

Evento	Salão UFRGS 2018: SIC - XXX SALÃO DE INICIAÇÃO CIENTÍFICA
	DA UFRGS
Ano	2018
Local	Campus do Vale - UFRGS
Título	Simulação numérica de fluido bidimensional incompressivel
	em seções de ponte
Autor	EDINEI CESARIO ZANONI
Orientador	PEDRO HENRIQUE DE ALMEIDA KONZEN

Simulação computacional de fluido incompressível para seções de ponte

Edinei Cesario Zanoni^a, Pedro Henrique de Almeida Konzen^b

^aEscola de Engenharia - Curso de Engenharia Civil ^bIntituto de Matemática e Estatística Universidade Federal do Rio Grande do Sul

Neste trabalho, apresenta-se estudo de simulação computacional de fluido incompressível com obstáculo [6]. Discute-se sobre a modelagem matemática via equações de Navier-Stokes e Equação da Continuidade, e a discretização do modelo empregado via o Método de Elementos Finitos.

A realização deste trabalho baseia-se em pesquisas feitas em áreas inter-curriculares de engenharia e matemática, fundamentando seu contexto em resultados clássicos e bem conhecidos. Inicialmente, buscou-se modelar o comportamento do fluido e do objeto em separado. Para a análise do movimento do fluido, partiu-se das equações de Navier-Stokes, auxiliadas pela equação da continuidade, considerando o fluido incompressível, em movimento bidimensional e com condições iniciais e de contorno bem definidas; além do corpo que, inicialmente, considera-se como rígido.

As simulações computacionais foram obtidas via o método de elementos finitos [5], usando o pacote Gascoigne 3D [1,2]. A discretização no espaço foi feita com elementos quadrangulares lineares com a utilização do Software GMSH e a discretização no tempo com uma combinação de esquemas de Euler implícito e Crank-Nicholson. Em cada passo de tempo, a solução das equações não-lineares é obtida por iteração quasi-Newton, onde monitoramos a razão de convergência das iterações e, assim, computamos os valores obtidos.

Os resultados apresentados neste trabalho balizam estudos das propriedades da interação do fluido com o objeto. Complementarmente, deverá se juntar à modelagem as propriedades elástico-lineares do objeto, permitindo a simulação do movimento relativo deste causado pelo fluido.

Referências

- [1] R. Becker, M. Braack, e R. Rannacher, Numerical simulation of laminar flames at low mach number with adaptive finite elements., Combustion Theory and Modelling, 30(3), 1999, 503-534.
- [2] M. Braack, An Adaptive Finite Element Method for Reactive Flow Problems, Ruprecht-Karls-Universität Heidelberg, 1998.
- [3] Ph. Clement, Approximation by finite element functions using local regularization., Reactive Flows, Diffusion and Transport, 9, 1975, 77-84.
- [4] J.-L. Guermond, Stabilization of galerkin approximations of transport equations by subgrid modeling., Modél, Math. Anal. Numér., 33(6), 1999, 1293-1316.
- [5] C. Johnson, Numerical solution of partial differential equations by the finite element method., Ed. Dover, 2009.
- [6] Alexandre L. Braun, Um modelo para simulação numérica da ação de vento sobre seções de ponte Em: Dissertação, mestrado. Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Engenharia Civil, Porto Alegre, 2003.