
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO

GABRIEL MATTOS LANGELOH

Unrestricted dynamic Gröbner Basis
algorithms

Thesis presented in partial fulfillment
of the requirements for the degree of
Master of Computer Science

Advisor: Prof. Dr. Marcus Rolf Peter Ritt

Porto Alegre
March 2019

CIP — CATALOGING-IN-PUBLICATION

Langeloh, Gabriel Mattos

Unrestricted dynamic Gröbner Basis algorithms / Gabriel
Mattos Langeloh. – Porto Alegre: PPGC da UFRGS, 2019.

93 f.: il.

Thesis (Master) – Universidade Federal do Rio Grande do Sul.
Programa de Pós-Graduação em Computação, Porto Alegre, BR–
RS, 2019. Advisor: Marcus Rolf Peter Ritt.

1. Gröbner Bases. 2. Dynamic Algorithm. 3. Monomial Or-
dering. I. Ritt, Marcus Rolf Peter. II. Título.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Rui Vicente Oppermann
Vice-Reitora: Profa. Jane Fraga Tutikian
Pró-Reitor de Pós-Graduação: Prof. Celso Giannetti Loureiro Chaves
Diretora do Instituto de Informática: Profa. Carla Maria Dal Sasso Freitas
Coordenador do PPGC: Prof. João Luiz Dihl Comba
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro

AGRADECIMENTOS

Primeiramente, agradeço aos meus pais, por todo o apoio durante o mestrado.

Agradeço também a meu orientador e aos colegas do laboratório de pesquisa por inúmeras

discussões muito produtivas.

O presente trabalho foi realizado com apoio do CNPq, Conselho Nacional de De-

senvolvimento Científico e Tecnológico - Brasil.

ABSTRACT

Gröbner bases are a necessary tool to solve many problems involving polynomial ideals,

including applications such as nonlinear polynomial system solving, integer program-

ming and cryptography. Traditional Gröbner Basis algorithms are static, in the sense that

they receive a monomial order as input and it is fixed during the entire execution of the

algorithm. Dynamic algorithms, in contrast, allow this monomial ordering to change to

generate smaller output bases and, hopefully, fewer polynomial reductions.

All but one of the previously proposed dynamic algorithms are restricted, meaning that

once they choose a leading monomial for a certain polynomial, that choice cannot be un-

made. In this work, we focus on exploring unrestricted dynamic algorithms, studying the

relation of monomial orderings to Newton polyhedra and proposing four new unrestricted

algorithms that avoid evaluating too many monomial orderings by using a neighborhood

construction for monomial orders. We also propose a new heuristic, called the Mixed

heuristic, for monomial order evaluation in dynamic algorithms.

Our experiments show that although the restricted algorithms perform better with respect

to running time, our unrestricted algorithms find orders that lead to smaller Gröbner Bases

for many instances and significantly lower degree polynomials in average. Additionally,

we provide a comparison between the previously defined Hilbert and Betti heuristics and

our Mixed heuristic, showing it performs better than the Betti heuristic in most aspects

and is competitive with the Hilbert heuristic overall.

Keywords: Gröbner Bases. Dynamic Algorithm. Monomial Ordering.

Algoritmos dinâmicos irrestritos para cálculo de Bases de Gröbner

RESUMO

Bases de Gröbner são uma ferramenta necessária para resolver diversos problemas envol-

vendo ideais polinomiais, incluindo aplicações como resolução de sistemas polinomiais

não-lineares, programação inteira e criptografia. Algoritmos tradicionais de cálculo de

Bases de Gröbner são estáticos, no sentido que eles recebem uma ordem monomial como

entrada e essa ordem é então mantida fixa durante toda a execução do algoritmo. Algorit-

mos dinâmicos, pelo contrário, permitem que a ordem monomial mude para gerar bases

menores e, espera-se, realizar menos reduções polinomiais.

Com apenas uma exceção, todos os algoritmos dinâmicos previamente propostos são res-

tritos, o que significa que uma vez que eles escolhem um monômio líder para um certo

polinômio, essa escolha não pode ser desfeita. No presente trabalho, exploramos algo-

ritmos dinâmicos irrestritos, estudando a relação entre ordens monomiais e poliedros de

Newton e propondo quatro novos algoritmos irrestritos que evitam avaliar muitas ordens

usando um conceito de vizinhança para ordens monomiais. Também propomos uma nova

heurística, chamada de heurística Mista, para a avaliação de ordens monomiais em algo-

ritmos dinâmicos.

Nossos experimentos mostram que apesar de os algoritmos restritos terem melhor desem-

penho em termos de tempo de execução, nossos algoritmos irrestritos encontram ordens

que levam a Bases de Gröbner menores para muitas instâncias e significativamente re-

duzem o grau máximo dos polinômios na base em média. Adicionalmente, fornecemos

uma comparação entre as heurísticas de Hilbert e Betti, previamente propostas, e nossa

heurística Mista, mostrando que ela tem desempenho melhor que a heurística de Betti na

maioria dos aspectos e é competitiva com a heurística de Hilbert em geral.

Palavras-chave: Bases de Gröbner. Algoritmo Dinâmico. Ordem Monomial.

LIST OF SYMBOLS

k A field

R The polynomial ring k[x1, . . . , xn]

n The number of variables of R

F A finite set of polynomials {f1, . . . , fm} ⊂ R

m The cardinality of F

I The ideal 〈F〉 of R generated by F

LM(f) The leading (monic) monomial of f ∈ R with respect to some fixed monomial

order

LC(f) The leading coefficient of f ∈ R with respect to some fixed monomial order

LT (f) The leading term (monomial and coefficient) of f ∈ R with respect to some

fixed monomial order

Supp(f) The set of monomials appearing in f ∈ R

fF The remainder of the division of f by F

[l] The set {1, . . . , l}

LIST OF FIGURES

Figure 2.1 Examples of Gröbner fans ...40

Figure 3.1 Example of a Newton polyhedron ...45

LIST OF TABLES

Table 2.1 Steps of linear and non-linear cases of multivariate polynomial system
solving...14

Table 2.2 Comparison between the size of basis and number of monomials in grevlex
and weight order Gröbner Bases...37

Table 5.1 Summarized instance data, grouped by number of variables.73
Table 5.2 Comparison between Betti and Mixed heuristics..73
Table 5.3 Comparison between Hilbert and Mixed heuristics ..73
Table 5.4 Comparison between Hilbert and Betti heuristics...74
Table 5.5 Pairwise comparison between dynamic algorithms with respect to time

(geometric mean of ratios) ..74
Table 5.6 Pairwise comparison between dynamic algorithms with respect to time

(number of instances)..74
Table 5.7 Pairwise comparison between dynamic algorithms with respect to num-

ber of S-reductions (geometric mean of ratios) ..74
Table 5.8 Pairwise comparison between dynamic algorithms with respect to num-

ber of S-reductions (number of instances) ..75
Table 5.9 Pairwise comparison between dynamic algorithms with respect to num-

ber of polynomials in basis (geometric mean of ratios)..75
Table 5.10 Pairwise comparison between dynamic algorithms with respect to num-

ber of polynomials in basis (number of instances) ...75
Table 5.11 Pairwise comparison between dynamic algorithms with respect to num-

ber of monomials in basis (geometric mean of ratios)..75
Table 5.12 Pairwise comparison between dynamic algorithms with respect to num-

ber of monomials in basis (number of instances) ...76
Table 5.13 Pairwise comparison between dynamic algorithms with respect to max-

imum degree of polynomials in basis (geometric mean of ratios)..........................76
Table 5.14 Pairwise comparison between dynamic algorithms with respect to max-

imum degree of polynomials in basis (number of instances)76

Table A.1 Instances used in the experiments of Chapter 5 (part 1).83
Table A.2 Instances used in the experiments of Chapter 5 (part 2).84

Table B.1 Experimental results for the Static algorithm ...86
Table B.2 Experimental results for the Caboara algorithm...86
Table B.3 Experimental results for the CP algorithm ...87
Table B.4 Experimental results for the GS algorithm ...88
Table B.5 Experimental results for the GS-then-CP algorithm.......................................89
Table B.6 Experimental results for the Random algorithm...90
Table B.7 Experimental results for the Perturb algorithm ..91
Table B.8 Experimental results for the Regrets algorithm..92
Table B.9 Experimental results for the Simplex algorithm...93

CONTENTS

1 INTRODUCTION...10
2 POLYNOMIAL SYSTEM SOLVING AND GRÖBNER BASES13
2.1 Insights from the linear case ..13
2.2 Monomial orders...14
2.3 Polynomial reduction and Gröbner Bases ..18
2.4 Algorithms for computing a Gröbner Basis ...22
2.4.1 Buchberger’s algorithm..22
2.4.2 Faster reduction with matrices: F4 ..23
2.4.3 Avoiding reductions to zero using signatures: F5..25
2.5 The Syzygy module of a monomial ideal and useless S-polynomial elimination28
2.5.1 Buchberger’s criteria and the Gebauer-Möller algorithm28
2.5.2 Graph-based criteria...30
2.6 Hilbert Function, Hilbert Series and Betti Numbers...32
2.7 Change of ordering ...36
2.7.1 Change of ordering in dimension zero: FGLM ...37
2.7.2 The Gröbner Fan of an ideal ..39
2.8 Known complexity results ..41
3 DYNAMIC ALGORITHMS FOR GRÖBNER BASES..44
3.1 Unrestricted algorithms..45
3.2 Restricted algorithms..48
3.3 Heuristic functions ..50
3.3.1 The Hilbert heuristic ..51
3.3.2 The Betti heuristic..53
3.3.3 Mixed heuristic ..54
4 UNRESTRICTED DYNAMIC GRÖBNER BASIS ALGORITHMS....................55
4.1 Neighborhoods of monomial orders ..55
4.2 Simplified unrestricted algorithms..60
4.3 Simplex-based algorithm..61
4.4 The Restricted-with-regrets algorithm ...64
5 COMPUTATIONAL RESULTS ..66
5.1 Instances and computational environment...66
5.2 Experiments and results ...67
5.2.1 Evaluation of the heuristics..68
5.2.2 Algorithm comparison with respect to time...69
5.2.3 Algorithm comparison with respect to the final basis..71
6 CONCLUSIONS AND FURTHER WORK ...77
REFERENCES...79
APPENDICES..82
APPENDIX A DETAILED INSTANCE DATA...83
APPENDIX B ADDITIONAL EXPERIMENTAL RESULTS85

10

1 INTRODUCTION

Let f1, . . . , fm be polynomials in n variables and let < be a monomial ordering,

that is, a total ordering in the set of monomials in n variables compatible with monomial

multiplication. It is possible to compute a set G = {g1, . . . , gt} of algebraic combinations

of the fi such that, for any algebraic combination

f =
m∑
i=1

aifi

the leading monomial LM(f) of f , that is, its largest monomial with respect to <, is

divisible by one of the LM(gi). This is what we call a Gröbner Basis of the polynomial

ideal I = 〈f1, . . . , fm〉.

In polynomial ideal theory, Gröbner Bases are a key object allowing for the com-

putation of ideal membership, invariants, ideal operations and more — virtually all com-

putations involving ideals either depend on or are made easier by the computation of

a Gröbner Basis. Applications outside of pure mathematics also abound, mostly be-

cause Gröbner Bases are one of the main tools in multivariate polynomial system solving.

Examples include integer programming (THOMAS, 1998), the design of cryptographic

schemes (PATARIN, 1996) and algebraic cryptanalysis (PETIT; KOSTERS; MESSENG,

2016), (FAUGÈRE; JOUX, 2003).

In our description of Gröbner Bases above, note the dependence on the choice of

monomial order — different orders lead to distinct bases, each with its own properties.

Some of these are necessary in certain applications, such as elimination orders for poly-

nomial system solving. Many applications, however, depend on no such properties. It

becomes desirable, then, to obtain smaller Gröbner Bases, or Gröbner Bases whose poly-

nomials are of low degree. Even in cases where a specific monomial ordering is needed,

it is sometimes advantageous to compute the Gröbner Basis in a more efficient ordering

and then use an algorithm to change orders, such as FGLM (FAUGÈRE et al., 1993) or

the Gröbner Walk (COLLART; KALKBRENER; MALL, 1997).

Traditional Gröbner Basis algorithms, such as Buchberger’s algorithm (BUCH-

BERGER, 2006), F4 (FAUGÈRE, 1999) and F5 (FAUGÈRE, 2002) are highly customiz-

able, as one can choose, for example, how to compute polynomial reductions and how

to select polynomials to be reduced. Usually, these algorithms take a monomial ordering

as part of the input and compute a Gröbner Basis with respect to it — for this reason,

11

we call these algorithms static. Bayer and Stillman (BAYER; STILLMAN, 1987) have

shown that the grevlex monomial ordering is “optimal” in a certain sense, which, in the

literature, is often taken to mean that the grevlex order leads to faster Gröbner Basis

computations than other orders. This is not true in general, and, specially, if one desires

a small Gröbner Basis, as is the case in many applications, it is possible to choose better

orderings in a case by case basis. This, however, is not easy to do a priori, so it would

make sense to develop algorithms to do this task during the computation of the Gröbner

Basis. This is exactly the idea behind the dynamic Gröbner Basis algorithms, proposed

by (GRITZMANN; STURMFELS, 1993) and (CABOARA, 1993) — they are variants of

traditional Gröbner Basis algorithms that allow for the monomial order to change during

the computation, often leading to smaller final Gröbner Bases and, sometimes, to better

performance.

To exemplify, there are instances where a static algorithm with the grevlex or-

dering as input returns a Gröbner Basis with 443 polynomials and 79897 monomials of

degree no more than 19, while there exists a dynamic algorithm returning a basis with 117

polynomials composed of 25763 monomials of degree at most 13 — in about a third of

the time, in our experiments. While this example is somewhat extreme, it shows that there

are cases where dynamic algorithms are very advantageous with respect to static ones.

Dynamic Gröbner Basis algorithms were also studied by (CABOARA; PERRY,

2014), (HASHEMI; TALAASHRAFI, 2016) and (PERRY, 2017), who proposed and

implemented various modifications for these algorithms. In addition, (GOLUBITSKY,

2006) proposed a classification of dynamic algorithms in two classes — restricted and un-

restricted, with all previous algorithms but that of (GRITZMANN; STURMFELS, 1993)

being the former. According to this classification, restricted algorithms cannot change

leading monomials of polynomials that have already been inserted in a partial Gröbner

Basis during the execution, while unrestricted algorithms can. In practice, the search

space for monomial orders in restricted algorithms narrows at each iteration, while in

unrestricted ones, the search space only becomes larger.

The main reason unrestricted dynamic algorithms are still unexplored is that the

amount of candidate monomial orders grows very fast in the original unrestricted algo-

rithm (GRITZMANN; STURMFELS, 1993), which makes it unviable for instances of

even moderate sizes. This algorithm evaluates every candidate monomial order in order

to choose the best one at each iteration, but this is not necessary — one can also navigate

the space of all candidate monomial orders without visiting all of them, as long as one

12

drops the requirement of choosing a global optimal order. This is not a problem, however,

as orders would be evaluated heuristically either way, and this process would be done

at each iteration. Our main contributions are various algorithms to explore this space of

monomial orders, leading to unrestricted dynamic algorithms that do not depend on visit-

ing all orders at any given step and, thus, are applicable to a wider variety of instances if

compared to the original unrestricted algorithm.

In Chapter 2, we provide an overview of Gröbner Bases and polynomial system

solving, while in Chapter 3 we describe previous Dynamic Gröbner Basis algorithms and

the heuristics used in them to evaluate monomial orders. We also propose a new heuristic,

intended to combine the strengths of the previous ones. In Chapter 4 we develop a theory

for neighborhoods of monomial orders and apply it to introduce four new unrestricted

dynamic algorithms. Chapter 5 presents experimental results comparing most previous

dynamic algorithms to our new algorithms, using various heuristic functions to evaluate

the monomial orders.

13

2 POLYNOMIAL SYSTEM SOLVING AND GRÖBNER BASES

Given a field k and a multivariate polynomial ring R = k[x1, . . . , xn] over k, we

consider the problem of solving a system F = {f1, . . . , fm} ⊂ R, where solving means

finding all points (a1, . . . , an) ∈ kn (the solutions of F) such that

f1(a1, . . . , an) = f2(a1, . . . , am) = . . . = fm(a1, . . . , an) = 0,

in case the set of solutions is finite, or somehow describing the infinite solution set (for

example, parametrically). We denote I = 〈F〉 the ideal generated byF which, informally

(and, imprecisely), represents the set of polynomials equivalent to the inputF with respect

to the solution set.

This chapter is an introduction to polynomial system solving, describing algo-

rithms, concepts and known results, focusing on the theory of Gröbner Bases as its main

tool. Sections 2.1 through 2.4 present the basic theory and algorithms, while the remain-

ing sections focus on complexity and alternative methods.

2.1 Insights from the linear case

In this section, we will outline a generic approach to multivariate polynomial sys-

tem solving based on insights from the more familiar linear case. Consider the following

linear system F over R = R[x, y, z]:
x+ 10y − 3z = 0

2x+ 19y + z = 3

−x+ 3y + 20z = −5

⇒M =

1 10 −3 0

2 19 1 3

−1 3 20 −5

In order to solve this system, we may start by computing the row echelon form of

its matrix M , obtaining:

Mred =

1 10 −3 0

0 −1 7 3

0 0 108 34

In the process of row reduction of the matrix, each new line corresponds to a

polynomial in the ideal generated by F , the original system. Each intermediate matrix

14

Table 2.1: Steps of linear and non-linear cases of multivariate polynomial system solving.

Linear case Non-Linear case

1 Order the variables Order the monomials
2 Compute row echelon form Compute a Gröbner Basis
3 Solve univariate linear equation Find roots of a univariate polynomial
4 Extend the solutions to more variables Extend the solutions to more variables

appearing in the reduction corresponds to a system F ′ that is also a generating set of

I = 〈F〉. We may call the system F ′ corresponding to the matrix Mred above a Gröbner

Basis of I . This concept will generalize to the non-linear case (see Section 2.3) allowing

non-linear polynomial system solving.

Note that in the last row of Mred, corresponding to the equation 108z = 34, we

have eliminated the variables x, y, and in the second row we have eliminated the vari-

able x. Implicitly, we considered a variable ordering which we used to decide the order

the variables would be eliminated. We will also have to generalize these concepts to solve

the non-linear case.

In the linear case example, we would then proceed to solve the univariate linear

equation 108z = 34. This will usually also happen in the non-linear case, except the

corresponding univariate polynomial may be of higher degree. Then, if k = R or k = C

one can use numerical methods to obtain the roots of the polynomial or, in case k is a finite

field, it is possible to use a specialized algorithm such as Cantor-Zassenhaus (CANTOR;

ZASSENHAUS, 1981) to obtain the roots in (probabilistic) polynomial time.

Finally, with the solution z = 17/54 to the equation corresponding to the last line

of Mred, we extend this solution to the other variables by substitution in the equations

corresponding to the remaining rows. This extension process will also apply in the non-

linear case.

Table 2.1 summarizes the conceptual steps in this solution to a linear system of

equations and the corresponding ideas of the non-linear case that will be developed in

Sections 2.2 through 2.4.

2.2 Monomial orders

We will now develop the concept of monomial order, which will ultimately allow

the elimination of variables and the computation of a non-linear analogue to the row ech-

elon form of the matrix of a linear system of equations, a Gröbner Basis. Our initial def-

15

initions and notation follow (COX; LITTLE; O’SHEA, 2015; COX; LITTLE; O’SHEA,

2005).

LetM be the set of all monomials overR, that is, the set of products xα1
1 x

α2
2 . . . xαnn

for αi ∈ Z≥0. Clearly, there is a bijection between M and Zn≥0 given by the expo-

nents of the monomials. We will denote this bijective function by log. In the follow-

ing, we will use this bijection to define a monomial order. For simplicity, we denote

α = (α1, α2, . . . , αn) ∈ Zn≥0 and xα = xα1
1 x

α2
2 . . . xαnn , so log xα = α.

Definition 1. An order < over Zn≥0 is a monomial order if it satisfies the following con-

ditions:

1. < is a total order;

2. For any γ ∈ Zn≥0, if α < β then α + γ < β + γ;

3. < is a well-ordering, that is, any subset S ⊂ Zn≥0 has a minimum.

Condition 2 in the above definition corresponds to the restriction that a monomial

order should be preserved by monomial multiplication, that is, if xα < xβ and xγ is any

monomial, it must be true that xαxγ < xβxγ while, whenever condition 2 holds, condition

3 is equivalent to specifying that α > 0 for any α 6= 0 in Zn≥0 or, in terms of monomials,

xα ≥ 1 for any α.

Notation: Let < be a monomial order, and f ∈ R a polynomial. We denote

Supp(f) the support of f , that is, the set of monomials appearing in f , LM(f) the leading

monomial of f , the largest monomial with respect to < appearing in f , and LC(f) the

leading coefficient of f , that is, the coefficient of LM(f) in f . Also, we define the leading

term LT (f) = LC(f)LM(f). Finally, for G ⊆ R, let 〈LT (G)〉 be the ideal generated by

{LT (g) | g ∈ G}.

We denote |α| =
∑n

i=1 αi the degree of a monomial, and deg f the degree of a

polynomial f , defined as the maximum of the degrees of its monomials. A monomial

order < is graded if xα < xβ when |α| < |β|. We now define two usual monomial orders.

Example 2 (Lexicographical order). The lexicographical order, denoted<lex, is the order

where xα > xβ if and only if the leftmost nonzero entry of α− β is positive.

lex is not a graded order. In k[x1, x2], for example, x1 > x52. It is often the order

used to eliminate variables in a polynomial system.

Example 3 (Degree reverse lexicographical order). The degree reverse lexicographical

order, or <grevlex, is defined by: xα > xβ if |α| > |β| or |α| = |β| and the rightmost

nonzero entry of α− β is negative. It is a graded order.

16

In grevlex, taking R = k[x1, x2], x52 > x1 by the degree criterion and x1x22 <

x21x2 by the tiebreaker criterion. This order is often used to speed up Gröbner Basis

computations (see Sections 2.3, 2.7 and 2.8).

More generally, one can define a monomial order from a s×nmatrixM (for some

s ∈ Z≥0) with real entries by setting xα >M xβ when Mα >lex Mβ, as long as kerM ∩

Zn = 0 and the the first nonzero entry of every column of M is positive. The following

matrices Mlex and Mgrevlex correspond to the lex and grevlex orders, respectively.

Mlex =

1 0 0

0 1 0

0 0 1

 ,Mgrevlex =

1 1 1

1 1 0

1 0 0

Graded orders are exactly those with the same weight for every variable in the first row.

It is often useful to define a monomial order with respect to a weight vector w ∈

Rn, instead of a full matrix. However, this does not define an order completely, as ties

may happen. A solution to this issue is to break ties using another monomial order, such

as grevlex. We denote such an order by <w,grevlex.

In fact, Robbiano proved in (ROBBIANO, 1985) that every monomial order arises

as a matrix with entries in R. For v ∈ Rn, define d(v) as the dimension of the Q-subspace

of R spanned by the coordinates of v and let A(di) be the quotient set B(di)/∼, where

B(di) is the set of vectors v in Rn with d(v) = di and ∼ is the equivalence relation

given by v ∼ v′ when there exists a nonzero λ ∈ R with v = λv′. Then, the following

classification theorem holds.

Theorem 4. The monomial orders < on R are classified by:

• The type of <, an integer s such that 1 ≤ s ≤ n;

• The partition type of <, that is, a partition
∑s

i=1 di = n;

• Vectors w1, w2, . . . , ws with wi ∈ A(di) such that

1. for i ∈ [s], if Gi−1 is the Q-subspace of Qn of the vectors orthogonal to

w1, . . . , wi−1, with G0 = Qn, then wi ∈ (Gi−1 ⊗Q R).

2. for every v ∈ Zn≥0\{0}, the first nonzero coordinate of (v ·w1, v ·w2, . . . , v ·ws)

is positive.

