

Martim Mandarino Alves Orientador: Rafael Manica NECOD – Núcleo de Estudos em Correntes de Densidade - IPH / UFRGS

INTRODUÇÃO

As correntes de turbidez são correntes de densidade que ocorrem pela presença de sedimentos em suspensão, que causam uma diferença de densidade entre a corrente e o fluido ambiente, gerando o seu movimento. Conforme a corrente se desloca, tensões são geradas sobre o leito. No caso de o leito ser composto de material granular solto, podem ocorrer fenômenos de erosão, transporte e deposição de sedimentos, a modificação da geometria do leito e a geração de diferentes formas de fundo. Uma das principais forças geradas pelo escoamento é a tensão de cisalhamento (t), que atua tangencialmente à determinada superfície, dada pelo produto entre o coeficiente de viscosidade dinâmico e o gradiente de velocidades (variação da velocidade em relação à altura do escoamento). Esses depósitos são de grande relevância para os estudos de hidráulica de sedimentos e para a indústria do petróleo, visto que estes depósitos podem armazenar grandes volumes de hidrocarbonetos.

para iluminação, fotos de topo serão obtidas ao longo de todo o depósito, para que possa ser montada uma foto única retratando todo o comprimento do canal. Com as tensões de cisalhamento calculadas e as imagens dos depósitos gerados para cada ensaio, as correlações acima propostas por este estudo foram realizadas.

RESULTADOS

Os valores obtidos para diversos parâmetros hidráulicos da corrente de turbidez em cada um dos ensaios em suas duas estações (estação 1 a 14 m e estação 2 a 16 m do início do canal) e o coeficiente de inclinação "m", que representa a inclinação do perfil de velocidades junto a camada limite, são apresentados na tabela 2.

Já as fotos dos	Tabela 2: Parâmetros Hidráulicos.								
depósitos em cada	Ensaio	Estação	$\mathbf{Fr}_{\mathbf{d}}$	CV (%)	U (m/s)	u* (m/s)	τ (N/m²)	Re	m
	А	1	2,19	0,23	0,18	0,032	1,03	32244	0,08
ponto e o gráfico do		2	1,91	0,25	0,17	0,026	0,68	32211	0,06
perfil de velocidades ao	В	1	1,92	0,35	0,21	0,031	0,98	40790	0,08
ana da vantical ca		2	1,80	0,32	0,19	0,016	0,26	37317	0,04
longo da vertical se	C	1	2,13	0,79	0,27	0,040	1,63	31209	0,10
encontram na figura 2.		2	1,47	0,72	0,23	0,032	1,04	43940	0,08

OBJETIVOS

O presente estudo propõe a avaliação das tensões de cisalhamento (τ) geradas por correntes de turbidez sobre leito móvel e a sua influência sobre a modificação do leito e as formas de fundo geradas, através de modelagem física em um canal bidimensional.

MATERIAIS E MÉTODOS

Para a obtenção dos dados, foram realizados experimentos em um canal de 18 m de comprimento, 20 x 50 cm de seção transversal e 1º de inclinação, inserido em um canal maior, preenchido com água (Fig. 1).

As correntes de turbidez experimentais foram preparadas com a mistura de água e microesfera de vidro (d_{50} = 45 µm e massa especifica = 2544,4 kg/m³). Através de um sistema de bombeamento com controle de vazão, a mistura é injetada para dentro do canal, em ensaios com vazões constantes ao longo do tempo.

As diversas concentrações da mistura, vazões de entrada e tempo de ensaio são apresentados na tabela 1.

Ensaio	Q (I/min)	CV (%)	ρ _{mix} (kg/m³)	t (min)
А	170	2,80	1042,4	23
В	220	1,79	1025,8	18
С	270	3,15	1048,5	15

A partir de duas estações de medição ao longo do canal, cada uma composta por sifões para coleta de amostras da corrente (para avaliação da concentração de sedimentos) e equipamentos de medição de velocidade (UVP), os perfis de velocidades e de concentrações foram obtidos. Com esses valores e fazendo uso das equações de Elisson & Turner (1959), são definidas as alturas, concentrações e velocidades médias de cada uma das correntes. Com a análise desses valores e do perfil logarítmico das velocidades na camada limite, são

Figura 2: Fotos dos depósitos e perfis verticais de velocidade.

CONCLUSÕES

As formas de fundo geradas pelo escoamento foram classificadas como ondulações (*ripples*). Foi possível observar que formas de fundo com comprimento de onda e profundidades maiores são geradas por vazões maiores. Há uma proporcionalidade entre presença das formas de fundo e os valores calculados para a tensão de cisalhamento e velocidade de cisalhamento. Isso se deve a diminuição do valor da inclinação do perfil de velocidades junto a camada limite "m", usado para o calculo dos dois parâmetros anteriores. Essa diminuição de "m" de

calculadas as velocidades de cisalhamento (u^*) e tensões de cisalhamento (τ), alvo de estudo

deste trabalho, além de outros parâmetros que ajudam a caracterizar a corrente de turbidez.

Após os ensaios, o canal é lentamente esvaziado, para que não ocorram modificações nas

formas de fundo depositadas no canal. Utilizando câmera digital (Nikon D5000) e holofotes

montante para jusante se deve a diminuição da diferença de densidade entre a corrente e o

meio, conforme ela se desenvolve ao longo do canal.

ELLISON, T. H.; TURNER, J. S. Turbulent entrainment in stratified flows, Journal of Fluid Mechanics, v.6, p.423-448, 1959.