											Gêneros	Ü E
		Moncalvo	Spissicaules (Heinem.) R.L. Zhao &								Pseudochitonia Konrad & Maubl.							Callac, Angelini & Raspé	III .	Minores (Fr.) R.L. Zhao & Moncalvo	Flavoagaricus Wasser	Agaricus L.	Subgêneros	
	Subrutilescentes Kerrigan	Spissicaules (Heinem.) Kerrigan	Rarolentes Kerrigan	Amoeni Callac & R.L. Zhao	Xanthodermatei Singer	Trisulphurati Heinem.	Parra	nupricosi n.c. zilao		Nigrobrunnescentes K.R. Peterson, Desjardin & Hammes	Hondenses R.L. Zhao & L.A. Parra	Flocculenti Linda J. Chen, K.D. Hyde & R.L. Zhao	Crassispori R.L. Zhao	Chitonioides Romagn.	Brunneopicti Heinem.	Bohusia (L.A. Parra) L.A. Parra & R.L. Zhao	Bivelares (Kauffman) L.A. Parra	a,	Minores (Fr.) Henn.	<i>Leucocarpi</i> Linda J. Chen & Callac	Arvenses Konrad & Maubl.	Agaricus L.	Seções	

Continuação 2/2

Gêneros	Subgêneros	Seções
		Chlorophyllum Massee
		Parvisporum Z.W. Ge
Chlorophyllum Mossoo		Ellipsoidospororum Z.W. Ge
Ciliotophyllani Massee		Rhacodium Z.W. Ge
		Endoptychorum (Czern.) Z.W. Ge
		Sphaerospororum Z.W. Ge
		Macrolepita Singer
<i>Macrolepita</i> Singer		Macroporae Singer
		Volvatae Z.W. Ge, Zhu L. Yang & Vellinga

1.4.3. Macrolepiota Sing.

O gênero *Macrolepiota* foi estabelecido por Singer em 1948. Conta atualmente com aproximamdamente 36 espécies de distribuição cosmopolita (Kirk *et al.*, 2008; Ge *et al.*, 2010, 2012; Lebel & Syme, 2012).

As espécies de himenóforo aberto (Fig. 4) possuem hábito lepiotoide, tamanho grande a médio, píleo recoberto por escamas tricodérmicas, normalmente umbonado com uma calota central mais escura. O contexto é carnoso, lamelas livres e afastadas do estípite, esporada que varia de branca, creme, amarelada, esverdeada até levemente rosada. O estípite recoberto por uma camada de hifas que se rompe com o crescimento formando bandas zebradas, possui anel proeminente simples ou duplo que pode soltar-se quando maduro e ficar móvel, a base bulbosa podendo apresentar volva em algumas espécies. Os basidiósporos são grandes, geralmente maiores que 10 µm, hialinos a levemente esverdeados em KOH, dextrinoides, congófilos, metacromáticos em azul de cresil, apresentam poro germinativo que são sempre cobertos por uma capa hialina. A trama lamelar é do tipo trabecular, apresenta queilocistídios, mas não pleurocistídios.

Inúmeras modificações foram feitas na classificação desde o seu estabelecimento por Pázmány (1985), Singer (1986), Bellu & Lanzoni (1987), Bon (1993). Com o início dos estudos moleculares associados à morfologia, Johnson & Vilgalys (1998) e Johnson (1999) concluíram que o gênero *Macrolepiota* era polifilético. Vellinga *et al.* (2003a), avaliaram *Macrolepiota* ao nível genérico e transferiram as espécies da seção *Laevistipes* para o gênero *Chlorophyllum*. Vellinga & Yang (2003) incluíram as espécies com volva, antes no gênero *Volvolepiota* Singer, em *Macrolepiota*, pois verificaram que a presença de volva não justificava a separação dos dois gêneros. Ge *et al.* (2010) realizaram um estudo filogenético abrangente do gênero, identificando três clados: *Macrolepiota* e *Macrosporae*, que correspondem respectivamente à seção *Macrolepiota* e *Macrosporae* e um terceiro clado que denominaram *Volvatae*, para incluir as espécies com volva (Tab. 1). Com a atual classificação e a exclusão da seção *Laevistipes*, *Macrolepiota* é um gênero monofilético com uma boa resolução morfológica.

Figura 5. *Macrolepiota* spp. – Vista geral dos basidiomas (A e E), superfície do píleo (B), detalhe do himenóforo e anel (C), e esporada (D). Escala 5 cm. Fotos Fazolino E.P.

Estudos para o Brasil

Existem poucos estudos de *Macrolepiota* para os trópicos e, no Brasil, foram registradas 16 espécies, embora a maioria tenha sido citada com nomes europeus (Fazolino *et al.*, 2018).

Diferentes pesquisadores contribuíram para o conhecimento da diversidade de *Macrolepiota* para o Brasil: Rick, 1907, 1961; Bononi *et al.*, 1984; Grandi *et al.*, 1984; Rosa & Capelari, 2009; Raithelhuber, 1988; Sobestiansky, 2005, Heinemann & de Meijer, 1996; Vellinga & Yang, 2003, Ferreira & Cortez, 2011; Putzke *et al.*, 2014; e Alves *et al.*, 2016 entre outros. Foram citadas um total de 16 espécies para o Brasil: *M. bonaerensis* (Speg.) Singer, *M. brasiliensis* (Rick) Raithelh., *M. brunnescen* Vellinga, *M. colombiana* Franco - Mol., *M. dolichaula* (Berk. & Broome) Pegler & R.W. Rayner, *M. excoriata* (Schaff.) Wasser, *M. fornica* Raithelh., *M. fuligineosquarrosa* Malençon, *M. gracilenta* (Kombh.) Wasser, *M. kerandi* (Speg.) singer, *M. mastoidea* (Fr.) Singer, *M. procera* (Scop.) Singer, *M.*

procera var. vulpina (Rick) Raithelh., M. pulchella de Meijer & Vellinga, M. stercoraria (Rick) Raithelh., e M. zeyeri Heinem.

2. Objetivos

2.1. Objetivo geral

Ampliar o conhecimento sobre a diversidade e aplicabilidade de espécies de *Agaricaceae (Basidiomycota)* em áreas de Mata Atlântica e Pampa, utilizando análises morfológicas, moleculares e bioquímicas.

2.2. Objetivos específicos

Conhecer as espécies dos gêneros *Agaricus*, *Chlorophyllum* e *Macrolepiota* presentes nas áreas de estudo;

Elaborar descrições e ilustrações para identificação das espécies encontradas;

Utilizar caracteres morfológicos e moleculares para a identificação das espécies; e

Analisar quali-quantitativamente a produção de fenol oxidases em cultivos de micélio de espécies selecionadas.

3. MATERIAIS E MÉTODOS

3.1. Área de estudo

A área de estudo deste trabalho abrangeu regiões de Mata Atlântica e Pampa, compreendendo quatro estados: Rio Grande do Norte (RN), na região Nordeste, e os estados do Paraná (PR), Rio Grande do Sul (RS) e Santa Catarina (SC), na região Sul (Fig. 5). As coletas foram realizadas em Unidades de Conservação (UC), além de áreas urbanas e rurais, como praças, ruas, parques, pastos entre outras, devido ao fato dos gêneros *Agaricus*, *Chlorophyllum* e *Macrolepiota* possuírem espécies bem adaptadas ao ambiente antropizado.

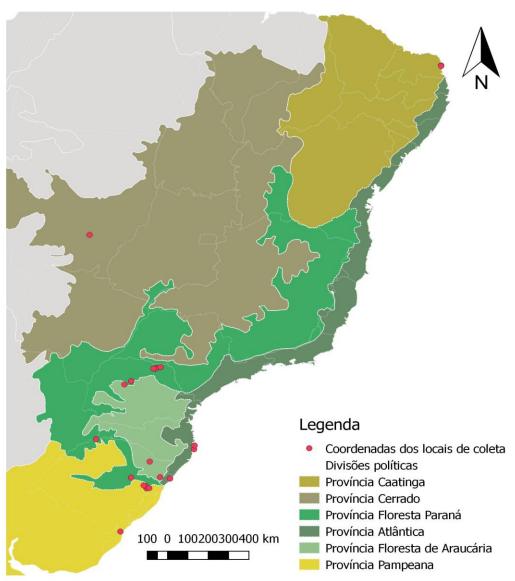


Figura 6. Mapa mostrando os biomas Mata Atlântica e Pampa. Os pontos em destaque representam os principais pontos de coleta. Modificado de Morrone e shapefile de Löwenberg-Neto.

3.2. Coleta e preservação dos espécimes

Excursões e coletas

Foram realizadas 61 excursões de coleta abrangendo 15 municípios, sendo 13 em Mata Atlântica e dois no Pampa, no período de março de 2014 a setembro de 2017 (tab. 2), além da visita e análise de matérias de herbários de ambas as regiões.

Tabela 3. Relação dos municípios onde foram realizadas coletas mostrando as UF, o Bioma e o número de excursões realizadas.

Município	Estado	Bioma	Excursões
Arroio do Sal	RS	MA	2
Bandeirantes	PR	MA	1
Canoas	RS	MA	13
Cornélio Procópio	PR	MA	2
Florianópolis	SC	MA	3
Lajeado	RS	PA	1
Natal	RN	MA	3
Nova Santa Rita	RS	MA	3
Porto Alegre	RS	MA	15
Rio Grande	RS	PA	3
Santa Mariana	PR	MA	2
São Francisco de Paula	RS	MA	10
Viamão	RS	MA	3

As coletas foram realizadas preferencialmente nos períodos chuvosos de cada região nas diferentes localidades citadas. Autorizações de coletas (anexo X) foram obtidas junto aos órgãos responsáveis (Tab. 3). Para a coleta nas UCs buscou-se percorrer trilhas no interior da mata, em locais preservados. Também ocorreram coletas em áreas urbanas ou rurais de pastagens devido à adaptabilidade dos gêneros estudados com ambientes antrópicos.

No momento da coleta, os basidiomas foram fotografados e anotados os dados referentes ao ambiente e substrato no caderno do coletor. Os espécimes foram removidos do substrato com auxílio de faca ou pá de jardinagem e logo em seguida acomodados em recipientes individuais ou caixas compartimentadas para evitar a mistura dos basidiósporos de diferentes exemplares, bem como a desidratação e a perda de características como coloração e aspecto geral. Um pequeno fragmento de cada coleção foi preservado em sílica para posterior análise molecular. Sempre que possível o material foi levado no mesmo dia ao laboratório ou ponto de apoio nas UCs. Alguns espécimes foram trazidos por colaboradores.

Tabela 4. Unidades de Conservação (UC), localização município / UF, nome, tipo e autorizações.

Município	Estado	UC	Tipo	Autorizações
Rio Grande	RS	ESEC do Taim	Federal	SISBIO 42315-7
São Francisco de Paula	RS	FLONA de São Francisco de Paula	Federal	SISBIO 42315-7
Florianópolis	SC	Parque Estadual Serra do Tabuleiro	Federal	FATMA 0013/2014
Natal	RN	Parque Estadual Dunas de Natal	Estadual	Lab. Mic. UFRN
Cornélio Procópio	PR	Parque Estadual Mata São Francisco	Estadual	IAP 12.15
Canoas	RS	Parque Municipal Getúlio Vargas	Municipal	SISBIO 15814-2
Porto Alegre	RS	Área de proteção ambiental Morro Santana	Municipal	Lab. MiC. UFRGS
Viamão	RS	Parque Municipal Saint Hylaire	Municipal	SISBIO 15814-2

Secagem e preservação

Após a coleta dos dados em material fresco, os basidiomas foram colocados em um desidratador elétrico com aquecimento em torno de 45°C e ventilação constante até completa secagem. O material seco então foi acondicionado em sacos de papel, acomodados em caixa plástica com tampa e levado ao freezer por pelo menos 72 horas e depois à bancada para análises.

O material identificado foi incorporado ao acervo de Herbário ICN, do Instituto de Biociências da Universidade Federal do Rio Grande do Sul, e algumas exsicatas no Herbário UFRN-Fungos, da Universidade Federal do Rio Grande do Norte.

3.3. Análises morfológicas

Análise macroscópica

Algumas características morfológicas e de reações ao toque e exposição do contexto dos basidiomas foram registradas no local de coleta. Assim que chegado ao laboratório e/ou ponto de apoio em UCs, os espécimes passaram por uma análise macroscópica a olho nu e com auxílio de um microscópio estereoscópico ou lupa manual, antes do processo de desidratação, para que não fossem perdidas características importantes para a identificação. As anotações de cores indicadas nas descrições seguiram Kornerup e Wanscher (1978). As descrições da macromorfologia foram baseadas nas notas de campo e nas fotografias do material fresco. Sempre que possível, foi retirada a esporada com auxílio de uma câmara

úmida. Fichas de análise macroscópica foram especialmente confeccionadas para os fungos deste grupo (anexo 1). Fotos e/ou esquemas dos basidiomas foram incluídos. A nomenclatura e metodologia utilizadas seguiram as propostas de Fidalgo & Fidalgo (1967), Largent (1977) e Wright & Albertó (2002).

Análise microscópica

Para as observações da micromorfologia, foram feitos cortes manuais dos basidiomas com auxílio de lâminas de aço e montados em solução aquosa de hidróxido de potássio a 5% (KOH) (Fig.6 A) e vermelho Congo 2% para estudo das estruturas de importância taxonômica: superfície pilear (pileipelis), basidiósporos, basídios, queilocistídios e superfície do estípite. Foram observados ao microscópio óptico em 100, 400 e 1.000 × de ampliação. O reagente de Melzer foi utilizado para testar a reação dextrinoide dos basidiósporos (Fig. 6 B). Também foram verificadas as reações da parede de basidiósporos em azul de cresil e vermelho Congo (Fig. 6 C e D). Os códigos abreviados utilizados [n / m / p] significam o número de basidiósporos (n) medidos a partir do número de basidiomas (m) do número de coleções (p) em solução de KOH a 5%. As dimensões dos basidiósporos são dadas usando a notação da forma (a) b–c (d). O intervalo b–c contém um mínimo de 90% dos valores medidos. Os valores extremos (a e d) são entre parênteses. Q refere-se à "relação comprimento / largura" de um basidiósporo em vista lateral; Qm significa média Q de todos os basidiósporos.

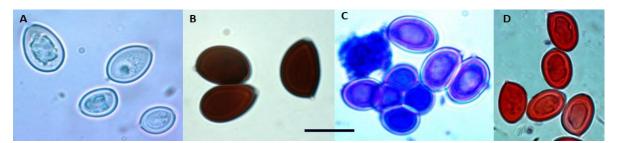


Figura 6. Basidiósporos evidenciando diferentes reações conforme reagentes químicos utilizados. A – hialinos em KOH; B – dextrinoides em Melzer; C – metacromáticos em azul de cresil; e D – congófilos em vermelho Congo. Escala $20~\mu m$.

Para cada espécime, foi preenchida uma ficha de análise microscópica (anexo 2), com espaço para observações da morfologia e anotação das medições das microestruturas, especialmente elaborada para fungos dessa família. Foram feitas medições (mínimo de 25 para cada elemento) e ilustrações e/ou fotografias das microestruturas de importância taxonômica, férteis e estéreis, como basídios, basidiósporos, hifas da trama e superfície pilear

(pileipelis), com o auxílio de uma ocular micrometrada e do programa Zeiss acoplado ao microscópio óptico. A nomenclatura das microestruturas foi baseada na obra de Largent *et al.* (1986) e Wright & Albertó (2002).

3.4. Análises moleculares

Isolamento e amplificação do DNA

O DNA genômico foi extraído de amostras secas conforme protocolo de Goes-Neto et al. (2005), modificado: um pequeno fragmento da amostra (0,1–0,05 g) é colocado num tubo eppendorf de 1,5 ml contendo 50–100 μL de solução CTAB; aguarda-se 12–24 horas em repouso a temperatura ambiente; após repouso a amostra é macerada manualmente com auxílio de um pistilo de polietileno até fragmentação, tomando cuidado para não degradar o DNA; adiciona-se mais CTAB para completar 500 μL; o homogenizado é incubado a 65 °C por 30 minutos a 1 h; então adiciona-se 500 μL de clorofórmio: álcool isoamílico (24: 1); mistura-se delicadamente por aproximadamente 5 minutos; logo após centrifuga-se a 12.200 rpm por 10 minutos (resfriamento a cada 5 minutos); o sobrenadante é transferido para um novo tubo eppendorf de 1,5 ml; adiciona-se igual volume de clorofórmio: álcool isoamílico (24: 1); novamente é misturado delicadamente por aproximadamente 5 minutos; então centrifugado a 12.200 rpm por 10 minutos (resfriamento a cada 5 minutos); o sobrenadante transferido para um novo eppendorf de 1,5 ml; é adicionado igual volume de isopropanol e misturado suavemente e colocado em refrigeração – 10°C durante durante 12–24 horas; após refrigeração centrifuga-se a 12.200 rpm por 10 minutos a 4°C (resfriamento a cada 5 minutos); o sobrenadante é despejado cuidadosamente para não perder o pellet; lava-se o pellet duas a três vezes com 50–100 μL etanol 70% (EtOH) e centrifuga-se a 12.200 rpm por 5 minutos; leva-se a estufa a 50°C até completa secagem do etanol e ressuspende-se em 20–50 μL TE 1x (Tampão Tris) ou mq H2O e aquece-se a 45°C por 2 horas (ou durante a noite a 4°C); coloca-se 1-2 μL de RNAse; realiza-se uma eletroforese em gel de agarose para certificar-se do sucesso da extração e então estoca-se em refrigeração de – 10°C.

Reação em cadeia da polimerase – PCR

As seguintes regiões foram amplificadas: nuc-rDNA ITS1–5.8S–ITS2 (ITS) usando os primers ITS1F e ITS4 (White *et al.*, 1990); nuc-rDNA 28S de subunidade grande nuclear (28S) utilizando os iniciadores LR0R e LR7 (Vilgalys & Hester, 1990); e quando possível a

região localizada entre os domínios seis e sete da segunda maior RNA polimerase II (RPB2), primers bRPB2-6F e bRPB2-7.1R (Frøslev *et al.*, 2005; Matheny, 2005).

A reação em cadeia da polimerase (PCR) foi realizada em um volume total de 30 μL contendo 1 unidade de DNA polimerase Taq, 3,0 μL de tampão de reação 10 x Taq polimerase (Applied Biological Material Inc., Vancouver, Canadá), 3,0 μL de solução de albumina sérica bovina (Sigma-Aldrich, Missouri), 50 μM de dNTP mix, 0,75 μL de 10 μM de cada um dos dois primers e 1–2 μL de DNA total. A amplificação por PCR de ITS foi realizada com 2 min de desnaturação inicial a 95, seguida por 35 ciclos de 30 s a 95, 1 min e 30 s a 57, 30 s a 72, com uma extensão final de 10 min a 72. C seguindo o último ciclo. A amplificação por PCR de 28S e RPB2 foi feita de acordo com Vilgalys & Hester (1990) e Matheny (2005), respectivamente.

Sequenciamento de DNA

A purificação e o sequenciamento de DNA foram realizados por Macrogen Inc, Geumcheon-gu, Coreia. Para RPB2 e ITS, foram usados os mesmos primers para sequenciamento e para 28S foram usados LR0R e LR5.

Alinhamento e análises filogenéticas

As sequências foram montadas e corrigidas manualmente com Geneious 9.1.4 (Kearse *et al.*, 2012), depois alinhadas automaticamente com o MAFFT 7 (Katoh & Standley, 2013) sob o modo automático. O alinhamento foi ajustado manualmente quando necessário com o MEGA 7.0.20 (Kumar *et al.*, 2016). Potenciais segmentos ambiguamente alinhados a ITS1-ITS2 foram detectados por Gblocks 0,91b (Castresana, 2000) através dos seguintes parâmetros, o número mínimo de sequências para posições conservadas foi de 53% das sequências totais, o número mínimo de sequências para posições de flanco foi de 55% das sequências totais, o número máximo de posições não conservadas contíguas foi de 8%, o comprimento mínimo de um bloco foi de 2%, a posição de intervalo permitida foi com metade. O conjunto de dados nas análises de ITS foi subdividido em três partições de dados: ITS1 + 5.8S + ITS2 e as análises combinadas foram subdivididas em sete partições de dados: ITS1 + 5.8S + ITS2 + 28S + RPB2-1a, -2a, -3a posições de codon; o intron RPB2 (quarto) foi excluído. Os alinhamentos foram depositados no TreeBASE.

Foram realizadas análises filogenéticas de conjuntos de dados separados e combinados

com sequências ITS e ITS + 28S + RPB2. As matrizes 28S foram construídas para o domínio D3 (primer LR5). Todas as sequências de *Chlorophyllum*, *Macrolepiota* e *Agaricus* usadas neste estudo estão disponíveis no GenBank. Os grupos externos de cada gênero foram designados com base nos trabalhos de Ge *et al.* (2010, 2012), Ge & Yang, (2006), Vellinga, (2003, 2006), Zhao *et al.* (2016). Todos os materiais e sequências usados neste estudo estão listados na Tabela 3. A abreviação de países seguiu o código ISO 3166.

As análises filogenéticas foram todas realizadas on-line no CIPRES Science Gateway (Miller *et al.*, 2011). Analisamos os conjuntos de dados separadamente com máxima verossimilhança e inferência bayesiana.

Análise de máxima verossimilhança – ML

A análise de máxima verossimilhança foi realizada em RAxML 8.2.9 (Stamatakis, 2014). A análise envolveu primeiramente 100 pesquisas ML, cada uma iniciando a partir de uma árvore de parcimônia de adição passo a passo randomizado sob um modelo GTRGAMMAI, com todos os parâmetros estimados pelo software. Fornecemos um arquivo de partição para forçar o software RAxML a procurar um modelo de evolução separado para cada conjunto de dados. Para acessar a confiabilidade dos nós, réplicas de bootstrapping rápidas sob o mesmo modelo foram computadas, permitindo que o programa pare automaticamente o bootstrapping pela opção autoMRE. Os valores de Bootstrap (BS) acima de 80 foram considerados significativos (suporte alto) e acima de 70 foram considerados de suporte moderado.

Análise de Inferência Bayesiana – BI

A análise de Inferência Bayesiana foi realizada em MrBayes 3.2.6 (Ronquist *et al.*, 2012) e os modelos evolutivos para BI foram estimados usando o Akaike Information Criterion (AIC) para cada partição, conforme implementado em MrModeltest 2.3 (Nylander, 2004). Os modelos de melhor ajuste para cada partição foram implementados como modelos específicos de partição dentro de análises de modelos mistos particionados (HKY + G para ITS1; JC para 5.8S; GTR + G para ITS2 e 28S; SYM + G para RPB2-1st, –2nd, –3rd). Foram estabelecidas análises bayseianas com duas séries independentes, cada uma com quatro cadeias simultâneas por 107 gerações, amostrando árvores a cada milésima geração. O diagnóstico de convergência foi calculado a cada 10⁴ gerações, e seu valor crítico foi ajustado para interromper a análise automaticamente quando o desvio padrão das frequências divididas

atingiu o valor definido pelo comando stopval (stoprule = yes, stopval = 0.01). Em todas as análises, os primeiros 25% das árvores de cada corrida foram descartados como *burnin*. As árvores resultantes das duas corridas independentes foram então agrupadas para produzir uma árvore de consenso de regra majoritária de 50% e as Probabilidades Posterior Bayesianas (BPP) foram geradas para a árvore resultante. Um valor de BPP acima de 0,99 foi considerado significativo (suporte alto) e acima de 0,95 foi considerado suporte moderado.

3.5. Identificação do material

Para a identificação do material foi utilizada bibliografia especializada, principalmente os trabalhos de Bon (1981), Breitenbach & Kranzlin (1995), Candusso & Lanzoni (1990), Cappelli (1984), Dennis (1952, 1961, 1970), Heinemann (1977, 1986, 1990, 1993), Pegler (1972, 1977, 1983, 1986, 1997), Rick (1961), Singer (1986), Singer & Digilio (1951), Wasser (1993) e Wright & Albertó (2002). Foram feitas revisões de coleções dos seguintes herbários: PACA do Instituto Anchieta da UNISINOS; UFRN-Fungos da Universidade Federal do Rio Grande do Norte; ICN da Universidade Federal do Rio Grande do Sul, HBEI da Universidade Federal do Pampa; e HBC da Universidade de Santa Cruz do Sul. Foram solicitados também exemplares dos herbários FLOR e do JBRJ, com a finalidade de esclarecer possíveis dúvidas taxonômicas e confirmar a identificação das espécies. A abreviação dos herbários seguiu Thiers (2017).

3.6. Análises enzimáticas

Isolados

Para o isolamento dos macrofungos e/ou manutenção dos isolados foi utilizado o meio AEM (Agar extrato de malte) que foi formulado segundo Imbiv - Conicet (2010): extrato de malte 2%, ágar 1,5% e H₂O destilada q.s.p.100 mL. O pH do meio foi ajustado para 7 a 25°C, com HCl ou NaOH. Posteriormente foi autoclavado a 1atm por 15 minutos. Ao meio de cultura foram adicionados os antibióticos tetraciclina 0,1775 mg/100 mL de meio e ampicilina 0,05 mg/100 mL de meio. Após vertido e resfriado o meio recebeu os basidiósporos e/ou fragmentos dos diferentes espécimes coletados. Foram mantidos em estufa a 25°C para posterior isolamento. Após isolados, foram estocados em AEM sem antibióticos em tubos sob refrigeração de 4°C.

Meio ágar ácido gálico - AG

O meio AG foi formulado segundo Davidson *et al.* (1938): extrato de levedura 0,3%, extrato de Malte 0,3%, peptona 0,5%, glicose 1%, ágar 2%, ácido gálico 0,5% e H2O destilada q.s.p. 100 mL. O pH do meio foi ajustado para 5,5±0,5 e o meio autoclavado a 1atm por 15 minutos. Neste meio foram inoculados os diferentes isolados cultivados em meio AEM. Foram mantidos em estufa a 25°C, sendo acompanhado o crescimento e a oxidação do ácido gálico a cada 24 h por 4 dias. O procedimento foi realizado em triplicata, em duas placas.

Meio ágar corante –AC

O meio de cultivo foi baseado em Munari (2007) com modificações: *Reactive Blue* 220 0,01%, peptona 0,2%, glicose 1%, ágar 2%, solução MTV (10X) 10mL e H2O destilada q.s.p. 90 mL. O pH do meio foi acertado para 5,5±0,5 e o meio foi autoclavado a 1atm por 15 minutos. Neste meio foram inoculados os diferentes isolados cultivados em meio AEM. Foram mantidos em estufa a 25°C, sendo acompanhado o crescimento e o halo de degradação do corante a cada 24 h por 4 dias. O procedimento foi realizado em triplicata, em duas placas.

Análise quali-quantitativa de fenol-oxidases dos isolados

Para as análises quali-quantitativas, os isolados em estoque foram repicados em placas com AEM por um período de 20–30 dias conforme o desenvolvimento de cada espécie. Após o crescimento foram cortados discos de 0,5cm de Ø dos respectivos cultivos e colocados em triplicatas em duas placas de cada meio, AG e AC, segundo Queiroz *et al.* (2002), Gomes (2007) e Rosa *et al.* (2011), com modificações. Os isolados foram mantidos a 24°C ± 1°C durante 4 dias. A cada 24 horas, utilizando um paquímetro, foi mensurado o diâmetro das colônias e dos halos. No meio AG verificou-se a presença de halo âmbar ao redor da colônia, indicando a oxidação do ácido gálico e, consequentemente, a presença de fenol-oxidases. No meio AC verificou-se halo de descoloração do corante *Reactive Blue* 220 também indicando a presença de fenol-oxidases. Com os dados obtidos diariamente das medidas do halo e da colônia, foi calculada a relação halo/colônia (cm). A linhagem 88F.13 de *Pleurotus albidus* (Berk.) Pegler foi utilizada como referência nas análises, por ser bem conhecida e apresentar alta capacidade de secreção de enzimas ligninolíticas (Rosa *et al.*,2008) para comparação da relação halo/colônia, onde a relação igual a 1 significa diâmetro da colônia igual ao diâmetro do halo, relação superior a 1 diâmetro do halo superior.

Análises quantitativas de fenol-oxidases dos isolados

Para as análises quantitativas foram considerados os isolados que apresentaram os resultados mais promissores pelo índice de halos selecionados pela análise quali-quantitativa e que com rapidez de crescimento micelial viável para o estudo, sendo a linhagem *P. albidus* (88-F) utilizada como referência nas análises. As amostras selecionadas foram submetidas a ensaios submersos e sólidos para a verificação de lacases, manganês peroxidases, peroxidases totais e proteínas totais.

Meio de cultivo submerso - CSM

Para o cultivo submerso utilizou-se o meio Potato Dextrose (PD) suplementado com 50 mL/L de solução mineral de macro e micronutrientes (MS 10×) (Mandels & Reese, 1957): KH2PO4 2%, (NH4)2SO4 1,4%, MgSO4.7H2O 0,3%, uréia 0,3%, CaCl2 0,4%, MnSO4.H2O 0,00156%, FeSO4.7H2O 0,005%, ZnSO4 0,0014%, CoCl2 0,002%, H2O destilada q.s.p. 100 ml.

O experimento em meio submerso foi realizado em frascos Erlenmeyer de 500 mL com colo longo, contendo 100 mL de meio CSM, sendo autoclavados a 1 atm por 15 min. O inóculo consistiu em três discos de 1,5 cm de diâmetro retirados das placas de Petri dos isolados selecionados e da linhagem de *P. albidus*. Os frascos foram fechados com algodão e gaze estéreis, e mantidos sob agitação recíproca de 180 rpm a 28±2°C. As amostras foram coletadas do 0 (zero) ao 12° dia a cada 48 horas, obtendo-se o caldo enzimático de cada uma. Todos os testes foram realizados em triplicata.

Meios de cultivo em estado sólido - CSL

O meio CSL foi elaborado conforme Silva (2004): serragem de *Pinus* 94%, farelo de trigo 5%, CaCO3 1%, e H2O q.s.p. até a obtenção de 66% de umidade (Tan & Wahab, 1997) e acondicionados em recipientes de vidro de 100 mL, fechados com algodão e gaze estéreis e autoclavados a 1atm por 2 horas. Após resfriamento, foram inoculados com 1 disco de 1,5 cm de diâmetro retirado das placas de Petri dos isolados selecionados e da linhagem de *P. albidus*. As diferentes linhagens foram mantidas em estufa com umidade saturada a 25°C ± 3°C, e acompanhado o crescimento a cada 48h por 12 dias. O procedimento foi realizado em triplicata.

Obtenção do extrato enzimático

Cultivo Submerso

Todo o volume do frasco foi filtrado com papel filtro e na sequência as amostras foram centrifugadas a 805 x g e 4°C, durante 30 minutos, sendo o sobrenadante utilizado para as determinações enzimáticas (Lac, Per e MnP), de pH, de proteínas solúveis totais, de açúcares redutores e caracterização de lacases (massa molecular) e o precipitado para a verificação da biomassa. Todos os testes foram realizados em triplicata.

Cultivo em Estado Sólido

O conteúdo foi homogeneizado manualmente e 15 g foram suspensas em 30 mL de água destilada gelada, mantidas sob agitação por 30 minutos a 130 rpm, a 4°C. Os sólidos foram removidos por filtração com papel filtro e centrifugação a 805 x g e 4°C, durante 30 minutos. O extrato enzimático obtido foi utilizado para as determinações enzimáticas (Lac, Per e MnP), de pH, proteínas solúveis totais e caracterização de lacases (massa molecular, termo estabilidade, temperatura ótima e pH ótimo). Também foi verificado o teor de umidade onde 1 g do meio foi desidratado em estufa a 90°C por 24 horas.

Métodos analíticos

Determinação do potencial hidrogeniônico - pH

O pH de cada amostra foi determinado diretamente no caldo enzimático com a utilização de um pHmetro.

Determinações enzimáticas

Todas as atividades enzimáticas foram expressas em unidades internacionais por grama de massa seca $(U.g^{-1})$, para o cultivo sólido e em unidades internacionais por mL $(U.mL^{-1})$, para cultivo submerso; definidas como a quantidade de enzima que libera um μ mol do produto por mL, por minuto $(U = \mu mol.min^{-1})$.

Lacases - Lac

A atividade de lacases foi determinada, segundo Wolfenden & Wilson (1982), através da quantificação do produto da oxidação do 2,2'-azino-bis(3-etilbenzotiazolina-6-sulfonato),

ABTS, utilizado como substrato. A mistura reacional (0,4mL) continha: 0,18mL de tampão acetato de sódio 0,2 M, pH 5,0; 0,18mL de extrato enzimático adequadamente diluído e 0,04 mL do substrato ABTS 5mM. A oxidação do ABTS foi monitorada em espectrofotômetro (μ420 =3,6. 104 M-1cm-1) durante 90 segundos, a 25°C, em uma placa de 96 poços.

Peroxidases totais – Per

As peroxidases totais foram dosadas empregando-se a mesma metodologia das determinações de lacase, utilizando ABTS como substrato, entretanto com a presença de 0,04 m de H2O2 2 mM e somente 0,14 mL de tampão acetato de sódio 0,2 M, pH 5,0, na mistura reacional (Heinzkill *et al.*, 1998). As atividades de peroxidases foram descontadas das atividades detectadas para lacases.

Manganês peroxidases – MnP

A atividade de manganês-peroxidase foi determinada pelo método proposto por Kuwahara *et al.* (1984), utilizando-se o vermelho de fenol como substrato. A mistura reacional (2mL) continha: 1mL de tampão succinato de sódio 20 mM, pH 4,5; 0,1mL de vermelho de fenol 0,1 % (m/v); 0,1 mL de lactato de sódio 250 mM; 0,2 mL de albumina bovina 0,5% (m/v); 0,05 mL de MnSO4 2mM; 0,05 mL de H2O2 2mM, sendo adicionados 0,5 mL de amostra. Após 5 min a 30°C, as reações foram interrompidas pela adição de 0,04 mL de NaOH 2M. A formação do produto de oxidação foi quantificada pela variação da absorbância em espectrofotômetro (μ610 = 4,46x104 M-1cm-1) através de 0,3 mL colocados em uma placa de 96 poços, sendo considerado um branco para cada amostra com tempo zero de reação.

pH ótimo da atividade de lacases

Para verificar a influência do pH na atividade enzimática de lacases foi realizada a mensuração desta enzima, utilizando ABTS como substrato, conforme exposto acima, porém utilizando três diferentes tampões com pHs variando de 2,5 a 8. As análises foram realizadas com tampão McIlvaine, acetato de sódio e citrato de sódio.

Temperatura ótima da atividade de lacases

Para verificação da temperatura ótima utilizando-se ABTS como já descrito anteriormente, sendo avaliadas cinco diferentes temperaturas de análise: 25, 30, 35, 40 e 45°C.

Termoestabilidade da atividade de lacases

A termoestabilidade de lacases foi avaliada em 20°C, 30°C, 40°C, 50°C e 60°C. Alíquotas das amostras foram coletadas nos tempos 0, 3, 6, 12, 24, 36 e 48h. A determinação da atividade enzimática de lacases foi feita conforme descrito acima, utilizando ABTS.

Zimograma de lacases

A determinação da massa molecular das lacases foi realizada por eletroforese em gel de poliacrilamida (SDS-PAGE), segundo metodologia descrita por Laemmli (1970) e modificada por Camassola *et al.* (2013). Inicialmente, 50 μL foi liofilizado e ressuspendido em 30 μL de tampão amostra. Foi um gel para empilhamento com concentração 4% (m/v) e 0,05 mL de dodecil sulfato de sódio (SDS) 10%; e um gel para separação com concentração 12% (m/v) e 0,1 mL SDS 10%. Para isto foi utilizado o sistema Mini-PROTEAN Tetra da Bio-Rad®. Para coloração, o SDS foi removido por lavagem do gel em temperatura ambiente em solução A (Triton X100® 2,5%) e solução B (tampão acetato de sódio, pH 5,0) por 10 minutos cada uma. O gel foi transferido para uma placa de vidro e uma camada de ABTS-ágar (0,02 g de ABTS, 0,4 g de ágar, 40 mL de água aquecida até dissolver ágar) foi colocada sobre o gel. Poucos minutos após, em temperatura ambiente, houve o surgimento de bandas com coloração verde. O marcador utilizado foi o Precision Plus ProteinTM Standards da Bio-Rad® com bandas de 10 a 250 kD.

Análises estatísticas

Neste trabalho, a partir dos resultados da análise das triplicatas das amostras, foram calculadas as médias e os desvios padrões da média. Em alguns casos, também foram realizados testes estatísticos de análise de variância (*one-way* ANOVA) e pós-teste de Tukey, como também o teste-t, utilizando nível de probabilidade (P) inferior a 5% (p < 0,05), com o auxílio do programa GraphPad Prism.

4. RESULTADOS E DISCUSSÃO

4.1. Coletas

Foram coletadas e analisadas 123 coleções (Tabela 4), distribuídas nos gêneros: *Agaricus* com 33 coleções, sendo 4 espécies propostas como novas (Cap. 3) e outras 6 em processo de identificação; *Chlorophyllum* com 33 coleções distribuídas em 3 espécies, sendo uma nova combinação (Cap. 2); e *Macrolepiota* com 55 coleções distribuídas em 8 espécies, das quais 2 foram propostas como novas e outras 3 em processo de identificação.

Diversas coletas foram realizadas em áreas urbanas como praças, jardins de canteiros de ruas e rurais com predomínio de gramíneas e de locais de pastagens. Do total de coleções obtidas 26 foram trazidas por colaboradores de UCs, área urbana e rural o que incrementou em muito este trabalho.

4.2. Análises moleculares

Neste estudo fornecemos 116 novas sequências dos gêneros *Agaricus*, *Chlorophyllum* e *Macrolepiota* do Brasil; destas, 47 de ITS, 37 de LSU, 29 de RPB2 e 3 de TEF1. A maior parte representa as primeiras sequências dos gêneros de material brasileiro. Maiores detalhes de como as sequências estão distribuídas entre as espécies podem ser encontrados nos Manuscritos I, II e III.

4.3. Revisão de herbários

Herbário PACA

Todo o material dos gêneros *Chlorophyllum* e *Macrolepiota* que estava em condições razoáveis foi examinado e comparado, quando possível, às nossas coleções. Foram confirmadas as espécies de *C. molybdites*, *M. bonaerensis*, *M. pulchella. Chlorophyllum rhacodes* estava identificado como *M. rhacodes* (PACA 20764) e foi corrigido.

Não foi possível a extração de DNA dos materiais tipo examinados de *M. brasiliensis*, *M. pulchella*, e *M. stercoraria* e outros materiais devido às condições do material que datam de 1907 a 1940 e provavelmente eram preservados em naftalina o que era habitual nos herbários, no século passado.

O gênero *Agaricus* não foi revisado devido ao mal estado de conservação do material. UFRN-Fungos

A revisão demonstrou que os gêneros *Chlorophyllum* e *Macrolepiota* estavam misturados, o que foi corrigido. Foi encontrada e identificada *M. pulchella*, da qual não havia registro para a região Nordeste.

Uma nova espécie de *Macrolepiota* foi descrita a partir de coleta e de material do Herbário UFRN-Fungos, *M. sabulosa* (Cap. 1). Também neste herbário *Agaricus* não foi revisado devido ao mal estado de conservação do material.

ICN

A revisão confirmou a presença dos gêneros *Agaricus*, *Chlorophyllum* e *Macrolepiota*. A comparação do material com nossas coleções possibilitou a identificação das seguintes espécies: *C. molybdites* e *Leucoagaricus lilaceus* Singer que foi combinado para *C. lilaceum* conforme descrito no Manuscrito II, Capítulo 3 deste trabalho e as coleções de *L. lilaceus* foram corrigidas para *C. lilaceum*. Também foi confirmada *M. bonaerensis* e *M. pulchella*. Foram encontradas 2 coleções de *Macrolepiota sp1* que estava identificada como *M. cf. colombiana* que estão sendo analisadas, uma vez que confirmamos não se tratarem de *M. colombiana*. As coleções identificadas como *M. procera* pertencem também a *Macrolepiota* sp1. Foi extraído o DNA das coleções de *Macrolepiota* sp1, mas não foi possível a extração do DNA de *C. lilaceum* do material deste herbário.

Na comparação morfológica do material do gênero *Agaricus* do herbário com nossas coleções foi possível identificar *A. porphyrizon* e *A. silvaticus*, no entanto não obtivemos êxito nas análises moleculares dessas coleções.

HBEI

Toda coleção de *Agaricaceae* estava em péssimo estado de conservação, impossibilitando qualquer análise. Apenas uma exsicata foi recuperada: F124 HBEI-026 citada como *Chlorophyllum rhacodes* por Alves *et al.* (2006); no entanto, após análises microscópicas do material foi identificado como do gênero *Macrolepiota*.

HBC

As coleções de *Agaricaceae* também estavam em péssimas condições de conservação neste herbário. Algumas exsicatas foram trazidas para análise. Espécies identificadas como *L. lilaceus* e *Leucoagaricus* sp. foram identificadas e corrigidas para *C. lilaceum*. Não foi possível a extração de DNA do material.