The vectors w1, . . . , ws of this theorem give the rows of the matrix M defining the

matrix order<M . Condition 2 in the classification theorem is clearly necessary, otherwise

17

one could have elements α ∈ Zn≥0 with α <M 0, contradicting the definition of a mono-

mial order. The orthogonality imposed by condition 1 guarantees that kerM = 0. Note,

however, that the classification theorem does not imply that every matrix M defining a

monomial order has to be orthogonal, merely that the same order could be defined by an

orthogonal matrix (see Proposition 9). The following examples show the influence of the

type and the partition type of a monomial order.

Example 5. There is a single monomial order over R = k[x], namely, the order where

xi < xj whenever i < j. To see this, note that the only partition of 1 is d1 = 1, so any

monomial order over R has type 1. Moreover, #A(1) = 1, as every element of R \ {0} is

equivalent with respect to ∼.

Example 6. Let w = (1,
√

2) ∈ R2. Then d(w) = 2, because 1 and
√

2 are linearly

independent over Q. From the classification theorem, it follows that w completely defines

a monomial order over R = k[x1, x2]. This order has type 1, as only one vector is needed

to define it, and partition type (2).

An ordering of type 1 is also called an archimedean ordering.

Example 7. Let w1 = (π, 1, 5) ∈ R3. Then d(w1) = 2, because π and 1 are linearly

independent over Q but 1 and 5 are not. As d(w1) = 2 is not a partition of n = 3, the vec-

tor w1 does not completely define a monomial order over R = k[x1, x2, x3]. To complete

the definition of a monomial order, we need a vector w2 with d(w2) = 1, completing a

partition of 3. This process of adding another vector will break ties that would occur with

an order defined solely by w1.

For example, if we take v1 = x10y5z and v2 = x10y10 then w1 · v1 = 10π + 10 =

w1 · v2, so a tie happens. If we set w2 = (1, 1, 1), we have d(w1) + d(w2) = n and we

break the above tie by scalar multiplication by w2, so w2 · v1 = π+ 6 < π+ 10 = w2 · v2.

The classification theorem now guarantees there will be no more ties. This order has type

2 and partition type (2, 1).

Remark 8. If we restrict ourselves to rational (or integer) entries in the vectors wi com-

posing the matrix order, then all orders will have type n (that is, n vectors will be needed

to completely define an ordering) and partition type (1, 1, . . . , 1).

Distinct matrices may, however, define the same order. In the following proposi-

tion, we show that matrices that can be row reduced to each other without swapping rows

define the same order. It appears as an exercise (Tutorial 9) in (KREUZER; ROBBIANO,

2000).

18

Proposition 9. Let w1, . . . , ws ∈ Rn be such that M = [w1; . . . ;ws], the matrix with the

wi as its rows, defines a monomial order. Fix i ∈ [s]. Then if w′i = λwi or w′i = wi +λwj ,

for j < i and λ > 0, M ′ = [w1; . . . ;w
′
i; . . . ws] defines the same monomial order as M .

Proof. Let α, β ∈ Zn≥0. To prove the first case, let w′i = λwi for some λ ∈ R. Then

wi · α > wi · β if and only if λ(wi · α) > λ(wi · β) and, by the properties of the inner

product, this is equivalent to w′i · α > w′i · β.

Now suppose w′i = wi + λwj , for λ ∈ R and j < i. If α and β do not tie with

respect to wj , then M ′α >lex M
′β if, and only if, Mα >lex Mβ. If α and β tie when

compared with respect to wj , that is, α · wj = β · wj , then

α · w′i = α · wi + λ(α · wj) > β · wi + λ(β · wj) = β · w′i

exactly when α · wi > β · wi.

2.3 Polynomial reduction and Gröbner Bases

In the linear example of Section 2.1, new polynomials in the ideal I = 〈F〉 were

generated by linear combinations of previous ones in the process of computing a row-

echelon form of the matrix representing the input system. In the non-linear case, as we

allow higher degree polynomials, these linear combinations are replaced by algebraic

combinations of the form

f =
m∑
i=1

aifi

for ai ∈ R. Before approaching the problem of deciding which algebraic combinations

of the input generate useful polynomials (corresponding, in the linear case, to those in the

row-echelon form matrix) we define a multivariate division algorithm, generalizing the

usual univariate polynomial division.

Proposition 10 (Multivariate division algorithm). Let f ∈ R, F = {f1, . . . , fm} and fix

a monomial order <. Then we can write

f =
m∑
i=1

aifi + r

for some ai, r ∈ R with either aifi = 0 or LT (aifi) ≤ LT (f), and no monomial of r

being divisible by any LT (fi).

19

The polynomial r is then called the remainder of the division of f by F or the

normal form of f with respect to F . We will also denote r = f
F

.

Clearly, if r = 0 in the division algorithm, then f ∈ I = 〈F〉. The converse,

however, is false, as it may happen that r is also in I . This suggests it may be useful to

consider a particular basis G of I such that every monomial of 〈LT (I)〉 is in 〈LT (G)〉.

This leads us to the definition of a Gröbner Basis, which will turn out to be our central

object of study.

Definition 11. G = {g1, . . . , gt} is said to be a Gröbner Basis of the ideal I = 〈G〉 (with

respect to a monomial order <) if 〈LT (G)〉 = 〈LT (I)〉.

Alternatively, G is a Gröbner Basis of I if and only if every f ∈ I has normal

form f
G

= 0, which establishes a converse to the statement that f ∈ I if and only if its

remainder in the division algorithm is 0.

Example 12. Let k = F32003 and I = 〈{f, g, h}〉 with

f = z2 + 17983x+ 6683y + 8704z + 6113,

g = 5763xy + 30567yz + 7999z2 + 14968y + 23433z,

h = 477yz + 8393z2 + 26904x+ 9921y + 15994z

over R = k[x, y, z]. A Gröbner Basis of I with respect to the grevlex ordering is

G = {x2 + 8129xz + 19771x+ 10160y + 2070z + 11415,

xy + 27808x+ 3172y + 5036z + 15620,

y2 + 9739xz + 12367x+ 19043y + 26414z + 2658,

yz + 8365x+ 1117y + 20518z + 14346,

z2 + 17983x+ 6683y + 8704z + 6113}

It is possible to show that every ideal over R has a Gröbner Basis. Indeed, algo-

rithms that compute such a basis will be introduced in Section 2.4. Gröbner Bases are

also unique in a certain sense, as will be made clear by the next definition.

Definition 13. A Gröbner Basis G is reduced if

1. LC(g) = 1 for all g ∈ G;

2. No monomial of any g ∈ G is in 〈LT (G \ {g})〉.

20

An ideal over R has a unique reduced Gröbner Basis with respect to any fixed

monomial order <. It can be easily obtained from any Gröbner Basis G by successively

replacing each polynomial g ∈ G by gG\{g} in order of increasing leading terms with

respect to <. This process is sometimes called interreduction.

Example 14. Let k = F2 and define, over R = k[x, y, z], an ideal I generated by the

following polynomials:

{x7y2, x7y2 + z9 + xz, xy5z4 + x2y6}

Then, the reduced Gröbner Basis of I with respect to the grevlex ordering has 26 poly-

nomials with 347 monomials in total, counted with multiplicity. It contains a polynomial

with 40 monomials and a polynomial of degree 19. The leading monomials of the poly-

nomials in the Gröbner Basis are:

{z19, x3y14, x8z9, x4y4z9, y8z9, x5z12, x3y12z, x2y13z, x2y12z2, x12yz3,

x12z4, x11z5, x6z10, x6y9, x5y10, x4y11, x14z, x13yz, x4y10z, x4yz10,

xz13, x8yz4, y2z10, x5y4z, xy5z4, x7y2}

Note that even the reduced Gröbner Basis is much larger than the input ideal, both in

terms of number of polynomials, monomials and in the maximum degree appearing in the

basis.

Different monomial orders have potentially distinct Gröbner Bases that may sat-

isfy various properties. Some of these will be explored in more detail in Section 2.7.

For now, however, we will link the computation of Gröbner Bases to polynomial system

solving through some properties of the lex order.

Suppose I is an ideal and some power of the variable xn, say xsn, is in 〈LT (I)〉,

with s minimal. Let G be the Gröbner Basis of I in <lex. Then there exists g ∈ G with

LM(g) = xsn and, moreover, g ∈ k[xn], because any monomial smaller than xsn in the lex

order cannot contain any other variable. This reasoning can then be repeated to infer that

there are elements of G in k[xi, . . . , xn] for each i ∈ [n] whenever there is g ∈ G with

leading monomial in k[xi, . . . , xn]. Thus, informally, we can say that a lex Gröbner Basis

is a generating set of I with the elimination property we were looking for to be able to

solve polynomial systems. More precisely, we have:

21

Theorem 15 (Elimination theorem). Let I be an ideal, G be a Gröbner Basis of I with

respect to the lex order and Il = I ∩ k[xl+1, . . . , xn]. Then Gl = G∩ k[xl+1, . . . , xn] is a

lex Gröbner Basis of Il.

Let P = (al+1, . . . , an) ∈ kn−l be a partial solution of a system F , that is, a zero

of every polynomial in Il. We define the morphism

φP : k[x1, . . . , xn]→ k[x1, . . . , xl]

f(x1, . . . , xn) 7→ f(x1, . . . , xl, al+1, . . . , an),

the application of P to f .

We denote the set of solutions of F by

V (F) = {(a1, . . . , an) ∈ kn | fi(a1, . . . , an) = 0 ∀i ∈ [m]}.

Suppose that V (F) is finite and k is algebraically closed. Then we can use Gröbner

Bases and the Elimination theorem above as in Algorithm 1 to compute V (F), solving

the multivariate polynomial system problem in this case. The same ideas can be applied

to solve systems over non algebraically closed fields as well with a few adaptations, such

as dealing with the case where a partial solution cannot be extended to more variables.

Input: A polynomial set F with a finite number of solutions
Output: V (F), the set of solutions of F
G := a Gröbner Basis of 〈F〉 with respect to lex
for i := 1, . . . , n do

Vi := ∅
end
for i := n− 1, . . . , 1 do

Gi := G ∩ k[xi+1, . . . , xn]
for (ai+1, . . . , an) ∈ Vi+1 do

Fi := φ(ai+1,...,an)(Gi)
Vi := Vi ∪ {(ai, . . . , an) ∈ kn | g(ai) = 0 ∀g ∈ Fi}

end
end
V (F) := V1

Algorithm 1: Solving multivariate polynomial systems with Gröbner Bases.

22

2.4 Algorithms for computing a Gröbner Basis

In the previous section, we defined Gröbner Bases of an ideal and described some

of their properties. Now, we will briefly present three main families of algorithms for

computing Gröbner Bases: the Buchberger family, introduced in Buchberger’s Thesis

(BUCHBERGER, 2006), the F4 family of matrix-based algorithms (FAUGÈRE, 1999)

and the signature-based family based on F5 (FAUGÈRE, 2002).

2.4.1 Buchberger’s algorithm

Intuitively, to obtain a Gröbner Basis of I = 〈F〉 from F , we will need to generate

polynomials with new leading terms that are not multiples of previous ones. The main

tool to achieve this is the S-polynomial.

Definition 16. The S-polynomial of f, g ∈ R, denoted by S(f, g) is defined by

S(f, g) =
λ

LT (f)
f − λ

LT (g)
g

where λ = lcm(LM(f), LM(g)).

Note that if f, g ∈ I then S(f, g) ∈ I . Also, the following theorem relates S-

polynomials to Gröbner Bases.

Theorem 17 (Buchberger’s criterion). G = {g1, . . . , gt} ⊂ R is a Gröbner Basis of

I = 〈G〉 if and only if S(gi, gj)
G

= 0 for all i, j ∈ [t].

This theorem gives a criterion for the termination of a Gröbner Basis algorithm. In

fact, by the division algorithm, S(f, g)
G

for G a finite subset of R and f, g ∈ G is either

0 or has a leading term not in 〈LT (G)〉. This gives Algorithm 2, known as Buchberger’s

algorithm. Subalgorithm choose takes an element from the set P according to some

criteria, for example, choosing the minimal element with respect to the given monomial

order.

Various implementation questions arise when trying to program Buchberger’s al-

gorithm, such as how to represent the data structures involved (ROUNE; STILLMAN,

2012), such as the set P (which is usually implemented as a priority queue, and will be

referred to as such in the following), how to choose an element from P (GIOVINI et al.,

1991), how to compute polynomial reductions and how, if possible, to predict that certain

23

Input: F = {f1, . . . , fm} ⊂ R, < a monomial order over R
Output: G, a Gröbner Basis of I = 〈F 〉 with respect to <
G := ∅
P := F
while P 6= ∅ do

f := choose(P)
P := P \ {f}
if fG 6= 0 then

P := P ∪ {S(f
G
, g) | g ∈ G)}

G := G ∪ {fG}
end

end
Algorithm 2: Buchberger’s algorithm

S-polynomials will reduce to zero in order to simply remove them without the compu-

tational cost of a reduction (GEBAUER; MÖLLER, 1988). All of these factors have a

significant impact on the practical performance of the algorithm.

2.4.2 Faster reduction with matrices: F4

Even with a good implementation of Buchberger’s algorithm, two bottlenecks may

appear in the performance of the computation of a Gröbner Basis: the polynomial reduc-

tion itself and the amount of polynomials reduced to zero, which waste computational

time. The F4 family of algorithms was created to address the former problem by reducing

multiple polynomials simultaneously in a structured matrix and, at the same time, profit

from well studied sparse linear algebra.

It is possible to represent a set of polynomials as a matrix by seeing them as linear

combinations over k of their monomials, as shown in the following example.

Example 18. If R = Q[x, y, z] and F = {f1, f2, f3} with f1 = xyz + 2x + 3, f2 =

x3 + 5xy + 7xz, f3 = y2 + 10x− 2z in the grevlex order, we can build the matrix

x3 xyz xy y2 xz x z 1

f1 0 1 0 0 0 2 0 3

f2 1 0 5 0 7 0 0 0

f3 0 0 0 1 0 10 −2 0

by taking the monomials of f1, f2, f3, in grevlex order, as the columns, and each polyno-

24

mial in F as a row. Note that, in many applications, the polynomials will not have many

monomials in common, so often the generated matrices will be sparse.

It can also be shown that

Proposition 19. For I = 〈f1, . . . , fm〉 homogeneous, every element of degree d in I for

any d ∈ Z is a linear combination of some xαfi, with |α|+ deg(fi) = d.

Proof. See (COX; LITTLE; O’SHEA, 2015), Chapter 10, §1, Lemma 7.

This result suggests that there is a choice of polynomials of the form xαfi such

that every polynomial of the given degree in I , including S-polynomials, is generated

as a linear combination. This is one of the key ideas linking Buchberger’s algorithm to a

matrix-based reduction step, as it can also be shown that the leading monomials appearing

in the row reduction of a suitable matrix include all leading monomials of the target degree

in the ideal.

Algorithm 3 shows a high-level view of F4, based on (COX; LITTLE; O’SHEA,

2015). The set P represents, as before, the S-polynomials, but represented as pairs of

indices (i, j). We can see that the overall structure of the algorithm is similar to Buch-

berger’s, the main difference being in the reduction step, based on the construction and

row reduction of a matrix. For simplicity, suppose the input system F is homogeneous

and that the choice strategy implemented by the chooseSubset algorithm is taking all

elements of P of minimal degree (this is often called the normal strategy).

Then, the procedure makeMatrix constructs a matrix as previously described

from the polynomials lcm(gi,gj)

LT (gi)
gi for gi, gj ∈ G, that is, the components of S-polynomials,

as well as some other polynomials in order to guarantee a similar condition to that of

Proposition 19. Then, polynomials obtained from row reduction of M that add new infor-

mation about a Gröbner Basis, which are those with new leading monomials with respect

to M , are added to the basis and further considered to build the matrices of subsequent

iterations.

Note that the F4 algorithm, as presented in Algorithm 3 also works for non-

homogeneous ideals. However, the construction of the matrices is not as simple and some

phenomena that never happen in the homogeneous case may occur. For example, when

applying the normal strategy in the homogeneous case as above, we proceed degree by

degree — once polynomials of degree d′ > d are processed, it is guaranteed that no more

polynomials of degree d will be added to the Gröbner Basis. This is not true when the

25

Input: F = {f1, . . . , fm} ⊂ R, < a monomial order over R
Output: G, a Gröbner Basis of I = 〈F 〉 with respect to <
G := F
P := {(i, j) | 1 ≤ i < j ≤ m}
while P 6= ∅ do

P ′ := chooseSubset(P)
P := P \ P ′
M := makeMatrix(P ′)
N := rowEchelonForm(M)
for f ∈ rows(N) do

if LM(f) 6∈ 〈LM(rows(M))〉 then
G := G ∪ {f}
m := m+ 1
P := P ∪ {(i,m) | 1 ≤ i ≤ m− 1}

end
end

end
Algorithm 3: F4 algorithm.

input generators are not homogeneous, as the elimination of leading monomials may gen-

erate new polynomials with leading monomials of lower degrees. This is called a degree

fall and is sometimes used as a measure of complexity.

2.4.3 Avoiding reductions to zero using signatures: F5

Buchberger’s algorithm often generates S-polynomials that are eventually reduced

to zero. Various criteria can be added to the algorithm to predict and avoid zero reduc-

tions, but their coverage is usually not complete. Signature-based algorithms, originated

from F5 (FAUGÈRE, 2002), use additional algebraic structure of the input system to

eliminate useless S-polynomials and have the advantage of guaranteeing no reductions to

zero if the input system is regular (see example 36 for a definition). More recently, the

survey (EDER; FAUGÈRE, 2017) unified the algorithms of this signature-based family

in a single framework with various input parameters that can be seen as instantiations of

the algorithms. In this subsection, we will present the main ideas of the signature-based

family of algorithms based on this survey.

Fix I = 〈F〉 with F = {f1, . . . , fm}. Let Rm be the rank m free module over R

26

with the standard basis {ei | 1 ≤ i ≤ m}, and equip it with a module homomorphism

π : Rm → I
m∑
i=1

giei 7→
m∑
i=1

gifi

so that elements ofRm can be associated to formal algebraic combinations of the elements

of F . Elements ofRm will be written in bold. In signature-based algorithms, we will use

such formal combinations to keep track of the way intermediate polynomials occurring

in the computations are written in terms of the input system and to predict reductions to

zero.

A module monomial is an element ofRm of the form xαei where xα is a monomial

of R. A module monomial order is a total order over the monomials of Rm that is a well

ordering and respects multiplication by elements ofR— if T1,T2 are module monomials

with T1 < T2, then xαT1 < xαT2 for any α ∈ Zn≥0.

Example 20. We define the position-over-term order <pot over Rm by xαei >pot x
βej if

and only if i < j or i = j and xα > xβ over R. It is a module monomial order.

Instead of storing the entire representation of a module element of Rm to track the

origin of polynomials in the execution of the algorithm, F5-based algorithms store a single

module monomial associated to each polynomial. This reduces memory consumption

and, as we will see, is enough to predict many reductions to zero. These stored module

monomials are called signatures.

Definition 21. The signature of f ∈ Rm, denoted s(f), is the leading monomial of f with

respect to a fixed module monomial order <m.

We may also refer to the signature of a polynomial f ∈ I . In this case, a signature

of f , denoted s(f), is the signature of some f ∈ Rm such that π(f) = f .

The concepts of Gröbner Basis and S-polynomials can be generalized to the signa-

ture case. The S-polynomials of free module elements are then called S-pairs and denoted

spair(f ,g) for f ,g ∈ Rm. An analogue of Buchberger’s criterion is also available for S-

pairs. One can also define signature reduction steps (called s-reductions) analogue to the

multivariate polynomial division of Section 2.3. These can be required, for example, to

keep signatures unchanged, but eliminate lead terms. These reductions allow us to define

signature Gröbner Bases.

27

Input: F = {f1, . . . , fm} ⊂ R, < a monomial order over R, <m a module
monomial order over Rm

Output: G, a Gröbner Basis of I = 〈F 〉 with respect to <
G := ∅
H := {fiej − fjei | 1 ≤ i ≤ m}
P := {ei | 1 ≤ i ≤ m}
while P 6= ∅ do

f := min<m P
P := P \ {f}
if not Rewritable(f , G ∪H) then

if fG = 0 then
H := H ∪ {fG}

else
G := G ∪ {fG}
P := {spair(fG,g) | g ∈ G}

end
end

end
Algorithm 4: F5 algorithm.

Definition 22. A finite subset G ⊂ Rm is a signature Gröbner Basis of I with respect to

a module monomial order <m (and a monomial order < over R) if every element f ∈ Rm

s-reduces to zero by G.

The following proposition allows the computation of a Gröbner Basis from a sig-

nature Gröbner Basis.

Proposition 23. If G is a signature Gröbner Basis of I then π(G) = {π(g) | g ∈ G} is a

Gröbner Basis of I .

Algorithm 4, based on the RB framework of (EDER; FAUGÈRE, 2017), can be

seen as a generalization of Buchberger’s algorithm to the free modules Rm. In actual

implementations, it is usual to not store the full module elements, only pairs s(f), f for

a polynomial f . The Rewritable function implements rewriting criteria as defined in

(EDER; FAUGÈRE, 2017), detecting useless S-pairs to avoid reductions. The main idea

is that only a single polynomial with each signature has to be reduced, as long as S-

pairs are treated in signature-increasing order. So S-pairs with repeated signatures can

be discarded. This is sometimes called the signature criterion. The Rewritable function

can also implement the syzygy criterion, that discards S-pairs with signatures that are

multiples of previously reduced to zero signatures. These are stored in the set of known

syzygies (reductions to zero),H . These two criteria are unified by the Rewrite Bases (RB)

28

framework described in the survey (EDER; FAUGÈRE, 2017).

The F4 and F5 families are not disjoint, and there are algorithms that both use

signatures to avoid useless computations and do F4-style matrix reductions (see (EDER;

FAUGÈRE, 2017), §13 for an overview).

2.5 The Syzygy module of a monomial ideal and useless S-polynomial elimination

Throughout this section, we let I = 〈t1, . . . , tm〉 be a monomial ideal. In the

context of Gröbner Basis computations, we take the ti as the leading monomials (with

respect to a fixed monomial order) of a partial Gröbner Basis G occurring during the

execution of Buchberger’s algorithm.

The syzygy module of I is defined as

Syz(I) =

{
(f1, . . . , fm) ∈ Rm |

m∑
i=0

fiti = 0

}
.

We also define the syzygies

Sij =
lcm(ti, tj)

ti
ei −

lcm(ti, tj)

tj
ej

where ei is the i-th element of the canonical basis of Rm. These syzygies correspond

to the S-polynomials appearing in the computation of Gröbner Bases (in fact, the S in

S-polynomial stands for syzygy). It can be shown that the syzygies Sij generate Syz(I),

although they are possibly not a minimal set of generators. This fact was implicit in the

discussion of Buchberger’s algorithm in the previous Section. In the remainder of this

Section, we will present techniques to compute smaller or, in some cases, minimal, sets

of generators of Syz(I). This is equivalent to eliminating most useless S-polynomials in

Buchberger’s algorithm.

2.5.1 Buchberger’s criteria and the Gebauer-Möller algorithm

Buchberger introduced two criteria for eliminating useless S-polynomials in Gröb-

ner Basis computations (BUCHBERGER, 1985). This is equivalent to eliminating redun-

dant generators of the module of syzygies Syz(I), and our presentation of these criteria

will be based on eliminating these redundant generators. The criteria are the following:

29

Proposition 24 (LCM Criterion). Suppose S ⊆ {Sij | 1 ≤ i < j ≤ m} generates

Syz(I). If there are distinct i, j, k with tk dividing lcm(ti, tj) and Sik, Sjk ∈ S, then

S \ {Sij} also generates Syz(I).

Proposition 25 (GCD Criterion). Suppose S ⊆ {Sij | 1 ≤ i < j ≤ m} generates

Syz(I). If ti and tj are coprime then S \ {Sij} also generates Syz(I).

In (BUCHBERGER, 1985), whenever an S-polynomial is chosen to be reduced, it

is checked with respect to the two criteria above and may be discarded, without need for

further processing. They do not guarantee to discard all useless S-polynomials.

