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Abstract

In this Dissertation, we present a new method to study metal surfaces inside an elec-

trolyte solution. In order to do that, we start with a review of an efficient 3D Ewald Sum-

mation technique which considers the plate fields as external potentials. Then we present

a solution to the Poisson Equation for confined systems that uses periodic Green func-

tions, which allow us to avoid minimization procedures to compute the induced charges at

the boundaries. This formalism is applied to a lattice model of an ionic liquid to capture

the characteristic capacitance shape transition of the system. Finally, we develop the new

method by extending those techniques to include an electrolyte in the outer regions of

the plates. A preliminary test of the method is done by obtaining density profiles for a

system of neutral plates inside electrolyte solutions with monovalent and trivalent ions.



Resumo

Nesta Dissertação nós apresentamos um método novo para o estudo de superf́ıcies

metálicas no interior de uma solução eletroĺıtica. Para isso, começamos com uma revisão

de uma técnica eficiente para somas de Ewald 3D que considera os campos das placas

como potenciais externos. Então nós mostramos uma solução para a Equação de Poisson

para sistemas confinados que utiliza funções de Green periódicas, a qual nos permite

evitar a utilização de procedimentos de minimização para computar as cargas induzidas

nos contornos. Esse formalismo é aplicado para um modelo de rede de um ĺıquido iônico

para capturar a transição caracteŕıstica de forma da capacitância do sistema. Finalmente,

nós desenvolvemos o novo método estendendo essas técnicas para incluir um eletrólito nas

regiões externas das placas. Um teste preliminar do método é feito pela obtenção de perfis

de densidade para um sistema de placas neutras no interior de uma solução eletroĺıtica

com ı́ons monovalentes e trivalentes.
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1 Introduction

Simulations play a fundamental role in all fields of science today. However, several

of the current techniques are still based on ideas that were invented together with the

development of the first computers [1].

In physics, the Monte Carlo method has had an interesting history. Back in 1949

Metropolis and Ulam presented a review of the use of the method in simulations with

‘modern computing machines’ [2]. Together with Fermi and von Neumann they began

considering the use of random numbers to examine different problems in physics from

this new stochastic perspective [3]. In the classic, Metropolis method [4] a transition

probability is used to generate configurations from a previous state. The probability

depends on the energy difference between the initial and final states. This very earliest

work laid the foundations of modern Monte Carlo simulation [5].

The technique employed in this study is still widely used and it was developed to

simulate in two dimensions (the original models were highly idealized representations of

molecules, such as hard spheres and disks), and it was tested with theoretical predictions

using virial expansions [4]. Within a few years, Monte Carlo simulations were carried out

on the Lennard-Jones interaction potential [6]. This made it possible to compare data

obtained from experiments on, for example, liquid argon, with the computer-generated

thermodynamic data derived from a model [5]. The algorithm is revolutionary, it is used

in several fields of physics, and it is still at the basis of our new method.

In the present work, we are concerned with the Coulombic interactions in particular.

They are essencial to the adequate understanding of a vast array of systems, and then for

the development science and technology it is crucial to have good simulation techniques

for these systems.

When simulating short-ranged potentials we need only to replicate them a few times in

the simulation box because the contributions of the replicas vanish rapidly. However, the

long-range nature of the electrostatic force prevents the use of simple periodic boundary

conditions. There is no distance beyond which the force can be considered negligible, so

the simulation box has to interact with infinite replicas of itself if we want to achieve the

thermodynamic limit. Beyond that, the calculation depends on the way the replicas are
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summed. This means that a conditionally convergent infinite series must be evaluated

(for an overall neutral system). If there is a small electric charge in the system, then

intrinsic divergences arise, which have to be renormalized [7].

The success of computing these series for neutral systems was first achieved when

trying to determine the Madelung constant by calculating the bulk energy of ionic crys-

tals through Ewald Summation methods [8]. The technique has since been improved and

extended [9–16]. The main idea behind this algorithm (and our new method) is to sep-

arate the potential of a point charge into long contributions, which are calculated in the

reciprocal space, and short-range contributions, which are calculated in real space.

Many system of interest - like ionic liquids at electrified interfaces [17–22], charged

nanopores [23–25], and nanoconfined electrolytes [26–28] - have a geometry that is a

problem for some Ewald techniques that compute part of the energy in Fourier space, and

which make a two dimensional transformation of the long range potential that leads to

special functions and slow convergence of the series [29,30].

These systems also exhibit phenomena which could be hard to understand only analyt-

ically [31], like charge reversal [32–34], and like-charged attraction [27,35–38]. Techniques

have been developed to try to simulate theses systems [16,39–43].

When we have a system confined by a pair of surfaces, it is difficult to extend the

known techniques because of the infinite series that arise from the infinite number of

fictional charges. However, methods have been proposed to deal with systems confined by

metals or dielectrics [44,45]. Some methods for simulating metallic surfaces of electrodes

rely on minimization procedures to calculate the induced surface charge at every step

[18, 44, 46, 47]. There are also methods with electrostatic layer correction, and methods

that explicitly sum infinite series of image charges [48–50].

For strongly interacting fluids there are restrictions on the size of the systems which

difficult a more accurate investigation. There are approaches that use image charge tech-

niques to sum the series with brute force or using the condition of discontinuity of the

displacement vector [48–53]. Some efficient image charge summation for dielectric bound-

aries have been developed [26]. Despite the difficulties that dense and highly interacting

fluids pose (like room temperature ionic liquids), they are promising materials [17, 54],

and already have important aplications in supercapacitors [55–58], and renewable energy
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devices [59, 60], like solar cells and others [61,62].

Therefore, with that context in mind, this dissertation proposes a new way to un-

derstand the interaction between metal plates inside an electrolyte solution. First we

review a 3D Ewald summation technnique (see Chapter 2) in order to understand how

this approach can yield the same results of other procedures for the two-dimensional ge-

ometry with confining electrified plates, but 10 times faster than usual algorithms. This

is important because our new method uses this technique to compute the electrostatic

potentials.

Second, we review in Chapter 3 a recent method for charged systems bounded by

metallic planar surfaces. We apply the formalism to a lattice model of room temperature

ionic liquid [63] and show that our model captures the shape transition in the capacitance

curve from camel to bell-shaped [17]. We used Monte Carlo simulations in a constant elec-

trostatic potential ensemble to calculate differential capacitance and ionic density profiles

of a Coulomb fluid, both in the electrolyte and ionic liquid regimes. The calculation of

electrostatic energy was performed using periodic Green functions. This approach allowed

us to easily calculate the induced surface charge on the electrodes.

Third, we review in Section 4.1 a more general system with planar polarizable surfaces.

Levin et al. [64,65] recently developed and applied this approach that uses periodic Green

functions as solutions to the Poisson Equation. The main advantage is that the calcula-

tion of the induced charge on the polarizable walls requires only the solution of a linear

equation. Also, the ionic interactions can be decoupled from the energy of polarization -

for any pair of planar confinement. This decoupling is essencial for the relevance of the

algorithm.