Adicionalmente foram examinadas duas coleções de *C. hortense* do Herbário FLOR, sendo

 $TABELA\ 5-Esp\'{e}cies\ identificadas$

)		0 2 1 4 2 1	0 4			-	1	Mol	Molecular		
Genero	Especie	n' Coletor	n° tombo	Municipio	N.	Local	Bioma	ITS	LSU	RPB2	TEF1
Chlorophyllum	molybidites	Fernada 900	ICN 199174	Viamão	RS	AUrb	PA	×	×	×	
Chlorophyllum	molybidites	182	ICN 199177	Rio Grande	RS	UCAntr	PA	1	1		1
Chlorophyllum	molybidites	657	ICN 199171	Rio Grande	RS	ZRAntr	PA	×	×	×	ì
Chlorophyllum	molybidites	696	ICN 199172	Nova Santa Rita	RS	AUrb	MA	1	1]	1
Chlorophyllum	molybidites	606	ICN 199169	Canoas	RS	AUrb	MA				1
Chlorophyllum	molybidites	230	ICN 199168	Porto Alegre	RS	AUrb	MA		1		1
Chlorophyllum	molybidites	696	ICN 199172	Nova Santa Rita	RS	AUrb	MA	1	1		Ĩ
Chlorophyllum	molybidites	217	ICN 199165	Porto Alegre	RS	AUrb	MA	1	1	1	1
Chlorophyllum	molybidites	632	ICN 199170	Porto Alegre	RS	AUrb	MA	Ţ	1	-	Ī
Chlorophyllum	molybidites	156	ICN 199164	Canoas	RS	AUrb	MA		I		Ĩ
Chlorophyllum	molybidites	309	ICN 199166	Canoas	RS	AUrb	MA	1	1		ì
Chlorophyllum	molybidites	357	ICN 199167	Canoas	RS	AUrb	MA	1			T
Chlorophyllum	molybidites	ACM 562	ICN 199175	Florianópolis	RS	AUrb	MA	1	1	I	T
Chlorophyllum	molybidites	687	UFRN-F 2695	Natal	RN	AUrb	MA	×		I	Ī
Chlorophyllum	molybidites	688	UFRN-F 2696	Natal	RN	AUrb	MA	×		Ţ	1
Chlorophyllum	molybidites	731	ICN 199173	Porto Alegre	RS	AUrb	MA	1	1		1
Chlorophyllum	hortense	149	ICN 199176	Rio Grande	RS	UCAntr	PA	×	1		1
Chlorophyllum	hortense	617	ICN 199178	Porto Alegre	RS	ZRAntr	MA		1	l	1
Chlorophyllum	hortense	622	ICN 199179	Porto Alegre	RS	ZRAntr	MA	1			1
Chlorophyllum	hortense	626	ICN 199180	Viamão	RS	ZRAntr	MA		I	I	ï

Continua (1/7)

Continua	ıcão (2	2/7)																
Macrolepiota	Macrolepiota	Macrolepiota	Macrolepiota	Macrolepiota	Chlorophyllum	Chlorophyllum	Chlorophyllum	Chlorophyllum	Chlorophyllum	Chlorophyllum	Chlorophyllum	Chlorophyllum	Chlorophyllum	Chlorophyllum	Chlorophyllum	Chlorophyllum	Chlorophyllum	Chlorophyllum
pulchella	sabulosa	sabulosa	cianollameta	cianollameta	lilaceum	lilaceum	lilaceum	lilaceum	lilaceum	lilaceum	hortense	hortense	hortense	hortense	hortense	hortense	hortense	hortense
683	MDX 70	689	ACM 1165	516	GAS 1228	GAS 1081	GAS 1045	Carol 031	Carol F003	Carol F002	751	732	713	712	698	663	645	627
UFRN-Fungos 2690	UFRN-F 2694	UFRN-F 2693	ICN 187663	ICN 187662	ICN 199160	ICN 199159	ICN 199158	ICN 199163	ICN 199162	ICN 199161		ICN 199187	ICN 199186	ICN 199185	ICN 199184	ICN 199183	ICN 199182	ICN 199181
Natal	Natal	Natal	Porto Alegre	Porto Alegre	Derrubadas	Campo Mourão	Fênix	Bandeirantes	Santa Mariana PR	Santa Mariana PR	Viamão	Nova Santa Rita	Nova Santa Rita	Nova Santa Rita	Nova Santa Rita	Rio Grande	Porto Alegre	Viamão
RN	RN	RN	RS	RS	PR	PR	PR	PR	PR	PR	RS	RS	RS	RS	RS	RS	RS	RS
UCMat	UCMat	UCMat	UCMat	UCMat	UCMat	UCMat	UCMat	UCMat	UCMat	UCMat	ZRAntr	AUrb	AUrb	AUrb	AUrb	ZRAntr	ZRAntr	ZRAntr
MA	MA	MA	MA	MA	MA	MA	MA	MA	MA	MA	MA	MA	MA	MA	MA	PA	MA	MA
×	×	×	×	×	×	×	×		1	1			1	1	×	1		1
×	×	×	×	×	×	×	1	1	1	1	1		1	1		1		1
×	×	×	1	1	I	×	1	1	1	1		ļ	1	1	Ţ	1	1	1

Continua (2/7)

Conti	nuacã	o (3/7)																
Macrolepiota	Macrolepiota	Macrolepiota Macrolepiota	Macrolepiota	Macrolepiota	Macrolepiota	Macrolepiota	Macrolepiota	Macrolepiota	Macrolepiota	Macrolepiota	Macrolepiota	Macrolepiota	Macrolepiota	Macrolepiota	Macrolepiota	Macrolepiota	Macrolepiota	Macrolepiota
sp2	sp2	sp1	sp1	spI	spI	bonaerensis	bonaerensis	bonaerensis	bonaerensis	bonaerensis	bonaerensis	bonaerensis	bonaerensis	bonaerensis	kerandi	kerandi	pulchella	pulchella
721	720	755 SCF 2850	ACM 1167	612	563	739	738	737	Gumboski 5293 ICN 199590	754	753	752	503	148	362	321	685	684
ICN 199599	ICN 199598	ICN 199596 ICN 199597	ICN 188002	ICN 199595	ICN 199594	ICN 199593	ICN 199592	ICN 199591	ICN 199590	ICN 199589	ICN 199588	ICN 199587	ICN 199586	ICN 199585	ICN 199583		UFRN-Fungos 2692	UFRN-Fungos 2691
Porto Alegre	Porto Alegre	Lajeado Sarandi	Porto Alegre	Porto Alegre	Porto Alegre	Nova Santa Rita	Nova Santa Rita	Nova Santa Rita	Rio Negrinho	Viamão	Viamão	Viamão	Canoas	Rio Grande	São Francisco de Paula	Canoas	Natal	Natal
RS	RS	RS RS	RS	RS	RS	SC	RS	RS	SC	RS	RS	RS	RS	RS	RS	RS	RN	RN
UCMat	UCMat	ZRAntr UCMat	UCMat	UCMat	UCMat	ZRAntr	ZRAntr	ZRAntr	ZRAntr	ZRAntr	ZRAntr	ZRAntr	AUrb	UCAntr	UCAntr	AUrb	UCMat	UCMat
MA	MA	MA MA	MA	MA	MA	MA	MA	MA	MA	MA	MA	MA	MA	PA	MA	MA	MA	MA
×	×	1 1	×		×	1	[1	1		1	I	1	×	×	1	×	×
×	×	1 1	×	I	×	1	1	1	1	1		I	1	×	×		×	×
×	×		1	l	×	I	I	1	I	I	1	l			I	1	×	×
1	1		1	1	1	1	1		I	1	1	1	1	1	1	1	1	1

Continua (3/7)

55

Continua	

COL	14111	uuv	uo	(/	• ,													
Macrolepiota	Macrolepiota	Macrolepiota	Macrolepiota	Macrolepiota	Macrolepiota	Macrolepiota Macrolepiota												
spI	spl	spl	spI	spI	spI	spI	sp1	sp1	sp1	sp1	sp1	sp3 sp3						
547	546	529	528	521	520	519	498	430	366	365	335	322	317	314	235	234	229	361 363
ICN 199617	ICN 199616	ICN 199615	ICN 199614	ICN 199613	ICN 199612	ICN 199611	ICN 199610	ICN 199609	ICN 199584	ICN 199608	ICN 199607	ICN 199606	ICN 199605	ICN 199604	ICN 199603	ICN 199603	ICN 199602	ICN 199600 ICN 199601
Canoas	Porto Alegre	Canoas	Canoas	Canoas	Canoas	São Francisco de Paula	Canoas Canoas											
RS	RS	RS	RS	RS	RS	RS RS												
AUrb	AUrb	AUrb	UCAntr	UCMat	UCAntr	UCAntr	UCAntr	UCAntr	AUrb AUrb									
MA	MA	MA	MA	MA	MA	MA												
1	1	1	1	1			I	1	1	1	1		1	1	1	1	1	×
1	1	1	I	1	1		I	1	1	1	1		1	1	1	1	1	×
I	1]	l	1]	I	I	I	I	Ι	1	Ü	I	I	1	1	I	×
1		1		1			Ţ		1	1			Î	1	1	1	1	×

Continua (4/7)

C 4*	~ ~	(E IE)
Continua	ıçao	(5/7)

Agaricus	Agaricus	Agaricus	Agaricus	Agaricus	Agaricus Agaricus	Agaricus	Agaricus	Macrolepiota	Macrolepiota	Macrolepiota	Macrolepiota	Macrolepiota	Macrolepiota	Macrolepiota	Macrolepiota	Macrolepiota	Macrolepiota	Macrolepiota
cf. porphyrizon	xathovolvatus	xathovolvatus	xathovolvatus	xathovolvatus	reativus lacaseus	hirsutus	tollocanensis	spl	sp1	spI	sp1	spI	sp1	sp1	spI	spI	spI	spl
401	631	397	383	377	506 551	492	549	368	ACM 1343	ACM 1334	ACM 887	ACM 578	ACM 423	SCF 2851	643	642	641	640
ICN 199557	ICN 198974	ICN 198397	ICN 198972	ICN 198971	ICN 198976 ICN198977	ICN 198975	ICN 198978		ICN 199627	ICN 199626	ICN 199625	ICN 199624	ICN 199623	ICN 199622	ICN 199621	ICN 199620	ICN 199619	ICN 199618
Porto Alegre	Porto Alegre	Porto Alegre	Porto Alegre	Porto Alegre	Viamão Canoas	Porto Alegre	Canoas	Porto Alegre	Porto Alegre	Porto Alegre	Florianópolis	Florianópolis	Florianópolis	Sarandi	Rio Grande	Rio Grande	Rio Grande	Rio Grande
RS	RS	RS	RS	RS	RS RS	RS	RS	RS	RS	RS	SC	SC	SC	RS	RS	RS	RS	RS
UCMat	UCMat	UCMat	UCMat	UCMat	UCMat UCMat	UCMat	UCMat	AUrb	UCMat	UCMat	AUrb	AUrb	AUrb	UCMat	UCAntr	UCAntr	UCAntr	UCAntr
MA	MA	MA	MA	MA	MA MA	MA	MA	MA	MA	MA	MA	MA	MA	MA	PA	PA	PA	PA
×	×	×	×	×	××	×	×	I	I	1	I		I	I	×	1	1	1
×	×	×	×	×	××	×	×	I	1	1			I	I	I	I		1
×	×	×	×	×	××	×	×	Ţ	1		I	1	I	1		I	1	1
1	1	1	1	1	1 1	Ţ	1	1	1	1	[1		1		1		1

Continua (5/7)

Continuação	(6/7)
-------------	-------

Agaricus	Agaricus	Agaricus	Agaricus	Agaricus	Agaricus	Agaricus	Agaricus	Agaricus	Agaricus	Agaricus	Agaricus	Agaricus	Agaricus	Agaricus	Agaricus	Agaricus	Agaricus	Agaricus
sp3	sp3	sp3	sp3	sp2	sp2	sp2	Spl	sp1	sp1	cf. silvaticus	cf. silvaticus	cf. silvaticus	cf. silvaticus	cf. silvaticus	cf. porphyrizon	cf. porphyrizon	cf. porphyrizon	cf. porphyrizon
586	412	409	404	670	654	647	382	379	371	736	735	467	209	207	621	571	447	419
ICN 199576	ICN 199575	ICN 199574	ICN 199573	ICN 199572	ICN 199571	ICN 199570	ICN 199569	ICN 199568		ICN 189233	ICN 189232	ICN 199564	ICN 199563		ICN 199561	ICN 199560	ICN 199559	ICN 199558
																	100	
Porto Alegre	Porto Alegre	Porto Alegre	Porto Alegre	Rio Grande	Rio Grande	Rio Grande	Canoas	Canoas	Canoas	Caxias do Su		Cornélio Procópio	Porto Alegre	Porto Alegre	Porto Alegre	Porto Alegre	Porto Alegre	
Porto Alegre RS	Porto Alegre RS	Porto Alegre RS	Porto Alegre RS	Rio Grande RS	Rio Grande RS	Rio Grande RS	Canoas RS	Canoas RS	Canoas RS	Caxias do Sul	Caxias do Sul RS			Porto Alegre RS				Porto Alegre RS
										Caxias do Sul ZRAntr	Caxias do Sul	Cornélio Procópio	Porto Alegre		Porto Alegre	Porto Alegre	Porto Alegre	Porto Alegre
RS	RS	RS	RS	RS ZRAntr	RS ZRAntr	RS ZRAntr	RS AUrb	RS AUrb	RS AUrb		Caxias do Sul RS ZRAntr	Cornélio RS ZRAntr Procópio	Porto Alegre RS	RS	Porto Alegre RS	Porto Alegre RS	Porto Alegre RS	Porto Alegre RS
RS UCMat	RS UCMat	RS UCMat	RS UCMat MA	RS ZRAntr PA	RS ZRAntr PA	RS ZRAntr PA	RS AUrb MA	RS AUrb MA	RS AUrb MA	ZRAntr	Caxias do Sul RS ZRAntr MA	Cornélio RS ZRAntr Procópio	Porto Alegre RS UCMat MA	RS UCMat MA	Porto Alegre RS UCMat MA	Porto Alegre RS UCMat MA	Porto Alegre RS UCMat	Porto Alegre RS UCMat
RS UCMat	RS UCMat MA	RS UCMat MA	RS UCMat MA X	RS ZRAntr PA X	RS ZRAntr PA X	RS ZRAntr PA —	RS AUrb MA —	RS AUrb MA X	RS AUrb MA —	ZRAntr MA —	Caxias do Sul RS ZRAntr MA	Cornélio RS ZRAntr MA — Procópio	Porto Alegre RS UCMat MA	RS UCMat MA —	Porto Alegre RS UCMat MA	Porto Alegre RS UCMat MA —	Porto Alegre RS UCMat MA	Porto Alegre RS UCMat
RS UCMat	RS UCMat MA	RS UCMat MA —	RS UCMat MA X X	RS ZRAntr PA X X	RS ZRAntr PA X X	RS ZRAntr PA	RS AUrb MA — —	RS AUrb MA X X	RS AUrb MA — —	ZRAntr MA — —	Caxias do Sul RS ZRAntr MA X —	Cornélio RS ZRAntr MA — Procópio	Porto Alegre RS UCMat MA	RS UCMat MA	Porto Alegre RS UCMat MA	Porto Alegre RS UCMat MA — —	Porto Alegre RS UCMat MA X	Porto Alegre RS UCMat

Continua (6/7)

Continuação (7/7)

Agaricus	Agaricus	Agaricus	Agaricus	Agaricus
sp6	sp5	sp5	sp4	sp4
E. Gumboski IC 5294	669	660	621	488
N 199581		ICN 199579	ICN 199561	ICN 199577
São Francisco SC UCMat do Sul	Rio Grande RS ZRAntr PA	Porto Alegre RS UCMat	Porto Alegre RS UCMat	Porto Alegre RS UCMat
SC	RS	RS	RS	RS
UCMat	ZRAntr	UCMat	UCMat	UCMat
MA	PA	MA	MA	MA
×	×	×	×	×
1	×	×	×	1
1	×	×	×	1
1	1	1	1	Ι

Legenda - UC no interior da mata - **UCMat**; UC, local antropizado - **UCAntr**; Área urbana - **AUrb**; e Zona rural antropizada -**ZRAntr**; Pampa - PA; Mata Atlântica - MA

que de uma delas foi extraído o DNA com sucesso e incluído nas análises moleculares do gênero. Outras três coleções do Herbário JBRJ, duas de *Chlorophyllum* e uma de *Macrolepiota* foram examinadas, sendo uma confirmada com *M. pulchella*, mas não foi possível a extração de DNA para as análises moleculares.

4.4. Análises enzimáticas

Das coleções que se obteve cultivos, quinze foram selecionados para as análises enzimáticas. As linhagens estão mantidas na coleção de microrganismos do Laboratório de Enzimas e Biomassas do Instituto de Biotecnologia, Universidade de Caxias do Sul, Brasil. Esses quinze isolados foram submetidos a análises quali-quantitativas para seleção das cepas mais promissoras nos meios ácido gálico (AG) e corante azul (AC) e comparados com o controle *P. albidus* (88-F) para a produção de fenol-oxidases. Destas, dez apresentaram uma relação superior ao controle em AG e onze foram superiores em AC. Pelo cruzamento dos valores e pelas características de crescimento dos fungos, quatro foram selecionados para as análises qualitativas em cultivo sólido e submerso: *Agaricus lacaseus*, *A. xanthovolvatus*, *Chlorophyllum hortense* e *Macrolepiota* sp4.

Em relação aos resultados do cultivo sólido, os isolados analisados não se mostraram promissores, uma vez que a produção enzimática ficou muito abaixo do controle (*P. albidus*).

Já nos resultados relativos ao cultivo submerso um dos isolados, *A. lacaseus*, produziu uma grande quantidade de lacases, sendo pouco mais de duas vezes o valor do controle (357,9 U.mL⁻¹ em relação ao controle que produziu 159,7 U.mL⁻¹,). Também houve produção de outras enzimas em menor quantidade por outros isolados, conforme detalhado no capítulo 4. Com a variação de condições nutricionais, de pH e de temperatura essa produção pode ainda ser bastante incrementada. Atualmente, poucas espécies são utilizadas como *A. blazei* (*A. brasiliensis*) e *A. subrufescens*. Fica assim demonstrado a viabilidade da utilização biotecnológica de espécies nativas da família *Agaricaceae*.

3.5. LISTA DE MANUSCRITOS

3.5.1. Manuscrito I

Taxonomy and phylogeny of Macrolepiota: two new species from Brazil

Eduardo Fazolino Perez, Sandy C. Suaza Blandón, Genivaldo Alves-Silva, Bernardo E. Lechner, Rosa Mara B. Silveira

Mycologia 2018, VOL. 110,. 5, 930–940 https://doi.org/10.1080/00275514.2018.1500848

3.5.2. Manuscrito II

Uncovering *Chlorophyllum* diversity within a tenuous morphological border: multi-loci phylogenetic analyses from Brazilian specimens

Eduardo Fazolino Perez, Genivaldo Alves-Silva, Rosa Mara B. Silveira Mycologia

A ser submetido

3.5.3. Manuscrito III

Agaricus Neotropical: Xanthodermatei section from Brazil

Eduardo Fazolino Perez, Genivaldo Alves-Silva, Rosa Mara B. Silveira Phytotaxa

A ser submetido

3.5.4. Manuscrito IVX

Agaricaceae native Brazilian species: a new perspective on the production of laccases

Eduardo Fazolino Perez, Roselei Claudete Fontana, Marli Camassola, Rosa Mara B. Silveira

Applied Biochemistry and Biotechnology

A ser submetido

3.5.1. Manuscrito I

Taxonomy and phylogeny of Macrolepiota: two new species from Brazil

Eduardo Fazolino Perez, Sandy C. Suaza Blandón, Genivaldo Alves-Silva, Bernardo E. Lechner, Rosa Mara B. Silveira

MYCOLOGIA

https://doi.org/10.1080/00275514.2018.1500848

MYCOLOGIA 2018, VOL. 110, NO. 5, 930–940 https://doi.org/10.1080/00275514.2018.1500848

Taxonomy and phylogeny of Macrolepiota: two new species from Brazil

Eduardo Fazolino Perez 👵, Sandy C. Suaza Blandón 👵, Genivaldo Alves-Silva 💁, Bernardo E. Lechner 👵, and Rosa Mara B. Silveira 👼

Postgraduate Program in Botany, Institute of Biosciences, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves, 9500, Building 43433, Postal Code 91501-970, Porto Alegre, Brazil; CONICET, Instituto de Micología y Botánica (InMiBo), Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina

ABSTRACT

Macrolepiota is a poorly known genus in the Neotropics. In order to increase knowledge about this group, we collected specimens from the Atlantic Forest in southern and northeastern Brazil. Macrolepiota cyanolamellata and M. sabulosa from subtropical and tropical regions, respectively, are proposed as new species. We performed molecular phylogenetic analyses of the nuc rDNA internal transcribed spacer region ITS1-5.85-ITS2 (ITS) and the combined data set ITS + nuclear large subunit rDNA (28S) + RNA polymerase II second largest (RPB2), as well as morphological analyses. Two lineages with unique morphotypes were found. The species proposed were strongly supported as the sister lineage closely related to M. clelandii and M. subcitrophylla. Detailed descriptions and illustrations of their macro- and microscopic characters are provided.

ARTICLE HISTORY

Received 2 October 2017 Accepted 12 July 2018

KEYWORDS

Agaricaceae; ITS; Neotropical fungi; RPB2; 28S; 2 new taxa

INTRODUCTION

Macrolepiota, a genus within Agaricaceae (Agaricales, Basidiomycota), was established by Singer (1948). Currently, there are about 35 species worldwide (Kirk et al. 2008; Ge et al. 2010, 2012; Lebel and Syme 2012) and the genus is classified into three sections: Macrolepiota (Singer 1948), Macrosporae (Bon 1981), and Volvatae (Ge et al. 2010). Macrolepiota contains secotioid species, although most are agaricoid (Lebel and Syme 2012). Several Macrolepiota species are used for cooking, such as M. procera (Ayaz et al. 2011), M. bonaerensis (Wright and Albertó 2002), and M. kerandi (Wright and Albertó 2002). The agaricoid species are macroscopically characterized by medium- to large-sized, fleshy basidiomata, free lamellae remote from the stipe, pileus covered by trichodermic scales, spore print white to cream, a prominent, simple to complex annulus, which is eventually mobile, stipe often covered by colored bands in full-grown specimens, and volva present in some species.

Microscopically, they have large basidiospores, generally larger than 10 μ m, thick-walled, with germ pore covered by a hyalinous cap (Vellinga 2003b), congophilous, metachromatic, and dextrinoid; clamp connections present in most species; with cheilocystidia, but never with pleurocystidia.

Although Macrolepiota is well known in Europe, China, and Australia, the genus has been scarcely studied in tropical and subtropical areas, especially in South America, where there are few well-defined species that lack molecular studies. Currently, 15 Macrolepiota species have been recorded from South America: M. bonaerensis (Rick 1961; Wright and Albertó 2002; Rosa and Capelari 2009; Suaza Blandón 2016); M. brasiliensis (Rick 1961; Raithelhuber 1988); M. brunnescens (Heinemann and de Meijer 1996; Vellinga and Yang 2003); M. colombiana (Franco-Molano 1999; Ferreira and Cortez 2011); M. dolichaula (Grandi et al. 1984); M. excoriata (Rick 1907); M. fornica (Raithelhuber 1988); M. fuligineosquarrosa (Alves et al. 2016); M. gracilenta (Capelari et al. 2015); M. kerandi (Wright and Albertó 2002; Putzke et al. 2014; Suaza Blandón 2016); M. mastoidea (Grandi et al. 1984; Rosa and Capelari 2009); M. procera (Rick 1961; Bononi et al. 1984); M. pulchella (Vellinga and Yang 2003); M. stercoraria (Rick 1961; Raithelhuber 1988); and M. zeyheri (Rick 1961). Brazil holds records for all of the aforementioned species, except for M. fornica. However, most of these records use European or Asian names, and thus far such records have not been reviewed and have very little molecular information.

In order to better understand the *Macrolepiota* species from Brazil, we made several field collections from

Atlantic Forest areas. As a result, two new species of Macrolepiota are proposed herein, based on morphological and molecular phylogenetic analyses.

MATERIALS AND METHODS

Sampling and morphological analysis.—The materials examined were collected from Rio Grande do Sul State, southern Brazil, and Rio Grande do Norte State, northeastern Brazil, between May 2015 and June 2016, and were deposited in the herbaria ICN and UFRN. The herbarium codes followed Thiers (continuously updated). Color notations in the descriptions followed Kornerup and Wanscher (1978). Macromorphological descriptions were based on field notes and color slides of the material. For micromorphological observations, free-hand sections of the basidiomata were mounted in 5% KOH and Congo red. Pileal/stipe structure, cheilocystidia, basidiospores, and basidia were observed under a light microscope at 1000× magnification. Melzer's reagent was used to test the dextrinoid reaction of the basidiospores. We also checked spore wall reactions to cresyl blue and Congo red. The abbreviation codes used [n/m/p] represent n basidiospores measured from m basidiomata of p collections in 5% KOH solution. Dimensions of basidiospores are presented in the form (a)b-c(d). The range b-c contains a minimum of 90% of the measured values. Extreme values (a and d) are given in parentheses. Q refers to the length/width ratio of a basidiospore in side view; avQ means average Q of all basidiospores ± sample standard deviation.

DNA isolation and amplification.—Genomic DNA was extracted from dried specimens. We amplified the following regions: nuc rDNA internal transcribed spacer region ITS1-5.8S-ITS2 (ITS) using primers ITS1F and ITS4 (White et al. 1990); nuclear large subunit 28S nuc rDNA (28S) using primers LR0R and LR7 (Vilgalys and Hester 1990); and the region located between domains 6 and 7 of the RNA polymerase II second largest (RPB2) using primers bRPB2-6F and bRPB2-7.1R (Frøslev et al. 2005; Matheny 2005).

Polymerase chain reaction (PCR) was performed with a total volume of 30 µL containing 1 unit Taq DNA polymerase, 3.0 µL of 10× Taq polymerase reaction buffer (Applied Biological Material, Vancouver, Canada), 3.0 µL of bovine serum albumin solution (Sigma-Aldrich, St. Louis, Missouri), 50 μM of dNTP mix, $0.75 \mu L$ of $10 \mu M$ each of the two primers, and 1-2μL of total DNA. PCR amplification of ITS was performed with 2 min initial denaturation at 95 C, followed by 35 cycles of 30 s at 95 C, 1 min and 30 s at 57

C, and 30 s at 72 C, with a final extension of 10 min at 72 C following the last cycle. PCR amplification of 28S and RPB2 followed Vilgalys and Hester (1990) and Matheny (2005), respectively. Purification and DNA sequencing were performed by Macrogen (Geumcheon-gu, Korea). For RPB2 and ITS, we used the same primers as for amplification, and for 28S, LR0R and LR5.

Alignment and phylogenetic reconstructions.— Sequences were assembled and manually corrected with Geneious 9.1.4 (Kearse et al. 2012), then automatically aligned with MAFFT 7 (Katoh and Standley 2013) under the auto mode for strategy. When necessary, the alignment was manually adjusted with MEGA 7.0.20 (Kumar et al. 2016). Potential ambiguously aligned segments of ITS1-ITS2 were detected by Gblocks 0.91b (Castresana 2000) through block parameters: the minimum number of sequences for conserved positions was 53% from total sequences, the minimum number of sequences for flank positions was 55% from total sequences, the maximum number of contiguous nonconserved positions was 8, the minimum length of a block was 2, and the allowed gap position was half. The data set in the ITS analyses was subdivided into three data partitions: ITS1, 5.8S, and ITS2, and combined analyses were subdivided into seven data partitions: ITS1, 5.8S, ITS2, 28S, and RPB2-1st, -2nd, and -3rd codon positions; the RPB2 intron (the fourth) was excluded. The alignments were

We carried out single-gene and combined data set phylogenetic analyses with ITS and ITS+28S+RPB2 sequences. A total of 97 specimens (two outgroup species) were included in the ITS phylogenetic analyses; of these, 30 were included in the combined data analysis. The 28S matrix was built up to domain D3 (LR5 primer). All Macrolepiota sequences used in this study are available in GenBank and were primarily taken from Vellinga et al. (2003) and Johnson (1999). Leucoagaricus barssii and L. meleagris were designated as outgroup based on previous studies (Ge et al. 2010, 2012). All materials and sequences used in this study are listed in SUPPLEMENTARY TABLE 1. Country abbreviations follow International Organization for Standardization (ISO) 3166 code.

deposited into TreeBASE (submission ID: S21091).

All phylogenetic analyses were performed online using the CIPRES Science Gateway (Miller et al. 2010). We analyzed the data sets separately with maximum likelihood and Bayesian inference. Maximum likelihood (ML) analysis was carried out in RAxML 8.2.9 (Stamatakis 2014). The analysis first involved

100 ML searches, each starting from one randomized stepwise addition parsimonious tree under a GTRGAMMAI model, with all parameters estimated by the software. We provided a partition file to force RAXML software to search for a separate evolution model for each data set. To access the reliability of the nodes, we computed the rapid bootstrapping replicates under the same model, allowing the program to halt bootstrapping automatically by extended majority rule (MRE)-based bootstopping criterion (Pattengale et al. 2010). Bootstrap (BS) values above 80 were considered significant (high support), and above 70 were considered moderately supported.

Bayesian inference (BI) was performed in MrBayes 3.2.6 (Ronquist et al. 2012), and evolutionary models for BI were estimated using the Akaike information criterion (AIC) for each partition, as implemented in MrModeltest 2.3 (Nylander 2004). The best-fit models for each partition were implemented as partition-specific models within partitioned mixed-model analyses (HKY+G for ITS1; JC for 5.8S; GTR+G for ITS2 and 28S; SYM+G for RPB2-1st, -2nd, and -3rd). We set Bayesian analyses with two independent runs, each with four simultaneous chains for 107 generations, sampling trees at every 1000th generation. The convergence diagnostic was calculated every 104 generation, and its critical value was set to stop the analysis automatically when the standard deviation of the split frequencies reached the value defined by the stopval command (stoprule = yes, stopval = 0.01). In all analyses, the first 25% of trees from each run were discarded as burn-in. Resulting trees from the two independent runs were then pooled to produce one 50% majority-rule consensus tree, and Bayesian posterior probabilities (BPPs) were generated for the resulting tree. A BPP value above 0.99 was considered significant (high support), and above 0.95 was considered moderately supported.

RESULTS

Phylogenetic analyses.—DNA sequence details. In this study, we provided 32 new sequences of Macrolepiota from Brazil, of which 14 were from ITS, 12 from 28S, and 6 from RPB2 (SUPPLEMENTARY TABLE 1). The ITS ranged from 333 (M. eucharis, ITS1 only, AF482854) to 747 (M. sabulosa, KY927715) bp. The final aligned matrix of the ITS1-5.8S-ITS2 (ITS) region was 742 bp long; of these, 76 bp were excluded by Gblocks. Contrary to the other lineages, the Macrosporae shared the 463-473 positions (TCTAACTTTTG) in the ITS2 region. In the concatenated matrix, the 5' region of

the 28S, including domains D1, D2, and D3, ranged from 791 (*M. orientiexcoriata*, JN940278) to 820 (e.g., *M. clelandii*, AF482882) bp. In alignment, the partial *RPB2* region was 587 and 590 bp long, corresponding to nucleotide positions 1050-1639 from *M. dolichaula* AFTOL-ID 481 complete *RPB2* (DQ385886). Additionally, the ITS was from 502 (*Macrolepiota* sp. 1, Faz643) to 652 (*Macrolepiota* sp. 2, Rother126) bp long. The final aligned matrix of the combined data set was 2063 bp long.

Single-gene analysis. In the RAxML analysis, ITS alignment had 313 distinct patterns, with a proportion of gaps and undetermined characteristics of 3.6%; the bootstopping criteria indicated that 408 replicates were sufficient to estimate the internal branch support, and the final ML optimization likelihood was -lnL = 3475.294357. The two Bayesian runs converged to stable likelihood values (-lnL = 3673.86, 3675.91) after 510 000 generations, and 3826 (about 75% of the sampled trees) stationary trees from each analysis were used to compute a 50% majority-rule consensus tree to calculate posterior probabilities. The best-scoring ML tree and 50% majority-rule consensus tree did not show major conflicts in the tree topology and were mostly congruent, which allowed us to combine them (FIG. 1).

Three main clades were recovered, namely, clade 1: Volvatae; clade 2: Macrosporae; and clade 3: Macrolepiota. Clade 1 had ML BS/BPP 100/1 and included three lineages: M. eucharis, M. velosa, and an undescribed species. In clade 2 (86/1), three subclades were recovered: M. mastoidea lineages, M. excoriata lineages, and M. orientiexcoriata. In clade 3 (89/1), the following species were retrieved: M. clelandii, M. colombiana, M. detersa, M. dolichaula, M. fuliginosa, M. permixta, M. procera, M. rhodosperma, M. subcitrophylla, M. turbinata, and four undescribed species. Two of the four undescribed species are described below as M. cyanolamellata (99/-) and M. sabulosa (100/1).

Combined data set analysis. In the Bayesian analysis, after 180 000 generations, runs converged to stable likelihood values (-lnL = 6904.33, 6904.73) and 2702 stationary trees were used to compute a 50% majority-rule consensus tree and to estimate BPPs of the branches. In the RAXML, combined alignment presented 508 distinct patterns, with a proportion of gaps and undetermined characters of 24.39%; the bootstopping criteria indicated 252 replications as sufficient to access the internal branch support, and the final ML optimization likelihood was -lnL = 6757.679061. No conflict involving significantly supported nodes was found; therefore, the best-scoring ML tree and the 50% majority-rule consensus tree were combined (SUPPLEMENTARY FIG. 1).

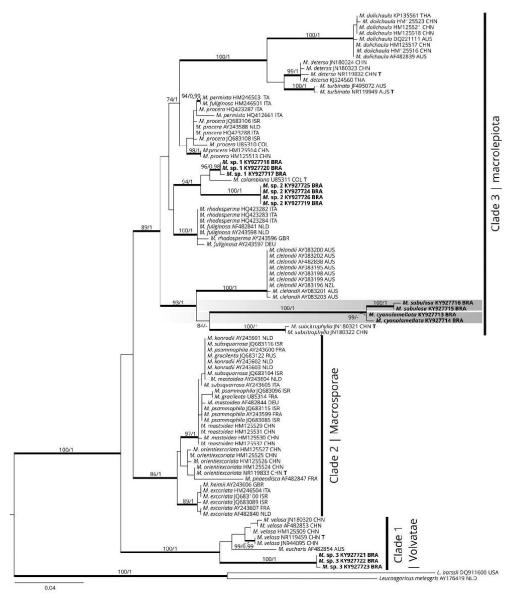


Figure 1. Phylogram showing the relationships of *Macrolepiota* based on nuc rDNA ITS sequences, inferred by maximum likelihood analysis (log likelihood –InL = 3475.3). The numbers above and below branches are ML BS/BPP = 80/0.99 or higher (high support) and ML BS/BPP of 70/0.95 or higher (moderate support), respectively. Strict consensus tree resulted in the same topology. Support in nodes is indicated by thickened branches when bootstrap values are \geq 80% and posterior probabilities are \geq 0.95. New sequences generated in this paper are marked in bold.

Of the three clades recovered in the single analysis, two (Volvateae and Macrosporae) were also retrieved in the combined analysis. Macrolepiota clelandii was placed as sister to the remaining species in the ML tree and was recovered as closely related to Macrosporae-Macrolepiota clade in the Bayesian tree (data not shown). Macrolepiota cyanolamellata and M. sabulosa were retrieved as sister to the remaining Macrolepiota species in the BI tree (data not shown), and as closely related to Volvateae (SUPPLEMENTARY FIG. 1) in the ML tree. All these aforementioned phylogenetic relationships were not supported.

Morphological analysis. - In this study, we collected and examined 67 specimens, preliminarily identified as M. bonaerensis, M. kerandi, Macrolepiota sp. 1, Macrolepiota sp. 2, and Macrolepiota sp. 3, as well as the two new species described herein. Furthermore, we examined the type material of M. bonaerensis (LPS 15287), as Agaricus bonaerensis, Buenos Aires, Argentina, 1880 (Spegazzini 1880); M. brasiliensis (PACA 17151), as Lepiota permixta var. brasiliensis, São Leopoldo, Rio Grande do Sul, Brazil, 1907 (Rick 1907); M. colombiana (Franco-M 1636), La Ceja, Colombia, 1998 (Franco-Molano 1999); M. pulchella (PACA 13897), as Lepiotella brunnea, São Leopoldo, Rio Grande do Sul, Brazil, 1933 (Rick 1938); and M. stercoraria (PACA 17177), as Lepiota stercoraria, São Leopoldo, Rio Grande do Sul, Brazil, 1933 (Rick 1937). Unfortunately, we did not successfully extract DNA from the type materials due to their preservation and contamination conditions.

Given the results of the phylogenetic inferences that placed two unknown lineages as closely related to *M. clelandii* and *M. subcitrophylla*, and the morphological data that defined them as unique morphotypes, these lineages represent two distinct undescribed species. Therefore, these species are proposed as follows.

TAXONOMY

Macrolepiota cyanolamellata Fazolino, Lechner & Suaza Blandón, sp. nov. FIGS. 2A-C, 3 MycoBank MB821449

Typification: BRAZIL. RIO GRANDE DO SUL STATE: Porto Alegre, Morro Santana, in the soil among dry leaves, 30°03′56.9″S, 51°7′28.9″W, 5 May 2015, Fazolino 000516 (holotype ICN 187662).

Diagnosis: Macrolepiota cyanolamellata is characterized by the bluish coloration of the lamellae, basidiospores with wide variation in size and shape, and the brown to reddish brown coverage of the pileus and lightly striate edges.

Etymology: "cyanolamellata" refers to the coloration of the lamellae in mature basidiomata.

Macroscopic features: Basidiomata medium-sized to large. Pileus 8.5-10.0 cm diam, fleshy, convex when young, plano-convex when mature with a distinct umbo at disk, dark brown (6F2, 6F3) on reddish gray background (10C2), at first smooth and continuous, then gradually breaking up into irregular patches covered with reddish brown to brown (8D3, 8E3) squamules scattered toward the margin; margin slightly striate and appendiculate. Lamellae free, crowded, white to grayish white (1A2, 1B1), becoming bluish (21B1, 21B2) with age, mainly at the edges, with lamellulae. Stipe 9.0-9.8 × 0.9-1.0 cm, cylindrical, central, attenuating upwards, grayish (21C1), covered with tiny brownish grey to reddish brown squamules (8E2, 8E3, 8E4); base slightly enlarged with white mycelium. Context whitish (1B1), does not change color when cut. Annulus ascending, simple, fixed, membranous, with the lower border the same color as the scales of the stipe. Fungal odor.

Microscopic features: Basidiospores [92/2/2], (7.5) $9.0-17.0(19.5) \times (4.5)6.0-9.0(11.0) \mu m$, Q = 1.38-2.27, avQ = 1.68 ± 0.28 variable in size and shape, ellipsoid to oblong, and some elongated and tapered, thickwalled, smooth, hyaline, dextrinoid, congophilous, metachromatic, with a germ pore covered with a hyaline cap in KOH. Basidia $26.0-38.0 \times 10.0-13.0 \mu m$, clavate, thin-walled, hyaline to pale orange, 4-spored. Cheilocystidia 19.0-53.5 × 6.5-11.5 µm, clavate, some with secondary septa, pale brownish pigmentation in KOH and small incrustations at the apex, in bunches, forming a sterile edge. Pleurocystidia absent. Squamules on pileus trichodermal, formed by cylindrical hyphae, pale brownish pigmentation in KOH; terminal elements $11.5-75.5 \times 7.5-12.5 \mu m$, cylindrical to narrowly clavate, thin-walled. Squamules on stipe similar to those on the pileus, terminal elements $29.5-71.0 \times$ 6.5-10.5 µm. Clamp connections observed at the hyphae of the stipe context and in base of basidia, basidiole, and cheilocystidia.

Habitat and known distribution: Terrestrial and saprotrophic, solitary, growing on soil, inside the forest among dead leaves. Atlantic Forest, southern Brazil.

Comments: Macrolepiota cyanolamellata is characterized by medium-sized basidiomata with reddish gray pileus and brown to reddish brown squamules and, mainly, by the bluish coloration of the lamellae when mature. Microscopically, it is characterized by dextrinoid, congophilous, and metachromatic basidiospores of variable size and irregular shape, basidia 4-

Figure 2. A–C. Macrolepiota cyanolamellata, from holotype (ICN 187662). A. Pileus. B. Annulus. C. Lateral view. D–F. M. sabulosa, from holotype (UFRN 2693). D. Pileus. E. Annulus. F. Lateral view. Bars = 25 mm.

spored, clavate, with clamp connections, cheilocystidia clavate, some with pale brownish pigmentation and clamp connections. It resembles M. sabulosa in general appearance and size of basidiomata but differs from this species in the brown to reddish brown squamules

on the pileus and stipe, lamellae that are whitish to grayish in M. sabulosa, and in the size and shape of basidiospores. Macrolepiota brasiliensis, M. bonaerensis (Rick 1907; Singer and Digilio 1952; Raithelhuber 1988; Wright and Albertó 2002), M. excoriata (Rick 1907;

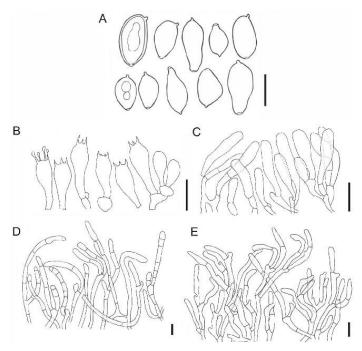


Figure 3. Microscopic features of Macrolepiota cyanolamellata from holotype (ICN 187662). A. Basidiospores. B. Basidia. C. Cheilocystidia. D. Squamules on pileus. E. Squamules on stipe. Bars: $A = 10 \mu m$; $B-E = 20 \mu m$.