(GEBAUER; MÖLLER, 1988) proposed an algorithm to update the queue P (see

Algorithm 2) of S-polynomials based on Buchberger’s criteria, reducing its size, instead

of waiting to eliminate useless elements right before they are processed. It is shown in

Algorithm 5.

Input: A generating set S of Syz(I), a monomial tm+1

Output: A “small” generating set of Syz(I + 〈tm+1〉)
Eliminate from S all Sij such that tm+1| lcm(ti, tj) and
lcm(tm+1, ti) 6= lcm(ti, tj) 6= lcm(tm+1, tj)
S ′ = {Si(m+1) | 1 ≤ i ≤ m}
Eliminate from S ′ all Si(m+1) such that there is j with lcm(tj, tm+1) a proper
divisor of lcm(ti, tm+1)

For every l = lcm(tj, tm+1) keep only one element Si(m+1) in S ′ with
lcm(ti, tm+1) = l

Eliminate from S ′ all Si(m+1) such that ti and tm+1 are coprime
Return S ∪ S ′

Algorithm 5: The Gebauer-Möller update algorithm

The idea is updating the priority queue in Buchberger’s algorithm when a new

polynomial gm+1 with leading monomial tm+1 is being inserted. This update algorithm is

used in various implementations of Buchberger’s algorithm, for example, (CABOARA;

PERRY, 2014; PERRY, 2017). It is also not guaranteed to return a minimal generating set

of Syz(I), although it has been experimentally shown that the queue is much smaller in

practice than applying Buchberger’s criteria (GEBAUER; MÖLLER, 1988) and that the

number of generators of the module of syzygies is often close to minimal (CABOARA;

KREUZER; ROBBIANO, 2004).

30

2.5.2 Graph-based criteria

In addition to Buchberger’s criteria and the Gebauer-Möller update algorithm,

which are used in most serious implementations of Buchberger’s algorithm, there are

also graph-based characterizations of useless S-polynomials.

Definition 26. (MILLER; STURMFELS, 2004) The Buchberger graph Buch(I) is the

graph with vertices t1, . . . , tm and an edge (ti, tj) if there is no tk that divides lcm(ti, tj)

and has smaller degree than lcm(ti, tj) in every variable appearing in it.

Remark 27. The Buchberger graph is not invariant with respect to the choice of generators

of I . To obtain a uniquely defined graph Buch(I) one must take t1, ..., tm to be the

minimal generators of I . Whenever we refer to Buch(I), we mean the graph defined by

the minimal generators in this way.

It turns out that the edges of Buch(I) generate Syz(I). In order to prove that we

will now prove the following lemma.

Lemma 28. Let tx, ty be fixed monomials. For any i1, . . . , il, il+1 ∈ [m] with i1 = il+1

and tij dividing lcm(tx, ty) for all j ∈ [l],

l∑
j=1

lcm(tx, ty)

lcm(tij , tij+1
)
Sijij+1

= 0

Proof. First, note that the above expression makes sense in Syz(I), as tij dividing lcm(tx, ty)

implies that the least common multiples in the denominators do as well.

Now,

l∑
j=1

lcm(tx, ty)

lcm(tij , tij+1
)
Sijij+1

=
l∑

j=1

(
lcm(tx, ty)

tij
eij −

lcm(tx, ty)

tij+1

eij+1

)

=
lcm(tx, ty)

ti1
ei1 −

lcm(tx, ty)

til+1

eil+1
+

l∑
j=2

(
lcm(tx, ty)

tij
eij −

lcm(tx, ty)

tij
eij

)
= 0

Proposition 29. The set S consisting of the Sij such that (ti, tj) is an edge of Buch(I)

generates Syz(I).

Proof. Let i, j be such that (ti, tj) is not an edge inBuch(I). Then there exists tk dividing

lcm(ti, tj) with smaller degree than lcm(ti, tj) in every variable appearing in it. Applying

31

Lemma 28 to x = i, y = j, i1 = i, i2 = j, i3 = k, i4 = i we have

lcm(ti, tj)

lcm(ti, tj)
Sij +

lcm(ti, tj)

lcm(tj, tk)
Sjk +

lcm(ti, tj)

lcm(tk, ti)
Ski = 0

=⇒ Sij = − lcm(ti, tj)

lcm(tj, tk)
Sjk −

lcm(ti, tj)

lcm(tk, ti)
Ski.

Moreover, lcm(ti, tk) 6= lcm(ti, tj) and lcm(tj, tk) 6= lcm(ti, tj) because tk has smaller

degree than lcm(ti, tj) in every variable appearing in it. That means Sij can be written in

terms of lower degree syzygies and is thus unnecessary to generate Syz(I).

Care must be taken in applying this criterion to eliminate useless S-polynomials

in Gröbner Basis computations, as the following example shows.

Example 30. Let f = x2 + xy, g = x3 + y, h = x3 + z ∈ k[x, y, z] and choose the

grevlex ordering in what follows. We will compute a Gröbner Basis of I = 〈G〉, for

G = {f, g, h} using Buchberger’s algorithm and applying the Buchberger graph criterion

naively to eliminate S-polynomials. Immediately, from the graph criterion, we can elimi-

nate Sgh as LM(f) strictly divides lcm(LM(g), LM(h)) in every variable. Carrying out

computations, we see that

f1 = Sfh
G

= −xy2 − y

should be added to G and, similarly,

f2 = Sgh
G

= y − z

should also be added to G, so that

G = {x2 + xy, x3 + y, x3 + z,−xy2 − y, y − z}.

Now, all Spf1 are eliminated by the graph criterion for any p ∈ G, as LM(f2) di-

vides lcm(LM(p), LM(f1)), as are Sgf2 and Shf2 , with LM(f) as divisor. The only

S-polynomial remaining is then Sff2 , but it reduces to zero immediately (this can also be

seen from the GCD criterion). So G should be a Gröbner Basis — but it is not, as, for

example,

Shf2
G

= −xz3 − z2 6= 0.

The problem here is that some leading monomials are multiples of one another, and

the correspondence between minimal generating sets of Syz(I) and minimal sets of S-

32

polynomials breaks in this case. To solve this problem, one has to interreduce the poly-

nomials in the input and in the course of the Gröbner Basis computations.

According to (ROUNE; STILLMAN, 2012), Bayer developed an unpublished

characterization of a minimal set of generators of Syz(I). This approach has been im-

plemented in (ROUNE; STILLMAN, 2012) to eliminate S-polynomials right before their

reduction, instead of when they are built, due to its relatively high overhead. Postponing

the criterion’s application in this way may cause a useless S-polynomial to be eliminated

by other, lighter criteria before, thus reducing the number of calls to Bayer’s graph crite-

rion.

Proposition 31 (Bayer’s criterion). Let t be a monomial and

Vt = {ti | ti divides t, 1 ≤ i ≤ m}

Et = {(ti, tj) | lcm(ti, tj) 6= t or Sij has been eliminated}.

Then Sij may be eliminated from a generating set S of Syz(I) if there is a path between

ti and tj in Gt = (Vt, Et) with t = lcm(ti, tj).

Furthermore, applying this criterion for all pairs ti, tj gives a minimal generating

set of Syz(I).

2.6 Hilbert Function, Hilbert Series and Betti Numbers

Counting the monomials of a certain degree d in 〈LT (I)〉 for some ideal I and

the minimal number of generators of Syz(I) are relevant combinatorial questions to the

design and complexity analysis of Gröbner Basis algorithms. In order to approach these

problems, in this section we will study the graded structure of the polynomial ring R.

First, we write R as a graded module

R =
⊕
d≥0

Rd

where each Rd is the k-vector space of homogeneous polynomials of R of degree d. The

set of monomials of degree d in R is a basis for Rd so that it is finite dimensional and,

more precisely,

dimk Rd =

(
d+ n− 1

d

)
.

33

Define also the D-th graded twist of R as the graded module

R(D) =
⊕
d≥0

RD+d

which is essentially R as a module over itself, but with a degree −D generator. Suppose

that I is a monomial ideal. As Syz(I) is finitely generated, we can write

Syz(I) =
⊕
d≥0

R(−d)β1,d

for some β1,d ∈ N, almost all 0. They are called the (first) Betti numbers of I , and they

count the minimal number of generators of degree d of Syz(I). When we say the Betti

number of I , we mean the number

β1 =
∞∑
d=0

β1,d.

Now, let I be an homogeneous ideal of R (but not necessarily a monomial ideal)

and Id = I ∩ Rd be the k-vector space of homogeneous polynomials in I of degree d.

We denote by S the k-algebra S = R/I (a k-algebra is simply a ring that is also k-vector

space). S has a graded structure inherited from R, that is, we can write

S =
⊕
d≥0

Sd =
⊕
d≥0

Rd

Id

where Sd is the subspace of S of elements of degree d.

The link between these k-algebras and the question of counting the number of

monomials of each degree in 〈LT (I)〉 is given by the following proposition.

Proposition 32. The image of B = {xα ∈ R | xα 6∈ 〈LT (I)〉} by the quotient map

defining S is a basis of S.

Proof. To prove linear independence, suppose there is a finite subset B′ ⊆ B such that

f =
∑

xα∈B′ cαx
α = 0 in S with scalars cα ∈ k not all zero. Then f ∈ I . In particular,

LT (f) ∈ 〈LT (I)〉, contradicting the definition of B.

Now, let g ∈ R and write g =
∑

α cαx
α. The quotient map π : R → S is linear,

and so π(g) =
∑

α cαπ(xα). So the xα ∈ 〈LT (I)〉 are taken to 0 in S and it follows that

the nonzero monomials of π(g) are exactly those not in 〈LT (I)〉. Thus B is a generating

set of S.

34

This result motivates the following definitions.

Definition 33. The Hilbert Function of an homogeneous ideal I , denoted by HFI is

HFI(d) = dimk Sd = dimk Rd − dimk Id

and the Hilbert Series of I is the generating series of the Hilbert Function, that is,

HSI(t) =
∑
d≥0

HFI(d)td.

It is immediate from the definition that HFI(d) ≤
(
d+n−1

d

)
. In fact, better bounds

for specific ideals can be easily obtained. The following theorem and its corollary show

such a bound and can be applied to compute the Hilbert Series of an ideal from one of its

Gröbner Bases. Note that these results hold regardless of the choice of monomial order.

Theorem 34. HSI(t) = HS〈LT (I)〉(t).

Proof. We have to show that dimk〈LT (I)〉d = dimk Id for any d. The set L = {LM(f) |

f ∈ Id} is finite, so we can take B = {f1, . . . , fs} with LM(B) = L. We suppose,

without loss of generality, that LM(fi) > LM(fj) for i < j. We start by showing B is a

basis of Id.

If
∑s

i=1 cifi = 0 for ci ∈ k not all zero, we can take the minimal i such that

ci 6= 0. Then LM(fi) > LM(fj) > m for any j > i and any monomial m of any fj . So

LM(fi) cannot be canceled in this sum, a contradiction, and it follows that B is linearly

independent.

Let g0 ∈ Id. Then LM(g0) = LM(fi1) for some i1, and we can write g1 =

g0 − c1fi1 ∈ Id for some c1 cancelling LM(g0), so that LM(g1) < LM(g0). Repeating

this construction, we obtain a sequence LM(g0) > LM(g1) > . . . such that LM(gm) = 0

for some m from the well-ordering property of the monomial order. So

g0 −
m∑
j=1

cjfij = 0

and B spans Id.

To finish the proof, we show that LM(B) is a basis of 〈LT (I)〉d. Clearly, any

LM(fi) ∈ 〈LT (I)〉d, and the linear independence of LM(B) comes from the fact that its

monomials are all distinct. Also, LM(B) spans 〈LT (I)〉d. To see this, just take f ∈ I

with degLM(f) = d and note that, because I is homogeneous, f(d), the homogeneous

35

part of f of degree d, is in I . It follows that f(d) ∈ Id and LM(f) = LM(f(d)) ∈

LM(B).

Corollary 35. Let G be a finite subset of I . Then HFI(d) ≤ HF〈LT (G)〉(d), with equality

for all d exactly when G is a Gröbner Basis of I .

Proof. To prove the inequality, just note that 〈LT (G)〉 ⊆ 〈LT (I)〉. The equality follows

from the definition of Gröbner Bases.

As a first example of an application of Hilbert series, the following example shows

how they can be used to characterize a class of polynomial systems.

Example 36 (Regular sequences). The notion of a randomly generated, or generic, system

is often useful for the complexity analysis of Gröbner Basis algorithms. A certain class

of systems, called regular sequences (see, for example, (BARDET, 2004)) is conjectured

to be generic in this sense. We can define these systems using Hilbert Series. Let F =

{f1, . . . , fm} homogeneous with di = deg fi. Then F is regular if

HS〈F〉(t) =

∏m
i=1(1− tdi)
(1− t)n

.

Note that when n = m and none of the fi is constant, this series is necessarily a polyno-

mial, as (1− t) appears at least once per fi in the factorization of the numerator.

Theorem 37. The Hilbert Series of I can be written as

HSI(t) =
HNI(t)

(1− t)n

for some HNI(t) ∈ Z[t]. We will call HNI the Hilbert numerator of I .

Proof. See (COX; LITTLE; O’SHEA, 2015), Chapter 10, §2, Theorem 4.

These results generalize to non-homogeneous ideals with few changes. In this

case, one works instead with R≤d =
⊕

0≤i≤dRi and similarly defined I≤d and S≤d. The

affine Hilbert Function is then given by aHFI(d) = dimk S≤d and the previous theorems

hold, except that Theorem 34 requires a graded monomial order. The following result

relates the homogeneous and affine cases.

Theorem 38. Let I be an ideal and Ih be its homogenization with respect to a variable

h. Then
aHFI(d) = HFIh(d)

36

Proof. See (COX; LITTLE; O’SHEA, 2015), Chapter 9, §3, Theorem 12.

Finally, one can also show that the Hilbert Function is essentially a polynomial, in

the sense of the proposition below.

Proposition 39. Let I be an homogeneous ideal. For sufficiently large t, its Hilbert Func-

tion is

HFI(t) =
s∑
i=0

bi

(
t

s− i

)
for some bi ∈ Z and the polynomial on the right-hand side is called the Hilbert Polyno-

mial of I , denoted HPI .

The same result holds for affine ideals, and thus the Hilbert Polynomial may be

similarly defined in the general case. The smallest t0 such that HFI(t) = HPI(t) for all

t ≥ t0 is called the index of regularity of I , denoted ireg(I). It can be used to measure the

complexity of Gröbner Basis computations over I , as (LAZARD, 1983) has shown that

it is an upper bound for the degree of Gröbner Basis polynomials of regular systems for

the grevlex order after a generic change of variables. The index of regularity is also an

invariant of I , that is, it is independent from the particular set of generators of I or the

algorithm used to compute its Gröbner Basis. For more details on complexity, see Section

2.8. There, we will need the following result, obtained by Macaulay (MACAULAY,

1902).

Proposition 40 (Macaulay’s bound). Let I be an ideal generated by F = {f1, . . . , fm}

with deg fi = di for all i ∈ [m]. Then

ireg(I) ≤ 1 +
m∑
i=1

(di − 1).

2.7 Change of ordering

The definition of a Gröbner Basis takes into account the choice of monomial order,

and some results, such as the Elimination Theorem, depend on the properties of specific

orders to hold, such as the lexicographical order. Unfortunately, Gröbner Basis computa-

tions in these orders are not always efficient, partly because other orders may have much

smaller Gröbner Bases, both in terms of number of elements and total number of mono-

mials of the basis. A classic observation (FAUGÈRE et al., 1993) is that the grevlex

37

order is usually much more efficient than lex, but other orders can be much more efficient

for specific instances. Table 2.2 compares basis size and number of monomials in the

basis with respect to the grevlex order to some weight orders based on grevlex, chosen

among 5000 randomly generated orders to minimize the number of arithmetic operations

in the Gröbner Basis computation. Monomials are counted with repetition, that is, if a

monomial appears in multiple polynomials, it is counted multiple times. See Appendix A

for more complete information about the instances.

Table 2.2: Comparison between the size of basis and number of monomials in grevlex
and weight order Gröbner Bases.

Grevlex Weight order

Instance Size Monomials Weights Size Monomials

cyclicnh5 38 538 (6, 0, 3, 3, 2, 4) 10 135
cyclicnh6 99 3502 (7, 3, 5, 5, 5, 5, 5) 28 1207
cyclicnh7 443 79897 (1, 3, 6, 4, 4, 4, 4, 5) 134 25664
jason210 900 290098 (7, 3, 1, 2, 4, 3, 8, 4) 738 3513
hrand2_10 426 59514 (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) 426 59514
katsuran10 272 98498 (8, 8, 4, 8, 10, 11, 11, 8, 9, 7) 244 94521

It is clear, from Table 2.2, that it is possible to obtain improvements in perfor-

mance choosing an adequate weight order instead of grevlex or lex for Gröbner Basis

computations. This potentially requires algorithms for the conversion of Gröbner Bases

between monomial orders, in order to keep the desired properties of, for example, the lex

order for polynomial system solving. Algorithms for change of ordering and the structure

of the Gröbner Bases of an ideal with respect to every monomial order will be the subject

of the remainder of this section.

2.7.1 Change of ordering in dimension zero: FGLM

When the input ideal has dimension zero, that is, the input system has finite solu-

tions, a simpler and more efficient algorithm exists to change ordering of a Gröbner Basis

than in the general case. This is the FGLM algorithm, introduced in (FAUGÈRE et al.,

1993).

We start by recalling that I is a zero-dimensional ideal if and only if the k-algebra

S = R/I is finite dimensional over k (for k algebraically closed), as the dimension of S

essentially counts the number of solutions of the input system, with multiplicities. Each

Gröbner Basis induces a basis B = {xα | xα 6∈ 〈LT (G)〉} of S by Proposition 32, so

38

Input: <s a monomial order, Gs a Gröbner Basis (with respect to <s) of a
zero-dimensional ideal I over R, a target order <t

Output: Gt, a Gröbner Basis of I with respect to <t

Bt := ∅
Gt := ∅
repeat

M := nextMonomial(<t, Gt)

if MGt is linearly dependent on Bt then
Let M

Gt −
∑

xα∈Bt cαx
αGt be a dependence relation

g := M −
∑

xα∈Bt cαx
α

Gt := Gt ∪ {g}
else

Bt := Bt ∪ {M}
end

until Gt is a Gröbner Basis of I
Algorithm 6: FGLM algorithm

a Gröbner Basis conversion algorithm is related to a change of basis of S to an initially

unknown basis. The FGLM algorithm will compute this basis along with a Gröbner Basis

in the target order, using linear algebra over S. Our presentation is based on (COX;

LITTLE; O’SHEA, 2005), Chapter 2, §3.

Let<s be the source monomial order, that is, an order for which we have a Gröbner

Basis Gs, and let <t be the target order, with Gt its Gröbner Basis. Also, denote Bt the

basis of S induced by Gt. Algorithm 6 shows the FGLM algorithm. The idea is to

proceed by processing monomials in increasing order with respect to <t, building Gt

and Bt incrementally. The function nextMonomial returns the next monomial M with

respect to <t that is not a multiple of any LT (g) for g ∈ Gt, in increasing order. Then, if

M
Gt −

∑
xα∈Bt cαx

αGt = 0 is a linear dependence relation, g = M −
∑

xα∈Bt cαx
α ∈ I

and we can add this polynomial to Gt. Note that LM(Gt) = M . If, however, linear

independence happens in line 5,M can be added to the basisBt. The algorithm terminates

when Gt is a Gröbner Basis of I .

One can also formulate FGLM in terms of matrices, as in the original paper. This

formulation allows for further optimizations as it is known that the matrices are usu-

ally sparse, and techniques have been proposed to build them efficiently (FAUGÈRE;

MOU, 2011) and to exploit their sparsity to change the ordering with better complexity

(FAUGÈRE; MOU, 2017).

39

2.7.2 The Gröbner Fan of an ideal

For any given ideal, distinct monomial orders determine, in general, different (re-

duced) Gröbner Bases. We will now describe the set of all reduced Gröbner Bases of an

ideal. Our presentation is based on (COX; LITTLE; O’SHEA, 2005).

Definition 41. A marked Gröbner Basis of I is a reduced Gröbner Basis G of I (with

respect to some ordering) with a distinguished term tg = LT (g) for every g ∈ G.

This definition is independent of specific choices of monomial order and is used to

take into account the fact that I may have G as reduced Gröbner basis for two monomial

orders that choose distinct leading terms on G. It holds that

Proposition 42. The set of marked Gröbner Bases of any ideal I is finite.

Proof. By (COX; LITTLE; O’SHEA, 2005), Chapter 8, §4, Theorem 4.1, the set

Mon(I) = {〈LT>(I)〉 |> is a monomial order}

is finite. We will show there is a bijection

{marked Gröbner Bases of I} ←→Mon(I).

To see this, note that given a marked Gröbner Basis G = {g1, . . . , gt} of I with marked

terms M = {xα(1), . . . , xα(t)} the ideal J = 〈M〉 ∈Mon(I) has minimal basis M , as the

xα(i) cannot divide each other because G is reduced (with respect to some order).

Conversely, any M = {xα(1), . . . , xα(t)} that is a minimal basis of J ∈ Mon(I)

extends to a marked basisG = {g1, . . . , gt}— it suffices to take any gi ∈ I withLT (gi) =

xα(i) with respect to some order defining J and interreducing the gi, as this process does

not affect leading monomials.

Let G = {g1, . . . , gt} be a marked Gröbner Basis of I with xα(i) the associated

leading monomial of gi, for all i ∈ [t]. Then we can write

gi = xα(i) +
∑
β

ci,βx
β

for i ∈ [t]. The Gröbner cone of G is

CG = {w ∈ Rn
+ | w · (α(i)− β) ≥ 0 when ci,β 6= 0}

40

and the collection of cones of I and with their faces (intersections with hyperplanes)

is called the Gröbner fan of I . This concept was introduced in (MORA; ROBBIANO,

1988), which also includes an algorithm to compute a Gröbner fan with better perfor-

mance than a naive search, but that is still impractical for even moderate inputs.

Note that if w is the first row of a matrix order <M and G is the marked Gröbner

Basis with respect to this order, then w ∈ CG so there is a link between the cones and

the weight orders. There is a partial converse to this: any matrix order with first row w

in the interior (not on the boundary) of a cone CG has G as its marked Gröbner Basis.

Also, the Gröbner cones of an ideal partition the positive orthant Rn
+, so the Gröbner fan

essentially classifies the monomial orders into a finite number equivalence classes given

by their marked Gröbner Bases.

Example 43. Let R = F32003[x, y, z]. Define I as an ideal of R generated by homoge-

neous binomials of the form

xα1yβ1zγ1 − xα2yβ2zγ2

of degree 26, that is, α1 + β1 + γ1 = α2 + β2 + γ2 = 26. Also, define J as an ideal of

R with random coefficients in F32003 — J is generic, as in Example 36. Let Gf(I) and

Gf(J) be their respective Gröbner fans. Then Figure 2.1 shows the projection on R2 of

the intersection of each of these Gröbner fans with the plane x+ y + z = 1.

Figure 2.1: Gröbner fans as projections on R2 of their intersections with a plane in R3.

(a) The Gröbner fan of the binomial ideal I . (b) The Gröbner fan of the generic ideal J .

In the images, the upper right corner of the triangle is the intersection with the

x-axis, the upper left with the y-axis and the bottom corner with the z-axis. These cor-

respond to lexicographical monomial orders where the leading variable is respectively

41

x, y and z. The center of the triangle corresponds to a monomial order that can be rep-

resented as a matrix with first row (1, 1, 1), such as grevlex. The color of a region CG

(that is actually a cone of the Gröbner fan) indicates the size of the reduced Gröbner Basis

G with respect to a monomial order in the interior of the cone CG — “hotter” colors,

such as orange, correspond to the smallest bases while “cooler” colors, such as dark blue,

correspond to the largest bases.

