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ABSTRACT

This thesis deals with the output regulation of rational nonlinear systems with in-
put saturation. The output regulation problem considers a controlled plant subject to
non-vanishing perturbations or reference signals produced by an exogenous autonomous
system, where the goal is to ensure asymptotic convergence to zero of the plant output
error. This work develops systematic methodologies for stability analysis and design of
anti-windup compensated dynamic output feedback stabilizing controllers able to solve
the output regulation problem for rational nonlinear systems with saturating inputs. In
order to obtain these results, the proposed method employs the differential-algebraic rep-
resentation, a theoretical framework that treats rational nonlinear systems by a differen-
tial equation combined with an equality relation. This tool is utilized in order to cast the
stability analysis and control synthesis into optimization problems subject to linear ma-
trix inequality constraints. Towards ensuring asymptotic output regulation, it is initially
assumed the prior knowledge of an exact solution to the regulator equations, which rep-
resent an invariant and zero-error steady-state manifold. This assumption is later relaxed,
where the results are extended for the practical regulation problem. In this last scenario,
any numerically approximated solution to the regulator equations may be considered and
the devised methodology ensures ultimate boundedness of the output error. Overall, the
main innovation of this thesis is the application of the differential-algebraic representation
into the nonlinear output regulation context, in turn providing a solution to a new set of
problems intractable by state-of-the-art nonlinear methods.

Keywords: Output regulation, differential-algebraic representation, linear matrix

inequalities, rational nonlinear systems, input saturation, anti-windup.



RESUMO

Esta tese trata da regulação de saída de sistemas não-lineares racionais com satura-
ção na entrada. O problema de regulação de saída considera uma planta sujeita a sinais
persistentes de distúrbio ou referência produzidos por um sistema exógeno autônomo,
onde o objetivo é garantir a convergência assintótica do erro de saída da planta para zero.
Este trabalho desenvolve metodologias sistemáticas para análise de estabilidade e projeto
de controladores estabilizantes dinâmicos de realimentação de saída com compensadores
anti-windup para sistemas não-lineares racionais com saturação no contexto de regulação
de saída. O método proposto utiliza principalmente a representação algébrico-diferencial,
uma abordagem teórica que trata sistemas não-lineares racionais por meio de uma equa-
ção diferencial combinada com uma igualdade algébrica. Para assegurar a regulação as-
sintótica de saída, inicialmente assume-se o conhecimento de um modelo interno e uma
solução exata para as equações do regulador, que representa um conjunto invariante de re-
gime permanente onde o erro de saída é zero. Esta suposição é posteriormente relaxada,
onde os resultados são estendidos para o contexto de regulação de saída prática.

Os desenvolvimentos principais desta tese estão divididos nos seguintes capítulos: Re-
gulação de Saída de Sistemas Não-Lineares Racionais; Regulação de Saída de Sistemas
Não-Lineares Racionais com Saturação de Entrada e Extensão para Regulação de Saída
Prática. O primeiro capítulo mencionado introduz a proposta de base deste trabalho, que
consiste no emprego da representação algébrico-diferencial para a dinâmica do erro de
regulação entorno do conjunto invariante descrito pelas equações do regulador. Com base
nesta formulação, teoremas de estabilidade e desempenho são obtidos com condições na
forma de desigualdades matriciais, permitindo o uso de otimização numérica para análise
e síntese de controladores estabilizantes. No próximo capítulo, a formulação é esten-
dida para a presença de saturação no sinal de controle, onde uma nova condição de setor
é proposta para tratar esta não-linearidade adicional. Desta forma, novos teoremas são
obtidos tanto para análise quanto para síntese de controladores estabilizantes incluindo
compensadores anti-windup. No capítulo final da metodologia, considera-se uma aborda-
gem de regulação prática onde soluções numéricas aproximadas podem ser consideradas
para as equações do regulador. Novos teoremas de estabilidade voltados para análise e
síntese também são obtidos dentro deste panorama prático, onde garante-se um conjunto
terminal para a trajetória do erro de saída. Em geral, a grande importância deste trabalho
é a possibilidade de solucionar um novo conjunto de problemas de regulação de saída
não-linear, anteriormente intratáveis por métodos do estado-da-arte.

Palavras-chave: Regulação de saída, representação algébrico-diferencial, desigual-

dades matriciais lineares, sistemas não-lineares racionais, saturação de entrada, anti-

windup.
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1 INTRODUCTION

Ensuring output tracking of reference signals and rejection of exogenous perturbations
is a fundamental control engineering problem with several applications, for example:
robotic manipulators (CICEK; DASDEMIR; ZERGEROGLU, 2015), power converters
(KIM et al., 2015), secure communication systems (SENOUCI et al., 2015), wind tur-
bines (CASTRO et al., 2017), stabilizing platforms (YANG; LI, 2018), electric motors
(CASTRO; FLORES; SALTON, 2018) and spacecraft (XIA et al., 2019). In practice,
most of these applications exhibit both nonlinear dynamics and physical limitations from
the actuators, such as input saturation. Naturally, it is of major interest to develop robust
and systematic control design methodologies able to address all these intrinsic character-
istics.

The theoretical foundation of output regulation is the internal model principle (FRAN-
CIS; WONHAM, 1976). This result demonstrated that asymptotic tracking is achieved
if the control loop is stable and incorporates the dynamics of the exosystem generating
the reference and disturbance signals, in the case of linear time-invariant systems. Later
studies have focused on expanding this result in order to consider time-varying parame-
ters and nonlinearities. A remarkable contribution in this context is the work of ISIDORI;
BYRNES (1990), which provides necessary and sufficient conditions to the solvability
of a nonlinear output regulation problem. Further developments in this subject include
extensions to time-delay systems (FRIDMAN, 2003), discrete systems (HUANG, 2004)
and multi-agent systems (SU; HUANG, 2012).

General guidelines have been proposed in order to approach a nonlinear output regula-
tor control problem, which are based on decoupling the design procedure into two distinct
phases (HUANG; CHEN, 2004). In the first step, one should determine an internal model
that matches with the so-called regulator equations, a set of conditions representing an
invariant and zero-error manifold. Afterwards, a stabilization problem should be solved
to ensure attractiveness of system trajectories with respect to the target steady-state man-
ifold. There is however no solution entirely systematic and general for both of these
steps (ISIDORI; MARCONI; SERRANI, 2012). The state-of-the-art on output regulator
synthesis is consequently composed by a myriad of methods focused on different classes
of problems, on different ways to design internal models capable of handling paramet-
ric uncertainties and also on different procedures to solve the stabilization problem. For
example, MARINO; TOMEI (2013) proposed an adaptive error feedback scheme for a
class of minimum-phase uncertain nonlinear systems. On the other hand, LU; HUANG
(2015) proposed ways to design nonlinear internal models in order to address systems
with non-polynomial nonlinearities. More recently, XU; WANG; CHEN (2016) showed
a method for output regulation of normal form nonlinear systems with exponential conver-
gence properties, while XU; CHEN; WANG (2017) dealt with nonlinear cascaded systems
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with integral dynamic uncertainties. Even though these remarkable developments were
achieved, the existent methods still show some limitations. For instance, the presence
of actuator constraints, such as input saturation, is often disregarded in the context of
nonlinear output regulation. Moreover, most of the literature in this sense is limited to
nonlinear systems described in a normal form (CHEN; HUANG, 2015), where structural
restrictions are imposed with respect to the system differential equations.

An alternative way to approach the nonlinear output regulation problem is referred
in the literature as practical output regulation (MARCONI; PRALY, 2008), where the
output error is just required to be ultimately bounded, thus not necessarily asymptotically
convergent to zero. The main purpose of this relaxation is to allow the use of reduced order
internal models, seeking to minimize the control implementation complexity and also to
deal with problems where an infinite-order dynamic compensator would be required for
perfect asymptotic regulation. In this sense, novel methodologies could also be explored
in order to address input saturation and unstructured systems.

A well-established theory for control design and stability analysis of nonlinear sys-
tems is the differential-algebraic representation (TROFINO, 2000; TROFINO; DEZUO,
2014), which consists in representing a nonlinear system by a differential equation com-
bined with an equality relation. This approach is capable of addressing systems with
rational nonlinearities (products and quotients of polynomial functions) and it allows the
characterization of a nonlinear control problem in terms of a convex optimization prob-
lem subject to linear matrix inequalities (BOYD et al., 1994). The fundamental proce-
dure in this context is to lump all nonlinearities into a new vector variable subject to an
algebraic constraint. Afterwards, the Finsler’s lemma is considered in order to incor-
porate this algebraic constraint into stability conditions derived by the usual Lyapunov
theory. Methodologies based on this theoretical framework have been extensively in-
vestigated in many different scenarios and with several improvements for conservatism
reduction. Initially, a method for stabilization and domain of attraction estimation was de-
veloped for rational nonlinear systems (COUTINHO et al., 2004), and was subsequently
extended for systems subject to input saturation (COUTINHO; GOMES DA SILVA JR,
2007). Later on, these methods were refined so as to include static anti-windup design
(GOMES DA SILVA JR et al., 2014) and dynamic anti-windup design (GOMES DA
SILVA JR; LONGHI; OLIVEIRA, 2016). A similar design approach was also proposed
for the input-to-state stabilization problem in the presence of actuator saturation (SOUZA;
COUTINHO; GOMES DA SILVA JR, 2015) and event-triggered control (MOREIRA
et al., 2017). Furthermore, (TROFINO; DEZUO, 2014) brought a complete overview of
the differential-algebraic theory, focusing on criteria for local, regional and global asymp-
totic stability of uncertain rational nonlinear systems. In spite of all these important stud-
ies based on the differential-algebraic representation, further investigations related to the
nonlinear output regulation context are still to be made.

1.1 Contribution of the Thesis

In contrast to the aforementioned works, this thesis employs the differential-algebraic
representation in the nonlinear regulation problem, providing a systematic framework
for designing dynamic output feedback controllers for the output regulation of rational
nonlinear systems. As pointed out earlier, state-of-the-art methods on nonlinear output
regulation design are restricted to input affine nonlinear systems representable in a nor-
mal form. On the other hand, the proposed methodology is able to address a new class of
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nonlinear plants and exosystems, i.e., cases where the regulation error dynamics is ratio-
nal – not necessarily in a normal form – and where the control input is possibly subject to
the saturation effect. Besides ensuring stability and asymptotic output error convergence,
the devised approach provides transient performance guarantees, such as a minimum ex-
ponential decay rate.

The proposed methodology is initially based on the traditional internal model ap-
proach widely employed for output regulation problems, where the solution of regulator
equations are performed a priori and the stabilizing components of the controller are
designed subsequently (HUANG; CHEN, 2004). This work mainly focuses on the con-
struction of such stabilizing components, which must ensure the attractiveness of sys-
tem trajectories in relation to the zero-error steady-state manifold. For this purpose, the
differential-algebraic representation of the system equations is developed in a modified
state-space frame, subsequently referred as regulation error coordinates. As a result, the
achieved theorems allow the synthesis of stabilizing and anti-windup parameters by nu-
merical optimization routines, which in general are subject to bilinear matrix inequality
constraints. Nevertheless, there exist particular scenarios to be illustrated where the so-
lution can be achieved by usual convex optimization problems subject to linear matrix
inequality constraints.

Beyond these developments, the main results of the thesis are also extended for the
practical output regulation context (MARCONI; PRALY, 2008). This extension is es-
pecially useful for cases where the exact internal model solution is unknown, or also
when the required compensator order is infinite. In this sense, the main innovation to be
presented is a practical stabilization framework, which is in output feedback form and
allows the usage of numerically approximated internal models and steady-state mani-
folds. Towards this formulation, the fundamental development is the characterization of
an invariant bounding region, where the regulation error trajectory is ultimately confined
within.

1.2 Outline of the Text

Prior to introducing the novel material of the thesis, Chapter 2 details some fundamen-
tal theory on nonlinear systems stability and most importantly on the output regulation of
nonlinear systems. In the sequence, the main methodology divides into three major chap-
ters. The first one, i.e. Chapter 3, is dedicated to introducing the proposed concepts with
a simpler framework, where the scope is restricted to rational nonlinear systems with un-
bounded control input. The following Chapter 4 then extends all results to a more general
setup, where the effects of input saturation are considered into the stability analysis and
the anti-windup compensation proposed by GOMES DA SILVA JR et al. (2014) is also
investigated. Lastly in Chapter 5, the results are generalized for the practical output reg-
ulation problem. Each of these chapters present in the end some numerical examples so
as to illustrate the theoretical results and proposed design approaches. Chapter 6 states
ending remarks and shows perspectives for future research. Appendix A at the very end
also shows some complementary material about matrix inequalities.
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2 PRELIMINARIES

This chapter introduces preliminary topics for the main content of this thesis. The
stability of nonlinear systems in the Lyapunov sense is primarily demonstrated in Sec-
tion 2.1. Afterwards, Section 2.2 presents an overview of some LMI based methods for
stability analysis of nonlinear systems and control design. In the end, Section 2.3 will
provide a detailed insight on output regulation of nonlinear systems and internal model
based control.

2.1 Stability of Nonlinear Systems

Consider an autonomous nonlinear system described by

ẋ = f(x) , (1)

where x ∈ X ⊆ Rn is the system state and f : X → Rn is a local Lipschitz map from X
into Rn. Without loss of generality, suppose that the origin is an equilibrium point of (1),
that is f(0) = 0 and {0} ⊂ int{X}. If the equilibirum point of (1) is not zero, it is always
possible to consider a change of coordinates such that the equilibirum point is displaced to
the origin. Definition 2.1 formalizes basic concepts of stability and asymptotic stability.
Subsequently, Theorem 2.1 presents a fundamental Lyapunov result (KHALIL, 2002).

Definition 2.1. The origin of the system (1) is said to be:

• stable if, for each ǫ > 0, there is some ℓ > 0 such that

||x(0)|| < ℓ ⇒ ||x(t)|| < ǫ ∀ t > 0 . (2)

• asymptotically stable if it is stable and ℓ can be chosen such that

||x(0)|| < ℓ ⇒ lim
t→∞

||x(t)|| = 0 . (3)

• globally asymptotically stable if previous condition holds for all ℓ > 0.

Theorem 2.1. Let X ⊆ Rn be a domain containing the origin and assume that f : X →
Rn satisfies f(0) = 0. Suppose there exists a smooth function V : X → R such that

V (0) = 0 , V (x) > 0 ∀ x ∈ X , x 6= 0 , (4)

V̇ (x) ,
∂V (x)

∂x
f(x) ≤ 0 ∀ x ∈ X , (5)
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then the origin of the system (1) is stable. Furthermore, if

V̇ (x) < 0 ∀ x ∈ X , x 6= 0 , (6)

then the origin is asymptotically stable. Moreover, if X = Rn and V (x) is radially

unbounded1, then the origin is globally asymptotically stable.

Proof. See KHALIL (2002).

Following the result presented by Theorem 2.1, any level set of the Lypunov function
V (x) contained in X , e.g.

D =
{

x ∈ R
n : V (x) ≤ ǫ

}

⊂ X , (7)

for some ǫ > 0, is said to be positively invariant with respect to system (1), meaning that
x(0) ∈ D ⇒ x(t) ∈ D ∀ t > 0. Furthermore, if condition (6) is true, then this region is
also a domain of attraction estimate (KHALIL, 2002), since all trajectories staring in D
are thus attracted towards the origin.

2.2 LMI based Stability and Control Design

This section presents an overview of fundamental preliminary methodologies to the
main contribution of this work, which will be later presented in Chapters 3, 4 and 5. The
material to be detailed here includes:

• Dynamic Output Feedback Control (SCHERER; GAHINET; CHILALI, 1997);

• Stability of Systems with Control Saturation (GOMES DA SILVA JR; TARBOURIECH,
2005);

• Stability of Rational Nonlinear Systems (TROFINO; DEZUO, 2014).

One common characteristic of the above-mentioned works is the characterization of
stability conditions in the form of linear matrix inequalities (LMIs). Appendix A.1 may
be examined for a brief introduction about this topic.

2.2.1 Dynamic Output Feedback Control

Consider a linear system described by
{

ẋ = Ax+B u
y = C x

(8)

where x ∈ Rnx is the system state, u ∈ Rnu is the control input and y ∈ Rny is the system
output. The system input is supposedly provided by a dynamic output feedback controller
of the form:

{

ξ̇ = F ξ +Gy
u = H ξ +K y

(9)

where ξ ∈ Rnξ is the controller state. All matrices A ∈ Rnx×nx, B ∈ Rnx×nu , C ∈
R

ny×nx , F ∈ R
nξ×nξ , G ∈ R

nξ×ny , H ∈ R
nu×nξ and K ∈ R

nu×ny are considered
constant. The closed-loop topology of (8) and (9) is demonstrated on Figure 1.

1A function V (x) is said to be radially unbounded if V (x) → ∞ as ||x|| → ∞.
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Controller
{

ξ̇ = F ξ +Gy
u = H ξ +K y

System
{

ẋ = Ax+B u
y = C x

u y

Figure 1: Block diagram of a linear dynamic output feedback control. Source: the author.

Problem 2.1. Design controller parameters F , G, H and K such the origin of the closed-
loop system (8), (9) is globally asymptotically stable.

An LMI based solution has been proposed in order to solve Problem 2.1 (SCHERER;
GAHINET; CHILALI, 1997). Towards this solution, first step is to represent the closed-
loop dynamics in the augmented form

ẋ = Ax , (10)

where x = [xT ξT]T ∈ Rna , na = nx + nξ, is the augmented state and A ∈ Rna×na is

A =

[

A+BKC BH
GC F

]

. (11)

The global asymptotic stability of (10) is addressed by the following theorem directly
derived from Theorem 2.1.

Theorem 2.2. Suppose there exists a symmetric matrix P ∈ Rna×na such that

P ≻ 0 , (12)

PA+A
TP ≺ 0 . (13)

Then the origin of system (10) is globally asymptotically stable.

Proof. Consider a quadratic Lyapunov candidate function

V (x) = x
TP x . (14)

If P is symmetric and positive-definite, i.e. (12), then V (x) > 0 ∀x ∈ Rna, x 6= 0. The
derivative of (14) along the trajectories of the system (10) can be expressed as:

V̇ (x) = x
T(PA+A

TP )x . (15)

So, if (13) is true, V̇ (x) < 0 ∀x ∈ Rna , x 6= 0. From Theorem 2.1, since V (x) is radially
unbounded, the origin of system (10) is globally asymptotically stable.

The set of inequalities (12) and (13) can be considered LMIs only if all controller
terms F , G, H and K are a priori fixed and not regarded as decision variables. However,
SCHERER; GAHINET; CHILALI (1997) have proposed a method to linearize these in-
equalities with respect to all controller parameters, thus providing an approach able to cast
Problem 2.1 as a single LMI feasibility problem. Such result, as presented next, is based
on congruence transformations (Lemma A.1) and the introduction of some new variables.
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Theorem 2.3. Suppose nξ = nx and there exist matrices X = XT ∈ Rnx×nx , Y = Y T ∈
Rnx×nx , F̂ ∈ Rnx×nx , Ĝ ∈ Rnx×ny , Ĥ ∈ Rnu×nx and K ∈ Rnu×ny such that

[

X I
⋆ Y

]

≻ 0 , (16)

H
{[

AX +BĤ A+BKC

F̂ Y A + ĜC

]}

≺ 0 . (17)

Then the origin of the closed-loop system (8), (9) is globally asymptotically stable with

parameters F , G and H obtained from







F = N−1(F̂ + Y BKCX − ĜCX − Y BĤ − Y AX)M−T

G = N−1(Ĝ− Y BK)

H = (Ĥ −KCX)M−T

(18)

where M,N ∈ Rnx×nx are non-singular solutions to

MNT = I −XY . (19)

Proof. Consider nξ = nx and suppose Theorem 2.2 holds with matrix P and its inverse
defined as

P =

[

Y N
NT

·

]

, P−1 =

[

X M
MT

·

]

, (20)

where X , Y are symmetric matrices and M , N are non-singular square matrices. Since
P−1P = I , then condition (19) must be satisfied because

P−1P =

[

X M
MT

·

] [

Y N
NT

·

]

=

[

XY +MNT
·

· ·

]

=

[

I 0
0 I

]

. (21)

Consider the congruence transformation blocks Z1 ∈ Rna×na and Z2 ∈ Rna×na defined
by

Z1 ,

[

X I
MT 0

]

, Z2 ,

[

I Y
0 NT

]

, (22)

which satisfy identity PZ1 = Z2. Then, post- and pre-multiplying (12) by Z1 and its
transpose leads to

ZT

1PZ1 = ZT

2 Z1 =

[

X I
I Y

]

, (23)

therefore (12) is equivalent to (16). Similarly,

ZT

1PAZ1 = ZT

2AZ1 =

[

AX +BĤ A+BKC

F̂ Y A+ ĜC

]

, (24)

when considering the following change of variables:






F̂ = Y (A+BKC)X +NGCX + Y BHMT +NFMT

Ĝ = Y BK +NG

Ĥ = KCX +HMT

. (25)

Thus, (13) is also equivalent to (17). At last, from straightforward inversion of the variable
transformations in (25), one obtains (18). As a conclusion, Theorem 2.3 is equivalent to
Theorem 2.2 when nξ = nx.
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System
{

ẋ = Ax+ B u
µ = K x

Saturation

u = sat(µ)

µu

Figure 2: Block diagram of a Lur’e System with a saturation function. Source: the author.

Remark 2.1. There will always exist non-singular solutions M and N satisfying (19) as
long as the condition (16) holds (SCHERER; GAHINET; CHILALI, 1997). In order to
efficiently determine a solution pair M and N , one can apply singular value decomposi-
tion into I−XY , which should result USV T = I−XY where U ∈ Rnx×nx , V ∈ Rnx×nx

are orthogonal matrices and S ∈ Rnx×nx is a diagonal matrix. In this case, a balanced
solution for M and N is M = US1/2, N = V S1/2 and their inverses are M−1 = S−1/2UT

and N−1 = S−1/2V T.