Raithelhuber 1988), M. fornica Raithelhuber 1988), and M. kerandi (Raithelhuber 1988; Wright and Albertó 2002) differ by their whitish pileus and stipe. Furthermore, M. stercoraria (Rick 1907; Raithelhuber 1988) differs by its brownish to ochraceous pileus covered and yellowish annulus and M. zeyheri (Rick 1907; Raithelhuber 1988) by its brownish pileus covered with flakes and ocher-yellowish lamellae. Phylogenetically, M. cyanolamellata is closely related to M. clelandii and M. subcitrophylla, which are morphologically separated due to their whitish and yellowish basidiomata, respectively. Macrolepiota cyanolamellata has a simple annulus like M. pulchella, but the latter has a volva and yellowish lamellae (Rick 1938; Heinemann and de Meijer 1996; Vellinga and Yang 2003) and does not have clamp connections. Macrolepiota colombiana has brown squamules on white background, double annulus, squamules on the pileus with hyphae ± catenulate, and cheilocystidia clavate to cylindrical with pale brownish pigmentation (Franco-Molano 1999; Ferreira and Cortez 2011).

Additional specimen examined: BRAZIL. RIO GRANDE DO SUL STATE: Porto Alegre, Morro

Santana, in the soil among dry leaves, 30°03′56.5″S, 51°07′28.3″W, 2 May 2015, A.C. Magnago 1165 (paratype ICN 187663).

Macrolepiota sabulosa Fazolino & R.M. Silveira, sp. nov. FIGS. 2D-F, 4

MycoBank MB825230

Typification: BRAZIL. RIO GRANDE DO NORTE STATE: Natal, Parque Estadual Dunas de Natal, Trail of Geologia, in the sandy soil among dry foliage, 05°50′28.0″S, 35°11′35.8″W, 6 Jun 2016, Fazolino 000689 (holotype UFRN 2693).

Diagnosis: Macrolepiota sabulosa has pileus coverage with a distinct dark brown umbo at disc on brownish gray background, covering formed by tiny scales with the same brown to light brown squamules and a lightly striate border, whitish to grayish lamellae, and cheilocystidia clavate to cylindrical with pale brownish pigmentation.

Etymology: The name refers to sabulosus: growing in sandy places.

Macroscopic features: Basidiomata medium-sized. Pileus 13.0-14.0 cm diam, fleshy, convex when young,

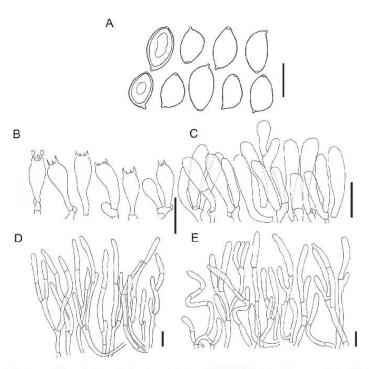


Figure 4. Microscopic features of Macrolepiota sabulosa from holotype (UFRN 2693). A. Basidiospores. B. Basidia. C. Cheilocystidia. D. Squamules on pileus. E. Squamules on stipe. Bars: A = 10 μ m; B–E = 20 μ m.

plano-convex when mature with a distinct dark brown (6F4, 6F5) umbo at disc on brownish gray (5C3) background, at first smooth and continuous, then gradually breaks up into irregular patches covered with brown (6E7, 6F7) to light brown (5D4, 5E4) squamules, scattered toward the margin, margin slightly striate and appendiculate. Lamellae free, crowded, white to grayish white (1A2, 1B1) with lamellae. Stipe $16.5-17.5 \times 1.1-$ 1.2 cm, cylindrical, central, attenuating upwards, grayish white (1B2), covered with tiny light brown (6D4) squamules; base slightly enlarged. Context grayish white (1B2), not changing color when cut. Annulus ascending, simple, fixed, with the lower border in the same color as the scales of the stipe, membranous. Fungal odor.

Microscopic features: Basidiospores [80/2/2], (8.5) $9.5-13.0(15.0) \times (5.0)5.5-7.5(11.5) \mu m, Q = 1.49-1.98$ μ m, avQ = 1.16 \pm 0.15 ellipsoid to oblong in side view, ellipsoid in front view, thick-walled, smooth, hyaline, dextrinoid, congophilous, metachromatic, with a germ pore, covered with a hyaline cap in KOH. Basidia 25.5- 37.5×9.5 - $13.0 \mu m$, clavate, thin-walled, hyaline to pigmented, 4-spored. Cheilocystidia 21.5-47.5 × 6.0-

10.5 µm, clavate to cylindrical, some with secondary septa, pale brownish pigmentation in KOH, in bunches, forming a sterile edge. Pleurocystidia absent. Squamules on pileus trichodermal, formed by cylindrical hyphae, pale brownish pigmentation in KOH; terminal elements $28.0-63.5 \times 5.5-8.5 \mu m$, cylindrical, thinwalled. Squamules on stipe similar to those on the pileus, terminal elements $28.5-82.5 \times 5.5-9.5 \mu m$. Clamp connections observed at the base of basidia, basidiole, and cheilocystidia, also at the hyphae of the stipe context.

Habitat and known distribution: Seasonal semideciduous lowland forest. Terrestrial and saprotrophic, solitary. In the sandy soil among dry foliage. Distributed in northeastern Brazil.

Comments: Macrolepiota sabulosa is characterized by medium-sized basidiomata, dark brown umbo on brownish gray background, with brown to light brown squamules from center to margin. Microscopically, it is characterized by dextrinoid, congophilous, and metachromatic basidiospores of elliptic to oblong shapes, basidia 4-spored, clavate, cheilocystidia clavate, some with pale brownish pigmentation and clamp

connections. It resembles M. cyanolamellata, mainly by the shape of its basidiomata, annulus with the lower border the same color as the scales of the stipe. However, M. sabulosa differs by its brown to light brown squamules on brownish gray background and whitish to grayish lamellae. Macrolepiota bonaerensis, M. brasiliensis, M. excoriata (Rick 1907; Raithelhuber 1988), M. fornica (Rick 1907; Raithelhuber 1988), and M. kerandi differ by the whitish pileus and stipe (Rick 1907; Raithelhuber 1988; Wright and Albertó 2002). Macrolepiota stercoraria (Rick 1907; Raithelhuber 1988) can be separated from M. sabulosa by its brownish to ochraceous pileus cover and yellowish annulus, and M. zeyheri (Rick 1907; Raithelhuber 1988) differs by its brownish pileus covered with flakes and ocheryellowish lamellae. Phylogenetically, M. sabulosa is the sister lineage of M. cyanolamellata and closely related to M. clelandii and M. subcitrophylla. Morphologically, M. sabulosa can be easily separated from M. clelandii and M. subcitrophylla by their whitish and yellowish basidiomata, respectively. Macrolepiota sabulosa has a simple annulus like M. pulchella, but the latter has a volva and yellowish lamellae (Rick 1938; Heinemann and de Meijer 1996; Vellinga and Yang 2003) and does not present clamp connections. Macrolepiota colombiana has brown squamules on a white background, a double annulus, squamules on the pileus with hyphae ± catenulate, and cheilocystidia clavate to cylindrical with pale brownish pigmentation (Franco-Molano 1999; Ferreira and Cortez 2011).

Additional specimen examined: BRAZIL. RIO GRANDE DO NORTE STATE: Natal, Parque Estadual Dunas de Natal, Ubaia Doce Trail, in sandy soil among dry foliage, 05°48'41.3"S, 35°11'17.5"W, 20 Jan 2016, Xavier M.D. 70 (paratype UFRN 2694).

DISCUSSION

The two new species described herein are highly supported by morphological and molecular data. They are easily recognized in the field due to the particular color characteristics of their pileus and stipe, which separate them from other species in the genus.

In our study, the ITS data set was more inclusive, whereas the ITS+28S+RPB2 data set represented a narrower sampling. However, two distinct clades (Volvateae and Macrosporae) were recovered in both analyses. The topology of our trees corroborated with previous studies (Vellinga 2003a; Ge et al. 2010, 2012). Ge et al. (2010) found the Macrolepiota clade with no support (MP BS = 51) and that the first splitting in this clade was M. clelandii, as previously evidenced by Vellinga (2003a, 2003b) and Vellinga et al. (2003),

where M. clelandii was recovered as sister to the M. dolichaula-M. colombiana clade. Our analyses supported the Macrolepiota clade (89/1) and the first splitting was M. clelandii (93/1), along with three other lineages (M. cyanolamellata, M. sabulosa, and M. subcitrophyla).

The sequences provided in this study are the first for Macrolepiota from Brazil and were placed as five distinct lineages. Two new species are described here: M. cyanolamellata and M. sabulosa. Another species was recovered in the clade Volvateae, and the last two species were closely related to M. colombiana. Many specimens collected from Brazil resemble M. colombiana, as published by Ferreira and Cortez (2011). In GenBank, only M. colombiana and M. procera represent Macrolepiota species from South America. Volvolepiota albida (AF482858) cannot represent M. brunnescens, as we expected, but represents a Leucoagaricus specimen (BLAST sequence matching).

The type material of M. bonaerensis and that of M. kerandi were very degraded; it was possible to analyze only the basidiospores. However, Singer's descriptions (Singer and Digilio 1952) confirm the differences between these two aforementioned species and our new species. The type material of M. brasiliensis and that of M. stercoraria were very old and also could not be recovered. The basidiospores were observed and were smaller than those in the new species. Furthermore, Rick's original descriptions (Rick 1907, 1937) also differ in color and aspects of the pileus covering. The type of M. pulchella was also very degraded, but it was obviously different due to the absence of volva in M. cyanolamellata and M. sabulosa. Additionally, the basidiospores are smaller and the lamellae have a yellowish coloration (Rick 1938; Raithelhuber 1988). Sequences from the type material of M. colombiana and our material were clearly separated. In addition, M. colombiana differs by the white background of the pileus, white lamellae, and the double annulus, as well as by the format of the cheilocystidia and pileipellis elements (Franco-Molano 1999).

Neotropical and Paleotropical regions are highly diverse and unexplored areas. In this study, we described two new species of Macrolepiota from Brazil. In addition, we have several collections from Argentina and Brazil with interesting and distinct morphological features that lack molecular data. Therefore, there are many species still to be described. In our study, we found that Brazilian species of Macrolepiota clearly differ from the European species, even though they share morphological characteristics. Therefore, we must be careful when studying Neotropical species, since they represent different evolutionary histories. In order to increase knowledge about Macrolepiota

species, we need to apply morphological, molecular, and ecological approaches, conduct extensive sampling, and make critical morphological revisions, especially regarding taxonomic misidentifications caused by the application of species names from the Northern Hemisphere and Oceania to Neotropical specimens.

ACKNOWLEDGMENTS

The authors thank Altielys C. Magnago and Miguel D. Xavier for the specimens collected, Aristóteles Góes-Neto for providing the primers, and the English language reviewers. We thank the Professor Tatiana T. S. Chies of the Laboratory of Molecular Phylogeny, Taxonomy of Vascular Plants, Department of Botany, at Universidade Federal do Rio Grande do Sul for her collaboration. We also thank the editors and reviewers for their contribution.

FUNDING

Financial support was received from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq; process 440445/2015-9) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES). The authors thank PPGBOT-UFRGS for partially financing the research.

ORCID

- Eduardo Fazolino Perez (b) http://orcid.org/0000-0002-5700-
- Sandy C. Suaza Blandón (6) http://orcid.org/0000-0001-9577-0689
- Genivaldo Alves-Silva (b) http://orcid.org/0000-0002-8142-
- Bernardo E. Lechner (b) http://orcid.org/0000-0002-0946-
- Rosa Mara B. Silveira (b) http://orcid.org/0000-0003-1578-

LITERATURE CITED

- Alves RP, Menezes GCA, Oliveira ED, Victoria FC, Pereira AB, Albuquerque MP. 2016. Chlorophyllum Masse e Macrolepiota Singer (Agaricaceae) em área do bioma Pampa, Rio Grande do Sul, Brasil. Neotropical Biology and Conservation 11:141-152.
- Avaz FA, Tour H, Özel A, Col M, Duran C, Sesli E, Colak A. 2011. Nutritional value of some wild edible mushrooms from the Black Sea region (Turkey). Turkish Journal of Biochemistry 36:385-393.
- Bononi VL, Mucci ESF, Yokomizo NKS, Guzmán G. 1984. Agaricales (Basidiomycetes) do Parque Estadual de Campos do Jordão, SP, Brasil. Rickia 11:85-89.
- Bon M. 1981. Cle monographique des "lepiotes" d'europe (Agaricaceae, tribus Lepiotae et Leucocoprineae). Documents Mycologiques 11:1-77.
- Capelari M, Cortez VG, Neves MA, Baseia IG, Wartchow F, Menolli J, N., Karstedt F, Oliveira JJS, Urrea-Valencia S. 2015.

- Agaricales in Lista de Espécies da Flora do Brasil. Jardim Botânico do Rio de Janeiro. [cited 2017 Feb 02]. Available from: http://floradobrasil.jbrj.gov.br/jabot/floradobrasil/
- Castresana J. 2000. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution 17:540-552.
- Ferreira AJ, Cortez VG. 2012. Lepiotoid Agaricaceae (Basidiomycota) from São Camilo State Park, Paraná State, Brazil. Mycosphere 3:962-976.
- Franco-Molano AE. 1999. A new species of Macrolepiota from Colombia. Actualidades Biológicas 21:13-17.
- Frøslev TG, Matheny PB, Hibbett DS. 2005. Lower level relationships in the mushroom genus Cortinarius (Basidiomycota, Agaricales): a comparison of RPB1, RPB2 and ITS phylogenies. Molecular Phylogenetics and Evolution 37:602-618.
- Ge ZW, Chen CH, Yang ZL. 2012. Macrolepiota subcitrophylla sp. nov., a new species with yellowish lamellae from southwest China. Mycoscience 53:284-289
- Ge ZW, Yang ZL, Vellinga EC. 2010. The genus Macrolepiota (Agaricaceae, Basidiomycota) in China. Fungal Diversity 45:81-98
- Grandi RAP, Guzmán G, Bononi VL. 1984. Adições às Agaricales do Parque Estadual das Fontes do Ipiranga, São Paulo, SP, Brasil. Rickia 11:27-33.
- Heinemann P, de Meijer AAR. 1996. The status of Volvolepiota Sing. Bulletin du Jardin Botanique National de Belgique 65:405-412.
- Johnson J. 1999. Phylogenetic relationships within Lepiota sensu lato based on morphological and molecular data. Mycologia 91:443-458
- Katoh K, Standley DM. 2013. MAFFT. Multiple sequence alignment software 7: improvements in performance and usability. Molecular Biology and Evolution 30:772-780.
- Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Mentjies P, Drummond A. 2012. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647-1649.
- Kirk PM, Cannon PF, Minter DW, Stalpers JA, eds. 2008. Dictionary of the fungi. 10th ed. Wallingford, UK: CAB International. 771 p.
- Kornerup A, Wanscher JH. 1978. Methuen handbook of colour. 3rd ed. London, UK: Eyre Methuen Ltd. 252 p.
- Kumar S, Stecher G, Tamura G. 2016. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Molecular Biology and Evolution 33:1870-1874
- Lebel T, Syme A. 2012. Sequestrate species of Agaricus and Macrolepiota from Australia: new species and combinations and their position in a calibrated phylogeny. Mycologia 104:496-520.
- Matheny PB. 2005. Improving phylogenetic inference of mushrooms with rpb1 and rpb2 nucleotide sequences (Inocybe, Agaricales). Molecular Phylogenetics and Evolution 35:1-20.
- Miller MA, Pfeiffer W, Schwartz T. 2010. Creating the CIPRES science gateway for inference of large phylogenetic trees. In: Proceedings of the Gateway Computing Environments Workshop (GCE), New Orleans,

- Louisiana, November, 2010. New Orleans, Louisiana: Institute of Electrical and Electronics Engineers. p. 1-8.
- Nylander JAA. 2004. MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden. [cited 2017 Aug 10]. Available from: http://www.abc.se/~nylander/".\h
- Pattengale ND, Alipour M, Bininda-Emonds OR, Moret BM, Stamatakis A. 2010. How many bootstrap replicates are necessary? Journal of Computational Biology 17:337-354.
- Putzke J, Putzke MTL, Kohles A. 2014. Notas sobre os fungos Agaricaceae (Agaricales, Basidiomycota) comestíveis encontrados em área em regeneração natural em Santa Cruz do Sul, RS, Brasil. Caderno de Pesquisa, série Biologia 3:44-53.
- Raithelhuber J. 1988. Die Gattung Macrolepiota in Südamerika. Metrodiana 15:59-71.
- Rick J. 1907. Contributio ad monographiam Agaricacearum et Polyporacearum Brasiliensium. Brotéria, série botânica 6:67-68.
- Rick J. 1937. Agarici Riograndenses. Lilloa 1:317-318.
- Rick J. 1938. Agarici Riograndenses. Lilloa 2:251-316.
- Rick J. 1961. Basidiomycetes Eubasidii in Rio Grande do Sul-Brasília 5. Agaricaceae. Iheringia, Série Botânica 8:296-450.
- Ronquist F, Teslenko M, Van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61:539-542.
- Rosa LH, Capelari M. 2009. Agaricales fungi from Atlantic rain forest fragments in Minas Gerais, Brazil. Brazilian Journal of Microbiology 40:846-851
- Singer R. 1948. Diagnoses fungorum novorum Agaricalium. Sydowia 2:26-42.
- Singer R. 1986. The Agaricales in modern taxonomy. 4th ed. Koenigstein, Germany: Koeltz Scientific
- Singer R, Digilio APL. 1952. Pródromo of the flora Agaricina Argentina. Lilloa 25:6-461.

- Spegazzini CL. 1880. Fungi Argentini. Pugillus 2. Anales de la Sociedad Científica. Argentina 9(6):278-285.
- Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312-1313.
- Suaza Blandón SC, 2016, Biodiversidad de hongos lepiotaceos (Agaricales) en la Argentina. Análisis filogenéticos y ensayos de cultivo de la tribu Leucocoprineae [Doctoral thesis]. Buenos Aires, Argentina: Instituto de Micología y Botánica, Universidad de Buenos Aires. 311 p.
- Thiers B. [continuously updated]. Index Herbariorum: a global directory of public herbaria and associated staff. New York Botanical Garden's Virtual Herbarium. [cited 2017 May 15]. Available from: http://sweetgum.nybg. org/ih/.
- Vellinga EC. 2003a. Chlorophyllum en Macrolepiota in Nederland-nieuwe inzichen door moleculair onderzock. Coolia 46:177-188.
- Vellinga EC. 2003b. Chlorophyllum and Macrolepiota (Agaricaceae) in Australia. Australian Systematic Botany 16:361-370.
- Vellinga EC, De Kok RPJ, Bruns TD. 2003. Phylogeny and taxonomy of Macrolepiota (Agaricaceae). Mycologia 95:442-456.
- Vellinga EC, Yang ZL. 2003. Volvolepiota and Macrolepiota-Macrolepiota velosa, a new species from China. Mycotaxon 85:183-186.
- Vilgalys R, Hester M. 1990. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. Journal of Bacteriology 172:4238-4246.
- White TJ, Bruns T, Lee S, Taylor J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes from phylogenetics. In: Innes MA, Gelfand DH, Sninsky JS, White TJ, eds. PCR protocols: methods and applications. London, UK: Academic Press. p. 315-322.
- Wright JE, Albertó E. 2002. Guía de los Hongos de La Región Pampeana I. Hongos con Laminillas. Lola, Buenos Aires. Argentina. 279 p.

TA /F		• 4	TT
VIa	mus	crito	

Uncovering *Chlorophyllum* diversity within a tenuous morphological border: multi-loci phylogenetic analyses from Brazilian specimens

Eduardo Fazolino Perez, Genivaldo Alves-Silva, Rosa Mara B. Silveira

MYCOLOGIA

A ser submetido

Uncovering *Chlorophyllum* diversity within a tenuous morphological border: multi-loci phylogenetic analyses of Brazilian specimens

Eduardo Fazolino Perez¹, Genivaldo Alves-Silva¹, Rosa Mara B. Silveira¹

¹Postgraduate Program in Botany, Institute of Biosciences, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves, 9500 - Building 43433, Zip code 91501-970, Porto Alegre, Brazil; corresponding author e-mail: edufazol@yahoo.com.br

Keywords: Taxonomy; Phylogeny; ITS; 28S; TEF1-alpha; *RPB2*; Neotropical fungi; *Leucoagaricus*

Abstract

Chlorophyllum is a poorly known genus in Brazil, with only three species recorded. In order to extend this knowledge, we reviewed the genus from the Brazilian Atlantic Forest and Pampa. Molecular phylogeny of nuc rDNA ITS1-5.8S-ITS2 (ITS) and combined data set [ITS + nuclear large subunit rDNA (28S) + TEF1-alpha + *RPB2*] and morphological analyses were performed. *Leucoagaricus lilaceus* was combined with *Chlorophyllum* based on morphological and molecular studies. Mais espécies? Mais resultados?

INTRODUCTION

The genus *Chlorophyllum* Massee (*Agaricaceae*, *Basidiomycota*) includes macrofungi species with cosmopolitan distribution, which currently consists of 18 species (Kirk *et al.*, 2008; Give *et al.*, 2018). This genus is of great interest, since some species are edible, as *C. rhacodes* (Vittad.) Linga and *C. olivieri* (Barla) Vellinga (Wright & Albertó, 2002; Suaza Blandon, 2016), while others are toxic, *C. agaricoides* (Czern.) Vellinga, *C. neomastoideum* (Hongo) Vellinga, and *C. venenatum* (Bon) C. Lange & Vellinga, which may cause intoxications in humans and animals (fonte?). Many of these species grow in urban environments, such as vegetable gardens, flo, small in relation to the ridge and basidiospores that may or may not present germinative pore, and when stipe is present, it is not covered by hyaline layer (?). The basidiospores may be hyaline or present yellowish, greenish, or brownish tones. The habit varies from agaricoid, the great majority, to secotioid. (Ge & Yang

2006; Vellinga 2003a; Vellinga *et al.*, 2003). Another striking feature is the change in basidiome coloration when cut, broken or scraped, which varies from bright red to reddish orange (Vellinga, 2006).

In Brazil, only three species have been registered: *C. hortense*, *C. molybdites* and *C. rhacodes*. Only the first two have been morphologically characterized. In this study we present a revision of *Chlorophyllum* specimens from Brazilian collections of the Atlantic Forest and Pampa, a short morphological description, and the phylogeny of the group.

MATERIALS AND METHODS

Sampling and morphological analysis—The materials examined were collected in Paraná and Rio Grande do Sul, southern Brazil, between April 2014 and June 2017. Color notations indicated in the descriptions followed Kornerup and Wanscher (1978). Macromorphology descriptions were based on the field notes and color slides of the material. For micromorphological observations, free-hand sections of the basidiomata were mounted in 5 % KOH, and pileal/stipe structure, cheilocystidia, basidiospores and basidia were observed under a light microscope at $1,000 \times \text{magnification}$. Melzer's reagent was used to test the dextrinoid reaction of the basidiospores. Spore wall reactions to Cresyl blue were also checked. The abbreviation codes used [n/m/p] mean n basidiospores measured from m basidiomata of p collections. Dimensions of basidiospores are given using notation of the form (a)b–c(d). The range b-c contains a minimum of 90 % of the measured values. Extreme values (a and d) are given in parentheses. Q refers to the mean "length/width ratio" of a basidiospore in side view. Processo de desidratação??? The materials were deposited at ICN Herbarium. Herbarium codes followed Thiers [continuously updated].

DNA isolation and amplification—Genomic DNA was extracted from dried specimens using the CTAB method (Góes-Neto *et al.* 2005). We amplified the nuc rDNA internal transcribed spacer region ITS1-5.8S-ITS2 (ITS) using primers ITS1F and ITS4 (White *et al.*, 1990); the nuclear large subunit 28S nuc rDNA (28S) using primers LR0R and 105 LR7 (Vilgalys and Hester 1990); the region located between domains 6 and 7 of the second largest RNA polymerase II (RPB2) using primers bRPB2-6F and bRPB2-7.1R (Frøslev *et al.* 2005; Matheny 2005); and a fragment between exons 4 and 8 (Wendland and Kothe 1997) from

TEF1 gene coding for translation elongation factor EF1-alpha using the primer pair 983F and 2212R (Rehner and Buckley 2005).

Polymerase chain reaction (PCR) was performed at a total volume of 40 μL containing 20 μL of 2X PCR Taq MasterMix (Applied Biological Material Inc., Vancouver, Canada), 0.8 μL of 10 μM each of the two primers, H₂O q.s.q. to 40 μL and 1–2 μL of total DNA. ITS amplification was performed with 2 min initial denaturation at 95° C, followed by 35 cycles of 30 s at 95° C, 1 min and 30 s at 57° C, 30 s at 72° C, with a final extension of 10 min at 72° C following the last cycle. PCR amplification of 28S, *RPB*2, and *TEF1* followed Vilgalys and Hester (1990), Matheny (2005), and (Rehner and Buckley 2005), respectively. All PCR products were purified with PEG 20% [Poly (ethylene glycol) 8,000 plus NaCl 2.5M], and sequencing reactions of PCR products were prepared with a mix composed of 0.5 μL BigDye® Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems, Foster City, CA, USA), 1.75 μL 5x Buffer, 1 μL primer, H₂O q.s.p. to 10 μL, up to 2 μL of the amplification product. For sequencing, we used the primers LR0R and LR5 for LSU; ITS1F and ITS4 for ITS; 1567R and 2212R for *TEF1* and fRPB2-6F and bRPB2-7.1R for *RPB2*. Sequencing reaction and sequencing were performed at the "Centro de Pesquisas René Rachou" at FIOCRUZ (Belo Horizonte, Brazil).

Phylogenetic analysis.—Sequences were assembled and manually corrected with Geneious 9.1.4 (Kearse *et al.*, 2012), then automatically aligned with MAFFT 7 (Katoh & Standley, 2013) under the auto mode for strategy. When necessary, the alignment was manually adjusted with MEGA 7.0.20 (Kumar *et al.*, 2016). Two data sets were provided, the first was more inclusive for ITS single analyses, subdivided into three data partitions: ITS1, 5.8S, and ITS2. The second dataset was for combined analyses, which was subdivided into 11 data partitions: ITS1, 5.8S, ITS2, 28S, *RPB2*-1st, -2nd, -3rd codon positions, *TEF1*-1st, -2nd, -3rd codon positions, and *TEF1* introns. The alignments were deposited in TreeBASE (submission ID: _____).

Single-gene and combined phylogenetic analyses were carried out with ITS and ITS+28S+RPB2+TEF1 sequences. For ITS phylogenetic analyses, a total of 123 specimens were included, of these 110 were *Chlorophyllum*, and *Pseudolepiota zangmuii* autores (KY768928) designed as outgroup. For combined phylogenetic analyses, we included 58 specimens, of these 21 were not *Chlorophyllum*, being 19 another genera from *Agaricaceae* and two from Boletales, *Gomphidius roseus* and *Suillus pictus*, which were designated as

outgroup. All additional *Chlorophyllum* sequences used in this study are available in GenBank and were taken mainly from Johnson (1999) and Ge *et al.* (2018). All the materials and sequences used in this study are listed in SUPPLEMENTARY TABLE 1 (ITS data set) and SUPPLEMENTARY TABLE 2 (combined data set). Country abbreviations follow International Organization for Standardization (ISO) 3166 code. The methodologies and parameters for running phylogenetic analyses are described in detail in Fazolino *et al.* (2018). Sequence data and statistical analysis are provided in SUPPLEMENTARY TABLE 3.

RESULTS

Phylogenetic analyses.—DNA sequence details. In this study, we provided 19 new sequences of Chlorophyllum from Brazil, of which 10 were from ITS, six from 28S, one from RPB2, and two from TEF1 (SUPPLEMENTARY TABLE 2). In single analysis, the ITS-5.8S region ranged from 507 (C. rhacodes, KM609407) to 806 nucleotides (C. hortense, KR154963). The final aligned matrix of the ITS1-5.8S-ITS2 (ITS) region was 818 bp long. In the concatenated matrix, regarding Chlorophyllum species, the 28S region ranged from 798 (C. lilaceum, to_be_provided) to 1,293 (C. molybdites, to_be_provided) nucleotides and the final matrix was 972 bp long. The partial RPB2 ranged from 667 (C. brunneum, HM488804) to 735 (C. lilaceum, to_be_provided) nucleotides, with final matrix 756 bp long. Regarding the TEF1 fragment, sequences ranged from 484 (C. rhacodes, KC884736) to 1,150 (C. lilaceum, to_be_provided) nucleotides, final matrix was 519 bp long. Counting all data partitions, the combined matrix, including TEF1 introns, was 2,905 bp long. Additionally, in single-gene analysis, the ITS was from 380 (C. demangei, MG741964) to 765 (C. molybdites, to_be_provided) nucleotides, with final matrix 777 bp long.

Single-gene analysis. In the RAxML analysis, ITS alignment had 540 distinct patterns with a proportion of gaps and undetermined characteristics of 16.43%, the bootstopping criteria indicated that 600 replicates were sufficient to access the internal branch support, and final ML Optimization Likelihood was -lnL 6727.021202. Best-scoring ML tree is shown in the SUPPLEMENTARY FIG. 1. Six clades were recovered and named, as previously presented by Ge *et al.* (2018). Phylogenetic placement of our species was identical (figures) in both single-gene and combined data set analysis, as described below.

Combined data set analysis. In the RAxML analysis, concatenated matrix presented 1,525 distinct patterns with a proportion of gaps and undetermined characteristics of 13.02%. The bootstopping criteria indicated that 354 replicates were sufficient to access the internal

branch support, and final ML Optimization Likelihood was -lnL 27815.668043. The two Bayesian runs converged to stable likelihood values (-lnL = 28504.29, 28505.41) after 6,120,000 generations, and 45,901 stationary trees from each analysis were used to compute a 50% majority-rule consensus tree to calculate posterior probabilities. The best-scoring ML tree and 50% majority-rule consensus tree did not show major conflicts in tree topology and were mostly congruent, which allowed us to combine them (FIG. 1).

Chlorophyllum genus was greatly supported (97/1) among Agaricaceae genera. Six clades were recovered according to previous studies (Ge et al. 2018). The relationships among them lacked support. Clorophyllum globosum, C. paleotropicum, and C. molybdites were placed in the Chlorophyllum core (100/1), where two or four specimens were retrieved as well. In Ellipsoidosporum clade (100/1), the species C. africanum, C. demangei, and C. hortense (two from this study) were recovered. Additionally, Sphaerospororum, Parvisporum, Endoptychorum, and Rhacodium were retrieved. Our specimens were placed as unknown Chlorophyllum species in Endopytchorum and Rhacodium, proposed herein as C. lilaceum comb. nov., based in these results and critical review of Leucoagaricus lilaceus type material.

Morphological analysis

Twenty collections of *C. molybdites* were examined, with 17 from the Atlantic Forest and three from the Pampa. These five datasets (two within combined data set) were included in the molecular analyses encompassing both biomes. Morphological characteristics are similar to those of European, Australian and Chinese species (Vellinga, 2003a, 2003b, 2006; Ge *et al.*, 2006). Illustrations of the spores and cystidia are presented (Fig. 2a \ u2012c). Twelve collections of *C. hortense* were examined, nine from the Atlantic Forest and three from the Pampa. Of these, five (two within combined data set) were included in the molecular analyses of both biomes. Morphological characteristics are similar to European, Australian, and Chinese species. Illustrations of the spores and cystidia are presented (Fig. 2d \ u2012e). Two collections registered as *C. rhacodes* (PACA 20764 and HBEI 026) were examined, and were verified by analyzing the basidiospores of species in the genus *Macrolepiota*.

Fifteen collections of *Leucoagaricus lilaceus* were examined, with 12 from the Atlantic Forest and three from the Pampa. Of these, two were included in the molecular analyses. The molecular analyses confirmed the species to belong to *Chlorophyllum*, which led to its detailed morphological analysis. Rother and Silveira (2009) carried out the study of

79

type material, Singer T 396 (HOLOTYPUS), as well as Singer T 1504 (SYNTYPUS), Singer 1450, and Singer T 2164, which were all deposited at LIL herbarium. Based on this type study and from comparisons with our collections, we confirmed the species identification. The UNISC collections 14737, 17053, 42117 were also studied, and identified as L. lilaceus. Based on the analyses, it was possible to confirm the classification of these specimens in

According to the classification of Ge *et al.* (2108), the Brazilian species were distributed as follows: section *Chlorophyllum* with *C. molybdites*; section *Rhacodium* with *C. lilaceum*; section *Ellipsodosporium* with *C. hortense*. In this study, three species of *Chlorophyllum* were confirmed for the Brazilian Atlantic Forest and Pampa: *C. hortense* and *C. molybdites*, well-known species worldwide distributed, and *Chlorophyllum lilaceum* comb. nov. from *Leucoagaricus lilaceus*, as proposed below.

TAXONOMY

Chlorophyllym.

Chlorophyllum lilaceum (Singer) Fazolino, comb. nov. Figs. 3 and 4.

Basionym: Leucoagaricus lilaceus Singer, in Singer & Digilio, Lilloa 25: 274 (1952) [1951]

MycoBank No: to_be_provided

Type. Argentina. Tucumán, Parque Avellaneda (Herb. LIL, Singer T306–holotype). Description from Brazilian material (Fig. 3)

Specimens examined: BRAZIL, Paraná State: Santa Mariana, Parque Estadual Mata de São Francisco, in the soil among dry leaves, 23 Dez 2015, *Marcelino F002* (ICN 199161), Campo Mourão, Parque Estadual do Lago Azul, in the soil among dry leaves, 25 Feb 2017, *Alves-Silva, G. 1081* (ICN 199159), Rio Grande do Sul State, Derrubadas, Parque Estadual do Turvo, in the soil among dry leaves, 30 Oct 2017, *Alves-Silva, G. 1228* (ICN 199160).

Macroscopic features: Basidiomata medium sized. Pileus 4.8–10.8 cm diam., fleshy, plan-convex when mature with a discrete umbo on the disk, reddish brown (9F5–9F6), then gradually separates into irregular scales with vinaceus coloring tones (D4–9E4) on reddish white (8A2) background, margin slightly irregular. Lamellae free, crowded, white to reddish

white (8A1–8A2) and olive brown (4F4) when dry, with lamelullae and sublamellulae. Spore print white (1A1). Stipe cylindrical, central, 8.7–12.4 × 0.6–0.8 cm, reddish white to reddish gray (9A2–9B2), smooth; base abruptly bulbous 1.6–2.0 cm. Context reddish white (8B2), change to orange brown (7C3, 7C4) when cut or damaged. Annulus ascending, simple, white to reddish white (8B1, 8B2), with a border in vinaceus color like scales of the pileus (KW 9E4), membranous, can be moved along the stipe. Odor fungi.

Microscopic features: Basidiospores [103/3/5], (5.2) 5.6–7.2 (9.2) \times (3.6) 3.8–5.0 (5.5) μ m, Q = 1.47, ellipsoid, thick walled, smooth, hyaline, dextrinoid, metachromatic in Cresyl blue, without germinative pore. Basidia 19.8–30.2 \times 6.0–10.2 μ m, clavate, thin-walled, hyaline to pigmented, 4-spored. Cheilocystidia 17.6–68.4 \times 7.4–23.0 μ m, clavate-vesiculose, some napiform, very abundant, usually with a moderately long pedicel, hyaline, thin-walled, some septate, in bunches, forming a sterile edge. Pleurocystidia absent. Pileipellis a trichoderm made up of filamentous or cylindrical, ventricose-rostrate or sometimes, clavate hyphae, with greenish pigmentation in KOH; terminal elements hyphae measuring 17.2–90.8 \times 6.0–20.7 μ m, thin walled. Squamules on stipe similar to those on the pileus 13.6–112.0 \times 3.3–9.0 μ m. Clamp connections not observed.

Habitat and known distribution: Argentina and Brazil in the Atlantic Forest and Pampa. Terrestrial and saprotrophic, growing solitary or in small groups on soil inside the forest among abundant dry foliage.

Additional specimen examined: Brazil, Rio Grande do Sul, UNISC 14737, 17053, 42117; Paraná, Marcelino, F003 (ICN 199162), F 031 (ICN 199163) e Alves-Silva, G. 1045 (ICN 199158).

Comments:

The definition of *Leucoagaricus* was not clear in Singer (1986) and the diagnostic characters for the genus are shared with other genera, especially *Chlorophyllum* and *Lepiota*. Using molecular analyzes, several species have already been combined in *Chlorophyllum* (Vellinga 2002, Vellinga & De Cok, 2002, Ge *et al.*, 2018). *Clorophyllum palaeotropicum* Z.W. Ge and A. Jacobs have squamules composed of a trichodermal layer similar to *C. lilaceum*, and the same happens with *C. bharatense* Sathe & S.M. Kulk, while for most species the structure of pileus squamules are considered to be a hymeniform layer.

81

Comentar a posição da espécie na filogenia, comparar com espécies próximas etc. O que caracteriza a seção Rhacodium?

Chlorophyllum molybdites (G. Mey.) Massee, Bull. Misc. Inf., Kew: 136 (1898) Figs...

Description: Meijer, A. A. R. et al. (2007)

Comments: Chlorophyllum molybdites is mainly characterized by its green spore print, whitish basidiomata with brown scales on the pileus and complex annulus. Its spores are large, truncated and have a germ pore. Cheilocystidia pyriform is clavate or spheropedunculate.

Comentar a posição das coleções brasileiras na filogenia, comparar com espécies próximas... O que caracteriza a seção *Chlorophyllum*?

Creio que o seu material deve ser descrito.

Incluir material examinado, habitat e distribuição...

Chlorophyllum hortense (Murrill) Vellinga, Mycotaxon 83: 416 (2002) Figs...

Description: Vellinga (2003a)

Comments: Chlorophyllum hortense is characterized by its small to medium basidiomata, whitish pileus with yellowish scales, which become reddish when broken or bruised, simple to double annulus, white spore print, basidiospores without germinative pore, clavate 2-sporate basidia, cylindrical cheilocystidia, clamp connections present.

Comentar a posição das coleções brasileiras na filogenia, comparar com espécies próximas... O que caracteriza a seção Ellipsoidosporum?

Creio que o seu material deve ser descrito.

Incluir material examinado, habitat e distribuição...

Chave para identificação das espécies de Chlorophyllum?

DISCUSSION

The taxonomic history of *Chlorophyllum* reflects the overlapping of morphological features among the closer genera. From about 30 species listed in Index Fungorum, 18 species have its basionym mostly in *Lepiota* spp. Vellinga (2002) argued that the morphological

definition of species needs to be reconsidered and combined *Chlorophyllum* from *Leucoagaricus hortense*, *Lepiota brunnea*, among others. Recently, Ge *et al.* (2018) also combined *Lepiota demangei* to *Chlorophyllum demangei*. With the combination of *Leucoagaricus lilaceus* to *Chlorophyllum lilaceum*, a broad revision of the genera *Leucoagaricus*, *Leucocoprinus* and *Lepiota* is obviously needed, with an integrative approach, combining morphological, biogeographical and molecular phylogenetic analyses to better understand the circumscription of genera and relations among them.

Morphological and molecular analyses of C. hortense and C. molybdite confirm their identities with the literature, as well as the global distribution of these species. Although C. rhacodes have been previously recorded (Rick, 1961; Putzke et al., 2014; Alves et a., 2016), its occurrence was not confirmed in this study, even with exhaustive collections carried out for four years and collaboration with other researchers. In indexed Brazilian herbaria, there are only two records of C. rhacodes, collected by Rick, deposited at PACA herbarium (Paca 20764) and identified by A. B. Pereira. After analysis, we concluded that this specimen corresponds to Macrolepiota, due to the hyaline ridge covering the germinative pores of basidiospores; another specimen, URM 16315, an European material from Poland. Alves et al. (2016) published the species from the Pampa, deposited in the HBEI (G Alves, 2011, F124, HBEI 026), which we also identified as Macrolepiota. Since they were in bad conservation conditions and had many contaminants, it was not possible to extract the DNA from the collections examined. Other publications refer to C. rhacodes (Putzke et al., 2014), however, there are no vouchers for confirmation. In the light of this, new efforts should be made to clarify whether the specimens of Brazil, identified as C. rhacodes, are indeed in Chlorophyllum genus.

The sequences produced in this study represent the first of *Chlorophyllum* in Brazil. They corroborate with studies carried out by Vellinga (2003, 2006), Ge *et al.* (2018) and, along with morphological analyses, help to elucidate the genus classification. According to the classification by Ge *et al.* (2018), the Brazilian species, based on phylogeny, were distributed in the section *Chlorophyllum* with *C. molybdites*, in the section *Rhacodium* with *C. lilaceum*, and in the section *Ellipsodosporium* with *C. hortense*. Regarding the morphology, *C. lilaceum* radically diverges from diagnostic features of section *Rhacodium* (Ge *et al.*, 2018), which is characterized by robust basidiomata with plaque-shaped scales on pileus, white lamellae, basidiospores with ample germinative pore and pileipellis composed by a

hymenoderm with cylindrical elements to discreetly nailed or lageniformes. *Chlorophyllum lilaceum* features medium-sized basidiomata, pileus covered with fibrillary scales that do not form plaques (Fig. 3), basidiospores do not have germinative pores, lamellae are whitish when young and olive brown when dried, pileipellis is composed of trichodermic elements. These differences demonstrate the fragility of infrageneric classification definitions for *Chlorophyllum*, since there are still many sub-areas represented in the tropics, especially Central and South America, which holds a large part of the world biodiversity and it is still poorly studied. This calls for a global effort to expand cooperation to understand and describe this diversity, thus building a secure database in which may be possible to elucidate the evolutionary history and dispersion of species globally, and then, offer tools for more stable classification.