Finally, we develop in Chapter 5 a new method for metal plates inside an electrolyte

solution which can be seen as an extension of the previous approaches and which shares

with them some of the same advantages and particularities of implementation. This can be

done because the system can be seen as the general system of Section 4.1 with polarizable

surfaces and electrolyte added in the outer regions of the plates.
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2 3D Ewald summation of Coulomb systems with

slab geometry

This section is based on [7]. A detailed derivation is given in [66]. We consider a

system of N particles with charges qj located at random positions rj in a simulation

box with lengths Lx, Ly and Lz (see Fig. 6). We define the replication vector as rep =

(mxLx,myLy,mzLz), where (mx,my,mz) ∈ Z, to replicate the cell in all directions. The

electrostatic potential generated by the ions and all of its replicas at point P located at

random position r can be generally written as

φ(r) =
∞∑
m

N∑
j=1

∫
ρj(s)

εw|r − s|
d3s , (2.1)

where ρj(s) = qjδ(s − rj − rep) is the charge density of qj and its replicas. An Ewald

3D Summation method is used to handle the conditionally convergent series. The main

idea of the algorithm (important for the new method of this Dissertation) is to split the

Coulombic potential into a short potential and long-ranged potential that is calculated

in Fourier space. A Gaussian charge distribution centered at each particle is added and

subtracted, so we have

φ(r) =
∞∑
m

N∑
j=1

∫
ρj(s)− ρjG(s)

εw|r − s|
d3s +

∞∑
m

N∑
j=1

∫
ρjG(s)

εw|r − s|
d3s , (2.2)

where ρjG(s) = qj(κ3
e/
√
π3) exp{(−κ2

e|s− rj − rep|2)} and κe is a damping parameter.

After rewriting the potential using Error Functions and doing a Fourier transform, we

have

φ(r) =
∞∑

k=0

N∑
j=1

4πqj

εwV |k|2
exp

{
[−|k|

2

4κ2
e

+ ik · (r − rj)]

}
+

N∑
j=1

qj
erfc(κe|r − rj|)
εw|r − rj|

, (2.3)

where k = ( 2π
Lx
mx,

2π
Ly
my,

2π
Lz
mz).

There is a divergence from k = (0, 0, 0) which will not be discussed here. Some of the

difficulties vanish if the system is charge neutral (
∑

j qj = 0).

Separating the k = 0 term and putting it in evidence, we can write the renormalized
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Figure 1: Simulation box with randomly positioned charges and one of its replicas. The

origin is located at C (center of the simulation box),and P is a random point [7].

potential as

∆φ(r) =
∞∑

k 6=0

N∑
j=1

4πqj

εwV |k|2
exp

{
[−|k|

2

4κ2
e

+ ik · (r − rj)]

}
−

N∑
j=1

3∑
n=1

2qj

εwV π2
Bn(rn − rjn)2 +

N∑
j=1

qj
erfc(κe|r − rj|)
εw|r − rj|

, (2.4)

where rn’s are components of position vector, and ∆ corresponds to the renormalization

of the potential in Eq. 2.3. Eq. 2.4 is different from the usual formula found in the

literature [9,10,39] for charge neutral isotropic bulk systems. There is a term that depends

on the aspect ratios of the macroscopic system (the way the infinite sum is performed),

but which has a small contribution from the limit k → 0 in the calculation of averages

on the bulk [16,43].

For planar geometry we want to replicate the cell only in two out of three directions,

x and y, which should be performed infinitely faster than that in z direction for a slab

geometry. This condition leads to B1 = B2 = 0 and B3 = π3. So now Eq. 2.4 is

∆φ(r) =
∞∑

k 6=0

N∑
j=1

4πqj

εwV |k|2
exp

{
[−|k|

2

4κ2
e

+ ik · (r − rj)]

}
(2.5)

−
N∑
j=1

2πqj

εwV
(r3 − rj3)2 +

N∑
j=1

qj
erfc(κe|r − rj|)
εw|r − rj|

. (2.6)
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Figure 2: 3D replicated system. The electric fields produced by the z-replication of

charged walls cancel out inside the central simulation cell.

A vacuum artificially inserted in the z direction to prevent the replicas in this dimen-

sion to add to the total electrostatic potential (see Fig. 9). The empty space must be big

enough so the properties of the system can’t be altered by the added vacuum.

Now consider the same two particle system than before.The initial random positions

of the particles and of the vector r are limited to −Lz/4 < z < Lz/4 so we can introduce

the vacuum. The potential difference ∆φ can be explicitly calculated using Eq. 2.1 when

the simulation cell is replicated only in the x and y directions.

The renormalized electrostatic energy for a non-neutral slab system can now be cal-

culated with E =
1

2

∑N
i=1 qi∆φ(ri), which gives us

E =
∞∑

k 6=0

2π

εwV |k|2
exp

{
[−|k|

2

4κ2
e

]

}
[A(k)2 +B(k)2]

+
2π

εwV
[M2

z −QtGz] +
1

2

N∑
i 6=j

qiqj
erfc(κe|ri − rj|)
εw|ri − rj|

− κe
εw
√
π

N∑
i

q2
i , (2.7)
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Figure 3: Integrated charge between the plates.The line represents the traditional method

[39] and the symbols the modified 3D Ewald approach [7].

where

A(k) =
N∑
i=1

qicos(k · ri) , (2.8)

B(k) = −
N∑
i=1

qisin(k · ri) , (2.9)

Mz =
N∑
i=1

qiri3 , (2.10)

Qt =
N∑
i=1

qi , (2.11)

Gz =
N∑
i=1

qi(ri3)2 . (2.12)

The last term on Eq. 2.7 arises when we carefully double sum the long range potential.

For a neutral system (Qt = 0) the earlier expression for the electrostatic energy is recovered

[39].

We can give a constant superficial charge to the plates. The resulting field can be

treated as an external potential because the electric fields of the transverse replicated

plates are constant and cancel out (see Fig. 9).

The main idea of the method is to consider the plates as external potentials instead of

a construction of point charges (which slows down the simulations). So the contribution

12



-20 -10 0 10 20
z [Å]

0.0002

0.0004

0.0006

0.0008

ρ
 [

Å
-3

]

Figure 4: (a) Density profiles of 2 : 1 electrolyte confined by charged infinite walls. Circles

are anions and squares are cations.

to the energy becomes

Ep =
2π

εw

Nc∑
i=1

(σ2 − σ1)ri3qi , (2.13)

which must be added to Eq. 2.7.

In order to testify the correctness of the method, the authors performed a Metropolis

algorithm for nanoconfined ions in slab geometry. Usually it consists of a salt that dissolves

in water (Na+ and Cl−), so the ions are dissociated in the medium and each has a total

electric charge. They performed simulations in the NV T ensemble using the traditional

algorithm (plates charged by point particles) and the new method (plates as external

potentials).