2.2.2 Stability of Systems with Control Input Saturation

Consider a closed-loop nonlinear system defined by






ẋ = Ax+B u
µ = K x
u = sat(µ)

(26)

where x ∈ Rnx is the system state, u ∈ Rnu is the saturated control input and µ ∈ Rnu

is the unsaturated control input. The nonlinear function sat : Rnu → [−u1, u1] × . . . ×
[−unu

, unu
] is defined as

sat(µj) ,







uj if µj ≥ uj
−uj if µj ≤ −uj
µj if otherwise

. (27)

This is a particular case of Lur’e Systems (SUYKENS; VANDEWALLE; DE MOOR,
1998), where the static feedback nonlinearity is restricted to a saturation function. The
block diagram of Figure 2 demonstrates the topology of the closed-loop system (26).

Problem 2.2. Determine a domain of attraction estimate D in which the origin of the
closed-loop system (26) is asymptotically stable.

In order to solve Problem 2.2 using LMI based tools, GOMES DA SILVA JR; TAR-
BOURIECH (2005) proposed to rewrite the saturation function as a deadzone type non-
linearity

ψ(µ) , µ− sat(µ) . (28)

By introducing this definition, the closed-loop system (26) can be written as

ẋ = Â x− B ψ(Kx) , (29)

where Â , A + BK. In order to deal with this deadzone function ψ(·), a generalized
sector condition has also been proposed according to the following lemma.
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Lemma 2.1. Consider vector functions θ, ϑ : Rnx → Rnu. If x ∈ S, where S is the

polyhedral set

S =
{

x ∈ R
nx : | θj(x)− ϑj(x) | ≤ uj , j = 1, 2, . . . , nu

}

, (30)

then it verifies that

ψT(θ(x)) T
(

ψ(θ(x))− ϑ(x)
)

≤ 0 (31)

for any diagonal and positive-definite matrix T ∈ Rnu×nu.

Proof. Consider the three possible cases that follows:

(a) −uj ≤ θj(x) ≤ uj . In this case, ψ(θj(x)) = 0 and then

ψT(θj(x)) T[j,j]
(

ψ(θj(x))− ϑj(x)
)

= 0 . (32)

(b) θj(x) ≥ uj . In this case, ψ(θj(x)) = θj(x)−uj > 0. If x ∈ S, then θj(x)−ϑj(x) ≤
uj , therefore it follows that ψ(θj(x))− ϑj(x) ≤ 0. Consequently, one gets that

ψT(θj(x)) T[j,j]
(

ψ(θj(x))− ϑj(x)
)

≤ 0 . (33)

(c) θj(x) ≤ −uj . In this case, ψ(θj(x)) = θj(x) + uj < 0. If x ∈ S, then θj(x) −
ϑj(x) ≥ −uj , therefore it follows that ψ(θj(x)) − ϑj(x) ≥ 0. Consequently, one
also gets that (33).

From these three cases, provided that x ∈ S and that matrix T is diagonal and positive-
definite, condition (31) is verified.

Following the result of Lemma 2.1, it is straightforward to apply the S-Procedure
(Lemma A.5) in order to obtain the stability criteria for the closed-loop system. An ad-
ditional condition, as shown by (35) in the next theorem, ensures that the domain of
attraction estimate D is contained inside the polyhedral region where the sector condition
holds, i.e. D ⊂ S.

Theorem 2.4. Suppose there exists a symmetric matrix P̂ ∈ Rnx×nx , a diagonal matrix

T̂ ∈ Rnu×nu and a matrix R̂ ∈ Rnu×nx such that P̂ ≻ 0, T̂ ≻ 0,2

[

H{ÂP̂} R̂T −BT̂

⋆ −2T̂

]

≺ 0 , (34)

[

uj
2 K̂[j] − R̂[j]

⋆ P̂

]

≻ 0 ∀ j ∈ {1, 2, . . . , nu} , (35)

where K̂ , KP̂ . Then the origin of the system (29) is asymptotically stable in

D =
{

x ∈ R
nx : xTP̂−1x ≤ 1

}

. (36)

2In (35), K̂[j] and R̂[j] are denoting the j-th row of matrices K̂ and R̂.
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Proof. Consider the Lyapunov candidate function V (x) = xTPx. If P ≻ 0 then V (x) >
0 ∀ x ∈ Rnx , x 6= 0. The derivative of V (x) along the trajectories of system (29) is
V̇ (x) = ζT(x)∆1 ζ(x) where:

∆1 ,

[

H{PÂ} −PB
⋆ 0

]

, ζ(x) ,

[

x
ψ(Kx)

]

. (37)

From Lemma 2.1 and considering θ(x) = Kx and ϑ(x) = Rx, for some R ∈ Rnu×nx, it
follows that if x ∈ S then (31), or equivalently ζT(x)∆2 ζ(x) ≥ 0 where:

∆2 ,

[

0 0
TR −T

]

. (38)

It consequently verifies that V̇ (x) < 0 ∀ x ∈ S, x 6= 0 if

V̇ (x) +H
{

ζT(x)∆2 ζ(x)
}

< 0 ∀ x 6= 0 . (39)

By plugging V̇ (x) = ζT(x)∆1 ζ(x) into (39) and factorizing the vector ζ(x), one should
obtain

[

H{PÂ} RTT − PB
⋆ −2T

]

≺ 0 . (40)

Post- and pre-multiplying (40) by the congruence transformation diag{P−1 , T−1} and
applying the following change of variables P̂ = P−1, T̂ = T−1 and R̂ = RP−1 leads to
condition (34). Moreover, P̂ ≻ 0 and T̂ ≻ 0 ensure that P ≻ 0 and T ≻ 0.

The candidate domain of attraction estimate and positively invariant region of system
(29) is given by (7), which here is the ellipsoidal set D = {x ∈ Rnx : xTPx ≤ 1}. In
order to guarantee that x(0) ∈ D ⇒ x(t) ∈ S ∀ t > 0, for the validity of Lemma 2.1, one
must ensure that the region D is contained inside the polyhedral set S. In turn, Lemma
A.6 implies that D ⊂ S if and only if

[

uj
2 K[j] −R[j]

⋆ P

]

≻ 0 ∀ j ∈ {1, 2, . . . , nu} , (41)

where K[j] and R[j] are denoting the j-th row of matrices K and R. Lastly, post- and
pre-multiplying (41) by the congruence transformation diag{1 , P−1} leads to (35).

One possibility to solve Problem 2.2 is by minimizing the trace of P̂−1 subject to
LMIs P̂ ≻ 0, T̂ ≻ 0, (34) and (35). In order to linearize this objective function, one can
consider a symmetric matrix P̃ ∈ Rnx×nx which satisfies P̃ > P̂−1, or equivalently by
Schur Complement (Lemma A.2):

[

P̃ I

⋆ P̂

]

≻ 0 . (42)

The solution is hence obtained by solving the following SDP problem:

min
P̃ ,P̂ ,T̂ ,R̂

tr(P̃ ) s.t.
{

P̂ ≻ 0 , T̂ ≻ 0 , (34) , (35) , (42)
}

. (43)

One may also employ alternative objective functions as presented in (TARBOURIECH
et al., 2011). In case it is also intended to design the feedback gain matrix K, one should
simply set K̂ from (35) as a free decision variable. The feedback parameters are then
reconstructed as K = K̂P̂−1.
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2.2.3 Stability of Rational Nonlinear Systems

Consider an autonomous system described by a differential-algebraic representation
(DAR):

{

ẋ = A(x) x+ Φ(x)ϕ(x)
0 = Ψ(x) x+ Ω(x)ϕ(x)

, (44)

where x ∈ X ⊆ R
nx is the system state, ϕ : X → R

nϕ is a rational function and the
matrices A : X → Rnx×nx , Φ : X → Rnx×nϕ , Ψ : X → Rnϕ×nx and Ω : X → Rnϕ×nϕ

are affine functions with respect to x. Moreover, Ω(x) is supposedly non-singular inside
X , i.e. det{Ω(x)} 6= 0 ∀ x ∈ X . Every autonomous system originally described as (1),
whose function f(x) is a regular rational function3 in X , can be represented in the form
of (44) (TROFINO; DEZUO, 2014).

An LMI based method has been proposed by TROFINO; DEZUO (2014) in order
to analyze the stability of nonlinear systems described by (44), therefore providing a
systematic solution to the following problem.

Problem 2.3. Determine a domain of attraction estimate D in which the origin of the
system (44) is asymptotically stable.

Since A(x), Φ(x), Ψ(x) and Ω(x) are affinely dependent on x, the first step towards
the solution of Problem 2.3 is to define the set X by a convex hull of vertices:

X = Co{Vx} ⊆ R
nx . (45)

Without loss of generality, one may also denote X in the polyhedral form

X =
{

x ∈ R
nx : | pT

k x | ≤ 1 , k = 1, 2, . . . , nk

}

, (46)

for some vector p1, p2, . . . , pnk
∈ Rnx . From a collection of vertices Vx, an equivalent

representation (46) can always be obtained (COUTINHO; GOMES DA SILVA JR, 2007).
Given the above mentioned definitions, the asymptotic stability of (44) is addressed by the
following theorem.

Theorem 2.5. Suppose there exist some matrices P = P T ∈ Rnx×nx and L ∈ Rnϕ×nϕ

such that P ≻ 0,

H
{[

PA(x) PΦ(x)
LΨ(x) LΩ(x)

]}

≺ 0 ∀ x ∈ Vx , (47)

[

1 pT

k

⋆ P

]

≻ 0 ∀ k ∈ {1, 2, . . . , nk} . (48)

Then the origin of the system (44) is asymptotically stable in

D =
{

x ∈ R
nx : xTPx ≤ 1

}

. (49)

Proof. Consider the Lyapunov candidate function V (x) = xTPx. If P ≻ 0 then
V (x) > 0 ∀ x ∈ Rnx , x 6= 0. The derivative of V (x) along the trajectories of system
(44) is V̇ (x) = ζT(x)∆1(x) ζ(x), where

∆1(x) , H
{[

PA(x) PΦ(x)
0 0

]}

, ζ(x) ,

[

x
ϕ(x)

]

. (50)

3A function f(x) is said to be rational if it can be expressed as a fraction of polynomial functions and it
is also regular in X if it has no singularities ∀x ∈ X .
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Note the equality constraint in (44) can be expressed as ∆2(x) ζ(x) = 0 ∀ x ∈ X , where

∆2(x) =
[

Ψ(x) Ω(x)
]

. (51)

It verifies that V̇ (x) < 0 ∀ x ∈ X , x 6= 0 if, for some matrix L ∈ Rnϕ×nϕ ,

V̇ (x) +H
{

ϕT(x)L∆2(x) ζ(x)
}

< 0 ∀ x ∈ X , x 6= 0 . (52)

By plugging V̇ (x) = ζT(x)∆1(x) ζ(x) into (52) and factorizing ζ(x), this expression
becomes equivalent to

H
{[

PA(x) PΦ(x)
LΨ(x) LΩ(x)

]}

≺ 0 ∀ x ∈ X , (53)

and then, from Lemma A.3, (47) ⇔ (53).
In order to complete this proof, the candidate domain of attraction estimate D, as

in (49), must additionally be contained the polyhedral set X , as defined in (46). By
direct application of Lemma A.6, D ⊂ X is equivalent to (48). Based on Theorem 2.1
consequently, P ≻ 0, (47) and (48) ensure that the trajectory of (44) asymptotically
approaches the origin for any initial condition starting in D.

According to Theorem 2.5, the solution of Problem 2.3 is obtained by solving the
following SDP:

min
P,L

tr(P ) s.t.
{

P ≻ 0 , (47) , (48)
}

. (54)

Example 2.1. Consider a rational nonlinear system described as














ẋ1 = x2 +
x31

1 + x21

ẋ2 = a x1 + b x2 +
x21x

2
2

1 + x21

(55)

where a, b ∈ R are constant parameters. A possible choice in order to represent (55) in
the form of (44) is to consider ϕ(x) as:

ϕ(x) =

[

x1
1 + x21

x21
1 + x21

x21x2
1 + x21

]

T

. (56)

The corresponding matrices A(x), Φ(x), Ψ(x) and Ω(x) can be arranged as:

A =

[

0 1
a b

]

, Φ(x) =

[

0 x1 0
0 0 x2

]

,

Ψ =





−1 0
0 0
0 0



 , Ω(x) =





1 x1 0
−x1 1 0

0 −x2 1



 .

(57)

One should notice that Ω(x) is non-singular ∀ x ∈ R2, since det{Ω(x)} = 1 + x21 ≥ 0.
The next step is to define the convex region X ⊆ R2, which may be built by X = Co{Vx},
where the set of vertices is

Vx =
{

[

−x1 −x2
]

T

,
[

−x1 x2
]

T

,
[

x1 −x2
]

T

,
[

x1 x2
]

T

}

, (58)
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for some scalars x1, x2 > 0, which denote the maximum admissible value of |x1(t)| and
|x2(t)| ∀ t ≥ 0. The equivalent definition of X according to (46) is obtained with

p1 =
[

x1
−1 0

]

, p2 =
[

0 x2
−1

]

. (59)

Given this setup phase and provided that all system parameters are numerically defined,
it remains to solve (54) in order to compute the optimal P which defines the domain of
attraction estimate D for the system origin.

2.3 Output Regulation of Nonlinear Systems

The set of problems so far presented have basically involved conditions for asymp-
totic stability with respect to the origin. A much more complex set of problems in the
field of control and dynamic systems, which will be dealt in this section, is the output
regulation (ISIDORI; BYRNES, 1990). In this context, the system to be controlled is per-
turbed by non-vanishing signals generated by an exogenous system, which may represent
unmeasured disturbances or even reference signals to be tracked. For instance, consider a
nonlinear system described by







ẋ = f(x, w, u)
y = g(x, w)
e = h(x, w)

(60)

where x ∈ Rnx is the system state vector, u ∈ Rnu is the control input, y ∈ Rny is the
output measurement vector and e ∈ Rne is the output error. This system is supposedly
perturbed by an exogenous signal w ∈ Rnw generated by an autonomous exosystem:

ẇ = s(w) . (61)

The goal now is to ensure that all system trajectories are bounded for all positive time
and the output error asymptotically converges to zero. In turn, the system control input is
provided by a nonlinear output feedback controller of the form

{

ξ̇ = φ(ξ, y)
u = θ(ξ, y)

(62)

where ξ ∈ Rnξ is the controller state vector. The block diagram on Figure 3 presents the
closed-loop topology of (60), (61) and (62).

Assumption 2.1. Nonlinear functions f : Rnx×Rnw×Rnu → Rnx , g : Rnx×Rnw → Rny ,
h : Rnx ×Rnw → Rne , s : Rnw → Rnw , φ : Rnξ ×Rny → Rnξ , and θ : Rnξ ×Rny → Rnu

satisfy f(0, 0, 0) = 0, g(0, 0) = 0, h(0, 0) = 0, s(0) = 0, φ(0, 0) = 0 and θ(0, 0) = 0.

The concept of achieving output regulation is defined on the sequence (ISIDORI;
BYRNES, 1990).

Definition 2.2. The closed-loop system (60), (61), (62) is said to:

• be bounded in D ⊆ Rnx × Rnξ × Rnw if ∃ ǫ1, ǫ2, ǫ3 > 0 such that
(

x(0), ξ(0), w(0)
)

∈ D ⇒ ||x(t)|| < ǫ1 , ||ξ(t)|| < ǫ2 , ||w(t)|| < ǫ3 ∀ t > 0 ;
(63)
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Controller
{

ξ̇ = φ(ξ, y)
u = θ(ξ, y)

System






ẋ = f(x, w, u)
y = g(x, w)
e = h(x, w)

Exosystem

ẇ = s(w)

u

w

ey

Figure 3: The nonlinear output regulation framework. Source: the author.

• achieve output regulation in D ⊆ Rnx × Rnξ × Rnw if it is bounded in D and
furthermore:

(

x(0), ξ(0), w(0)
)

∈ D ⇒ lim
t→∞

||e(t)|| = 0 . (64)

A standard assumption in the context of output regulation is the existence of a compact
positively invariant set bounding the trajectory w(t). Examples of exosystems within the
scope of this assumption are harmonic oscillators, chaotic systems and systems with stable
limit-cycles.

Assumption 2.2. There exists a compact and positively invariant set W ⊂ Rnw such that:

w(0) ∈ W ⇒ w(t) ∈ W ∀ t > 0 . (65)

Given the preliminary assumptions and definitions, a general nonlinear output regula-
tion problem is described as follows.

Problem 2.4. Design controller functions φ(ξ, y) and θ(ξ, y) such that the closed-loop
system (60), (61), (62) achieves output regulation in some region D ⊆ Rnx × Rnξ ×W .

Towards the solution of Problem 2.4, one must consider the following fundamental
theorem (ISIDORI; BYRNES, 1990).

Theorem 2.6. The closed-loop system (60), (61), (62) achieves output regulation in D ⊆
Rnx × Rnξ ×W if there exist smooth mappings π : W → Rnx , σ : W → Rnξ , c : W →
Rnu and d : W → Rny satisfying: π(0) = 0, σ(0) = 0, c(0) = 0, d(0) = 0,











∂π(w)

∂w
s(w) = f(π(w), w, c(w))

d(w) = g(π(w), w)
0 = h(π(w), w)

∀w ∈ W , (66)

{

∂σ(w)

∂w
s(w) = φ(σ(w), d(w))

c(w) = θ(σ(w), d(w))
∀w ∈ W , (67)

and also:

(

x(0), ξ(0), w(0)
)

∈ D ⇒







lim
t→∞

∣

∣

∣

∣x(t)− π(w(t))
∣

∣

∣

∣ = 0

lim
t→∞

∣

∣

∣

∣ξ(t)− σ(w(t))
∣

∣

∣

∣ = 0
. (68)
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Proof. Consider a manifold region M denoted by (75) and suppose the following prop-
erties are true:

(i) the system output error is zero inside M, i.e.

h(x, w) = 0 ∀ (x, ξ, w) ∈ M . (69)

(ii) M is invariant with respect to the closed-loop system trajectory, i.e.

(

x(t0), ξ(t0), w(t0)
)

∈ M ⇒
(

x(t), ξ(t), w(t)
)

∈ M ∀ t 6= t0 , t0 ≥ 0 . (70)

(iii) every system trajectory starting in D is asymptotically attracted towards M, i.e.

(

x(0), ξ(0), w(0)
)

∈ D ⇒ lim
t→∞

(

x(t), ξ(t), w(t)
)

∈ M . (71)

Properties (i), (ii) and (iii) consequently imply that the closed-loop trajectory (x(t), ξ(t), w(t))
satisfies (64). Now, observe that property (i) is equivalent to

e = h(π(w), w) = 0 ∀w ∈ W , (72)

leading to the third equation in (66). Notice next that property (ii) is equivalent to
existence of (π(w(t)), σ(w(t)), w(t)) as closed-loop system trajectory when x(t0) =
π(w(t0)) and ξ(t0) = σ(w(t0)) ∀ t0 ≥ 0, w(t0) ∈ W , which is equivalent to

{

π̇(w) = f(π(w), w, θ(σ(w), g(π(w), w)))
σ̇(w) = φ(σ(w), g(π(w), w))

∀w ∈ W . (73)

Since π(w) and σ(w) are smooth mappings, the time-derivatives π̇(w) and σ̇(w) can be
expanded by derivation chain rule

π̇(w) =
∂π(w)

∂w
ẇ =

∂π(w)

∂w
s(w) , (74)

and similarly with respect to σ̇(w). Hence, the remaining conditions in (66) and (67) are
obtained when introducing the additional definitions c(w) , θ(σ(w), g(π(w), w)) and
d(w) , g(π(w), w). At last, propriety (iii) is directly equivalent to condition (68).

Moreover, since π : W → Rnx , σ : W → Rnξ and W is by assumption a com-
pact set, then ∃ ǫπ, ǫσ > 0 : ||π(w(t))|| < ǫπ, ||σ(w(t))|| < ǫσ ∀ t > 0 if w(0) ∈
W . Therefore, (68) also implies boundedness of (x(t), ξ(t), w(t)) for every initial state
(x(0), ξ(0), w(0)) ∈ D. As a result, (66), (67) and (68) imply the closed-loop system
output regulation in D according to Definition 2.2.

Remark 2.2. If ∂s(w)/∂w is assumed to have all eigenvalues on the imaginary axis
{z ∈ C : ℜ(z) = 0} for w = 0, then Theorem 2.6 has been proven to be a neces-
sary condition for output regulation as well (ISIDORI; BYRNES, 1990). This however
excludes a considerable class of exosystems with stable attractors or limit-cycles. Nec-
essary and sufficient output regulation conditions for the general case are discussed by
PAVLOV; WOUW; NIJMEIJER (2006), who modify the error condition from (66) to
h(π(w), w) = 0 ∀w ∈ L{W}, where L{W} ⊆ W denotes the limit set of the exosys-
tem trajectories starting inside W .
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Functions π(w) and σ(w) introduced by Theorem 2.6 represent the respective zero-
error steady-state trajectory of the system and controller states, according to the following
invariant manifold:

M =
{

(x, ξ, w) ∈ R
nx × R

nξ ×W : x = π(w) , ξ = σ(w)
}

. (75)

Likewise, d(w) represents the zero-error steady-state trajectory of the output measure-
ment signal and, most importantly, the solution c(w) represents the control function that
achieves the desired zero-error and invariant manifold M.