One can use the notion of Gröbner fan to develop an algorithm to change the

ordering of an input Gröbner Basis, like FGLM, but without the restriction of zero-

dimensionality of the input ideal. This algorithm is called a Gröbner Walk and was intro-

duced in (COLLART; KALKBRENER; MALL, 1997). The main idea is walking from

the cone defined by the input order <s to the cone containing the target order <t in piece-

wise linear paths, recomputing a Gröbner Basis with respect to intermediate orders every

time the walk passes through another cone or boundary. These recomputations, however,

are expected to be more efficient than a full Gröbner Basis computation, because they can

be obtained from input systems with predictably fewer monomials. For more details on

the Gröbner Walk algorithm, see (COX; LITTLE; O’SHEA, 2005), Chapter 8, §5.

2.8 Known complexity results

There are many known results on the complexity of the computation of Gröbner

Basis, including upper bounds for certain algorithms and some particular families of in-

stances, as well as some general, algorithm-independent results. This section covers some

of the main known results in this topic.

The classic result is that computing the Gröbner Basis of an ideal has doubly

exponential worst-case complexity. This fact is more precisely stated in the following

theorem.

Theorem 44. (MÖLLER; MORA, 1984) Let I = 〈{f1, . . . , fm}〉 be an ideal over R =

k[x1, . . . , xn] with d = max1≤i≤m deg fi and s be the degree of the Hilbert Polynomial of

I . Then the maximum degree D of a polynomial appearing in a Gröbner Basis of I with

respect to the lexicographic order is bounded by

D ≤ ((n+ 1)(d+ 1) + 1)2
s+1(n+1).

This worst case is attained by some ideals. There are, however, good reasons to

42

assume the grevlex order is more efficient than lex for many cases. For example, it is

known that at most m variables may appear in the leading terms of a (partial) reduced

Gröbner Basis with respect to the grevlex order (see, for example, (EISENBUD, 1995),

Chapter 15, §7 for more details, or (BAYER; STILLMAN, 1987) for a complete charac-

terization).

A simple, algorithm-dependent complexity result for the grevlex order can be

obtained by observing that, similarly to the F4 algorithm, one can obtain Gröbner Bases

of homogeneous ideals by row reducing certain large matrices built from the product of

certain monomials by the polynomials of the input ideal basis. By bounding the size and

amount of matrices to be reduced, we obtain the following bound.

Theorem 45. (BARDET; FAUGÈRE; SALVY, 2015) Let I be an homogeneous ideal. The

number of field operations necessary to compute a Gröbner Basis of I with respect to a

graded order up to degree D is bounded by

O

(
mD

(
n+D − 1

D

)ω)
where 2 ≤ ω < 3 is the exponent of the complexity of matrix multiplication.

When the input systems are generic, this result can be combined with the Macaulay

bound on the index of regularity given by Proposition 40 to obtain an upper bound on D.

In fact, many applications where the input systems are not generic tend to have lower

maximum degrees than the Macaulay bound, so it usually also holds for many non-regular

inputs.

If the input ideal is zero-dimensional, one can use the FGLM algorithm, com-

bined with the worst-case complexity of the computation in the grevlex order to show

that a Gröbner Basis with respect to any monomial ordering can be computed in simply

exponential time. More precisely,

Theorem 46. Let I be a zero-dimensional ideal generated by F = {f1, . . . , fm}, with

d = max1≤i≤m deg fi. Then:

1. a Gröbner Basis of I with respect to grevlex can be computed in polynomial time

in dn
2
. If the number of solutions at infinity is also finite (dim Ih = 0) then the

grevlex Gröbner Basis can be computed in polynomial time in dn.

2. FGLM runs in O(nD3), where D is the degree of I , the dimension of the k-

algebra R/I . So a Gröbner Basis of I with respect to any monomial order can be

computed by FGLM in polynomial time in dn
2

or dn, as in the grevlex order above.

43

More optimized variants of the FGLM algorithm are known with improved worst-

case complexity. For example, the Wiedemann-based FGLM introduced in (FAUGÈRE;

MOU, 2017) runs probabilistically in O(D(N1 + n logD2)), where N1 is a sparsity pa-

rameter of the FGLM matrices, and the generic algorithm of (FAUGÈRE; MOU, 2017)

computes a change of ordering of regular systems in O
(√

6
πn
D2+n−1

n

)
.

In (BARDET; FAUGÈRE; SALVY, 2015), a tighter bound is proved for the Ma-

trixF5 algorithm, a simple variant of F5 using matrix-based reduction, but few other opti-

mizations (see, for example, (EDER; FAUGÈRE, 2017) for a description of MatrixF5). In

particular, a formula is obtained to approximate the number of field arithmetic operations

required for the computation of a Gröbner Basis of a regular system is obtained. The

Main Theorem giving the result is the following:

Theorem 47. (BARDET; FAUGÈRE; SALVY, 2015) Let F = {f1, . . . , fm} be a regular

system with δ = max1≤i≤m deg fi, δ ≥ 2, m = n− l for some l ∈ N. Then the number of

field operations of MatrixF5 over F behaves asymptotically as

B(δ)nn

(
A(δ, l) +O

(
1

n

))
, n→∞

where

B(δ) =
(λ0+1

λ0
)2δ − 1

1
λ20
− 1

(λ0+1)2

A(δ, l) =
1− δ−1

2π

(1 + λ−10)3 − 1

(1 + λ0)1+l

and λ0 is the unique positive root in the interval (δ−1
2
, δ − 1) of

(
λ+ 1

λ

)2δ

=
1

1− δ (λ+1)2−λ2
(λ+1)3−λ3

.

Also, δ3 ≤ B(δ) ≤ 3δ3.

In some applications, the practical success of Gröbner Basis computations as a

method for polynomial system solving also has a theoretical explanation based on its

complexity in these specific cases. One particularly interesting case is that of the HFE

systems from cryptography, defined in (PATARIN, 1996), that was successfully attacked

by a variant of F5 in (FAUGÈRE; JOUX, 2003). In (BARDET; FAUGÈRE; SALVY,

2003), it was empirically shown that the index of regularity of HFE systems grows much

more slowly than that of (semi-)regular systems, and so not even the simply exponential

complexity bounds described above are tight.

44

3 DYNAMIC ALGORITHMS FOR GRÖBNER BASES

Classical Gröbner Basis algorithms take a monomial order as input, in addition to

a polynomial system. Usually, in practice, the grevlex ordering is recommended, but, as

we have shown in Table 2.2, this choice is sometimes not advisable in running time or

size of the output basis. However, as we will show, one cannot choose well an ordering

a priori just analyzing the input polynomial system. This has led to the development of

dynamic Gröbner Basis algorithms, that return a monomial order along with a Gröbner

Basis, without requiring an order as input. In this context, classical Gröbner Basis algo-

rithms that require a monomial order as input and return a Gröbner Basis with respect to

that ordering are called static.

Dynamic algorithms are still relatively unexplored and the literature on them is

limited. Below, we briefly state the main contributions of all works that, to our knowledge,

have dealt with this topic.

1. (GRITZMANN; STURMFELS, 1993) introduced the idea of a dynamic Buch-

berger algorithm and the Hilbert heuristic, along with the first (and only) unre-

stricted dynamic algorithm (see Section 3.1).

2. (CABOARA, 1993) presented a restricted dynamic algorithm (see section 3.2) along

with the first computational results of dynamic algorithms.

3. (GOLUBITSKY, 2006) defined the distinction between unrestricted and restricted

algorithms and showed that unrestricted algorithms could obtain smaller bases than

restricted ones.

4. (CABOARA; PERRY, 2014) developed the disjoint cones and boundary vectors

criteria to optimize the restricted algorithm.

5. (HASHEMI; TALAASHRAFI, 2016) first implemented the exact boundary vectors

criterion.

6. (PERRY, 2017) explored alternative heuristics and variants of the restricted algo-

rithm.

In short, dynamic algorithms are based (and compatible with) classical static algo-

rithms such as Buchberger’s algorithm and F4, the main difference being that after each

reduction step, a new monomial order may be chosen to continue the computations. This

choice of new order is done heuristically, and will be detailed later.

In the following, we will present the unrestricted (section 3.1) and restricted (sec-

45

tion 3.2) versions of the dynamic Gröbner Bases algorithms.

3.1 Unrestricted algorithms

A polynomial set G being a Gröbner Basis with respect to some ordering is di-

rectly related to the leading monomials of G chosen by the ordering. In fact, one can

ask what are the equivalence classes of orderings over a polynomial set G, where two

orderings are considered equivalent if they choose the same leading monomials. If one

could compute this set of equivalence classes, it would be possible to evaluate each of

them with respect to some heuristic function and choose the one minimizing the heuristic

as a promising ordering. This is the idea behind the unrestricted dynamic algorithms, that

evaluate all distinguishable orders on a polynomial set at each iteration of the Gröbner

Basis computation. It turns out that this set of equivalence classes has a particular geo-

metrical interpretation as a certain polyhedron in Euclidean space, the Newton polyhedron

of G. We will briefly present the construction of this polyhedron.

Definition 48. The Newton polytope of a polynomial f ∈ R is the convex hull of the

points in Rn determined by the exponents of its monomials. It is denoted by np(f).

Example 49. The Newton polytope of f = xy + x5 + xy3 + x3y ∈ k[x, y] is the convex

hull of the points (1, 1), (5, 0), (1, 3), (3, 1) in R2. It is shown in Figure 3.1a. Note that

each vertex of this convex hull corresponds to a monomial of f , but the converse is false,

as the point (3, 1), corresponding to the monomial x3y, is in the interior of the polytope.

Figure 3.1: Newton polytope and affine Newton polyhedron of f = xy+x5 +xy3 +x3y.

x

y

xy

xy3

x5

x3y

(a) Newton polytope of f .

x

y

xy

xy3

x5
x3y

(b) Newton polyhedron of f .

In order to obtain a polyhedron corresponding to a set of polynomials, we will

need to join together the polytopes of multiple polynomials. The operation that allows

46

this is the Minkowski sum.

Definition 50. The Minkowski sum of two polyhedra P,Q over Rn is the polyhedron

P +Q = {x+ y ∈ Rn | x ∈ P, y ∈ Q}.

Minkowski sums may be computed simply as convex hulls of all possible sums of

vertices of their summands. Other, more efficient algorithms exist, for example (FUKUDA,

2004), although the number of vertices of the result, and thus the complexity of the algo-

rithm, may still be exponential in the dimension of the space.

Definition 51. The affine Newton polyhedron of a polynomial f ∈ R is the Minkowski

sum of its Newton polytope with the negative orthant of Rn, that is,

NP (f) = np(f) + Rn
−.

The relation between Newton polyhedra and monomial orders will be given by the

normal vectors at the vertices of the polyhedra. To make this more precise, we now define

the outward normals of a polyhedron at a point.

Definition 52. Let P be a polyhedron in Rn and x ∈ P . Then w ∈ Rn is an outward

normal (or simply a normal) of P at x if

w · x ≥ w · y ∀y ∈ P.

Example 53. The affine Newton polyhedron of the polynomial of Example 49 is shown

in Figure 3.1b. Note that all of its vertices have normals in the positive orthant of Rn, and

that these vertices form a subset of the vertices of the Newton polytope of Figure 3.1a.

The vertices of the affine Newton polyhedron of a polynomial correspond exactly

to the monomials that can be its leading monomials with respect to some ordering. Any

normal vector to one of its vertices determines the first row of a valid ordering choosing

the corresponding monomial as lead. We now proceed to define the Newton polyhedron

corresponding to a polynomial set, instead of a single polynomial.

Definition 54. Let G ⊂ R be a finite set of polynomials. The affine Newton polyhedron

of G is the Minkowski sum of the polyhedra of its elements, that is,

NP (G) =
∑
g∈G

NP (g) = Rn
− +

∑
g∈G

np(g).

47

The vertices of the affine Newton polyhedron of a polynomial setG are in bijection

with the compatible choices of leading monomials forG. Each vertex v of this Minkowski

sum decomposes uniquely into vertices of its summands, that correspond to the leading

monomials chosen when one picks v from the sum. A weight vector corresponding to an

ordering making this choice of leading monomials can be computed as a normal vector

to v in the affine Newton polyhedron. With this, we have the unrestricted dynamic al-

gorithm, as introduced by (GRITZMANN; STURMFELS, 1993), in Algorithm 7. It can

be called from Buchberger’s algorithm every time a new polynomial is added to a partial

Gröbner Basis G. Note, however, that whenever the leading monomials of polynomials

in G change, the queue of remaining S-polynomials has to be rebuilt, as S-polynomials

that were previously considered useless may not reduce to zero in the new ordering.

Input: G = {g1, . . . , gm} ⊂ R, a heuristic function H
Output: A monomial ordering w over G
Compute the set V of vertices of NP (G)
vmin = minv∈V H(v)
Compute a normal vector w of vmin in NP (G)

Algorithm 7: The “dynamic engine” of the unrestricted algorithm of (GRITZMANN;
STURMFELS, 1993).

The unrestricted algorithm has some interesting properties. Firstly, if, during the

execution of the algorithm, one arrives at a partial Gröbner Basis G that is a Gröbner

Basis with respect to some monomial order, the algorithm is able to detect this property

(with an adequate heuristic, such as the Hilbert heuristic, introduced in section 3.3) and

returns such a monomial order. In theory, this could end the execution of a Gröbner Basis

algorithm much sooner. Also, (GOLUBITSKY, 2006) has shown that there are cases

where the unrestricted algorithm returns a smaller basis than the restricted algorithms

from section 3.2. Originally, (GRITZMANN; STURMFELS, 1993) proved that, when the

number of variables is fixed, such as during the execution of the algorithm, the number of

vertices in NP (G) can only grow polynomially. In practice, however, this is not enough

to guarantee the good performance of the algorithm — even for relatively small examples,

this polynomial growth is of high degree and the number of vertices of NP (G) quickly

becomes very large, making the unrestricted dynamic algorithm much slower than the

static algorithm.

48

3.2 Restricted algorithms

The unrestricted dynamic algorithm has two major flaws in practice - it must eval-

uate a potentially very large number of orderings and, by changing previously chosen

leading monomials, it may generate many new S-polynomials in the queue of the Gröb-

ner Basis computation. Restricted dynamic Gröbner Basis algorithms deal with these

problems by choosing new orderings without changing previous choices of leading mono-

mials, reducing both the number of viable orders to evaluate and eliminating the need to

recompute S-polynomials. The trade-off is that potentially good orders may be lost, as a

heuristic choice that appeared advisable at the beginning of the execution may be found

later to be unwise, but it cannot be changed.

The basic restricted algorithm introduced in (CABOARA, 1993) uses linear pro-

gramming to keep track of the previous choices of leading monomials and to ensure their

compatibility. For each polynomial f with leading monomial t, one adds the linear con-

straints

w · t > w · u ∀u ∈ Supp(f) \ {t}

where w is a vector of positive real variables representing the monomial order. Geomet-

rically, this determines an open cone with apex at the origin, and any feasible w chooses

the correct leading monomials. Further choices of leading monomials add more linear

constraints of this form, and thus “narrow” the cone. That is the reason the restricted

dynamic algorithm is sometimes said to be a narrowing cone algorithm. We will denote

the cone determined by choosing t as leading monomial by Ct, and the cone determined

by choosing a set T of leading monomials by CT .

Whenever a new polynomial is added to the basis, one must choose a leading

monomial for it that is compatible with previous choices. To do that, one may simply

add the linear constraints corresponding to each choice and verify which ones have a

nonempty feasible region. If there are multiple feasible candidates, they can be compared

with respect to some heuristic function, like in the unrestricted case, and the one opti-

mizing the heuristic value will be chosen. Its corresponding linear constraints are then

permanently added to the linear programming model.

This algorithm can also be understood in terms of Minkowski sums: if, at any

given step, we have the partial Gröbner Basis G and the currently chosen order corre-

sponds to the vertex v of the affine Newton polyhedron P of G, upon inserting a new

polynomial g in G, the restricted algorithm will only look at the vertices of P + np(g)

49

that can be written as sums of v with some vertex of np(g).

There are many optimizations that can be made to the restricted algorithm. In

the same paper where it was introduced, Caboara proposed two of them, based on the

following propositions.

Proposition 55. If t,m are monomials and m divides t, with t 6= m, then t > m in any

monomial order.

We call a monomial t of f ∈ R a potential leading monomial of f with respect

to a set F = {f1, . . . , fm} with leading monomials t1, . . . , tm if there exists a monomial

ordering choosing t, t1, . . . , tm as the leading monomials of their respective polynomials.

Alternatively, t is a potential leading monomial with respect to F if the exponent vector

of t
∏m

i=1 ti is a vertex of NP ({f} ∪ F). Then:

Proposition 56. Let f1, . . . , fm be a polynomial system with respective leading monomi-

als t1, . . . tm−1, and tm be a potential leading monomial of fm with respect to {f1, . . . , fm−1}.

Define

M = {t ∈ Supp(fm) | t is a potential leading monomial w.r.t.f1, . . . , fm−1}.

Then

tm > t ∀t ∈ Supp(fm) \ {tm}

is equivalent to

tm > t ∀t ∈M.

In short, one may ignore monomials that strictly divide other monomials in the

same polynomial and only add one linear constraint for every potential leading monomial

of a polynomial, ignoring monomials that are known to be incompatible with previous

choices of leading monomials. Although these optimizations greatly reduce the number

of constraints of the linear programming model, (CABOARA; PERRY, 2014) showed it

is possible to optimize even further, using the disjoint cones criterion and the boundary

vectors criterion.

Proposition 57 (Disjoint cones criterion). If T is the set of chosen leading monomials of

G, g is a polynomial being inserted in G and t ∈ Supp(g) is incompatible with t, then

any monomial m such that Cm ⊆ Ct is incompatible with T as well.

In practice, we can record the linear constraints that would be inconsistent with

T and ignore any monomials that would add a subset of these constraints later during

50

the execution of the algorithm. This technique reduces the number of times one has to

find a feasible solution of a linear program by reducing the amount of potential leading

monomials.

Definition 58. A d-boundary vector of a cone C is an extreme point of the intersection of

the closure of C with the hyperplane
∑n

i=1 yi = d in Rn.

In theory, the choice of d in the definition of boundary vectors does not matter,

as the cones appearing in the execution of the restricted algorithm have their apex at the

origin. From an implementation perspective, sometimes it is useful to work with integers,

and to do so one must choose d to be potentially large.

Proposition 59 (Boundary vectors criterion). Let T be the set of leading monomials of G

(with respect to some monomial order w) and Ω be the set of boundary vectors of CT . If t

is the leading monomial of g with respect to w and u ∈ Supp(g), u is incompatible with

T if ω · t > ω · u for every ω ∈ Ω.

The boundary vectors criterion reduces the number of potential leading monomials

even further, leading to fewer calls to a linear programming solver. If, furthermore, we

add linear constraints only corresponding to potential leading monomials as detected by

the boundary vectors criterion, we can also reduce the number of constraints.

Boundary vectors can be computed approximately or exactly: in (CABOARA;

PERRY, 2014), they are computed approximately, while (HASHEMI; TALAASHRAFI,

2016) and (PERRY, 2017) also provide experimental results for the exact computation.

The experimental results of (PERRY, 2017) suggest that neither strictly dominates the

other in terms of time or output basis size, and that in the case of some instances, com-

puting boundary vectors exactly can become very expensive.

3.3 Heuristic functions

All dynamic algorithms proposed until now depend on the use of a heuristic func-

tion to determine whether taking a certain monomial order is advisable or not. These

algorithms do not depend on the properties of the chosen heuristic for their correctness,

and thus may use any heuristic function. We present heuristics that were used in previous

works in Subsection 3.3.1 and 3.3.2 and introduce a new heuristic, based on the previous

ones in Subsection 3.3.3.

51

3.3.1 The Hilbert heuristic

The most common heuristic for dynamic algorithms is the Hilbert heuristic, first

proposed in (GRITZMANN; STURMFELS, 1993). For a given ordering < and a partial

basis G, it computes the Hilbert series or the Hilbert polynomial of 〈LT<(G)〉. The idea

behind the use of the Hilbert function as a heuristic is that it measures how close a setG is

to being a Gröbner Basis — it is non-increasing during the execution of a Gröbner Basis

algorithm and G is a Gröbner Basis if and only if its Hilbert function coincides with that

of I = 〈G〉. In the following, we denote by HS,HP,HN the Hilbert series, polynomial

and numerator of an ideal, respectively.

The comparison between Hilbert series or polynomials may be done in various

ways. (GRITZMANN; STURMFELS, 1993) showed that, for homogeneous inputs, com-

puting the first 2D coefficients of the Hilbert series is enough to distinguish between or-

ders, where D is the maximum of the degrees of the elements of G. This suggests the

following comparison:

Definition 60 (Hilbert heuristic, 1). (GRITZMANN; STURMFELS, 1993) Let <1 and

<2 be monomial orders and G ⊂ R be a finite set of polynomials of degree at most D.

Then <1 is preferable to <2 if the first (in increasing degree order) nonzero entry of

HS(〈LM<1(G)〉)−HS(〈LM<2(G)〉)

is negative. Also, one may compare only the first 2D coefficients.

The Hilbert polynomial coincides with the Hilbert function in high enough degree

and, roughly, represents the growth of the number of monomials not in an ideal. A heuris-

tic can then be designed based primarily on the Hilbert polynomial and, in particular, the

degree and coefficient of its leading terms. Comparing Hilbert polynomials and breaking

ties by the numerator HN of the Hilbert series is sometimes used as the definition of the

Hilbert heuristic. More precisely, we have:

Definition 61 (Hilbert heuristic, 2). (PERRY, 2017) Let <1 and <2 be monomial orders,

G ⊂ R be a finite set of polynomials, h1 = HN(〈LM<1(G)〉), h2 = HN(〈LM<2(G)〉),

p1 = HP (〈LM<1(G)〉) and p2 = HP (〈LM<2(G)〉). Then <1 is preferable to <2 if the

leading term of p1 − p2 is negative or p1 = p2 and the trailing term of h1 − h2 is positive.

More simply, in order to reduce the overhead of the computation of the heuristic

52

function, we can accept ties between Hilbert polynomials as in the following heuristic,

which is a simplification of Definition 61.

Definition 62 (Hilbert heuristic, 3). Let <1 and <2 be monomial orders, G ⊂ R be a

finite set of polynomials and p1 = HP (〈LM<1(G)〉), p2 = HP (〈LM<2(G)〉). Then <1

is preferable to <2 if deg p1 < p2 or if deg p1 = deg p2 and LC(p1) < LC(p2).

Note that using this definition of Hilbert heuristic, ties may still happen, as two dis-

tinct monomial orders may have the same Hilbert polynomial. The tiebreaking criterion

will usually be, in this case, to keep the current ordering.

(PERRY, 2017) proposed, as an alternative to the Hilbert heuristic above, the use

of the graded Hilbert heuristic. It is obtained by replacing the standard grading of R by

the grading given by a weight vector w. More precisely, the w-degree of a polynomial

f ∈ R is

degw(f) = max{w · log t | t ∈ Supp(f)}

and the w-graded part of R is the k-vector space

Rd = {f ∈ R | degw f = d}

and Id = Rd ∩ I . Then the w-graded Hilbert function of I is

grHFI(d) = dimk
Rd

Id
.

Similarly to the case of the standard grading, one can compute the w-graded

Hilbert numerator grHNw of a monomial ideal I . The degree of the Hilbert polynomial

in the standard grading measures the dimension of I , and this is a useful measure regard-

less of grading. For this reason, the graded Hilbert heuristic uses the Hilbert polynomial

in the standard grading and, additionally, breaks ties using the graded Hilbert numerator.

Precisely, we define the graded Hilbert heuristic in the following way:

Definition 63 (Graded Hilbert heuristic). Let <1 and <2 be monomial orders compatible

with weight vectors w1, w2 respectively, G ⊂ R be a finite set of polynomials, h1 =

grHNw1(〈LM<1(G)〉), h2 = grHNw2(〈LM<2(G)〉), p1 = HP (〈LM<1(G)〉) and p2 =

HP (〈LM<2(G)〉). Then <1 is preferable to <2 if the leading term of p1 − p2 is negative

or p1 = p2 and the trailing term of h1 − h2 is positive.