The results were indistinguishable (see Fig. 8). The computational gain was of one or-

der of magnitude in time in comparison with the corrected 3D Ewald Summation method

where the plates are embodied with point charges.

The authors then applied the new method for the case σ1 = σ2 = 0.04C/m2, which is

of practical importance when studying colloidal suspension using Derjaguin approxima-

tion [67]. The ionic profiles are shown in Fig. 10. Our new method uses this technique

(see Chapter 5).
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3 Lattice model of ionic liquid confined by metal elec-

trodes

In this section we briefly review Green functions for ions confined by metal surfaces,

and the we discuss Monte Carlo simulations in a constant electrostatic potential ensemble.

The results in this section were published in Ref. [63].

3.1 Theory

This section is partially based on the more detailed calculations in Ref. [22]. The elec-

trostatic potential produced by an ion of charge q confined by parallel infinite grounded

conducting surfaces located at z = 0 and z = L can be written in cylindrical coordi-

nates [75]

φ(ρ, z; z0) =
4q

εL

∞∑
n=1

sin(knz) sin(knz0)K0(knρ) , (3.1)

where (0, z0) is the coordinate of the ion, (ρ, z) is the observation point, kn = nπ/L, and

K0 is the modified Bessel function of second type. This expression is difficult to converge

when ρ→ 0, so find a different representation of the Green function [75]

φ(ρ, z; z0) =
q

ε

∫
dkJ0(kρ)×

ek|z−z0|−2kL + e−k|z−z0| − e−k(z+z0) − ek(z+z0)−2kL

1− e−2kL
,

(3.2)

where J0 is the Bessel function of order zero, which behaves well when ρ→ 0 if z 6= z0.

There is an induced surface charge from the ion between the grounded conducting

surfaces, which can be calculated from the discontinuity of the normal component of

electric field at the surface. By integration over the surface of each electrode we obtain

the induced total surface charge [22]

Q0
l = −q(1− z0

L
)

Q0
r = −qz0

L
(3.3)

for the left and right electrodes, respectively. If the electrodes are held at a constant

potential difference ψ0 (not grounded), then there is an additional contribution to the
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Figure 5: Lattice model of an ionic liquid between two electrodes. Ions are spherical,

restricted to move on a lattice. Cations and anions have diameter equal to the lattice

spacing.

electrostatic potential

φs(z) =

(
z

L
− 1

2

)
ψ0 . (3.4)

The simulations are performed in the NVT ensemble at a fixed electrostatic potential

difference ψ between the electrodes [22,76]. The partition function has the form

Zψ =

∫ N∏
i=1

dri

∫
dQe−β[E(r1,...,rN ,Q)−ψQ] , (3.5)

where β = 1/kBT and ∓Q is the surface charge on the left and right electrodes, re-

spectively. In this ensemble the surface charge on the electrodes can fluctuate, so the

differential capacitance of the system is

C =
1

A

∂ 〈Q〉
∂ψ

=
1

βA

(∂2 lnZψ
∂ψ2

)
=
β

A

[〈
Q2
〉
− 〈Q〉2

]
(3.6)

where A = LxLy is the area of the electrode in the simulation cell, which is periodically

replicated in x and y directions.

We need to know the electrostatic energy at a fixed surface charge E(Q) in order to

perform simulations in the fixed surface potential ensemble . The charge distribution will

not be uniform over the surface of the electrodes, and will respond to the ionic motion.

The electrostatic energy [22] inside the simulation cell for a given surface charge ±Q

is

E(Q) =
1

2
ψ0Q+

1

2

∑
i

qiφ(rrri) =
1

2

N∑
i 6=j

qiG(ri; rj) +
N∑
i=1

[
Us(ri) +

1

2
qiφs(zi)

]
+

1

2
ψ0Q.

(3.7)
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The periodic Green function function constructed using Eq. (3.1)

G(r; r0) =
4q

εL

∞∑
m=−∞

∞∑
n=1

sin(knz) sin(knz0)×

K0

(
kn

√
(x− x0 +mxLx)2 + (y − y0 +myLy)2

)
,

(3.8)

where m’s are integers corresponding to periodic replicas of the system. Us(ri) is the self

energy of each ion calculated using the limiting process,

Us(ri) =
qi
2

lim
ρ→0

[
G(ri; ri)−

qi
ερ

]
(3.9)

Using Eq. 3.2, we then obtain [22]

Us(ri) =
q2

2ε

∫
dk

2e−2kL − e−2kzi − e2kzi−2kL

1− e−2kL
+

2q2

εL

∞∑
m 6=0

∞∑
n=1

sin2(knzi)K0

(
kn

√
m2
xL

2
x +m2

yL
2
y

)
.

(3.10)

The surface potential ∓ψ0/2 on each electrode will fluctuate as a result of ionic motion

if the surface charge Q is fixed. The system is charge neutral, so the surface potential

for a given surface charge and ionic distribution inside the simulation cell can calculated

using Eqs. (3.3) and (3.4). So we have

ψ0 =
4πL

εA

(
Q+

N∑
i=1

qi
zi
L

)
. (3.11)

3.2 Monte Carlo Simulations

The simulation cell has volume V = LxLyL, with Lx = Ly = 64Å and L = 240Å in

the case of symmetric ionic liquids, and L = 160Å otherwise. The ionic liquid is confined

in the region −Lx/2 < x < Lx/2, −Ly/2 < y < Ly/2, and 0 < z < L. The Bjerrum length

has the values λB = 7.2Å (appropriate for electrolytes dissolved in pure water at room

temperature), and λB = 38.4Å(suitable for RTILs [77, 78]). The ions are constrained to

move on a lattice with spacing a = 4Å , a = 8Å , or a = 16Å. We first consider symmetric

ionic fluids with spherical ions of diameter equal to the lattice spacing and charge ±q,

where q is the proton charge. The compacity factor γ∗ is defined by the ratio between
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Figure 6: Fig. (a) shows the typical camel-shape curve of the electrolyte capacitance; the

parameters are λB = 7.2Å and γ∗ = 1/20 and ion diameter equal to the lattice spacing

a = 8Å. Fig. (b) shows the typical bell-shape curve of the ionic liquid capacitance; the

parameters are λB = 38.4Å and γ∗ = 1/2, and a = 8Å. Fig (c) same as (a), but with

a = 16Å; Fig. (d) same as (b), but with a = 16Å. The ions have charge ±q.

lattice sites occupied by the particles and the total available lattice sites in the simulation

box (see Fig. 5). The phase space is sampled with short and long-range movements. The

differential capacitance is calculated using 4× 105 uncorrelated samples after equilibrium

has been achieved. Fig. 6 shows the change in the form of the differential capacitance

between strong and weak coupling regimes. The differential capacitance is symmetric with

respect to ψ → −ψ. In the weak coupling electrolyte regime, the differential capacitance

has a characteristic camel-back shape, while in the strong coupling regime it has a bell

shaped form. The transition between camel-shaped and bell-shaped regimes depends on

both γ∗ and λB (see Fig. 7), and does not occur at the universal value γ∗ = 1/3 (contrary

to the predictions of mPB theory [79]).
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Figure 7: Phase diagram indicating transition between camel-shaped and bell-shaped

differential capacitance for size symmetric 1:1 ions of diameter a = 8Å.