Prior to designing an output regulator, it is necessary to determine mappings π(w) and
c(w) satisfying the condition (66), which may be attained by considering the system and
exosystem functions f(x, w, u), h(x, w) and s(w) solely. These solutions represent the
target steady-state specification that must be adressed by the regulator design. In most
cases, it verifies that π(w) and c(w) can be determined recursively, for instance when
system functions f(x, w, u) and h(x, w) are in the form of (CHEN; HUANG, 2015):



























e = h(x1, w) = a0(w) + b0(w) x1
ẋ1 = f1(x1, x2, w) = a1(x1, w) + b1(x1, w) x2
ẋ2 = f2(x1, x2, x3, w) = a2(x1, x2, w) + b2(x1, x2, w) x3

...
...

ẋn = fn(x1, . . . , xn, w, u) = an(x1, . . . , xn, w) + bn(x1, . . . , xn, w) u

(76)

for xi, e, u ∈ Rm ∀ i ∈ {1, 2, . . . , n}, nx = nm with n,m ∈ N, and nonlinear functions
a0 : R

nw → Rm, b0 : R
nw× → Rm×m, a1 : Rm ×Rnw → Rm, b1 : R

m ×Rnw → Rm×m,
. . . , an : Rnx ×R

nw → R
m and bn : Rnx ×R

nw → R
m×m where a0(0) = 0, a1(0, 0) = 0,

a2(0, 0, 0) = 0, etc. In this scenario, π(w) and c(w) can be recursively obtained for any
exosystem function s(w) according to






































π1(w) = −b−1
0 (w) a0(w)

π2(w) = −b−1
1 (π1(w), w)

(

a1(π1(w), w)− ∂π1(w)
∂w

s(w)
)

π3(w) = −b−1
2 (π1(w), π2(w), w)

(

a2(π1(w), π2(w), w)− ∂π2(w)
∂w

s(w)
)

...

c(w) = −b−1
n (π1(w), . . . , πn(w), w)

(

an(π1(w), . . . , πn(w), w)− ∂πn(w)
∂w

s(w)
)

(77)
assuming that b−1

0 (w), b−1
1 (π1(w), w), b

−1
2 (π1(w), π2(w), w), etc, are non-singular ∀w ∈

W . With the function π(w) determined, it readily follows that d(w) = g(π(w), w).
In order to tackle next the output regulator design, it is useful to employ the internal

model approach (CHEN; HUANG, 2015). So as to concisely demonstrate this methodol-
ogy, let the controller (62) be expressed as

{

ξ̇ = φm(ξ, y) + φs(y)
u = θm(ξ, y) + θs(y)

. (78)

Functions φm : Rnξ × Rny → Rnξ and θm : Rnξ × Rny → Rnu here are internal model
terms and φs : R

ny → Rnξ and θs : Rny → Rnu denote stabilizing terms. If one enforces
that

{

0 = φs(d(w))
0 = θs(d(w))

∀w ∈ W , (79)
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then these stabilizing functions do not influence the solution of regulation condition (67),
which simplifies to

{

∂σ(w)

∂w
s(w) = φm(σ(w), d(w))

c(w) = θm(σ(w), d(w))
∀w ∈ W . (80)

This formulation leads to the following sequential design procedure in order to solve
Problem 2.4:

(a) Design internal model functions φm(ξ, y) and θm(ξ, y) such that (80) is satisfied for
some σ(w).

(b) Design stabilizing functions φs(y) and θs(y) satisfying (79) such that attraction
condition (68) holds.

Some traditional methods able to solve step (a) will be presented next in Subsec-
tion 2.3.1, while Subsection 2.3.2 shows some useful guidelines in order to solve the
stabilization problem of step (b).

2.3.1 Internal Model Design

The internal model represents a dynamical system capable of generating the steady-
state control solution c(w), thus establishing a zero-error and invariant manifold M.
Classical approaches capable of properly defining internal model functions φm(ξ, y) and
θm(ξ, y) are demonstrated by the following lemmas (ISIDORI; MARCONI; SERRANI,
2012).

Lemma 2.2. (Direct Reconstruction) The internal model functions

φm(ξ) = s(ξ) , θm(ξ) = c(ξ) , (81)

satisfy the condition (80) with σ(w) = w.

Proof. If σ(w) = w, then ∂σ(w)/∂w = I and therefore relation (80) becomes

{

s(w) = φm(w, d(w))
c(w) = θm(w, d(w))

∀w ∈ W . (82)

So, it readily verifies that internal model functions (81) satisfy (82).

Lemma 2.3. (Immersion Method) Suppose there exists a number q ∈ N and a function

ζ : Rnu × . . .× Rnu × Rny → Rnu such that

(q)

c (w) = ζ
(

c(w) , ċ(w) , . . . ,
(q−1)

c (w) , d(w)
)

∀w ∈ W . (83)

Then for ξ ∈ R
qnu , ξi ∈ R

nu ∀ i ∈ {1, 2, . . . , q}, the internal model functions

φm(ξ, y) =











ξ2
...

ξn
ζ(ξ1, ξ2, . . . , ξn, y)











, θm(ξ) = ξ1 , (84)
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satisfy the condition (80) with

σ(w) =











c(w)
ċ(w)

...
(q−1)

c (w)











. (85)

Proof. If σ(w) is given as (85), the top-left corner of (80) can be rearranged as

∂σ(w)

∂w
s(w) = σ̇(w) =













ċ(w)
...

(q−1)

c (w)
(q)

c (w)













, (86)

Moreover, if φm(ξ, y) is defined as in (84), the top-right corner of condition (80) can be
written as

φm(σ(w), d(w)) =











σ2(w)
...

σq(w)
ζ(σ1(w), . . . , σq(w), d(w))











=













ċ(w)
...

(q−1)

c (w)

ζ(c(w), . . . ,
(q−1)

c (w), d(w))













.

(87)
If supposition (83) is true, it verifies that (86) is equal to (87). Beyond this fact, when
θm(ξ) = ξ1, the bottom-right corner of (80) can be expressed as θm(σ(w)) = σ1(w) =
c(w), which readily equals the bottom-left corner of the same relation. Consequently, (80)
is satisfied with the internal model design (84) with the mapping σ(w) from (85).

Remark 2.3. If c(w) is a polynomial of finite degree with respect to w and the exosystem
function s(w) is linear, then there always exist a positive integer q and a function ζ(·)
such that (83) is satisfied (ISIDORI; MARCONI; SERRANI, 2012). In turn, the required
internal model order q is associated with the polynomial degree of c(w).

By using the first design approach of Lemma 2.2, the internal model states ξ will rep-
resent the direct estimation of the exosystem states w. If the attraction condition (68) is
fulfilled, it follows that ξ(t) → w(t) as t→ ∞ and consequently that c(ξ(t)) → c(w(t)).
Even though this is a general method, it is not robust to uncertainties on the control map-
ping function c(w). In order to get around this issue, the second design method of Lemma
2.3 offers full robustness to any plant parametric uncertainty in c(w), since the design is
based on the estimation of c(w) as a whole, meaning that ξ1(t) → c(w(t)) as t → ∞.
This second approach is only applicable though if (83) is true, which is guaranteed to hold
just in the particular case described by Remark 2.3. Moreover, the analytical solution of
ζ(·) shows to be highly difficult when the exosystem contains nonlinearities. Another dis-
advantage of Lemma 2.2 is the required compensator order, which may be much higher
then the number of exosystem states.

It may be also possible to design partially robust internal models with alternative ap-
proaches in between Lemma 2.2 and Lemma 2.3. For instance, the next method stated
on Lemma 2.4 seeks to immerse any scaling factor of c(w) into the mapping σ(w) by
exploring the use of measurements (CHEN; HUANG, 2015). This alternative method
should be tackled when the full immersion function ζ(·) defined in Lemma 2.3 cannot be
determined, which may be the case for nonlinear exosystems.
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Lemma 2.4. Consider a scalar ǫ ∈ R and matrix functions S : Rny → Rnw×nw and

U : Rny → Rnu×nw such that

{

s(w) = S(d(w))w
c(w) = ǫU(d(w))w

∀w ∈ W . (88)

Then the internal model functions

φm(ξ, y) = S(y) ξ , θm(ξ, y) = U(y) ξ , (89)

satisfy the condition (80) with σ(w) = ǫ w.

Proof. Let σ(w) = ǫ w and develop the top-left corner of (80) as follows:

∂σ(w)

∂w
s(w) = ǫ s(w) . (90)

By applying φm(ξ, y) = S(y) ξ to the top-right corner of (80) one obtains:

φm(σ(w), d(w)) = S(d(w)) (γ w) = ǫ S(d(w))w . (91)

Supposing S(y) is defined such that s(w) = S(y)w is true when y = d(w) ∀w ∈ W ,
(91) equals (90) and the top condition in (80) is satisfied. Now develop the bottom-right
corner in (80) with θm(ξ, y) = U(y) ξ, which leads to:

θm(σ(w), d(w)) = U(d(w)) (ǫ w) = ǫU(d(w))w . (92)

If U(y) is defined such that c(w) = γU(y)w + η(y) holds for y = d(w) ∀w ∈ W , then
(92) equals the bottom-left corner side of (80). Therefore, all conditions in (80) verify
with the internal model design (89) and the mapping σ(w) = ǫ w.

An internal model design example is demonstrated subsequently where all of the dis-
cussed methods are employed and robustness properties are analyzed.

Example 2.2. Consider a nonlinear system described by







ẋ1 = x2
ẋ2 = a x21x2 + b u
e = x1 − w1

(93)

where a, b ∈ R are constant parameters. Suppose the exogenous state is produced by a
harmonic oscillator:

{

ẇ1 = w2

ẇ2 = −w1
. (94)

System functions f(x, w, u), h(x, w) and s(w) in this example are

f(x, u) =

[

x2
a x21x2 + b u

]

, h(x, w) = x1 − w1 , s(w) =

[

w2

−w1

]

. (95)

Prior to designing an internal model, it is necessary to find the pair of functions π(w) and
c(w) satisfying the condition (66). In order to do so, one can write the system equations
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into the form (76) with functions a0(w) = −w1, b0 = 1, a1 = 0, b1 = 1, a2(x) = a x21x2
and b2 = b. Evaluating the expressions indicated in (77) with these functions, one obtains:























π1(w) = −b−1
0 a0(w) = w1

π2(w) = −b−1
1

(

a1 −
∂π1(w)

∂w
s(w)

)

= w2

c(w) = −b−1
2

(

a2(x)−
∂π2(w)

∂w
s(w)

)

= −ab−1 w2
1w2 − b−1w1

. (96)

Considering the direct reconstruction method presented by Lemma 2.2, the internal model
functions are given by:

φm(ξ) =

[

ξ2
−ξ1

]

, θm(ξ) = −ab−1 ξ21ξ2 − b−1 ξ1 . (97)

The disadvantage of this design is that plant parameters a and bmust be exactly known for
the implementation of θm(ξ). In order to circumvent this issue, one should consider the
immersion design method presented by Lemma 2.3. To do so, it is required to first verify
if there exists a positive integer q satisfying (83). This means to successively derive c(w),
with respect to time, until a q-th order derivative is found to be a function of the lower
derivatives. The multiple time-derivatives of c(w) under s(w) from (95) are evaluated in
the following manner:











































ċ(w) =
∂c(w)

∂w
s(w) =

∂c(w)

∂w1
w2 −

∂c(w)

∂w2
w1

c̈(w) =
∂ċ(w)

∂w
s(w) =

∂ċ(w)

∂w1
w2 −

∂ċ(w)

∂w2
w1

...
...

(q)

c (w) =
∂

(q−1)

c (w)

∂w
s(w) =

∂
(q−1)

c (w)

∂w1

w2 −
∂

(q−1)

c (w)

∂w2

w1

(98)

Evaluating (98) up to q = 4, with c(w) obtained from (96) yields:


























c(w) = −ab−1 w2
1w2 − b−1w1

ċ(w) = −2ab−1 w1w
2
2 + aw3

1 − b−1w2

c̈(w) = 7ab−1 w2
1w2 − 2aw3

2 + b−1w1
(3)

c (w) = 20ab−1 w1w
2
2 − 7ab−1 w3

1 + b−1w2
(4)

c (w) = −61ab−1 w2
1w2 + 20ab−1w3

2 − b−1w1

. (99)

Observe that the forth order time-derivative of c(w) can be expressed as a function of the

lower order derivatives, that is
(4)

c (w) = −9 c(w) − 10 c̈(w). Therefore, (83) is true for
q = 4 and the immersed internal model functions are:

φm(ξ) =









ξ2
ξ3
ξ4

−9 ξ1 − 10 ξ3









, θm(ξ) = ξ1 . (100)

This immersed design has the property of full robustness with respect to all system pa-
rameters a and b, since they are not necessary to compute the internal model functions.
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On the other hand, the number of required controller states doubles in comparison to the
direct reconstruction.

Now suppose the exogenous signal w1 is available as an independent measurement,
i.e. y1 = w1 and d1(w) = w1. In this case, it is possible to use the alternative approach
from Lemma 2.4 in order to construct a lower order internal model with partial robustness
properties. Observe that functions s(w) = [w2 −w1]

T and c(w) = −ab−1 w2
1w2 − b−1 w1

can be expressed in the form (88) with terms S, U(y) and ǫ as:

S =

[

0 1
−1 0

]

, U(y) =
[

1 a y21
]

, ǫ = −b−1 . (101)

Therefore according to (89), the following internal model design is also feasible:

φm(ξ) =

[

ξ2
−ξ1

]

, θm(ξ, y) = ξ1 + a y21ξ2 . (102)

Despite the parameter a needs to be known in this case, this alternative construction is
still robust with respect to b.

2.3.2 Design of Stabilizing Components

Step (b) of the output regulator design method previously shown consists on finding
stabilizing functions φs(y) and θs(y) satisfying condition (79) such that the attraction
requirement (68) will hold. In order to assist on the solution of this step, an auxiliary
vanishing signal ε ∈ Rnε can be introduced as (CHEN; HUANG, 2015)

ε = δ(y) , (103)

for some function δ : Rny → Rnε that vanishes inside the regulation manifold, i.e.

0 = δ(d(w)) ∀w ∈ W . (104)

With this definition, controller (78) may be re-expressed in the form of

{

ξ̇ = φm(ξ, y) + G(y) ε
u = θm(ξ, y) + K(y) ε

, (105)

where G : Rny → Rns×nε and K : Rny → Rnu×nε are free design matrix functions. One
should see that (78) is equivalent to (105) since φs(y) = G(y) δ(y) and θs(y) = K(y) δ(y).
Also note that (104) ensures the fulfillment of regulation condition (79). Control design
step (b) can therefore be separated into the following sub-steps:

(b.1) Choose a steady-state vanishing function δ(y) satisfying (104).

(b.2) Design matrix functions G(y) and K(y) such the attraction condition (68) is veri-
fied.

Whenever the output error function h(x, w) can be rearranged in terms of the output
measurements, i.e. h(x, w) = h(y) for y = g(x, w), then a possible choice for sub-step
(b.1) is directly

δ(y) = h(y) (106)
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since δ(d(w)) = h(d(w)) = h(π(w), w) = 0 ∀w ∈ W . This approach is recommended
as a default choice. If the output measurement vector contains more than enough informa-
tion to implement the output error, the designer can explore this fact in order to augment
the output vanishing function δ(y), thus proving additional degrees of freedom for stabi-
lization purposes. For instance, in a scenario where all system and exosystem states are
measured, that is y = [yT

x yT

w]
T = [xT wT]T, one should consider

δ(y) = yx − π(yw) . (107)

This construction may also be used partially, in case only a subset of the system and
exosystem states are available. A numerical example subsequently illustrates these design
possibilities.

Example 2.3. Consider the same nonlinear system described by (93) where the exoge-
nous state is generated by (94). Recall the error signal was defined as e = h(x, w) =
x1 − w1 and the manifold solution π(w) = [w1 w2]

T was obtained in (96). Consider also
three different output measurement scenarios described by

(i) y = x1 − w1 , (ii) y =

[

x2
w2

]

, (iii) y =









x1
x2
w1

w2









. (108)

In case (i), it verifies that e = h(x, w) = y = g(x, w) = x1 − w1, and so, the output
vanishing function can be defined using the default approach from (106):

δ(y) = y . (109)

On the other hand, a possible setup for case (ii) is the partial usage of expression (107):

δ(y) = y1 − y2 , (110)

since x2 − w2 = 0 when x2 = π2(w) = w2. Finally, in the last case (iii), one could use
the full definition indicated in (107):

δ(y) =

[

y1 − y3
y2 − y4

]

. (111)

through the same reasoning employed for case (ii).

After having dealt with sub-step (b.1), the next sub-step (b.2) may be cast as a nonlin-
ear asymptotic stabilization problem by introducing a proper change of coordinates, most
commonly (HUANG; CHEN, 2004):

z ,

[

x− π(w)
ξ − σ(w)

]

, (112)

where z ∈ Rnx+nξ . If one is able to find G(y), K(y) and a region D such that z(t) defined
in (112) asymptotically approaches the origin, then Problem 2.4 is finally solved. The
Lyapunov stability result presented in Theorem 2.1 is usually employed for this last step
(CHEN; HUANG, 2015).
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2.4 Final Remarks

Initially, this chapter introduced a selection of LMI based results, including dynamic
output feedback control design, stability of nonlinear systems with control input satura-
tion and stability of rational nonlinear systems. The chapter then moved towards the basic
theory on nonlinear output regulation, describing fundamental concepts such as steady-
state manifolds, regulator equations, internal models and stabilization problems in the
regulation sense. The methodology of this thesis subsequently contributes on the basis of
all these preliminary topics.
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3 OUTPUT REGULATION OF RATIONAL NONLINEAR

SYSTEMS

A new output regulation approach for rational nonlinear systems is proposed in this
chapter, where a systematic methodology based on the differential-algebraic representa-
tion is presented for stability analysis and design of dynamic output feedback controllers.

This chapter is organized in the following manner: Section 3.1 introduces the prob-
lem to be tackled, followed by Section 3.2 which explains the controller structure to be
considered. The main results are contained in Section 3.3, where stability conditions
and design procedures are provided. Afterwards, Section 3.4 demonstrates the proposed
methodology with some numerical examples. Final remarks are also given on Section 3.5.

3.1 Problem Statement

The problem dealt in this chapter is equivalent to what has been introduced in Sec-
tion 2.3, where the nonlinear system to be regulated is described by







ẋ = f(x, w, u)
y = g(x, w)
e = h(x, w)

(113)

with x ∈ Rnx , u ∈ Rnu, y ∈ Rny and e ∈ Rne respectively denoting the system state, the
control input, the output measurement and the output error. The exogenous perturbation
signal w ∈ Rnw is generated by an autonomous nonlinear exosystem

ẇ = s(w) , (114)

and the system control input is provided by a nonlinear output feedback controller of the
form

{

ξ̇ = φ(ξ, y)
u = θ(ξ, y)

, (115)

where ξ ∈ R
nξ is the controller state. The standard preliminary Assumptions 2.1 and 2.2

mentioned earlier are also considered here. Given this setup, the problem to be tackled in
this chapter is stated as follows.

Problem 3.1. Design controller functions φ(ξ, y) and θ(ξ, y) such that the closed-loop
system (113), (114), (115) achieves output regulation in some region D ⊆ Rnx×Rnξ×W .
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Stabilizing Stage
{

ξ̇s = φs(ξs, y)
v = θs(ξs, y)

Internal Model Stage
{

ξ̇m = φm(ξm, y) + vm
u = θm(ξm, y) + vu

System






ẋ= f(x, w, u)
y= g(x, w)
e= h(x, w)

Exosystem

ẇ = s(w)

v u

w

ey

Controller

Figure 4: Block diagram of the closed-loop system with the considered control structure.
Source: the author.

3.2 Control Structure

In order to construct the dynamic output feedback controller (115), two separate stages
are considered: the internal model controller and the stabilizing controller. So as to
present such framework, the controller state vector ξ is defined as

ξ ,

[

ξm
ξs

]

, (116)

where ξm ∈ Rnm represents internal model states and ξs ∈ Rns denotes the stabilizing
controller states. Furthermore, a stabilizing control input v ∈ Rnv (nv = nu + nm) is
given by

v ,

[

vu
vm

]

, (117)

where the component vu ∈ Rnu is the system stabilizing input and the component vm ∈
Rnm is the internal model stabilizing input. Using the previous definitions (116) and
(117), the internal model stage is defined as

{

ξ̇m = φm(ξm, y) + vm
u = θm(ξm, y) + vu

, (118)

where φm : Rnm × Rny → Rnm and θm : Rnm × Rny → Rnu are the internal model
functions. Likewise, the stabilizing controller stage is defined as

{

ξ̇s = φs(ξs, y)
v = θs(ξs, y)

, (119)

where φs : Rns × Rny → Rns and θs : Rns × Rny → Rnv are the stabilizing controller
functions. The block diagram on Figure 4 depicts the considered control framework,
which is equivalent to the original output regulation diagram shown by Figure 3. The
only difference here is the detailing of the controller with two distinct components: the
internal model (118) and the stabilizing stage (119). Considering this particular structure,
the sufficient conditions for the output regulation of the closed-loop system (113), (114)
are presented by the following lemma, which is directly derived from Theorem 2.6.
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Lemma 3.1. The closed-loop system (113), (114) with controller (118), (119) achieves

output regulation in D ⊆ Rnx ×Rnm ×Rns ×W if there exist smooth mappings π : W →
Rnx, c : W → Rnu , d : W → Rny and σm : W → Rnm such that π(0) = 0, c(0) = 0,

d(0) = 0, σm(0) = 0,











∂π(w)

∂w
s(w) = f(π(w), w, c(w))

d(w) = g(π(w), w)
0 = h(π(w), w)

∀w ∈ W , (120)

{

∂σm(w)

∂w
s(w) = φm(σm(w), d(w))

c(w) = θm(σm(w), d(w))
∀w ∈ W , (121)

{

0 = φs(0, d(w))
0 = θs(0, d(w))

∀w ∈ W , (122)

and also:

(

x(0), ξm(0), ξs(0), w(0)
)

∈ D ⇒















lim
t→∞

∣

∣

∣

∣x(t)− π(w(t))
∣

∣

∣

∣ = 0

lim
t→∞

∣

∣

∣

∣ξm(t)− σm(w(t))
∣

∣

∣

∣ = 0

lim
t→∞

∣

∣

∣

∣ξs(t)
∣

∣

∣

∣ = 0

. (123)

Proof. Observe the first regulation condition (66) of Theorem 2.6 is equivalent to (120).
Consider now the second regulation condition (67) with a candidate mapping solution
σ(w) defined by

σ(w) =

[

σm(w)
0

]

, (124)

for some smooth mapping σm : W → Rnm , σm(0) = 0. The complete controller repre-
sentation (115) with joined stages (118) and (119) may then be expressed as







ξ̇ = φ(ξ, y) =

[

φm(ξm, y) +Dm θs(ξs, y)
φs(ξs, y)

]

u = θ(ξ, y) = θm(ξm, y) +D θs(ξs, y)

(125)

where auxiliary matrices D ∈ Rnu×nv and Dm ∈ Rnm×nv are

D ,
[

I 0
]

, Dm ,
[

0 I
]

. (126)

Using (124) and (125), the regulation condition (67) becomes


















∂σm(w)

∂w
s(w)

0



 =

[

φm(σm(w), d(w)) +Dm θs(0, d(w))

φs(0, d(w))

]

c(w) = θm(σm(w), d(w)) +D θs(0, d(w))

. (127)

Provided that condition (122) holds, then (127) simplifies to (121). Furthermore, applying
(124) into the limit condition (68) leads to (123).