In a dynamic Gröbner Basis algorithm, this heuristic should represent the behavior

of monomial orders more accurately, as it directly uses the grading determined by the

53

current ordering. Unfortunately, (PERRY, 2017) reports that, in practice, the performance

of this graded Hilbert heuristic is worse than the ungraded one, although no theoretical

explanation for that is known.

3.3.2 The Betti heuristic

An alternative to Hilbert function based heuristics, proposed by (PERRY, 2017),

is to try to minimize the amount of remaining S-polynomials to be computed. This is

algorithm-based, because the size of the queue depends on the criteria to eliminate use-

less S-polynomials. In fact, one could use no such criteria at all, and in this case every

choice of leading monomial would be equally advisable according to the Betti heuristic.

In good implementations of Buchberger’s algorithm, however, the Gebauer-Möller up-

date algorithm (GEBAUER; MÖLLER, 1988) is usually used to manage the queue. This

algorithm tries to compute the smallest possible queue for the monomial order, and this

minimal queue size is directly related to the first Betti number, of the input ideal, defined

in Section 3.3.2. In general, one can use any of the techniques described in Section 2.5 to

compute, approximately or, in the case of Bayer’s criterion, exactly, the first Betti number

of LM<(G) for candidate monomial orders <. (PERRY, 2017) uses the following Betti

heuristic:

Definition 64 (Betti heuristic). Let <1 and <2 be monomial orders, G ⊂ R be a finite

set and g ∈ R be a polynomial being added to G by Buchberger’s algorithm. Then <1 is

preferable to <2 according to the Betti heuristic if fewer S-polynomials are added to the

queue in order <1 than <2 using the Gebauer-Möller update algorithm. This comparison

is done degree by degree, from smallest to largest.

Note that this has to be slightly modified to hold for unrestricted dynamic algo-

rithms, as in this case the S-polynomial queue is reconstructed. We can, then, compare

the sizes of the reconstructed queues.

According to (PERRY, 2017), the Betti heuristic is a good alternative in practice to

the ungraded Hilbert heuristic. In his implementation of the restricted dynamic algorithm,

the Betti heuristic is occasionally more efficient and, sometimes, less efficient than the

Hilbert heuristic, depending on the instance. The precise results of the Betti heuristic

were not reported.

(PERRY, 2017) also proposed a graded version of the Betti heuristic by extrap-

54

olating reasonable behavior from the ungraded case. This approach looks unpromising,

however, and led to bad performance in practice.

3.3.3 Mixed heuristic

We now introduce a new heuristic based on both the Hilbert and the Betti heuris-

tics. On one hand, the degree of the Hilbert polynomial is a good intuitive measure of

how close one is to obtaining a Gröbner Basis of an ideal I , but on the other hand, this

value usually has a small range, and often leads to many ties as a heuristic — if one is

computing a Gröbner Basis of an ideal of dimension d over a polynomial ring in n vari-

ables, only the values from d to n can appear as the Hilbert degree during the execution

of the algorithm.

The Betti heuristic has the desirable property of reducing the amount of S-polynomials

to be computed in the short term (and, possibly, in the long term as well). This seems par-

ticularly useful when dealing with an unrestricted dynamic algorithm, that may have to

rebuild the entire queue of S-polynomials multiple times during the execution of the al-

gorithms.

The advantages of each of these heuristics can be complementary, as it always

seems a good idea to pick monomial orders minimizing the degree of the Hilbert polyno-

mial, while when choosing between orders that lead to the same Hilbert degree, it would

seem advisable to minimize the amount of S-polynomials to be computed instead. This is

the Mixed heuristic.

Definition 65 (Mixed heuristic). Let <1 and <2 be monomial orders, G ⊂ R be a finite

set and p1 = HP (〈LM<1(G)〉) and p2 = HP (〈LM<2(G)〉). Then <1 is preferable to

<2 according to the Mixed heuristic if deg p1 < deg p2 or if deg p1 = deg p2 and <1 is

preferable to <2 according to the Betti heuristic.

55

4 UNRESTRICTED DYNAMIC GRÖBNER BASIS ALGORITHMS

The original unrestricted dynamic algorithm described in Section 3.1 and intro-

duced by (GRITZMANN; STURMFELS, 1993) quickly becomes impractical even for

some small instances due to the complexity of computing the vertices of the Minkowski

sums involved. In order to propose more viable unrestricted algorithms, it is necessary to

work without computing the entire Newton polyhedron of a set of polynomials. In a way,

that is what the restricted algorithms of Section 3.2 do, but they consider only vertices that

have a previously computed vertex v as summand, thus heavily restricting the choices of

monomial order.

For a simple example where the issues with restricted algorithms are easily seen,

suppose that the first polynomial processed by a restricted dynamic algorithm is
∑n

i=1 xi.

Then, during its first iteration, the restricted algorithm has to choose one of the variables

xi to be the leading monomial of this polynomial. However, at this point, the algorithm

has no information to make this decision, and all variables will tie when compared with

respect to the Hilbert or Betti heuristics. Whatever choice the algorithm makes may be

seen to be inadvisable later on during the execution, but then the leading monomial is

already fixed and cannot be changed anymore, because the algorithm is restricted. Un-

restricted algorithms have no such problems, as even if they make some bad choices of

leading monomials early on, these choices can be fixed in further iterations.

In the remainder of this chapter, we describe a simple neighborhood structure

for monomial orders based on the vertices of the Newton polyhedron (Section 4.1) and

develop unrestricted dynamic algorithms applying this structure (Sections 4.2, 4.3, 4.4)

that will be evaluated experimentally in Chapter 5.

4.1 Neighborhoods of monomial orders

In this section, we will describe precisely what the neighbors of a vertex v in a

Minkowski sum P represent, where two vertices u, v are neighbors if Conv{u, v} (the

convex hull of u and v) is an edge of P . This will allow us to establish relations be-

tween the heuristic values (with respect to either the ungraded Hilbert or Betti heuristics)

of vertices that are “close” in P . Propositions 67 and 69 appear in previous works on

Minkowski sums (for example, (WEIBEL, 2007)) outside the context of Newton polyhe-

dra, but, Proposition 69 is usually not emphasized. For this reason, and because we could

56

not find a proof of it, we provide one here. We start by giving a precise definition of a

face of a polyhedron.

Definition 66. Let P be a polyhedron (in Rn) andw ∈ Rn. Then the face of P determined

by w is

Pw = {x ∈ P | w · x ≥ w · y ∀y ∈ P}

and w is a normal of Pw.

Note that P is a face of itself, as P = P0. We will also consider that the empty

face ∅ is a face of every polyhedron P .

Through the rest of this section, we will suppose that the face Pw exists, that is,

that P is bounded in the direction of w. This holds in the case of Newton polyhedra when

w > 0, which is exactly the relevant case for our application to monomial orderings.

We can relate the faces of a Minkowski sum to faces of its summands using the

following proposition. It gives a precise meaning to our observation in Section 3.1 that a

vertex of a Newton polyhedron of a polynomial set G corresponds to a choice of leading

monomial for each g ∈ G.

Proposition 67. Let P1, . . . , Pk be polyhedra and P =
∑k

i=1 Pi be their Minkowski sum.

Then, for any w ∈ Rn,

Pw =
k∑
i=1

(Pi)w.

Proof. We will prove this for k = 2, as the general case follows by induction. First, let

x1 ∈ (P1)w, x2 ∈ (P2)w. Then, for any y1 ∈ (P1)w, y2 ∈ (P2)w, we have

w · x1 ≥ w · y1

w · x2 ≥ w · y2

=⇒ w · (x1 + x2) ≥ w · (y1 + y2)

so (x1 + x2) ∈ Pw.

To prove the converse, let, for any polyhedron Q,

aQ(w) = max{w · x | x ∈ Q}

and note that

aP (w) = aP1(w) + aP2(w).

57

Then, if (x1 + x2) ∈ Pw with x1 ∈ P1, x2 ∈ P2 we have

aP (w) = aP1(w) + aP2(w) = w · (x1 + x2) = w · x1 + w · x2

so if x1 6∈ (P1)w, there would exist y1 ∈ P1 with w ·y1 > w ·x1 and w · (y1 +x2) > aP (w)

a contradiction. Thus x1 ∈ (P1)w, and similarly for x2.

As we are primarily interested in understanding vertices (faces of dimension 0)

and edges (faces of dimension 1) it is useful to have a precise definition of the dimension

of a polyhedron P . To do this, we will define an affinely independent set in P as a set of

points x1, . . . , xl of P such that

λ1x1 + · · ·+ λlxl = µ1x1 + · · ·+ µlxl =⇒ λi = µi ∀i ∈ [l]

where
∑l

i=1 λi =
∑l

i=1 µi = 1. We will also define a chain of faces of P as a collection

of distinct faces F1, F2, . . . , Fl of P such that F1 ⊂ F2 ⊂ . . . ⊂ Fl.

Definition 68. The dimension of a polyhedron P is the size of a maximal affinely inde-

pendent set in P minus one.

Equivalently, the dimension of P is the length of a maximal chain of faces in P

minus one.

The dimension of a Minkowski sum (and its faces) is related to the dimension of

its summands by the following proposition.

Proposition 69. If P1, . . . , Pk are polyhedra and P =
∑k

i=1 Pi, then

max{dimPi | i ∈ [k]} ≤ dimP ≤
k∑
i=1

dimPi.

Proof. We will prove this for k = 2, as the rest follows by induction. Furthermore,

without loss of generality, suppose dimP1 = max{dimP1, dimP2}. Let x1, . . . , xl ∈ P1

be a maximal affinely independent set in P1. Then, for scalars λ1, . . . , λl, µ1, . . . , µl we

have

l∑
i=1

(λi − µi)xi = 0
l∑

i=1

λi = 1
l∑

i=1

µi = 1.

58

Now, take y ∈ P2. Then

l∑
i=1

(λi − µi)(xi + y) =
l∑

i=1

(λi − µi)xi +
l∑

i=1

λiy −
l∑

i=1

µiy = 0

so {xi + y | i ∈ [l]} is an affinely independent set in P = P1 + P2. This proves the first

inequality.

To prove the second inequality, we will proceed by induction on the dimension of

P . If dimP = 0, then by the first part of this proposition, its summands Pi are all of

dimension 0 as well. Suppose now that dimP ≤
∑k

i=1 Pi for all Minkowski sums such

that dimP = d. If dimP = d+ 1, then there exists a maximal chain of faces of P

∅ ⊂ F0 ⊂ . . . ⊂ Fd ⊂ P

and there exists w ∈ Rn such that Fd = Pw =
∑k

i=1(Pi)w, that is, Fd is a Minkowski sum

of dimension d. So

dimP = dimFd − 1 ≤
k∑
i=1

(Pi)w =⇒ dimP ≤
k∑
i=1

Pi

as there is some i ∈ [k] such that (Pi)w is strictly contained in Pi, otherwise we would

have Fd = P .

Corollary 70. An edge of a Minkowski sum P =
∑k

i=1 Pi is the Minkowski sum of edges

and vertices of the Pi.

Proof. Apply the first inequality of proposition 69 to an edge Pw =
∑k

i=1(Pi)w of P .

We can in fact show more - an edge of a Minkowski sum is usually the sum of

a single edge and multiple vertices, the exceptional case being described by the next

proposition.

Proposition 71. Let v1, v2, w1, w2 ∈ Rn, v1 6= v2, w1 6= w2. If P1 = conv{v1, v2} and

P2 = conv{w1, w2} are edges, then P = P1 + P2 is an edge if and only if v1 − v2 =

µ(w1 − w2) for some µ 6= 0.

Proof. Without loss of generality, suppose µ > 0 (if µ < 0, we can just reorder and

relabel w1 and w2) and let λ = µ
µ+1

. Clearly, 0 ≤ λ ≤ 1. A direct computation shows that

v1 + w2 = λ(v1 + v2) + (1− λ)(w1 + w2)

59

that is, v1 + w2 ∈ P and similarly, if λ = 1
1+µ

we can show that v2 + w1 ∈ P . So

P = conv{v1 + w1, v2 + w2} is an edge.

Now, if x1 = v1 + w1, x2 = v1 + w2, x3 = v2 + w1 and

(λ1 − µ1)x1 + (λ2 − µ2)x2 + (λ3 − µ3)x3 = 0

is an affine combination, one can show that

(µ3 − λ3)(v1 − v2) = (λ2 − µ2)(w1 − w2)

so if there is no λ 6= 0 such that v1−v2 = λ(w1−w2), then λ3 = µ3, λ2 = µ2 and λ1 = µ1,

that is, {x1, x2, x3} is an affinely independent set. By definition, then, dimP ≥ 2, so P

is not an edge.

This means that, in the Newton polyhedron of a polynomial set G, changing from

a vertex to one of its neighbors corresponds to a choice of monomial order that chooses

the same leading terms in G, with, usually, exactly one exception. We can generalize

this idea in the following way: two vertices share a face of dimension d in the Newton

polyhedron if their associated orders agree on |G| − d choices of leading monomials.

We now define a neighborhood of a positive vector w ∈ Rn and, consequently, the

neighborhood of a monomial order that can be represented as a matrix (as in Section 2.2)

with first row w.

Definition 72. Let w be a positive vector in Rn, G be a polynomial set and v ∈ NP (G)

be a vertex with w as normal vector. The neighborhood N (w) is the set of vectors of Rn

that are normal to one of the neighbors of v.

We will now show how the Hilbert and Betti heuristics behave with respect to

this definition of neighborhood, that is, how the heuristic values change when an order is

exchanged by one of its neighbors.

Proposition 73. Let t1, . . . tm be monomials and I = 〈t1, . . . , tm〉. For any i ∈ [m], let ti

be a monomial, s = deg ti. Then

HSI+〈ti〉(t) = HSI(t)− tsHSI:ti(t).

Proof. See, for example, (COX; LITTLE; O’SHEA, 2015), Chapter 10, §2, Lemma 5.

60

The above proposition implies that the terms of degree smaller than min{r, s} of

the Hilbert series are unchanged when one replaces the leading monomial ti of degree r by

ti of degree s. Intuitively, this means changing a monomial order by one of its neighbors

in the Newton polyhedron will often cause only small changes in the Hilbert function,

so the Hilbert heuristic has a somewhat local effect compatible with our definition of

neighborhoods of monomial orders.

To see the effects of the neighborhood in the Betti heuristic, suppose that we are

approximating Betti numbers using the Buchberger graph of Definition 26. Then, chang-

ing the leading monomial ti by ti in I consists of

1. removing the vertex ti from Buch(I) along with its incident edges;

2. reinserting all edges (tj, tk) such that ti was the only monomial in {t1, . . . , tm}

strictly dividing lcm(tj, tk) in every variable;

3. inserting the vertex ti in Buch(I) along with edges (ti, tj) whenever there is no tk

strictly dividing lcm(ti, tj) in every variable;

4. removing all edges (tj, tk) of Buch(I) such that ti strictly divides lcm(tj, tk) in

every variable.

It is possible, then, to compute the new value of the Betti heuristic after the change

of ordering if, for every non-edge ofBuch(I) one stores the list of vertices that eliminated

it. This approach has the advantage of also providing enough data to rebuild the queue of

S-polynomials in the execution of Buchberger’s algorithm.

4.2 Simplified unrestricted algorithms

In this section, we will propose two simple unrestricted algorithms that do not

depend on the computation of Newton polyhedra. They are intended to be easy to im-

plement and to have small overheads, without necessarily being competitive with more

sophisticated algorithms.

The first simplified algorithm is not based on any locality structure for monomial

orders. Instead, we simply generate a number of random weight vectors w at each iter-

ation of the dynamic algorithm and evaluate them with respect to one of the heuristics,

continuing the computation using the one optimizing the chosen heuristic. This is ex-

pected to be particularly problematic for the Hilbert heuristic, as tiny improvements in

the heuristic value would lead to a complete reconstruction of the S-polynomial queue at

61

potentially every iteration of the algorithm, causing a very bad performance. This prob-

lem would not occur when using the Betti heuristic, however, as one could only keep

an ordering if it reduces the size of the queue compared to its current size, regardless of

how many S-polynomials have been processed since the last time the queue was rebuilt.

In our implementation, 10 new random orderings were generated and evaluated during

each iteration of the algorithm. This number was chosen based on the performance of the

algorithm on a few instances, but other values could also be tested.

The second simplified algorithm is based on perturbations of a weight order w.

This is loosely connected to our definition of neighborhood (Definition 72). More pre-

cisely, starting from an initial weight vectorws, corresponding to either the grevlex order-

ing or a random ordering, we can generate “close” weight vectors w by choosing i ∈ [n],

ε ∈ R and setting

w = wp + εei

where wp is the previous weight vector and ei is the i-th canonical basis vector of Rn. For

small enough ε, w should be in the neighborhood of wp, although guaranteeing this is not

necessary and would, in fact, cause a larger overhead. It is also possible that w and wp

induce equivalent orders over the polynomial set G. In practice, it is cheaper to simply

fix a value of ε and do no checks, regardless of w generating an order that is distinct from

wp or being in its neighborhood. The chosen heuristic can then be applied to w, which is

chosen as the new weight vector if it improves the heuristic value. Multiple values of i

(and ε) could be used in each iteration of the dynamic algorithm and the only extra cost is

the computation of the heuristic function for each of these candidates.

In our implementation of this perturbation algorithm, we decided to start from the

grevlex ordering and to try perturbations over all values of i ∈ [n] both increasing and

decreasing each coordinate of the vector w. Also, at each iteration, we set ε to a random

number between 1 and the maximum of the degrees in the partial basis G.

4.3 Simplex-based algorithm

The perturbation-based algorithm of the previous section used some of the neigh-

borhood structure of monomial orders we described in Section 4.1, but in an imprecise

manner — the perturbations did not guarantee that the order would indeed change nor

that, if it did, the new order would be a neighbor of the previous. In this section we will

62

describe a more sophisticated method to “walk” in neighborhoods of a monomial order.

First, we note that finding neighboring orders is the same as finding a normal

vector to a neighbor of a vertex in NP (G). We can, then, use classical algorithmic tools

to walk in a polyhedron, such as the Simplex method. To do this, we will need a linear

model for NP (G).

Let G = {g1, . . . , gm}, li be the number of vertices of NP (gi) and αij be the j-th

vertex of NP (gi). Then, for any linear function w · x with w > 0 there is a vertex x∗ of

NP (G) maximizing it subject to the constraints given by linear program 4.1. This model

comes directly from the definition of a Minkowski sum, as points in the sum are sums

over i of convex combinations of the αij . This linear program consists of n+
∑m

i=1 li real

variables and n+m+
∑m

i=1 li constraints.

m∑
i=1

li∑
j=1

λijαij = x,

li∑
j=1

λij = 1, ∀i ∈ [m]

λij ≥ 0, ∀i ∈ [m] ∀j ∈ [li]

(4.1)

Given a weight order w, then, maximizing w · x under the constraints of the linear

model above gives a vertex x∗ ∈ NP (G) with normal vector w. To find a neighbor of

x∗, one could apply Simplex pivoting operations in the optimal dictionary of the linear

program. This leads to some problems, however — due to the presence of the slack

variables in the Simplex method, the polyhedron appearing in it is higher dimensional

than NP (G), and many of its vertices do not correspond to vertices of NP (G). In fact,

even the neighborhood relations between vertices may not be the same. In addition, a

vertex ofNP (G) is represented by many distinct bases, and any pivoting-based algorithm

would have to also deal with cycling issues.

Another approach to find a neighbor of x∗ is to use sensitivity analysis. Classical

sensitivity analysis can be applied to the optimal dictionary of the linear program to obtain

a range [tmin, tmax] where x∗ is still optimal for the modified objective

w = w + tej ∀t ∈ [tmin, tmax]

for some fixed j and we would expect that, by choosing t slightly outside this range, the

corresponding w would cease to be the normal of x∗ and be instead, usually, normal to

63

one of the neighbors of x∗. The issue is that this does not happen, as the range [tmin, tmax]

given by classical sensitivity analysis is often strictly smaller than the maximum range of

the perturbations that would keep x∗ optimal. Fortunately, this problem has been studied

previously by (JANSEN et al., 1997) and has a relatively simple solution using linear

programming.

Given a linear programming problem of the form

max cT · x

s.t. Ax ≤ b

with an optimal solution x∗ we can obtain the full sensitivity range [tmin, tmax] for a

change

c = c+ tej

in the j-th coefficient of c by solving the following two linear programs:

min γ

s.t. Ay ≥ c+ γej

bTy = cTx∗ + γx∗j

max γ

s.t. Ay ≥ c+ γej

bTy = cTx∗ + γx∗j

where tmin is an optimal solution of the first program and tmax an optimal solution of the

second. Intuitively, these two linear programs model the values of γ such that the dual of

the original program with the modified objective function remain feasible.

Although this method adds a significant overhead, due to the fact that one must

solve at least two extra linear programs during each iteration, we note that all variables

appearing in them take real values, and that their values can be warm started from a dual

solution to the original problem, that would have to be solved either way in order to obtain

the vertex of NP (G) corresponding to the current monomial order.

The Simplex-based unrestricted dynamic algorithm is summarized in Algorithm

8. The subroutine linearProgram builds the linear program 4.1 from G, while the sub-

routine changeIndex chooses an index of the weight vector to be altered and the subrou-

tine sensitivityRange computes the sensitivity range of the linear program as described

above. The value iterations is the (fixed) maximum number of neighbors visited per

iteration of the dynamic algorithm.

All linear programs involved can be built incrementally, as variables and con-

64

Input: A polynomial set G, a weight vector w, an heuristic function H
Output: A weight vector w ∈ Rn optimizing H
lp := linearProgram(G)
x∗ := solve(lp)
for iterations do

j := changeIndex()
tmin, tmax := sensitivityRange(lp, x∗, j)
wnew := w + tej for some t 6∈ [tmin, tmax]
if H(wnew) < H(w) then

return wnew
end

end
return w

Algorithm 8: The Simplex-based unrestricted dynamic algorithm.

straints are only added at each iteration, and can all be warm started from previous solu-

tions. In Algorithm 8, these implementation details are left to the subroutines linearProgram

and sensitivityRange.

Also, the Simplex-based algorithm has two potentially nondeterministic steps, the

choice of the index of weight vector to be changed and whether to choose t 6∈ [tmin, tmax]

above or below the sensitivity interval. In theory, both steps can be done randomly, but,

instead, in the first step, we consider each index, one at a time, setting the number of

iterations of the main loop in Algorithm 8 to be the number of variables of the polynomial

ring. Similarly, we make no choice between taking t < tmin or t > tmax — we simply

compute the heuristic function for both and decide whether to increase the parameter,

decrease it or keep it unchanged.

4.4 The Restricted-with-regrets algorithm

The basic variant of the restricted algorithm proposed by (CABOARA, 1993)

works fairly well, with the issue that, once a leading monomial is chosen, it can never

be changed, even if that would cause the heuristic value to decrease. This happens in

practice, as the heuristics are not very good at predicting which choices are advisable

early on during the execution, as not much information is available at the time. It may

happen, then, that the insertion of further polynomials in the basis G implies that a pre-

vious choice was not advisable. A simple way to deal with this problem is to choose a

previously inserted polynomial at each iteration of the dynamic algorithm, remove it from

G and reinsert it, updating the related linear program consistently, as this can lead to a

65

different choice of leading monomial this time. We call this the Restricted-with-regrets

algorithm. It applies the neighborhood structure of Section 4.1 by potentially changing to

a neighboring order upon each insertion in G.

In order to make an impact with this strategy, it makes sense to prioritize removing

and reinserting recently added g ∈ G, as older polynomials in the basis will usually have

been used to eliminate many more candidate leading monomials in more recent insertions

and, thus, will often not be subject to change alone. One can also take the heuristic

into account when choosing which polynomial will be reinserted — for example, if the

ungraded Hilbert heuristic is being used, the following proposition holds.

Proposition 74. Let J = 〈t1, . . . , tm〉 be a monomial ideal, fix i ∈ [m] and let I =

〈t1, . . . , ti−1, ti+1, . . . , tm〉. Then HSI = HSJ if and only if ti is a multiple of some tj ,

j ∈ [m], j 6= i.