ACKNOWLEDGMENTS

Financial support was received from Conselho Nacional de Desenvolvimento Científico e Tecnológico – CNPq (process 440445/2015-9) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – CAPES. The authors thank PPGBOT-UFRGS for partial financing of the research; and Aristóteles Góes-Neto for the primers provided. Our thanks to Professor Tatiana T. S. Chies of the Laboratory of Molecular Phylogeny, Taxonomy of Vascular Plants, Departament of Botany, of UFRGS for their collaboration. Our thanks to the editors and reviewers for their contribution.

REFERENCES

Alves RP, Menezes GCA, Oliveira ED, Victoria FC, Pereira AB, Albuquerque MP. 2016. *Chlorophyllum* Masse e *Macrolepiota* Singer (*Agaricaceae*) em área do bioma Pampa, Rio Grande do Sul, Brasil. Neotropical Biology and Conservation 11: 141–152.

Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Bio Evol 17: 540–552.

Ge ZW, Yang ZL. 2006. The genus *Chlorophyllum* Basidiomycetes in China. Mycotaxon 96 181-191.

Ge ZW, Jacobs A, Vellinga EC, Sysouphanthong P, Walt R, Lavorato C, An YF, Yang ZL. 2018. A multi-gene phylogeny of *Chlorophyllum (Agaricaceae*, Basidiomycota):

new species, new combination and infrageneric classification. MycoKeys 32: 65-90.

Góes-neto A, Loguercio-Leite C, Guerrero RT. 2005. DNA extraction from frozen field- collected and dehydrated herbarium fungal basidiomata: performance of SDS and CTAB-based methods. Biotemas 18: 19–32.

Johnson J. 1999. Phylogenetic relationships within *Lepiota* sensu lato based on morphological and molecular data. Mycologia 91: 443–458.

Katoh K, Standley DM. 2013. MAFFT. Multiple sequence alignment software 7: improvements in performance and usability. Mol Bio Evol 30: 772–780.

Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Mentjies P & Drummond A. 2012. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28(12): 1647–1649.

Kirk PM, Cannon PF, Minter DW, Stalpers JA (2008) Dictionary of the fungi, 10th edn. CABI, Wallingford, United Kingdom.

Kornerup A, Wanscher JH. 1978. Methuen handbook of color, 3rd edn. Eyre Methuen Ltd., London.

Kumar S, Stecher G, Tamura G. 2016. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 33 (7):1870–1874.

Meijer AAR, Almeida MAL, Rubio GBG, Curial RM. 2007. Incidences of poisonings due to *Chlorophyllum molybdites* in the state of Paraná, Brazil. Brazilian Archives of Biology and Technology, V50, 3, 479-488.

Miller MA, Pfeiffer W, Schwartz T. 2011. "The CIPRES science gateway: a community resource for phylogenetic analyses". In Proceedings of the 2011 TeraGrid Conference: Extreme Digital Discovery, (Salt Lake City, July 17, 2011). 41: 1-8.

Nylander JAA. 2004. MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University. http://www.abc.se/~nylander/".\h.

Putzke J, Putzke MTL, Köhles A. 2014. Notas sobre os fungos *Agaricaceae* (*Agaricales*, *Basidiomycota*) comestíveis encontrados em área em regeneração natural em Santa Cruz do Sul, RS, Brasil. Caderno de Pesquisa, série. Biologia. 3: 44-53.

Rick J. 1961. Basidiomycetes Eubasidii in Rio Grande do Sul – Brasília 5. *Agaricaceae*. Iheringia Série Botânica 8: 296-450.

Ronquist F, Teslenko M, Van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP. 2012. MrBayes 3.2: efficient Bayesian phylogenetic

inference and model choice across a large model space. Syst. Biol. 61: 539-542.

Rother and Silveira (2009)

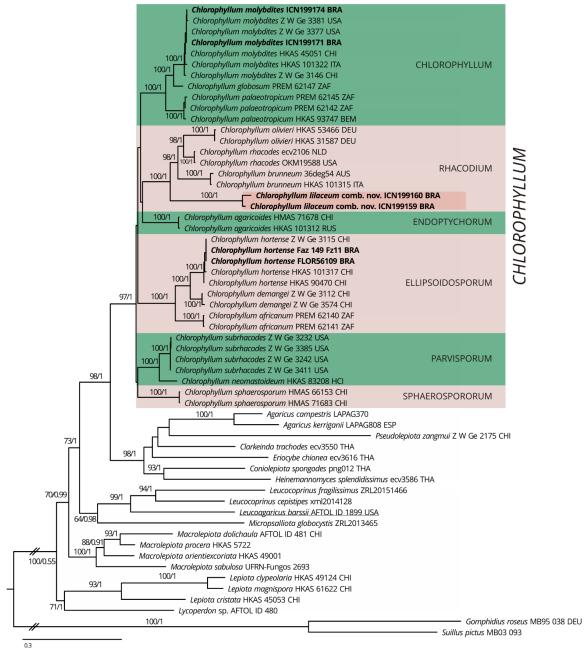
Suaza Blandón SC. 2016. Biodiversidad de hongos lepiotaceos (*Agaricales*) en la Argentina. Análisis filogenéticos y ensayos de cultivo de la tribu *Leucocoprineae*. Tesis. Instituto de Micología y Botánica, Universidad de Buenos Aires, Argentina.

Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30(9):1312-3.

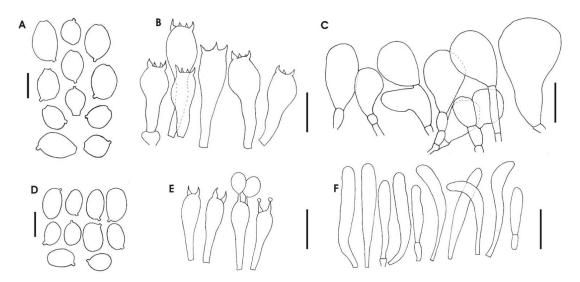
Thiers B. 2017. Index Herbariorum: A global directory of public herbaria and associated staff. New York Botanical Garden's Virtual Herbarium. http://sweetgum.nybg.org/ih/].

Vellinga EC, de Kok RPJ. 2002. Proposal to conserve the name *Chlorophyllum* Massee against *Endoptychum* Czern. (*Agaricaceae*). Taxon 563–564.

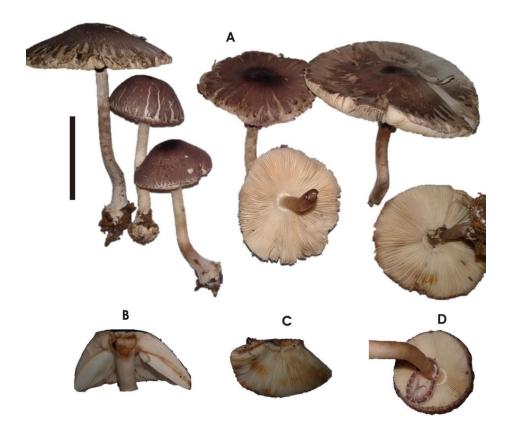
Vellinga EC. 2003a. *Chlorophyllum* and *Macrolepiota* (*Agaricaceae*) in Australia. Australian Systematic Botany 16: 361-370.


Vellinga EC. 2003b. *Chlorophyllum* en *Macrolepiota* in Nederland - Nieuwe inzichen door moleculair onderzock. Coolia 46: 177-188.

Vellinga EC. 2006. *Chorophyllum* in Great Britain. Field Mycology, V. 7(4).


Vilgalys R, Hester M. 1990. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several *Cryptococcus* species. J. Bacteriol. 172: 4238-4246.

White TJ, Bruns T, Lee S, Taylor J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenies. In: Innis PCR protocols: a guide to methods and applications (MA, Gelfand DH, Sninsky JJ, White TJ, eds): 315-322. Academic Press, San Diego. USA.


Wright JE, Albertó E. 2002. Guía de los Hongos de La Región Pampeana. I. Hongos con Laminillas. Lola, Buenos Aires, Argentina.

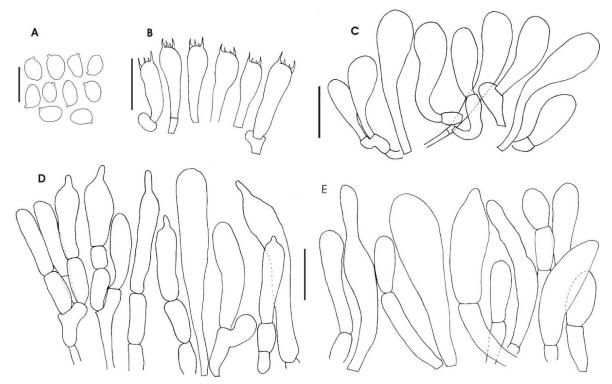

Figure 1. Phylogenetic tree of *Chlorophyllum* species from ITS, 28S, *RPB2*, and *TEF1* sequences, inferred by Maximum Likelihood analysis. The numbers above and below branches are ML BS/BPP = 80/0.99 or higher (high support) and ML BS/BPP of 70/0.95 or higher (moderate support), respectively. New sequences generated in this work are in bold.

Figure 2. Microscopic features: a-c *C. molybdites*, d-f C. *hortense*; (a and d) basidiospores, (b and e) basidia and (c and f) cheylocistidia. Bars a and d 10 μ m, b, c, e and f 20 μ m

Figure 3. *Chlorophyllum lilaceum.* Fresh basidiomata. a) overview, b) reaction in the context, c) reaction in the lamellae e d) mobile annulos. Bars 5 cm. Vouchers?

Figure 4. *Chlorophyllum lilaceum*: microscopic features. a) basidiospores, b) basidia, c) cheilocystidia, d) pileipellis col. GAS 1181, e) pileipellis col. GAS 1228.

Manuscrito III

Agaricus Neotropical: Xanthodermatei section from Brazil

Eduardo Fazolino Perez, Genivaldo Alves-Silva, Rosa Mara B. Silveira

PHYTOTAXA

A ser submetido

90

Agaricus Neotropical: Xanthodermatei section from Brazil

Eduardo Fazolino Perez¹, Genivaldo Alves-Silva¹, Rosa Mara B. Silveira¹

¹ Postgraduate Program in Botany, Institute of Biosciences, Universidade Federal do Rio

Grande do Sul, Av. Bento Gonçalves, 9500 - Building 43433, Zip code 91501-970, Porto

Alegre, Brazil; corresponding author e-mail: edufazol@yahoo.com.br

Abstract

Um estudo foi conduzido levando em conta a nova classificação proposta para Agaricus.

Cinco espécies foram descritas, sendo um primeiro registro para América do Sul, A.

tollocalensis, e quatro novidades taxonômicas, A. hirsutus, A. lacaseus, A. reactivus e A.

xanthovolvatus, todos pertencentes ao subgênero Pseudochitonia, seção Xanthodermatei,

coletados em áreas de Mata Atlântica. Foram realizadas análises filogenéticas moleculares de

nuc rDNA ITS1-5.8S-ITS2 (ITS) e de dados combinados [ITS + nuclear large subunit rDNA

(28S)]. Descrições detalhadas e ilustrações de seus caracteres macro e microscópicos são

fornecidas.

Keywords: Agaricaceae, Taxonomy; Phylogeny; Neotropical fungi; ITS; 28S; TEF1- α

INTRODUÇÃO

Agaricus é o gênero de cogumelo mais conhecido, com muitas de suas espécies

comestíveis, algumas com propriedades medicinais (Kües & Liu, 2000) e umas poucas

tóxicas, essas últimas principalmente pertencendo à seção Xanthodermatei autores, causando

distúrbios gastrointestinais em humanos (Zhao et al., 2012). O gênero foi estabelecido por

Linneu em 1753, possui distribuição cosmopolita, e conta atualmente com cerca de 400

espécies (Zhao et al., 2011; Karunarathna et al., 2016; Zhao et al., 2016). Para melhor

compreender o gênero, Heinemann (1956) e Singer (1986) propuseram classificações infra-

genéricas dividindo-o em subgêneros e seções, baseadas principalmente em espécies

europeias e de clima temperado, as quais têm sido amplamente utilizadas em todo o mundo.

No entanto, em um estudo realizado com espécies tropicais da Ásia, África e Américas, Zhao

et al., 2011 demonstraram que cerca de 2/3 das espécies tropicais não se enquadram nas

classificações de Heinemann e Singer. Este fato levou Zhao *et al.*, (2016) a proporem uma nova classificação infra-genérica para o gênero *Agaricus*, considerando o tempo de divergência das espécies para estabelecer os níveis taxonômicos, através de uma robusta análise multigênica (ITS, LSU, tef-1α e rpb2) com centenas de espécies de todas as regiões, incluindo 86 espécies "*typus*", dividindo o gênero em cinco subgêneros (*Agaricus*, *FlavoAgaricus*, *Minores*, *Pseudochitonia* e *Spissicaules*) e 20 seções. Zhen *et al.* (2017), na mesma direção, ampliaram a classificação incluindo mais um subgênero (*Minoriopsis*).

Com o intuito de ampliar o conhecimento do gênero, focamos nossos estudos no subgênero *Pseudochitonia*, na seção *Xanthodermatei*, conhecida por apresentar espécies tóxicas e pela coloração amarela do contexto dos basidiomas quando expostos. A seção é caracterizada por reação positiva em KOH e reação negativa de Schäffer, reação do contexto quando exposto tornando-se fortemente amarelo, especialmente na base do estipe, odor de iodo ou fenólico. Incluir mais referências na introdução.

Com base em estudos morfológicos e moleculares, levando em conta a nova classificação, apresentamos a descrição de quatro novas espécies para a ciência e um novo registro de *Agaricus*, seção *Xanthodermatei* da Mata Atlântica do Sul do Brasil.

MATERIAIS E MÉTODOS

Coletas e análises morfológicas. - Os materiais examinados foram coletados no Estado do Rio Grande do Sul, Brasil, em áreas de Mata Atlântica e Pampa durante os anos de 2015 e 2016. Todo material estudado foi depositado no Herbário ICN. Os códigos de herbário seguiram Thiers (2017). Notações de cores nas descrições seguiram Kornerup e Wanscher (1978). Descrições morfológicas foram baseadas em notas de campo e fotos do material. Para observações da micro-morfologia, foram montados cortes à mão livre em KOH a 3% e vermelho do Congo dos basidiomas.

Pileipélis, estipitipélis, queilocistídios e basidiósporos foram observados em microscópio ótico em 1.000 × de magnitude. Reagente de Melzer foi usado para testar a reação de amiloidia dos basidiósporos. A abreviação [n/m/p] representa "n" basidiósporos medidos de "m" basidiomas de "p" coleções em solução de KOH 3%. Dimensões dos basidiósporos são apresentadas na forma de (a)b–c(d). O intervalo b–c contém um mínimo de 90 % dos valores medidos. Os valores extremos (a e d) são dados entre parênteses. Qm indica

a média da razão do comprimento/largura dos basidiósporos.

Extração de DNA e PCR—O DNA foi extraído de amostras secas com o método CTAB (Góes-Neto et al., 2005 modificado). Foi amplificado do DNA ribossomal nuclear o espaçador interno transcrito 1 e 2, além do 5.8S [ITS1-5.8S-ITS2 (ITS)] utilizando dos primers ITS1F e ITS4 (White et al., 1990); e para a região parcial (D1-D3) da subunidade maior (28S) foram os primers LR0R e LR7 (Vilgalys & Hester, 1990). Para a região gene codificante de proteína, um fragmento entre os exons 4 e 8 (Wendland & Kothe, 1997) do gene TEF1, no qual codifica o fator de elongação EF1-α, utilizando do par de primers 983F e 2212R (Rehner and Buckley, 2005). A reação de polimerase em cadeia (PCR) foi conduzida com um volume total de 40 µL, dos quais 20 µL foram de 2X PCR Taq MasterMix (Applied Biological Material Inc., Vancouver, Canada), 0,8 μL de 10 μM de cada primer, H2O q.s.q. até 40 μL e 1–2 μL do DNA total. A região ITS foi amplificado com a seguinte configuração do termociclador, 2 min inicial de desnaturação a 95 °C, seguido por 35 ciclos de 30 s a 95 °C, 1 min e 30 s a 57 °C, 30 s a 72 °C, e extensão final de 10 min a 72 °C. A amplificação do 28S e TEF1 foi de acordo com Vilgalys & Hester (1990) e (Rehner & Buckley 2005) respectivamente. Todos os produtos da PCR foram purificados com PEG 20% [Poly(ethylene glycol) 8,000 plus NaCl 2.5M], e as reações de sequenciamento e sequenciamento foram conduzidas no Centro de Pesquisas René Rachou da FIOCRUZ (Belo Horizonte, Brazil). Os primers de sequenciamento foram LR0R e LR5 para 28S; ITS1F e ITS4 para ITS; e 1567R e 2212R para o TEF1.

Alinhamento e reconstruções filogenéticas - As sequências foram montadas e corrigidas manualmente com Geneious 9.1.4 (Kearse *et al.*, 2012), depois alinhadas automaticamente com o MAFFT 7 (Katoh & Standley, 2013) com a estratégia de modo automático. Quando necessário, o alinhamento foi ajustado manualmente com o MEGA 7.0.20 (Kumar *et al.*, 2016). Três conjuntos de dados foram analisados, (1) sequências de ITS dos últimos trabalhos realizados com *Agaricus* (Zhao *et al.* 2011, 2016; Callac & Guinberteau 2017; Drevinski *et al.* 2017; Parra *et al.* 2018), também buscamos sequências do Brasil no GenBank, (TABELA SUPLEMENTAR 1); (2) sequências de ITS mais proximamente relacionadas às nossas amostras, seção *Xanthodermatei* (Zhao *et al.* 2016 e Parra *et al.* 2018), são apresentadas na TABELA SUPLEMENTAR 2; e (3) para as análises de sequências combinadas, foram utilizadas as sequências do conjunto de dados 2, que também tinham 28S e TEF1 (TAB. 1). Todas as análises de ITS foram conduzidas com três partições: ITS1, 5.8S e

ITS2. E para as análises com os dados combinados (3), subdividimos em oito partições: ITS1, 5.8S, ITS2, 28S, codons TEF1-1st, -2nd, -3rd e íntrons do TEF1.

Reconstruímos as relações filogenéticas com os três conjuntos de dados. O primeiro, mais inclusivo, incluiu 314 espécimes, com *Heinemannomyces* sp. (KT951346) como grupo externo. Com o segundo conjunto de dados, realizamos as análises de ITS com maior foco na seção *Xanthodermatei*, onde se posicionaram as nossas amostras. Um total de 103 espécimes foram incluídos nas análises do ITS. *Agaricus campestris* (KT951322 e KM657927) foi designado como grupo externo com base em estudos anteriores (Parra *et al.* 2018). Abreviações de países seguiram o código ISO 3166. Para a reconstrução das relações em *Xanthodermatei*, com os conjuntos de dados ITS, 28S e TEF1, foram utilizados 63 espécimes, com dois espécimes de *A. campestris* (seção *Agaricus*) como grupo externo. Os métodos e parâmetros para a reconstrução das filogenias são descritas detalhadamente por Fazolino *et al.* (2018). Informações sobre modelos evolutivos do conjunto de dados 3 são dados na TABELA SUPLEMENTAR 3. Todas as análises foram depositadas no TreeBASE (submission ID: será providenciado).

RESULTADOS

Análises filogenéticas—No primeiro conjunto de dados, a matriz final foi de 703 pb. Foi possível observar nossas amostras em Xanthodermatei e não foi encontrada nenhuma amostra do Brasil proximamente relacionada (FIGURA SUPLEMENTAR 1); muitas das relações interespecíficas não foram suportadas. A matriz final alinhada do conjunto de dados 2, região ITS, foi de 718 bp. Na análise de RAxML, o alinhamento teve 379 padrões distintos com uma proporção de gaps e caracteres indeterminadas de 5.96%, o critério de bootstopping indicou que 300 réplicas foram suficientes para estimar o suporte de ramo interno, e a probabilidade final de otimização ML foi -LnL 6967.75. A árvore ML de melhor scoring com os valores de bootstrap anotados é apresentada na FIG. 1. As análises do conjunto de dados combinados foi a partir da matriz final de 2076 pb. Na análise de Máxima Verossimilhança o alinhamento teve 719 padrões distintos com uma proporção de gaps e caracteres indeterminados de 9.84%, o critério auto-MRE indicou 702 réplicas como suficientes para estimar o suporte, e a probabilidade final de otimização ML foi -LnL 13852.423. Na análise Bayesiana, depois de 850 000 gerações, as corridas convergiram a valores estáveis de likelihood (-lnL = 13439.68, 13439.95) e 1278 árvores foram utilizadas para calcular a árvore consenso e estimar os valores BPP dos ramos. Nenhum conflito significante dos ramos suportados foi encontrado, assim a melhor árvore ML e a árvore consenso foram combinadas (FIG. 2)

Em ambas as análises, os espécimes estudados posicionaram-se com alto suporte, proximamente relacionados às linhagens dos ramos mais internos do clado/seção *Xanthodermatei*, no qual conforme estudos prévios (Parra *et al.*, 2018), foi nomeado como *Xanthodermatei* I. As principais diferenças entre os dois conjuntos de dados foram os clados/seções que se posicionaram diferentemente. Porém, tratando-se das relações de proximidade com as mostras deste estudo, não houve divergências significativas. Devido à ausência de algumas amostras que continham somente ITS e não foram observadas nas análises de dados combinados, o detalhamento sobre as proximidades filogenéticas são dados a seguir com base na análise de ITS.

No ingroup quatro clados principais foram recuperados, os quais representam as seções Chitonioides, Bivelares, Crassipori e Xanthodermatei, além de Agaricus campestris da seção Agaricus, como outgroup. Seis espécimes deste estudo foram recuperados em Xanthodermatei, juntamente às linhagens mais internas desse clado, com 78 BS ML. Neste clado, ICN 198975 aparece no clado (89) externo do primeiro split e foi posicionado proximamente a A. californicus (DQ182509), com 91 BS ML, descrito abaixo como A. hirsutus sp. nov. Ainda distante do restante, no clado (99) com A. melanocarpus (KM657881), Agaricus sp. (JF514527) e A. aff. volvatulus (JF727848), ICN 198977, abaixo proposto como A. lacaseus sp. nov., foi posicionado (99) juntamente ao último, no qual ambos podem representar a mesma espécie. Por fim, os últimos quatro espécimes foram encontrados no mesmo clado (96). ICN 198978 foi encontrado altamente suportado (100) com A. tollocanensis (AY703913) do México, espécie que representa o primeiro registro para a América do Sul. Já ICN 198976 é proposto aqui como A. reactivus sp. nov., encontrado proximamente relacionado a A. pocillator (U85308) e ICN 198972 juntamente com ICN 198973, no mesmo clado (69) desses dois últimos, são descritos aqui como A. xanthovolvatus sp. nov.

Análises Morfológicas. Todas as coleções estudadas apresentaram as características distintivas da seção *Xanthodermatei*: odor fenólico, reação positiva para KOH, negativa para Schäffer (embora as análises foram realizadas em espécimes secos) e contexto tornando-se amarelo quando exposto. Das cinco espécies analisadas, uma não apresentou queilocistídios, *Agaricus tollocanensis*, primeiro registro para América do Sul, e outras quatro novas espécies que são apresentadas a seguir.

Taxonomia

Agaricus reactivus Fazolino sp. nov. Fig 3,4

MycoBank:

Diagnose: Reconhecido pela forte reação, tornando-se amarelo intenso quando raspado, cortado ou danificado, observada por todo o basidioma, inclusive nas lamelas, pelo pequeno porte, disco central levemente papilado, anel com duas camadas, basidiósporos pequenos com média de 4.1–4.9 × 3.0–3.6 μm e hifas da pileipélis com pigmentação vacuolar marrom.

Etimologia: O nome "*reactivus*" refere-se à forte reação sofrida pelo basidioma quando raspado ou quebrado.

Holótipo: Brasil. Rio Grande do Sul: Viamão, Parque Natural Municipal Saint' Hilaire, crescendo no solo entre folhas secas sob vegetação arbórea, 4-V-2015, Fazolino E.P. 506 (ICN 198976).

Píleo 21–56 mm diâm., carnoso, convexo quando jovem, plano-convexo quando maduro, ligeiramente deprimido e papilado no centro, castanho no centro (7E4–7E5) a cinzento acastanhado (7B2, 7C2, 7D3) na margem, sobre um fundo levemente acinzentado (7B2), tornando-se intensamente amarelado quando raspado, margem lisa. **Contexto do píleo** 2–3 mm de espessura no centro e 1 mm na margem, branco (7A1) tornando-se amarelado quando exposto, carnoso, superfície do píleo amarelada quando raspada. **Lamelas** livres, brancas no início, depois rosadas e finalmente marrons quando maduras, tornando-se fortemente amareladas quando danificadas, próximas, com lamélulas. **Estípite** 27–65 × 4–6 mm (meio) / 7–9 mm (na base), cilíndrico, central, levemente bulboso, superfície lisa; contexto branco (7A1), mudando fortemente para amarelo vivo quando cortado. **Anel** superior, membranoso, com duas camadas, branco (7A1). **Odor** fenólico. **Esporada** marrom.

Reação em KOH 3% positivo, amarelo intenso, Schäffer negativo.

Basidiósporo [50/3/1] (3.9–) 4.1–4.9 (–5.0) × (2.9–) 3.0–3.6 (–3.9) µm, Qm = 1.37, elipsoide a ovoide, castanho, liso, de parede espessa, com apículo conspícua, sem poro germinativo. **Basídios** (14.6–) 18.0 (–21.7) × (–4.9) 6.4 (–7.3) µm, clavados, hialinos, lisos, 4-esporado. **Pleurocistídios** ausentes. **Queilocistídios** (17.2–) 26.5 (–38.3) × (–9.8) 14.2 (–17.7)

96

μm, vesiculosos, alguns piriformes, hialinos, de paredes finas, cobrindo toda a borda da

lamela. Trama da lamela regular. Pileipélis uma cutis composta de hifas cilíndricas a

fusiformes, algumas infladas, de paredes finas, pigmentadas de marrom, ramificadas, (4.7–)

8.5 (-21.2) µm de diâm., sobre um contexto de hifas infladas, cilíndricas, hialinas, de paredes

finas. Estipitipélis uma cutis, composta por hifas cilíndricas, prostradas, de paredes finas,

hialinas, (3.8-) 6.6 (-10.2) µm de diâm.

Hábito e habitat: gregário, terrestre, crescendo no solo entre as folhas secas no bosque.

Material examinado: Brazil. Rio Grande do Sul: Viamão, Parque Natural Municipal

Saint' Hilaire, crescendo no solo entre folhas secas sob vegetação arbórea, 4-V-2015, Fazolino

E.P. 506 (ICN 198976).

Notas: Agaricus reactivus distingue-se de outras espécies conhecidas devido à forte

reação da exposição do contexto, lamelas e superfície do píleo quando danificados ou

cortados. Está proximamente relacionado com A. pocillator, no entanto este possui

basidiomas maiores, coloração branca no píleo, esquâmulas flocosas no disco e anel simples

(Murrill, 1941), além de não sofrer mudança na coloração quando o contexto é exposto, ao

contrário do que acontece com A. reactivus.

Comentar o posicionamento dessa espécie no clado... o que caracteriza o clado onde esta

espécie está. O que aproxima as espécies xanthovolvatus, pocillator, reactivus (na árvore está

outro nome), tollocanensis, sp (não se abrevia A. sp.).

Agaricus lacaseus Fazolino sp. nov. Fig 5, 6

MycoBank:

Diagnose: caracterizado por basidiomas grandes, pela superfície do píleo coberta com

esquâmulas fibrilosas castanhas sobre um fundo cinza-acastanhado, hifas da pileipélis com

conteúdo citoplasmático marrom, anel simples, basidiósporos elipsoides com média entre

 $5.5-7.8 \times 3.4-4.5$ e forte odor fenólico.

Etimologia: O nome "lacaseus" refere-se à significativa produção de lacase.

Holótipo: Brazil. Rio Grande do Sul: Canoas, Parque Municipal Getúlio Vargas, solitário, terrestre, crescendo no solo entre folhas secas no bosque, 14-VI-2015, Fazolino E.P. 551 (ICN 198977).

Píleo 71–78 mm diâm., carnoso, hemisférico para convexo ou plano-convexo, disco aplanado; superfície coberta com esquâmulas fibrilosas, castanho a castanho amarelado no centro (5F4, 5F5), cinzento acastanhado (5C2, 5D2) em direção à margem, sobre fundo cinza esbranquiçado, margem levemente crenada. **Contexto do píleo** 5 mm de espessura no centro e 1 mm na margem, branco (5A1) tornando-se levemente amarelado quando exposto, carnoso; superfície do píleo torna-se amarelada quando raspada, depois tornando-se escurecida. **Lamelas** livres, brancas a princípio, depois rosadas e finalmente marrons quando maduras, tornam-se levemente amareladas quando danificadas, margem regular, próximas, com lamélulas. **Estípite** 99–111 × 9–11 mm, cilíndrico, central, fistuloso, superfície glabra, concolor com o estipe, contexto branco (5A1), muda para amarelado quando cortado, principalmente na base. **Anel** súpero, pendente, membranoso, branco (5A1). **Odor** fenólico. **Esporada** marrom.

Reação em KOH 3% positivo, amarelo forte, Schäffer negativo.

Basidiósporos [60/1/1] (5.4–) 5.5–7.8 (–8.0) × (3.3–) 3.4–4.5 (–4.6) μm, Qm = 1.64, elipsoide a ovoide, castanho, liso, de parede espessa, com apículo conspícuo, sem poro germinativo. **Basídios** (12.3–) 17.3 (–24.7) × (5.3–) 6.1 (–7.1) μm, clavados, hialinos, lisos, 4-esporados. **Pleurocistídios** ausentes. **Queilocistídios** (6.9–) 14.6 (–20.1) × (5.6–) 8.3 (–12.0) μm, vesiculosos, claviformes ou piriformes, hialinos, de paredes finas, cobrindo a borda da lamela. **Trama da lamela** regular, com hifas oleíferas. regular. **Pileipélis** uma cutis composta de hifas cilíndricas a fusiformes, algumas piriformes de paredes finas, pigmentadas de marrom em KOH, ramificadas, (4.2–) 7.8 (–17.0) μm de diâm., sobre um contexto de hifas cilíndricas, hialinas, de paredes finas. **Estipitipélis** uma cutis, composta por hifas cilíndricas de paredes finas, pigmentadas de marrom como na pileipélis em KOH, (2.9–) 4.4 (–8.4) μm de diâm.

Hábito e habitat: solitário, terrestre, crescendo no solo entre as folhas secas no interior do bosque.

Material examinado: Brasil, Rio Grande do Sul: Rio Grande do Sul: Canoas, Parque Municipal Getúlio Vargas, solitário, terrestre, crescendo no solo entre folhas secas, 14-VI-2015, Fazolino E.P. 551 (ICN 198977).

Notas: Agaricus lacaseus é morfologicamente semelhante a A. melanocarpus (Zhou et al., 2016), no entanto, A. lacaseus possui queilocistídios, diâmetro do píleo quase duas veze maior, além dos basidiósporos que também são maiores. Agaricus lacaseus ficou junto na sequência de ITS de Agaricus aff. volvatulus (espécime F2767), uma espécie ainda não descrita. Também difere de A. volvatulus, que é caracterizado por ter uma dobra na base do estipe em forma de volva (Vrinda et al., 1999), o que não acontece com A. lacaseus.

Comentar o posicionamento dessa espécie no clado... o que caracteriza o clado onde esta espécie está...

Agaricus xanthovolvatus Fazolino sp. nov. Fig 7, 8 MycoBank:

Diagnose: Basidiomas grandes, píleo ligeiramente depresso no disco central, com fibrilas castanho acinzentadas e estípite com uma base dobrada em forma de volva, basidiósporos 5.0–7.0 × 3.2–4.1 μm, queilocistídios grandes, vesiculiformes a piriformes, pileipélis com hifas cilíndricas a fusiformes com conteúdo vacuolar marrom, odor fenólico.

Etimologia: O nome "*xanthovolvatus*" refere-se às características da seção *Xanthodermatei* e a dobra na base do estipe semelhante a uma volva.

Holótipo: Brasil. Rio Grande do Sul: Porto Alegre, Morro Santana, solitário a gregário, terrestre, crescendo no solo entre folhas secas na floresta, 24-VI-2014, Fazolino 383 (ICN 198972).

Píleo 46-127 mm diâm., carnoso, convexo quando jovem, plano-convexo quando maduro, disco central ligeiramente depresso nos maduros, coberto por finas fibrilas acinzentadas (1D1, 1D2) e o disco central castanho amarelado (2D4, 2E4), adquirindo tons róseos avermelhados com a idade, margem variando de lisa a apendiculada, torna-se amarelada quando raspada. **Contexto do píleo** 7 mm de espessura no centro e 1mm na margem, branco (1A1) torna-se levemente amarelado quando exposto, carnoso. **Lamelas** livres, branca no início, depois

rosada e finalmente marrom quando madura, tornando-se rosada a avermelhada quando danificada; margem regular, próxima, com lamélulas. **Estípite** 55–122 × 6–10 mm, cilíndrico, central, fistuloso, **base do estipe** 13–24 mm larg. × 8–9 mm alt., mais alargada e dobrada semelhante a uma volva, superfície lisa, branca a levemente amarelada, contexto branco (1A1), muda para fortemente amarelo quando cortado, descolore com o decorrer do tempo. Anel súpero, membranoso, pendente, com a superfície inferior branca com escamas piramidais acastanhadas (2C2). **Odor** fenólico. **Esporada** marrom.

Reação em KOH 3% positivo, amarelo forte, Schäffer negativo.

Basidiósporos [59/2/3] (4.6–) 5.0–7.0 (–7.6) × (3.1–) 3.2–4.1 (–4.3) μm, Qm= 1.6, elipsoide a ovoide, marrom, liso, de parede espessa, com apículo conspícuo, sem poro germinativo. **Basídios** (14.5–) 17.8 (–21.4) × (–5.5) 6.5 (–8.1) μm, clavados, hialinos, lisos, 4-esporados. **Pleurocistídios** ausentes. **Queilocistídios** (12.6–) 23.1 (–50.6) × (–8.0) 12.7 (–20.2) vesiculiformes a piriformes, hialinos, paredes finas. **Trama da lamela** regular. **Pileipélis** uma cutis composta de hifas cilíndricas a fusiformes, algumas piriformes de paredes finas, pigmentadas de castanho em KOH, ramificadas, (4.2–) 7.8 (–17.0) μm de diâm., sobre um contexto de hifas infladas, cilíndricas, hialinas, de paredes finas. Muitas hifas oleíferas de coloração castanho a esverdeado em KOH são observadas no contexto do píleo, na trama das lamelas e raramente na estipitipélis. **Estipitipélis** uma cutis, composta por hifas cilíndricas de paredes finas, levemente esverdeadas em KOH, [3.2 5.6 (–9.5)] μm de diâm.

Hábito e habitat: solitário a gregário, terrestre, crescendo em solo no interior da mata.

Materiais examinados: Brasil, Rio Grande do Sul: Porto Alegre, Morro Santana, crescendo no solo entre folhas secas no interior da mata, 26-VI-2014, Fazolino E.P 377 (ICN 198971); 3-VII-2014, 397 (ICN 198973 ISOTIPO); ,10V2017, 631 (ICN 198974).

Notas: *Agaricus xanthovolvatus* tem a morfologia muito semelhante a *A. volvatulus*, no entanto *A. xanthovolvatus* tem os basidiomas, basidiósporos e basídios maiores e a presença de grandes queilocistídios vesiculosos a piriformes, enquanto que em *A. volvatulus*, uma espécie da África tropical, os queilocistídios estão ausentes ou muito raros de se encontrar, conforme revisão do tipo por Chen *et al.* (2016). *Agaricus xanthovolvatus* está proximamente

relacionado com *A. pocillator. Agaricus pocillator* possui basidiomas e basidiósporos menores (Murrill, 1941) e *A. lacaseus* difere por não possuir a base do estipe dobrada em forma de volva.

Comentar o posicionamento dessa espécie no clado... o que caracteriza o clado onde esta espécie está..

Incluir materiais adicionais examinados para enriquecer a discussão.

Agaricus hirsutus Fazolino sp. nov. Fig 9,10

MycoBank:

Diagnose: Basidiomas pequenos, superfície do píleo coberta por uma espessa camada de escâmulas fibrilosas marrons, hifas da pileipélis entrelaçadas com dimensões superiores a 50 μm, com conteúdo vacuolar marrom, basidósporos 4.9–8.6 × 3.5–6.0 e queilocistídios predominantemente clavados.

Etimologia: O nome "hirsutus" refere-se à pileipélis formada por uma camada espessa de hifas emaranhadas, formando abundantes escâmulas na superfície do píleo, o que dá um aspecto piloso à espécie.

Holótipo: Brasil. Rio Grande do Sul: Porto Alegre, Morro Santana, gregário, terrestre, crescendo no solo entre folhas secas no interior da floresta, 28-IV-2015, Fazolino 492 (ICN 198975).

Píleo 17-40 mm diâm., carnoso, convexo quando jovem, plano-convexo quando maduro, disco central ligeiramente umbonado, coberto por finas e abundantes esquâmulas marrons (7E3, 7F3) concentradas no centro e dispondo-se longitudinalmente até a margem sobre um fundo cinza (7B2), margem variando de lisa a crenada, tornando-se amarelada quando raspada. **Contexto do píleo** 4 mm de espessura no centro e 1 mm na margem, branco (1A1), tornando-se levemente amarelado quando exposto, carnoso. **Lamelas** livres, brancas no início, depois rosadas e finalmente marrons quando maduras, margem regular, próxima, com lamélulas. **Estipe** 28–72 × 3–6 mm, cilíndrico, central, fistuloso, com a base levemente alargada, superfície lisa, branca a castanho claro nos mais velhos, contexto branco (7A1), mudando para amarelo intenso quando cortado, especialmente na base. **Anel** súpero, membranoso, branco (7A1). **Odor** fenólico. **Esporada** marrom.

Reação em KOH 3% positivo, amarelo forte, Schäffer negativo.

Basidiósporos [77/1/4] (4.9–) 5.0–7.9 (–8.6) × (3.5–) 3.6–4.7 (–6.0) μm, Qm= 1.47, elipsóide a ovóide, marrom, liso, de parede espessa, com apícula conspícua, sem poro germinativo. **Basídio** (12.5–) 15.8 (–19.8) × (–5.3) 6.6 (–7.8) μm, clavado, hialino, liso, 4-esporado. **Pleurocistídios** ausente. **Queilocistídios** (8.8–) 21.8 (–36.6) × (–6.2) 7.8 (–10.5) μm, claviformes a vesiculosos, hialinos, de paredes finas, cobrindo a borda da lamela. **Trama da lamela** regular. **Pileipélis** composta de hifas cilíndricas a fusiformes, algumas infladas, de paredes finas, ramificadas e enoveladas, com cerca de 50 μm a partir da base das hifas, pigmentadas de marrom em KOH, (3.6–) 8.9 (–19.4) μm de diâm., sobre um contexto de hifas infladas, cilíndricas, hialinas, de paredes finas. **Estipitipélis** uma cutis, composta por hifas cilíndricas, prostradas, de paredes finas, hialinas, (3.5–) 6.8 (–12.0) μm de diâm.

Hábito e habitat: solitário a gregário, terrestre, crescendo em solo no interior da mata.

Materiais examinados: Brasil. Rio Grande do Sul: Porto Alegre, Morro Santana, gregário, terrestre, crescendo no solo entre folhas secas no interior da mata, 28-IV-2015, Fazolino 490.

Nota: *Agaricus hirsutus* está proximamente relacionado a *A. californicus*. Diferem entre si, pois *A. hirsutus* apresenta o píleo coberto com escâmulas espessas de coloração marrom, enquanto *A. californicus* possui o píleo liso a levemente fibriloso e de coloração purpúrea a marrom purpúrea, além de apresentar os basidiomas maiores (Kerrigan *et al.*, 2005). *Agaricus laskibarii* também está proximamente relacionado, mas difere por apresentar basidiomas maiores com cobertura do píleo fibriloso de coloração cinza a castanho acinzentado (Anabitarte, 2004).

Discutir as outras espécies dentro desse clado: xanthodermatulus, parvitigrinus, caribaeus.

Agaricus tollocanensis Callac & G. Mata Fig 11, 12

Píleo 22–80 mm diâm., carnoso, glabro, hemisférico a convexo ou convexo plano-convexo quando jovem, plano-convexo, branco (30A1) a levemente amarelado (30B2), margem lisa a ligeiramente crenada. **Contexto do píleo** 8mm de espessura no centro e 1 mm

na margem, branco (1A1) tornando-se levemente rosado quando exposto, carnoso; a superfície do píleo fica amarelada quando raspada. **Lamelas** livres, brancas a princípio, depois rosadas e finalmente marrons quando maduras; margem regular, próximas, com lamélulas. **Estipe** 57-86 × 7–15mm, cilíndrico, mais alargado na base, fistuloso, central, superfície glabra, branco nos mais jovens (30A1) a castanho avermelhado nos mais velhos (7A2, 7B2) contexto branco (1A1), tornando-se amarelo intenso, especialmente na base, posteriormente fica com alguns tons de rosa. **Anel** súpero, pendente, membranoso, branco (1A1). **Odor** fenólico. **Esporada** marrom.