Figure 8: Differential capacitance of 2:1 RTIL for γ∗ = 4/10 contrasted with the capac-

itance of 1:1 RTIL. The Bjerrum length is 38.4Å. The circles are for 1:1 RTIL, squares

corresponds to 2:1 RTIL. The ions have radii 4Å and charges ∓q for 1:1 systems and 2q

and −q for 2:1 systems.

For ionic liquids (strong coupling regime) with charge asymmetric 2:1 ions, Fig. 8

shows appearance of a second peak at the intermediate applied voltages, if the system is

sufficiently dense. This is similar to what has been found in continuum simulations [47].

We see, however, that the height of the secondary peak does not scale with the surface

area of the simulation box A = LxLy, therefore there is no structural phase transition

in the local ordering of ions near the electrode, contrary to the suggestion in Ref [47].
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Figs. 9 and 10 show that the secondary peak is correlated with the appearance of

Figure 9: Differential capacitance of 2:1 RTIL, as the compacity γ∗ changes. The Bjerrum

length is 38.4Å. Circles are for γ∗ = 1/10 and squares for γ∗ = 4/10. The ions have radii

4Å and charges 2q and −q.

Figure 10: Charge density profiles of 2:1 RTIL near cathode. Potential difference between

electrodes is ψ = 0.5V. Circles are for compacity γ∗ = 1/10, where the peak is absent;

squares are for compacity γ∗ = 4/10.

additional structure in the ionic density profiles. In both cases, we find that the first layer

overscreens the charge on the electrode - the charge on the cathode is ≈ −60q, while the

contact layer has charge of ≈ +80q. Such strong correlational effects clearly can not be

captured by mean-field theories (mPB). Finally we consider the differential capacitance

19



of a 1:1 ionic liquid with size asymmetric (two-to-one) ions (see Fig. 11). Fig. 12 shows

that size asymmetry leads to a reduction of the maximum differential capacitance. The

magnitude of this reduction is similar to the one found in symmetric systems, with ions

of radius R = 8Å (Fig. 6).

Figure 11: Lattice model of an ionic liquid between two electrodes. Ions are spherical,

restricted to move on a lattice. Cations have radius 2a and anions a.

The capacitance curve of an asymmetric RTIL has also significantly more structure.

Figure 12: Capacitance curve for size asymmetric 1:1 RTIL. The compacity is γ∗ = 4/10.

The cations have radius R = 2a = 8Å and anions R = a = 4 Å. The Bjerrum length is

λB = 38.4Å.

The great advantage of the lattice approach is that it significantly speeds up the

simulations by allowing us to precalculate all the interactions. In the limit a → 0, at a

fixed ionic size, we should recover the continuum limit. The crossover between lattice and
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continuum simulations will be the subject of future work [80].

4 Ionic liquids and general polarizable surfaces

In this section we consider general polarizable surfaces. We firstly analyse a charged

fluid confined by polarizable walls in order to obtain a Green function and the energy of

the system. Then we calculte the Green function for a system with an infinite metallic

plate. In both cases the system is replicated along the x and y axis, generating and infinite

periodic charged system.

4.1 Green function for a confined charged fluid

We review here the method recently proposed on [65]. Consider a point particle of

charge qi at position ri = (xi, yi, zi) inside a simulation box with sides of lengths Lx, Ly,

and L, respectively, in x, y, and z directions.

The infinite periodic charged system is replicated along the x and y, with a finite

width L in the z direction. The dielectric constant is εw in the region 0 < z < L, and

εc in the regions z < 0 and z > L (see Fig. 13). The electrostatic potential at position

r = (x, y, z) satisfies the Poisson equation

∇2G(r; ri) = −4πqi
εw

∞∑
mx,my=−∞

δ(r − ri +mxLxx̂ +myLyŷ). (4.1)

The periodic delta function can be expressed using Fourier transform representation

as

∞∑
mx,my=−∞

δ(x− xi +mxLx)δ(y − yi +myLy) =
1

LxLy

∞∑
m=−∞

e
i
[
2πmx
Lx

(x−xi)+
2πmy
Ly

(y−yi)
]
,(4.2)

where m = (mx,my). Then the Green function can be written as

G(r; ri) =
1

LxLy

∞∑
m=−∞

gm(zi, z)e
i
[
2πmx
Lx

(x−xi)+
2πmy
Ly

(y−yi)
]

(4.3)

which is periodic in x̂ and ŷ directions. Inserting Eq. 4.3 into Eq. 4.1 we have

∂2gm(zi, z)

∂z2
− k2gm(zi, z) = −4πqi

εw
δ(z − zi) (4.4)
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where k = 2π
√
m2
x/L

2
x +m2

y/L
2
y. The general solution of Eq. 4.4 has the form Ae−kz +

Bekz. The electrostatic potential must vanish as z → ±∞, which restricts this form to

a decaying exponential in the outer regions (z < 0 and z > L). The other boundary

conditions are the continuity of potential and discontinuity of displacement vector at the

walls.

The symmetry property of Green function, gm(zi, z) = gm(z, zi), can be used to

account for the singularity of the delta function. The solution to the Dirichlet boundary

conditions of the problem can then be written as

gm(zi, z) =
2πqi

εwk(1− γ2e−2kL)
×
[
e−k|z−zi| + γe−k(z+zi) + γe−2kLek(z+zi) + γ2e−2kLek|z−zi|

]
(4.5)

where γ = (εw − εc)/(εw + εc). The surviving terms in the m summation are just the

cosine functions, so the potential assumes the form

G(r; ri) =
1

LxLy

∑
m

gm(zi, z) cos

[
2πmx

Lx
(x− xi) +

2πmy

Ly
(y − yi)

]
. (4.6)

Figure 13: Representation of a system with only one boundary with Dirichlet and Neu-

mann conditions. Only the first two images of the main simulation box in the x direction

are shown. [65]
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4.2 Energy of the confined charged fluid

This section is based on Ref. [65]. The total energy for a system of N periodically

replicated charged particles is given by

U =
N∑
i=1

N∑
j=1

qj
2
G(rj; ri). (4.7)

The total energy can be split into the polarization and direct Coulomb contributions

U = UEw + Up, (4.8)

where UEw is the direct Coulomb contribution,

UEw =
N∑
i=1

N∑
j=1

qj
G0(rj; ri)