Consequently from Theorem 2.6, the conditions of Lemma 3.1 ensure the output reg-
ulation of the closed-loop system defined by (113), (114), (118), (119) with respect to
region D.
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An important consequence of Lemma 3.1 is the fact that internal model and stabiliz-
ing stages can be designed separately. Observe that equation (121) does not depend on
φs(ξs, y) and θs(ξs, y), therefore one can find an internal model φm(ξm, y) and θm(ξm, y)
as a first step and subsequently design the stabilizing controller so as to ensure the at-
traction condition (123). This sequential design approach is similar to the case explained
in Section 2.3, however, instead of static stabilizing terms, dynamic stabilizing action is
being considered here.

Prior to initiating the output regulator design, it is considered that target manifold
mappings π(w) and c(w) are known, as stated by Assumption 3.1 below1. If the system
functions f(x, w, u) and h(x, w) are in the form of (76), as discussed in Section 2.3, then
π(w) and c(w) can be recursively determined by (77). Further guidelines with respect to
this procedure may be found in (PAVLOV; WOUW; NIJMEIJER, 2006; CHEN; HUANG,
2015).

Assumption 3.1. There exists a known mapping pair π : W → Rnx and c : W → Rnu

satisfying π(0) = 0, c(0) = 0 and (120)2.

Given the presented control framework and preliminary assumptions, the considered
design methodology in order to solve Problem 3.1 therefore divides into two distinct steps:

(a) Design internal model functions φm(ξm, y) and θm(ξm, y) such that (121) is satisfied
for some σm(w).

(b) Design stabilizing functions φs(ξs, y) and θs(ξs, y) satisfying (122) such that attrac-
tion condition (123) holds.

The solution of step (a) can be obtained by any of the internal model design ap-
proaches presented in Subsection 2.3.1. Given all assumptions mentioned here, step (a)
is guaranteed to be solvable at least by the approach in Lemma 2.2, which is the most
general method. However it is recommended to employ the immersion method of Lemma
2.3 whenever possible, because of its additional robustness property.

Towards systematically solving step (b), the general stabilizing controller representa-
tion from (119) is henceforth particularized in the form of

{

ξ̇s = F(y) ξs +G(y) ε
v = H(y) ξs +K(y) ε

, (128)

where F : Rny → Rns×ns , G : Rny → Rns×nε , H : Rny → Rnu×ns and K : Rny →
Rnu×nε are free design matrix functions. In (128) also, a steady-state vanishing signal
ε ∈ Rnε is considered as

ε = δ(y) , (129)

where δ : Rny → Rnε is a function of the output measurement vector y that satisfies

0 = δ(d(w)) ∀w ∈ W . (130)

One should notice that (128) is a particular case of (119) with φs(ξs, y) = F(y) ξs +
G(y) δ(y) and θs(ξs, y) = H(y) ξs +K(y) δ(y), and therefore (130) ensures that the man-
ifold constraint (122) is satisfied. Consequently, (130) will not influence the steady-state
solution c(w) rendered by the internal model, provided that ξs → 0 as t→ ∞.

1Assumption 3.1 is relaxed in Chapter 5, where the framework is extended for the practical output
regulation.

2If mapping π(w) is known, one readily obtains the solution of d(w), which is d(w) = g(π(w), w).
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The reason for choosing the particular stabilizing controller structure from (128) is
the linearity with respect to the states ξs and the vanishing signal ε. This property will
be subsequently useful for synthesis purposes, where a design approach inspired on Sub-
section 2.2.1 will be employed. Furthermore, in order to provide additional degree of
freedom for the design problem, the parameters F(y) , . . . , K(y) are here proposed as
possible functions of the available measurements. Also due to convexity arguments, it is
proposed an affine parametrization for the stabilizing matrix functions:

[

F(y) G(y)
H(y) K(y)

]

,

[

F0 G0

H0 K0

]

+

n
∑

i=1

[

Fi Gi

Hi Ki

]

λi(y) . (131)

In here, λ : Rny → Rn is a free gain scheduling function with arbitrary dimension
n ∈ N and F0, . . . ,Fn ∈ Rns×ns , G0, . . . ,Gn ∈ Rns×nε , H0, . . . ,Hn ∈ Rnv×ns and
K0, . . . ,Kn ∈ Rnv×nϕ are free design matrices.

Given the proposed stabilizing controller structure from (130) and (131), the suggested
solution of step (b) then divides into these sub-steps:

(b.1) Choose a steady-state vanishing function δ(y) satisfying (130).

(b.2) For a given scheduling function λ(y), design stabilizing parameters F0 , . . . , Kn

such the attraction condition (123) is verified.

The sub-step (b.1) can be systematically addressed using the guidelines discussed
Subsection 2.3.2. On the other hand, a novel methodology in order to solve step (b.2)
will be proposed in the following subsection, where the main contribution of this chapter
is contained.

3.3 Main Results

This section introduces a new method capable of synthesizing the stabilizing param-
eters explained in the design sub-step (b.2). To do so, Subsection 3.3.1 initially develops
the regulation error dynamics, followed by Subsection 3.3.2 which presents a differential-
algebraic characterization of the system equations. Stability and transient performance
conditions are afterwards derived in Subsection 3.3.3, leading to design conditions later
in Subsection 3.3.4.

3.3.1 Regulation Error Coordinates

A change of state-space coordinates is introduced as z ∈ Rnz (nz = nx + nm):

z ,

[

zx
zm

]

,

[

x− π(w)
ξm − σm(w)

]

, (132)

henceforth called as regulation error state vector. The vector component zx ∈ Rnx here
denotes the deviation between the system state x and the regulation state reference π(w),
while zm ∈ R

nm denotes the deviation between the internal model state ξm and its regu-
lation state reference σm(w). By combining (132) with the system model (113) and the
internal model controller (118), the system equations with respect to z can be written as























ż = fz(z, w, v)
u = θz(z, w) + c(w) + vu
y = gz(z, w) + d(w)
e = hz(z, w)
ε = δz(z, w)

, (133)
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where functions fz : Rnz ×Rnw ×Rnv → Rnz , θz : Rnz ×Rnw → Rnu, gz : Rnz ×Rnw →
Rny , hz : Rnz × Rnw → Rne and δz : Rnz × Rnw → Rnε are obtained as follows:

fz(z, w, v) ,

[

f(zx + π(w), w, θz(z, w) + c(w) + vu)
φm(zm + σm(w), gz(z, w) + d(w)) + vm

]

−
[

f(π(w), w, c(w))
φm(σm(w), d(w))

]

,

θz(z, w) , θm(zm + σm(w), gz(z, w) + d(w))− c(w) ,

gz(z, w) , g(zx + π(w), w)− d(w) ,

hz(z, w) , h(zx + π(w), w) ,

δz(z, w) , δ(gz(z, w) + d(w)) .

(134)

If z = 0 and v = 0, one should note that ∀w ∈ W: hz(0, w) = 0, gz(0, w) = 0,
δz(0, w) = 0, θz(0, w) = 0, fz(0, w, 0) = 0. This observation implies that z = 0 is
an equilibrium point of the sub-system ż = fz(z, w, v) when v = 0 for every possible
exogenous state w ∈ W . Moreover, the output error e = hz(z, w) and the function
ε = δz(z, w) vanish to zero at this equilibrium condition.

The proposed stabilizing controller originally defined as (128) can also be expressed
with respect to z in the following manner:

{

ξ̇s = F (z, w) ξs +G(z, w) ε
v = H(z, w) ξs +K(z, w) ε

. (135)

In here, matrix functions F : Rnz × Rnw → Rns×ns , G : Rnz × Rnw → Rns×nε , H :
Rnz × Rnw → Rnv×ns and K : Rnz × Rnw → Rnv×nε denote the evaluation of F(y),
G(y), H(y) and K(y) for y = gz(z, w) + d(w), i.e.

[

F (z, w) G(z, w)
H(z, w) K(z, w)

]

,

[

F0 G0

H0 K0

]

+
n

∑

i=1

[

Fi Gi

Hi Ki

]

λi(z, w) . (136)

where λ : Rnz × Rnw → Rn is defined similarly to the previous constructions in (134),
but now using the controller scheduling function λ(y):

λ(z, w) , λ(gz(z, w) + d(w)) . (137)

It is desirable that matrices F (z, w), G(z, w), H(z, w) and K(z, w) become affinely de-
pendent on (z, w) in order to take advantage of convexity properties later on. It is possible
to enforce this affinity property by simply restricting the choice of λ(y) for cases where
λ(z, w) in (137) become a linear mapping with respect to (z, w), as assumed henceforth.

An augmented system representation must be defined next, incorporating the regula-
tion error state z with the stabilizing controller state ξs in a single state vector z ∈ Rna

(na = nz + ns):

z ,

[

z
ξs

]

. (138)

By joining (133) with (135), it is possible to express all closed-loop system equations
with respect to (z, w):

{

ż = f(z, w)
e = h(z, w)

, (139)

where functions f : Rna × Rnw → Rna and h : Rna × Rnw → Rne are constructed as:

f (z, w) ,

[

fz(z, w,H(z, w) ξs +K(z, w) δz(z, w))
F (z, w) ξs +G(z, w) δz(z, w)

]

,

h(z, w) , hz(z, w) .

(140)
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From previous definitions, it is readily noticeable that f (0, w) = 0 and h(0, w) = 0
∀w ∈ W . This implies that z = 0 is an equilibrium point of the augmented system
ż = f(z, w), for every possible exogenous statew ∈ W , and the output error e = h(z, w)
is equal to zero at this equilibrium condition.

The provided change of coordinates will be useful to develop stability conditions,
since the original manifold attraction requirement (123) can now be denoted in the more
convenient form

(

z(0), w(0)
)

∈ D ⇒ lim
t→∞

||z(t)|| = 0 , (141)

for some region D ⊆ Rna × W . One should note that z = 0 implies that x = π(w),
ξm = σm(w) and ξs → 0 according to definitions (132) and (138). Because of this
reasoning, (123) is equivalent to (141) and the output regulation problem becomes an
asymptotic stabilization problem.

3.3.2 Differential-Algebraic Representation

Towards systematically approaching the stabilizing parameters design through numer-
ical optimization, the differential-algebraic representation (DAR) initially introduced in
Subsection 2.2.3 will be used. From now on, the scope of the formulation is being re-
stricted to a class of rational nonlinearities, as exposed by the following assumption.

Assumption 3.2. Nonlinear functions fz(z, w, v) and δz(z, w) of the system (133) can be
represented as

fz(z, w, v) = A(z, w) z + Φ(z, w)ϕ(z, w) +B v
δz(z, w) = C z + Γ ϕ(z, w)

(142)

with a rational nonlinear function ϕ : Z+ ×W+ → Rnϕ satisfying

0 = Ψ(z, w) z + Ω(z, w)ϕ(z, w) (143)

such that:

(i) Sets Z+ and W+ satisfy {0} ⊂ int{Z+} ⊆ Rnz and W ⊆ W+ ⊆ Rnw .

(ii) Matrices A : Z+ ×W+ → Rnz×nz , Φ : Z+ ×W+ → Rnz×nϕ , Ψ : Z+ ×W+ →
Rnϕ×nz and Ω : Z+ ×W+ → Rnϕ×nϕ are affine with respect to (z, w).

(iii) Matrices B ∈ Rnz×nv , C ∈ Rnε×nz and Γ ∈ Rnε×nϕ are constant.

(iv) Matrix Ω(z, w) is non-singular ∀ (z, w) ∈ Z+ ×W+.

(v) Matrix A(z, w) can be described by

A(z, w) = A0 +
n

∑

i=1

Ai λi(z, w) , (144)

for constant matrices A0, . . . ,An ∈ Rnz×nz .

Whenever fz(z, w, v) and δz(z, w) are regular rational functions with respect to (z, w) ∈
Z+ × W+, there exists a proper decomposition into the DAR described by Assumption
3.2, satisfying requirements (i) to (iv) (TROFINO; DEZUO, 2014). The choice for this
DAR is though not unique and may influence the conservatism of the stability conditions
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about to be presented. Guidelines on how to decompose rational functions into DAR have
been illustrated and exemplified in Subsection 2.2.3, and further recommendations may
be consulted in TROFINO; DEZUO (2014). One should also note that only functions
fz(z, w, v) and δz(z, w) of the regulation error representation (133) are required to be
rational, and not necessarily the original system functions f(x, w, u), g(x, w), h(x, w),
s(w), etc.

The complementary condition (v) has been included in order to match the definition
of A(z, w) with the stabilizing terms F (z, w), G(z, w), H(z, w) and K(z, w) from (136).
The purpose of this requirement is to subsequently allow the construction of the stabilizing
parameters, which will directly involve A(z, w), similarly to the procedure demonstrated
on Theorem 2.3. Nevertheless, there is no loss of generality from (v) because one can
always lump the nonlinearities of fz(z, w, v) entirely into the Φ(z, w)ϕ(z, w) portion
of the DAR, i.e. fz(z, w, v) = Az + Φ(z, w)ϕ(z, w) + B v, defining A as a constant
matrix equal to A0. Although, it should be clear that less conservative results might be
obtained if some nonlinearities are decomposed as A(z, w) z instead of solely using the
Φ(z, w)ϕ(z, w) component.

Sets Z+ and W+ specify the validity region of the (z, w) variables of the DAR form
(142) and (143). As clearly declared in item (i), the definition of Z+ must at least include,
in its interior, the origin of the z-state-space, which is the equilibrium point of the regu-
lation error system. In turn, set W+ must at least include the positively invariant region
W where the exosystem trajectory is assumed to be confined in (see Assumption 2.2). As
presented in (46), it is convenient to define Z+ and W+ as a convex hull of vertices:

Z+ = Co{Vz} , W+ = Co{Vw} . (145)

Without loss of generality, Z+ is also required to be expressed in the polyhedral form
with some vectors p1, p2, . . . , pnk

∈ Rnz :

Z+ =
{

z ∈ R
nz : | pT

k z | ≤ 1 , k = 1, 2, . . . , nk

}

. (146)

Given the established DAR framework, the fundamental equations in (133) are now
written as







ż = A(z, w) z + Φ(z, w)ϕ(z, w) +B v
0 = Ψ(z, w) z + Ω(z, w)ϕ(z, w)
ε = C z + Γ ϕ(z, w)

, (147)

and the augmented system dynamics (139) is now expressed as
{

ż = A(z, w) z+Φ(z, w)ϕ(z, w)
0 = Ψ(z, w) z+Ω(z, w)ϕ(z, w)

. (148)

In here, the augmented matrices A : Z+ ×W+ → Rna×na, Φ : Z+ ×W+ → Rna×nϕ ,
Ψ : Z+ ×W+ → Rnϕ×na and Ω : Z+ ×W+ → Rnϕ×nϕ are:

A(z, w) =

[

A(z, w) +BK(z, w)C BH(z, w)
G(z, w)C F (z, w)

]

, Ψ(z, w) =
[

Ψ(z, w) 0
]

,

Φ(z, w) =

[

Φ(z, w) +BK(z, w)Γ
G(z, w)Γ

]

, Ω(z, w) = Ω(z, w) .

(149)
Since all system matrices A(z, w) , . . . , Ω(z, w) , F (z, w) , . . . , K(z, w) were assumed
affine with respect to (z, w), the same property is readily inherited by the augmented
matrices shown in (149).
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3.3.3 Analysis Conditions

On the way to establish a design procedure for stabilizing parameters F0, . . . ,Kn in
(131), the next step is to develop analysis conditions in which the trajectories of the
closed-loop system satisfy the desired attraction requirement (141). The starting point
to address this objective is the following result based on KHALIL (2002).

Lemma 3.2. Consider a system ż = f(z, w) where f : Z+ ×W+ → Rna , f (0, w) = 0
∀w ∈ W ⊆ W+ and let {0} ⊂ int{Z+} ⊆ Rna . Suppose there exists a smooth function

V : Z+ → R, such that

V (0) = 0 , V (z) > 0 ∀ z ∈ Z
+ , z 6= 0 , (150)

V̇ (z, w) ,
∂V (z)

∂z
f(z, w) < 0 ∀ (z, w) ∈ Z

+ ×W+ , z 6= 0 , (151)

Z ,
{

z ∈ R
na : V (z) ≤ 1

}

⊂ Z
+ , (152)

then the trajectories z(t) asymptotically approach the origin ∀(z(0), w(0)) ∈ D=Z×W .

Proof. Suppose w(0) ∈ W and note that w(t) ∈ W ⊆ W+ from Assumption 2.2. Let
z(t) be a solution of ż = f (z, w) with z(0) ∈ Z , as defined by (152). From (150) and
(151), it follows that 1 ≥ V (z(t)) ≥ 0 and V̇ (z(0), w(0)) ≤ 0 ∀ t ≥ 0. Since V (z(t)) is
continuous, there exists a limit ǫ ∈ [0, 1] such that V (z(t)) → ǫ and V̇ (z(t), w(t)) → 0 as
t→ ∞. Moreover, it always verify that z = 0 in this limit condition where V̇ (z, w) = 0,
because (151) and f (0, w) = 0 ∀w ∈ W . Therefore z(t) → 0 as t→ ∞.

Besides addressing the fundamental stability condition (141), this work suggests the
consideration of additional transient performance criteria (P1) and (P2), as respectively
introduced by Definitions 3.1 and 3.2 in the sequence. By the first criterion (P1), it is
possible to specify a minimum decay rate for the regulation error state trajectories. On
the other hand, the second requirement (P2) implicitly bounds the magnitude of the sta-
bilizing controller gains to be later synthesized, a recommended practice so as to prevent
numerical conditioning issues.

Definition 3.1. Exponential Performance (P1): the trajectories z(t) exponentially ap-
proach the origin with decay rate faster than α > 0, i.e. ∃ ǫ > 0 such that ||z(t)|| ≤ ǫ e−αt

∀ t ≥ 0 for every initial condition (z(0), w(0)) ∈ D.

Definition 3.2. Eigenvalue Clustering (P2): all eigenvalues of the augmented system
matrix A(z, w) are enclosed in the disk {s ∈ C : |s| < r} ∀(z, w) ∈ Z+ ×W+, where
r > 0.

The Theorem 3.1 presents the first main result regarding the output regulation of the
closed-loop system and the fulfillment of the performance criteria (P1) and (P2).

