

Obtenção de prebióticos a partir de soro e permeado de leite utilizando β-galactosidase imobilizada

Luiza Strapasson Spolidoro¹, Alessandro de Oliveira Rios¹


(1) Instituto de Ciência e Tecnologia de Alimentos – Universidade Federal do Rio Grande do Sul (UFRGS)

INTRODUÇÃO

Contêm matéria orgânica (especialmente lactose)
Altas demandas química e bioquímica de O₂
Problema ambiental quando não tratados

Estudo de diversas substrato substrato (estimulam seletivamente para produção o crescimento de bactérias de GOS são prebióticos (estimulam seletivamente benéficas no cólon)

Enzima β-galactosidase: capaz de realizar transgalactosilação da galactose, formando galacto-oligossacarídeos (GOS)

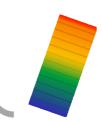
Imobilização enzimática:

- Permite reutilização da enzima (↓\$)
- ↑ estabilidade operacional e térmica

METODOLOGIA

Estudo da síntese de GOS

utilizando β-galactosidase de Bacillus circulans imobilizada em suportes de quitosana



40 °C e 50 °C

Substratos: Soro de leite e permeado de soro; 300 e 400 g/L

pH: 5, 6 e 7

- Atividade da enzima livre e imobilizada: medida utilizando o substrato cromogênico ONPG (o-nitrofenilβ-D-galactopiranosídeo);
- Produção de GOS: analisada por cromatografia líquida de alta eficiência.

RESULTADOS

Tabela 1: Consumo de lactose e produção de GOS em soro de leite e permeado de soro, em diferentes condições de catálise.

Condições	Tempo (min)	Soro de leite			Permeado de soro		
		GOS (g/L)	Rendimento. (%)	Conversão Lactose (%)	GOS (g/L)	Rendimento (%)	Conversão Lactose (%)
pH 5, 40°C, 300 g/L	240	115,6	39	64	103,4	34	63
pH 5, 40°C, 400 g/L	300	141,8	35	61	148,7	37	63
pH 5, 50°C, 300 g/L	180	105,0	35	67	107,6	36	67
pH 5, 50°C, 400 g/L	240	144,5	36	67	149,9	37	66
pH 6, 40°C, 300 g/L	240	113,4	38	64	119,9	40	64
pH 6, 40°C, 400 g/L	240	150,5	38	62	156,2	39	63
pH 6, 50°C, 300 g/L	240	114,4	38	65	117,3	39	66
pH 6, 50°C, 400 g/L	240	148,2	37	67	153,8	38	67
pH 7, 40°C, 300 g/L	240	115,9	39	65	112,0	37	64
pH 7, 40°C, 400 g/L	300	156,9	39	65	160,0	40	65
pH 7, 50°C, 300 g/L	240	115,7	39	66	118,1	39	65
pH 7, 50°C, 400 g/L	300	159,4	40	64	162,9	41	64

- O parâmetro com maior influência na síntese de GOS foi a concentração inicial de lactose no meio reacional;
- Os efeitos do pH e da temperatura foram pouco significativos;
- A máxima produção de GOS ocorreu em pH 7, 50 °C e concentração de 400 g/L para ambos os substratos;
- Para o soro, foi obtido 40% de rendimento e 64% de conversão de lactose; para o permeado o rendimento foi de 41%, com 64% de conversão de lactose.

CONCLUSÃO

- Rendimento e conversão de lactose satisfatórios;
- Soro de leite e permeado de soro são substratos de baixo custo com potencial para obtenção de oligossacarídeos funcionais, de alto valor agregado;
- Perspectivas de futuras aplicações: bebidas lácteas, iogurtes e leite em pó infantil enriquecidos com GOS.

AGRADECIMENTOS