Proof. Apply the identity

HSI(t) = HSI+〈f〉(t)− trHSI:f (t)

that holds for any homogeneous I and f , deg f = r, to I and J = I + 〈ti〉. The result

follows if and only if HSI:ti = 0. But this happens exactly when I : ti = 〈1〉, that is,

when 〈ti〉 ⊆ I . This is equivalent to ti being a multiple of one of the generators of I .

Using this proposition, we can determine which leading monomials are not con-

tributing to the value of the Hilbert heuristic and attempt to modify them applying the

Restricted-with-regrets strategy.

One disadvantage of the Restricted-with-regrets algorithm when compared to the

optimized restricted algorithms of more recent works (CABOARA; PERRY, 2014) and

(PERRY, 2017) is that many of the techniques developed to reduce the size and number

of linear programs involved do not work, as certain constraints are eliminated under the

assumption that a previous leading monomial would not change, and this assumption is

broken by Restricted-with-regrets.

We consider this algorithm to be unrestricted because all monomial orders are

still reachable in further iterations, even when a choice of leading monomial for a certain

polynomial is made, contrarily to what happens in the restricted algorithms described in

Section 3.2.

66

5 COMPUTATIONAL RESULTS

In this chapter, we will report the results of our experiments involving the algo-

rithms described in Chapter 3 and those proposed in Chapter 4. In Section 5.1, we describe

the instances and computational environment of the experiments while in Section 5.2 we

approach the experiments and results specifically.

The objectives of the experiments are:

• to evaluate all three heuristics (Hilbert, Betti and Mixed) with respect to the size of

the output bases.

• to evaluate the performance of the new unrestricted algorithms.

• to compare unrestricted algorithms to each other, restricted algorithms and the

Static algorithm, in order to find whether they lead to smaller Gröbner Bases.

Subsections 5.2.1, 5.2.2 and 5.2.3 deal, respectively, with each of the three objec-

tives. Additionally, Appendix B shows results of each algorithm individually, in a format

that is not suited to direct comparisons among them, but includes data such as how many

timeouts occurred for each algorithm, as well as how well the algorithm performed over

the instances for which it did not time out.

5.1 Instances and computational environment

All algorithms were implemented in the Sage computer algebra environment (The

Sage Developers, 2018), version 8.3, based on Caboara and Perry’s implementation of

their dynamic algorithm (CABOARA; PERRY, 2014) available at

<http://www.math.usm.edu/perry/Research/dynamic_gb.pyx>.

In fact, all of our experimental results involving the static, original restricted algorithm

(CABOARA, 1993) and restricted algorithm with boundary vectors and disjoint cones

criteria (CABOARA; PERRY, 2014) use the implementation from (CABOARA; PERRY,

2014). The remaining algorithms also share their implementation of the base functionality

of Buchberger’s algorithm, Gebauer-Möller criteria and polynomial reduction.

All experiments were run on an AMD FX-8150 Eight-core Processor (3.6 GHz)

with 32 GB of memory and parallelized using GNU Parallel (TANGE, 2018).

Each algorithm was run on 141 instances with 2 to 8 variables. A summary of

http://www.math.usm.edu/perry/Research/dynamic_gb.pyx

67

their characteristics is given in Table 5.1. A more complete description of each instance

is presented in Appendix A.

5.2 Experiments and results

We have ran all of the following algorithms over each of the 141 instances detailed

in Appendix A, using the Hilbert, Betti and Mixed heuristics in all dynamic algorithms.

In the remainder of this Section, we will refer to the algorithms as follows:

• Static is the Buchberger algorithm with fixed grevlex ordering.

• Caboara (CABOARA, 1993) is the restricted algorithm with no disjoint cones nor

boundary vectors criteria.

• CP (CABOARA; PERRY, 2014) is the restricted algorithm with both disjoint cones

and boundary vectors criteria.

• GS is our implementation of the original unrestricted algorithm of (GRITZMANN;

STURMFELS, 1993). It uses Sage’s classes for working with polyhedra to compute

Minkowski sums directly.

• Random is our implementation of the random walk algorithm proposed in Section

4.2

• Perturb is our implementation of the perturbation-based algorithm proposed in Sec-

tion 4.2

• Simplex is our implementation of the Simplex-based algorithm proposed in Section

4.3

• Regrets is our implementation of the Restricted-with-regrets algorithm described in

Section 4.4

• GS-then-CP is an algorithm that runs GS during m iterations (the number of input

polynomials) and then runs CP until obtaining a Gröbner Basis. This is similar to

using GS to choose a good initial order, and then running CP.

All algorithms use the sugar strategy (GIOVINI et al., 1991) to choose S-polyno-

mials to be reduced, the Gebauer-Möller algorithm to update the queue of S-polynomials

and the same reduction algorithm. As in (CABOARA; PERRY, 2014), all implementa-

tions are meant as proofs of concept, and are not necessarily efficient nor do they use the

best known data structures. For instance, the implementation of the polynomial reduc-

68

tion procedure is not optimized, and no data structures were used to cache and speed up

monomial division queries. This, however, is not a problem for the comparisons between

algorithms, as all of them share these components.

In all tables that follow, we compare algorithms pairwise, with respect to running

time, number of polynomials of the output basis, number of monomials in the output basis,

maximum degree of a polynomial in the output basis and number of S-reductions. To

compare algorithms A1 and A2, we take the geometric mean of the ratios of the values for

A1 and A2 with respect to each parameter (for example, running time) over all instances

in which none of A1 and A2 timed out. Thus, if these geometric means are smaller than 1,

A1 is preferred with respect to the parameter being measured, otherwise, A2 is preferred.

More specific details will be explained case by case, as we use multiple table formats. In

all cases, the timeout time chosen was 30 minutes.

5.2.1 Evaluation of the heuristics

We start by evaluating the Hilbert, Betti and Mixed heuristics. To do this, for each

pair of heuristics and each algorithm, we compare various basis size and performance

parameters. Each table contains the following data:

• Algorithm 1 and Algorithm 2 — the algorithms being compared, including the

heuristic being used

• Instances — the number of instances in which neither of Algorithm 1 and Algorithm

2 timed out

• t, |G|, | Supp |, deg, #S-red — the geometric mean of the ratios of Algorithm 1 by

Algorithm 2 with respect to running time, number of polynomials in basis, number

of monomials in basis, maximum degree of a polynomial in basis and number of

S-reductions, respectively

In short, if the values are smaller than 1, then Algorithm1 is preferable to Algo-

rithm2 in the instances they do not timeout, and conversely, if the ratios are larger than 1,

Algorithm2 is preferable.

From Table 5.2, we observe that the Mixed heuristic performs better than the Betti

heuristic in every aspect but running time. This indicates that the use of the degree of the

Hilbert polynomial indeed improves the final basis in terms of size, and even in number of

S-reductions in most cases. A possible explanation for the fact that the Betti heuristic was

69

faster is that to compute the Hilbert heuristic it is necessary both to compute the Hilbert

polynomial and to approximate a Betti number for each monomial order considered, while

the Betti heuristic only has to do the latter computation.

Table 5.3 shows that the Hilbert heuristic performs better both in running time and

number of polynomials in the output basis than the Mixed heuristic. The differences in

running time is probably due to the fact that the Betti numbers in our implementation

of the Mixed heuristic are computed by our own, non-optimized code in Sage, while the

Hilbert series are computed by Singular, that is much faster. The results for basis size

suggest that using the Hilbert series is often a better tiebreaking criterion than using our

approximate Betti numbers, but not by a very large margin. In fact, for many algorithms,

the bases returned by the Mixed heuristic tend to have fewer monomials, smaller degrees

or be generated with fewer S-reductions. In particular, for the restricted algorithms, the

Mixed heuristic seems overall preferable if one simply aims to obtain smaller bases, and

it also seems plausible that if we used a more efficient implementation of the Betti com-

ponent of the heuristic, the running times would be much closer as well.

Comparing the Hilbert to the Betti heuristic, as in Table 5.4, we see that Hilbert is

preferable in almost every aspect for almost every algorithm. It is interesting to note that

(PERRY, 2017) reported that Betti could be a good alternate heuristic (in the context of

an implementation of the CP algorithm) and indeed, in average, it performs similarly to

the Hilbert heuristic in this case. However, each returns bases significantly smaller than

the other in certain instances — for example, in katsuranh6, cp-betti returns a basis of size

32, while cp-hilbert returns a basis of size 66 and, conversely, in econ8, the former returns

a basis with 34 polynomials while the latter returns a basis with 13 polynomials.

Overall, we can conclude that the Betti heuristic is worse than both the Hilbert

and Mixed heuristics in terms of output basis size. For this reason, in the following, we

consider only the Hilbert and Mixed heuristics, reducing the size of the comparison tables.

5.2.2 Algorithm comparison with respect to time

We now proceed to compare all algorithms with respect to running time and S-

reductions, as this is the other measure that should be most closely related to the running

time. Each of the remaining tables is an square matrix in one of the two following formats:

• Each entry aij of the matrix is the geometric mean of the ratios of the parameter

70

(running time or S-reductions) of the algorithm in row i by the algorithm in row j.

In order to avoid redundancy and reduce the amount of tables, instead of duplicating

the results by having aij = 1
aji

, we present results for the Hilbert heuristic when

i < j (above the main diagonal) and results for the Mixed heuristic when i > j

(below the main diagonal). Examples are Tables 5.5 and 5.7 — in captions, it is

referred as geometric mean of ratios.

• Each entry aij of the matrix contains three values xlt, xeq, xgt, which correspond

to the number of instances where none of the algorithms in row i and column j

timed out and i had a respectively lower, equal or greater value of the comparison

parameter than j. It uses the same partition of the table between the Hilbert and

Mixed heuristics of the previous format. Tables 5.6 and 5.8 are examples of this

case — in captions, it is referred as number of instances.

It is not surprising that the results of Tables 5.5 and 5.6 show that the Static algo-

rithm is the fastest, as it has no dynamic overhead, and this fact was previously observed

in implementations. It is also expected that GS is the slowest algorithm, as it evaluates ev-

ery potential ordering. The fact that all newly proposed unrestricted dynamic algorithms

are faster than it for most instances is a first indicator that they work as designed, being

viable for more instances. This is also shown by the fact GS times out much more often

than any other algorithm — this is seen more clearly from the data in Appendix B.

All unrestricted algorithms, however, performed poorly on average when com-

pared to the restricted algorithms Caboara and CP. As some of these unrestricted algo-

rithms, such as Random, should have very low overhead, it seems reasonable to conclude

this worse behavior is due to the reconstruction of the S-polynomial queues that could

lead to many more S-reductions. This is confirmed by the data in Tables 5.7 and 5.8. It

is worth noting, however, that there is a non-negligible amount of instances where each

unrestricted algorithm performs better than the restricted algorithms with respect to both

time and S-reductions.

Also, the fact that the number of S-reductions is sometimes much lower in the

restricted algorithms when compared to Static suggests that, if these algorithms could be

implemented more efficiently, with lower overhead, they would be reasonably competitive

with Static in terms of running time. From Table 5.7, it does not look like the same would

happen with the unrestricted algorithms.

Although none of the new unrestricted algorithms seem particularly promising

from the running time perspective, we note that they time out about as often as the re-

71

stricted algorithm Caboara does, and much less often than the original unrestricted al-

gorithm GS. They also perform better than Caboara and GS-then-CP in many instances,

even though their average performances are worse.

5.2.3 Algorithm comparison with respect to the final basis

In this Subsection, we evaluate all algorithms with respect to the output basis —

in particular, its number of polynomials, monomials and maximum degree. All tables are

presented in the same formats described in Subsection 5.2.2, containing either geometric

means of ratios or number of instances where each algorithm performs better with respect

to the given parameter.

For both the Hilbert and the Betti heuristics, we can see from Tables 5.9 and 5.11

that all dynamic algorithms have smaller bases on average than Static. This means all of

these algorithms achieve the primary goal of returning smaller bases. It is also easily seen

that the opposite happens with the GS algorithm — no other dynamic algorithm is able

to return smaller bases than it in terms of polynomials nor monomials. This is expected,

as it explores many more monomial orders and consequently times out for many more

instances.

The second most successful algorithm in terms of basis size is GS-then-CP, as ac-

cording to Tables 5.9 and 5.11 it is better on average than every other algorithm, except

GS. Interestingly, this behavior is significantly different from the original CP algorithm,

that returns larger bases than Caboara and every unrestricted algorithm in terms of mono-

mials and often also in terms of polynomials. This means that the choice of a good initial

monomial ordering can improve the CP algorithm in many cases, with some overhead, as

seen in the previous subsection.

Among the new unrestricted algorithms, Random performs better in average. This

is somewhat surprising, as the algorithm is extremely simple. We note, from Tables 5.10

and 5.12 that Random returns smaller bases than the other new unrestricted algorithms in

relatively few instances. This must mean it works particularly well for these instances.

A possible explanation for this is that all other algorithms start from the grevlex order-

ing and do some kind of local search or cone narrowing around it, while the Random

algorithm can choose orderings very far from grevlex fast. It would be interesting to

design algorithms that both do local searches and are able to explore distant parts of the

monomial ordering search space like Random does.

72

It is interesting to compare the results of Simplex and Perturb, as they are very

similar algorithms, differing mostly by the fact that Simplex does its local search in a

more precise way than Perturb does. Surprisingly, Perturb works better in average, and

Tables 5.10 and 5.12 show that they tie very often. This means that the extra overhead of

the Simplex algorithm is mostly unnecessary, and a very similar effect can be achieved by

the simpler local search procedure of Perturb.

The Regrets algorithm, unfortunately, is worse than every other algorithm in terms

of basis size. Its reinsertion procedure does not seem to improve anything with respect to

the Caboara algorithm on which it is based.

Comparing the Caboara and CP algorithms we can see that, although Subsection

5.2.2 has shown that the optimizations in CP improve its running time, they lead to worse

output bases in general. This may happen due to the way boundary vectors are computed

approximately, instead of exactly, in this implementation of CP, as these approximations

may cause it to “lose” some orderings it should evaluate.

With respect to the maximum degree of a polynomial in basis, Tables 5.13 and 5.14

show that the restricted dynamic algorithms are usually worse than Static, and Perturb and

Simplex are both better, while Random is much better than the restricted algorithms but

in average ties with Static in this regard. The fact that GS also performs better with re-

spect to the maximum degree is, again, not very surprising, as it visits many orderings and

the heuristics are at least indirectly designed to minimize degrees — the Hilbert heuristic

does this explicitly, by comparing the coefficients of the Hilbert series lexicographically,

but we note that this behavior of minimizing degrees also happens in the Mixed heuris-

tic. Overall, both the Perturb and Simplex algorithms lead to smaller or equal maximum

degrees in the basis in most instances when compared to Static, Caboara and CP.

Experimentally, we have shown that the restricted algorithm GS-then-CP leads to

smaller bases than the previous restricted algorithms and the new unrestricted algorithms

very often. While our new unrestricted algorithms return larger bases in average than

it and the previous restricted algorithm Caboara, they also return significantly smaller

bases for many instances, and the degrees of the polynomials in their output bases tend

to be smaller. This means that the behavior of unrestricted algorithms often complements

that of restricted algorithms, in the sense that they perform well for different groups of

instances.

73

Table 5.1: Summarized instance data, grouped by number of variables.

••••••• n — number of variables of the input system
• Instances — number of instances
• m — average number of polynomials of the instances
• | Supp |— average number of monomials of the instances
• deg — average maximum degree of the instances
• hom — number of homogeneous instances

n Instances m | Supp | deg hom

2 3 2.00 10.67 3.33 0
3 12 2.33 15.25 6.08 3
4 20 3.95 158.45 5.40 10
5 30 4.37 137.63 4.73 19
6 23 5.26 151.70 4.22 16
7 25 7.40 325.32 5.12 13
8 28 8.14 323.07 4.75 14

Table 5.2: Comparison between Betti and Mixed heuristics

Algorithm 1 Algorithm 2 Instances t |G| | Supp | deg #S-red

caboara-betti caboara-mixed 84 0.94 1.03 1.05 1.07 1.10
cp-betti cp-mixed 97 1.04 1.01 1.04 1.09 1.09
gs-betti gs-mixed 51 0.57 1.07 1.11 1.13 0.90
gs-then-cp-betti gs-then-cp-mixed 90 0.99 1.12 1.20 1.16 1.30
perturb-betti perturb-mixed 79 1.30 1.25 1.29 1.05 1.29
random-betti random-mixed 81 0.78 1.32 1.37 1.08 1.02
regrets-betti regrets-mixed 74 0.82 1.13 1.14 1.00 1.15
simplex-betti simplex-mixed 81 1.11 1.30 1.35 1.08 0.91

Table 5.3: Comparison between Hilbert and Mixed heuristics

Algorithm 1 Algorithm 2 Instances t |G| | Supp | deg #S-red

caboara-hilbert caboara-mixed 83 0.75 0.99 1.02 1.08 1.04
cp-hilbert cp-mixed 100 0.78 1.00 1.05 1.04 1.05
gs-hilbert gs-mixed 51 0.69 0.99 0.99 0.95 0.81
gs-then-cp-hilbert gs-then-cp-mixed 93 0.85 0.96 1.02 0.98 0.93
perturb-hilbert perturb-mixed 85 0.69 0.92 0.87 0.98 1.24
random-hilbert random-mixed 82 0.48 0.98 0.94 0.95 0.96
regrets-hilbert regrets-mixed 76 0.68 0.98 1.00 1.05 1.03
simplex-hilbert simplex-mixed 84 0.66 0.94 0.92 0.99 0.89

74

Table 5.4: Comparison between Hilbert and Betti heuristics

Algorithm 1 Algorithm 2 Instances t |G| | Supp | deg #S-red

caboara-hilbert caboara-betti 87 0.74 0.96 0.97 1.03 0.97
cp-hilbert cp-betti 97 0.77 1.00 1.00 0.95 0.97
gs-hilbert gs-betti 53 1.29 0.91 0.88 0.84 0.98
gs-then-cp-hilbert gs-then-cp-betti 91 0.87 0.86 0.83 0.84 0.71
perturb-hilbert perturb-betti 77 0.63 0.72 0.66 0.92 0.91
random-hilbert random-betti 80 0.62 0.74 0.68 0.85 0.95
regrets-hilbert regrets-betti 74 0.84 0.86 0.87 1.04 0.89
simplex-hilbert simplex-betti 81 0.66 0.72 0.68 0.92 1.03

Table 5.5: Pairwise comparison between dynamic algorithms with respect to time (geo-
metric mean of ratios)

static caboara cp gs gs-then-cp perturb random regrets simplex

static 1.00 0.25 0.40 0.06 0.21 0.21 0.18 0.15 0.13
caboara 4.89 1.00 1.67 0.16 0.81 0.70 0.63 0.62 0.46

cp 3.10 0.51 1.00 0.13 0.51 0.47 0.42 0.36 0.31
gs 16.98 7.38 10.59 1.00 3.57 2.75 3.07 5.01 3.31

gs-then-cp 5.86 1.12 2.18 0.23 1.00 0.92 0.85 0.84 0.73
perturb 9.94 1.81 3.41 0.25 1.57 1.00 0.93 0.99 0.82
random 13.71 2.78 5.30 0.36 2.43 1.52 1.00 1.07 0.89
regrets 8.06 1.67 3.50 0.18 1.36 0.86 0.60 1.00 0.78

simplex 11.32 2.35 4.43 0.31 1.96 1.35 0.88 1.50 1.00

Table 5.6: Pairwise comparison between dynamic algorithms with respect to time (num-
ber of instances)

static caboara cp gs gs-then-cp perturb random regrets simplex

static 0/127/0 102/0/2 105/0/6 56/0/2 102/0/6 97/0/5 99/0/4 90/0/1 86/0/2
caboara 4/0/80 0/84/0 29/0/74 56/0/2 65/0/37 66/0/27 71/0/25 69/0/21 73/0/14

cp 7/0/93 67/0/17 0/100/0 57/0/1 89/0/18 80/0/16 90/0/9 77/0/14 82/0/6
gs 2/0/51 2/0/51 1/0/52 0/53/0 22/0/36 12/0/46 17/0/41 3/0/53 13/0/45

gs-then-cp 5/0/89 25/0/58 14/0/80 37/0/16 0/94/0 45/0/50 53/0/45 37/0/53 45/0/42
perturb 0/0/89 15/0/67 4/0/85 45/0/8 40/0/46 0/89/0 54/0/43 27/0/59 42/0/43
random 0/0/87 12/0/69 2/0/85 45/0/8 37/0/48 37/0/48 0/87/0 28/0/58 38/0/47
regrets 0/0/76 13/0/62 5/0/71 45/0/4 45/0/30 51/0/22 56/0/16 0/76/0 60/0/23

simplex 0/0/86 18/0/63 6/0/80 42/0/11 41/0/44 41/0/42 34/0/48 22/0/52 0/86/0

Table 5.7: Pairwise comparison between dynamic algorithms with respect to number of
S-reductions (geometric mean of ratios)

static caboara cp gs gs-then-cp perturb random regrets simplex

static 1.00 1.20 1.12 1.11 1.35 0.85 0.77 1.04 0.82
caboara 0.75 1.00 0.94 0.78 1.11 0.70 0.62 0.86 0.65

cp 0.82 1.09 1.00 0.86 1.19 0.73 0.67 0.90 0.70
gs 0.98 1.44 1.35 1.00 1.47 0.76 0.83 1.17 0.88

gs-then-cp 0.75 1.00 0.93 0.69 1.00 0.60 0.55 0.76 0.58
perturb 1.00 1.34 1.21 0.95 1.32 1.00 0.97 1.32 1.03
random 1.26 1.70 1.55 1.12 1.69 1.26 1.00 1.42 1.10
regrets 0.96 1.21 1.11 0.84 1.19 0.94 0.74 1.00 0.76

simplex 1.33 1.80 1.65 1.16 1.78 1.38 1.09 1.44 1.00

75

Table 5.8: Pairwise comparison between dynamic algorithms with respect to number of
S-reductions (number of instances)

static caboara cp gs gs-then-cp perturb random regrets simplex

static 0/127/0 43/19/42 47/20/44 15/18/25 41/17/50 30/48/24 46/29/28 33/26/32 25/44/19
caboara 39/20/25 0/84/0 31/58/14 21/24/13 33/29/40 45/21/27 59/19/18 32/34/24 38/21/28

cp 38/21/41 11/51/22 0/100/0 22/22/14 26/29/52 41/20/35 51/20/28 32/30/29 38/20/30
gs 18/14/21 11/18/24 14/17/22 0/53/0 4/32/22 26/19/13 25/21/12 17/21/18 27/18/13

gs-then-cp 43/16/35 25/31/27 36/25/33 22/28/3 0/94/0 45/20/30 60/21/17 42/24/24 42/19/26
perturb 18/53/18 23/21/38 34/22/33 21/14/18 30/16/40 0/89/0 41/32/24 28/24/34 25/42/18
random 22/27/38 14/25/42 24/20/43 16/19/18 15/23/47 22/28/35 0/87/0 20/21/45 26/24/35
regrets 22/25/29 20/23/32 25/19/32 22/15/12 22/17/36 21/25/27 32/20/20 0/76/0 35/25/23

simplex 15/46/25 19/19/43 26/21/39 16/14/23 26/14/45 13/45/25 26/27/29 20/24/30 0/86/0