Reação em KOH 3% positivo, amarelo, Schäffer negativo.

Basidiósporo [70/1/3] (5.0–) 5.0–6.5 (–6.7) × (3.5–) 3.7–4.5 (–4.8) μm, Qm= 1.41, elipsoide a ovoide, marrom em KOH, liso, de parede espessa, com apícula conspícua, sem poro germinativo. **Basídio** (13.8–) 17.7 (–23.5) × (–5.9) 7.1 (–9.0) μm, clavado, hialino, liso, 4-esporado. **Pleurocistidios** ausente. **Queilocistidios** ausente. **Trama da lamela** regular, com hifas oleíferas. **Pileipélis** uma cutis composta de hifas cilíndricas, prostradas, de paredes finas (3.9–) 6.0 (–11.2) μm de diâm., sobre um contexto de hifas infladas, cilíndricas, hialinas de paredes finas. Muitas hifas oleíferas de coloração castanho a esverdeado é observado no contexto do píleo. **Estipitipélis** uma cutis, composta por hifas cilíndricas prostradas, hialinas, de paredes finas (4.7–) 7.0 (–11.8) μm de diâm.

Hábito e habitat: gregário, terrestre, crescendo entre abundante serrapilheira sob vegetação arbórea no bosque.

Material examinado: Brasil. Rio Grande do Sul: Canoas, Parque Municipal Getúlio Vargas, solitário, terrestre, crescendo no solo entre folhas secas no bosque, 14-VI-2015, Fazolino E.P. 549 (ICN 198978).

Nota: Agaricus tollocanensis é uma espécie originária da região subtropical do México, sendo agora o primeiro registro para a América do Sul. As descrições morfológicas ficaram muito próximas entre os espécimes brasileiro e os mexicanos (Callac & Mata, 2004), ambas não apresentam queilocistídios.

Discussão

As espécies estudadas ficaram muito bem suportadas no subgênero *Pseudochitonia* na seção *Xanthodermatei* em ambas as árvores, combinada (FIG. 2) e de ITS (FIG. 1). As espécies em estudo ficaram separadas de espécies conhecidas de outros continentes, o que reforça as hipóteses de existir nas Américas Central e do Sul linhagens muito diversas das já bem conhecidas de clima temperado.

Agaricus tollocanenis que foi descrito originalmente para a América do Norte, região centro sul do México, estava em uma faixa de clima subtropical. Nossas espécies também se diferenciaram de espécies tropicais de outros continentes como a África e a Ásia. Outras espécies brasileiras encontram-se com sequências no GenBank em outras seções distintas de *Xanthodermatei* (Fig. Supl. 1).

Várias novas espécies de *Agaricus* vem sendo publicadas recentemente para regiões tropicais (Zhao *et al.*, 2011; Thongklang *et al.*, 2014; Karunarathna *et al.*, 2016; Drewinski *et al.*, 2017; Parra *et al.*, 2018), o que evidencia a necessidade de se incrementar investimentos em pesquisas taxonômicas para essa faixa climática, onde se encontra a maior biodiversidade do planeta, e ainda muito pouco estudada, especialmente na América do Sul.

ACKNOWLEDGMENTS

Financial support was received from Conselho Nacional de Desenvolvimento Científico e Tecnológico – CNPq (process 440445/2015-9) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – CAPES. The authors thank PPGBOT-UFRGS for partial financing of the research; and Aristóteles Góes-Neto for the primers provided. Our thanks to Professor Tatiana T. S. Chies of the Laboratory of Molecular Phylogeny, Taxonomy of Vascular Plants, Departament of Botany, of UFRGS for their collaboration.

Referências bibliográficas

Anabitarte PA. 2004. Guia de los champiñones del pais Vasco y su entorno, estudio eel gênero *Agaricus* L.:Fr. Aranzadi socieedad de ciências 197pp.

Callac P, Mata G. 2004. *Agaricus tollocanensis*, une nouvelle espèce de la section *Xanthodermatei* trouvée au Mexique. Documents Mycologiques Tome XXXIII F 132: 31–35.

Callac P, Guinberteau J. 2017. Morphological and molecular characterization of two novel species of *Agaricus* section *Xanthodermatei*. Mycologia 97(2) 416–424.

Chen J, Parra LA, Kesel A, Khalid AN, Qasim T, Ashraf A, Bahkali AH, Hyde KD, Zhao rl, Callac F. 2016. Inter- and intra-specific diversity in *Agaricus endoxanthus* Phytotaxa 252 (1): 001–016.

Chen J, Callac P, Parra LA, Karunarathna SC, He MQ, Moinard M, Kesel AD, Rapé O, Wisitrassameewong K, Hide KD, Zhao RL. 2017. Study in *Agaricus* subgenus Minores and allied clades reveals a new American subgenus and contrasting phylogenetic patterns in Europe and Greater Mekong Subregion. Personia 38, 2017: 170 –196.

Drewinski MP, Menolli NJ, Neves MA. 2017. *Agaricus globocystidiatus*: a new neotropical species with pleurocystidia in *Agaricus* subg. *Minoriopsis*. Phytotaxa 314 (1): 064–072.

Fazolino EP, Suaza Blandón SC, Alves-Silva G, Lechner BE, Silveira RMB. 2018. Taxonomy and phylogeny of *Macrolepiota*: two new species from Brazil. Mycologia - https://doi.org/10.1080/00275514.2018.1500848

Góes-neto A, Loguercio-Leite C, Guerrero RT. 2005. DNA extraction from frozen field- collected and dehydrated herbarium fungal basidiomata: performance of SDS and CTAB-based methods. Biotemas 18: 19–32.

Heinemann, P. (1956) Champignons récoltés au Congo Belge par madame M. Goossens-Fontana. II. *Agaricus* Fries s.s. Bulletin du Jardin Botanique National de Belgique. 26(1):1-127

Karunarathna SC, Chen J, Mortimer P, *et al.* 2016. Mycosphere essay 8: A review of genus *Agaricus* in tropical and humid subtropical regions of Asia. Mycosphere 7: 417–439.

Katoh K, Standley DM. 2013. MAFFT. Multiple sequence alignment software 7: improvements in performance and usability. Mol Bio Evol 30: 772–780.

Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Mentjies P & Drummond A. 2012. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28(12): 1647–1649.

Kerrigan RW, Callac P, Guinberteau J, Challen MP, Parra LA. 2005. *Agaricus* section *Xanthodermatei*: a phylogenetic reconstruction with commentary on taxa. <u>Mycologia</u> 97 (6),1292-1315.

Kornerup A, Wanscher JH. 1978. Methuen handbook of colour, 3rd edn. Eyre Methuen Ltd., London. 252 p.

Kües U, Liu Y. 2000. Fruiting body production in Basidiomycetes. Applied Microbiology and Biotechnology 54:141-152.

Kumar S, Stecher G, Tamura G. 2016. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 33 (7):1870–1874.

Murrill, W.A. 1941. More Florida novelties. Mycologia 33 (4) 446-447

Singer R. 1986. The Agaricales in Modern Taxonomy. 4th ed. Koenigstein: Koeltz Scientific Books.

Parra LA, Angelini C, Ortiz-Santana B, Mata G, Billette C, Rojo C, Chen J, Callac P. 2018. The genus *Agaricus* in the Caribbean. Nine new taxa mostly based on collections from the Dominican Republic. Phytotaxa 345 (3): 219–271.

Rehner SA, Buckley E. 2005. A *Beauveria* phylogeny inferred from nuclear ITS and EF1-a sequences: evidence for cryptic diversification and links to *Cordyceps* teleomorphs. *Mycologia*, 97(1), pp. 84–98.

Schneider SS. 2016. *Agaricus dulcidulus (Agaricales, Basidiomycota*): um estudo de caso sobre a ocorrência de nomes de cogumelos europeus no Brasil – TCC, 63 p.

Singer R. 1986. The *Agaricales* in modern taxonomy. 4^a ed. Koenigstein, Germany. Koeltz Scientific Books. 981 p.

Thiers B. 2017. Index Herbariorum: A global directory of public herbaria and associated staff. New York Botanical Garden's Virtual Herbarium. http://sweetgum.nybg.org/ih/

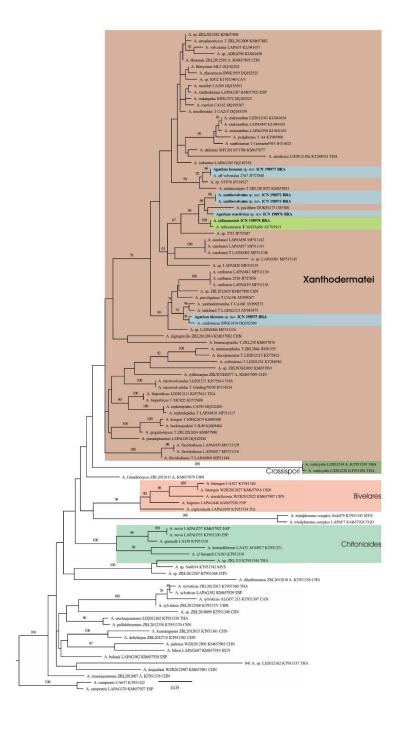
Thongklang N, Nawaz R, Khalid AN, Chen J, Hyde KD, Zhao R, Parra LA, Hanif M, Moinar M, Callac P. 2014. Morphological and molecular characterization of three *Agaricus* species from tropical Asia (Pakistan, Thailand) reveals a new group in section *Xanthodermatei*. Mycologia 106 (6): 1220–1232.

Vilgalys R, Hester M. 1990. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several *Cryptococcus* species. J. Bacteriol. 172: 4238-4246.

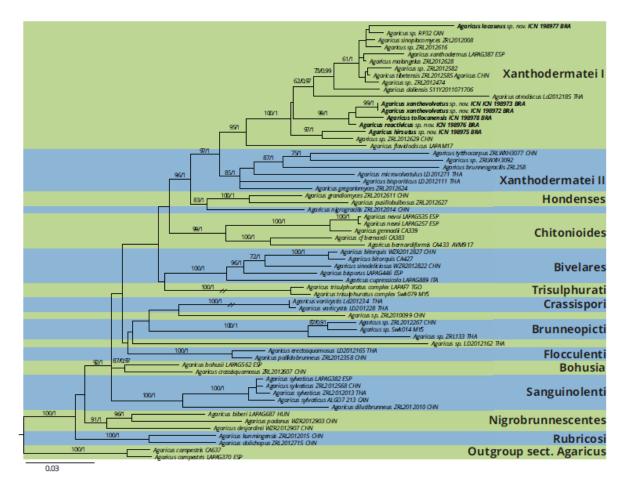
Vrinda KB, Pradeep CK, Mathew S, Abraham TK. 1999. Agaricales from Western Ghats-VI. Indian Phytopathology Journal52 (2): 198-200.

Wendland, J., and E. Kothe. 1997. Isolation of *tef1* encoding translation elongation factor EF1α from the homobasidiomycete *Schizophyllum commune*. Mycological Research101:798-802.

White TJ, Bruns T, Lee S, Taylor J. 1990. Amplification and direct sequencing of

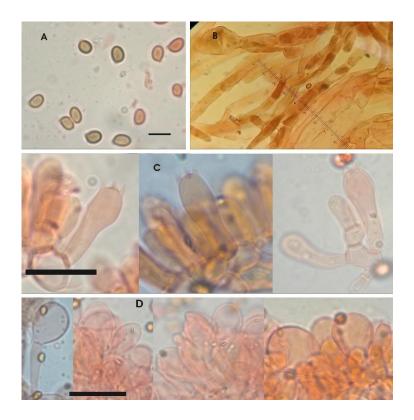

fungal ribosomal RNA genes for phylogenies. In: Innis PCR protocols: a guide to methods and applications (MA, Gelfand DH, Sninsky JJ, White TJ, eds): 315-322. Academic Press, San Diego. USA.

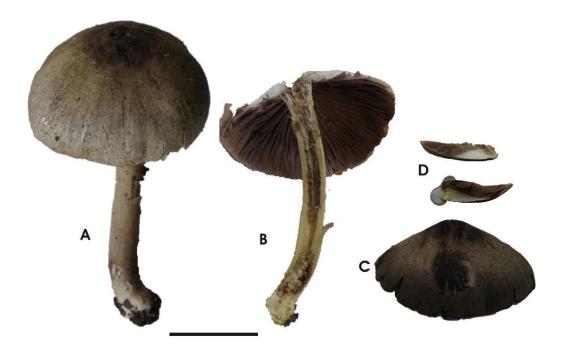
Zhao RL, Karunarathna S, Raspé O, *et al.* 2011. Major clades in tropical *Agaricus*. Fungal Diversity 51: 279–296.


Zhao RL, Desjardin DE, Callac P, Parra LA, Guinbereau J, Soytong K, Karunarathna S, Zhang Y, Hyde KD. 2012. Two species of *Agaricus* sect. *Xanthodermatei* from Thailand. Mycotaxon 122:187–195.

Zhao RL, Zhou JL, Chen J, *et al.* 2016. Towards standardizing taxonomic ranks using divergence times – a case study for reconstruction of the *Agaricus* taxonomic system. Fungal Diversity 78: 239–292.

Zhou JL, Su SY, Su HY, Wang B, Callac J, Guinberteau, Hyde KD, Zhao RL. 2016. A description of eleven new species of *Agaricus* sections *Anthodermatei* and *Hondenses* collected from Tibet and the surrounding areas. Phytotaxa 257 (2): 099–121.


Figura 1. Filograma de *Agaricus* a partir de ITS, por análise de Máxima Verossimilhança. Os valores de suporte acima e abaixo dos ramos são ML BS = 80 ou maior (alto suporte) e ML BS de 70 ou maior (suporte moderado). As novas sequências geradas aqui estão em negrito.


Figura 2. Filograma de *Agaricus* a partir de ITS, 28S, e *TEF1*, por análise de Máxima Verossimilhança. Os valores de suporte acima e abaixo dos ramos são ML BS/BPP = 80/0.99 ou maior (alto suporte) e ML BS/BPP de 70/0.95 ou maior (suporte moderado). As novas sequências geradas aqui estão em negrito.

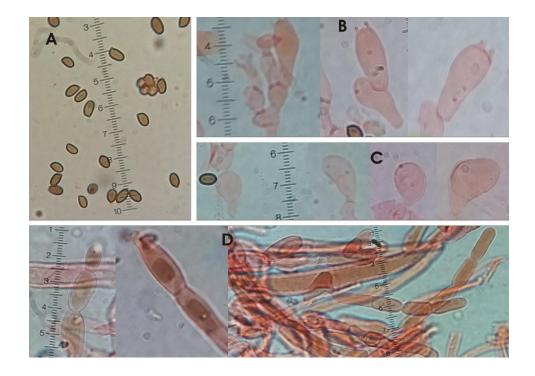

Figura 3. *Agaricus reactivus*. (A) visão geral dos basidiomas; (B e C) reação ao corte ou dano; (D) reação ao KOH. Escala 4 cm.

Figura 4. *Agaricus reactivus* - Características microscópicas. (A) basidiósporos, escala 10 μm; (B) pileipélis, cada intervalo da escala corresponde a 1 μm (aumento de 1000 vezes); (C) basídios, escala 20 μm; (D) queilocistídios, escala 20 μm.

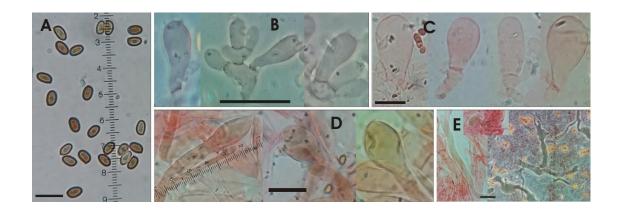
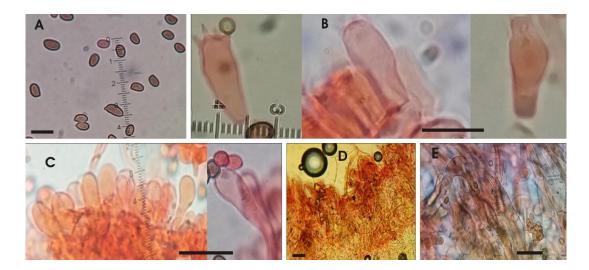
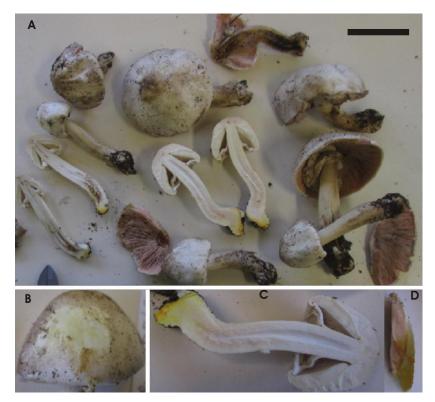

Figura 5. *Agaricus lacaseus*. (A e B) visão geral do basidioma; (C) reação ao dano; (D) reação ao KOH. Escala 4 cm.

Figura 6. *Agaricus lacaseus reactivus* - Características microscópicas. (A) basidiósporos; (B) basídios; (C) queilocistídios; (D) pileipélis. Cada intervalo da escala corresponde a 1 μm (aumento de 1000 vezes).


Figura 7. *Agaricus xanthovolvatus.* (A) visão geral do basidioma; (B) detalhe da base do estípete; (C) reação ao dano; (D) reação ao KOH. Escala 4 cm.


Figura 8. *Agaricus xanthovolvatus* - Características microscópicas. (A) basidiósporos, escala 10 μm; (B) basídios; (C) queilocistídios; (D) pileipélis; (E) Hifas modificadas. Escala de B–D 20 μm.

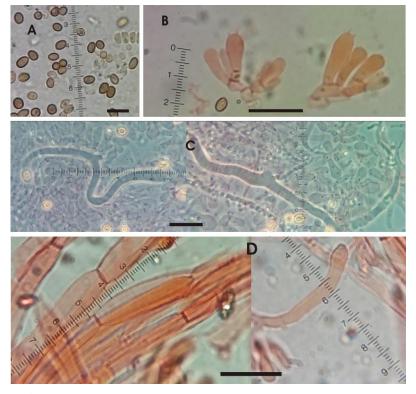

Figura 9. *Agaricus hirsutus*. (A) visão geral do basidioma; (B) detalhe da base do píleo. Escala 3 cm.

Figura 10. *Agaricus hirsutus* - Características microscópicas. (A) basidiósporos; (B) basídios; (C) queilocistídios; (D e E) detalhes da pileipélis; (E) Hifas modificadas. Escalas – A e B 10 μm, C e E 20 μm e D 50 μm.

Figura 11. *Agaricus tollocanensis.* (A) visão geral dos basidiomas; (B) reação à raspagem do píleo; (D) reação ao corte; (E) reação ao KOH. Escala 4 cm.

Figura 12. *Agaricus tollocanensis* - Características microscópicas. (A) basidiósporos; (B) basídios; (C) hifas modificadas; (D) pileipélis. Escalas – A 10 μm, B–D 20 μm.

Tabela 1. Informação dos espécimes utilizados neste estudo, na análise de dados combinados.

Sections	Species	Collection Number	GenBank		
	-		LSU	ITS	Tef1-alpha
Xanthodermatei I	Agaricus lacaseus sp. nov.	ICN 198977	to_be_provided	to_be_provided	ND
Xanthodermatei I	Agaricus sp.	RP32	ND	KT951340	KT951652
Xanthodermatei I	Agaricus sinoplacomyces	ZRL2012008	KR006620	KM657883	KR006648
Xanthodermatei I	Agaricus sp.	ZRL2012616	KR006630	KM657896	KR006660
Xanthodermatei I	Agaricus xanthodermus	LAPAG387	KR006609	KM657923	KR006638
Xanthodermatei I	Agaricus malangelus	ZRL2012628	KR006626	KM657892	KR006655
Xanthodermatei I	Agaricus sp.	ZRL2012582	KR006623	KM657894	KR006651
Xanthodermatei I	Agaricus tibetensis	ZRL2012585 a	KR006633	KM657895	KR006658
Xanthodermatei I	Agaricus sp.	ZRL2012474	KR006622	KM657893	KR006650
Xanthodermatei I	Agaricus daliensis	511Y2011071706	KR006615	KM657877	KR006643
Xanthodermatei I	Agaricus atrodiscus	LD2012185a	KT951473	KT284912	KT951653
Xanthodermatei I	Agaricus xanthovolvatus sp. nov	ICN 198972	to_be_provided	to_be_provided	ND
Xanthodermatei I	Agaricus xanthovolvatus sp. nov	ICN 198973	to_be_provided	to_be_provided	ND
Xanthodermatei I	Agaricus tollocanensis	ICN 198978	to_be_provided	to_be_provided	ND
Xanthodermatei I	Agaricus reactivicus sp. nov.	ICN 198976	to_be_provided	to_be_provided	ND
Xanthodermatei I	Agaricus hirsutus sp. nov.	ICN 198975	to_be_provided	to_be_provided	ND
Xanthodermatei I	Agaricus sp.	ZRL2012629	KR006627	KM657890	KR006656
Xanthodermatei I	Agaricus flavidodiscus	LAPAM17	MF511152	MF511116	MF511153
Xanthodermatei II	Agaricus tytthocarpus	ZRLWXH3077 a	KR006618	KM657889	KR006645
Xanthodermatei II	Agaricus sp.	ZRLWXH3092	KR006619	KM657891	KR006646
Xanthodermatei II	Agaricus brunneogracilis	ZRL258	KR006628	KM657876	KR006657
Xanthodermatei II	Agaricus microvolvatulus	LD201271	KT951508	KJ575614	KT951651
Xanthodermatei II	Agaricus bisporiticus	LD2012111	KT951507	KJ575611	KT951650
Xanthodermatei II	Agaricus gregariomyces	ZRL2012624	KR006625	KM657880	KR006653
Incertae Sedis	Agaricus nigrogracilis	ZRL2012014	KR006621	KM657882	KR006647
Hondenses	Agaricus pusillobulbosus	ZRL2012627	ND	KM657888	KR006654
Hondenses	Agaricus grandiomyces	ZRL2012611 a	KR006624	KM657879	KR006652
Chitonioides	Agaricus nevoi	LAPAG535	ND	KT951330	KT951574
Chitonioides	Agaricus bernardiformis	CA433 AVM917	KT951467	KT951321	KT951577
Chitonioides	Agaricus cf.bernardi	CA383	KT951469	KT951319	KT951576
Chitonioides	Agaricus gennadii	CA339	ND	KT951318	KT951575
Chitonioides	Agaricus nevoi	LAPAG257	KR006606	KM657922	KR006635
Bivelares	Agaricus cupressicola	LAPAG889	KT951465	KT951334	KT951649
Bivelares	Agaricus sinodeliciosus	WZR2012822	KT951518	KM657907	KT951648
Bivelares	Agaricus bitorquis	WZR2012827	KT951492	KM657916	KT951647
Bivelares	Agaricus bitorquis	CA427	KT951491	KT951320	KT951646
Bivelares	Agaricus bisporus	LAPAG446	KR006611	KM657920	KR006640
Trisulphurati	Agaricus trisulphuratus complex	Swk079	KT951472	KT951343	KT951561
Trisulphurati	Agaricus trisulphuratus complex	LAPAF7	KR006605	KM657924	KR006634
Crassispori	Agaricus variicystis	LD201228	ND	KT951426	ND
Crassispori	Agaricus variicystis	LD201234 a	KT951517	KT951339	KT951562
Incertae Sedis	Agaricus sp.	ZRL2010099	KT951479	KT951349	KT951564
Brunneopicti	Agaricus sp.	ZRL2012267	KT951504	KT951368	KT951655
Brunneopicti	Agaricus sp.	ZRL133	KT951505	KT951344	KT951656
Brunneopicti	Agaricus sp.	Swk014	KT951482	KT951342	KT951654
Incertae Sedis	Agaricus sp.	LD2012162	KT951493	KT951337	KT951563
Flocculenti	Agaricus pallidobrunneus	ZRL2012358	KT951471	KT951370	KT951566
Flocculenti	Agaricus erectosquamosus	LD2012165	KT951509	KT951338	KT951565
Bohusia	Agaricus crassisquamosus	ZRL2012607 a	KT951510	KT951376	KT951645
Bohusia	Agaricus bohusii	LAPAG562	KR006613	KM657928	KR006641
Sanguinolenti	Agaricus sylvaticus	ALGO7 213	ND	KT951307	KT951567
Sanguinolenti	Agaricus dilutibrunneus	ZRL2012010 a	KT951512	KT951358	KT951569
Sanguinolenti	Agaricus sylvaticus	ZRL2012013	KT951500	KT951360	KT951570
Sanguinolenti	Agaricus sylvaticus	ZRL2012568	KT951501	KT951371	KT951568
Sanguinolenti	Agaricus sylvaticus	LAPAG382	KR006608	KM657929	KR006637
Nigrobrunnescentes	Agaricus desjardinii	WZR2012907	KT951474	KM657901	KT951644
Nigrobrunnescentes	Agaricus biberi	LAPAG687	KR006614	KM657919	KR006642
Nigrobrunnescentes	Agaricus padanus	WZR2012903	KR006616	KM657903	KR006644
Rubricosi	Agaricus kunmingensis	ZRL2012015	KT951506	KT951361	KT951642
Rubricosi	Agaricus dolichopus	ZRL2012715	KT951502	KT951382	KT951573
Outgroup sect. Agaricus	Agaricus campestris	LAPAG370	KR006607	KM657927	KR006636
Storp over / iguireus	Agaricus campestris	CA637	KT951468	KT951322	KT951633

Continuação 2/4

Species	Collection_Number	Location	ISO	ITS GenBank
Agaricus aridicola	LAPAG589	Castellon, Spain	ESP	KT951331
Agaricus arrillagarum	LAPAG810	Asturias, Spain	ESP	KF447900
Agaricus callacii	AH_42929_a	Canarias, Spain	ESP	KF447899
Agaricus comtulus	LAPAG724	Burgos, Spain	ESP	KT951332
Agaricus edmondoi	LAPAG412	Segovia, Spain	ESP	KT951326
Agaricus friesianus	LAPAG592	Pyrenees Atlantiques, France	FRA	KT951316
Agaricus gemlii	AH_44510_a	Canarias, Spain	ESP	KF447891
Agaricus huijsmanii	LAPAG639	Navarra, Spain	ESP	KF447889
Agaricus kerriganii	AH_44509_a	Leon, Spain	ESP	KF447893
Agaricus kerriganii	LAPAG808	Madrid, Spain	ESP	KT951306
Agaricus matrum	AH_44506_a	La Rioja, Spain	ESP	KF447896
Agaricus matrum Agaricus matrum	LAPAG855	Asturias, Spain	ESP	KT951310
	LAPAG926		SWE	KT951315
Agaricus pallens		Lapland, Sweden	ESP	
Agaricus pseudolutosus	LAPAG454	Burgos, Spain		KT951329
Agaricus sp.	ZRL2012012	Yunnan, China	CHN	KT951359
Agaricus sp.	ZRL2012004	Yunnan, China	CHN	KT951355
Agaricus sp.	ZRLWXH3076	Fujian, China	CHN	KT951388
Agaricus sp.	ZRLLD013	Thailand	THA	KT951384
Agaricus sp.	CA848	Thailand	THA	JF727864
Agaricus sp.	CA921			KT951323
Agaricus sp.	ZRL2011156	Yunnan, China	CHN	KT951352
Agaricus sp.	ZRLWXH3150	Guangdong, China	CHN	KT951390
Agaricus sp.	CA846	Thailand	THA	JF727865
Agaricus sp.	ZRL2012357	Yunnan, China	CHN	KT951369
Agaricus sp.	ZRL2012199	Yunnan, China	CHN	KT951367
Agaricus sp.	ZRLWXH3067	Jiangxi, China	CHN	KT951387
Agaricus sp.	ZRL2012576	Tibet, China	CHN	KT951372
Agaricus sp.	ZRL2012714	Tibet, China	CHN	KT951381
Agaricus sp.	ZRL2011039	Yunnan, China	CHN	KT951351
Agaricus rufoaurantiacus	LAPAM15	Sosua, Dominican Republic	DOM	KT951313
Agaricus candidolutescens	LD2012129_a	Thailand	THA	KT951335
Agaricus sp.	ZRLWXH3161	Guangdong, China	CHN	KT951391
Agaricus sp.	LAPAM14	Sosua, Dominican Republic	DOM	KT951312
Agaricus abruptibulbus	ZRL2012005	Yunnan, China	CHN	KT951356
Agaricus arvensis	MA_Fungi_80999_b	Burgos, Spain	ESP	KF114474
Agaricus augustus	ZRL2012598	Tibet, China	CHN	KT951373
Agaricus cf essettei	ZRL2012026	Yunnan, China	CHN	KT951363
		Tibet, China	CHN	
Agaricus essettei	ZRL2012599	The state of the s		KT951374
Agaricus flocculosipes	ZRL2012105	Yunnan, China	CHN	KT951365
Agaricus flocculosipes	JA_03_193	Thailand	THA	KT951325
Agaricus gemellatus	ZRL2012631	Tibet, China	CHN	KT951380
Agaricus subrufescens	CA276	229		KT951317
Agaricus subrufescens	ZRL2012722	Yunnan, China	CHN	KT951383
Agaricus sp.	ZRL2012630	Tibet, China	CHN	KT951379
Agaricus sp.	ZRL2012030	Yunnan, China	CHN	KT951364
Agaricus sp.	ZRL2012608	Tibet, China	CHN	KT951377
Agaricus sp.	ZRL2012002	Yunnan, China	CHN	KT951354
Agaricus sp.	ZRL2012604	Tibet, China	CHN	KT951375
Agaricus sp.	SHY2011073117	Yunnan, China	CHN	KT951407
Agaricus parasubrutilescens	ZRL2011027	Yunnan, China	CHN	KT951350
Agaricus parasubrutilescens	ZRL2012025	Yunnan, China	CHN	KT951362
Agaricus linzhiensis	ZRL2012618_a	Tibet, China	CHN	KT951378
Agaricus brunneopileatus	ZRL2012115_a	Yunnan, China	CHN	KT951404
Agaricus subrutilescens	ZRLWXH3276	China	CHN	KT951392
Agaricus sp.	ZRL160	Thailand	THA	KT951345
Agaricus sp. Agaricus sp.	SHY2012070604	Yunnan, China	CHN	KT951341
Agaricus sp. Agaricus amoenus	ZRL2010072_a	Yunnan, China	CHN	KT951348
Agaricus amoenus Agaricus gratolens	ZRL3093_a	Thailand	THA	
rigaricus graioiens	ZKL3093_a	1 Hallallu	ITIA	JF691548

Continua 3/4

Agaricus albosquamosus	LD2012192 a	Thailand	THA	KT951394
Agaricus leucolepidotus	LD201214_a	Thailand	THA	KT951336
Agaricus sp.	AW145	Awenda, Canada	CAN	KT951308
Agaricus sp.	JH105	Jokers Hill, ON, Canada	CAN	KT951324
Agaricus litoralis	LAPAG420	Burgos, Spain	CHN	KT951327
Agaricus lanipedisimilis	ZRL2012151	Yunnan, China	CHN	KT951366
Agaricus litoraloides	ZRL2011249	Yunnan, China	CHN	KT951353
Agaricus sp.	ZRLQHY43	Shandong, China	CHN	KT951386
Agaricus bernardiformis	CA433_AVM917			KT951321
Agaricus cf bernardi	CA383			KT951319
Agaricus gennadii	CA339			KT951318
Agaricus nevoi	LAPAG535	Teruel, Spain	ESP	KT951330
Agaricus nevoi	LAPAG257	Burgos, Spain	ESP	KM657922
Agaricus bisporus	LAPAG446	Burgos, Spain	ESP	KM657920
Agaricus bitorquis	WZR2012827	Xingjiang, China	CHN	KM657916
Agaricus bitorquis	CA427			KT951320
Agaricus sinodeliciosus	WZR2012822	Xingjiang, China	CHN	KM657907
Agaricus cupressicola	LAPAG889	Roma, Italy	ITA	KT951334
Agaricus grandiomyces	ZRL2012611_a	Tibet, China	CHN	KM657879
Agaricus atrodiscus	LD2012185a	Thailand	THA	KT284912
Agaricus bisporiticus	LD2012111	Thailand	THA	KJ575611
Agaricus microvolvatulus	LD201271	Thailand	THA	KJ575614
Agaricus tibetensis	ZRL2012585_a	Tibet, China	CHN	KM657895
Agaricus tytthocarpus	ZRLWXH3077_a	Fujian, China	CHN	KM657889
Agaricus xanthodermus	LAPAG387	Soria, Spain	ESP	KM657923
Agaricus sp.	RP32	Rogers Park, Canada	CAN	KT951340
Agaricus sp.	ZRL2012629	Tibet, China	CHN	KM657890
Agaricus trisulphuratus complex	LAPAF7	Plateaux, Togo	TGO	KM657924
Agaricus trisulphuratus complex	Swk079	Lanjak-Entimau, Malaysia	MYS	KT951343
Agaricus variicystis	LD201228	Thailand	THA	KT951426
Agaricus variicystis	LD201234_a	Thailand	THA	KT951339
Agaricus dilutibrunneus	ZRL2012010_a	Yunnan, China	CHN	KT951358
Agaricus sylvaticus	ALGO7_213	Algonquin,ON, Canada	CAN	KT951307
Agaricus sylvaticus	LAPAG382	Burgos, Spain	ESP	KM657929
Agaricus sylvaticus	ZRL2012013	Thailand	THA	KT951360
Agaricus sylvaticus	ZRL2012568	Tibet, China	CHN	KT951371
Agaricus bohusii	LAPAG562	Madrid, Spain	ESP	KM657928
Agaricus crassisquamosus	ZRL2012607_a	Tibet, China	CHN	KT951376
Agaricus sp.	Swk014	Lanjak-Entimau, Malaysia	MYS	KT951342
Agaricus sp.	ZRL2012267	Yunnan, China	CHN	KT951368
Agaricus sp.	ZRL133	Thailand	THA	KT951344
Agaricus erectosquamosus	LD2012165	Thailand	THA	KT951338
Agaricus pallidobrunneus	ZRL2012358	Yunnan, China	CHN	KT951370
Agaricus biberi	LAPAG687	Hungary	HUN	KM657919
Agaricus desjardinii	WZR2012907	Xinjiang, China	CHN	KM657901
Agaricus padanus	WZR2012903	Xingjiang, China	CHN	KM657903
Agaricus dolichopus	ZRL2012715	Tibet, China	CHN	KT951382
Agaricus kunmingensis	ZRL2012015	Yunnan, China	CHN	KT951361
Agaricus sp.	LD2012162	Thailand	THA	KT951337
Agaricus sp.	ZRL2010099	Yunnan, China	CHN CHN	KT951349
Agaricus nigrogracilis	ZRL2012014 CA637	Yunnan, China	CHN	KM657882
Agaricus campestris		Modeid Spain	ESP	KT951322
Agaricus campestris	LAPAG370	Madrid, Spain Thailand	THA	KM657927
Agaricus sp.	ZRL2010010	Thailand	THA	KT951347 KT951385
Agaricus sp.	ZRLLD026	Yunnan, China	CHN	KT951365 KT951357
Agaricus sp.	ZRL2012006 ZRL185	Thailand	THA	KT951346
Heinemannomyces sp Agaricus reactivicus sp. nov.	ICN 198976	Brazil	BRA	to_be_provided
Agaricus reactivicus sp. nov. Agaricus lacaseus sp. nov.	ICN 198970	Brazil	BRA	to_be_provided
Aguireus iucuseus sp. nov.	ICIN 1707//	Diazii	DICA	to_be_provided

Continuação 4/4

Agaricus hirsutus sp. nov.	ICN 198975	Brazil	BRA	to_be_provided
Agaricus xanthovolvatus sp. nov	ICN 198972	Brazil	BRA	to_be_provided
Agaricus xanthovolvatus sp. nov	ICN 198973	Brazil	BRA	to_be_provided
Agaricus tollocanensis	ICN 198978	Brazil	BRA	to_be_provided
Agaricus globocystidiatus	MPD19	Brazil	BRA	MF188253
Agaricus globocystidiatus	EC31	Brazil	BRA	MF188252
Agaricus globocystidiatus	MPD71	Brazil	BRA	MF188251
Agaricus globocystidiatus	MPD29	Brazil	BRA	MF188247
Agaricus globocystidiatus	MPD03	Brazil	BRA	MF188248
Agaricus globocystidiatus	MPD128	Brazil	BRA	MF188249
Agaricus globocystidiatus	MPD02	Brazil	BRA	MF188244
Agaricus globocystidiatus	MPD04	Brazil	BRA	MF188245
Agaricus sp.	B77	Brazil	BRA	KR812271
Agaricus sp.	B161	Brazil	BRA	KR812260
Agaricus sp.	JSP 30	Brazil	BRA	KR093941
Agaricus fiardii	JSP 1	Brazil	BRA	KR093888
Agaricus sp.	LAPAM66	Brazil	BRA	KX671702
Agaricus subrufescens	WC837	Brazil	BRA	KU557350
Agaricus sp.	LAPAM4	Brazil	BRA	JF797185
Agaricus blazei	U2 2	Brazil	BRA	KF281111
Agaricus blazei	U2 1	Brazil	BRA	KF281110
Agaricus sp.	De Meijer1904	Brazil	BRA	JF797196
Agaricus brasiliensis		Brazil	BRA	AJ884654
Agaricus brasiliensis	91	Brazil	BRA	AJ884651
Agaricus brasiliensis	631	Brazil	BRA	AJ884650
Agaricus sp.	TR130	Brazil	BRA	HQ608135
Agaricus subrufescens	CA487 S42	Brazil	BRA	KJ541800
Agaricus subrufescens	CA487 S100	Brazil	BRA	KJ541799
Agaricus subrufescens	CA918	Brazil	BRA	KJ541798
Agaricus subrufescens	WC837 S04	Brazil	BRA	KJ541796
Agaricus blazei	U7 7			KJ010888
Agaricus sp.	U7 6			KJ010887
Agaricus bisp.orus				KJ010878
Agaricus sp.	U2 8			KJ010862
Agaricus blazei	U2 6			KJ010861
Agaricus subrufescens	WC837 S43			KJ541797
Agaricus brasiliensis	HAI 978			AJ884652
Agaricus martineziensis	SP307818			JF896227
Agaricus pallens	LAPAG 580			KF447897
Agaricus pallens	LAPAG 441			KF447898
Agaricus luteomaculatus	CA331			KF447901
Agaricus heinemannianus	AH 19381			KF447905
Agaricus arrillagarum	AH 44508			KF447908
Agaricus gemloides	ZRL2014084			KT633271
Agaricus gemloides	zr12014009			KT633272
Agaricus comtulus	LAPAG303			KU975078
Agaricus gemlii	LAPAG286			KU975079
Agaricus matrum	LAPAG916			KU975080
Agaricus sp.	MFLU16 979			KU975104
Agaricus sp.	ZRL3101			JF691544
Agaricus sp.	ZRL3102			JF691545
Agaricus coccyginus	275416			KU245979
Agaricus coccyginus	254484			KU245980
Agaricus sp.	MFLU11 1334			KU975091
Agaricus sp.	ADK3580			KU975097
Agaricus sp.	NT62			JF727845
Agaricus sp.	MFLU12 868			KU975118
Agaricus sp.	LD2012159			KP715161
Agaricus sp.	LD2011029			KP715160

Manuscrito IV

$\label{eq:Agaricaceae} \begin{tabular}{ll} Agaricaceae \ native Brazilian species: a new perspective on the \\ production of laccases \end{tabular}$

Eduardo Fazolino Perez, Roselei Claudete Fontana, Marli Camassola, Rosa Mara B. Silveira

APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY

A ser submetido

119

Agaricaceae native Brazilian species: a new perspective on the

production of laccases

Eduardo Fazolino Perez¹, Roselei Claudete Fontana², Marli Camassola², Rosa Mara B.

Silveira¹

¹ Postgraduate Program in Botany, Institute of Biosciences, Universidade Federal do

Rio Grande do Sul, Av. Bento Gonçalves, 9500 - Building 43433, Zip code 91501-970, Porto

Alegre, Brazil.

² Enzymes and Biomass Laboratory, Institute of Biotechnology, University of Caxias

do Sul, RS, Brazil, Rua Francisco Getúlio Vargas, 1130, CEP 95070-560 Caxias do Sul, RS,

Brazil.

corresponding author e-mail: edufazol@yahoo.com.br

Resumo

Os macrofungos apresentam grande importância biotecnológica pela sua composição e

produção de metabólitos, que são utilizados em diferentes setores das indústrias têxtil,

alimentícia, farmacêutica, papeleira e energética. Diante da grande diversidade de espécies e

aplicações destes macrofungos destaca-se a necessidade de identificação e avaliação de

enzimas produzidas. Diante disso, linhagens nativas de Agaricus, Chlorophyllum hortense e

Macrolepiota sp. foram avaliadas para a produção de enzimas fenol-oxidases, em cultivo

submerso e em estado sólido, bem como algumas características dos caldos enzimáticos

produzidos. Agaricus lacaseus destacou-se com a produção de 357,9 U.mL⁻¹ (10 dias) de

lacases em meio submerso. Comparando a atividade enzimática total em relação a *Pleurotus*

albidus, destaca-se como o mais promissor para a exploração do potencial biotecnológico de

produção de lacases.

Palavras-chave: lacases; Basidiomycetes; Agaricaceae.