Theorem 3.1. Suppose there exist a symmetric matrix P ∈ Rna×na and a matrix L ∈
Rnϕ×nϕ such that

P ≻ 0 , (153)
[

1 pT

k

⋆ P

]

≻ 0 ∀ k ∈ {1, 2, . . . , nk} , pk ,

[

pk
0

]

, (154)

H
{[

PA(z, w) + αP PΦ(z, w)
LΨ (z, w) LΩ(z, w)

]}

≺ 0 ∀ (z, w) ∈ Vz × Vw , (155)
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[

−rP PA(z, w)
⋆ −rP

]

≺ 0 ∀ (z, w) ∈ Vz × Vw . (156)

Then the closed-loop system (113), (114) with controller (118), (128) achieves output

regulation and satisfies (P1) and (P2) for every initial condition in

D =
{

(z, w) ∈ R
na ×W : zTP z ≤ 1

}

. (157)

Proof. Consider the Lyapunov candidate function

V (z) = z
TP z , (158)

for P = P T ≻ 0, noting that V (z) > 0 ∀ z ∈ R
na, z 6= 0, as in (150). The deriva-

tive of (158) along the trajectories of the system (148) is then given by V̇ (z, w) =
H{zT

∆1(z, w) ζ(z, w)}, where

∆1(z, w) ,
[

PA(z, w) PΦ(z, w)
]

, ζ(z, w) ,

[

z

ϕ(z, w)

]

. (159)

Using the same vector ζ(z, w), the algebraic equality constraint in (148) can be expressed
by ∆2(z, w) ζ(z, w) = 0, where

∆2(z, w) ,
[

Ψ(z, w) Ω(z, w)
]

. (160)

Now suppose the following inequality holds:

V̇ (z, w)+2αV (z)+H
{

ϕT(z, w)L∆2(z, w) ζ(z, w)
}

< 0 ∀ (z, w) ∈ Z
+×W+ , z 6= 0 ,

(161)
where Z

+ , Z+ × Rns and L ∈ Rnϕ×nϕ is a free matrix. Since α ≥ 0, V (z) > 0 and
∆2(z, w) ζ(z, w) = 0 ∀ (z, w) ∈ Z

+×W+ , z 6= 0, then the satisfaction of (161) implies
that V̇ (z, w) < 0 ∀ (z, w) ∈ Z

+ ×W+, z 6= 0, as in (151). By expressing (161) in the
factorized quadratic form ζT(z, w)∆4(z, w) ζ(z, w) < 0, one obtains

∆4(z, w) , H
{[

PA(z, w) PΦ(z, w)
LΨ(z, w) LΩ(z, w)

]}

≺ 0 ∀ (z, w) ∈ Z+ ×W+ . (162)

From Lemma A.3 then, one gets that (162) ⇔ (155) since sets Z+ and W+ have been
defined as (145) and A(z, w) , . . . , Ω(z, w) are affine matrix functions. Conditions (153)
and (155) consequently ensure that the candidate Lyapunov function (158) is positive-
definite and its derivative is negative-definite ∀ (z, w) ∈ Z

+ ×W+. So, it must be shown
that (z(t), w(t)) ∈ Z

+ ×W+ ∀ t > 0 in order to conclude the proof.
According to Lemma 3.2, the candidate domain of attraction estimate and positively

invariant region of system (148) is defined as D = Z ×W , where here

Z =
{

z ∈ R
na : zTP z ≤ 1

}

(163)

is an ellipsoidal set. Since by assumption w(0) ∈ W ⇒ w(t) ∈ W ⊆ W+ ∀ t ≥ 0, in
order to additionally ensure that (z(0), w(0)) ∈ Z × W ⇒ (z(t), w(t)) ∈ Z

+ × W+

∀ t > 0, it is necessary to impose the condition Z ⊂ Z
+. By referring to Lemma A.6

and using the polyhedral definition of Z+ from (146), then it follows that (154) implies
Z ⊂ Z

+.
All conditions from Lemma 3.2 are satisfied if (153), (154) and (155) hold. Conse-

quently, the trajectories z(t) of the system (139) asymptotically converges to the origin
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for every initial condition (z(0), w(0)) ∈ D, satisfying (141) which is equivalent to (123).
According to Lemma 3.1, it also follows that the closed-loop system (113), (114) with
controller (118), (128) achieves output regulation in region D.

Since D ⊂ Z
+ ×W+, from inequality (161) it also follows that

V̇ (z, w) < −2α V (z) ∀ (z, w) ∈ D , z 6= 0 , (164)

which in turn implies that:

V (z(t)) ≤ V (z(0)) e−2αt ≤ e−2αt ∀ (z(0), w(0)) ∈ D . (165)

Let λmin(P ) ∈ R denote the smallest eigenvalue of P , then λmin(P ) ||z||2 ≤ z
TP z =

V (z). Thus, (165) leads to

||z(t)|| ≤ λmin(P )
−

1
2 e−αt ∀ (z(0), w(0)) ∈ D , (166)

and so, the exponential performance criterion (P1) is satisfied for the given conditions.
In regard of (P2), all eigenvalues of matrix A(z, w) are contained inside the disk

{s ∈ C : |s| < r} ∀ (z, w) ∈ Z+ × W+ if there exists a matrix P ≻ 0 such that (156)
(BOYD et al., 1994).

Based on Theorem 3.1, a domain of attraction estimate D can be found by solving the
following SDP:

min
P,L

tr(P ) s.t.
{

(153) , (154) , (155) , (156)
}

. (167)

In here, the optimization decision variables are being regarded as P and L only, not in-
cluding the stabilizing controller gains. The SDP problem (167) can be employed as a
stability and performance analysis tool, provided the parameters F0, . . . ,Kn are given a

priori.

3.3.4 Design Conditions

In what follows, the methodology is extended for design purposes, where the stabiliz-
ing parameters F0, . . . ,Kn are also regarded as decision variables and initially unknown.
By employing a procedure similar to SCHERER; GAHINET; CHILALI (1997), as pre-
sented in Subsection 2.2.1, congruence transformations and variables changes are applied
to the conditions from Theorem 3.1 in order to linearize the inequalities with respect to
the controller parameters. These algebraic manipulations led to the new Theorem 3.2 pre-
sented in the sequence. Henceforth, in order to ensure the proper reconstruction of the
design parameters, the stabilizing controller order is enforced as equal to the regulation
error system order (i.e. ns = nz).

Theorem 3.2. Suppose there exist symmetric matrices X, Y ∈ Rnz×nz and matrices

L ∈ R
nϕ×nϕ , F̂0, . . . , F̂n ∈ R

nz×nz , Ĝ0, . . . , Ĝn ∈ R
nz×nε , Ĥ0, . . . , Ĥn ∈ R

nv×nz and

K̂0, . . . , K̂n ∈ Rnv×nε such that
[

X I
⋆ Y

]

≻ 0 , (168)





1 pT

kX pT

k

⋆ X I
⋆ ⋆ Y



 ≻ 0 ∀ k ∈ {1, 2, . . . , nk} , (169)
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H



























































A(z, w)X +

BĤ(z, w)+
αX

A(z, w)+

BK̂(z, w)C +
αI

Φ(z, w)+

BK̂(z, w)Γ

F̂ (z, w)+
αI

Y A(z, w)+

Ĝ(z, w)C +
αY

Y Φ(z, w)+

Ĝ(z, w)Γ

LΨ(z, w)X LΨ(z, w) LΩ(z, w)



























































≺ 0 ∀ (z, w) ∈ Vz × Vw ,

(170)
















−rX −rI
A(z, w)X +

BĤ(z, w)

A(z, w)+

BK̂(z, w)C

⋆ −rY F̂ (z, w)
Y A(z, w)+

Ĝ(z, w)C

⋆ ⋆ −rX −rI

⋆ ⋆ ⋆ −rY

















≺ 0 ∀ (z, w) ∈ Vz × Vw , (171)

where F̂ (z, w), Ĝ(z, w), Ĥ(z, w) and K̂(z, w) denote

[

F̂ (z, w) Ĝ(z, w)

Ĥ(z, w) K̂(z, w)

]

,

[

F̂0 Ĝ0

Ĥ0 K̂0

]

+
n

∑

i=1

[

F̂i Ĝi

Ĥi K̂i

]

λi(z, w) . (172)

Then the closed-loop system (113), (114) with controller (118), (128) achieves output

regulation and satisfies (P1) and (P2) for every initial condition in (157) with P given by

P =

[

I Y
0 NT

][

X I
MT 0

]−1

(173)

and stabilizing controller parameters Fi, Gi, Hi and Ki ∀ i ∈ {0, 1, . . . , n} obtained by



















Fi = N−1(F̂i + Y BK̂iCX − ĜiCX − Y BĤi − Y AiX)M−T

Gi = N−1(Ĝi − Y BK̂i)

Hi = (Ĥi − K̂iCX)M−T

Ki = K̂i

, (174)

where the pair M,N ∈ Rnz×nz is a non-singular solution to

MNT = I −XY . (175)

Proof. Suppose conditions from Theorem 3.1 hold for ns = nz and for P defined by

P =

[

Y N
NT

·

]

, P−1 =

[

X M
MT

·

]

, (176)

where X, Y ∈ R
nz×nz are symmetric matrices and M,N ∈ R

nz×nz are generic square
matrices. Since P−1P = I , then condition (175) must be satisfied. Consider also the
congruence transformation blocks Z1 ∈ Rna×na and Z2 ∈ Rna×na as

Z1 ,

[

X I
MT 0

]

, Z2 ,

[

I Y
0 NT

]

, (177)

where PZ1 = Z2. Post- and pre-multiplying (153), (154), (155) and (156) respectively
with Z1, diag{1, Z1}, diag{Z1, I} and diag{Z1, Z1} (and their transposes) leads to (168),
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(169), (170) and (171) under the following change of variables:










F̂ (z, w) = Y (A(z, w) +BK(z, w)C)X +NG(z, w)CX + Y BH(z, w)M T +NF (z, w)M T

Ĝ(z, w) = Y BK(z, w) +NG(z, w)

Ĥ(z, w) = K(z, w)CX +H(z, w)M T

K̂(z, w) = K(z, w)

.

(178)
Isolating the controller parameters in (178), one obtains










F (z, w) = N−1(F̂ (z, w) + Y BK̂(z, w)CX − Ĝ(z, w)CX − Y BĤ(z, w)− Y A(z, w)X)M−T

G(z, w) = N−1(Ĝ(z, w)− Y BK̂(z, w))

H(z, w) = (Ĥ(z, w)− K̂(z, w)CX)M−T

K(z, w) = K̂(z, w)

,

(179)
which leads to (174) by considering the definitions of F (z, w) , . . . , K(z, w) from (136),
of F̂ (z, w) , . . . , K̂(z, w) from (172) and of A(z, w) from (144). Also, matrix P can be
reconstructed as (173) since P = Z2 Z

−1
1 . As a conclusion, conditions from Theorem 3.1

are equivalent to Theorem 3.2 when considering ns = nz.

Considering the initial conditions of the stabilizing controller as ξs(0) = 0, then it
follows that zT(0)P z(0) = zT(0)Y z(0), since matrix P can be decomposed as (176).
Therefore, the original goal of minimizing the measure tr(P ) – in order to enlarge the
set of admissible initial states – may be substituted by tr(Y ). The optimal stabilizing
controller parameters with respect to this objective function, can then be synthesized by
solving the following optimization problem:

min
X,Y,L,F̂0,...,K̂n

tr(Y ) s.t.
{

(168) , (169) , (170) , (171)
}

. (180)

Observe that (180) is not readily a convex semidefinite optimization problem due to the
bilinear terms involving the pair of variables L and X in (170). However, if either L or X
is regarded as a constant, then (170) becomes a linear matrix inequality (LMI) and (180)
becomes a standard SDP. This idea can be employed in order to iterativelly find a locally
optimal solution. A systematic procedure capable of handling this type of optimization
problem is presented in Appendix A.2.

It is possible to add extra degree of freedom and also convexify the optimization prob-
lem (180) required to synthesize the controllers. To do so however, functions fz(z, w, v)
and δz(z, w) of the regulation error representation must satisfy the subsequent require-
ments in addition to the original Assumption 3.2.

Assumption 3.3. Assumption 3.2 holds with the following:

(vi) There exists a function ϕ(y) : Rny → Rnϕ such that

ϕ(z, w) = ϕ(gz(z, w) + d(w)) . (181)

(vii) Matrix Φ(z, w) can be described by

Φ(z, w) = Φ0 +

n
∑

i=1

Φi λi(z, w) , (182)

for constant matrices Φ0, . . . ,Φn ∈ Rnz×nϕ .
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What is being stated by Assumption 3.3 is that all nonlinearities contained in fz(z, w, v)
and δz(z, w) can be constructed by a proper arrangement of the measurement vector y.
Specifically, item (vi) says that the rational nonlinear function ϕ(z, w) can be exactly
remapped as a function of y, i.e. ϕ(y). With this condition, it is then possible to include
this function into the stabilizing controller dynamics, as the sequel will illustrate. The
complementary item (vii) is included for similar purposes as (v) which regards the choice
of matrixA(z, w). In here, the matrix Φ(z, w) is also being assumed as affinely dependent
of the controller scheduling function λ(z, w).

In case Assumption 3.3 is true, one should implement the following modified stabiliz-
ing controller stage:

{

ξ̇s = F(y) ξs +G(y) ε+ Λ(y)ϕ(y)
v = H(y) ξs +K(y) ε+Θ(y)ϕ(y)

, (183)

where the new terms Λ : Rny → Rns×nϕ and Θ : Rny → Rnv×nϕ are free design matrix
functions. It is convenient to parameterize Λ(y) and Θ(y) as in (131), i.e.

[

Λ(y)
Θ(y)

]

,

[

Λ0

Θ0

]

+

n
∑

i=1

[

Λi

Θi

]

λi(y) , (184)

where Λ0, . . . ,Λn ∈ Rns×nϕ and Θ0, . . . ,Θn ∈ Rnv×nϕ are free design matrices. The
newly proposed stabilizing stage (183) can be also verified to satisfy the regulation re-
quirement (122) from Lemma 3.1, since ϕ(d(w)) = ϕ(0, w) = 0 ∀w ∈ W .

A similar approach has been considered in GOMES DA SILVA JR et al. (2013) so
as to cast an output feedback stabilization problem by convex optimization, where sector
bounded nonlinearities were considered to be implementable with the output measure-
ments. As will be demonstrated later, the stabilizer (183) not only contains extra degree
of freedom, but also allows the full linearization of stability and performance conditions,
ultimately leading to convex optimization problems in order to synthesize the free design
parameters.

Towards new stability results with the controller (183), it is necessary to complement
the matrix Φ(z, w) of the augmented system representation (148), which modifies ac-
cording to

Φ(z, w) =

[

Φ(z, w) +BK(z, w)Γ +BΘ(z, w)
Λ(z, w) +G(z, w)Γ

]

, (185)

where Λ(z, w) and Θ(z, w) denote the evaluation of (184) for y = gz(z, w) + d(w),
as in (136). The other terms A(z, w), Ψ(z, w) and Ω(z, w) remain equal to previous
definitions in (149).

The same stability result of Theorem 3.1 is then applicable with respect to the new sta-
bilizer (183), provided the new definition of Φ(z, w) from (185) is considered. Carrying
on from these observations, Theorem 3.2 can be restated as the following corollary.

Corollary 3.1. Suppose there exist symmetric matrices X, Y ∈ R
nz×nz and matrices

L̂ ∈ Rnϕ×nϕ , F̂0, . . . , F̂n ∈ Rnz×nz , Ĝ0, . . . , Ĝn ∈ Rnz×nε , Ĥ0, . . . , Ĥn ∈ Rnv×nz ,

K̂0, . . . , K̂n ∈ Rnv×nε , Λ̂0, . . . , Λ̂n ∈ Rnz×nϕ and Θ̂0, . . . , Θ̂n ∈ Rnv×nϕ such that (168),
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(169), (171),

H
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Y A(z, w) +

Ĝ(z, w)C +
αY

Λ̂(z, w)

Ψ(z, w)X Ψ(z, w) Ω(z, w)L̂

































































≺ 0 ∀ (z, w) ∈ Vz × Vw ,

(186)
where F̂ (z, w) , . . . , K̂(z, w) are defined as in (172) and Λ̂(z, w), Θ̂(z, w) are

[

Λ̂(z, w)

Θ̂(z, w)

]

,

[

Λ̂0

Θ̂0

]

+
n

∑

i=1

[

Λ̂i

Θ̂i

]

λi(z, w) . (187)

Then the closed-loop system (113), (114) with controller (118), (183) achieves output

regulation and satisfies (P1) and (P2) for every initial condition in (157) with P given

by (173) and stabilizing controller parameters Fi , . . . , Ki , Λi , Θi ∀ i ∈ {0, 1, . . . , n}
obtained by (174) and

{

Λi = N−1
(

(Λ̂i − Y BΘ̂i)L̂
−1 + (Y BK̂i − Ĝi)Γ − Y Φi

)

Θi = Θ̂iL̂
−1 − K̂iΓ

, (188)

where the pair M,N ∈ Rnz×nz is a non-singular solution to (175).

Proof. Consider the same proof presented for Theorem 3.2, except post- and pre-multiply
(155) by diag{Z1, L

−T} and its transpose, which yield (186) when considering the change
of variables (178), L̂ = L−T and
{

Λ̂(z, w) =
(

Y Φ(z, w) + Y BΘ(z, w) + Y BK(z, w)Γ +NΛ(z, w) +NG(z, w)Γ
)

L−T

Θ̂(z, w) =
(

Θ(z, w) +K(z, w)Γ
)

L−T
. (189)

From straightforward inversion of these variable transformations, one obtains
{

Λ(z, w) = N−1
(

Λ̂(z, w)L̂−1 − Y BΘ̂(z, w)L̂−1 + Y BK̂(z, w)Γ − Ĝ(z, w)Γ − Y Φ(z, w)
)

Θ(z, w) = Θ̂(z, w)L̂−1 − K̂(z, w)Γ
,

(190)
which leads to (188) by considering the previous definitions (182), (184) and (187).

According to Corollary 3.1, the parameters from stabilizing controller (183) can be
synthesized by the following optimization problem in order to attain the largest domain
of attraction estimate:

min
X,Y,L̂,F̂0,...,Θ̂n

tr(Y ) s.t.
{

(168) , (169) , (171) , (186)
}

. (191)

In this special case the synthesis problem is always convex, since (186) is now an LMI
with respect to decision variables X, Y, L̂, F̂0, . . . , Θ̂n.

3.4 Numerical Examples

This section illustrates the previously presented methodologies with two numerical
control design examples. The first one will deal with a polynomial nonlinear plant subject
to a harmonic exosystem. The second example will address a strictly rational nonlinear
system subject to an exosystem with chaotic behavior.
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3.4.1 Polynomial Nonlinear Plant with a Harmonic Exosystem

Consider a nonlinear system described by
{

ẋ1 = x2
ẋ2 = a1 x

2
1x2 + a2 u

, y = e = x1 − w1 , (192)

where x ∈ R2 is the system state vector, u ∈ R is the control input, y ∈ R is the output
measurement, e ∈ R is the output error and a1, a2 are constant parameters. This plant is
supposedly influenced by a harmonic exosystem of the form

{

ẇ1 = ω w2

ẇ2 = −ω w1
, (193)

where w ∈ R2 is the exosystem state vector and ω ∈ R is a constant parameter denoting
the exosystem harmonic frequency. One should note that (193) is able to generate a whole
family of sinusoidal signals described by

{

w1(t) = ̺ sin(ωt+ ρ)
w2(t) = ̺ cos(ωt+ ρ)

, (194)

where ̺ and ρ respectively represent the amplitude and phase of w(t), which are a priori

unknown and related to the initial state w(0) of the exosystem:

̺ ,
√

w2
1(0) + w2

2(0) , ρ , arctan

(

w2(0)

w1(0)

)

. (195)

The objective in this example is to design an output feedback controller such that the error
signal e(t) = x1(t)− w1(t) asymptotically approaches zero, i.e. limt→∞ e(t) = 0.

3.4.1.1 Internal model stage design

According to the control design guidelines previously discussed, the first step to-
wards solving an output regulation problem is to determine a proper internal model.
To do so, one must initially know the target mappings π(w) and c(w) which describe
the invariant and zero-error regulation manifold. Evaluating the expression (77) with
s(w) = [ωw1 −ωw2]

T, a0(w) = −w1, b0 = 1, a1 = 0, b1 = 1, a2(x) = a1 x
2
1x2 and

b2 = a2, the following solutions π(w) and c(w) are obtained:

π(w) =

[

w1

ωw2

]

, c(w) = −a−1
2

(

a1ω w
2
1w2 + ω2w1

)

. (196)

It also follows that the output measurement mapping is d(w) = 0, since y = e in this
example.

Among the three internal model design options explained on Subsection 2.3.1, it is
suggested here to employ the full immersion method of Lemma 2.3 in order to attain
a robust internal model implementation independent from the plant parameters a1 and
a2. Towards employing this methodology, it is necessary to check the multiple time-
derivatives of c(w):



























c(w) = −a−1
2 (a1ωw

2
1w2 + ω2w1)

ċ(w) = −a−1
2 (2a1ω

2w1w
2
2 − a1ω

2w3
1 + ω3w2)

c̈(w) = −a−1
2 (7a1ω

3w2
1w2 − 2a1ω

3w3
2 + ω4w1)

(3)

c (w) = −a−1
2 (7a1ω

4w3
1 − 20a1ω

4w1w
2
2 − ω5w2)

(4)

c (w) = −a−1
2 (61a1ω

5w2
1w2 − 20a1ω

5w3
2 + ω5w1)

. (197)
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One should notice that
(4)

c (w) = −9ω4 c(w)−10ω2 c̈(w), and thus the internal model stage
(118) can be set with the functions

φm(ξm) =









ξm2

ξm3

ξm4

−9ω4 ξm1 − 10ω2 ξm3









, θm(ξm) = ξm1 . (198)

According to Lemma 2.3, this internal model satisfies the regulation condition (120) with
the following mapping σm(w):

σm(w) = −a−1
2









a1ω w
2
1w2 + ω2w1

2a1ω
2w1w

2
2 − a1ω

2w3
1 + ω3w2

7a1ω
3w2

1w2 − 2a1ω
3w3

2 + ω4w1

7a1ω
4w3

1 − 20a1ω
4w1w

2
2 − ω5w2









. (199)

3.4.1.2 Stabilizing stage design

This next phase is dedicated to designing the stabilizing stage, where the proposed
DAR based methodology will be illustrated. Prior to performing this stabilizing stage
design, there are some preliminary setups to be mentioned. For instance, the output mea-
surement vanishing function ε = δ(y) can be set as ε = y, since the output error e is
identical to y in this example. For simplicity, the stabilizing controller gain scheduling
will be set as inactive, i.e. λ(y) = 0, since this design concept will be further explored in
the next example.

The initial step in this design context is to represent the system equations in the regu-
lation error form (133) using coordinate change (132), which here denotes:

{

z1 = x1 − w1

z2 = x2 − ω w2
,















z3 = ξm1 + a−1
2 (a1ω w

2
1w2 + ω2w1)

z4 = ξm2 + a−1
2 (2a1ω

2w1w
2
2 − a1ω

2w3
1 + ω3w2)

z5 = ξm3 + a−1
2 (7a1ω

3w2
1w2 − 2a1ω

3w3
2 + ω4w1)

z6 = ξm4 + a−1
2 (7a1ω

4w3
1 − 20a1ω

4w1w
2
2 − ω5w2)

.