2
, (4.9)

which can be calculated using the modified 3d Ewald Summation method (see Chapter

2). The energy Up due to surface polarizability can be rewritten as

Up =Uγ +
π

εwL2
d

∑
m′

γ

k(1− γ2e−2kL)
×

{f1(m)2 + f2(m)2 + e−2kL
(
f3(m)2 + f4(m)2

)
+ 2γe−2kL[f3(m)f1(m) + f2(m)f4(m)]} ,

(4.10)

where Lx = Ly = Ld are set without loss of generality. The number of integers (mx,my)

necessary to obtain a converged energy depend on the lateral size of the simulation box

Ld. The contribution Uγ arises from the k → 0 limit, and is zero if γ ∈ (−1, 1). For

γ = −1 and γ = +1 it is

U(−1) = −2π

L2
d

[
M2

z

L
−QtMz

]
, (4.11)

U(+1) = −2πQt

L2
d

[
Mz −

Ωz

L

]
, (4.12)

where

Qt =
N∑
i=1

qi (4.13)

Mz =
N∑
i=1

qizi (4.14)

Ωz =
N∑
i=1

qiz
2
i . (4.15)

23



The fi(m) functions are defined as

f1(m) =
N∑
i=1

qi cos

[
2π

Ld
(mxxi +myyi)

]
e−kzi , (4.16)

f2(m) =
N∑
i=1

qi sin

[
2π

Ld
(mxxi +myyi)

]
e−kzi , (4.17)

f3(m) =
N∑
i=1

qi cos

[
2π

Ld
(mxxi +myyi)

]
ekzi , (4.18)

f4(m) =
N∑
i=1

qi sin

[
2π

Ld
(mxxi +myyi)

]
ekzi . (4.19)

If there is a surface charge present at the interfaces, it can be included as an external

potential [68]

Usur = −2π(σ1 − σ2)

εw

N∑
i=1

qizi , (4.20)

where σ1 and σ2 are the surface charge densities at z = 0 and z = L, respectively.
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Figure 14: Density profile of trivalent counterions confined between charged dielectric

surfaces, γ = 0.95. The surfaces charge densities are −0.05 C/m2. The line is a guide to

the eyes.

In Fig. 14 there is the density profile of trivalent counterions confined between charged

dielectric surfaces of γ = 0.95. The confining surfaces are separated by a distance L =
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40 Å. The number of counterions is Nc = 100 and the surfaces are equally charged with

charge density −0.05 C/m2. We see a strong repulsion of ions from the interface produced

by the induced surface charge. This result is in agreement with an earlier image charge

algorithm [26].
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Figure 15: Density profiles of cations and anions confined between grounded metal plates,

γ = −1. The 3 : 1 salt concentration is 0.35 M. The lines are guides to the eye.

In Fig. 15 there is the density profiles of cations and anions of a dissolved 3:1 electrolyte

at concentration 0.35 M, confined by grounded metal electrodes, γ = −1, separated by

distance L = 30 Å. Instead of the repulsion of the previous case, we see the expected

attraction of charges to the metal electrodes. This effect can be understood considering

the image charges of opposite sign induced inside the electrodes.

4.3 Green function for a metallic plate

The system with a metallic plate at z = 0 with periodic replicas in x and y and a

point charge qi at r = (0, 0, zi) can be handled the same way. Here we have to solve

∂2gm(z; zi)

∂z2
− k2gm(z; zi) = −4πqi

εω
δ(z − zi), (4.21)

where we used the first Maxwell equation and expanded the deltas of x and y with complex

exponentials. Similarly to the previous subsection, the solutions are simple exponentials.
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We first write the function to the region to the left of the charge as

gm,<(z; zi) =

Ae
−kz< +Be+kz< , 0 < z < zi

De+kz< , z < 0

(4.22)

From the boundary value problem at the plate we have A + B = D and A = γB,

where

γ =
εw − εm
εw + εm

. (4.23)

For metals, γ = −1. For the region to the right of the charge we have

gm,>(z; zi) = Ce−kz> . (4.24)

From the symmetry of the Green function, gm(z; zi) = gm(zi; z) and we have

gm(z; zi) = A
′
(
e−kz< +

1

γ
e+kz<

)(
e−kz>

)
. (4.25)

We then integrate Eq. 4.21 from (zi − ε) to (zi + ε) with ε → 0. So now we have to

solve

A
′
k

[(
e−kzi +

1

γ
e+kzi

)(
−e−kzi

)
−
(
−e−kzi +

1

γ
e+kzi

)(
e−kzi

)]
= −4πqi

εw
. (4.26)

After solving we have

A
′
=

2πqiγ

kεw
. (4.27)

Then the total Green function is

G(r; ri) =
2πqi

εωLxLy

∑
m

1

k

[
γe−k(z+zi) + e−k|z−zi|

]
cos

[
2πmx

Lx
(x− xi) +

2πmy

Ly
(y − yi)

]
(4.28)
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5 Metal surfaces inside an electrolyte solution

In this section we develop the main algorithm which allows us to simulate metal plates

inside an electrolyte. The system is ilustrated in Fig. 16. This kind of system hasn’t been

studied much due to the problem of dealing with the rearrangement of surface charges

that occurs when the plates are in an electrolyte. As we will see, the methods reviewed in

the Appendices, together with the inclusion of surface potentials, allow us to develop an

efficient approach to this problem. We start by obtaining Green functions for each region.

Figure 16: Representations of a system with planar metal surfaces inside an electrolyte.

The red dots are point charges.
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5.1 Green functions

In this section we calculate the total Green function G for grounded slabs at zero

potential. The general form is given by (see Chapter 4)

G(r; ri) =
1

LxLy

∑
m

gm(zi, z)cos

[
2πmx

Lx
(x− xi) +

2πmy

Ly
(y − yi)

]
, (5.1)

where gm(zi, z) is specific to each region.

The total electrostatic potential in each region is rewritten as

G(r; ri) = [G(r; ri)−G0(r; ri)] +G0(r; ri) (5.2)

We also define G̃(r; ri) = G(r; ri) − G0(r; ri) as the polarization contribution to the

total Green function.

The electrostatic potential G0(r; ri) diverges in the limit k → 0, when mx,my → 0.

This divergence can be renormalized, but the remaining sum is still slowly convergent.

However, G0(r; ri) can be efficiently calculated using a modified 3D Ewald summation

technique [39,68] or other methods [29,50]. The details of the 3D Ewald Summation that

we used are reviewed in the Chapter 2.

The final expressions are written as

G(r; ri) = G0(r; ri) +G(γ)(r; ri) + G̃′(r; ri), (5.3)

where the prime on G̃′(r; ri) excludes themx = my = 0 term in the summation of G̃(r; ri),

and for our system we have γ = −1. With that we can now evaluate the functions for

each region.

