

Caracterização do efeito de regeneração viscoelástica em misturas asfálticas através do modelo S-VECD

Felipe do Canto Pivetta Lélio Antônio Teixeira Brito

Introdução

Os fenômenos responsáveis pela deterioração de um pavimento asfáltico são objeto de estudo de inúmeros trabalhos que procuram, através de uma correta compreensão da mecânica do dano, descrever o comportamento do material frente às solicitações impostas ao longo da vida de serviço de um pavimento. Dentre os possíveis fenômenos, destaca-se o dano/comportamento à fadiga que inicia nos primeiros ciclos de carregamento e é tido como uma das principais causas de falha em pavimentos asfálticos. O dano por fadiga em materiais betuminosos ocorre através do desenvolvimento de trincas de pequenas dimensões (micro trincas) que evoluem conforme as solicitações são continuadas. Quando um corpo asfáltico é submetido à um periodo de repouso (PR) evidencia-se o fenômeno de regeneração (ou "healing") que age de maneira a fechar estas trincas e recuperar parte da rigidez do material, perdida devido ao dano.

Objetivo

Este trabalho procura, através de variações de temperatura e duração de Periodos de Repouso em ensaios de fadiga à tração direta, descrever o comportamento de misturas asfálticas submetidas à solicitações de fadiga, incorporando o efeito de regeneração.

Metodologia

Os ensaios de fadiga foram realizados através do procedimento descrito norma americana AASHTO TP-107 com adaptação do modo de controle on-specimen. A figura 1 mostra o esquema de montagem e ensaio dos corpos de prova.

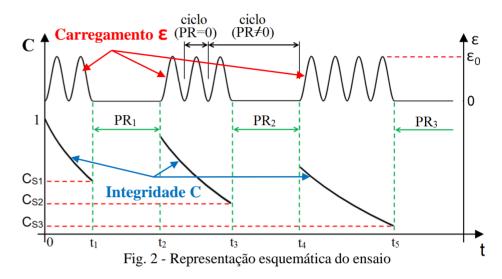


Fig. 1 – Esquema de montagem e ensaio dos corpos de prova

Os ensaios foram realizados com a inserção de PR's a cada queda de 10% do valor inicial de integridade (C), ilustrados esquemáticamente através das quantidades $C_{\rm Si}$ na figura a seguir. É importante remarcar que nos periodos de repouso a integridade não pode ser calculada pois não existe carregamento.

Os ensaios foram realizados em três diferentes temperaturas -30° , 20° e 15° C - com diferentes períodos de repouso -270, 60, 30 e 10 segundos.

Resultados

A partir das informações coletadas e da inserção de um histórico de carregamento/repouso para uma dada amostra, é possível simular a variação do número de ciclos (ΔN) daquela amostra, conforme indica a figura 3.

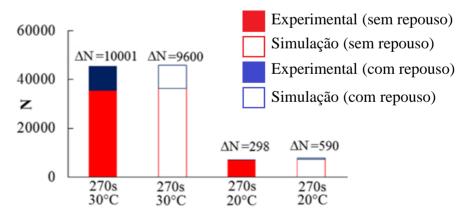


Fig. 3 - Resultados de simulação e de ensaio para duas condições

Considerações finais

A grande proximidade entre os valores obtidos experimentalmente e simulados a partir das propriedades calculadas, indica que a metodologia aplicada permite uma adequada previsão da capacidade de regeneração de misturas asfálticas frente a ensaios cíclicos, uma vez que conhecidas as condições de carregamento. Dessa forma, considera-se que o objetivo proposto foi cumprido.