(200)
By developing (134), all the regulation error system functions fz(z, w, v), θz(z, w),
gz(z, w), hz(z, w) and δz(z, w) are

fz(z, w, v) =

















z2
a1 (z

2
1z2 + ω z21w2 + 2ω z1w1w2 + z2w

2
1 + 2 z1z2w1) + a2 (z3 + v1)

z4 + v2
z5 + v3
z6 + v4

−9ω4 z3 − 10ω2 z5 + v5

















,

(201)
θz(z) = z3 and gz(z) = hz(z) = δz(z) = z1. Recall that vu = v1 ∈ R denotes the plant
stabilizing input, while vm = [v2 v3 v4 v5]

T ∈ R4 denotes the internal model stabilizing
inputs.

The second step is to choose an appropriate differential-algebraic representation for
the functions fz(z, w, v) and δz(z). For this purpose, it is convenient to use the following
vector ϕ(z, w) of rational nonlinearities:

ϕ(z, w) =

[

ω w2z1 + 2w1z2 + z1z2
2ωw2z1 + w1z2

]

. (202)
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Given this definition, matrices in (142) and (143) can be specified as:

A =

















0 1 0 0 0 0
0 0 a2 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 −9ω4 0 −10ω2 0

















, Φ(z, w) = a1

















0 0
z1 w1

0 0
0 0
0 0
0 0

















, B=

















0 0 0 0 0
a2 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

















,

C =
[

1 0 0 0 0 0
]

, Γ =
[

0 0
]

,

Ψ(z, w) = −
[

ω w2 2w1 + z1 0 0 0 0
2ωw2 w1 0 0 0 0

]

, Ω =

[

1 0
0 1

]

,

(203)

The third step is to define the bounding sets W ⊆ W+ ⊆ R2 and {0} ⊂ Z+ ⊆ R6 in
order to numerically approach the synthesis problem. Regarding the harmonic exosystem
(193), it verifies that w(0) ∈ W ⇒ w(t) ∈ W ∀ t > 0 for any disk-shaped set of the form

W =
{

w ∈ R
2 : ||w|| ≤ w

}

, (204)

where the radius w > 0 represents the maximum admissible amplitude of sinusoidal
trajectoriesw1(t) andw2(t). The convex set W+ can then be simply defined as a bounding
square region where the disk W is tightly inscribed, e.g. W+ = Co{Vw1}×Co{Vw2} for
the vertex sets:

Vw1 = Vw2 = {−w , w } . (205)

On the other hand, since the z-dependence of Φ(z, w) and Ψ(z, w) is just involving z1,
the set Z+ must at least restrict the first dimension of the z-state-space. Therefore one
can define Z+ = Co{Vz1} × R5 for some vertex set

Vz1 = {−e , e } , (206)

where e denotes the maximum admissible value of |z1(t)| = |e(t)| ∀ t ≥ 0. The equivalent
notation of Z+ is the form of (146) is obtained with nk = 1 and

p1 =
[

e−1 0 0 0 0 0
]

T

. (207)

The system parameters are being regarded as a1 = −1, a2 = 1 and ω = 1. The
design constraints for lower bound decay rate and upper bound system matrix eigenvalue
are being set respectively as α = 0.1 and r = 10. Finally, it is being defined w =
1 and e = 6 with respect to the bounding sets previously discussed. Given all these
numerical values, the optimization problem (180) was considered in order to synthesize
the stabilizing controller gains. The iterative procedure in Appendix A.2 was employed
here in order to search for a proximate locally optimal solution to this problem. The
resulting series of SDP sub-problems were in turn solved by the LMILAB package from
software MATLAB. It was necessary to perform 6 iterations in the feasibility phase until
achieving an strictly feasible solution. Afterwards, it took 11 iterations in the optimization
phase in order to achieve an objective value decrement smaller than 10−4 over the last 4
iterations. The ultimately obtained solution has the objective value tr(Y ) = 0.0645 and
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the following controller parameters3:

F =













−1.5035 −3.6058 −0.5000 165.03 11.996 −0.0014
0.2477 −1.6675 0.6770 −3.8422 −0.2873 0.0000
0.1408 −0.1716 −0.4196 33.780 2.3672 −0.0001

−0.0465 0.0487 −1.1966 −9.7660 −0.1204 −0.0045
−0.0674 0.0335 4.5693 14.754 −6.9136 0.0635
−0.0002 0.0001 0.0112 0.0182 −0.0056 −8.9542













, G =













−15.127
1.3386
24.567

−168.42
2326.5
3.4371













,

H =









−9.2935 0.8191 0.3851 2.1166 0.1356 −0.0009
−12.757 3.9066 11.408 1640.2 118.08 −0.0133
0.2236 59.611 −14.855 306.77 22.377 −0.0020
7.2186 −0.2397 −164.77 1381.8 102.03 −0.0047

−0.4364 6.6515 −7.4898 −843.36 −60.821 0.0080









, K =









−99.124
94.718
149.37
144.69

−1241.0









.

(208)

3.4.1.3 Numerical results and discussion

Figures 5, 6 and 7 present the numerical simulation of the closed-loop system response
with the designed controller. In these figures, the initial conditions considered for the
plant and exosystem are respectively x(0) = 0 and w(0) = [0 1]T, whereas the initial
conditions of the controller are kept as zero, i.e. ξm(0) = 0, for the internal model states,
and ξs(0) = 0, for the stabilizing states. Using the regulation error coordinates from (200)
and matrix Y resultant from the controller synthesis, it was verified that zT(0) Y z(0) ≤ 1.
Since ξs(0) = 0 and w(0) ∈ W , it follows that (z(0), w(0)) ∈ D and the output regulation
is theoretically ensured for this default setup.

Figure 5 shows on top the system output error signal e(t), demonstrating that e(t)
asymptotically approaches zero as t→ ∞. On the bottom plot of the same figure one can
see the system control input u(t) compared to the excitation signal c(w(t)) required to
achieve output regulation. The phase portrait of Figure 6 depicts the system transient be-
havior with respect to the (x1, x2, u) tridimensional view compared to the ideal zero-error
path (π1(w), π2(w), c(w)). In this picture, one can see the system state, initially at rest on
the origin, performing an spiral-shaped path in order to synchronize with the zero-error
steady-state trajectory shown in thick line. Figure 7 on the other hand shows all system
and controller states signals x(t) and ξ(t), respectively compared to their regulation refer-
ences π(w(t)) and σ(w(t)). It is interesting to notice the non-vanishing characteristic of
the internal model states ξm in contrast to the transient behavior of the stabilizing states
ξs. One may also notice the first plant state x1(t) tracking the pure sinusoidal signal w1(t)
produced by the exosystem, which is the expected end result because e(t) = x1(t)−w1(t)
was defined as the target output error.

Complementary, Figure 8 depicts the domain of attraction estimate attained with the
control design, showing all possible plant initial states x(0) for which output regulation
is ensured. The black contour in this figure illustrates the border of region D considering
the default exosystem initial state w(0) = [0 1]T and also the default controller initial
condition ξ(0) = 0. The gray contours in turn represent borders of D for various ex-
osystem initial states w(0) inside the admissible disk W . It is consequently possible to
visualize a subset of plant initial states where output regulation is ensured regardless of
the exosystem initial condition inside W , which is denoted by the area inside the gray
contours.

3Truncated numerical values are being presented.
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Figure 5: On top: the output regulation error signal e(t). On bottom: the control input
signal (solid line) u(t) compared to the zero-error steady-state signal c(w(t)) (dashed
line). Source: the author.
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Figure 6: Phase portrait depicting the system trajectory (x1, x2, u) (thin line) compared
to the zero-error steady-state trajectory (π1(w), π2(w), c(w)) (thick line). Source: the
author.
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Figure 7: Plant and controller states x(t) and ξ(t) (solid lines) compared to the zero-error
steady-states π(w(t)) and σ(w(t)) (dashed lines). Source: the author.
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Lastly, numerical simulations of the closed-loop system were performed with two
initial conditions marginally close to the border of D, as represented by the black dots
on Figure 8. Such initial conditions were chosen as x(0) = [−3 − 27.11]T and x(0) =
[3 29.11]T, where w(0) = [0 1]T and ξ(0) = 0 in both cases. The resultant output error
signals e(t) for each configuration is represented by different shades on Figure 9, where
asymptotic convergence can be verified.

x1(0)

x
2
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0
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−40

Figure 8: Representation of the set D in the x-state-space. The black contour is the region
border for the default exosystem initial state. The gray contours denote borders for a
myriad of exosystem initial states w(0) ∈ W . Source: the author.
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Figure 9: Output error signals e(t) for initial conditions on the border of the domain of
attraction estimate D. Shades denote trajectories for different plant initial states. Source:
the author.
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3.4.2 Rational Nonlinear Plant with a Chaotic Exosystem

Consider a rational nonlinear plant described by















ẋ1 = a1
x21

1 + x21
+ a2 w2 + x2

ẋ2 = a1
x1

1 + x21
+ a2 w1(1 + w3) + a3 u

, y =

[

x1
w1

]

, e = x1 , (209)

where x ∈ R2 is the system state vector, w ∈ R3 is the exosystem state vector, u ∈ R is
the control input, y ∈ R2 is the output measurement vector, e ∈ R is the output error and
a1, a2, a3 ∈ R are constant parameters. Suppose the dynamics of the exosystem is given
by







ẇ1 = b1 (w2 − w1)
ẇ2 = b2 w1 − w2 − w1w3

ẇ3 = w1w2 − b3 w3

, (210)

where b1, b2, b3 ∈ R are also constant parameters. This is the so-called Lorenz system,
which exhibits chaotic behavior for b1 = 10, b2 = 28 and b3 = 8/3 (LI et al., 2005). The
objective here is also to design an output feedback controller which ensures the system
output regulation, i.e. limt→∞ e(t) = 0.

3.4.2.1 Internal model stage design

Expression (77) can be employed in order to initially determine the target manifold
mappings π(w) and c(w). By noticing that

a1(x1, w) = a1
x21

1 + x21
+ a2 w2 , a2(x1, w) = a1

x1
1 + x21

+ a2w1(1 + w3) , (211)

a1 = 0, b0 = 1, b1 = 1 and b2 = a3, equation (77) yields:

π(w) =

[

0
−a2 w2

]

, c(w) = a2a
−1
3

(

w2 − b̂2w1

)

, (212)

where b̂2 , b2+1. Since π1(w) = 0, it also follows that the output measurement mapping
is

d(w) =

[

0
w1

]

. (213)

Towards designing an internal model, one may choose one of the design options pre-
viously explained on Subsection 2.3.1. Because the exosystem is nonlinear however, the
full immersion method from Lemma 2.4 is not recommended due to the reasons pointed
on Remark 2.3. Between the remaining methods presented by Subsection 2.3.1, the one
from Lemma 2.4 is more suited for this case, since robustness with respect to plant pa-
rameters can be achieved with a simple design, as illustrated in the sequel.

Using the relation d2(w) = w1, notice that previously obtained mappings π(w) and
c(w) can be written in the form of (88) with terms S(y), U(y) and ǫ as

S(y) =





−b1 b1 0
b2 −1 −y2
0 y2 −b3



 , U =
[

−b̂2 1 0
]

, ǫ = a2a
−1
3 . (214)



60

Thus, according to Lemma 2.4, the internal model functions

φm(ξm, y) =





b1 (ξm2 − ξm1)
b2 ξm1 − ξm2 − y2 ξm3

y2 ξm2 − b3 ξm3



 , θm(ξm) = ξm2 − b̂2 ξm1 , (215)

are feasible with the following mapping

σm(w) = a2a
−1
3 w . (216)

3.4.2.2 Stabilizing stage design

In this next design phase the proposed DAR based methodology will be illustrated in
order to design a proper stabilizing stage. There are again some preliminary setups to
be commented. Specifically, the output vanishing function ε = δ(y) may be chosen as
ε = y1 because the first measurement readily vanishes at the target steady-state condition,
i.e. d1(w) = 0. Furthermore, a reasonable candidate for the controller gain scheduling
function is λ(y) = y2, because this second output signal is already being used for the
internal model stage implementation previously derived.

The first step required to design the stabilizing stage is to express the system using
coordinate change (132), which in this case is:

{

z1 = x1
z2 = x2 + a2w2

,







z3 = ξm1 − a2a
−1
3 w1

z4 = ξm2 − a2a
−1
3 w2

z5 = ξm3 − a2a
−1
3 w3

. (217)

By developing (134), all the regulation error system functions fz(z, w, v), θz(z, w), gz(z, w),
hz(z, w) and δz(z, w) verify to be:

fz(z, w, v) =



















a1
z21

1 + z21
+ z2

a1
z1

1 + z21
+ a3 (z4 − b̂2 z3 + v1)

b1 (z4 − z3) + v2
b2 z3 − z4 − w1z5 + v3
w1z4 − b3 z5 + v4



















,

θz(z) = z4 − b̂2 z3 ,

hz(z) = δz(z) = z1 ,

gz(z) =

[

z1
0

]

.

(218)

The candidate controller scheduling function λ(y) = y2 may also be represented in the
regulation error form (137) by substituting y with gz(z, w) + d(w), which in this case
yields:

λ(w) = w1 . (219)

The next step is to decompose the functions fz(z, w, v) and δz(z, w) into an appro-
priate differential-algebraic representation. For instance, one can choose the vector of
rational nonlinearities:

ϕ(z) =

[

z21
1 + z21

z1
1 + z21

]

T

. (220)
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Given this definition, the matrices in (142) and (143) can be specified as:

A(w) =













0 1 0 0 0

0 0 −a3b̂2 a3 0
0 0 −b1 b1 0
0 0 b2 −1 −w1

0 0 0 w1 −b3













, Φ =













a1 0
0 a1
0 0
0 0
0 0













, B =













0 0 0 0
a3 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1













,

C =
[

1 0 0 0 0
]

, Γ =
[

0 0
]

,

Ψ = −
[

0 0 0 0 0
1 0 0 0 0

]

, Ω(z) =

[

1 −z1
z1 1

]

.

(221)
It is worth noticing that Ω(z) is non-singular ∀ z ∈ R5 because det{Ω(z)} = 1+ z21 ≥ 1,
therefore item (iv) of Assumption 3.2 holds for the chosen DAR. Besides, one should
observe that item (v) is also true because the specified matrix A(w) can be expressed as
A(w) = A0 + A1 λ(w), where λ(w) = w1, according to (219), and matrices A0 and A1

are

A0 =













0 1 0 0 0

0 0 −a3b̂2 a3 0
0 0 −b1 b1 0
0 0 b2 −1 0
0 0 0 0 −b3













, A1 =













0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 −1
0 0 0 1 0













. (222)

An important fact of the chosen DAR is that ϕ(z) defined on (220) can be remapped
with respect to the output measurement, i.e.

ϕ(y) =

[

y21
1 + y21

y1
1 + y21

]

T

. (223)

Thus, it verifies the complementary Assumption 3.3 from the special case methodology
proposed in Subsection 3.3.3. Due to this observation, it is possible to implement the
modified stabilizing stage (183) and the controller synthesis can be addressed by a single
convex optimization problem, as indicated in (191).

The last step is to define the bounding sets W ⊆ W+ ⊆ R
3 and {0} ⊂ Z+ ⊆ R

5. In
(LI et al., 2005), it has been proven that the trajectory w(t) of the Lorenz exosystem (210)
is contained in the spherical positively invariant set

W =
{

w ∈ R
3 : ||w − wc|| ≤ w

}

, (224)

where the center point wc and the sphere radius w are calculated as

wc =
[

0 0 b1 + b2
]

T

, w =
(b1 + b2)b3

2
√
b3 − 1

. (225)

Considering the default parameters for which the Lorenz exosystem is chaotic (i.e. b1 =
10, b2 = 28 and b3 = 8/3), it follows that wc = [0 0 38]T and w = 39.2462. In
turn, the set W+ can be defined as a bounding box region where the sphere W is tightly
inscribed. Since the DAR matrices only depend on w1, set W+ does not need restrictions
with respect to w2 and w3 dimensions, for instance, one can define W+ = Co{Vw1}×R

2,
where

Vw1 = {−w , w }. (226)
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Similar to the previous numerical example, the set Z+ must at least ensure the closure of
the z1 dimension of the z-state-space. In this case, one can define Z+ = Co{Vz1} × R4,
where

Vz1 = {−e , e } , (227)

for some constant e > 0 which denotes the maximum admissible output error amplitude.
The equivalent form of Z+ as (146) is obtained with nk = 1 and

p1 =
[

e−1 0 0 0 0
]

T

. (228)

The numeric values considered for plant parameters and design specifications are
a1 = 0.5, a2 = 1, a3 = 103, e = 102, α = 1 and r = 1.5 · 102. Provided all these val-
ues, the SDP problem (191) was evaluated in order to synthesize the stabilizing controller
gains. The optimal objective value tr(Y ) = 1.23 · 10−3 was found with the following
stabilizing controller gains4

F0=





−2.9938 0.0000 0.0000 −0.0000 0.0006
0.0000 −43.257 −3.8295 20.479 0.0909

−0.0000 21.515 −4.8540 −14.838 −0.0788
−0.0000 −0.0258 −0.3190 −179.15 −0.3429
−0.0000 −0.0001 0.0009 0.3926 −106.31



G0=





−0.0000
5.7527

−6.1715
−152.54
0.3394



Λ0=





−0.0000 −0.0000
0.3028 0.0058

−0.1938 −0.0035
−1.1755 −0.0118
0.0017 0.0000



,

H0=

[

−0.0000 61.541 −20.511 −14.815 −0.0503
0.0000 −9.6099 106.97 −4.8997 0.0699
0.0000 12.181 106.79 8.2670 0.2987

−12.457 −0.0000 0.0000 −0.0000 0.0237

]

K0=

[

−34.118
10.111
58.056

−0.0000

]

Θ0=

[

−0.1365 −0.0035
0.0529 0.0081
0.1421 0.0046

−0.0000 −0.0000

]

,

F1=





−0.0000 −0.5192 −0.8773 0.0125 0.0007
1.0768 0.0000 −0.0000 −0.0000 −0.0000
0.7826 0.0000 0.0000 0.0000 0.0000

−0.0012 0.0000 −0.0000 −0.0000 −0.0000
−0.0000 0.0000 −0.0000 0.0000 −0.0000



G1=





−0.0000
0.0000

−0.0000
0.0000
0.0000



Λ1=





−0.0000 −0.0000
−0.0000 −0.0000
0.0000 0.0000

−0.0000 −0.0000
0.0000 0.0000



,

H1=

[

0.0000 0.0000 −0.0000 −0.0000 −0.0000
1.1252 0.0000 −0.0000 −0.0000 −0.0000
20.474 0.0000 0.0000 0.0000 0.0000
0.0000 −12.143 −21.408 1.4789 0.0283

]

K1=

[

0.0000
0.0000

−0.0000
0.6948

]

Θ1=

[

−0.0000 −0.0000
−0.0000 −0.0000
0.0000 0.0000
0.0010 0.0000

]

.

(229)

3.4.2.3 Numerical results and discussion

Results from a numerical simulation of the closed-loop system are presented in Fig-
ures 10, 11 and 12. For this analysis, the initial conditions of plant and controller states
were kept at the origin, i.e. x(0) = 0 and ξ(0) = 0. On the other hand, the initial state of
the Lorenz exosystem was set with a randomly picked point inside the spherical set W:

w(0) =
[

3.5910 6.7150 9.4426
]

T

. (230)

Using the regulation error coordinates from (217) and matrix Y resultant from the con-
troller synthesis, it was verified that (z(0), w(0)) ∈ D and thus that output regulation is
theoretically ensured for this default setup. The output error signal e(t) and the control
input u(t) obtained with this simulation are both shown on Figure 10. It is interesting
to observe the control signal tracking the chaotic waveform c(w(t)) required to achieve
output regulation. The phase portrait of Figure 11 afterwards compares the internal model
trajectory (thin line) with the target zero-error steady-state trajectory (thick line). Because

4Since the presentation of numerical values is truncated, elements with order of magnitude lower than
10−4 are being hidden, which appear as 0.0000.
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σm(w(t)) = a2a
−1
3 w(t), the internal model trajectory is supposed to asymptotically ap-

proach the peculiar chaotic trajectory of the Lorenz system scaled the factor a2a
−1
3 , what

is being illustrated in Figure 11. Complementary, Figure 12 shows the transient temporal
response of all system and controller states signals x(t) and ξ(t), respectively compared
to their regulation references π(w(t)) and σ(w(t)).

So as to illustrate all possible initial states with theoretical convergence guarantee, the
attained domain of attraction estimate D is presented by Figure 13. The black contour is
denoting the border of set D with respect to the x-state-space, when considering ξ(0) = 0
and the default exosystem initial state from (230). Furthermore, the gray patches represent
several contours of D with w(0) distributed inside the exosystem invariant sphere W . If
ξ(0) = 0 and the system initial state x(0) is inside the gray markings, one is sure that
output regulation will be achieved for wherever w(0) ∈ W .

Figure 14 shows complementary numerical simulations with two initial conditions
marginally close to the border of D, where x(0) corresponds to the plotted points in
Figure 13 and it was considered ξ(0) = 0 and (230) in both cases.

3.5 Final Remarks

This chapter presented a methodology for designing dynamic output feedback con-
trollers for output regulation of rational nonlinear systems. The novelty of the material
here exposed is mainly the introduction of the differential-algebraic representation into
the nonlinear output regulation context. This approach led to the developed of system-
atic stability analysis and synthesis procedures for stabilizing controllers implemented
together with internal model stages. In comparison to the recent literature, the devised
nonlinear regulation scheme has the main advantage of not requiring normal form er-
ror dynamics and minimum-phase assumptions (XU; WANG; CHEN, 2016; XU; CHEN;
WANG, 2017). The research material here presented has originated the following papers:

• CASTRO, R. S.; FLORES, J. V.; SALTON, A. T. Stability Analysis of Output Reg-

ulated of Rational Nonlinear Systems. In proceedings of the 20th IFAC World
Congress, Toulouse, France, 2017.