INTRODUÇÃO

O estudo de espécies nativas de macrofungos tem aberto novas e grandes

possibilidades para obtenção de metabólitos de interesse industrial com aplicações nas

indústrias de alimentos, medicamentos, biorremediação, indústrias químicas, biológicas entre

outras (Valle, 2012; Rosa 2013; Espinosa-Ortiz et al., 2016; Schneider et al., 2018). No

entanto, menos de 10% das espécies estimadas de fungos foram descritas até o momento

(Kirk *et al.*, 2008). Com o avanço do desmatamento e a depredação dos recursos naturais muito se tem perdido da riqueza natural e, provavelmente, espécies desaparecerão sem ao menos serem conhecidas pela ciência, levando com elas, seu grande potencial biotecnológico, que poderia ser revertido em benefício da indústria, do meio ambiente, enfim, do planeta como um todo.

A produção de enzimas por macrofungos, especialmente os *Basidiomycetes*, tem sido estudada principalmente com os degradadores de madeira pela alta produção de enzimas ligninolíticas. Já a família *Agaricaceae*, que é composta principalmente por macrofungos saprofíticos terrícolas, tem poucas espécies bem estudadas. São bem conhecidas algumas espécies de *Agaricus*, notadamente *A. blazei*, *A. brasiliensis* e *A. subrufescens*, espécies nativas do Brasil, com significativos índices de produção de lacases (Brum, 2005; Ullrich *et al.*, 2005; Valle, 2012; Valle *et al.*, 2014, 2015). Rosa (2013) também demonstrou uma eficiente produção enzimática em uma espécie de *Macrolepiota*.

Estudos taxonômicos recentes realizados com a família *Agaricaceae* têm descrito diversas novas espécies na Mata Atlântica e Pampa brasileiros (Albuquerque & Victoria, 2012; Drewinski, 2017; Drewinski *et al.*, 2017; Fazolino *et al.*, 2018a, 2018b, 2018c), das quais nada se conhece de seu potencial enzimático.

Com o intuito de estudar espécies nativas brasileiras e conhecer o seu potencial enzimático, este trabalho avaliou a produção de enzimas fenol-oxidases em meios de cultivo submerso e em estado sólido em espécies dos gêneros *Agaricus*, *Chlorophyllum* e *Macrolepiota*, bem como algumas características catalíticas, especialmente de lacases, presentes nos caldos enzimáticos produzidos por fungos em comparação com o já bem conhecido *Pleurotus albibus*.

Materiais e Métodos

Isolados

Para o isolamento dos macrofungos e/ou manutenção dos isolados foi utilizado o meio AEM (Agar extrato de malte) que foi formulado segundo Imbiv - Conicet (2010): extrato de malte 2%, ágar 1,5% e H₂O destilada q.s.p.100 mL. O pH do meio foi ajustado para 7 a 25°C, com HCl ou NaOH. Posteriormente foi autoclavado a 1atm por 15 minutos. Ao meio de cultura foram adicionados os antibióticos tetraciclina 0,1775 mg/100 mL de meio e ampicilina 0,05 mg/100 mL de meio. Após vertido e resfriado o meio recebeu os basidiósporos e ou

fragmentos dos diferentes espécimes coletados. Foram mantidos em estufa a 25°C para posterior de isolamento. Após isolados foram estocados em AEM sem antibióticos em tubos sob refrigeração de 4°C. Foram obtidos 15 isolados de espécies nativas da família *Agaricaceae* (Tabela 1) a partir de coletas realizadas em áreas de Mata Atlântica e Pampa do Rio Grande do Sul. A partir do material fresco coletado foram feitos os isolados e a prévia identificação taxonômica morfológica e molecular conforme Fazolino *et al.* (2018a). As linhagens analisadas estão mantidas na coleção de microrganismos do Laboratório de Enzimas e Biomassas do Instituto de Biotecnologia, Universidade de Caxias do Sul, Brasil.

Tabela 1. Isolados selecionadas para a avaliação da produção de fenol-oxidases.

N^o	Identificação	Código	Localidade	Licença
1	Macrolepiota cf. bonaerensis	519	Canoas/RS	SISBIO 15814-2
2	Macrolepiota sp.1	Pd-3	Viamão/RS	SISBIO 15814-2
3	Macrolepiota sp.2	361	Canoas/RS	SISBIO 15814-2
4	Macrolepiota sp.3	641	Rio Grande/RS	SISBIO 42315-7
5	Macrolepiota sp.4	720	Porto Alegre/RS	SISBIO 15814-2
6	Chlorophyllum hortense	Pd-2	Viamão/RS	SISBIO 15814-2
7	Chlorophyllum hortense	622	Porto Alegre/RS	SISBIO 15814-2
8	Chlorophyllum hortense	713	Nova Santa Rita/RS	SISBIO 15814-2
9	Agaricus lacaseus	551	Canoas/RS	SISBIO 15814-2
10	Agaricus xanthovolvatus	631	Porto Alegre/RS	SISBIO 15814-2
11	Agaricus sp.1	427	Porto Alegre/RS	SISBIO 15814-2
12	Agaricus sp.3	447	Porto Alegre/RS	SISBIO 15814-2
13	Agaricus sp.2	618	Porto Alegre/RS	SISBIO 15814-2
14	Agaricus sp.4	660	Porto Alegre/RS	SISBIO 15814-2
15	Agaricus sp.5	669	Rio Grande/RS	SISBIO 42315-7

Meios para seleção e produção de enzimas

Para selecionar isolados com potencial de produção de fenol-oxidases (análise qualiquantitativa) foram utilizados os meios ágar ácido gálico (AG) e o meio ágar corante (AC). O AG foi formulado segundo Davidson *et al.* (1938): extrato de levedura 0,3%, extrato de Malte 0,3%, peptona 0,5%, glicose 1%, ágar 2%, ácido gálico 0,5% e H2O destilada q.s.p. 100 mL. O meio AC foi baseado em Munari (2007) com modificações: *Reactive Blue* 220 0,01%, peptona 0,2%, glicose 1%, ágar 2%, solução MTV (10X) 10mL e H2O destilada q.s.p. 90 mL. O pH dos meios foi ajustado para 5,5±0,5 e os meios foram autoclavados a 1atm por 15 minutos.

Para as análises quali-quantitativas, os isolados em estoque foram repicados em placas

com AEM por um período de 20–30 dias conforme o desenvolvimento de cada espécie. Após o crescimento foram cortados discos de 0,5cm de Ø dos respectivos cultivos e colocados em triplicatas em duas placas de cada meio, AG e AC, segundo Queiroz *et al.* (2002), Gomes (2007) e Rosa *et al.* (2011), com modificações. Os isolados foram mantidos a 24°C ± 1°C durante 4 dias. A cada 24 horas, utilizando um paquímetro, foi mensurado o diâmetro das colônias e dos halos. No meio AG verificou-se a presença de halo âmbar ao redor da colônia, indicando a oxidação do ácido gálico e, consequentemente, a presença de fenol-oxidases. No meio AC verificou-se halo de descoloração do corante *Reactive Blue* 220 também indicando a presença de fenol-oxidases. Com os dados obtidos diariamente das medidas do halo e da colônia, foi calculada a relação halo/colônia (cm). A linhagem 88F.13 de *Pleurotus albidus* foi utilizada como referência nas análises, por ser bem conhecida e apresentar alta capacidade de secreção de enzimas ligninolíticas (Rosa *et al.*, 2008). A relação halo/colônia igual a 1 significa diâmetro da colônia igual ao diâmetro do halo, relação superior a 1 diâmetro do halo superior.

Para a produção de enzimas em cultivo submerso e em estado sólido foram utilizados os isolados que obtiveram os resultados mais promissores pelo índice de halos selecionados pela análise quali-quantitativa e que obtiveram rapidez de crescimento micelial viável para o estudo, sendo a linhagem *P. albidus* (88-F) utilizada como referência nas análises. Para o cultivo submerso utilizou-se o meio composto por caldo proveniente de 200g/L de batata, suplementado com 20g/L de glicose e 50 mL/L de solução mineral de macro e micronutrientes (MS 20×) (Mandels & Reese, 1957): KH2PO4 2%, (NH4)2SO4 1,4%, MgSO4.7H2O 0,3%, uréia 0,3%, CaCl2 0,4%, MnSO4.H2O 0,00156%, FeSO4.7H2O 0,005%, ZnSO4 0,0014%, CoCl2 0,002%, H2O destilada q.s.p. 100 ml. O meio de cultivo sólido (CSL) foi elaborado conforme Silva (2004): serragem de *Pinus* 94%, farelo de trigo 5%, CaCO3 1%, e H2O q.s.p. até a obtenção de 66% de umidade (Tan & Wahab, 1997) e acondicionados em recipientes de vidro de 100 mL, fechados com algodão e gaze estéreis e autoclavados a 1atm por 2 horas.

Obtenção do extrato enzimático

O experimento em meio submerso (CSM) foi realizado em frascos Erlenmeyer de 500 mL, contendo 100 mL, sendo autoclavados a 1 atm por 15 min. O inóculo consistiu em três discos de 1,5 cm de diâmetro retirados das placas de Petri dos isolados selecionados e da linhagem de *P. albidus*. Os frascos foram fechados com algodão e gaze estéreis. Os frascos foram mantidos sob agitação recíproca de 180 rpm a 28±2°C. As amostras foram coletadas em

4, 6, 8, 10 e 12 dias, centrifugadas por 30 min a 3220g e mantidas sob refrigeração para posterior análise. Todos os testes foram realizados em triplicata.

Os frascos contendo o meio sólido foram inoculados com 1 disco de 1,5 cm de diâmetro retirado das placas de Petri dos isolados selecionados e da linhagem de *P. albidus*. As diferentes linhagens foram mantidas em estufa com umidade saturada a 25°C ± 3° C, e as amostras coletadas em 4, 6, 8, 10 e 12 dias. O conteúdo foi homogeneizado manualmente, 15 g de meio e 30 mL de água foi utilizado para a extração das fenol-oxidases. A mistura foi mantida sob agitação por 30 minutos, 130 rpm e 4°C. Em seguida as amostras foram centrifugadas a 3220*g* durante 30 minutos. O extrato enzimático obtido foi utilizado para as determinações enzimáticas (Lac, Per e MnP), de pH, proteínas solúveis totais e caracterização de lacases (massa molecular, termo estabilidade, temperatura ótima e pH ótimo). Também foi verificado o teor de umidade onde 1 g do meio foi mantido em estufa (90°C) até peso constante.

Métodos analíticos

Determinação do potencial hidrogeniônico – pH

O pH de cada amostra foi determinado diretamente no caldo enzimático com a utilização de um pHmetro.

Determinações enzimáticas

Todas as atividades enzimáticas foram expressas em unidades internacionais por grama de massa seca $(U.g^{-1})$, para o cultivo sólido e em unidades internacionais por mL $(U.mL^{-1})$, para cultivo submerso; definidas como a quantidade de enzima que libera um μ mol do produto por mL, por minuto $(U = \mu mol.min^{-1})$.

Lacases – Lac

A atividade de lacases foi determinada, segundo Wolfenden & Wilson (1982), através da quantificação do produto da oxidação do 2,2'-azino-bis(3-etilbenzotiazolina-6-sulfonato), ABTS, utilizado como substrato. A mistura reacional (0,4mL) continha: 0,18mL de tampão acetato de sódio 0,2 M, pH 5,0; 0,18mL de extrato enzimático adequadamente diluído e 0,04 mL do substrato ABTS 5mM. A oxidação do ABTS foi monitorada em espectrofotômetro (420 nm =3,6. 104 M⁻¹cm⁻¹) durante 90 segundos, a 25°C, em uma placa de 96 poços.

Peroxidases totais - Per

As peroxidases totais foram dosadas empregando-se a mesma metodologia das determinações de lacase, utilizando ABTS como substrato, entretanto com a presença de 0,04 m de H₂O₂ 2 mM e somente 0,14 mL de tampão acetato de sódio 0,2 M, pH 5,0, na mistura reacional (Heinzkill *et al.*, 1998). As atividades de peroxidases foram descontadas das atividades detectadas para lacases.

Manganês peroxidases - MnP

A atividade de manganês-peroxidase foi determinada pelo método proposto por Kuwahara *et al.* (1984), utilizando-se o vermelho de fenol como substrato. A mistura reacional (2 mL) continha: 1mL de tampão succinato de sódio 20 mM, pH 4,5; 0,1mL de vermelho de fenol 0,1 % (m/v); 0,1 mL de lactato de sódio 250 mM; 0,2 mL de albumina bovina 0,5% (m/v); 0,05 mL de MnSO4 2mM; 0,05 mL de H₂O₂ 2mM, sendo adicionados 0,5 mL de amostra. Após 5 min a 30°C, as reações foram interrompidas pela adição de 0,04 mL de NaOH 2M. A formação do produto de oxidação foi quantificada pela variação da absorbância em espectrofotômetro (nm610 = 4,46x104 M⁻¹cm⁻¹) através de 0,3 mL colocados em uma placa de 96 poços, sendo considerado um branco para cada amostra com tempo zero de reação.

pH ótimo da atividade de lacases

Para verificar a influência do pH na atividade enzimática de lacases foi realizada a mensuração desta enzima, utilizando ABTS como substrato, conforme exposto acima, porém utilizando três diferentes tampões com pHs variando de 2,5 a 8. As análises foram realizadas com tampão McIlvaine, acetato de sódio e citrato de sódio.

Temperatura ótima da atividade de lacases

Para verificação da temperatura ótima utilizando-se ABTS como já descrito anteriormente, sendo avaliadas cinco diferentes temperaturas de análise: 25, 30, 35, 40 e 45°C.

Termoestabilidade da atividade de lacases

A termoestabilidade de lacases foi avaliada em 20°C, 30°C, 40°C, 50°C e 60°C.

Alíquotas das amostras foram coletadas nos tempos 0, 3, 6, 9, 12, 24, 36, 48, 72 e 96h. A determinação da atividade enzimática de lacases foi feita conforme descrito acima, utilizando ABTS.

Zimograma de lacases

A determinação da massa molecular das lacases foi realizada por eletroforese em gel de poliacrilamida (SDS-PAGE), segundo metodologia descrita por Laemmli (1970) e modificada por Camassola *et al.* (2013). Inicialmente, 50 μL da amostra foi liofilizada e ressuspensa em 30 μL de tampão amostra. O gel de empilhamento tinha a concentração de 4% (m/v) e 0,05 mL de dodecil sulfato de sódio (SDS) 10%; e um gel para separação com concentração 12% (m/v) e 0,1 mL SDS 10%. Para isto foi utilizado o sistema Mini-PROTEAN Tetra da Bio-Rad®. Para coloração, o SDS foi removido por lavagem do gel em temperatura ambiente em solução A (Triton X100® 2,5%) e solução B (tampão acetato de sódio, pH 5,0) por 10 minutos cada uma. O gel foi transferido para uma placa de vidro e contendo uma camada de ABTS-ágar (0,02 g de ABTS, 0,4 g de ágar, 40 mL de água aquecida até dissolver ágar). Após alguns minutos, são observadas as bandas com coloração verde. O marcador utilizado foi o Precision Plus ProteinTM Standards da Bio-Rad® com bandas entre 10 e 250 kD.

Análises estatísticas

Neste trabalho, a partir dos resultados da análise das triplicatas das amostras, foram calculadas as médias e os desvios padrões da média. Em alguns casos também foram realizados testes estatísticos de análise de variância (*one-way* ANOVA) e pós-teste de Tukey, como também o teste-t, utilizando nível de probabilidade (P) inferior a 5% (p < 0,05), com o auxílio do programa GraphPad Prism.

Resultados e Discussão

Na análise realizada entre os 15 isolados, 10 obtiveram uma relação superior ao controle em AG e 11 foram superiores em AC (Figura 1). Dentre os que obtiveram a relação halo/colônia igual ou superior ao controle entre os dois meios utilizados, 4 foram selecionados pelo cruzamento dos melhores resultados entre AG e AC e também pela capacidade de crescimento nos respectivos meios. Os isolados Pd-2, 427, 447, 618 e 669 tiveram um crescimento de halo significativo, no entanto não ocorreu crescimento micelial, além de apresentarem um lento crescimento no meio de isolamento e manutenção (AEM),

inviabilizando o uso nas análises. Com base na análise dos dados, os isolados 551, *Agaricus lacaseus*; 631, *A. xanthovolvatus*; 713, *Chlorophyllum hortense* e 720, *Macrolepiota* sp4, foram selecionados para as análises quantitativas.

As atividades de lacases, peroxidases totais e manganês peroxidases foram verificadas nas duas condições de cultivo: em meio sólido (Fig. 2 A, B e C); e em cultivo submerso (Fig. 2 D, E e F). A produção de lacases em meio sólido não foi significativa em comparação ao controle. Enquanto o isolado de *Pleorotus albidus* (88-F) teve sua atividade máxima em 2613,8 U.g⁻¹ (12 dias), o melhor resultado das espécies de *Agaricaceae* estudadas, *Clhorophyllum hortense* (713), ficou em apenas 193,8 U.g⁻¹ (10 dias). Para a produção de peroxidases totais, o isolado 713 produziu 224,1 U.g⁻¹ (10 dias), superando levemente o controle com 147,0 U.g⁻¹(8 dias), seguido depois pelo isolado 720, *Macrolepiota* sp4, com 89,2 U.mL⁻¹ (10 dias). Os demais isolados ficaram abaixo de 15 U.g⁻¹. Na produção de manganês peroxidase o controle (88-F) atingiu 10,7 U.g⁻¹ (8 dias), seguido por *Agaricus xanthovolvatus* (631) com 10,2 U.g⁻¹ (4 dias), *A. lacaseus* (551) com 4,9 U.g⁻¹ (8 dias), e *Macrolepiota* sp4 com 3,4 U.g⁻¹ (6 dias) e 713 com 3,2 U.g⁻¹ (8 dias) (Figura 2).

Com relação ao cultivo submerso *A. lacaseus* (551) se destacou na produção de lacases com 357,9 U.mL⁻¹ (10 dias) em relação ao controle, 88-F, com 159,7 U.mL⁻¹ (8 dias), seguido de *A. xanthovolvatus* (361) com 159,2 U.mL⁻¹ (12 dias), *Macrolepiota* sp4 (720) com 63,4 U.mL⁻¹ (8 dias) e *Clhorophyllum hortense* (713), ficou em apenas 22,7 U.g⁻¹ (12 dias). Na produção de peroxidases totais, o controle (88-F) atingiu 315,7 U.mL⁻¹ (10 dias), seguido pelo *Chlorophyllum hortense* (713) com 25,6 U.mL⁻¹ (8 dias), e *A. xanthovolvatus* com 14,2 U.mL⁻¹ (4 dias). Os demais isolados ficaram próximos de 2,0 U.mL⁻¹. Na produção de manganês peroxidase o controle (88-F) produziu 3,8 U.mL⁻¹ (8 dias), os demais ficaram abaixo de 5,0 U.mL⁻¹ (Figura 2).

Na Tabela 2 estão apresentados os resultados gerais para a atividade de lacases, peroxidases totais e manganês peroxidases do cultivo submerso e de diferentes trabalhos.

Tabela 2. Produção de enzimas por diferentes espécies de *Agaricaceae* em cultivos submersos.

Identificação	Lacases (U/mL)*	Per. totais (U/mL)*	Mang. peroxidases (U/mL)*	Referência
Pleurotus albidus 88-F	159,7 (8)	315,7	3,8	neste trabalho
Agaricus lacaseus Faz-551	358,0 (10)	14,2	0,2	neste trabalho
Agaricus xanthovolvatus Faz-631	159,2 (12)	< 5	0	neste trabalho
Chlorophyllum hortense Faz-713	22,7 (12)	25,6	0	neste trabalho
Macrolepiota sp.4 Faz-720	63,4 (8)	< 5	0	neste trabalho
Macrolepiota 43I.1_SE	1,7 (12)	< 1	1,34	Rosa L.O., 2013
Agaricus bisporus	102,0 (50)	N	N	Wood, 2008
Agaricus blazei U2	43,8 (21)	N	N	Valle et al., 2015
Agaricus sp. sp. LCJ262	25,4 (8)	N	N	Lincy & Gnanadoss, 2014
Coprinus comatus	4,96 (16)	N	N	Fen et al., 2014
Chlorophyllum rhacodes	39,2 (15)	N	N	Kumari et al., 2012
Chlorophyllum humei	20,8 (5)	N	N	Kumari et al., 2012

^{*} Atividade máxima atingida no tempo indicado (dias). "N" significa não estudado no trabalho referido.

Na Figura 3 são apresentados os resultados da variação do pH durante os cultivos submerso e em estado sólido. Pode ser observado que em cultivo sólido houve pouca variação dos valores, entre 6,70 e 7,0, para os diferentes isolados avaliados. Para o cultivo submerso, houve um decréscimo acentuado do pH a partir de 6 dias de cultivo, destacando o intenso metabolismo do microrganismo.

Entre os isolados avaliados, *A. lacaseus* destacou-se para a produção de lacases em cultivo submerso e, desta forma, o seu extrato enzimático foi utilizado na caracterização pH/temperatura de reação e termoestabilidade. Para os três tampões avaliados (tampão McIlvaine, acetato de sódio e citrato de sódio), atividades superiores foram obtidas em pHs mais ácidos (2,5 e 3,0). Para a temperatura de reação, uma faixa, entre 35 e 40°C resultou em atividades superiores. As lacases de *A. lacaseus* quando mantidas em 20, 30, 40 e 50°C, mantiveram a estabilidade de cerca de 70% da atividade até 24h, após este período, um decréscimo mais acentuado foi observado para a temperatura de 50°C. Quando as lacases foram mantidas em 60°C, houve um decréscimo acentuado da atividade, sendo que em 24h já não foi detectada a atividade enzimática (Figura 4).

No perfil eletroforético da lacase no extrato enzimático obtido a partir de cultivo submerso de *Agaricus lacaseus* observa-se uma banda de maior intensidade com massa molecular relativa de aproximadamente 60 kDa (Figura 5).

CONCLUSÃO

Entre os isolados avaliados a maior atividade de lacases foi obtida em cultivo submerso empregando o fungo *Agaricus lacaseus* Faz-551. *Agaricus lacaseus*, assim como *A. xanthodermatus* e os demais fungos aqui estudados são espécies nativas, sendo estes recentemente descritos, indicando um potencial promissor e desconhecido que precisa ser avaliado. A tabela 2 indica bons resultados comparados com demais trabalhos, mas cabe ressaltar que não meios de cultivo padronizados.

Com relação aos baixos valores encontrados no cultivo em meio sólido provavelmente foi causado pelo tipo de substrato utilizado no meio (serragem de *pinnus*), uma vez que todos os fungos testados são encontrados no solo, principalmente entre gramíneas ou serapilheira e também pelo tempo examinado. Um estudo realizado por Picolli *et al.* (2017) utilizando capim elefante pré-tratado obteve uma produção de cerca de 300 U/g (15 dias) e 500 U/g (45 dias). Com a mudança do substrato, espera-se uma maior produtividade.

Os valores encontrados no cultivo submerso de *A. lacaseus* demonstra a importância e a viabilidade de utilização desse fungo em estudos avançados com diversificação de condições e meios de cultivo para incrementar a produção de lacases e outros metabólitos.

Refrências bibliográficas

Albuquerque MP, Victoria FC. 2012. *Leucocoprinus fluminensis* (*Agaricaceae*, Basidiomycota), a new species from southwest Brazilian Rain Forest. Neotropical Biology and Conservation 7(3):158-161.

Bradford, M. M. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry. 72: 248–254.

Brum AA. 2005. Perfil enzimático e degradação lignocelulósica durante o crescimento vegetativo de *Agaricus brasiliensis* em diferentes substratos. Dissertação de Mestrado. Departamento. Microbiologia e Parasitologia, UFSC.

Camassola, M.; Rosa, L.O.; Calloni, R.; Gaio, T.A.; Dillon, A.J.P. 2013. Secretion of laccase and manganese peroxidase by *Pleurotus* strains cultivate in solid-state using *Pinus* spp. Sawdust. Brazilian Journal of Microbiology, 44, 1.

Davidson, R.W.; Campbell, W.A.; Blaisdell, D.J. 1938. Differentiation of wood-decayingfungi by their reactions on gallic or tannic acid medium. J. Agr. Res. 57(9): 683–685.

Drewinski MP. 2017. Agaricus no Brasil: contribuições à sistemática do gênero.

Dissertação UFSC 90 p.

Drewinski MP, Menolli NJ, Neves MA. 2017. *Agaricus globocystidiatus*: a new neotropical species with pleurocystidia in *Agaricus* subg. *Minoriopsis*. Phytotaxa 314 (1): 064–072.

Espinosa-Ortiz EJ, Rene ER, Pakshirajan K, Hullebusch ED, Lens PNL. 2016. Fungal pelleted reactors in wastewater treatment: Applications and perspectives. Chemical Engineering Journal 283 553–571.

Fazolino EP, Suaza Blandón SC, Alves-Silva G, Lechner BE, Silveira RMB. 2018a. Taxonomy and phylogeny of *Macrolepiota*: two new species from Brazil. Mycologia v. 110 (5): 930–940.

Fazolino EP, Alves-Silva G, Silveira RMB. 2018b. Phylogenetic analyses from Brazilian *Chlorophyllum*: a new combination. Brazilian Journal of Botany (a ser submetido)

Fazolino EP, Alves-Silva G, Silveira RMB. 2018c. *Agaricus* Neotropical: *Xanthodermatei* section from Brazil. Phytotaxa (a ser submetido).

Fen, L., Xuwei, Z., Nanyi, L., Puyu, Z., Shuang, Z., Xue, Z., Haiping, L. (2014). Screening of Lignocellulose-Degrading Superior Mushroom Strains and Determination of Their CMCase and Laccase Activity. The Scientific World Journal, 2014, 763108. http://doi.org/10.1155/2014/763108

Gomes, D. N. F. (2007). Biodiversidade e Potencial Biotecnólogico de Fungos Filamentosos Isolados do Manguezal Barra das Jangadas, Jaboatão dos Guararapes, Pernambuco. Tese de doutorado (Pós-graduação em Biologia de Fungos). Departamento de Micologia, Universidade Federal de Pernambuco, PB.

Heinzkill, M.; Bech, L.; Halkier, T.; Schneider, P.; Anke, T. 1998. Characterization of laccases and peroxidases from wood-rotting fungi (Family *Coprinaceae*). Applied and Environmental Microbiology 64: 1601–1606.

Imbiv – Conicet. 2010. Malta Ágar para Aislamiento. Protocolo da Colección de Cultivos Laboratorio de Micologia. Argentina.

Jebapriya GR, Gnanadoss JJ. 2014. Screening and molecular characterization of white rot fungi capable of laccase production and dye decolourization. Life Science Biology V 4 2

Kirk, P.M.; Cannon, P.F.; Minter, D.W.; Stalpers, J.A. 2008. Ainsworth & Bisby's dictionary of the Fungi. 10 ed. Wallingford, UK: CAB International.

Kumari B, Upadhyay RC, Atri NS. 2012. Screening and Evaluation of Extra-Cellular Oxidases in Some Termitophilous and Lepiotoid Mushrooms. World Journal of Agricultural Sciences 8 (4): 409-414.

- Kuwahara, M.; Glenn, J. K.; Morgan, M. A.; Gold, M. H. 1984. Separation and characterization of two extracellular H2O2 dependent oxidases from ligninolytic cultures of *Phanerochaete chrysosporium*. FEBS Letters. 169: 247–250.
- Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227:680–685.
- Lincy J & Gnanadoss J. 2014. Optimization of culture conditions for improved laccase production by *Agaricus* sp. LCJ262. International Journal of Current Research V. 6, 11, 9517–9522.
- Mandels, M.; Reese, E. T. 1957. Induction of cellulase in *Trichoderma viride* as influenced by carbon source and metals. The Journal of Bacteriology. 73: 269–278.
- Megersa S, Gure A, Alemu M, Feleke S. 2017. Qualitative Assays and Quantitative Determinations of Laccases of White Rot Fungi from Plantation and Natural Forests of Arsi Forest Enterprise, Ethiopia. World Scientific News 67(2) (2017) 303-323
- Munari, F. M.; Gaio T. A.; Calloni, R.; Dillon, A. J. P. (2007). Decolorization of textile dyes by enzymatic extract and submerged cultures of *Pleurotus sajor-caju*. World Journal of Microbiology and Biotechnology 24: 1383–1392.
- Picolli D.T.; Regalin A.K.; Fontana, R.C.; Camassola, M. 2018. High-performance of *Agaricus blazei* fungus for the biological pretreatment of elephant grass. *Biotechnology Progress* 34 (1): 42-50.
- Pranali M. Bodke PM, Senthilarasu G, Raghukumar S. 2012. Screening diverse fungi for laccases of varying properties. Indian Journal of Microbiologia 52(2):247–250.
- Queiroz, G. O.; Jordão, R. C. C.; Salgueiro, A.A. (2002). Seleção de Microrganismos produtores de celulases e de lacases a partir de efluente de fábrica de papel. Revista Química e Tecnologia. 1: 7–10.
- Rosa, L. O.; Bettio, M.; Dillon, A. J. P. 2008. Crescimento de *Pleurotus sajor-caju* PS-2001 e produção de lacases e manganês peroxidases em cultivo sólido utilizando diferentes inóculos. In: VIII Seminário Brasileiro de Tecnologia Enzimática (ENZITEC). Anais. pp.111-112. Rio de Janeiro 2008.
- Rosa, L. O.; Barbieri, E.; Camassola, M.; Bettio, M.; Putzke, J.; Wasum, R.; Dillon, A. J. P. 2011. Capacidade de secreção de fenol—oxidases por fungos do gênero *Pleurotus*. In: XVIII Simpósio Nacional de Bioprocessos (SINAFERM). Anais CD Room. Caxias do Sul RS.

Rosa LO, 2013. Levantamento de macrofungos (filo *Basidiomycota*, subfilo *Agaricomycotina*) do nordeste do Rio Grande do Sul e avaliação do seu potencial ligninolítico. Tese UCS. 288 pp.

Schneider WDH, Fontana CF, Mendonça S, Siqueira FG, Dillon AJP, Camassola M. 2018. High level production of laccases and peroxidases from the newly isolated white-rot *Basidiomycete Marasmiellus palmivorus* VE111 in a stirred-tank bioreactor in response to different carbon and nitrogen sources. <u>Process Biochemistry Volume 69</u>, 1-11.

Silva, S. M. 2004. Formulação de meios de crescimento para cultivo sólido de *Pleurotus sajor-caju* à base de serragem de *Pinus* spp. Dissertação de Mestrado (Pósgraduação em Biotecnologia). Instituto de Biotecnologia, Universidade de Caxias do Sul, Caxias do Sul, RS.

Silva EG. 2007. Caracterização química e enzimática de cogumelos medicinais. Tese. UFLA 93p.

Tan, Y. H.; Wahab, M. N. 1997. Extracellular enzyme production during anamorphic growth in the edible mushroom *Pleurotus sajor-caju*. World Journal of Microbiology and Biotechnology. 13: 613–617.

Ullrich R, Huong LM, Dung NL, Hofrichter M. 2005. Laccase from the medicinal mushroom *Agaricus blazei*: production, purification and characterization. Applied *Microbiology* and *Biotechnology* 67: 357–363

Valle JS. 2012. Produção, identificação e caracterização molecular de lacases de *Agaricus blazei* obtidas por fermentação de resíduos agroindustriais. Tese do Programa de Pós-Graduação em Engenharia de Bioprocessos e Biotecnologia, UFPR. 167 pp.

Valle JS, Vandenberghe LPS, Santana TT, Linde GA, Colauto NB, Soccol CR. 2014. Optimization of *Agaricus blazei* laccase production by submerged cultivation with sugarcane molasses. African Journal of Microbiology Research Vol. 8(9):939–946.

Valle JS, Vandenberghe LPS, Oliveira ACC, Tavares MF, Linde GA, Colauto NB, Soccol CR. 2015. Effect of different compounds on the induction of laccase production by *Agaricus blazei*. Genetics and Molecular Research 14 -4- 15882–15891.

Wood DA. 1980. Production, Purification and Properties of Extracellular Laccase of *Agaricus* bisporus. Joirrnal of General Microbiology, 117, 327-338.

Wolfenden, R. S.; Wilson, R. L. 1982. Radical–cations as reference chromogens in the kinetic studies of one–electron transfer reactions: pulse radiolysis studies of 2,2'-azinobis-(3-ethylbenzthiazoline-6-sulphonate). Journal of the Chemical Society, Perkin, trans. 02: 805–812.

FIGURAS

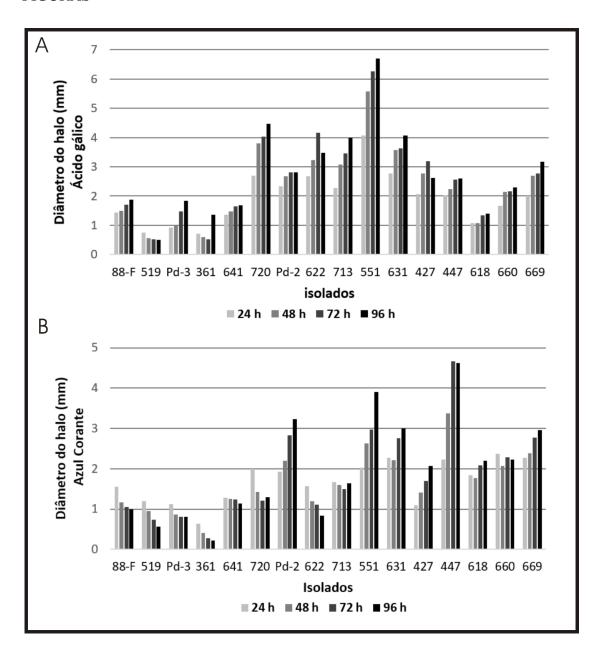


Figura 1. Análise quali-quantitativa (relação halo/colônia) de diferentes isolados em meio ácido gálico - AG (A) e meio azul corante - AC (B).

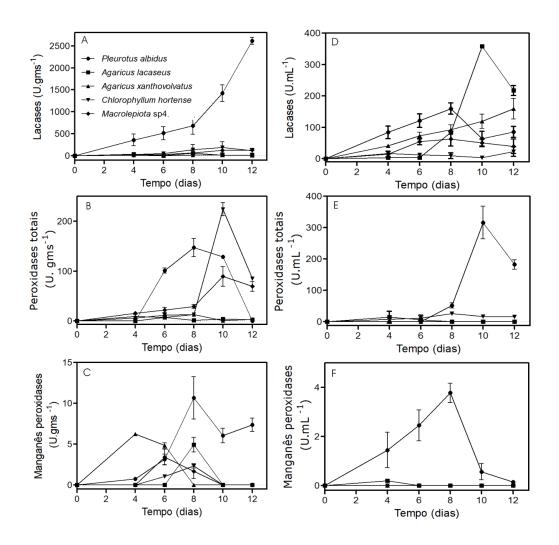


Figura 2. Variação da produção de lacases, peroxidases totais e manganês peroxidases em cultivo sólido (A, B e C) e submerso (D, E e F) de diferentes isolados.

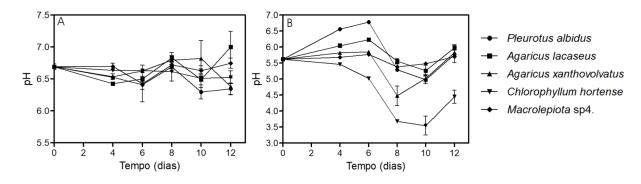


Figura 3. Variação do pH em cultivos sólido (A) e submerso (B) de diferentes isolados.

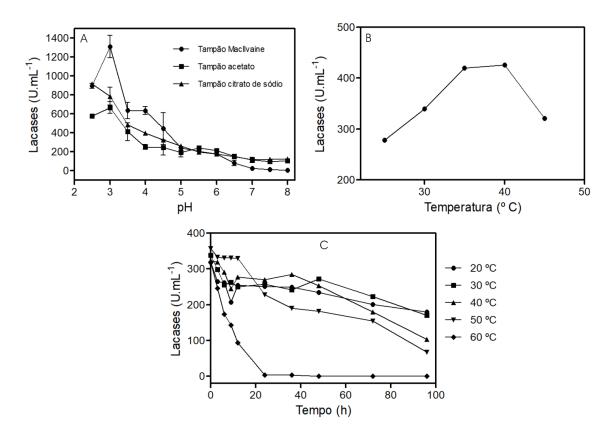


Figura 4. Avaliação do pH e de diferentes tampões de reação (A), temperatura (B) e termoestabilidade (C) de extrato enzimático de *Agaricus lacaseus*.

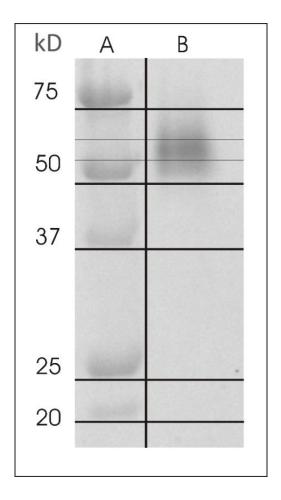


Figura 5. Zimograma de proteínas nativas após a reação com o substrato (ABTS) para a detecção da atividade de lacases do caldo enzimático produzidos pelo *A. lacaseus* em cultivo submerso. (A) marcador de referência com as respectivas massas moleculares (kDa), (B) massa molecular medida.

5. CONSIDERAÇÕES FINAIS

A família *Agaricaceae* tem sido estudada no Brasil desde o início do século XX com o pesquisador austríaco erradicado no Brasil, o padre Johannes Evangelista Rick, que deixou um grande legado para Micologia brasileira (Fidalgo, 1962), além de Augusto Chaves Batista entre outros, o que gerou um razoável número de registros de espécies. No entanto, os fungos agaricoides desta família são muito frágeis e de difícil preservação, especialmente no passado onde as técnicas de preservação ainda não estavam bem desenvolvidas aqui no Brasil e mesmo nos dias atuais ainda encontramos muitas dificuldades em trabalhar com o material herborizado. Somando-se a isto, pouquíssimos pesquisadores têm se debruçado para desvencilhar os problemas taxonômicos existentes em espécies nativas, que destoam das bem conhecidas espécies europeias cujos nomes são aqui utilizados erroneamente, baseados em sua maioria apenas em descrições morfológicas.

Também são escassos os estudos que integram caracteres morfológicos e moleculares, que são realizados principalmente com espécies de interesse econômico como *Agaricus blazei* e *A. subrufescens*.

Com este estudo apresentamos um considerável incremento ao conhecimento da diversidade de *Agaricaceae* nos gêneros *Agaricus*, *Chlorophyllum* e *Macrolepiota* com dados morfológicos e moleculares. Um total de quatorze novas espécies e uma nova combinação foram acrescentados, das quais seis foram aqui nomeadas e descritas e outras oito já caracterizadas e em processo de publicação. Um total de 116 novas sequências dos gêneros *Agaricus*, *Chlorophyllum* e *Macrolepiota* do Brasil foram acrescentadas, sendo 47 de ITS, 37 de LSU, 29 de RPB2 e 3 de TEF1, como detalhado no capítulo 3, manuscritos 3.1, 3.2 e 3.3. A maior parte representa as primeiras sequências dos gêneros para material brasileiro.

O estudo filogenético molecular tem se mostrado fundamental para o entendimento das nossas espécies e sua diferenciação em relação as de outros continentes e também para diferenciá-las entre si. O Brasil possui uma mega biodiversidade e muito pouco se conhece de sua micobiota, o que tem sido confirmado pelo expressivo número de publicações de novos táxons nos últimos anos. Esforços devem ser realizados por instituições de pesquisas e acadêmicos com o intuito de ampliar os dados moleculares de espécies brasileiras.

A revisão dos materiais typo de *Macrolepiota* brasileiros coletados por Rick e de outras de suas coleções, identificadas com nomes europeus não foi suficiente para resolver os

problemas de identificação devido às más condições do material. Como comentado anteriormente, as Agaricaceae do tipo agaricoide, os cogumelos, são de difícil preservação e restaram apenas basidiósporos e poucas estruturas a serem reconhecidas na microscopia, além de que não existem descrições detalhadas do material, nem boas pranchas ou fotografias. Soma-se a isto o fato de que muitas características importantes para identificação de Agaricaceae dependem da observação de caracteres em material fresco, e também não foi possível a extração de DNA dos materiais citados. Esses fatos têm gerado um impasse para a comparação com coleções recentes, coletadas em regiões próximas onde Rick coletou e que não puderam ser comparadas. Essas coleções seriam de fato novas espécies ou poderiam ser um destes materiais já coletados por Rick? Esse impasse deve ser superado e uma vez que não se consegue ligar as novas espécies com as do acervo em questão, nem morfologicamente por falta de dados do material existente em boas condições e nem por análises moleculares pela impossibilidade de extração do DNA, deve-se sim ser propostas como novas espécies, ainda que exista a possibilidade de ocorrer uma sobreposição, mas que não é factível de ser provada. Isso resolveria o problema de espécies como Macrolepiota sp1, Macrolepiota sp2 e Macrolepiota sp3 citadas neste trabalho e outras que possam ser enquadradas na mesma situação.

Com respeito à capacidade de produção de enzimas pelos gêneros estudados fica evidente que é promissora a busca por espécies com um arsenal enzimático de interesse biotecnológico. Basta ver que *Agaricus lacaseus*, nova espécie nativa descrita e estudada neste trabalho (capítulo 3, manuscrito 3.8), destacou-se na produção de lacases superando em mais que o dobro o já consagrado *Pleurotus albidus*, um degradador de madeira, que produz grandes quantidades dessa enzima, largamente utilizada pela indústria.