5.1.1 Source charge on region I

For this region of the system (z < −h), the problem is analogous to the one in the

Section 4.3, but with the plate moved to z = −h and qi at zi < −h. The term gm(zi, z)

on Eq. 5.1.2 is given by

gm(zi, z) =
2πqi

εωLxLy

γe−k(−z−zi+h) + e−k|z−zi+h|

k
. (5.4)

For γ → 0, Eq. 5.1.2 becomes

G0(r; ri) =
2πqi

εωLxLy

∑
m

e−k|z−zi+h|

k
cos

[
2πmx

Lx
(x− xi) +

2πmy

Ly
(y − yi)

]
. (5.5)
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The polarization contribution is given by

G̃(r; ri) =
2πqi

εωLxLy

∑
m

γe−k(−z−zi+h)

k
cos

[
2πmx

Lx
(x− xi) +

2πmy

Ly
(y − yi)

]
. (5.6)

For γ = −1 (metals) the mx = my = 0 term contains an infinite constant and a finite

function of z,
2πqi

εwLxLy

[
−1

k
+ (−z − zi + h) +O(k)

]
. (5.7)

The infinite constant is neglected again, and we write

G(−1)(r; ri) = − 2πqi
εωLxLy

(z + zi − h). (5.8)

The final expression for the total electrostatic potential can now be written as Eq. 5.3.

5.1.2 Source charge on region II

For this region of the system (0 < z < L) the term gm(zi, z) on Eq. is given by (see

Section 4.1)

gm(zi, z) =
2πqi

εωk(1− γ2e−2kL)

[
e−k|z−zi| + γe−k(z+zi) + γe−2kLek(z+zi) + γ2e−2kLek|z−zi|

]
.

(5.9)

In the absence of dielectric contrast (γ → 0) Eq. 5.1.2 reduces to

G0(r; ri) =
2πqi

εwLxLy

∞∑
m=−∞

e−k|z−zi|

k
cos

[
2πmx

Lx
(x− xi) +

2πmy

Ly
(y − yi)

]
, (5.10)

which is a representation of the electrostatic potential produced by a periodically repli-

cated point charge in the x and y directions. The polarization contribution is then given

by

G̃(r; ri) =
2πqi

εwLxLy

∞∑
m=−∞

1

k(1− γ2e−2kL)

×
[
γe−k(z+zi) + γe−2kLek(z+zi) + 2γ2e−2kL cosh (k(z − zi))

]
× cos

[
2πmx

Lx
(x− xi) +

2πmy

Ly
(y − yi)

]
.

(5.11)

The limit k → 0 (mx = my = 0) requires additional care and requires renormalization

procedures. The calculations are separated in three cases: γ = +1, γ = −1 and γ ∈
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(−1, 1). For our metallic system we are interested in γ = −1, but we will review the other

cases. For −1 < γ < 1 the mx = my = 0 term diverges as

− 4πqi
εwLxLy

[
γ

k(γ − 1)
+

γL

(γ − 1)2
+O(k)

]
. (5.12)

Since this is a constant (independent of position), it will not contribute to the force

and can be renormalized away. For γ = −1 the mx = my = 0 term contains an infinite

constant and a finite function of z,

2πqi
εwLxLy

[
−1

k
+ (z + zi − 2

ziz

L
) +O(k)

]
. (5.13)

The infinite constant is neglected again, and we write

G(−1)(r; ri) =
2πqi

εwLxLy
(z + zi − 2

ziz

L
) (5.14)

For γ = +1 we have

2πqi
εwLxLy

[
2

Lk2
− 1

k
+

2L2 − 3L(z + zi) + 3(z2 + z2
i )

3L
+O(k)

]
, (5.15)

so that

G(+1)(r; ri) =
2πqi

εwLxLy

[
−(z + zi) +

z2 + z2
i

L

]
. (5.16)

The final expression for the total electrostatic potential can now be written as Eq.

5.3, which makes evident the contribution of the polarized walls. Furthermore, this po-

larization part is decoupled of the periodic ionic contribution.

5.1.3 Source charge on region III

For this region of the system (z > L + h) the problem is the same as the one in the

Section 4.3, but with the plate moved to z = L + h and qi at zi > L + h. The term

gm(zi, z) on Eq. 5.1.2 is given by

gm(zi, z) =
2πqi

εωLxLy

γe−k(z+zi−L−h) + e−k|z−zi−L−h|

k
. (5.17)

For γ → 0, Eq. 5.1.2 becomes

G0(r; ri) =
2πqi

εωLxLy

∑
m

e−k|z−zi−L−h|

k
cos

[
2πmx

Lx
(x− xi) +

2πmy

Ly
(y − yi)

]
(5.18)

30



The polarization contribution is given by

G̃(r; ri) =
2πqi

εωLxLy

∑
m

γe−k(z+zi−L−h)

k
cos

[
2πmx

Lx
(x− xi) +

2πmy

Ly
(y − yi)

]
(5.19)

For γ = −1 the mx = my = 0 term contains an infinite constant and a finite function

of z,
2πqi

εwLxLy

[
−1

k
+ (z + zi − h− L) +O(k)

]
. (5.20)

The infinite constant is neglected again, and we write

G(−1)(r; ri) =
2πqi

εωLxLy
(z + zi − h− L). (5.21)

The final expression for the total electrostatic potential can now be written as Eq. 5.3.

5.2 Surface potentials from added charges

The Green function in Section 4.1 was calculated with the boundary conditions of

zero potential. This is not correct for what we want because we have different boundary

conditions for the plates, which require us to add surface charges to keep the slabs neutral.

The charges will be on each face of the two slabs (see Fig. 16). We want to calculate

the potential Φ produced by this charge distribution. Once we add the potential due to

surface charges, the slabs will no longer be at zero potential. If we label the surfaces from

1 to 4 from left to right and we refer to the left plate as L and the right plate as R, then

have the conditions

σ1 + σ2 = σL,

σ3 + σ4 = σR,

σ1 = σ2 + σ3 + σ4,

σ4 = σ1 + σ2 + σ3.

(5.22)

The induced charges are σL = q
A

(L−zi)
L

,

σR = q
A
zi
L
.