Table 5.9: Pairwise comparison between dynamic algorithms with respect to number of
polynomials in basis (geometric mean of ratios)

static caboara cp gs gs-then-cp perturb random regrets simplex

static 1.00 1.40 1.31 1.57 1.48 1.30 1.36 1.23 1.28
caboara 0.76 1.00 0.93 1.20 1.05 0.92 0.97 0.95 0.90

cp 0.78 1.05 1.00 1.27 1.14 1.02 1.06 1.00 0.98
gs 0.62 0.85 0.82 1.00 0.94 0.88 0.93 0.82 0.83

gs-then-cp 0.72 0.98 0.94 1.13 1.00 0.89 0.93 0.88 0.86
perturb 0.82 1.08 1.05 1.22 1.13 1.00 1.04 0.96 0.96
random 0.74 0.99 0.96 1.15 1.04 0.92 1.00 0.92 0.92
regrets 0.90 1.10 1.04 1.34 1.12 1.05 1.13 1.00 1.02

simplex 0.83 1.11 1.08 1.25 1.14 1.02 1.11 0.96 1.00

Table 5.10: Pairwise comparison between dynamic algorithms with respect to number of
polynomials in basis (number of instances)

static caboara cp gs gs-then-cp perturb random regrets simplex

static 0/127/0 29/20/55 32/22/57 2/21/35 22/22/64 4/55/43 13/36/54 22/26/43 5/49/34
caboara 46/20/18 0/84/0 28/61/14 4/28/26 22/43/37 29/32/32 31/30/35 24/41/25 26/31/30

cp 50/21/29 13/52/19 0/100/0 3/26/29 19/39/49 25/30/41 31/27/41 22/34/35 29/28/31
gs 30/22/1 21/27/5 21/28/4 0/53/0 16/39/3 24/30/4 16/38/4 24/26/6 25/29/4

gs-then-cp 54/23/17 30/35/18 40/31/23 6/32/15 0/94/0 37/33/25 36/34/28 31/43/16 34/32/21
perturb 30/53/6 24/24/34 29/25/35 1/28/24 18/28/40 0/89/0 23/48/26 32/34/20 19/58/8
random 45/29/13 27/32/22 38/26/23 2/29/22 21/39/25 27/37/21 0/87/0 34/30/22 31/39/15
regrets 29/29/18 17/34/24 22/29/25 4/22/23 17/25/33 18/29/26 16/26/30 0/76/0 24/34/25

simplex 30/50/6 24/26/31 28/25/33 4/27/22 23/27/35 12/60/11 21/37/24 25/28/21 0/86/0

Table 5.11: Pairwise comparison between dynamic algorithms with respect to number of
monomials in basis (geometric mean of ratios)

static caboara cp gs gs-then-cp perturb random regrets simplex

static 1.00 1.36 1.21 1.67 1.38 1.36 1.42 1.19 1.31
caboara 0.79 1.00 0.92 1.28 1.04 1.00 1.06 0.96 0.97

cp 0.81 1.05 1.00 1.36 1.15 1.15 1.17 1.02 1.06
gs 0.62 0.84 0.82 1.00 0.91 0.89 0.97 0.80 0.84

gs-then-cp 0.75 0.97 0.94 1.13 1.00 0.99 1.04 0.95 0.96
perturb 0.81 1.04 1.01 1.22 1.11 1.00 1.03 0.91 0.93
random 0.74 0.96 0.93 1.15 1.03 0.93 1.00 0.87 0.91
regrets 0.92 1.08 1.03 1.29 1.08 1.05 1.11 1.00 1.06

simplex 0.83 1.09 1.06 1.22 1.11 1.02 1.09 0.96 1.00

76

Table 5.12: Pairwise comparison between dynamic algorithms with respect to number of
monomials in basis (number of instances)

static caboara cp gs gs-then-cp perturb random regrets simplex

static 0/127/0 37/15/52 44/13/54 10/13/35 35/14/59 4/53/45 18/32/53 27/25/39 5/48/35
caboara 44/15/25 0/84/0 28/53/22 9/22/27 30/37/35 28/25/40 34/23/39 25/32/33 28/24/35

cp 49/15/36 16/46/22 0/100/0 8/20/30 25/33/49 25/21/50 34/17/48 24/26/41 30/18/40
gs 29/12/12 21/23/9 21/24/8 0/53/0 17/37/4 25/21/12 19/25/14 25/19/12 25/20/13

gs-then-cp 51/17/26 27/31/25 37/27/30 6/32/15 0/94/0 34/23/38 36/25/37 27/33/30 30/22/35
perturb 29/52/8 29/19/34 35/19/35 13/17/23 27/22/37 0/89/0 29/42/26 37/28/21 25/52/8
random 42/29/16 27/27/27 39/20/28 8/23/22 26/31/28 28/34/23 0/87/0 37/28/21 31/35/19
regrets 29/27/20 26/21/28 28/17/31 13/15/21 26/16/33 18/29/26 21/23/28 0/76/0 22/30/31

simplex 31/47/8 32/20/29 35/18/33 15/17/21 33/19/33 14/58/11 25/32/25 26/28/20 0/86/0

Table 5.13: Pairwise comparison between dynamic algorithms with respect to maximum
degree of polynomials in basis (geometric mean of ratios)

static caboara cp gs gs-then-cp perturb random regrets simplex

static 1.00 0.75 0.78 1.17 0.84 1.05 1.00 0.82 1.05
caboara 1.09 1.00 1.04 1.16 1.14 1.38 1.31 0.99 1.33

cp 1.17 1.05 1.00 1.20 1.08 1.31 1.25 0.96 1.30
gs 0.88 0.89 0.85 1.00 0.94 0.94 0.98 0.81 0.94

gs-then-cp 1.09 0.96 0.93 1.09 1.00 1.22 1.11 0.87 1.16
perturb 0.98 0.89 0.82 1.05 0.88 1.00 0.96 0.77 0.99
random 1.02 0.92 0.86 1.06 0.92 1.04 1.00 0.79 1.02
regrets 1.07 1.05 1.02 1.20 1.07 1.11 1.11 1.00 1.29

simplex 0.96 0.88 0.83 1.04 0.89 0.99 0.95 0.89 1.00

Table 5.14: Pairwise comparison between dynamic algorithms with respect to maximum
degree of polynomials in basis (number of instances)

static caboara cp gs gs-then-cp perturb random regrets simplex

static 0/127/0 41/42/21 45/47/19 7/25/26 38/41/29 12/61/29 21/51/31 28/44/19 10/55/23
caboara 21/32/31 0/84/0 14/72/17 2/32/24 10/56/36 7/49/37 7/46/43 15/57/18 6/44/37

cp 19/39/42 9/57/18 0/100/0 2/31/25 17/56/34 6/48/42 8/47/44 22/51/18 8/39/41
gs 23/24/6 23/25/5 22/27/4 0/53/0 13/45/0 16/36/6 8/45/5 25/31/0 14/37/7

gs-then-cp 28/31/35 22/40/21 30/37/27 3/34/16 0/94/0 14/51/30 14/53/31 31/54/5 16/43/28
perturb 20/58/11 32/38/12 41/38/10 7/29/17 32/37/17 0/89/0 17/63/17 36/43/7 14/58/13
random 23/40/24 26/44/11 32/41/14 4/35/14 28/46/11 15/48/22 0/87/0 37/42/7 16/52/17
regrets 15/38/23 13/41/21 16/39/21 3/22/24 17/31/27 6/43/24 11/36/25 0/76/0 7/48/28

simplex 21/53/12 32/36/13 38/36/12 7/31/15 32/36/17 12/62/9 23/45/14 25/40/9 0/86/0

77

6 CONCLUSIONS AND FURTHER WORK

In this work, we have introduced a notion of neighborhood for monomial order-

ings over a set of polynomials and applied it to develop multiple unrestricted dynamic

algorithms for the computation of Gröbner Bases. These algorithms use the idea of a lo-

cal search to evaluate multiple neighboring monomial orderings allowing for previously

chosen leading monomials to change.

Additionally, we introduced a new heuristic for dynamic algorithms, the Mixed

heuristic, using components from both the Betti and Hilbert heuristics. Our experiments

show that this heuristic tends to lead to smaller bases than the Betti heuristic in average.

However, the Hilbert heuristic seems preferable to both the Betti and the Mixed heuristics

in most cases, according to our results.

To our knowledge, this is the first work on dynamic Gröbner Basis algorithms re-

porting results for a large number of instances (141 instances in total). Our experiments

include most previously proposed algorithms, including the original unrestricted algo-

rithm of (GRITZMANN; STURMFELS, 1993), that was not previously implemented or

tested in practice. In our experiments, we compared these algorithms to the classical

Static Buchberger algorithm and our new unrestricted algorithms. Although the restricted

algorithms performed better on average than our unrestricted algorithms with respect to

the running time, the results for basis size and number of monomials show that the un-

restricted algorithms have comparable results to the Caboara algorithm, and outperform

every restricted algorithm in terms of the maximum degree of the polynomials in the out-

put basis. Our experiments also showed that the restricted and unrestricted algorithms

perform well in different groups of instances, so their behavior complement each other.

Future works could try to develop algorithms mixing traits from both of these classes, in

order to perform better in as many cases as possible.

Our unrestricted Random-walk based algorithm performed surprisingly well, and

it seems reasonable to propose an algorithm that uses some kind of neighborhood struc-

ture, such as that used in our Perturb and Simplex algorithms, along with elements of

the Random algorithm. Given that Perturb also performed well, this could lead to a dy-

namic algorithm with relatively low overhead, when compared to one of the restricted

algorithms, as those depend on solving linear programs. Such an algorithm might scale

better, for larger instances, than the restricted algorithms, as (PERRY, 2017) reported that

in some cases the overhead of running the restricted algorithms is high. It would also be

78

possible to adjust the number of iterations of the Random and Perturb components of the

algorithm, allowing for even lower overhead by reducing the amount of orderings to be

evaluated. Another advantage would be that the lower number of monomials and lower

degrees of these unrestricted algorithms could speed up computations for large instances

where the performance bottlenecks are associated to the polynomial reduction process.

Another path for research in dynamic algorithms is to adapt both restricted and

unrestricted algorithms to F4 and F5, as well as providing an optimized implementation

of the dynamic algorithms and heuristics.

79

REFERENCES

BARDET, M. Etude des systèmes algébriques surdéterminés: applications aux codes
correcteurs et à la cryptographie. Tese (Doutorado) — Paris 6, 2004.

BARDET, M.; FAUGÈRE, J.-C.; SALVY, B. Complexity of Gröbner basis
computation for Semi-regular Overdetermined sequences over F2 with solutions in
F2. [S.l.], 2003.

BARDET, M.; FAUGÈRE, J.-C.; SALVY, B. On the Complexity of the F5 Gröbner
Basis Algorithm. Journal of Symbolic Computation, p. 49–70, 2015. Disponível em:
<http://algo.inria.fr/seminars/.>

BAYER, D.; STILLMAN, M. A theorem on refining division orders by the reverse
lexicographic order. Duke Math. J, v. 55, n. 2, p. 321–328, 1987.

BUCHBERGER, B. Gröbner Bases: An Algorithmic Method in Polynomial Ideal
Theory. In: Multidimensional systems theory. [S.l.: s.n.], 1985.

BUCHBERGER, B. Bruno Buchberger’s PhD thesis 1965: An algorithm for finding the
basis elements of the residue class ring of a zero dimensional polynomial ideal. Journal
of symbolic computation, Elsevier, v. 41, n. 3, p. 475–511, 2006.

CABOARA, M. A Dynamic Algorithm for Gröbner Basis Computation. Proceedings
of the 1993 International Symposium on Symbolic and Algebraic Computation, p.
275–283, 1993.

CABOARA, M.; KREUZER, M.; ROBBIANO, L. Efficiently computing minimal sets
of critical pairs. Journal of Symbolic Computation, v. 38, n. 4, p. 1169–1190, 2004.
ISSN 07477171.

CABOARA, M.; PERRY, J. Reducing the size and number of linear programs
in a dynamic Gröbner basis algorithm. Applicable Algebra in Engineering,
Communications and Computing, v. 25, n. 1-2, p. 99–117, 2014. ISSN 09381279.

CANTOR, D. G.; ZASSENHAUS, H. A new algorithm for factoring polynomials over
finite fields. Mathematics of Computation, 1981. ISSN 0025-5718.

COLLART, S.; KALKBRENER, M.; MALL, D. Converting bases with the Gröbner
walk. Journal of Symbolic Computation, 1997. ISSN 07477171.

COX, D.; LITTLE, J.; O’SHEA, D. Using algebraic geometry. 2nd. ed. Springer, 2005.
596 p. ISBN 0387207333, 9780387207339. Disponível em: <http://link.springer.com/
10.1007/b138611>.

COX, D.; LITTLE, J.; O’SHEA, D. Ideals, varieties, and algorithms. 4th. ed. [S.l.]:
Springer, 2015. ISBN 9780387356501.

EDER, C.; FAUGÈRE, J. C. A survey on signature-based algorithms for computing
Gröbner bases. Journal of Symbolic Computation, Elsevier Ltd, v. 80, p. 719–784,
2017. ISSN 07477171.

http://algo.inria.fr/seminars/.
http://link.springer.com/10.1007/b138611
http://link.springer.com/10.1007/b138611

80

EISENBUD, D. Commutative algebra with a view toward algebraic geometry. New
York: Springer-Verlag, 1995. ISSN 0273-0979. ISBN 9780387942698.

FAUGÈRE, J.-C. A new efficient algorithm for computing Gröbner bases (F4). Journal
of pure and applied algebra, Elsevier, v. 139, n. 1, p. 61–88, 1999.

FAUGÈRE, J.-C. A new efficient algorithm for computing Gröbner bases without
reduction to zero (F5). Proceedings of the 2002 international symposium on Symbolic
and algebraic computation - ISSAC ’02, ACM Press, p. 75–83, 2002.

FAUGÈRE, J.-C. et al. Efficient computation of zero-dimensional Gröbner bases by
change of ordering. Journal of Symbolic Computation, Elsevier, v. 16, n. 4, p. 329–344,
1993.

FAUGÈRE, J.-C.; JOUX, A. Algebraic Cryptanalysis of Hidden Field Equation (HFE)
Cryptosystems Using Gröbner Bases. In: Advances in Cryptology-CRYPTO 2003.
[S.l.]: Springer, 2003. p. 44–60. ISBN 978-3-540-40674-7.

FAUGÈRE, J.-C.; MOU, C. Fast algorithm for change of ordering of zero-dimensional
Gröbner bases with sparse multiplication matrices. Proceedings of the 36th
international symposium on Symbolic and algebraic computation - ISSAC ’11,
p. 115, 2011. Disponível em: <http://portal.acm.org/citation.cfm?doid=1993886.
1993908>.

FAUGÈRE, J. C.; MOU, C. Sparse FGLM algorithms. Journal of Symbolic
Computation, Elsevier Ltd, v. 80, p. 538–569, 2017. ISSN 07477171. Disponível em:
<http://dx.doi.org/10.1016/j.jsc.2016.07.025>.

FUKUDA, K. From the zonotope construction to the Minkowski addition of convex
polytopes. Journal of Symbolic Computation, v. 38, n. 4, p. 1261–1272, 2004. ISSN
07477171.

GEBAUER, R.; MÖLLER, H. M. On an installation of Buchberger’s algorithm. Journal
of Symbolic Computation, 1988. ISSN 07477171.

GIOVINI, A. et al. “One sugar cube, please” or selection strategies in the Buchberger
algorithm. In: Proceedings of the 1991 international symposium on Symbolic and
algebraic computation - ISSAC ’91. [S.l.: s.n.], 1991. ISBN 0897914376.

GOLUBITSKY, O. Converging term order sequences and the dynamic Buchberger
algorithm. Preprint, 2006. Disponível em: <https://pdfs.semanticscholar.org/815e/
b8cd6ae91f2718532a25ddf98a16c6d160b5.pdf>.

GRITZMANN, P.; STURMFELS, B. Minkowski Addition of Polytopes: Computational
Complexity and Application to Gröbner Bases. SIAM J. Disc. Math., v. 6, n. 2, p.
246–269, 1993.

HASHEMI, A.; TALAASHRAFI, D. A Note on Dynamic Gröbner Bases Computation.
International Workshop on Computer Algebra in Scientific Computing, p.
276–288, 2016. ISSN 0302-9743. Disponível em: <http://link.springer.com/10.1007/
978-3-540-75187-8>.

http://portal.acm.org/citation.cfm?doid=1993886.1993908
http://portal.acm.org/citation.cfm?doid=1993886.1993908
http://dx.doi.org/10.1016/j.jsc.2016.07.025
https://pdfs.semanticscholar.org/815e/b8cd6ae91f2718532a25ddf98a16c6d160b5.pdf
https://pdfs.semanticscholar.org/815e/b8cd6ae91f2718532a25ddf98a16c6d160b5.pdf
http://link.springer.com/10.1007/978-3-540-75187-8
http://link.springer.com/10.1007/978-3-540-75187-8

81

JANSEN, B. et al. Sensitivity analysis in linear programming : just be careful !
European Journal of Operational Research, v. 101, n. 1, p. 15–28, 1997.

KREUZER, M.; ROBBIANO, L. Computational Commutative Algebra 1. [s.n.],
2000. 1 – 327 p. ISBN 978-3-540-67733-8. Disponível em: <http://link.springer.com/10.
1007/978-3-540-70628-1>.

LAZARD, D. Gröbner bases, Gaussian elimination and resolution of systems of
algebraic equations. In: SPRINGER. European Conference on Computer Algebra.
[S.l.], 1983. p. 146–156.

MACAULAY, F. S. Some formulae in elimination. Proceedings of the London
Mathematical Society, Wiley Online Library, v. 1, n. 1, p. 3–27, 1902.

MILLER, E.; STURMFELS, B. Combinatorial Commutative Algebra. [S.l.]: Springer,
2004. ISBN 0387223568.

MÖLLER, H. M.; MORA, F. Upper and lower bounds for the degree of Gröbner bases.
In: SPRINGER. International Symposium on Symbolic and Algebraic Manipulation.
[S.l.], 1984. p. 172–183.

MORA, T.; ROBBIANO, L. The Gröbner Fan of an Ideal. Journal of Symbolic
Computation, v. 6, p. 183–208, 1988.

PATARIN, J. Hidden fields equations (HFE) and isomorphisms of polynomials
(IP): Two new families of asymmetric algorithms. In: SPRINGER. Advances in
Cryptology—EUROCRYPT’96. [S.l.], 1996. p. 33–48.

PERRY, J. Exploring the Dynamic Buchberger Algorithm. In: Proceedings of the 2017
International Symposium on Symbolic and Algebraic Computation. [S.l.: s.n.],
2017. p. 365–372. ISBN 9781450350648.

PETIT, C.; KOSTERS, M.; MESSENG, A. Algebraic Approaches for the Elliptic Curve
Discrete Logarithm Problem over Prime Fields. In: Public-Key Cryptography–PKC
2016. [S.l.]: Springer, 2016. p. 3–18.

ROBBIANO, L. Term orderings on the polynomial ring. In: Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics). [S.l.: s.n.], 1985. ISBN 9783540159841. ISSN 16113349.

ROUNE, B. H.; STILLMAN, M. Practical Gröbner Basis Computation. Proceedings of
the 2012 International Symposium on Symbolic and Algebraic Computation, p. 17,
2012.

TANGE, O. GNU Parallel 2018. Ole Tange, 2018. Disponível em: <https:
//doi.org/10.5281/zenodo.1146014>.

The Sage Developers. SageMath, the Sage Mathematics Software System (Version
8.3). [S.l.], 2018.

THOMAS, R. R. Gröbner Bases in Integer Programming. Handbook of Combinatorial
Optimization, Springer, Boston, MA, p. 533–572, 1998.

WEIBEL, C. Minkowski Sums of Polytopes: Combinatorics and Computation.
1–114 p. Tese (Doutorado) — École Polytechnique Fédérale de Lausanne, 2007.

http://link.springer.com/10.1007/978-3-540-70628-1
http://link.springer.com/10.1007/978-3-540-70628-1
https://doi.org/10.5281/zenodo.1146014
https://doi.org/10.5281/zenodo.1146014

82

Appendices

83

Appendix A DETAILED INSTANCE DATA

Tables A.1 and A.2 include more detailed data about every instance used in the

experiments of Chapter 5. Instances were extracted from Christian Eder’s repository

<https://github.com/ederc/singular-benchmarks>

and were also used, for example, in (EDER; FAUGÈRE, 2017).

The data shown in the tables for each instance is:

• n — the number of variables of the polynomial ring

• m — the number of polynomials of the input system

• char(k) — the characteristic of the base field of the polynomial ring

• | Supp |— the number of monomials in the input system

• deg — the maximum degree of the polynomials of the input system

• hom — whether the input ideal is homogeneous.

Table A.1: Instances used in the experiments of Chapter 5 (part 1).
name n m char(k) | Supp | deg hom

ahml 5 4 32003 64 4 no
ahmlh 6 4 32003 64 4 yes
assur44 8 8 32003 102 3 no
aubry2 7 12 32003 541 7 no
berth 3 2 32003 64 26 no
berthh 4 2 32003 64 26 yes
binomial_4_2_4_1 4 4 32003 8 2 yes
binomial_5_3_4_4 5 4 32003 8 3 yes
binomial_5_3_4_6 5 4 32003 8 3 yes
binomial_5_3_5_3 5 5 32003 10 3 yes
binomial_5_3_5_5 5 5 32003 10 3 yes
binomial_6_2_6_7 6 6 32003 12 2 yes
binomial_6_3_6_6 6 6 32003 12 3 yes
binomial_7_3_7_9 7 7 32003 14 3 yes
binomial_7_4_7_8 7 7 32003 14 4 yes
binomial_8_3_8_16 8 8 32003 16 3 yes
binomial_8_4_8_9 8 8 32003 16 4 yes
buchberger87 6 3 7583 6 3 yes
butcher8 8 8 32003 150 4 no
cohn3 4 4 32003 88 6 no
cyclicn2 2 2 32003 4 2 no
cyclicn3 3 3 32003 8 3 no
cyclicn4 4 4 32003 17 4 no
cyclicn5 5 5 32003 47 5 no
cyclicn6 6 6 32003 97 6 no
cyclicn7 7 7 32003 209 7 no
cyclicn8 8 8 32003 406 8 no
cyclicnh2 3 2 32003 4 2 yes
cyclicnh3 4 3 32003 8 3 yes
cyclicnh4 5 4 32003 17 4 yes
cyclicnh5 6 5 32003 47 5 yes
cyclicnh6 7 6 32003 97 6 yes
cyclicnh7 8 7 32003 209 7 yes

name n m char(k) | Supp | deg hom

czapor87_1h 5 4 32003 40 2 yes
czapor87_2h 5 4 32003 48 2 yes
dessin1 8 10 32003 139 3 no
dl 8 11 32003 89 6 no
ducos7_3 7 12 32003 1018 7 no
ducos7_5 7 13 32003 1612 7 no
econ2 2 2 32003 4 1 no
econ3 3 3 32003 8 2 no
econ4 4 5 32003 21 3 no
econ5 5 6 32003 32 3 no
econ6 6 7 32003 49 3 no
econ7 7 8 32003 81 3 no
econ8 8 9 32003 120 3 no
econh2 3 2 32003 4 2 yes
econh3 4 3 32003 8 3 yes
econh4 5 4 32003 15 3 yes
econh5 6 5 32003 24 3 yes
econh6 7 6 32003 40 3 yes
econh7 8 7 32003 65 3 yes
extcyc5 6 6 32003 124 5 no
extcyc5h 7 6 32003 124 5 yes
extcyc6 7 7 32003 283 6 no
extcyc6h 8 7 32003 283 6 yes
fateman 4 3 32003 33 5 yes
fatemanh 5 3 32003 33 5 yes
fmtm 4 3 32003 6 4 yes
fmtm_non_hom 3 2 32003 4 3 no
fmtmdeh 3 3 32003 6 4 no
gerdt93 6 3 7583 10 3 yes
hemmecke 5 3 32003 16 15 yes
hfe_segers 8 14 2 96 3 no
ilias12 8 11 32003 345 5 no
ilias13 7 10 32003 187 5 no

https://github.com/ederc/singular-benchmarks

84

Table A.2: Instances used in the experiments of Chapter 5 (part 2).
name n m char(k) | Supp | deg hom

ilias13h 8 10 32003 187 5 yes
ilias_k_2 8 9 32003 38 5 no
issac97 4 4 32003 48 2 no
jason210 8 3 32003 8 6 yes
joswig101-trimmed 5 5 101 23 23 no
katsuran2 3 2 32003 5 2 no
katsuran3 4 3 32003 12 2 no
katsuran4 5 4 32003 26 2 no
katsuran5 6 5 32003 47 2 no
katsuran6 7 6 32003 73 2 no
katsuran7 8 7 32003 117 2 no
katsuranh2 4 2 32003 5 2 yes
katsuranh3 5 3 32003 12 2 yes
katsuranh4 6 4 32003 26 2 yes
katsuranh5 7 5 32003 47 2 yes
katsuranh6 8 6 32003 73 2 yes
lichtblau 3 2 32003 23 11 no
liu 6 4 2 16 2 yes
mckay 4 9 32003 1342 10 no
noon7 7 7 32003 56 3 no
noon8 8 8 32003 72 3 no
nya 4 9 32003 1342 10 no
r5_2_2 5 5 32003 55 2 yes
r5_2_2_h 5 5 32003 55 2 yes
r5_2_4 5 5 32003 580 4 no
r5_2_4_h 5 5 32003 82 4 yes
r5_2_6 5 5 32003 2260 6 no
r5_2_6_h 5 5 32003 396 6 yes
r6_2_2 6 6 32003 96 2 yes
r6_2_2_h 6 6 32003 96 2 yes
r6_2_4 6 6 32003 1187 4 no
r6_2_4_h 6 6 32003 270 4 yes
r6_2_6_h 6 6 32003 948 6 yes
r7_2_2 7 7 32003 154 2 yes
r7_2_2_h 7 7 32003 154 2 yes
r7_2_4_h 7 7 32003 406 4 yes
r7_2_6_h 7 7 32003 2156 6 yes

name n m char(k) | Supp | deg hom

r8_2_2 8 8 32003 232 2 yes
r8_2_2_h 8 8 32003 232 2 yes
r8_2_4_h 8 8 32003 912 4 yes
redcyc6 6 6 32003 97 10 no
redcyc6h 7 6 32003 97 11 yes
redcyc7 7 7 32003 209 12 no
redcyc7h 8 7 32003 209 13 yes
reimer5 5 5 32003 66 6 no
reimer5h 6 5 32003 66 6 yes
reimer6 6 6 32003 153 7 no
reimer6h 7 6 32003 153 7 yes
reimer7 7 7 32003 271 8 no
reimer7h 8 7 32003 271 8 yes
rose 3 3 32003 29 9 no
roseh 4 3 32003 29 9 yes
rpbl 7 6 32003 100 3 no
rpblh 8 6 32003 100 3 yes
safey 8 9 32003 4305 16 no
schiele 4 2 32003 6 2 no
schieleh 5 2 32003 6 2 yes
schrans_troost 8 8 32003 127 2 no
sendra 2 2 32003 24 7 no
sendrah 3 2 32003 24 7 yes
solotarev 4 4 32003 15 2 no
solotarevh 5 4 32003 15 3 yes
sparsesym5 5 5 32003 16 10 no
sparsesym5h 6 5 32003 12 10 yes
sym33 4 3 7583 11 4 yes
syz1 3 2 32003 4 2 no
trinks 7 6 32003 37 3 yes
uteshev_bikker 5 4 7583 75 3 yes
vermeer 5 5 32003 37 5 no
virasoro 8 8 32003 127 2 no
wang16 4 6 32003 89 4 no
wang16h 5 4 32003 48 4 yes
weispfenning94 4 3 7583 17 5 yes
wu90 5 5 32003 29 3 no
wu90h 6 5 32003 30 3 yes