• CASTRO, R. S.; FLORES, J. V., SALTON, A. T.; CHEN, Z.; COUTINHO, D. F.
A stabilization framework for the output regulation of rational nonlinear systems.
Accepted for publication on the IEEE Transactions on Automation and Control on
January of 2019.

This work also paves the way for incorporation of various LMI based results previ-
ously focused just for stabilization problems. Particularly, the consideration of saturating
actuators and anti-windup design (GOMES DA SILVA JR et al., 2014) can be aggregated,
which is the main topic of the subsequent chapter.
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Figure 10: On top: the output regulation error signal e(t). On bottom: the control input
signal (solid line) u(t) compared to the zero-error steady-state signal c(w(t)) (dashed
line). Source: the author.
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4 OUTPUT REGULATION OF RATIONAL NONLINEAR

SYSTEMS WITH INPUT SATURATION

This chapter extends the proposed output regulation methodologies for systems sub-
ject to saturating control inputs. In order to efficiently deal with this problem, a different
control framework with anti-windup compensation will be considered. A new set of the-
orems for stability analysis and control design will be presented, which can be addressed
by similar numerical optimization routines as shown before.

In here, Section 4.1 primarily explains the new problem to be solved, followed by
Section 4.2 which describes the modified controller architecture to be considered. The
development of main theoretical results are contained in Section 4.3. Lastly, Section 4.4
illustrates the proposed methodologies with numerical examples and Section 4.5 provides
final remarks.

4.1 Problem Statement

Consider a system, exosystem, and output feedback controller described respectively
by (113), (114) and (115). The control signal u ∈ U ⊆ Rnu is now bounded by a region
U of the form

U = [−u1 , u1]× [−u2 , u2]× . . .× [−unu
, unu

] ⊆ R
nu , (231)

where uj > 0 ∀ j ∈ {1, 2, . . . , nu} is denoting the maximum admissible value of |uj(t)|
∀ t ≥ 0.

The preliminary assumptions are the same as considered before (i.e. Assumptions 2.1
and 2.2) and the new problem to be tackled is the following.

Problem 4.1. Design controller functions φ(ξ, y) and θ(ξ, y) such that the closed-loop
system (113), (114), (115) achieves output regulation in some region D ⊆ Rnx×Rnξ×W
with the control input signal restricted to the set (231).

4.2 Control Structure

In order to guarantee that u ∈ U , the control input is considered to be generated by a
saturation function of an unconstrained control signal µ ∈ Rnu supplied by the controller,
i.e.

u = sat(µ) , (232)

where the nonlinear function sat : Rnu → U is defined in (27).
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Figure 15: Control structure with saturation and anti-windup loops. Source: the author.

Similarly to the last chapter, the controller state ξ is separated into two components as
shown by (116), where ξm represents internal model states and ξs denotes the stabilizing
controller states. Also, an internal stabilizing input v ∈ R

nv (nv = nu + nm) is consid-
ered as in (117), where the component vu ∈ Rnu is the system stabilizing input and the
component vm ∈ Rnm is the internal model stabilizing input. Using these definitions, the
proposed internal model controller stage is

{

ξ̇m = φm(ξm, y) + vm + E(y)ψ(µ)
µ = θm(ξm, y) + vu

, (233)

which is similar to (118), but with a new anti-windup term E(y)ψ(µ), where E : Rny →
Rnm×nu is a free design matrix function and ψ(µ) denotes a deadzone function such as
defined in (28). One should note that the internal model controller is now responsible for
generating the unconstrained input µ which is subsequently saturated by (232). In turn,
the stabilizing controller stage is defined as

{

ξ̇s = φs(ξs, y) +W(y)ψ(µ)
v = θs(ξs, y)

, (234)

similar to (119), but with a new anti-windup term W(y)ψ(µ) formed by a free design
matrix function W : Rny → Rns×nu.

The block diagram of Figure 15 depicts this considered control architecture with satu-
ration and anti-windup loops. Considering the particular controller structure (232), (233),
(234), Lemma 4.1 presents sufficient conditions for output regulation of the closed-loop
system with respect to the plant (113) and the exosystem (114).

Lemma 4.1. The closed-loop system (113), (114) with controller (232), (233), (234)
achieves output regulation in D ⊆ R

nx × R
nm × R

ns × W if there exist smooth map-

pings π : W → Rnx , c : W → U , d : W → Rny and σm : W → Rnm such that π(0) = 0,

c(0) = 0, d(0) = 0, σm(0) = 0, (120), (121), (122) and also (123).

Proof. The first regulation condition (66) of Theorem 2.6 is equivalent to (120), noting
here that the available control excursion defined by set U from (231) must be enough to
implement the target steady-state control input c(w) for every exogenous state inside W ,
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i.e. c : W → U . Consider next the second regulation condition (67) with a candidate
mapping solution σ(w) defined by

σ(w) =

[

σm(w)
0

]

, (235)

for some smooth mapping σm : W → Rnm , σm(0) = 0. Observe that the complete
controller representation (115) with stages (232), (233) and (234) can be expressed as






ξ̇ = φ(ξ, y) =

[

φm(ξm, y) +Dm θs(ξs, y) + E(y)ψ(θm(ξm, y) +D θs(ξs, y))
φs(ξs, y) +W(y)ψ(θm(ξm, y) +D θs(ξs, y))

]

u = θ(ξ, y) = θm(ξm, y) +D θs(ξs, y)− ψ(θm(ξm, y) +D θs(ξs, y))
(236)

where matrices D ∈ Rnu×nv and Dm ∈ Rnm×nv are

D ,
[

I 0
]

, Dm ,
[

0 I
]

. (237)

Using (235) and (236), the regulation condition (67) becomes


















∂σm(w)

∂w
s(w)

0



 =

[

φm(σm(w), d(w)) + E(d(w))ψ(θm(σm(w), d(w)))

W(d(w))ψ(θm(σm(w), d(w)))

]

c(w) = θm(σm(w), d(w))− ψ(θm(σm(w), d(w)))

∀w ∈ W ,

(238)
considering that stabilizing functions φs(ξs, y) and θs(ξs, y) vanish at the manifold con-
ditions, according to (122). Moreover, if there exists a mapping c : W → U such that
c(w) = θm(σm(w), d(w)) ∀w ∈ W , then it follows that

ψ(θm(σm(w), d(w))) = ψ(c(w)) = c(w)− sat(c(w)) = 0 ∀w ∈ W . (239)

Thus, (238) leads to conditions (121) and (122). Furthermore, by applying (235) into the
original attraction condition (68), it follows that (123) is obtained.

Consequently, from Theorem 2.6, the conditions of Lemma 4.1 ensure the output
regulation of the closed-loop system defined by (113), (114), (232), (234) and (234) with
respect to region D ⊆ Rnx × Rnm × Rns ×W .

An important observation from Lemma 4.1 and previous conditions is the fact that
stabilizing and anti-windup terms do not influence the internal model condition (120).
Consequently, the usual internal model approach can be utilized with similar sequential
design steps as previously mentioned in Chapter 3.

Prior to initiating the output regulator design, the target manifold mappings π(w) and
c(w) are again assumed a priori known, as stated by Assumption 3.1. If the system
functions f(x, w, u) and h(x, w) are in the form of (76), then π(w) and c(w) can be
recursively determined as in (77). It is additionally assumed here that the maximum
control input amplitudes u1, . . . , unu

are such that the mapping relation c : W → U is
feasible, i.e.

sup
w∈W

|cj(w)| < uj ∀ j ∈ {1, 2, . . . , nu} , (240)

so the conditions of Lemma 4.1 can be satisfied.
Given the presented control framework and preliminary assumptions, the proposed

design methodology in order to solve Problem 4.1 divides into two distinct steps:
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(a) Design internal model functions φm(ξm, y) and θm(ξm, y) such that (121) is satisfied
for some σm(w).

(b) Design stabilizing functions φs(ξs, y) and θs(ξs, y) satisfying (122) and anti-windup
functions E(y) and W(y) such that attraction condition (123) holds.

In order to construct proper stabilizing functions that satisfy (122), an auxiliary def-
inition ε ∈ Rnε is again considered as ε = δ(y), where δ : Rny → Rnε is a function
that vanishes inside the regulation manifold, i.e. (130). Similar to the methodology in
Chapter 3, the stabilizing stage (234) is particularized in the form of

{

ξ̇s = F(y) ξs +G(y) ε+W(y)ψ(µ)
v = H(y) ξs +K(y) ε

, (241)

where F : Rny → R
ns×ns , G : Rny → R

ns×nε , H : Rny → R
nu×ns and K : Rny →

Rnu×nε are free design matrix functions. It is again considered the parametrization of
F(y) , . . . , K(y) with a gain scheduling function λ(y) as introduced by (131). Likewise,
the new anti-windup terms E(y) and W(y) can also be parameterized according to

[

E(y)
W(y)

]

,

[

E0

W0

]

+

n
∑

i=1

[

Ei

Wi

]

λi(y) , (242)

for some free design matrices E0, . . . ,En ∈ Rnm×nu and W0, . . . ,Wn ∈ Rns×nu . The
indicated solution of step (b) then divides into these sub-steps:

(b.1) Choose a steady-state vanishing function δ(y) satisfying (130).

(b.2) For a given scheduling function λ(y), design stabilizing parameters F0 , . . . , Kn and
anti-windup parameters E0 , . . . , Wn such the attraction condition (123) is verified.

One should recall that sub-step (b.1) can be systematically addressed using the same
guidelines discussed Subsection 2.3.2. In turn, the solution of sub-step (b.2) can be ob-
tained by the method to be proposed in the next section, which is an extension of the DAR
based formulation previously used in Chapter 3.

4.3 Main Results

This section proposes a new methodology capable of synthesizing the stabilizing and
anti-windup parameters mentioned in the sub-step (b.2). Primarily in Subsection 4.3.1,
the system equations are re-arranged using a regulation error coordinate change. The
differential-algebraic approach is then employed in Subsection 4.3.2. Stability and tran-
sient performance conditions are afterwards derived in Subsection 4.3.4, which leads to
numerical design procedures in Subsection 4.3.5.

4.3.1 Regulation Error Coordinates

A change of state-space coordinates is introduced as z ∈ Rnz (nz = nx +nm), identi-
cally to relation (132) already employed before. An auxiliary definition is also introduced
according to v̂ ∈ Rnv :

v̂ ,

[

v̂u
v̂m

]

,

[

vu − ψ(µ)
vm + E(y)ψ(µ)

]

, (243)
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where v̂u ∈ Rnu denotes the effective plant stabilizing input, which is vu subtracted by
the control deadzone ψ(µ). Similarly, v̂m ∈ Rnu denotes the effective internal model
stabilizing input, which is vm added with the internal model anti-windup term E(y)ψ(µ).
The provided definitions allow one to write the system equations in the following manner:























ż = fz(z, w, v̂)
µ = θz(z, w) + c(w) + vu
y = gz(z, w) + d(w)
e = hz(z, w)
ε = δz(z, w)

, (244)

where function fz : Rnz × Rnw × Rnv → Rnz is constructed as

fz(z, w, v̂) ,

[

f(zx + π(w), w, θz(z, w) + c(w) + v̂u)
φm(zm + σm(w), gz(z, w) + d(w)) + v̂m

]

−
[

f(π(w), w, c(w))
φm(σm(w), d(w))

]

,

(245)
and functions θz : Rnz × Rnw → Rnu , gz : Rnz × Rnw → Rny , hz : Rnz × Rnw → Rne

and δz : Rnz × Rnw → Rnε are identical to the definitions in (134).
If z = 0 and v̂ = 0, one should note that ∀w ∈ W: hz(0, w) = 0, gz(0, w) = 0,

δz(0, w) = 0, θz(0, w) = 0, fz(0, w, 0) = 0. This observation implies that z = 0 is
an equilibrium point of the sub-system ż = fz(z, w, v̂), when v̂ = 0, for every possible
exogenous state w ∈ W . Additionally, the output error e = hz(z, w) and the function
ε = δz(z, w) vanish to zero at this equilibrium condition.

The considered stabilizing controller stage originally defined as (241) can also be
expressed using the regulation error state z:

{

ξ̇s = F (z, w) ξs +G(z, w) ε+W (z, w)ψ(µ)
v = H(z, w) ξs +K(z, w) ε

. (246)

In (246), matrix functions F : Rnz × Rnw → Rns×ns , . . . , K : Rnz × Rnw → Rnv×nε

denote the evaluation of F(y) , . . . , K(y) using y = gz(z, w) + d(w), equivalent to
(136). In a similar fashion, anti-windup matrix functions E : Rnz × R

nw → R
nm×nu and

W : Rnz × Rnw → Rns×nu are defined by
[

E(z, w)
W (z, w)

]

,

[

E0

W0

]

+
n

∑

i=1

[

Ei

Wi

]

λi(z, w) , (247)

noting that λ(z, w) is the evaluation of the scheduling function λ(y) with the variable
change y = gz(z, w) + d(w), similarly to (137). In order to ensure that all controller gain
matrices are affinely dependent on (z, w), the choice of the scheduling function is again
assumed to be restricted to cases where λ(z, w) is a linear mapping, as explained in the
previous chapter.

In order to combine the equations from (244) with the stabilizer dynamics in (246),
it is necessary to further develop the relation between v̂ and v. For instance, one could
denote

v̂ = v + J(z, w)ψ(µ) , (248)

where, according to (243), matrix function J : Rnz × Rnw → Rnv×nu is constructed as

J(z, w) ,

[

−I
E(z, w)

]

= DT

mE(z, w)−DT , (249)

recalling that matrices D ∈ Rnu×nv and Dm ∈ Rnm×nv are the same ones defined in
(237).
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4.3.2 Differential-Algebraic Representation

The next proposed step towards stability conditions is considering a proper differential-
algebraic representation of the main system functions from (244), according to the follow-
ing assumption.

Assumption 4.1. Nonlinear functions fz(z, w, v̂), θz(z, w) and δz(z, w) of the system
(244) can be represented as

fz(z, w, v̂) = A(z, w) z + Φ(z, w)ϕ(z, w) +B v̂
θz(z, w) = Q(z, w) z +Υ(z, w)ϕ(z, w)
δz(z, w) = C z + Γ ϕ(z, w)

(250)

with a rational nonlinear function ϕ : Z+ ×W+ → Rnϕ satisfying

0 = Ψ(z, w) z + Ω(z, w)ϕ(z, w) (251)

such that:

(i) Sets Z+ and W+ satisfy {0} ⊂ int{Z+} ⊆ Rnz and W ⊆ W+ ⊆ Rnw .

(ii) Matrices A : Z+ ×W+ → R
nz×nz , Φ : Z+ ×W+ → R

nz×nϕ , Q : Z+ ×W+ →
Rnu×nz , Υ : Z+×W+ → Rnu×nϕ , Ψ : Z+×W+ → Rnϕ×nz and Ω : Z+×W+ →
Rnϕ×nϕ are affine with respect to (z, w).

(iii) Matrices B ∈ Rnz×nv , C ∈ Rnε×nz and Γ ∈ Rnε×nϕ are constant.

(iv) Matrix Ω(z, w) is non-singular ∀ (z, w) ∈ Z+ ×W+.

(v) Matrix A(z, w) satisfies (144) for constant matrices A0, . . . ,An ∈ Rnz×nz .

Assumption 4.1 is similar to Assumption 3.2 considered in the last chapter, and the
reader may refer to Subsection 3.3.2 for further explanation with respect to requirements
(i) to (v). One should notice though that function θz(z, w) is being additionally included
here. The purpose of this complementary consideration is to systematically deal with
the deadzone function ψ(µ) later on, since the unconstrained control input µ is directly
described by θz(z, w) as (244) shows.

Regions Z+ and W+ are again considered as (145), namely convex sets defined by a
convex hull of vertices Vz and Vw. Furthermore, set Z+ is again represented as in (146)
for some vectors p1, p2, . . . , pnk

∈ Rnz .
Provided the DAR of (250) and (251), the main system equations from (244) can be

re-written as














ż = A(z, w) z + Φ(z, w)ϕ(z, w) +BJ(z, w)ψ(µ) +B v
µ = Q(z, w) z +Υ(z, w)ϕ(z, w) + c(w) +Dv
0 = Ψ(z, w) z + Ω(z, w)ϕ(z, w)
ε = C z + Γ ϕ(z, w)

, (252)

Considering the augmented regulation error state definition z ∈ Rna as in (138), one is
furthermore able express:







ż = A(z, w) z+Φ(z, w)ϕ(z, w) + J(z, w)ψ(µ)
µ = Q(z, w) z+Υ(z, w)ϕ(z, w) + c(w)
0 = Ψ(z, w) z+Ω(z, w)ϕ(z, w)

. (253)
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Augmented matrices A : Z+ × W+ → Rna×na , Φ : Z+ × W+ → Rna×nϕ , Ψ :
Z+ × W+ → Rnϕ×na and Ω : Z+ × W+ → Rnϕ×nϕ are here defined identically as in
(149). In turn, the new matrices Q : Z+ ×W+ → Rnu×na , Υ : Z+ ×W+ → Rnu×nϕ

and J : Z+ ×W+ → Rnz×nu are here denoting:

Q(z, w) =
[

Q(z, w) +DK(z, w)C DH(z, w)
]

,

Υ(z, w) =
[

Υ(z, w) +DK(z, w)Γ
]

,
J(z, w)=

[

BDT

mE(z, w)−BDT

W (z, w)

]

.

(254)

4.3.3 Sector Conditions

In order to deal with the deadzone function ψ(µ), a new modified sector condition is
proposed according to the following lemma. This result extends Lemma 2.1 devised by
GOMES DA SILVA JR; TARBOURIECH (2005), where the main difference here is the
treatment of the non-vanishing steady-state control c(w).

Lemma 4.2. Consider functions θ,ϑ : Z+ ×W+ → Rnu , W ⊆ W+, and upper bounds

c1, c2, . . . , cnu
∈ R such that

sup
w∈W

|cj(w)| ≤ cj < uj ∀ j ∈ {1, 2, . . . , nu} . (255)

If (z, w) ∈ S, where S is the set

S =
{

(z, w) ∈ Z
+×W : | θj(z, w)−ϑj(z, w) | ≤ (uj−cj) , j = 1, 2, . . . , nu

}

, (256)

then it follows that

ψT(µ) T
(

ψ(µ)− ϑ(z, w)
)

≤ 0 (257)

is verified for µ = θ(z, w) + c(w) and any diagonal matrix T ∈ Rnu×nu, T ≻ 0.

Proof. Observe all the possible cases that follows:

(a) | θj(z, w) | ≤ (uj − cj). In this case it follows that | θj(z, w) ± cj(w) | ≤ uj
∀w ∈ W and then ψ(µj) = ψ(θj(z, w) + cj(w)) = 0. Consequently:

ψT(µj) T[j,j]
(

ψ(µj)− ϑj(z, w)
)

= 0 . (258)

(b) | θj(z, w) | > (uj − cj). In this case there are three possible sub-cases:

(b.1) | θj(z, w) ± cj(w) | ≤ uj ∀w ∈ W , which is identical to (a) and therefore
(258) is verified.

(b.2) θj(z, w) ± cj(w) > uj ∀w ∈ W . In this sub-case ψ(µj) = ψ(θj(z, w) +
cj(w)) = θj(z, w)+cj(w)−uj > 0. If (z, w) ∈ S, then θj(z, w)−ϑj(z, w) ≤
(uj − cj) and also ϑj(z, w) ≥ θj(z, w) ± cj(w) − uj ∀w ∈ W . Therefore
it follows that ψ(µj) − ϑj(z, w) = θj(z, w) + cj(w) − uj − ϑj(z, w) ≤ 0
∀w ∈ W . Consequently:

ψT(µj) T[j,j]
(

ψ(µj)− ϑj(z, w)
)

≤ 0 . (259)

(b.3) θj(z, w) ± cj(w) < −uj ∀w ∈ W . In this sub-case ψ(µj) = ψ(θj(z, w) +
cj(w)) = θj(z, w)+cj(w)+uj < 0. If (z, w) ∈ S, then θj(z, w)−ϑj(z, w) ≥
−(uj − cj) and also ϑj(z, w) ≤ θj(z, w)± cj(w) + uj ∀w ∈ W . Therefore
it follows that ψ(µj) − ϑj(z, w) = θj(z, w) + cj(w) + uj − ϑj(z, w) ≥ 0
∀w ∈ W and (259) is again verified.



74

From all these cases, provided that (z, w) ∈ S and that T ≻ 0, relation (257) is true.

It is assumed that magnitude bounds c1, c2, . . . , cnu
, as defined by (255), are known

prior to the evaluation of analysis and design conditions to be later shown. In cases where
the mapping c(w) is rational, these bounds can be efficiently computed by a DAR based
procedure proposed in the sequence. This sub-problem to be dealt is formally stated as
follows.

Problem 4.2. For a given function c : Rnw → Rnu and a given compact set W ⊂ Rnw ,
determine estimates c1, c2, . . . , cnu

∈ R, c1, c2, . . . , cnu
> 0, such that:

sup
w∈W

|cj(w)| ≤ cj ∀ j ∈ {1, 2, . . . , nu} . (260)

In order to solve this sub-problem, it is considered employing a similar DAR based
approach from the main proposal. In turn, the scope is being restricted to cases where the
mapping c(w) is a regular rational function in W , according to the following assumption.

Assumption 4.2. Nonlinear function c(w) can be represented as

c(w) = Q̃(w)w + Υ̃(w) ϕ̃(w) (261)

with a rational nonlinear function ϕ̃ : W+ → Rnϕ̃ satisfying

0 = Ψ̃(w)w + Ω̃(w) ϕ̃(w) (262)

such that:

(i) Set W+ satisfy W ⊆ W+ ⊆ Rnw .