(5.23)
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From Eqs. 5.22 and 5.23 we have

qi on region II

σ1 = σ4 = + q
2A

σ2 = −σ3 = + q
2A

(
1− 2zi

L

) (5.24)

qi on region I

σ1 = σ4 = + q
2A

σ2 = −σ3 = + q
2A

(5.25)

qi on region III

σ1 = σ4 = + q
2A

σ2 = −σ3 = − q
2A

(5.26)

Each region j will have three surface potentials given by

ΦI,j = +
2π

ε
(σ1 + σ4)(z + h) + ΨI,j, (5.27)

ΦII,j = −2π

ε
(σ2 − σ3)(z − L

2
) + ΨII,j, (5.28)

ΦIII,j = −2π

ε
(σ1 + σ4)(z − L− h) + ΨIII,j, (5.29)

where ΨI,j, ΨII,j and ΨIII,j are constants. From the continuity of the potentials, we have

ΦI,j(z = −h) = ΦII,j(z = 0), (5.30)

ΦII,j(z = L) = ΦIII,j(z = L+ h). (5.31)

So we start with the source on region II and impose ΦII,2(z = L
2
) = 0. That gives us

ΨII,2 = 0. Then from the continuity of the potentials we obtain

ΨI,2 = −2πqi
εA

(
zi −

L

2

)
, (5.32)

ΨIII,2 =
2πqi
εA

(
zi −

L

2

)
. (5.33)

Then, with the source on region I, we use the symmetries (Eq. 5.30) with region II

to obtain ΨII,1 = 2πqi
εA

(zi + h). Then from the continuity of the potentials we obtain the

other two constants

ΨI,1 =
2πqi
εA

(
zi + h+

L

2

)
, (5.34)

ΨIII,1 =
2πqi
εA

(
zi + h− L

2

)
. (5.35)
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Then we repeat the procedure with the source on region III, obtaining

ΨI,3 =
2πqi
εA

(
−zi + h+

L

2

)
, (5.36)

ΨII,3 =
2πqi
εA

(−zi + h+ L) , (5.37)

ΨIII,3 = −2πqi
εA

(
zi − h−

3L

2

)
. (5.38)

The total potential on each region has the form

Gt(r; ri) = G(r; ri) + Φ(r; ri), (5.39)

where G(r; ri) is the total electrostatic potential calculated before.

The Green functions have to be symmetric across all regions. So Gt must be symmet-

ric when we exchange the source and observation points. Since G is different for the three

regions, this is a much more stringent test of the validity of our calculations. The Green

function exists only in the region where there is charge, so when we try to test the sym-

metry between different regions this will mean symmetry between the surface potentials

Φ.

After checking the boundaries and symmmetries, we can summarize the surface po-

tentials as

qi on region I


ΦI = +2πqi

εA
(z + zi + 2h+ L

2
)

ΦII = −2πqi
εA

(z − zi − h− L
2
)

ΦIII = −2πqi
εA

(z − zi − 2h− L
2
)

(5.40)

qi on region II


ΦI = +2πqi

εA
(z − zi + h+ L

2
)

ΦII = −2πqi
εA

(z + zi − zzi
L/2
− L

2
)

ΦIII = −2πqi
εA

(z − zi − h− L
2
)

(5.41)

qi on region III


ΦI = +2πqi

εA
(z − zi + 2h+ L

2
)

ΦII = +2πqi
εA

(z − zi + h+ L
2
)

ΦIII = −2πqi
εA

(z + zi − 2h− 5L
2

)

(5.42)
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5.3 Energies

The analysis in this section is similar to the one in Section 4.2. The total energy for

this system of N periodically replicated charged particles is given by

U =
N∑
i=1

N∑
j=1

qj
Gt(rj; ri)

2
, (5.43)

We can split the total energy into the polarization, the direct Coulomb contributions

and and extra term UΦ to account for the surface potentials,

U = UEw + Up + UΦ, (5.44)

where UEw is the direct Coulomb contribution,

UEw =
N∑
i=1

N∑
j=1

qj.
G0(rj; ri)

2
, (5.45)

which can be calculated using the modified 3d Ewald Summation method (see Chapter

2). The energy Up can be written as

Up = Uγ + Up′ , (5.46)

where γ = −1, and the prime on Up′ excludes the mx = my = 0 term in the summation.

So for each region U will be calculated as

U = UEw + Up′ + U(−1) + UΦ. (5.47)

We set Lx = Ly = Ld without loss of generality. The number of integers (mx,my)

necessary to obtain a converged energy depend on the lateral size of the simulation box

Ld. The fi(m) functions are again defined as

f1(m) =
N∑
i=1

qicos

[
2π

Ld
(mxxi +myyi)

]
e−kzi , (5.48)

f2(m) =
N∑
i=1

qisin

[
2π

Ld
(mxxi +myyi)

]
e−kzi , (5.49)

f3(m) =
N∑
i=1

qicos

[
2π

Ld
(mxxi +myyi)

]
ekzi , (5.50)

f4(m) =
N∑
i=1

qisin

[
2π

Ld
(mxxi +myyi)

]
ekzi . (5.51)
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For the whole system we define

Qt =
N∑
i=1

qi, (5.52)

Mz =
N∑
i=1

qizi, (5.53)

Ωz =
N∑
i=1

qiz
2
i . (5.54)

where N is the total number of particles. We note that for charge neutrality we will have

Qt = 0. We also define for each region

Ql =

Nl∑
i=1

qi, (5.55)

Mz,l =

Nl∑
i=1

qizi (5.56)

Ωz,l =

N,l∑
i=1

qiz
2
i . (5.57)

where l = 1, 2, 3 for the regions I, II, III, respectively. So Qt = Q1 + Q2 + Q3 and

Mz = Mz,1 +Mz,2 +Mz,3.

The indices i and j in Eq. (5.43) require some care. For each region the upper limit of

the sums in UEw and Up will be the number of particles Nl in that region at a particular

simulation step. But the sums in UΦ will be split in three contributions - one for each

region, given by Eq. (5.40), (5.41), and (5.42) - with different upper limits for i and j.

5.3.1 Energy on region I

For this region of the system (z < −h), the contribution Uγ arises from the k → 0

limit. For γ = −1 we have

U(−1) = −2π

L2
d

Q1(Mz,1 +Q1h). (5.58)

The energy Up′ due to surface polarizability can be written as

Up′ =
π

εL2
d

∑
m′

γe−kh

k

(
f3(m)2 + f4(m)2

)
, (5.59)

where we use N1 in the upper limit of the fi(m) functions.
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The energy Uφ due to surface potentials is written after we sum the contributions from

Eqs. 5.40, 5.41, and 5.42. Then we have

Uφ = +
π

L2
d

[QtMz,1 +Q1(Mz,1 −Mz,2 −Mz,3)

+Q1Qt(2h+ L/2)−Q1Q2h]. (5.60)

5.3.2 Energy on region II

For this region of the system (0 < z < L) the contribution Uγ arises from the k → 0

limit. For γ = −1 we have

U(−1) = −2π

L2
d

[
M2

z,2

L
−Q2Mz,2

]
. (5.61)

The energy Up′ due to surface polarizability can be written as

Up′ =
π

εL2
d

∑
m′

γ

k(1− γ2e−2kL)
{f1(m)2 + f2(m)2

+ e−2kL
(
f1(m)2 + f2(m)2

)
+ 2γe−2kL (f1(m)f3(m) + f2(m)f4(m))}, (5.62)

where we use N2 in the upper limit of the fi(m) functions. The energy Uφ due to surface

potentials is written after we sum the contributions from Eqs. 5.40, 5.41, and 5.42. Then

we have

Uφ = +
π

L2
d

[Mz,2(Q3 − 2Q2 −Q1)−Q2(Mz,3 −Mz,1)

+Q2(Q1 +Q3)(h+ L/2) +Q2
2

L

2
+M2

z,2

2

L
]. (5.63)

5.3.3 Energy on region III

For this region of the system (z > L + h) the contribution Uγ arises from the k → 0

limit. For γ = −1 we have

U(−1) = +
2π

L2
d

Q3(Mz,3 +Q3(L+ h)). (5.64)

The energy Up′ due to surface polarizability can be written as

Up′ =
π

εL2
d

∑
m′

γek(L+h)

k

(
f1(m)2 + f2(m)2

)
, (5.65)

36



where we use N3 in the upper limit of the fi(m) functions.