A união de esforços e parcerias entre taxonomistas e biotecnólogos é muito interessante e pode impulsionar as pesquisas em ambas as áreas com possibilidades inimagináveis.

Em vista do exposto neste trabalho, considera-se que o presente estudo tenha contribuído de forma significativa para o conhecimento da família *Agaricaceae* em áreas de Mata Atlântica e do Pampa brasileiros. Um pequeno passo, é verdade, quando se vislumbra a imensidão por se fazer, mas com certeza uma janela aberta para novas pesquisas e pesquisadores.

6. Referências

Albuquerque, M.P.; Victoria, F.C.; Pereira, A.B. 2006. Ecologia e distribuição do gênero *Leucocoprinus* Pat. no Rio Grande do Sul, Brasil. Acta Biologica Leopondense 28 (1): 11–16.

Alexopoulos, C.J.; Mims, C.W.; Blackwell, M. 1996. Introductory Mycology. 4th ed. New York, John Wiley & Sons Inc.

Alves, M.H.; Nascimento, C.C.; Andrades, E.O.; Araujo, L.R.C. 2012. Fungos da APA Delta do Parnaíba, litoral piauiense. *In*: A. GUZZI (org.), Biodiversidade do Delta do Parnaíba - litoral piauiense. 1ª ed., Teresina, EDUFPI, p. 35–61.

Alves, R.P.; Menezes, G.C.A.; Oliveira, E.D.; Victoria, F.C.; Pereira, A.B.; Albuquerque, M.P. (2016) *Chlorophyllum* Masse e *Macrolepiota* Singer (*Agaricaceae*) em área do bioma Pampa, Rio Grande do Sul, Brasil. Neotropical Biology and Conservation 11: 141–152.

Arora, D.S.; Sharma, R.K. 2010. Ligninolytic Fungal Laccases and Their Biotechnological Applications. Applied Biochemistry and Biotechnology 160:1760–1788.

Bala, N.; Aitken, E.A.B.; Fechner, N.; Cusack, A.; Steadman, K.J. 2011. Evaluation of antibacterial activity of Australian basidiomycetous macrofungi using a high-throughput 96-well plate assay. Pharmaceutical Biology 49 (5): 492–500.

Bach Hi, E.M.; Azevedo, M.R.P.; Bach, E.E.; Ogata, T.R.P. 2008. <u>Efeito protetor do extrato de *Agaricus sylvaticus* em fígado de ratos do tipo wistar inoculado com pristane. Saúde Coletiva 5 (21): 76–79.</u>

Baunsgaard, L.; Dalbøge, H.; Houen, G.; Rasmussen, E.M.; Welinder, K.G. 1993. Amino acid sequence of *Coprinus* macrorhizus peroxidase and cDNA sequence encoding *Coprinus cinereus* peroxidase. A new family of fungal peroxidases. European Journal of Biochemistry 213: 605–611.

Bellù, F.; Lanzoni, G. 1987. Betrachtungen über die Gattung *Macrolepiota* Singer in Europa. Beiträge zur Kenntnis der Pilze Mitteleuropas, 3, 189–204.

Bettin F. 2005. Produção de lacases pela linhagem PS-2001 de *Pleurotus sajor-caju* (Fr.) Singer em cultura submersa. Dissertação de Mestrado (Pós-graduação em Biotecnologia). Instituto de Biotecnologia, Universidade de Caxias do Sul. Caxias do Sul, Brasil.

- Bettin, F.; Montanari, Q.; Calloni, C.; Gaio, T.A.: Silveira, M.M.; Dillon, A. J. P. 2009a. Production of laccases in submerged process by *Pleurotus sajor-caju* PS-2001 in relation to carbon and organic nitrogen sources, antifoams and Tween 80. J. Ind. Microbiol. Biot. 36:1–9.
- Bettin, F.; Rosa, L.O.; Montanari, Q.; Malvessi, E.; Silveira, M.M.; Dillon, A. J. P. 2009b. Efeito do ph sobre a produção de lacases e o crescimento de *Pleurotus sajor-caju* OS-2001 em processo submerso em biorreator de mistura completa. In: XVII Simpósio Nacional de Bioprocessos (SINAFERM). Anais CD Room. Natal, RN, 2009.
- Bettin, F.; Rosa, L. O.; Montanari, Q.; Calloni, R.; Gaio, T. A.; Malvessi, E.; Silveira, M. M.; Dillon, A. J P. (2011) Growth kinetics; production; and characterization of extracellular laccases from *Pleurotus sajor-caju* PS-2001. Process. Biochem. 46: 758–764.
- Bon, M. 1981. Cle Monographique Des "Lepiotes" D'Europe. Documents Mycologiques 11(43): 1–77.
- Bon, M. 1993. Flore Mycologique d'Europe 3. Les Lépiotes. Documents mycologiques. Mémoire hors série, n° 3. Eds. Association d'Ecologie et Mycologie (Faculté de Pharmacie-Lille). 152 p.
- Bononi, V.L.; Mucci, E.S.F.; Yokomizo, N.K.S.; Guzmán, G. 1984. *Agaricales* (*Basidiomycetes*) do Parque Estadual de campos do Jordão, SP, Brasil. Rickia, 11:85–89.
- Bonfanti, P.; Beal, L.L.; Dillon, A.J.P. 2007. Processo para remoção de compostos fenólicos de efluentes e agente removedor de compostos fenólicos. Patente de Invenção. INPI, PI 0704520–4A2, Brasil.
- Bradford, M. M. (1976). A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein—dye binding. Analytical Biochemistry. 72: 248–254.
- Breitenbach, J.; Kränzlin, F. 1995. Champignons de Suisse, Tome 4: Champignons à lames, 2ème partie: Entolomataceae, Pluteaceae, Amanitaceae, *Agaricaceae*, Coprinaceae, Bolbitiaceae, Strophariaceae. Edition Mycologia, Lucerne, 371 pp.
- Camassola, M.; Rosa, L.O.; Calloni,R.; Gaio, T.A.; Dillon, A.J.P. 2013. Secretion of laccase and manganese peroxidase by *Pleurotus* strains cultivate in solid–state using *Pinus* spp. sawdust Braz. J. Microbiol. 44, 1.
- Candusso, M.; Lanzoni, G. 1990. *Lepiota* s.l. Fungi Europei 4. Saronno, Giovanna Biella. 743 pp.
 - Cappelli, A. 1984. Agaricus. Sarronno, Giovanna Biella. 560 pp.

Castresana, J. 2000. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution 17: 540–552.

Cheung, P.C. 2013. Mini-review on edible mushrooms as source of dietary fiber: preparation and health benefits. Food Science and Human Wellness, 2(3): 162–166.

Colak, P. 2009. Chemical composition and nutritional value of European species of wild growing mushrooms: A review. Food chemistry: 113(1), 9–16.

Confortin, F. G.; Marchetto, R.; Bettin, F.; Camassola, M.; Salvador, Mirian; Dillon, A.J.P. (2008). Production of *Pleurotus sajor-caju* strain PS-2001 biomass in submerged culture. J. Ind. Microbiol. Biot. 35: 1149–1155.

Davidson, R.W.; Campbell, W.A.; Blaisdell, D.J. 1938. Differentiation of wood-decayingfungi by their reactions on gallic or tannic acid medium. Journal of Agricultural Research. 57(9): 683–685.

Dennis, R.W.G. 1952. *Lepiota* and allied genera in Trinidad, British West Indies. Kew Bulletin 7: 459–499.

Dennis, R.W.G. 1961. Fungi Venezuelani: IV Agaricales. Kew Bulletin 15: 67–156.

Dennis, R.W.G. 1970. Fungus Flora of Venezuela and Adjacent Countries. Kew Bulletin Additional Series 3: 1–531.

Drewinski, M.P. 2017. *Agaricus* no Brasil: contribuições à sistemática do gênero. Porto Alegre: UFSC. Dissertação de mestrado.

Durrant, A.J.; Wood, D.A.; Cain, R.B. 1991. Lignocellulose biodegradation by *Agaricus bisporus* during solid state fermentation. Journal Microbiology 137: 751–755.

Ferreira A.J.; Cortez V.G. 2012. Lepiotoid *Agaricaceae* (Basidiomycota) from São Camilo State Park, Paraná State, Brazil. Mycosphere, v. 3, p. 962-976.

Fidalgo O. 1962. Rick, o pai da Micologia brasileira. Rickia 1: 1-11.

Fries, E.M. 1821. System Mycologicum 1. Gryphiswaldiae: sumtibus Ernesti Mayritii.

Frøslev, T.; G.; Matheny, P. B.; Hibbett, D. S. 2005. Lower level relationships in the mushroom genus *Cortinarius* (*Basidiomycota*, *Agaricales*): a comparison of RPB1, RPB2 and ITS phylogenies. Molecular Phylogenetics and Evolution 37:602–618.

Furlani, R.P.Z.; Godoy, H.T. 2007. Nutritional value of edible mushrooms. Ciência e Tecnologia Alimentar 27(1): 154-157.

Ge, Z. W.; Yang, Z. L. 2006. The genus *Chlorophyllum* (Basidiomycetes) in China. Mycotaxon 96: 181–191.

Ge, Z. W.; Yang, Z. L.; Vellinga, E. C. 2010. The genus *Macrolepiota* (*Agaricaceae*, Basidiomycota) in China. Fungal Diversity 45: 81–98

Ge, Z. W.; Chen, C.H.; Yang, Z. L.; 2012. *Macrolepiota* subcitrophylla sp. nov., a new species with yellowish lamellae from southwest China. Mycoscience 53: 284–289

Ge, Z.W.; Jacobs, A.; Vellinga, E.C.; Sysouphanthong, P.; Walt, R.; Lavaroto, C.; An, Y.-F.; Yang, Z.L. 2018. A multi-gene phylogeny of *Chlorophyllum (Agaricaceae*, Basidiomycota): new species, new combination and infrageneric classification. MycoKeys 32: 65–90.

Góes-Neto, A.; Loguercio-Leite, C; Guerrero, R. T. 2005. DNA extraction from frozen field collected and dehydrated herbarium fungal basidiomata: performance of SDS and CTAB-based methods.Biotemas, 18 (2): 19–32.

Gomes, D. N. F. 2007. Biodiversidade e Potencial Biotecnólogico de Fungos Filamentosos Isolados do Manguezal Barra das Jangadas, Jaboatão dos Guararapes, Pernambuco. Tese de doutorado (Pós-graduação em Biologia de Fungos). Departamento de Micologia, Universidade Federal de Pernambuco, PB.

Grandi, R.A.P.; Guzmán, G.; Bononi, V.L. 1984. Adições às Agaricales do Parque Estadual das Fontes do Ipiranga, São Paulo, SP, Brasil. Rickia 11: 27–33.

Hatakka A. 2001. Biodegradation of lignin. In: Hofrichter M, Steinbehel A (eds) Biopolymers: biology, chemistry, biotechnology, applications, Lignin, humic substances and coal. Wiley VCH, Weinheim, p. 129–180.

Heinemann, P. 1986. Agarici Austroamericani VI Aperçu sur lês *Agaricus* de Patagonie et de la Terre de Feu. Bulletin du Jardin Botanique National de Belgique 56: 417–446.

Heinemann, P. 1990. Agarici Austroamericani VII. *Agaricaceae* dês zones tempéréés de l'Argentine et du Chili. Bulletin du Jardin Botanique National de Belgique 60: 331–370.

Heinemann, P. 1993. Agarici Austroamericani VIII. Agariceae dês régions intertropicales d'Amérique du Sud. Bulletin du Jardin Botanique National de Belgique 62: 355–384.

Heinemann, P. 1956. Champignons récoltés au Congo Belge par madame M. Goossens-Fontana. II. *Agaricus* Fries s.s. Bulletin Du Jardin Botanique National de Belgique. 26(1):1–127

Heinemann, P. 1962. Agarici Austro-Americani. IV. Quatre *Agaricus* du Venezuela. Bulletin du Jardin Botanique de l'État de Bruxelles,32(2):155-161. https://doi.org/10.2307/3667226

Heinemann, P. 1993. Agarici Austroamericani VIII. Agariceae des régionsintertropicales d'Amérique du Sud. Bulletin du Jardin Botanique National de Belgique, 62(1):355-384. https://doi.org/10.2307/3668282.

Heinemann, P.; Meijer, A.A.R. 1996. The status of *Volvolepiota* Singer. Bulletin du Jardin Botanique National de Belgique 65 (2–3): 405–412.

Heinzkill, M., Bech, L., Halkier, T., Schneider, P. and Anke, T. 1998 Characterization of laccases and peroxidases from wood-rotting fungi (family *Coprinaceae*). Applied and Environmental Microbiology *64:1601–1606*.

Imbiv – Conicet (2010). Malta Ágar para Aislamiento. Protocolo da Colección de Cultivos Laboratorio de Micologia. Argentina.

Johnson, J. 1999. Phylogenetic relationships within Lepiota sensu lato based on morphological and molecular data. Mycologia 91: 443–458

Johnson, J.; Vilgalys, R. 1998. Phylogenetic systematic of *Lepiota* sensu lato based on nuclear large subunit rDNA evidence. Mycologia 90: 971–979.

Karunarathna, S.C.; Chen, J.; Mortimer, P.E.; Xu, J.C.; Zhao, R.L.; Callac, P.; Hyde, K.D. 2016. Mycosphere Essay 8: A review of genus *Agaricus* in tropical and humid subtropical regions of Asia. Mycosphere 7(4):417–439.

Katoh, K.; Standley, D. M. 2013. MAFFT. Multiple sequence alignment software 7: improvements in performance and usability. Molecular Biology and Evolution 30: 772–780.

Kearse, M.; Moir, R.; Wilson, A.; Stones–Havas, S.; Cheung, M.; Sturrock, S.; Buxton, S.; Cooper, A.; Markowitz, S.; Duran, C.; Thierer, T.; Ashton, B.; Mentjies, P. & Drummond, A. 2012. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28(12): 1647–1649.

Kornerup, A.; Wanscher, J. H. 1978. Methuen handbook of colour, 3rd edn. Eyre Methuen Ltd., London. 252 p.

Kirk, P.M.; Cannon, P.F.; Minter, D.W.; Stalpers, J.A. 2008. Ainsworth & Bisby's dictionary of the Fungi. 10 ed. Wallingford, UK: CAB International.

Kumar, S.; Stecher, G.; Tamura, G. 2016. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Molecular Biology and Evolution 33 (7):1870–1874

Kuwahara, M.; Glenn, J. K.; Morgan, M. A.; Gold, M. H. 1984. Separation and characterization of two extracellular H2O2 – dependent oxidases from ligninolytic cultures of *Phanerochaete chrysosporium*. FEBS Letters. 169: 247–250.

- Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 227:680–685
- Largent, D. L. 1977. How to identify mushrooms to genus I: macroscopic features. Mad River Press Inc. 86 pp.
- Largent, D. L.; Johnson, D.; Watling, R. 1986. How to identify mushrooms to genus III: microscopic features. Mad River Press Inc.
- Lebel, T.; Syme, A. 2012. Sequestrate species of *Agaricus* and *Macrolepiota* from Australia: new species and combinations and their position in a calibrated phylogeny. Mycologia 104(2).
- Löwenberg-neto, P. 2014. Neotropical region: A shapefile of Morrone's biogeographical regionalisation. Zootaxa 3802, 9–10.
- Mandels, M.; Reese, E. T. 1957. Induction of cellulase in *Trichoderma viride* as influenced by carbon source and metals. The Journal of Bacteriology. 73: 26278.
- Matheny, P. B. 2005. Improving phylogenetic inference of mushrooms with rpb1 and rpb2 nucleotide sequences (*Inocybe*, *Agaricales*). Molecular Phylogenetics and Evolution 35: 1–20.
- Meijer, A. A. R. 2001. Mycological work in the Brazilian state of Paraná. Nova Hedwigia 72, 105–159
- Meijer, A.A.R. 2006. Preliminary List of the Macromycetes from the Brazilian State of Paraná. Boletim do Museu Botânico Municipal 68: 1–59.
- Meijer, A.A.R.; Amazonas M, A.L.A.; Rubio, G.B.G.; Curial, R.M. 2007. Incidences of poisonings due to *Chlorophyllum molybdites* in the state of Paraná, Brazil. Braz. arch. biol. technol. vol.50, n.3, pp. 479–488.
- Meijer, A.A.R. 2008. Notable macrofungi from Brazil's Paraná pine forests. EMBRAPA. 431 p.
- Miller, G. L. (1959). Use of dinitrosalicilic acid reagent for determination of reducing sugar. Analytical Chemistry 31: 426–428.
- Miller, M. A.; Pfeiffer, W; Schwartz, T. 2011. "The CIPRES science gateway: a community resource for phylogenetic analyses". In Proceedings of the 2011 TeraGrid Conference: Extreme Digital Discovery, (Salt Lake City, July 17, 2011). 41: 1–8.
- Moncalvo, J.M.; Lutzoni, F.M.; Rehner, S.A.; Johnson, J.; Vilgalys, R. 2000. Phylogenetic relationships of agaric fungi based Matheny, P. B. Major Clades of Agaricales 993 on nuclear large subunit ribosomal DNA sequences. System Biology 49: 278–305.

- Morita, Y.; Yamashita, H.; Mikami, B.; Iwamoto, H.; Aibara, S.; Terada, M.; Minami J. 1988. Purification, crystallization, and characterization of peroxidase from *Coprinus cinereus*. Journal of Biochemistry 103:693–699.
- Morrone, J. J. 2014. Biogeographical regionalisation of the neotropical region. Zootaxa 3782.
- Munari, F. M.; Gaio T. A.; Calloni, R.; Dillon, A. J. P. (2007). Decolorization of textile dyes by enzymatic extract and submerged cultures of *Pleurotus sajor-caju*. World. J. Microb. Biot. 24: 1383–1392.
- Nascimento, C. C.; alves, M. H. 2014. New records of (*Agaricaceae*) from Araripe National Forest, Ceará State, Brazil. Mycosphere 5 (2): 319-332.
- Nylander, J. A. A. 2004. MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University. Available from http://www.abc.se/~nylander/".\h.
- Pázmány, D. 1985. A *Macrolepiota* nemzetség euròpai fajainak hatàrozòkulcsa. Mikol. Közlem, 3:115-136.
- Pegler, D. N. 1972. A revision of the genus *Lepiota* from Ceylon. Kew Bulletin Additional Series 27: 155–202.
- Pegler, D. N. 1977. A preliminary Agaric Flora of East Africa. Kew Bulletin Additional Series 6: 1–615.
- Pegler, D. N. 1983. Agaric Flora of the Lesser Antilles. Kew Bulletin Additional Series 9: 1–668.
- Pegler, D.N. 1986. Agaric Flora of Sri Lanka. Kew Bulletin Additional Series 12: 1–519.
- Pegler, D. N. 1997. The agarics of São Paulo, Brazil. London: HMSO, Royal Botanic Gardens, Kew. 68 p.
- Putzke, J. 1994. Lista de fungos Agaricales (Hymenomycetes, Basidiomycotina) referidos para o Brasil. Caderno de Pesquisa, série Botânica, **6**(2):1–189.
- Putzke, J.; Putzke, M.T.L.; Köhler, A. 2014. Notas sobre os fungos *Agaricaceae* (*Agaricales-Basidiomycota*) comestíveis encontrados em áreas em regeneração natural em Santa Cruz do Sul RS, Brasil.Caderno de Pesquisa, série Biologia, 25(3): 44–53.
- Putzke, J.; Putzke, M.T.L. 2017. O Gênero *Agaricus* L. ex. Fr. (Agricales, Basidiomycota) no Brasil. Neotropical Biology and Conservation 12(2):109–130.

Queiroz, G.O.; Jordão, R.C.C.; Salgueiro, A.A. 2002. Seleção de Microrganismos produtores de celulases e de lacases a partir de efluente de fábrica de papel. Revista Química e Tecnologia. 1: 7–10.

Raithelhuber, J. 1987. Die gattung *Macrolepiota* in Südamerika. Metrodiana 15 (3): 59–71.

Rasera, K.; Ferla, J.; Dillon, A. J. P.; Riveiros, R.; Zeni, M. 2009. Immobilization of laccase from *Pleurotus sajor-caju* in polyamide membranes. Desalination. 245:657–66.

Rick, J. 1906. Pilze aus Rio Grande do Sul. Brotéria Série Botânica 5: 5–53.

Rick, J. 1907. Contributio ad monographiam Agaricacearum et Polyporaceum Brasiliensium. Broteria Série Botânica 6: 65–92.

Rick, J. 1939. Agarici Riograndensis III. Lilloa 4: 75–104.

Rick, J. 1961. Basidiomycetes Eubasidii in Rio Grande do Sul – Brasília 5. *Agaricaceae*. Iheringia Série Botânica 8: 296–450.

Ronquist, F.; Teslenko, M.; Van der Mark, P.; Ayres, D.L.; Darling, A.; Höhna, S.; Larget, B.; Liu, L.; Suchard, M. A.; Huelsenbeck, J. P. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. <u>Systematic Biology</u> 61: 539–542.

Rosa L. H.; Capelari M. 2009. Agaricales Fungi from atlantic rain forest fragments in Minas Gerais, Brazil. Brazilian Journal of Microbioly. vol.40, n.4, pp. 846–851.

Rosa, L. O.; Bettio, M.; Dillon, A. J. P. 2008. Crescimento de *Pleurotus sajor–caju* PS–2001 e produção de lacases e manganês peroxidases em cultivo sólido utilizando diferentes inóculos. In: VIII Seminário Brasileiro de Tecnologia Enzimática (ENZITEC). Anais. pp.111–112. Rio de Janeiro, 2008.

Rosa, L. O.; Barbieri, E.; Camassola, M.; Bettio, M.; Putzke, J.; Wasum, R.; Dillon, A. J. P. 2011. Capacidade de secreção de fenol—oxidases por fungos do gênero *Pleurotus*.In: XVIII Simpósio Nacional de Bioprocessos (SINAFERM). Anais — CD Room. Caxias do Sul — RS; 2011.

Rosa, L.O. 2013. Levantamento de macrofungos (filo *Basidiomycota*, subfilo *Agaricomycotina*) do Nordeste do Rio Grande do Sul e avaliação do seu potencial ligninolítico. Dissertação. 288 p.

Rother, M. S.; Silveira, R.M.S. 2008. Família *Agaricaceae* (Agaricales, Basidiomycota) no Parque Estadual de Itapuã, Viamão, Rio Grande do Sul, Brasil. Revista Brasileira de Biociências 6(3): 259-268.

Rother, M.S.; Silveira, R.M.B. 2009. *Leucoagaricus lilaceus (Agaricaceae*), a poorly known Neotropical agaric. Mycotaxon 107, 473–481.

Silva, S. M. 2007. Crescimento e Capacidade de Absorção de Metais por *Pleurotus sajor–caju*, em Cultivo Líquido e em Cultivo Sólido. Tese de Doutorado (Pós–graduação em Biotecnologia). Instituto de Biotecnologia, Universidade de Caxias do Sul, Caxias do Sul, RS.

Silva, S. M.; Rosa, L. O.; Dillon, A. J. P. 2007a. Produção de Fenol-oxidases de *Pleurotus sajor-caju* em Cultivo Sólido na Presença de Metais Pesados. In: XVI Simpósio Nacional de Bioprocessos (SINAFERM). Anais – CD Room. Curitiba–PR, 2007.

Silva, S. M.; Rosa, L. O.; Dillon, A. J. P.; 2007b. Processo para Produção de Lacases e/ou Manganês Peroxidases, Meio de Cultivo Sólido para Produção de Lacases e/ou Manganês Peroxidases. Patente de Invenção. INPI, PI0702645–5A2, Brasil.

Silva, E. G. 2007. Caracterização química e enzimática de cogumelos medicinais. Tese de doutorado, UFLA. 93 pp.

Singer, R.; Digilio, A. P. L. 1951. Pródromo de la flora Agaricina Argentina. Lilloa 25: 5–461.

Singer, R. 1953. Type studies on Basidiomycetes VI. Lilloa 26: 57–159.

Singer, R. 1986. The Agaricales in Modern Taxonomy. 4th ed. Koenigstein: Koeltz Scientific Books.

Sobestiansky, G. 2005. Contribution to a macromycete survey of the states of Rio Grande do Sul and Santa Catarina in Brazil. Arquivos de Biologia e Tecnologia 48 (3): 437–457.

Stamatakis, A. 2014. RAxML version 8: a tool for phylogenetic analysis and post–analysis of large phylogenies. Bioinformatics 30(9):1312–3.

Steffen, K.T.; Hofrichter, M.; Hatakka, A. 2000. Mineralisation of 14C-labelled synthetic lignin and ligninolytic enzyme activities of litter-decomposing basidiomycetous fungi. Applied Microbiology and Biotechnology 54:819-825.

Steffen, K. 2003. Degradation of recalcitrant biopolymers and polycyclic aromatic hydrocarbons by litter-decomposing basidiomycetous fungi. Dissertationes BiocentriViikki Universitatis Helsingiensis, 23/2003. Ph.D. Thesis. Department of Applied Chemistry and Microbiology, University of Helsinki, Helsinki. 68 p.

Suaza Blandón, S.C. 2016. Biodiversidad de hongos lepiotaceos (Agaricales) en la Argentina. Análisis filogenéticos y ensayos de cultivo de la tribu Leucocoprineae. Tesis. Instituto de Micología y Botánica, Universidad de Buenos Aires, Argentina.

Tan, Y. H.; Wahab, M. N. 1997. Extracellular enzyme production during anamorphic growth in the edible mushroom *Pleurotus sajor–caju*. World J. Microbiol. Biotechnol. 13: 613–617.

Thiers, B. 2017. Index Herbariorum: A global directory of public herbaria and associated staff. New York Botanical Garden's Virtual Herbarium. http://sweetgum.nybg.org/ih/.

Vellinga, E.C. 2002. New combinations in *Cholrophyllum*. Mycotaxon 83: 415-417.

Vellinga, E.C. 2003b. Type studies in *Agaricaceae - Chlorophyllum rhacodes* and allies. Mycotaxon 85: 259–270.

Vellinga, E.C. 2004a. Ecology and distribution of lepiotaceous fungi (*Agaricaceae*) - A review. Nova Hedwigia 78: 273–299. https://doi.org/10.1127/0029-5035/2004/0078-0273

Vellinga, E.C. 2004b Genera in the family *Agaricaceae*: evidence from nrITS and nrLSU sequences. Mycological Research 108: 354–377.

Vellinga, E. C. 2006. *Chlorophyllum* in Great Britain. Field Mycology V:7(4).

Vellinga E.C.; De Kok RPJ (2002) (1539) Proposal to conserve the name *Chlorophyllum* Massee against *Endoptychum* Czern. (*Agaricaceae*). Taxon 51: 563–564. Https://doi.org/10.2307/1554876

Vellinga, E.C.; de Kok RPJ, Bruns TD (2003) Phylogeny and taxonomy of *Macrolepiota* (*Agaricaceae*). Mycologia 95: 442–456. https://doi.org/10.2307/3761886

Vellinga, E.C.; Yang, Z.L. 2003. *Volvolepiota* and *Macrolepiota* – *Macrolepiota velosa*, a new species from China. Mycotaxon 85: 183-186.

Vellinga, E.C.; Sysouphanthong P, Hyde KD (2011) The family *Agaricaceae*: phylogenies and two new white-spored genera. Mycologia 103: 494–509. https://doi.org/10.3852/10-204.

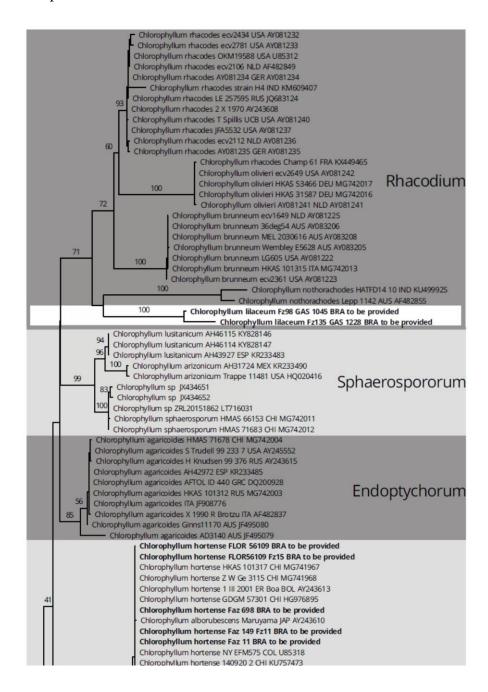
Vilgalys, R.; Hester, M. 1990. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. Journal of Bacteriology 172: 4238–4246.

Wartchow F., Putzke J., Cavalcanti M.A.Q. 2008. *Agaricaceae* Fr. (Agaricales, Basidiomycota) from areas of Atlantic Forest in Pernambuco, Brazil. Acta Botanica Brasílica, v. 22, p. 287-299.

Wasser, S. P. 1993. Tribes Cystodermateae Sing. and Leucocoprineae Sing. of the CIS and Baltic States. Libri Botanici 9: 1–105.

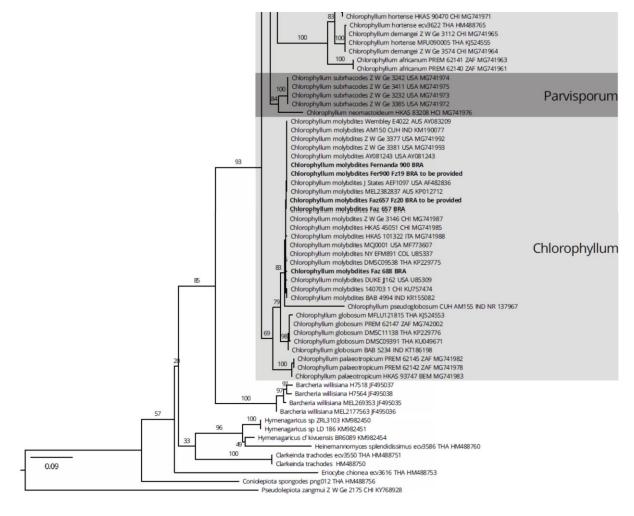
White, T. J.; Bruns, T.; Lee, S.; Taylor, J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes from phylogenetics. In: Innes, M. A.; Gelfand, D. H.;

Sninsky, J. S.; White, T. J. eds. PCR protocols: methods and applications. London, UK: Academic Press. p. 315–322.


Wolfenden, R. S.; Wilson, R. L. (1982). Radical–cations as reference chromogens in the kinetic studies of one–electron transfer reactions: pulse radiolysis studies of 2,2'–azinobis–(3–ethylbenzthiazoline–6–sulphonate). J. Chem. Soc. Perkin. Trans. 02: 805–812.

Wright, J.E.; Albertó, E. 2002. Guía de los Hongos de La Región Pampeana. I. Hongos con Laminillas. Buenos Aires: Lola, p. 280.

Zhao, R. L.; Zhou, J. L.; Chen, J.; Margaritescu, S.; Sánchez–Ramírez, S.; Kevin D Hyde, K. D.; Philippe Callac, P.; Luis A. Parra, L. A.; Li, G. J.; Moncalvo, J. M. 2016. Towards standardizing taxonomic ranks using divergence times – a case study for reconstruction of the *Agaricus* taxonomic system. Fungal diversity 78: 239.


6.ANEXOS

6.1. Arquivos Suplementares do Manuscrito II

(Continua 1/2)

(Continuação 2/2)

SUPPLEMENTARY FIGURE 1. Phylogenetic tree of *Chlorophyllum* species from nrITS sequences, inferred by Maximum Likelihood analysis. Above/below branches, ML BS = 70 or higher (high support) and ML BS of 50 or higher (moderate support). New sequences generated in this are in bold.

SUPPLEMENTARY TABLE I. Specimen information for materials used in this study, in the ITS analysis.

Espécie	Voucher	Location	ISOcode	GB nrITS
Chlorophyllum africanum	PREM 62141	South Africa	ZAF	MG741963
Chlorophyllum africanum	PREM 62140	South Africa	ZAF	MG741961
Chlorophyllum agaricoides		ITA	ITA	JF908776
Chlorophyllum agaricoides	AD3140	AUS	AUS	JF495079
Chlorophyllum agaricoides	AFTOL ID 440	GRC	GRC	DQ200928
Chlorophyllum agaricoides	AH42972	ESP	ESP	KR233485
Chlorophyllum agaricoides	Ginns11170	AUS	AUS	JF495080
Chlorophyllum agaricoides	H Knudsen 99 376	RUS	RUS	AY243615
Chlorophyllum agaricoides	S Trudell 99 233 7	USA	USA	AY245552
Chlorophyllum agaricoides	X 1990 R Brotzu	ITA	ITA	AF482837
Chlorophyllum agaricoides	HMAS 71678	China: Neimenggu	CHI	MG742004
Chlorophyllum agaricoides	HKAS 101312	Russia	RUS	MG742003
Chlorophyllum alborubescens	Maruyama	JAP	JAP	AY243610
Chlorophyllum arizonicum	AH31724	MEX	MEX	KR233490
Chlorophyllum arizonicum	Trappe 11481	USA	USA	HQ020416
Chlorophyllum brunneum	ecv1649	NLD	NLD	AY081225
Chlorophyllum brunneum	ecv2361	USA	USA	AY081223
Chlorophyllum brunneum	LG605	USA	USA	AY081222
Chlorophyllum brunneum	MEL 2030616	AUS	AUS	AY083208
Chlorophyllum brunneum	Wembley E5628	AUS	AUS	AY083205
Chlorophyllum brunneum	HKAS 101315	Italy	ITA	MG742013
Chlorophyllum brunneum	36deg54	Australia	AUS	AY083206
Chlorophyllum demangei	Z W Ge 3112	China: Yunnan	CHI	MG741965
Chlorophyllum demangei	Z W Ge 3574	China: Yunnan	CHI	MG741964
Chlorophyllum globosum	BAB 5234	IND	IND	KT186198
Chlorophyllum globosum	DMSC09391	THA	THA	KU049671
Chlorophyllum globosum	DMSC11138	THA	THA	KP229776
Chlorophyllum globosum	MFLU121815	THA	THA	KJ524553
Chlorophyllum globosum	PREM 62147	South Africa	ZAF	MG742002
Chlorophyllum hortense	1 III 2001 ER Boa	BOL	BOL	AY243613
Chlorophyllum hortense	140920 1	CHI	CHI	KU757472
Chlorophyllum hortense	140920 2	CHI	CHI	KU757473
Chlorophyllum hortense	BAB 4734	IND	IND	KR154963
Chlorophyllum hortense	BAB 4973	IND	IND	KR155063
Chlorophyllum hortense	DC Mossebo 165	CMR	CMR	AY243611
Chlorophyllum hortense	DC Mossebo 269	CMR	CMR	AY243612
Chlorophyllum hortense	EAH8	USA	USA	MF773636
Chlorophyllum hortense	ecv3622	THA	THA	HM488765
Chlorophyllum hortense	Faz 11	BRA	BRA	to_be_provided
Chlorophyllum hortense	Faz 698	BRA	BRA	to_be_provided
Chlorophyllum hortense	FLOR 56109	BRA	BRA	to_be_provided
Chlorophyllum hortense	GDGM 57301	CHI	CHI	HG976895
Chlorophyllum hortense	LAH 10162012	PAK	PAK	KM350691
Chlorophyllum hortense	MFLU121783	THA	THA	KJ524554
Chlorophyllum hortense	MFU090005	THA	THA	KJ524555
Chlorophyllum hortense	NY EFM575	COL	COL	U85318
Chlorophyllum hortense	HKAS 90470	China: Yunnan	CHI	MG741971
Chlorophyllum hortense	Z W Ge 3115	China: Yunnan	CHI	MG741968
Chlorophyllum hortense	HKAS 101317	China: Hainan	CHI	MG741967
Chlorophyllum hortense	Faz 149 Fz11	Brazil	BRA	to_be_provided
Chlorophyllum hortense	FLOR56109 Fz15	Brazil	BRA	to_be_provided
Chlorophyllum lilaceum	Fz98 GAS 1045	Brazil	BRA	to_be_provided
Chlorophyllum lilaceum	Fz135 GAS 1228	Brazil	BRA	to_be_provided
Chlorophyllum lusitanicum	AH43927	ESP	ESP	KR233483
Chlorophyllum lusitanicum	AH46114			KY828147
Chlorophyllum lusitanicum	AH46115			KY828146
Chlorophyllum molybdites	140703 1	CHI	CHI	KU757474
Chlorophyllum molybdites	AM150 CUH	IND	IND	KM190077

Continuação 2/3

Chlorophyllum molybdites	AY081243	USA	USA	AY081243
Chlorophyllum molybdites	BAB 4994	IND	IND	KR155082
Chlorophyllum molybdites	DMSC09538	THA	THA	KP229775
Chlorophyllum molybdites	DUKE JJ162	USA	USA	U85309
Chlorophyllum molybdites	Faz 657	BRA	BRA	to_be_provided
Chlorophyllum molybdites	Faz 688	BRA	BRA	to_be_provided
Chlorophyllum molybdites	Fernanda 900	BRA	BRA	to_be_provided
Chlorophyllum molybdites	J States AEF1097	USA	USA	AF482836
Chlorophyllum molybdites	MCJ0001	USA	USA	MF773607
Chlorophyllum molybdites	MEL2382837	AUS	AUS	KP012712
Chlorophyllum molybdites	NY EFM891	COL	COL	U85337
Chlorophyllum molybdites	Wembley E4022	AUS	AUS	AY083209
Chlorophyllum molybdites	Z W Ge 3381	USA: Florida	USA	MG741993
Chlorophyllum molybdites	Z W Ge 3377	USA: Florida	USA	MG741992
Chlorophyllum molybdites	HKAS 101322	Italy	ITA	MG741988
Chlorophyllum molybdites	ZW Ge 3146	China: Yunnan	CHI	MG741987
Chlorophyllum molybdites	HKAS 45051	China: Hunan	CHI	MG741985
Chlorophyllum molybdites	Fer900 Fz19	Brazil	BRA	to_be_provided
Chlorophyllum molybdites	Faz657 Fz20	Brazil	BRA	to_be_provided
Chlorophyllum neomastoideum	HKAS 83208	China: Zhejiang	HCI	MG741976
Chlorophyllum nothorachodes	Lepp 1142	AUS	AUS	AF482855
Chlorophyllum nothorachodes	HATFD14 10	IND	IND	KU499925
Chlorophyllum olivieri	AY081241	NLD	NLD	AY081241
Chlorophyllum olivieri	ecv2649	USA	USA	AY081242
Chlorophyllum olivieri	HKAS 53466	Germany: Marburg	DEU	MG742017
Chlorophyllum olivieri	HKAS 31587	Germany: Marburg	DEU	MG742016
Chlorophyllum palaeotropicum	HKAS 93747	Benin: Okpara	BEM	MG741983
Chlorophyllum palaeotropicum	PREM 62145	South Africa	ZAF	MG741982
Chlorophyllum palaeotropicum	PREM 62142	South Africa	ZAF	MG741978
Chlorophyllum pseudoglobosum	CUH AM155	IND	IND	NR_137967
Chlorophyllum rhacodes	2 X 1970			AY243608
Chlorophyllum rhacodes	AY081234	GER	GER	AY081234
Chlorophyllum rhacodes	AY081235	GER	GER	AY081235
Chlorophyllum rhacodes	Champ 61	FRA	FRA	KX449465
Chlorophyllum rhacodes	ecv2112	NLD	NLD	AY081236
Chlorophyllum rhacodes	ecv2434	USA	USA	AY081232
Chlorophyllum rhacodes	ecv2781	USA	USA	AY081233
Chlorophyllum rhacodes	JFA5532	USA	USA	AY081237
Chlorophyllum rhacodes	LE 257595	RUS	RUS	JQ683124
Chlorophyllum rhacodes	strain H4	IND	IND	KM609407
Chlorophyllum rhacodes	T Spillis UCB OKM19588	USA USA: Washington	USA	AY081240
Chlorophyllum rhacodes Chlorophyllum rhacodes	ecv2106	Netherlands	USA NLD	U85312 AF482849
Chlorophyllum sp.	ecv2100	Nemeriands	NLD	JX434652
Chlorophyllum sp.				JX434651
Chlorophyllum sp.	ZRL20151862			LT716031
Chlorophyllum sphaerosporum	HMAS 71683	China: Neimenggu	CHI	MG742012
Chlorophyllum sphaerosporum Chlorophyllum sphaerosporum	HMAS 66153	China: Neimenggu	CHI	MG742012 MG742011
Chlorophyllum subrhacodes	Z W Ge 3385	USA: Florida	USA	MG742011 MG741972
Chlorophyllum subrhacodes	Z W Ge 3363 Z W Ge 3242	USA: Florida	USA	MG741972 MG741974
Chlorophyllum subrhacodes	Z W Ge 3242 Z W Ge 3232	USA: Florida	USA	MG741974 MG741973
Chlorophyllum subrhacodes	Z W Ge 3232 Z W Ge 3411	USA: Florida	USA	MG741975
Agaricaceae, no Chlorophyllum	2 11 00 3111	CON. I IONAL	COIL	1410711775
Barcheria willisiana	H7518			JF495037
Barcheria willisiana	H7564			JF495038
Barcheria willisiana	MEL2177563			JF495036
Barcheria willisiana	MEL269353			JF495035
Hymenagaricus cf. kivuensis	BR6089			KM982454
Hymenagaricus sp.	LD 186			KM982451

Continuação 3/3

Hymenagaricus sp.	ZRL3103			KM982450
Heinemannomyces splendidissimus	ecv3586	Thailand	THA	HM488760
Clarkeinda trachodes				HM488750
Clarkeinda trachodes	ecv3550	Thailand	THA	HM488751
Eriocybe chionea	ecv3616	Thailand	THA	HM488753
Coniolepiota spongodes	png012	Thailand	THA	HM488756
Outgroup	163 10			
Pseudolepiota zangmui	Z W Ge 2175	China: Yunnan	CHI	KY768928

SUPPLEMENTARY TABLE II. Specimen information for materials used in this study, in the ITS, LSU, TEF1 e RPB2 analysis.