85

Appendix B ADDITIONAL EXPERIMENTAL RESULTS

In this appendix, we present experimental results for all algorithms of Section 5.2

non-comparatively, that is, in a format not well suited to compare algorithms directly. For

each triple (algorithm, heuristic, instance) the following data was measured and grouped

by number of variables of the instance, for convenience. Every experiment was run with

a timeout of 30 minutes.

• n — number of variables of this group of instances

• touts — number of timeouts in this group

• t1 — the average running time of instances with n variables, counting instances that

timed out as having taken 30 minutes

• t2 — the average running time of instances with n variables that did not time out

• O — the average overhead of instances with n variables that did not time out, com-

puted as the time the algorithm spends inside functions that are specific to dynamic

algorithms

• |G| — the average size of the final (reduced) Gröbner Basis of instances with n

variables that did not time out

• | Supp |— the average number of monomials in the final (reduced) Gröbner Basis

of instances with n variables that did not time out

• deg — the average maximum degree of polynomials in the final (reduced) Gröbner

Basis of instances with n variables that did not time out

• #S-red — the average number of S-reductions in the computation of instances with

n variales that did not time out

The format above is not well suited to compare algorithms directly, as timeouts are

not considered in the averages. This means an algorithm with fewer timeouts was usually

able to finish computing Gröbner Bases for harder instances, and so its averages increase

when compared to an algorithm that timed out on these same instances.

86

Table B.1: Experimental results for the Static algorithm

n touts t1 t2 O |G| | Supp | deg #S-red

2 0 0.10 0.10 0.00 3.33 64.67 4.67 4.33
3 0 0.27 0.27 0.00 6.92 243.33 5.58 19.42
4 0 35.72 35.72 0.00 21.30 1583.65 8.45 131.00
5 2 135.57 16.68 0.00 32.79 8102.96 7.89 119.96
6 2 197.74 45.14 0.00 47.29 4809.90 8.90 239.48
7 3 469.49 288.05 0.00 111.27 12381.73 9.18 904.05
8 7 665.74 287.65 0.00 169.71 33345.43 10.76 1079.05

Table B.2: Experimental results for the Caboara algorithm

n touts t1 t2 O |G| | Supp | deg #S-red

2 0 0.17 0.17 0.07 3.33 64.33 5.33 3.67
3 0 0.53 0.53 0.36 3.67 65.83 10.67 12.17
4 3 280.41 12.25 9.20 13.41 1127.53 8.06 51.71
5 3 229.30 54.78 40.02 24.41 1860.70 9.41 112.19
6 5 421.81 38.99 28.70 23.61 734.22 21.94 171.00
7 12 903.75 76.45 70.76 38.15 1551.77 11.23 178.69
8 14 974.14 148.29 81.13 53.93 2894.93 18.29 455.36
(a) Experimental results for the Caboara algorithm with the Hilbert heuristic

n touts t1 t2 O |G| | Supp | deg #S-red

2 0 0.12 0.12 0.01 3.33 78.00 6.67 5.67
3 0 7.05 7.05 6.74 2.92 38.67 18.00 14.75
4 4 364.90 6.12 5.89 9.06 617.69 8.56 18.94
5 6 370.44 13.05 12.65 13.83 235.08 7.92 44.96
6 8 703.44 118.61 117.76 18.40 318.20 7.87 73.87
7 14 1150.27 323.34 320.70 34.00 1091.27 12.09 151.45
8 21 1374.39 97.54 95.29 26.86 704.57 7.29 130.00

(b) Experimental results for the Caboara algorithm with the Betti heuristic

n touts t1 t2 O |G| | Supp | deg #S-red

2 0 0.15 0.15 0.06 3.33 78.00 6.67 5.67
3 0 0.47 0.47 0.35 3.83 65.75 8.17 8.75
4 4 369.09 11.37 11.15 9.25 618.38 8.31 18.81
5 6 370.77 13.46 13.07 13.12 243.58 7.25 43.58
6 9 709.11 7.83 7.39 16.93 198.36 7.50 57.43
7 15 1180.02 250.05 247.65 29.40 788.40 10.20 134.80
8 23 1482.51 22.08 21.08 24.20 431.00 5.80 102.80

(c) Experimental results for the Caboara algorithm with the Mixed heuristic

87

Table B.3: Experimental results for the CP algorithm

n touts t1 t2 O |G| | Supp | deg #S-red

2 0 0.17 0.17 0.07 3.33 64.33 5.33 3.67
3 0 0.38 0.38 0.18 3.67 65.83 10.67 12.17
4 0 148.14 148.14 4.09 15.80 2964.40 12.40 158.20
5 3 202.53 25.04 3.85 26.41 2186.00 9.52 121.48
6 3 284.46 57.13 30.62 41.35 6557.80 16.95 237.15
7 11 838.81 83.59 45.02 58.79 4338.71 11.07 300.86
8 12 848.68 135.19 45.20 79.12 10903.56 13.62 554.88

(a) Experimental results for the CP algorithm with the Hilbert heuristic

n touts t1 t2 O |G| | Supp | deg #S-red

2 0 0.12 0.12 0.00 3.33 78.00 6.67 5.67
3 0 0.88 0.88 0.67 3.08 44.17 11.75 11.58
4 3 272.27 2.67 2.34 8.76 587.88 9.53 24.59
5 4 267.20 31.38 27.61 17.85 1229.15 9.04 72.85
6 7 608.36 87.02 85.09 18.44 224.88 9.94 97.94
7 13 956.03 41.72 37.10 40.17 1715.67 12.67 177.92
8 17 1247.40 393.38 375.60 56.18 3976.00 14.91 334.82

(b) Experimental results for the CP algorithm with the Betti heuristic

n touts t1 t2 O |G| | Supp | deg #S-red

2 0 0.14 0.14 0.04 3.33 78.00 6.67 5.67
3 0 0.20 0.20 0.09 3.83 65.75 8.17 8.75
4 3 271.90 2.24 1.94 8.94 587.35 8.88 23.88
5 4 271.18 35.98 33.91 16.77 709.85 7.69 64.77
6 5 520.93 165.63 155.18 35.00 3301.39 10.94 167.67
7 12 916.68 101.31 94.66 45.08 1941.08 12.31 206.54
8 17 1200.52 274.04 259.97 56.27 4000.55 9.73 307.00

(c) Experimental results for the CP algorithm with the Mixed heuristic

88

Table B.4: Experimental results for the GS algorithm

n touts t1 t2 O |G| | Supp | deg #S-red

2 0 32.79 32.79 32.44 2.00 34.00 16.33 18.67
3 1 150.19 0.20 0.06 2.82 36.09 8.45 4.45
4 4 446.39 107.98 107.14 6.00 537.25 8.81 37.00
5 12 786.45 110.75 110.32 11.06 148.94 5.50 68.44
6 15 1223.88 143.67 143.46 9.62 59.88 6.38 27.50
7 22 1600.80 139.99 139.71 10.00 53.67 5.33 40.33
8 26 1671.70 3.82 3.64 8.50 17.00 5.00 28.00

(a) Experimental results for the GS algorithm with the Hilbert heuristic

n touts t1 t2 O |G| | Supp | deg #S-red

2 0 30.30 30.30 29.96 2.00 34.00 16.33 18.67
3 1 150.19 0.21 0.06 2.91 36.27 7.91 5.27
4 4 442.45 103.06 102.40 7.31 592.06 9.06 41.38
5 12 812.69 154.49 153.95 11.56 166.67 5.89 81.11
6 15 1224.51 145.47 145.25 9.62 59.88 6.38 29.50
7 22 1600.24 135.31 135.03 10.00 53.67 5.33 41.67
8 26 1671.65 3.07 2.90 8.50 17.00 5.00 28.00

(b) Experimental results for the GS algorithm with the Betti heuristic

n touts t1 t2 O |G| | Supp | deg #S-red

2 0 3.63 3.63 2.91 3.33 78.00 6.67 94.33
3 1 151.15 1.25 1.06 2.55 18.91 7.27 16.91
4 6 578.86 55.51 55.05 4.71 543.07 7.36 54.29
5 16 970.90 23.35 23.10 6.93 79.43 4.86 31.79
6 15 1232.20 167.57 167.29 8.00 68.12 4.50 40.88
7 24 1728.09 2.28 2.12 7.00 14.00 3.00 23.00
8 26 1673.97 35.54 35.32 8.50 17.00 5.00 63.50

(c) Experimental results for the GS algorithm with the Mixed heuristic

89

Table B.5: Experimental results for the GS-then-CP algorithm

n touts t1 t2 O |G| | Supp | deg #S-red

2 0 0.25 0.25 0.09 3.00 81.00 7.00 6.67
3 0 0.39 0.39 0.16 3.00 38.00 10.00 11.17
4 2 185.20 5.78 0.77 10.06 1135.67 8.67 43.22
5 2 160.58 43.48 2.15 23.68 2613.71 10.04 121.39
6 3 261.07 30.23 7.18 37.85 5250.85 19.70 234.60
7 11 860.54 122.38 21.01 39.86 1920.79 22.93 297.64
8 13 960.75 233.39 127.58 71.93 9782.27 12.13 513.53
(a) Experimental results for the GS-then-CP algorithm with the Hilbert heuristic

n touts t1 t2 O |G| | Supp | deg #S-red

2 0 0.17 0.17 0.02 3.33 79.00 7.00 6.00
3 0 0.99 0.99 0.73 3.25 54.00 11.42 11.83
4 3 276.97 8.20 7.77 7.88 162.53 10.06 24.41
5 6 363.98 4.97 1.94 16.25 2358.79 9.67 54.79
6 7 604.03 80.80 77.85 22.25 280.44 11.38 116.56
7 13 993.67 120.14 114.15 44.92 1661.42 11.83 202.25
8 21 1400.85 203.42 194.92 32.00 1101.29 15.86 204.14
(b) Experimental results for the GS-then-CP algorithm with the Betti heuristic

n touts t1 t2 O |G| | Supp | deg #S-red

2 0 0.25 0.25 0.08 3.00 81.00 7.33 6.67
3 0 0.37 0.37 0.19 3.50 53.00 7.92 9.00
4 3 270.64 0.75 0.51 9.82 228.00 9.18 23.65
5 5 302.95 3.54 2.59 14.60 731.36 7.12 47.00
6 5 504.40 144.52 136.07 28.72 2074.72 10.67 144.39
7 13 974.58 80.37 76.09 39.25 1190.42 10.42 169.92
8 21 1406.34 225.36 211.52 39.29 5804.43 11.14 194.14
(c) Experimental results for the GS-then-CP algorithm with the Mixed heuristic

90

Table B.6: Experimental results for the Random algorithm

n touts t1 t2 O |G| | Supp | deg #S-red

2 0 0.79 0.79 0.58 3.33 71.67 5.33 27.00
3 0 2.02 2.02 0.86 3.42 43.33 6.17 74.92
4 3 272.93 3.45 1.70 7.47 728.59 7.65 106.29
5 5 320.82 24.98 5.38 28.08 7862.68 7.12 137.12
6 7 573.62 37.08 9.85 28.38 1048.94 8.69 317.62
7 10 830.12 183.54 33.21 59.87 3977.07 8.47 611.27
8 12 905.39 234.43 35.68 82.62 10810.00 12.31 906.25

(a) Experimental results for the Random algorithm with the Hilbert heuristic

n touts t1 t2 O |G| | Supp | deg #S-red

2 0 0.14 0.14 0.04 3.33 64.67 4.67 4.33
3 0 8.17 8.17 7.79 6.33 225.17 5.67 24.67
4 3 294.07 28.31 27.13 16.06 766.12 9.41 67.24
5 5 341.17 49.40 46.31 19.08 1312.24 7.92 92.12
6 9 735.36 50.95 49.90 16.29 172.50 7.64 73.14
7 17 1290.85 208.90 204.28 22.88 500.12 9.75 174.12
8 23 1541.24 350.95 342.59 32.60 702.20 5.80 228.00

(b) Experimental results for the Random algorithm with the Betti heuristic

n touts t1 t2 O |G| | Supp | deg #S-red

2 0 0.31 0.31 0.20 3.67 85.67 5.67 8.33
3 0 4.52 4.52 4.24 3.83 55.75 6.75 33.17
4 3 393.67 145.50 137.69 8.71 813.47 8.06 325.35
5 5 405.75 126.90 122.05 13.56 481.80 6.96 189.68
6 9 837.96 219.51 217.17 17.57 251.71 7.36 134.43
7 15 1145.99 164.98 162.76 31.80 923.20 8.40 139.60
8 22 1453.78 184.33 182.19 25.83 662.83 5.83 131.83

(c) Experimental results for the Random algorithm with the Mixed heuristic

91

Table B.7: Experimental results for the Perturb algorithm

n touts t1 t2 O |G| | Supp | deg #S-red

2 0 0.34 0.34 0.20 3.33 64.33 5.33 13.33
3 0 1.00 1.00 0.46 3.92 51.17 7.00 46.58
4 3 361.18 107.27 7.00 9.18 269.29 7.76 2077.35
5 5 322.65 27.19 5.82 27.44 7830.72 7.00 237.40
6 6 479.70 13.71 6.42 30.29 1122.35 7.12 207.88
7 8 747.66 252.44 65.09 65.76 5267.88 8.41 536.65
8 16 1099.89 166.41 53.30 98.75 16951.58 9.42 556.58

(a) Experimental results for the Perturb algorithm with the Hilbert heuristic

n touts t1 t2 O |G| | Supp | deg #S-red

2 0 0.11 0.11 0.01 3.33 64.67 4.67 4.33
3 0 8.29 8.29 7.89 7.17 256.42 6.00 26.58
4 4 368.31 10.38 10.00 13.00 436.81 7.75 36.62
5 5 380.04 96.05 92.49 21.00 1405.68 7.72 105.64
6 9 799.49 156.31 154.78 22.00 244.07 8.00 108.93
7 19 1388.39 84.95 83.63 18.17 289.00 5.50 105.00
8 23 1545.52 374.93 371.60 32.20 680.80 5.00 178.40

(b) Experimental results for the Perturb algorithm with the Betti heuristic

n touts t1 t2 O |G| | Supp | deg #S-red

2 0 0.23 0.23 0.12 3.67 85.67 5.67 9.67
3 0 0.48 0.48 0.35 4.00 64.00 6.42 13.50
4 3 274.56 5.36 4.86 10.24 948.76 8.00 34.65
5 6 425.66 82.07 80.40 13.12 192.08 6.46 96.83
6 7 670.94 176.97 175.57 18.25 252.31 7.38 109.25
7 15 1126.46 116.16 114.54 31.80 919.30 6.90 127.00
8 21 1434.82 339.27 336.53 32.57 970.86 5.43 158.86

(c) Experimental results for the Perturb algorithm with the Mixed heuristic

92

Table B.8: Experimental results for the Regrets algorithm

n touts t1 t2 O |G| | Supp | deg #S-red

2 0 2.44 2.44 2.30 3.00 81.00 7.33 13.33
3 1 153.98 4.34 4.08 3.27 42.64 9.36 17.91
4 3 291.24 24.98 24.16 16.00 943.71 10.00 41.59
5 6 390.42 38.02 34.38 23.25 1195.62 8.88 84.79
6 8 682.01 85.75 76.82 17.33 222.40 10.93 113.60
7 13 948.53 26.10 23.72 36.17 1179.33 9.00 144.75
8 19 1331.87 343.59 321.59 56.56 1910.33 15.00 395.33

(a) Experimental results for the Regrets algorithm with the Hilbert heuristic

n touts t1 t2 O |G| | Supp | deg #S-red

2 0 0.23 0.23 0.12 3.67 85.67 5.67 5.67
3 5 750.08 0.13 0.03 3.00 36.43 3.86 3.29
4 5 452.37 3.16 2.98 10.40 248.80 9.27 23.93
5 7 433.55 17.68 17.33 16.09 233.09 8.00 50.30
6 9 713.19 14.53 14.01 21.00 237.50 8.14 72.21
7 18 1337.04 146.57 144.42 34.43 592.43 8.14 147.71
8 23 1504.70 146.32 144.65 37.80 487.20 6.40 170.80

(b) Experimental results for the Regrets algorithm with the Betti heuristic

n touts t1 t2 O |G| | Supp | deg #S-red

2 0 0.39 0.39 0.29 3.33 70.00 5.33 4.67
3 4 654.71 0.26 0.16 3.00 36.43 3.86 3.29
4 4 365.92 7.39 7.19 10.62 298.50 8.75 24.12
5 7 444.75 32.28 31.88 13.70 210.74 8.17 47.83
6 9 711.34 11.49 11.05 16.64 196.07 7.79 59.86
7 17 1283.08 184.62 182.41 33.00 690.25 7.12 138.62
8 23 1510.81 180.55 178.79 38.80 592.20 9.00 178.40

(c) Experimental results for the Regrets algorithm with the Mixed heuristic

93

Table B.9: Experimental results for the Simplex algorithm

n touts t1 t2 O |G| | Supp | deg #S-red

2 0 0.24 0.24 0.14 3.33 64.67 4.67 4.33
3 0 0.77 0.77 0.51 4.67 84.58 6.67 26.75
4 3 284.87 17.49 10.90 8.29 388.65 8.06 316.94
5 7 426.91 9.01 6.43 12.04 156.48 6.22 113.09
6 9 773.29 113.26 109.86 19.86 646.21 6.50 145.07
7 14 1056.53 110.30 86.59 29.64 845.82 7.45 775.36
8 20 1303.77 63.19 51.91 34.25 989.88 5.88 453.75
(a) Experimental results for the Simplex algorithm with the Hilbert heuristic

n touts t1 t2 O |G| | Supp | deg #S-red

2 0 0.17 0.17 0.07 3.33 64.67 4.67 4.33
3 0 3.13 3.13 2.85 6.92 243.33 5.58 19.50
4 4 423.86 79.83 78.90 17.88 735.06 10.19 48.50
5 5 394.56 113.48 110.32 24.28 1532.36 8.96 88.76
6 9 758.37 88.76 87.82 20.86 232.93 7.36 80.14
7 18 1302.36 22.70 21.92 21.00 332.43 5.71 87.00
8 20 1423.99 483.98 478.26 42.50 1322.75 6.00 226.88

(b) Experimental results for the Simplex algorithm with the Betti heuristic

n touts t1 t2 O |G| | Supp | deg #S-red

2 0 0.23 0.23 0.12 3.33 70.00 5.33 6.00
3 0 0.74 0.74 0.57 4.58 85.92 5.83 23.83
4 3 317.85 56.30 53.19 10.29 288.29 8.00 209.18
5 8 526.84 63.87 61.89 11.05 140.95 6.45 119.50
6 9 773.40 113.44 109.73 17.93 183.43 7.21 336.64
7 14 1052.36 100.82 99.26 31.55 872.18 7.27 134.18
8 21 1385.91 143.63 141.28 32.71 1100.14 6.14 141.57

(c) Experimental results for the Simplex algorithm with the Mixed heuristic

	Agradecimentos
	Abstract
	Resumo
	List of Symbols
	List of Figures
	List of Tables
	Contents
	1 Introduction
	2 Polynomial system solving and Gröbner Bases
	2.1 Insights from the linear case
	2.2 Monomial orders
	2.3 Polynomial reduction and Gröbner Bases
	2.4 Algorithms for computing a Gröbner Basis
	2.4.1 Buchberger's algorithm
	2.4.2 Faster reduction with matrices: F4
	2.4.3 Avoiding reductions to zero using signatures: F5

	2.5 The Syzygy module of a monomial ideal and useless S-polynomial elimination
	2.5.1 Buchberger's criteria and the Gebauer-Möller algorithm
	2.5.2 Graph-based criteria

	2.6 Hilbert Function, Hilbert Series and Betti Numbers
	2.7 Change of ordering
	2.7.1 Change of ordering in dimension zero: FGLM
	2.7.2 The Gröbner Fan of an ideal

	2.8 Known complexity results

	3 Dynamic algorithms for Gröbner Bases
	3.1 Unrestricted algorithms
	3.2 Restricted algorithms
	3.3 Heuristic functions
	3.3.1 The Hilbert heuristic
	3.3.2 The Betti heuristic
	3.3.3 Mixed heuristic

	4 Unrestricted dynamic Gröbner Basis algorithms
	4.1 Neighborhoods of monomial orders
	4.2 Simplified unrestricted algorithms
	4.3 Simplex-based algorithm
	4.4 The Restricted-with-regrets algorithm

	5 Computational results
	5.1 Instances and computational environment
	5.2 Experiments and results
	5.2.1 Evaluation of the heuristics
	5.2.2 Algorithm comparison with respect to time
	5.2.3 Algorithm comparison with respect to the final basis

	6 Conclusions and further work
	References
	Appendices
	Appendix A Detailed instance data
	Appendix B Additional experimental results