The energy Uφ due to surface potentials is written after we sum the contributions from

Eqs. 5.40, 5.41, and 5.42. Then we have

Uφ = − π

L2
d

[QtMz,3 +Q3(Mz,3 −Mz,1 −Mz,2)

−Q3Qt(h+ L/2)−Q2
3(h+ 2L)−Q1Q3h]. (5.66)
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5.4 Monte Carlo simulations

In order to test this new method, we perform Monte Carlo simulations using the

Metropolis algorithm [4] for a charged solution in the NV T ensemble (see Fig. 16).

The simulations are similar to the ones made on Refs. [7] and [65]. The phase space is

sampled using short and long displacement moves [9,10]. The effective ionic radii are set

to rc = 2 Å. The Bjerrum length is defined as q2β/εw, where β is the inverse thermal

energy and q is the proton charge. We set it to 7.2 Å, typical value for water at room

temperature. The system relaxes to equilibrium in 5× 105 Monte Carlo steps. The ionic

density profiles are obtained using 5× 104 uncorrelated samples.

We note that k depends on m and the f functions must be updated for each particle

move. There is no need to recalculate all the functions, but only the contribution to each

function that depends on the position of the particle that is being moved. This makes the

energy update very efficient. Also, an essencial characteristic of the algorithm is that the

components of the total energy are again decoupled both from each other and between

different regions (with the exception of the terms Uφ that come from the surface potentials

and which interact with all regions).

The vast majority of the calculations on each step can be performed on a parallel

manner. If the code is written carefully with that intent, the automatic parallelizatoin

procedures of the GNU and Intel compilers already detect this, resulting in a total com-

putation 2 to 3 times faster. Also, we noticed that there is a symmetry between all k,

which allowed us to rewrite the algorithm in a way that actually only calculates half the

k terms (the other half is identical by symmetry).

Since the particles are moving between regions, additional care is required when re-

calculating the contributions of each function. This is because the majority of the contri-

butions are affected only by the charges that exist in the region in which the calculation

is being carried out, and the charges are free to move between regions.

In Fig. 17 there is the density profiles of cations and anions of metal plates in a

dissolved 1:1 electrolyte at concentration 0.1 M, distance between the plates L = 40Å,

γ = −1, λB = 7.2Å, and ionic radius to 2Å. We see an expected small attraction of

charges to the neutral metal plates.
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Figure 17: Density profiles of cations and anions in a dissolved 1:1 electrolyte at concen-

tration 0.1 M, distance between the plates L = 40Å, γ = −1, λB = 7.2Å, ionic radius to

2Å.

In Fig. 18 there is the density profiles of cations and anions of metal plates in a

dissolved 3:1 electrolyte at concentration 0.1 M, distance between the plates L = 50Å,

γ = −1, λB = 7.2Å, and ionic radius to 2Å. We see an expected big attraction of the

trivalent ions to the neutral metal plates.
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Figure 18: Density profiles of cations and anions of metal plates in a dissolved 3:1 elec-

trolyte at concentration 0.1 M, distance between the plates L = 50Å, λB = 7.2Å, ionic

radius to 2Å.
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6 Conclusions

In this Dissertation we reviewed two algorithms to simulate confined charge fluids. The

first one was a recently developed 3D Ewald summation technique for bulk systems [7].

This algorithm gains computational time by treating the charged walls as external linear

potentials.

Then we reviewed another recent method for simulating Coulomb systems confined by

general polarizable walls. It solves the Poisson Equation with the periodic eigenfunctions

of the Laplace operator, resulting in a periodic Green function for the potential of the

system. The energy can be split into contributions due to direct Coulomb interactions

(which can be computed using already developed methods, like the one reviewed before),

and due to polarization effects, which are written in a conventional form and don’t recquire

much computer power.

For example, in Fig. 19 there is characteristic central processing unit (CPU) times of

this simulation method with a standard implementation of Lekner Summation which does

not account for polarization [29], from which we can see that the Lekner Summation is

at least an order of magnitude slower than this method for reasonably large system sizes,

and even for systems with polarization and large Nc.

These advantages also apply for the new method developed here, which can be seen

as an extension of those two to include the bulk. However, instead of one simulation box,

now we have three. We showed that the energy can be split in the same manner. In

this case there is again the Coulombic contribution, which is computed for each region

separately. The polarization contribution is different for each region. There is an already

known expression for the central region and we calculated the new expression for the outer

regions. And then there is an extra contribution to account for the surface potentials of

the induced charges, which is linear and cheap computationally. Again there is no need for

a recalculation of all the energetic contribution at each step. Then we tested the method

obtaining density profiles of monovalent and trivalent ions. The profiles in the central

region were compared to already known results and the outer regions will be compared

to a mean field theory that we are developing. Currently we are working to extend the

application of the method by calculating the forces between the plates and by testing the
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Figure 19: CPU time to perform 106 energy updates as a function of the number of

particles in the system. The distance between the polarizable plates is L = 10Å, with

γ = 0.95. The Bjerrum length was set to λB = 14.5Å, the superficial charge to σ =

−0.12C/m2 and ionic radius to 2Å. τ0 is the CPU time to perform 106 energy updates.

same system with extra charge on the slabs.

Computationally, we will investigate further the implications of the decoupled nature

of most of the calculations, such as the possibility of parallel methods [69] and accelerated

simulations via cluster computing [70]. The parallel tempering [71] or replica exchange [72]

approaches propose to accelerate Monte Carlo algorithms by simulating multiple copies of

the system simultaneously in order to attempt additional interchanges beyond the single

site trial moves. This technique has been compared with canonical Monte Carlo and

molecular dynamics [73].

Another possibility is the particle–particle particle–mesh (PPPM) method algorithm

[74], which uses the fast Fourier transform to develop further the Ewald method. Two

of the more important mesh algorithms based on this idea are the particle mesh Ewald

method [12] and the smooth particle mesh Ewald method [11]. We believe our methods

could be made faster by adopting PPPM approaches [14,15].
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