Taxon	Collection	Origin	ISOCode	nrITS	nrLSU	TEF1-alpha	RPB2
Agaricus campestris	LAPAG370			KM657927	KR006607	KR006636	KT951556
Agaricus kerriganii	LAPAG808	Spain	ESP	KT951306	KT951442	KT951589	KT951528
Chlorophyllum africanum	PREM 62141	South Africa	ZAF	MG741963	MG742042	MG742099	MG742071
Chlorophyllum africanum	PREM 62140	South Africa	ZAF	MG741961	MG742041	MG742098	MG742070
Chlorophyllum agaricoides	HMAS 71678	China: Neimenggu	CHI	MG742004	MG742021	MG742079	MG742051
Chlorophyllum agaricoides	HKAS 101312	Russia	RUS	MG742003	MG742020	MG742078	MG742050
Chlorophyllum brunneum	HKAS 101315	Italy	ITA	MG742013	MG742022	MG742080	MG742052
Chlorophyllum brunneum	36deg54	Australia	AUS	AY083206	AF482886	HM488886	HM488804
Chlorophyllum demangei	Z. W. Ge 3112	China: Yunnan	CHI	MG741965	MG742027	MG742084	MG742056
Chlorophyllum demangei	Z. W. Ge 3574	China: Yunnan	CHI	MG741964	MG742025	MG742083	MG742055
Chlorophyllum globosum	PREM 62147	South Africa	ZAF	MG742002	MG742024	MG742081	MG742053
Chlorophyllum hortense	HKAS 90470	China: Yunnan	CHI	MG741971	MG742029	MG742086	MG742058
Chlorophyllum hortense	Z. W. Ge 3115	China: Yunnan	CHI	MG741968	MG742028	MG742085	MG742057
Chlorophyllum hortense	HKAS 101317	China: Hainan	CHI	MG741967	MG742026	MG742082	MG742054
Chlorophyllum molybdites	Z. W. Ge 3381	USA: Florida	USA	MG741993	MG742034	MG742091	MG742063
Chlorophyllum molybdites	Z. W. Ge 3377	USA: Florida	USA	MG741992	MG742033	MG742090	MG742062
Chlorophyllum molybdites	HKAS 101322	Italy	ITA	MG741988	MG742032	MG742089	MG742061
Chlorophyllum molybdites	Z. W. Ge 3146	China: Yunnan	CHI	MG741987	MG742031	MG742088	MG742060
Chlorophyllum molybdites	HKAS 45051	China: Hunan	CHI	MG741985	MG742030	MG742087	MG742059
Chlorophyllum neomastoideum	HKAS 83208	China: Zhejiang	HCI	MG741976	MG742035	MG742092	MG742064
Chlorophyllum olivieri	HKAS 53466	Germany: Marburg	DEU	MG742017	MG742037	MG742094	MG742066
Chlorophyllum olivieri	HKAS 31587	Germany: Marburg	DEU	MG742016	MG742036	MG742093	MG742065
Chlorophyllum palaeotropicum	HKAS 93747	Benin: Okpara	BEN	MG741983	MG742040	MG742097	MG742069
Chlorophyllum palaeotropicum	PREM 62145	South Africa	ZAF	MG741982	MG742039	MG742096	MG742068
Chlorophyllum palaeotropicum	PREM 62142	South Africa	ZAF	MG741978	MG742038	MG742095	MG742067
Chlorophyllum rhacodes	OKM19588	USA: Washington	USA	U85312	U85277	KC884736	HM488803
Chlorophyllum rhacodes	ecv2106	Netherlands	NLD	AF482849	AY176345	HM488885	ND
Chlorophyllum sphaerosporum	HMAS 71683	China: Neimenggu	CHI	MG742012	MG742044	MG742101	MG742073
Chlorophyllum sphaerosporum	HMAS 66153	China: Neimenggu	CHI	MG742011	MG742043	MG742100	MG742072
Chlorophyllum subrhacodes	Z. W. Ge 3385	USA: Florida	USA	MG741972	MG742048	MG742105	MG742077
Chlorophyllum subrhacodes	Z. W. Ge 3242	USA: Florida	USA	MG741974	MG742047	MG742104	MG742076
Chlorophyllum subrhacodes	Z. W. Ge 3232	USA: Florida	USA	MG741973	MG742046	MG742103	MG742075
Chlorophyllum subrhacodes	Z. W. Ge 3411	USA: Florida	USA	MG741975	MG742045	MG742102	MG742074
Chlorophyllum hortense	ICN199176	Brazil	BRA	to be provided	to be provided	ND	ND
Chlorophyllum hortense	FLOR56109	Brazil	BRA	to_be_provided	to_be_provided	ND	ND
Chlorophyllum molybdites	ICN199174	Brazil	BRA	to be provided	to_be_provided	ND	ND
Chlorophyllum molybdites	ICN199171	Brazil	BRA	to be provided	to_be_provided	ND	ND
Chlorophyllum lilaceum	ICN199159	Brazil	BRA	to be provided	to be provided	to be provided	to be provided
Chlorophyllum lilaceum	ICN199160	Brazil	BRA	to_be_provid		ded to_be_provi	
Clarkeinda trachodes	ecv3550	Thailand	THA	HM488751	KY418837	ND	HM488802
Coniolepiota spongodes	png012	Thailand	THA	HM488756	HM488774	HM488883	HM488796
Eriocybe chionea	ecv3616	Thailand	THA	HM488753	HM488772	ND	HM488800
Gomphidius roseus	MB95 038	Germany: Bavaria		DQ534570	DQ534669	GU187702	GU187818
Heinemannomyces splendidissimus	ecv3586	Thailand	THA	HM488760	HM488769	KT951657	HM488793
Lepiota clypeolaria	HKAS 49124	China	CHI	JN944093	JN940281	ND	JN993691
Lepiota cristata	HKAS 45053	China	CHI	JN944091	JN940283	ND	JN993699
Lepiota magnispora	HKAS 61622	China	CHI	JN944089	JN940285	ND	JN993693
Leucoagaricus barssii	AFTOL ID 1899	USA	USA	DQ911600	DQ911601	GU187722	DQ911602
Leucocoprinus cepistipes	xml2014128			LT716023	KY418838	KY419045	KY418990
Leucocoprinus fragilissimus	ZRL20151466 AFTOL-ID 480			LT716029	KY418844 ND	KY419049 AY883426	KY418994
Lycoperdon sp.		Brazil	BRA	AY854075 KY927715	KY907185	A1883426 ND	AY218495 KY964598
Macrolepiota sabulosa	UFRN-Fungos 2693 Type HKAS 5722	Brazil Brazil	BRA	HM125513	KY907185 JN940275	ND ND	KY964598 JN993696
Macrolepiota procera Macrolepiota orientiexcoriata	HKAS 5722 HKAS 49001	Brazil China	CHI	HM125513 HM125524	JN940275 JN940278	ND ND	JN993696 JN993695
Macrolepiota orientiexcoriata Macrolepiota dolichaula	AFTOL ID 481	China	CHI	DQ221111	DQ411537	DQ435785	DQ385886
Micropsalliota globocystis	ZRL2013465	China	CHI	LT716024	KY418839	KY419046	KY418991
Nicropsalitota glovocystis Pseudolepiota zangmui	Z. W. Ge 2175	China: Yunnan	CHI	KY768928	MG742049	MG742106	KY768929
Suillus pictus	MB03-093	Cima. I umali	CIII	AY854069	AY684154	AY883429	AY786066
ournus proms	111103-093			A 1 0 3 4 0 0 9	A1004134	A1003429	A1/00000

SUPPLEMENTARY TABLE III Summary of nrITS, nrLSU, RBP2, and TEF-1 α datasets.

Properties	Datasets										
	ITS1	5.88	ITS2	nrLSU	TEF1-1st	TEF1-2 nd	TEF1-3 rd	TEF1 introns	RPB2-1st	RPB2-2nd	RPB2 -2rd
Model selected	TVM+G	TIM3ef	HKY+G	TIM2+I+G	TrN+I+G	TPM2uf+G	GTR+G	HKY+I	TIM2+I+G	F81+G	TPM2uf+I+G
Likelihood score	-2,925.66	-424.36	-2,033.62	-2,904.03	-699.49	-562.53	-3,258.36	-1,924.53	-779.92	-488.36	-5,093.39
Base frequencies											
Freq. A =	0.2529	Equal	0.2547	0.2559	0.2964	0.3147	0.1484	0.2849	0.2684	0.3070	0.2019
Freq. C =	0.1829	Equal	0.1761	0.1935	0.1881	0.2509	0.3147	0.1853	0.2361	0.1829	0.1986
Freq. G =	0.2173	Equal	0.2062	0.2971	0.3769	0.1489	0.2367	0.1558	0.3509	0.2108	0.2984
Freq. T =	0.3469	Equal	0.3630	0.2536	0.1386	0.2855	0.3002	0.3739	0.1446	0.2994	0.3011
Proportion of invariable sites		-		0.6600	0.7580	-	100	0.1290	0.5120	-	0.0740
Gamma shape	0.7670	_	0.4010	0.7030	0.6790	0.0290	16,200	_	0.5720	0.0240	23,500

7.2. Arquivos Suplementares do Manuscrito III

Tabela suplementar 1. Informação dos espécimes utilizados neste estudo, na análise de ITS do conjunto de dados 1.

Species	Collection_Number	Location	ISO	ITS GenBank
Agaricus aridicola	LAPAG589	Castellon, Spain	ESP	KT951331
Agaricus arrillagarum	LAPAG810	Asturias, Spain	ESP	KF447900
Agaricus callacii	AH_42929_a	Canarias, Spain	ESP	KF447899
Agaricus comtulus	LAPAG724	Burgos, Spain	ESP	KT951332
Agaricus edmondoi	LAPAG412	Segovia, Spain	ESP	KT951326
Agaricus friesianus	LAPAG592	Pyrenees Atlantiques, France	FRA	KT951316
Agaricus gemlii	AH_44510_a	Canarias, Spain	ESP	KF447891
Agaricus huijsmanii	LAPAG639	Navarra, Spain	ESP	KF447889
Agaricus kerriganii	AH_44509_a	Leon, Spain	ESP	KF447893
Agaricus kerriganii	LAPAG808	Madrid, Spain	ESP	KT951306
Agaricus matrum	AH_44506_a	La Rioja, Spain	ESP ESP	KF447896
Agaricus matrum	LAPAG855 LAPAG926	Asturias, Spain	SWE	KT951310
Agaricus pallens	LAPAG454	Lapland, Sweden Burgos, Spain	ESP	KT951315 KT951329
Agaricus pseudolutosus	ZRL2012012	C , 1	CHN	KT951359
Agaricus sp.	ZRL2012012 ZRL2012004	Yunnan, China Yunnan, China	CHN	KT951359
Agaricus sp.	ZRLWXH3076	Fujian, China	CHN	
Agaricus sp.	ZRLLD013	Thailand	THA	KT951388 KT951384
Agaricus sp.	CA848	Thailand	THA	JF727864
Agaricus sp.	CA921	Thanana	InA	KT951323
Agaricus sp.	ZRL2011156	Yunnan, China	CHN	KT951323
Agaricus sp.	ZRLWXH3150		CHN	KT951390
Agaricus sp.	CA846	Guangdong, China Thailand	THA	JF727865
Agaricus sp.	ZRL2012357	Yunnan, China	CHN	KT951369
Agaricus sp. Agaricus sp.	ZRL2012337 ZRL2012199	Yunnan, China	CHN	KT951369 KT951367
Agaricus sp. Agaricus sp.	ZRLWXH3067	Jiangxi, China	CHN	KT951387
Agaricus sp. Agaricus sp.	ZRL2012576	Tibet, China	CHN	KT951387
Agaricus sp. Agaricus sp.	ZRL2012714	Tibet, China	CHN	KT951372 KT951381
Agaricus sp. Agaricus sp.	ZRL2012/14 ZRL2011039	Yunnan, China	CHN	KT951361
Agaricus sp. Agaricus rufoaurantiacus	LAPAM15	Sosua, Dominican Republic	DOM	KT951331
Agaricus candidolutescens	LD2012129 a	Thailand	THA	KT951315
Agaricus sp.	ZRLWXH3161	Guangdong, China	CHN	KT951393
Agaricus sp.	LAPAM14	Sosua, Dominican Republic	DOM	KT951371
Agaricus abruptibulbus	ZRL2012005	Yunnan, China	CHN	KT951356
Agaricus arvensis	MA_Fungi_80999_b	Burgos, Spain	ESP	KF114474
Agaricus augustus	ZRL2012598	Tibet, China	CHN	KT951373
Agaricus cf essettei	ZRL2012026	Yunnan, China	CHN	KT951363
Agaricus essettei	ZRL2012599	Tibet, China	CHN	KT951374
Agaricus flocculosipes	ZRL2012105	Yunnan, China	CHN	KT951365
Agaricus flocculosipes	JA_03_193	Thailand	THA	KT951325
Agaricus gemellatus	ZRL2012631	Tibet, China	CHN	KT951380
Agaricus subrufescens	CA276			KT951317
Agaricus subrufescens	ZRL2012722	Yunnan, China	CHN	KT951383
Agaricus sp.	ZRL2012630	Tibet, China	CHN	KT951379
Agaricus sp.	ZRL2012030	Yunnan, China	CHN	KT951364
Agaricus sp.	ZRL2012608	Tibet, China	CHN	KT951377
Agaricus sp.	ZRL2012002	Yunnan, China	CHN	KT951354
Agaricus sp.	ZRL2012604	Tibet, China	CHN	KT951375
Agaricus sp.	SHY2011073117	Yunnan, China	CHN	KT951407
Agaricus parasubrutilescens	ZRL2011027	Yunnan, China	CHN	KT951350
Agaricus parasubrutilescens	ZRL2012025	Yunnan, China	CHN	KT951362
Agaricus linzhiensis	ZRL2012618_a	Tibet, China	CHN	KT951378
Agaricus brunneopileatus	ZRL2012115_a	Yunnan, China	CHN	KT951404
Agaricus subrutilescens	ZRLWXH3276	China	CHN	KT951392
Agaricus sp.	ZRL160	Thailand	THA	KT951345
Agaricus sp.	SHY2012070604	Yunnan, China	CHN	KT951341
Agaricus amoenus	ZRL2010072_a	Yunnan, China	CHN	KT951348
Agaricus gratolens	ZRL3093_a	Thailand	THA	JF691548
Agaricus albosquamosus	LD2012192_a	Thailand	THA	KT951394
Agaricus leucolepidotus	LD201214_a	Thailand	THA	KT951336
Agaricus sp.	AW145	Awenda, Canada	CAN	KT951308
Agaricus sp.	JH105	Jokers Hill, ON, Canada	CAN	KT951324
	Commence of the section of the		and the second second	

Continua 1/5

Continuação 2/5

$A_{\mathfrak{S}}$	garicus litoralis	LAPAG420	Burgos, Spain	CHN	KT951327
As	garicus lanipedisimilis	ZRL2012151	Yunnan, China	CHN	KT951366
0.00	garicus litoraloides	ZRL2011249	Yunnan, China	CHN	KT951353
-	garicus sp.	ZRLQHY43	Shandong, China	CHN	KT951386
	garicus bernardiformis	CA433_AVM917	g,		KT951321
	garicus cf bernardi	CA383			KT951319
-	garicus gennadii	CA339			KT951318
	garicus nevoi	LAPAG535	Teruel, Spain	ESP	KT951310
	garicus nevoi	LAPAG257	Burgos, Spain	ESP	KM657922
-	garicus bisporus	LAPAG446	Burgos, Spain	ESP	KM657920
	garicus bisporus garicus bitorquis	WZR2012827	Xingjiang, China	CHN	KM657916
	garicus bitorquis	CA427	Anighang, China	CIIIV	KT951320
		WZR2012822	Vinciiana China	CHN	KM657907
	garicus sinodeliciosus		Xingjiang, China	ITA	KT951334
	garicus cupressicola	LAPAG889	Roma, Italy		
	garicus grandiomyces	ZRL2012611_a	Tibet, China	CHN	KM657879
-	garicus atrodiscus	LD2012185a	Thailand	THA	KT284912
-	garicus bisporiticus	LD2012111	Thailand	THA	KJ575611
-	garicus microvolvatulus	LD201271	Thailand	THA	KJ575614
-	garicus tibetensis	ZRL2012585_a	Tibet, China	CHN	KM657895
	garicus tytthocarpus	ZRLWXH3077_a	Fujian, China	CHN	KM657889
	garicus xanthodermus	LAPAG387	Soria, Spain	ESP	KM657923
200	garicus sp.	RP32	Rogers Park, Canada	CAN	KT951340
	garicus sp.	ZRL2012629	Tibet, China	CHN	KM657890
$A_{\mathcal{E}}$	garicus trisulphuratus complex	LAPAF7	Plateaux, Togo	TGO	KM657924
$A_{\mathcal{S}}$	garicus trisulphuratus complex	Swk079	Lanjak-Entimau, Malaysia	MYS	KT951343
$A_{\mathcal{E}}$	garicus variicystis	LD201228	Thailand	THA	KT951426
$A_{\mathcal{E}}$	garicus variicystis	LD201234_a	Thailand	THA	KT951339
$A_{\mathcal{E}}$	garicus dilutibrunneus	ZRL2012010_a	Yunnan, China	CHN	KT951358
$A_{\mathcal{S}}$	garicus sylvaticus	ALGO7_213	Algonquin,ON, Canada	CAN	KT951307
Ag	garicus sylvaticus	LAPAG382	Burgos, Spain	ESP	KM657929
Ag	garicus sylvaticus	ZRL2012013	Thailand	THA	KT951360
$A_{\mathcal{S}}$	garicus sylvaticus	ZRL2012568	Tibet, China	CHN	KT951371
Ag	garicus bohusii	LAPAG562	Madrid, Spain	ESP	KM657928
$A_{\mathcal{S}}$	garicus crassisquamosus	ZRL2012607_a	Tibet, China	CHN	KT951376
As	garicus sp.	Swk014	Lanjak-Entimau, Malaysia	MYS	KT951342
As	garicus sp.	ZRL2012267	Yunnan, China	CHN	KT951368
As	garicus sp.	ZRL133	Thailand	THA	KT951344
	garicus erectosquamosus	LD2012165	Thailand	THA	KT951338
200	garicus pallidobrunneus	ZRL2012358	Yunnan, China	CHN	KT951370
200	garicus biberi	LAPAG687	Hungary	HUN	KM657919
200	garicus desjardinii	WZR2012907	Xinjiang, China	CHN	KM657901
-	garicus padanus	WZR2012903	Xingjiang, China	CHN	KM657903
-	garicus dolichopus	ZRL2012715	Tibet, China	CHN	KT951382
-	garicus kunmingensis	ZRL2012015	Yunnan, China	CHN	KT951361
200	garicus sp.	LD2012162	Thailand	THA	KT951337
200	garicus sp.	ZRL2010099	Yunnan, China	CHN	KT951349
	garicus nigrogracilis	ZRL2012014	Yunnan, China	CHN	KM657882
	garicus campestris	CA637	Tumun, Cimu		KT951322
200	garicus campestris	LAPAG370	Madrid, Spain	ESP	KM657927
200	garicus sp.	ZRL2010010	Thailand	THA	KT951347
-	garicus sp.	ZRLLD026	Thailand	THA	KT951347
	garicus sp.	ZRL2012006	Yunnan, China	CHN	KT951357
200	einemannomyces sp	ZRL185	Thailand	THA	KT951346
	garicus reactivicus sp. nov.	ICN 198976	Brazil	BRA	to_be_provided
000		ICN 198977	Brazil	BRA	The second con-
200	garicus lacaseus sp. nov. garicus hirsutus sp. nov.	ICN 198977 ICN 198975	Brazil	BRA	to_be_provided to_be_provided
	garicus nirsuius sp. nov. garicus xanthovolvatus sp. nov		Brazil	BRA	100 to 10
		ICN 198972 ICN 198973			to_be_provided to_be_provided
	garicus xanthovolvatus sp. nov		Brazil	BRA	
	garicus tollocanensis	ICN 198978	Brazil	BRA	to_be_provided
	garicus globocystidiatus garicus globocystidiatus	MPD19	Brazil Brazil	BRA	MF188253
	, , ,	EC31		BRA	MF188252
	garicus globocystidiatus	MPD71	Brazil	BRA	MF188251
Ag	garicus globocystidiatus	MPD29	Brazil	BRA	MF188247

Continuação 3/5

Agaricus globocystidiatus	MPD03	Brazil	BRA	MF188248
Agaricus globocystidiatus	MPD128	Brazil	BRA	MF188249
Agaricus globocystidiatus	MPD02	Brazil	BRA	MF188244
Agaricus globocystidiatus	MPD04	Brazil	BRA	MF188245
Agaricus sp.	B77	Brazil	BRA	KR812271
Agaricus sp.	B161	Brazil	BRA	KR812260
Agaricus sp.	JSP 30	Brazil	BRA	KR093941
Agaricus fiardii	JSP 1	Brazil	BRA	KR093888
Agaricus sp.	LAPAM66	Brazil	BRA	KX671702
Agaricus subrufescens	WC837	Brazil	BRA	KU557350
Agaricus sp.	LAPAM4	Brazil	BRA	JF797185
Agaricus blazei	U2 2	Brazil	BRA	KF281111
Agaricus blazei	U2 1	Brazil	BRA	KF281110
Agaricus sp.	De Meijer1904	Brazil	BRA	JF797196
Agaricus brasiliensis		Brazil	BRA	AJ884654
Agaricus brasiliensis	91	Brazil	BRA	AJ884651
Agaricus brasiliensis	631	Brazil	BRA	AJ884650
Agaricus sp.	TR130	Brazil	BRA	HQ608135
	CA487 S42	Brazil	BRA	KJ541800
Agaricus subrufescens				
Agaricus subrufescens	CA487 S100	Brazil	BRA	KJ541799
Agaricus subrufescens	CA918	Brazil	BRA	KJ541798
Agaricus subrufescens	WC837 S04	Brazil	BRA	KJ541796
Agaricus blazei	U7 7			KJ010888
Agaricus sp.	U7 6			KJ010887
Agaricus bisp.orus				KJ010878
Agaricus sp.	U2 8			KJ010862
Agaricus blazei	U2 6			KJ010861
Agaricus subrufescens	WC837 S43			KJ541797
Agaricus brasiliensis	HAI 978			AJ884652
Agaricus martineziensis	SP307818			JF896227
Agaricus pallens	LAPAG 580			KF447897
Agaricus pallens	LAPAG 441			KF447898
Agaricus luteomaculatus	CA331			KF447901
Agaricus heinemannianus	AH 19381			KF447905
Agaricus arrillagarum	AH 44508			KF447908
Agaricus gemloides	ZRL2014084			KT633271
Agaricus gemloides	zrl2014009			KT633272
Agaricus comtulus	LAPAG303			KU975078
Agaricus gemlii	LAPAG286			KU975079
Agaricus matrum	LAPAG916			KU975080
	MFLU16 979			KU975104
Agaricus sp.				
Agaricus sp.	ZRL3101			JF691544
Agaricus sp.	ZRL3102			JF691545
Agaricus coccyginus	275416			KU245979
Agaricus coccyginus	254484			KU245980
Agaricus sp.	MFLU11 1334			KU975091
Agaricus sp.	ADK3580			KU975097
Agaricus sp.	NT62			JF727845
Agaricus sp.	MFLU12 868			KU975118
Agaricus sp.	LD2012159			KP715161
Agaricus sp.	LD2011029			KP715160
Agaricus pseudolutosus	AH 11488			KF447890
Agaricus sp.	MATA774			JF727871
Agaricus diminutivus				AF482831
Agaricus viridopurpurascens	Horak68			JF514525
Agaricus sp.	TL2154			JF495059
Agaricus sp.	TL2307			JF495058
Agaricus sp.	MFLU16 977			KU975112
Agaricus sp.	MFLU16 976			KU975111
Agaricus sp.	MFLU16 975			KU975113
Agaricus sp.	CA935			KU975085
Agaricus sp.	MFLU12 964			KU975117
Agaricus sp. Agaricus sp.	ZRL2012270			KU975117
ngancus sp.	ZICLEO 144 / U			102/2110

Continuação 4/5

Agaricus sp.	MFLU12 869	KU975115
Agaricus sp.	MFLU16 982	KU975114
Agaricus sp.	CA845	KU975084
Agaricus sp.	NTT72	JF514539
Agaricus sp.	MFLU16 974	KU975106
Agaricus sp.	MFLU16 980	KU975107
Agaricus sp.	MFLU16 978	KU975105
Agaricus luteofibrillosus	254485	KU245974
Agaricus luteofibrillosus	MFLU16 981	KU975108
Agaricus luteofibrillosus	254487	KU245972
Agaricus luteofibrillosus	BBH19490	KU975109
Agaricus luteofibrillosus	BBH19545	KU975110
Agaricus sp.	NTT37	JF514537
Agaricus tollocanensis	CA235 INRA	AY703913
Agaricus parvitigrinus	CA158 INRA	AY899267
Agaricus xanthodermulus	CA160 INRA	AY899273
Agaricus laskibarii	isolate LAPAG115	AY943975
Agaricus californicus	RWK 1914	DQ182509
Agaricus iodosmus	LAPAG 245	DQ182518
Agaricus malangelus	RWK 1972	DQ182523
Agaricus berryessae	ML 28e	DQ182524
Agaricus placomyces	RWK 28e	DQ182525
Agaricus pseudopratensis	LAPAG 20	DQ182526
Agaricus aff	iodosmus CA215	DQ185559
Agaricus moelleri	CA209	DQ185561
Agaricus menieri	CA162	DQ185567
Agaricus bresadolianus	CA177	DQ185570
Agaricus sp.	CB 2010	HQ322269
Agaricus wariatodes	TWM1589	JF495052
Agaricus xanthosarcus	Goossens5415	JF514523
Agaricus microvolvatulus	Grinling70109	JF514524
Agaricus sp.	NTF58	JF514527
Agaricus sp. Agaricus sp.	ZRL3088	JF691543
Agaricus sp. Agaricus sp.	ZRL3044	JF691555
Agaricus sp. Agaricus comtulus	LAPAG339	JF715065
Agaricus sp.	F2715	JF727847
Agaricus aff. Volvatulus	F2767	JF727847 JF727848
Agaricus igj. voivaiuius Agaricus johnstonii	F1779	JF727848 JF727853
Agaricus martinicensis	F2815	JF727855
Agaricus martinicensis Agaricus caribaeus	F2530	JF727856
	GUAD05	JF727857
Agaricus aff. Rufoaurantiacus Agaricus sp.	CJL09030205	JF727869
	MATA816	JF727869 JF727870
Agaricus sp.	LAPAG141	JF727870 JF797181
Agaricus langei		
Agaricus aff. Rufoaurantiacus	LAPAM1	JF797183
Agaricus fiardii	F2285 LIP	JF797201
Agaricus heinemannianus	LAPAG 302	KF447906
Agaricus bisp.oriticus	MRC25	KJ575608
Agaricus fuscopunctatus	LD2012115	KJ575612
Agaricus buckmacadooi	B49	KJ609484
Agaricus kriegeri	RWK 2079	KJ609500
Agaricus floridanus	JH 1	KM349609
Agaricus sp.	RMC 1256	KM349611
Agaricus sp.	RMC 1257	KM349612
Agaricus brunneogracilis	ZRL258	KM657876
Agaricus daliensis	SHY2011071706	KM657877
Agaricus gregariomyces	ZRL2012624	KM657880
Agaricus melanocapus	ZRL2011037	KM657881
Agaricus sinoplacomyces	ZRL2012008	KM657883
Agaricus sp.	xhwang3092	KM657891
Agaricus deardorffensis	ZRL2012582	KM657894
Agaricus sp.	LD2012116	KP715162
Agaricus xilissimus	MFLU12	KT284910

Continuação 5/5

Agaricus litoralis	LAPAG475	KT951393
Agaricus punjabensis	A5	KT985908
Agaricus endoxanthus	LAPAG598	KU041653
Agaricus endoxanthus	MFLU121008	KU041654
Agaricus endoxanthus	LAPAM47	KU041655
Agaricus volvatulus	LAPAF5	KU041657
Agaricus aff. volvatulus	ADK4396	KU041658
Agaricus subrufescens	CA487 C2	KU557351
Agaricus subrufescens	CA487 C5	KU557352
Agaricus subrufescens	CA487 C6	KU557353
Agaricus martinicensis	CA742	KU975096
Agaricus sp.	MFLU12	KU975101
Agaricus martinicensis	JBSD123819	KX671699
Agaricus sp.	JBSD126501	KX671700
Agaricus sp.	JBSD127395	KX671701
Agaricus sp.	JBSD126494	KX671703
Agaricus lodgeae	PR4634	MF511107
Agaricus lodgeae	PR6454	MF511108
Agaricus porphyropos	STJ314	MF511109
Agaricus porphyropos	STJ392	MF511110
Agaricus porphyropos	JBSD126493	MF511111
Agaricus martinicensis	JBSD121929	MF511112
Agaricus subrufescens	JBSD123800	MF511113
Agaricus subrufescens	JBSD123801	MF511114
Agaricus subrufescens	JBSD126504	MF511115
Agaricus flavidodiscus	JBSD126488	MF511116
Agaricus tephrolepidus	JBSD123822	MF511117
Agaricus caribaeus	JBSD123820	MF511118
Agaricus sp.	JBSD127405	MF511119
Agaricus argenteopurpureus	JBSD126500	MF511120
Agaricus rufoaurantiacus	JBSD126470	MF511121
Agaricus rufoaurantiacus	JBSD126471	MF511122
Agaricus rufoaurantiacus	JBSD126472	MF511123
Agaricus rufoaurantiacus	JBSD126473	MF511124
Agaricus rufoaurantiacus	JBSD126474	MF511125
Agaricus sp.	JBSD127404	MF511126
Agaricus rufoaurantiacus	JBSD126476	MF511127
Agaricus subrufescens	JBSD126481	MF511128
Agaricus flavidodiscus	JBSD126487	MF511129
Agaricus caribaeus	JBSD126485	MF511130
Agaricus martinicensis	JBSD126495	MF511131
Agaricus martinicensis	JBSD126496	MF511132
Agaricus martinicensis	JBSD126497	MF511133
Agaricus sp.	JBSD127406	MF511134
Agaricus rufoaurantiacus	JBSD126479	MF511135
Agaricus rufoaurantiacus	JBSD126477	MF511136
Agaricus argenteopurpureus	JBSD126502	MF511137
Agaricus rufoaurantiacus	JBSD126475	MF511138
Agaricus argenteopurpureus	JBSD126503	MF511139
Agaricus martinicensis	JBSD126499	MF511140
Agaricus candussoi	JBSD126490	MF511141
Agaricus candussoi	JBSD126491	MF511142
Agaricus rufoaurantiacus	JBSD126478	MF511143
Agaricus flavidodiscus	JBSD126489	MF511144
Agaricus sp.	JBSD127407	MF511145
Agaricus candussoi	JBSD126492	MF511146
Agaricus martinicensis	JBSD126498	MF511147
Agaricus sp.	JBSD127403	MF511148
Agaricus lodgeae	JBSD126505	MF511149
Agaricus lodgeae	JBSD126506	MF511150
Agaricus martinicensis	CL/MART03	MF511151
Agaricus lodgeae	PR6239	MF522806
Agaricus pocillator		U85308

Tabela suplementar 2. Informação dos espécimes utilizados neste estudo, na análise de ITS do coniunto de dados 2.

Species	Collec. Number	ITS	Location	IsoCODE
Agaricus aff. volvatulus	F2,767	JF727848	Martinique (France)	FRA
Agaricus atrodiscus	LD2012185a	KT284912	Thailand	THA
Agaricus bernardiformis	CA433 AVM917	KT951321		
Agaricus berryessae	ML5	DQ182524	USA	USA
Agaricus biberi	LAPAG687	KM657919	HUN	HUN
Agaricus bisporiticus	LD2012111	KJ575611	Thailand	THA
Agaricus bisporiticus T	MCR25	KJ575608	Pakistan	PAK
Agaricus bisporus	LAPAG446	KM657920	Espain	ESP
Agaricus bitorquis	WZR2012827	KM657916	China	CHN
Agaricus bitorquis	CA427	KT951320		
Agaricus bohusii	LAPAG562	KM657928	Espain	ESP
Agaricus brunneogracilis T	ZRL258	KM657876	Thailandiland	THA
Agaricus buckmacadooi T	B-49	KJ609484	USA	USA
Agaricus californicus	RWK1914	DQ182509	USA	USA
Agaricus campestris	CA637	KT951322		
Agaricus campestris	LAPAG370	KM657927	Espain	ESP
Agaricus candussoi	LAPAM57	MF511141	Dominican Republic	DOM
Agaricus candussoi	LAPAM58	MF511142	Dominican Republic	DOM
Agaricus candussoi T	LAPAM62	MF511146	Dominican Republic	DOM
Agaricus caribaeus	LAPAM19	MF511118	Dominican Republic	DOM
Agaricus caribaeus	F2,530	JF727856	Martinique (France)	MTQ
Agaricus caribaeus	LAPAM41	MF511130	Dominican Republic	DOM
Agaricus cf. bernardi	CA383	KT951319	-	
Agaricus crassisquamosus	ZRL2012607 a	KT951376	China	CHN
Agaricus cupressicola	LAPAG889	KT951334	Italy	ITA
Agaricus daliensis	SHY2011071706	KM657877	China	CHN
Agaricus desjardinii	WZR2012907	KM657901	China	CHN
Agaricus dilutibrunneus	ZRL2012010 a	KT951358	China	CHN
Agaricus dolichopus	ZRL2012715	KT951382	China	CHN
Agaricus endoxanthus	LAPAM47	KU041655	Dominican Republic	DOM
Agaricus endoxanthus	LD2012183	KU041654	Thailandiland	THA
Agaricus endoxanthus	LAPAG598	KU041653	Switzerland	SWZ
Agaricus erectosquamosus	LD2012165	KT951338	Thailand	THA
Agaricus exilissimus T	LD201254	KT284910	Thailandiland	THA
Agaricus flavidodiscus	LAPAM17	MF511116	Dominican Republic	DOM
Agaricus flavidodiscus	LAPAM39	MF511129	Dominican Republic	DOM
Agaricus flavidodiscus T	LAPAM60	MF511144	Dominican Republic	DOM

Continuação 2/3

Agaricus fuscopunctatus T	LD2012115	KJ575612	Thailand	THA
Agaricus gennadii	CA339	KT951318		
Agaricus grandiomyces	ZRL2012611 a	KM657879	China	CHN
Agaricus gregariomyces T	ZRL2012624	KM657880	China	China
Agaricus iodosmus	LAPAG245	DQ182518	Spain	Spain
Agaricus kriegeri T	RWK2079	KJ609500	USA	USA
Agaricus kunmingensis	ZRL2012015	KT951361	China	CHN
Agaricus lacaseus sp nov.	ICN 198977	To be provided	Brazil	BRA
Agaricus laskibarii T	LAPAG115	AY943975	France	FRA
Agaricus malangelus	RWK1972	DQ182523	USA	USA
Agaricus melanocarpus T	ZRL2011037	KM657881	China	CHN
Agaricus menieri	CA162	DQ185567	France	FRA
Agaricus microvolvatulus	LD201271	KJ575614	Thailand	THA
Agaricus microvolvatulus T	Grinling70109	JF514524	Republic of Congo	COG
Agaricus moelleri	CA209	DQ185561	France	FRA
Agaricus moelleroides T	CA215	DQ185559	France	FRA
Agaricus murinocephalus T	ZRL3044	JF691555	Thailandiland	THA
Agaricus nevoi	LAPAG535	KT951330	Espain	ESP
Agaricus nevoi	LAPAG257	KM657922	Espain	ESP
Agaricus nigrogracilis	ZRL2012014	KM657882	China	CHN
Agaricus padanus	WZR2012903	KM657903	China	CHN
Agaricus pallidobrunneus	ZRL2012358	KT951370	China	CHN
Agaricus parvitigrinus T	CA158	AY899267	France	FRA
Agaricus placomyces	RWK1959	DQ182525	USA	USA
Agaricus pocillator	DUKEJ173	U85308	USA	USA
Agaricus pseudopratensis	LAPAG20	DQ182526	Spain	ESP
Agaricus punjabensis T	A4	KT985908	Pakistan	PAK
Agaricus reactivicus sp. nov.	ICN 198976	To be provided	Brazil	BRA
Agaricus sinodeliciosus	WZR2012822	KM657907	China	CHN
Agaricus sinoplacomyces T	ZRL2012008	KM657883	China	CHN
Agaricus sylvaticus	ALGO7 213	KT951307	CAN	CAN
Agaricus sylvaticus	LAPAG382	KM657929	Espain	ESP
Agaricus sylvaticus	ZRL2012013	KT951360	Thailand	THA
Agaricus sylvaticus	ZRL2012568	KT951371	China	CHN
Agaricus tephrolepidus	CA595	HQ322269	Mexico	MEX
Agaricus tephrolepidus T	LAPAM18	MF511117	Dominican Republic	DOM
Agaricus tibetensis	ZRL2012585 a	KM657895	China	CHN

Continuação 3/3

Agaricus tollocanensis	ICN 198978	To be provided	Brazil	BRA
Agaricus tollocanensis T	MATA688	AY703913	Mexico	MEX
Agaricus trisulphuratus complex	LAPAF7	KM657924	Togo	TGO
Agaricus trisulphuratus complex	Swk079	KT951343	Malaysia	MYS
Agaricus tytthocarpus	ZRLWXH3077 a	KM657889	China	CHN
Agaricus variicystis	LD201228	KT951426	Thailand	THA
Agaricus variicystis	LD201234 a	KT951339	Thailand	THA
Agaricus volvatulus	LAPAF5	KU041657	Togo	TGO
Agaricus xanthodermatulus T	CA160	AY899273	France	FRA
Agaricus xanthodermus	LAPAG387	KM657923	Espain	ESP
Agaricus xanthosarcus T	Goossens5415	JF514523	Dem. Rep. of the Congo	COG
Agaricus xanthovolvatus sp. nov.	ICN 198972	To be provided	Brazil	BRA
Agaricus xanthovolvatus sp. nov.	ICN 198973	To be provided	Brazil	BRA
Agaricus sp.	RP32	KT951340	Canada	CAN
Agaricus sp.	ZRL2012629	KM657890	China	CHN
Agaricus sp.	Swk014	KT951342	Malaysia	MYS
Agaricus sp.	ZRL2012267	KT951368	China	CHN
Agaricus sp.	ZRL133	KT951344	Thailand	THA
Agaricus sp.	LD2012162	KT951337	Thailand	THA
Agaricus sp.	ZRL2010099	KT951349	China	CHN
Agaricus hirsutus sp. nov.	ICN 198975	To be provided	Brazil	BRA
Agaricus sp.	ADK4396	KU041658	Togo	TGO
Agaricus sp.	ZRL2012582	KM657894	China	CHN
Agaricus sp.	NTF58	JF514527	Thailandiland	THA
Agaricus sp.	F2,715	JF727847	Martinique (France)	MTQ
Agaricus sp.	LAPAM20	MF511119	Dominican Republic	DOM
Agaricus sp.	LAPAM61	MF511145	Dominican Republic	SEG
Agaricus sp.	LAPAM46	MF511134	Dominican Republic	TER
Agaricus sp.	ZRLWXH3092	KM657891	China	CHN

Tabela suplementar 3. Dados sobre os modelos evolutivos para a análise de Bayesiana dos dados combinados: ITS, 28S e TEF- 1α .

SUPPLEMENTARY TABLE III Summary of nrITS, nrLSU, RBP2, and TEF-1 α datasets.

Properties	Datasets										
	ITS1	5.8S	ITS2	nrLSU	RPB2-1st	RPB2-2 nd	RPB2-3rd	TEF1-1 st	TEF1-2 nd	TEF1-3 rd	TEF1introns
Model selected	GTR+G	SYM	GTR+G	GTR+I+G	GTR+I+G	GTR+I+G	GTR+I+G	GTR+G	GTR+I+G	HKY+I+G	HKY+I+G
Likelihood score	-5,173.5	-377.18	-3,242.24	-3,659.10	-1,221.33	-623.94	-6,027.62	-454.17	-2,385.38	-517.19	-2,747.86
Base frequencies											
Freq. A =	0.2390	Equal	0.1632	0.2570	0.2555	0.3543	0.2017	0.3186	0.0917	0.2666	0.2634
Freq. C =	0.2222	Equal	0.2266	0.1948	0.2343	0.2108	0.2480	0.2288	0.3907	0.2065	0.2212
Freq. G =	0.2417	Equal	0.2882	0.2964	0.3576	0.1742	0.2432	0.1739	0.2148	0.3633	0.168
Freq. T =	0.2970	Equal	0.3220	0.2517	0.1527	0.2607	0.3071	0.2787	0.3028	0.1635	0.3474
Proportion of invariable sites	_	_	_	0.5114	0.2989	0.74	0.0511	_	0.0292	0.4673	0.0708
Gamma shape	0.6998	-	0.5233	0.5514	0.3178	0.9494	2.7787	0.2272	4.0761	0.6943	3.2221