(ii) Matrices Q̃ : W+ → Rnw×nw , Υ̃ : W+ → Rnw×nϕ̃ , Ψ̃ : W+ → Rnϕ̃×nw and
Ω̃ : W+ → R

nϕ̃×nϕ̃ are affine with respect to w.

(iii) Matrix Ω̃(w) is non-singular ∀w ∈ W+.

Without loss of generality, it is additionally required to define an ellipsoidal set

WE =
{

w ∈ R
nw : wTP̃ w ≤ 1

}

, (263)

for some symmetric matrix P̃ ∈ Rnw×nw such that W ⊆ WE ⊆ W+.
Provided these assumptions, the solution of Problem 4.2 may be obtained throughout

the following proposed conditions.

Lemma 4.3. Suppose ∀ j ∈ {1, 2, . . . , nu} there exist matrices L̃j ∈ Rnϕ̃×nϕ̃ and scalars

aj ∈ R such that :

aj > 0 , (264)






aj Q̃[j](w) Υ̃[j](w)

⋆ P̃ −Ψ̃
T(w)L̃T

j

⋆ ⋆ −H{L̃jΩ̃(w)}






≻ 0 ∀w ∈ Vw . (265)

Then (260) is satisfied with cj =
√
aj .
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Proof. Suppose the following inequality is true:

H
{

ϕ̃T(w)L̃j

(

Ψ̃(w)w + Ω̃(w) ϕ̃(w)
)}

+ . . .

. . .± c−1
j H

{

Q̃[j](w)w + Υ̃[j](w) ϕ̃(w)
}

≤ 1 + wTP̃ w

∀w ∈ W+ , j ∈ {1, 2, . . . , nu} .
(266)

By considering w ∈ WE ⊂ W+ and because Ψ̃(w)w + Ω̃(w) ϕ̃(w) = 0, it follows that

±c−1
j H

{

Q̃[j](w)w + Υ̃[j](w) ϕ̃(w)
}

≤ 2 ∀w ∈ W+ , j ∈ {1, 2, . . . , nu} . (267)

Since Q̃[j](w)w + Υ̃[j](w) ϕ̃(w) = cj(w), relation (267) implies

|cj(w)| ≤ cj ∀w ∈ W+ , j ∈ {1, 2, . . . , nu} . (268)

Because it was supposed that w ∈ WE ⊆ W+, one deduces

(266) ⇒ sup
w∈WE

|cj(w)| ≤ cj ∀ j ∈ {1, 2, . . . , nu} , (269)

and consequently that (266) ⇒ (260) since W ⊆ WE .
Now observe that (266) can be equivalently expressed as

ζT(w)∆j(w) ζ(w) ≥ 0 ∀w ∈ W+ , j ∈ {1, 2, . . . , nu} , (270)

where ζ(w) ,
[

∓c−1
j wT ϕT

c(w)
]

T

and ∆j(w) denotes

∆j(w) ,







cj
2 Q̃[j](w) Υ̃[j](w)

⋆ P̃ −Ψ̃ T(w)L̃T

j

⋆ ⋆ −H{L̃jΩ̃(w)}






. (271)

If ∆j(w) ≻ 0 ∀w ∈ W+, j ∈ {1, 2, . . . , nu} then (270) is satisfied ∀ ζ(w). Lastly,
from Lemma A.3 and since W+ was defined as (145), one gets (265), where the variable
change aj , cj

2 was introduced.

Based on Lemma 4.3, the lowest j-th bound cj can be estimated by solving a semidef-
inite optimization problem of the form:

min
Lj , aj

aj s.t.
{

(264) , (265)
}

. (272)

4.3.4 Analysis Conditions

Prior to the formulation of design procedures for stabilizing and anti-windup param-
eters F0 , . . . , Wn, it is suitable to initially develop analysis conditions related to the
attraction requirement (141), as previously done in Chapter 3. The starting point is to
consider Lyapunov’s stability conditions from Lemma 3.2 and the extended sector condi-
tion from Lemma 4.2 just proposed.

Given these considerations, Theorem 4.1 presents the main result of the chapter which
addresses the output regulation of the closed-loop system (113), (114) with the anti-
windup controller defined by (232), (233) and (241). The additional performance criteria
(P1) and (P2) from Definitions 3.1 and 3.2 are again considered.
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Theorem 4.1. Suppose there exist a symmetric matrix P ∈ Rna×na, a diagonal matrix

T ∈ Rnu×nu and matrices L ∈ Rnϕ×nϕ , R0, . . . ,Rm ∈ Rnu×nz , Ξ0, . . . ,Ξm ∈ Rnu×ns

and Π0, . . . ,Πm ∈ Rnu×nϕ such that (153), (154), (156),

T ≻ 0 , (273)




(uj − cj)
2 Q[j](z, w)−R[j](z, w) Υ [j](z, w)−Π [j](z, w)

⋆ P −Ψ
T(z, w)LT

⋆ ⋆ −H{LΩ(z, w)}



 ≻ 0

∀ (z, w) ∈ Vz × Vw , j ∈ {1, 2, . . . , nu} ,

(274)

H











PA(z, w) + αP PΦ(z, w) PJ(z, w)
LΨ (z, w) LΩ(z, w) 0
TR(z, w) TΠ (z, w) −T











≺ 0 ∀ (z, w) ∈ Vz × Vw , (275)

where R(z, w) ,
[

R(z, w) Ξ (z, w)
]

, Π (z, w) , Π (z, w) and

[

R(z, w) Ξ (z, w) Π (z, w)
]

,
[

R0 Ξ0 Π0

]

+
m
∑

i=1

[

Ri Ξi Πi

]

νi(z, w) , (276)

for any linear function ν : Z+ ×W+ → Rm, m ∈ N. Then the closed-loop system (113),
(114) with controller (232), (233), (241) achieves output regulation and satisfies (P1) and

(P2) for every initial condition in (157).

Proof. Consider the Lyapunov candidate function V (z) as in (158) for a symmetric and
positive-definite matrix P , implying that V (z) > 0 ∀ z ∈ Rna , z 6= 0. The derivative of
(158) along the trajectories of the system (253) is V̇ (z, w) = H{zT

∆1(z, w) ζ(z, w)},
where

∆1(z, w) ,
[

PA(z, w) PΦ(z, w) PJ(z, w)
]

, ζ(z, w) ,





z

ϕ(z, w)
ψ(µ)



 , (277)

with µ = Q(z, w) z+Υ(z, w)ϕ(z, w)+c(w). Utilizing this same notation, the algebraic
equality constraint in (253) can be expressed by ∆2(z, w) ζ(z, w) = 0, where

∆2(z, w) ,
[

Ψ(z, w) Ω(z, w) 0
]

. (278)

Consider now the statement from Lemma 4.2 particularly with functions θ(z, w) and
ϑ(z, w) expanded as

{

θ(z, w) = Q(z, w) z+Υ(z, w)ϕ(z, w)
ϑ(z, w) = R(z, w) z+Π (z, w)ϕ(z, w)

, (279)

where matrices Q(z, w) and Υ(z, w) are the same ones that compose signal µ in (253)
and the new matrices R : Z+ × W+ → Rnu×na and Π : Z+ × W+ → Rnu×nϕ

are free affine functions with respect (z, w). These matrices are equivalently defined
as R(z, w) ,

[

R(z, w) Ξ (z, w)
]

and Π (z, w) , Π (z, w), where R(z, w), Ξ (z, w) and
Π (z, w) are constructed as in (276) for any linear function ν : Z+ ×W+ → Rm, m ∈ N.
According to Lemma 4.2, if (z, w) ∈ S then (257) is true, which can be written in the
form ψT(µ)∆3(z, w) ζ(z, w) ≥ 0 where

∆3(z, w) ,
[

TR(z, w) TΠ (z, w) −T
]

, (280)
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for some diagonal matrix T satisfying (273). Now suppose the following inequality holds
for a matrix L ∈ Rnϕ×nϕ and some scalar α ≥ 0:

V̇ (z, w) + 2αV (z) +H
{

ϕT(z, w)L∆2(z, w) ζ(z, w)
}

+ . . .
. . .+H

{

ψT(µ) ∆3(z, w) ζ(z, w)
}

< 0 ∀ (z, w) ∈ Z
+ ×W+ , z 6= 0 .

(281)

Then, if this relation is verified, it readily follows that V̇ (z, w) < 0 ∀ (z, w) ∈ (Z+ ×
W+)∩S, z 6= 0, where Z+ =Z+×Rns . By factorizing ζ(z, w) and applying Lemma A.3
in expression (281), one obtains the matrix inequality (275). Conditions (153), (273) and
(275) consequently ensure that the candidate Lyapunov function V (z) is positive-definite
and its derivative is negative-definite ∀ (z, w) ∈ (Z+ ×W+) ∩ S. Therefore, it remains
to show that D ⊂ Z

+ ×W+ and D ⊂ S, where D, defined as in (157), is the domain of
attraction estimate and positively invariant region with respect to the system trajectories.

According to proof from Theorem 3.1, the criterion D ⊂ Z
+ ×W+ is satisfied if the

condition (154) holds. Furthermore, in order to deal with the requirement D ⊂ S for the
validity of the sector condition from Lemma 4.2, suppose

H
{

ϕT(z, w)L∆2(z, w) ζ(z, w)± (uj − cj)
−1
∆4[j](z, w) ζ(z, w)

}

≤ 1 + z
TP z

∀ (z, w) ∈ Z
+ ×W+ , j ∈ {1, 2, . . . , nu} ,

(282)
where ∆4[j] denotes the j-th row of the matrix

∆4(z, w) =
[

Q(z, w)−R(z, w) Υ(z, w)−Π (z, w) 0
]

. (283)

If (z(0), w(0)) ∈ D then z
T P z ≤ 1, therefore from (282) one gets

∣

∣∆4[j](z, w) ζ(z, w)
∣

∣ ≤ (uj − cj) ∀ (z, w) ∈ Z
+ ×W+ , j ∈ {1, 2, . . . , nu} , (284)

recalling that ∆2(z, w) ζ(z, w) = 0. Since (z, w) ∈ D ⇒ w ∈ W , it follows that (282)
implies D ⊂ S, where set S is defined as (256) using functions θ(z, w) and ϑ(z, w) from
(279). By factorizing the vector

[

∓(uj − cj)
−1

z
T ϕT(z, w)

]

T

in inequality (282) and
again using Lemma A.3, one should obtain the condition (274).

All conditions from Lemma 3.2 are therefore satisfied if (153), (154), (273), (274) and
(275) are true. Consequently, the trajectory z(t) of the system (253) asymptotically con-
verges to the origin for every initial condition (z(0), w(0)) ∈ D, satisfying (141) which
is equivalent to (123). According to Lemma 4.1, it then follows that the original closed-
loop system (113), (114) with controller (232), (233) (241) achieves output regulation
for every initial condition in (157). Moreover, inequality (281) here also implies that
V̇ (z, w) < −2αV (z) ∀ (z, w) ∈ D, z 6= 0, thus implying that (165) and (166) are true.
Consequently, (P1) satisfies for the established conditions, and the second criterion (P2)
is addressed equivalently by (156).

According to Theorem 4.1, the domain of attraction estimate (157) with maximized
volume can be numerically computed by the SDP problem

min
P,L,R0,...,Π̂m

tr(P ) s.t.
{

(153) , (154) , (156) , (273) , (274) , (275)
}

, (285)

noting that just P , L , R0 , . . . , Πm are being regarded as decision variables, not including
the stabilizing and anti-windup parameters F0 , . . . , Wn and the diagonal matrix T . The
optimization problem can be employed as an stability analysis tool, provided there are
some candidate parameters T,F0, . . . ,Wn fixed a priori. The next pages will focus on
extending the methodology so as to additionally regard these parameters as free decision
variables, thus providing a synthesis procedure.
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4.3.5 Design Conditions

Towards obtaining stability and performance conditions for synthesis purposes, the
output feedback congruence transformations proposed by SCHERER; GAHINET; CHI-
LALI (1997) can be adapted to the current scope. This approach led to the development of
new conditions as stated by the following theorem, where the stabilizing controller order
is now being fixed as ns = nz.

Theorem 4.2. Suppose there exist symmetric matricesX, Y ∈ R
nz×nz , a diagonal matrix

T̂ ∈ Rnu×nu and matrices L ∈ Rnϕ×nϕ , R̂0, . . . , R̂m ∈ Rnu×nz , Ξ̂0, . . . , Ξ̂m ∈ Rnu×nz ,

Π̂0, . . . , Π̂m ∈ Rnu×nϕ , F̂0, . . . , F̂n ∈ Rnz×nz , Ĝ0, . . . , Ĝn ∈ Rnz×nε , Ĥ0, . . . , Ĥn ∈
Rnv×nz , K̂0, . . . , K̂n ∈ Rnv×nε , Ê0, . . . , Ên ∈ Rnm×nu and Ŵ0, . . . , Ŵn ∈ Rnz×nu such

that (168), (169), (171),
T̂ ≻ 0 , (286)


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













(uj − cj)
2

Q[j](z, w)X +

D[j]Ĥ(z, w)−
R̂[j](z, w)

Q[j](z, w) +
D[j]K(z, w)C −

Ξ̂[j](z, w)

Υ[j](z, w) +
D[j]K(z, w)Γ −

Π̂[j](z, w)

⋆ X I −XΨ T(z, w)LT

⋆ ⋆ Y −Ψ T(z, w)LT

⋆ ⋆ ⋆ −H{LΩ(z, w)}





















≻ 0

∀ (z, w) ∈ Vz × Vw , j ∈ {1, 2, . . . , nu} ,
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











A(z, w)X +

BĤ(z, w) +
αX

A(z, w) +

BK̂(z, w)C +
αI

Φ(z, w) +

BK̂(z, w)Γ

BDT

mÊ(z, w)−
BDTT̂

F̂ (z, w) +
αI

Y A(z, w) +

Ĝ(z, w)C +
αY

Y Φ(z, w) +

Ĝ(z, w)Γ
Ŵ (z, w)

LΨ(z, w)X LΨ(z, w) LΩ(z, w) 0

R̂(z, w) Ξ̂ (z, w) Π̂ (z, w) −T̂



















































































≺ 0

∀ (z, w) ∈ Vz × Vw ,
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where F̂ (z, w) , . . . , K̂(z, w) are defined as in (172), Ê(z, w) and Ŵ (z, w) are

[

Ê(z, w)

Ŵ (z, w)

]

,

[

Ê0

Ŵ0

]

+
n

∑

i=1

[

Êi

Ŵi

]

λi(z, w) , (289)

and matrices R̂(z, w), Ξ̂ (z, w) and Π̂ (z, w) denote

[

R̂(z, w) Ξ̂ (z, w) Π̂ (z, w)
]

,
[

R̂0 Ξ̂0 Π̂0

]

+
m
∑

i=1

[

R̂i Ξ̂i Π̂i

]

νi(z, w) , (290)

for any linear function ν : Z+ ×W+ → Rm, m ∈ N. Then the closed-loop system (113),
(114) with controller (232), (233), (241) achieves output regulation ans satisfies (P1)
and (P2) for every initial condition in (157) with P given by (173), stabilizing controller

parameters Fi, Gi, Hi and Ki ∀ i ∈ {0, 1, . . . , n} obtained by (174) and anti-windup
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parameters Ei and Wi ∀ i ∈ {0, 1, . . . , n} constructed as







Ei = Êi T̂
−1 , i = 0, 1, . . . , n ,

W0 = N−1(Ŵ0 − Y BDT

mÊ0)T̂
−1 +N−1Y BDT ,

Wi = N−1(Ŵi − Y BDT

mÊi)T̂
−1 , i = 1, . . . , n ,

(291)

where the pair M,N ∈ Rnz×nz is a non-singular solution to (175).

Proof. Suppose conditions from Theorem 4.1 hold for ns = nz and for P decomposed
as (176), where X, Y ∈ Rnz×nz are symmetric matrices and M,N ∈ Rnz×nz are generic
square matrices. Since P−1P = I , then condition (175) must be satisfied. Consider the
same blocks Z1, Z2 ∈ Rna×na shown in (177), where PZ1 = Z2. Applying the congru-
ence transformations Z1, diag{1, Z1}, diag{Z1, Z1}, T−1, diag{1, Z1, I} and
diag{Z1, I, T

−1} into (153), (154), (156), (273), (274) (275) leads respectively to (168),
(169), (171), (286), (287) and (288) when considering the change of variables (178),

{

Ê(z, w) = E(z, w)T−1

Ŵ (z, w) = Y BDT

mE(z, w)T
−1 − Y BDTT−1 +NW (z, w)T−1

, (292)

T̂ = T−1, R̂(z, w) = R(z, w)X + Ξ (z, w)MT, Ξ̂ (z, w) = R(z, w) and Π̂ (z, w) =
Π (z, w). From straightforward inversion of (178) and (292), one obtains respectively
(179) and

{

E(z, w) = Ê(z, w)T̂−1

W (z, w) = N−1Ŵ (z, w)T̂−1 −N−1Y BDT

mÊ(z, w)T̂
−1 +N−1Y BDT

, (293)

which leads to (174) and (291) by considering the definitions of A(z, w) from (144), of
F (z, w) , . . . , K(z, w) from (136), of F̂ (z, w) , . . . , K̂(z, w) from (172), of E(z, w)
and W (z, w) from (247) and of Ê(z, w) and Ŵ (z, w) from (289). Also, matrix P can
be reconstructed as (173) since P = Z2 Z

−1
1 . In closing, conditions from Theorem 4.1

are then equivalent to Theorem 4.2 when considering a full order stabilizing controller
ns = nz.

Similar to the methodology described in the previous chapter, the stabilizing and anti-
windup parameters can be synthesized by the following optimization problem in order to
maximize the volume of the domain of attraction estimate:

min
X,Y,L,T̂ ,R̂0,...,Π̂m,F̂0,...,Ŵn

tr(Y ) s.t.
{

(168) , (169) , (288) , (286) , (287) , (288)
}

. (294)

This optimization problem notably contains bilinear terms in (287) and (288) with respect
to the pair of variables L and X , similar as problem (180) presented before. Recall that
Appendix A.2 shows a procedure capable of searching for a local solution to this class of
optimization problems.

Remark 4.1. Linear function ν(z, w) contained in (290) can always be set as ν(z, w) = 0
in order to reduce the numerical complexity of stability conditions (287) and (288). On
the other hand, it is suggested to consider ν(z, w) = [zT wT]T in order to obtain less
conservative results.
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In case the additional Assumption 3.3 is true, as detailed in the previous chapter, it is
suggested again to include function ϕ(y) into the stabilizing stage (241):

{

ξ̇s = F(y) ξs +G(y) ε+ Λ(y)ϕ(y) +W(y)ψ(µ)
v = H(y) ξs +K(y) ε+Θ(y)ϕ(y)

. (295)

The complementary terms Λ : Rny → Rns×nϕ and Θ : Rny → Rnv×nϕ can be parametrized
according to (184), where Λ0, . . . ,Λn ∈ Rns×nϕ and Θ0, . . . ,Θn ∈ Rnv×nϕ are free design
matrices. The modified stabilized stage (295) can be also verified to satisfy the regulation
requirement (122) from Lemma 4.1, since ϕ(d(w)) = ϕ(0, w) = 0 ∀w ∈ W .

By substituting the original stabilizing stage (241) with (295), not only additional de-
gree of freedom is provided for the design, but also (294) can be reframed as a convex
optimization problem. In this modified case, matrices Φ(z, w) and Υ(z, w) of the aug-
mented system representation (253) are redefined according to

Φ(z, w) =

[

Φ(z, w) +BK(z, w)Γ +BΘ(z, w)
Λ(z, w) +G(z, w)Γ

]

,

Υ(z, w) = Υ(z, w) +DK(z, w)Γ +DΘ(z, w) .

(296)

From these observations, Theorem 4.2 can be restated according to the next corollary.

Corollary 4.1. Suppose there exist symmetric matricesX, Y ∈ Rnz×nz , a diagonal matrix

T̂ ∈ R
nu×nu and matrices L̂ ∈ R

nϕ×nϕ , R̂0, . . . , R̂m ∈ R
nu×nz , Ξ̂0, . . . , Ξ̂m ∈ R

nu×nz ,

Π̂0, . . . , Π̂m ∈ Rnu×nϕ , F̂0, . . . , F̂n ∈ Rnz×nz , Ĝ0, . . . , Ĝn ∈ Rnz×nε , Ĥ0, . . . , Ĥn ∈
Rnv×nz , K̂0, . . . , K̂n ∈ Rnv×nε , Λ̂0, . . . , Λ̂n ∈ Rnz×nϕ , Θ̂0, . . . , Θ̂n ∈ Rnv×nϕ , Ê0, . . . , Ên

∈ Rnm×nu and Ŵ0, . . . , Ŵn ∈ Rnz×nu such that (168), (169), (171), (286),
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Υ[j](z, w)L̂+

D[j]Θ̂(z, w)−
Π̂[j](z, w)

⋆ X I −XΨ T(z, w)

⋆ ⋆ Y −Ψ
T(z, w)

⋆ ⋆ ⋆ −H{Ω(z, w)L̂}
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where F̂ (z, w) , . . . , K̂(z, w) are defined as in (172), Θ̂(z, w) and Λ̂(z, w) are identical to

(187), Ê(z, w) and Ŵ (z, w) are represented by (289) and matrices R̂(z, w), Ξ̂ (z, w) and

Π̂ (z, w) are the same as in (290) for any linear function ν : Z+ ×W+ → Rm, m ∈ N.
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Then the closed-loop system (113), (114) with controller (232), (233), (295) achieves

output regulation and satisfies (P1) and (P2) for every initial condition in (157) with P
given by (173), stabilizing controller parameters Fi , . . . , Θi ∀ i ∈ {0, 1, . . . , n} obtained

by (174) and (188), and with anti-windup parameters Ei and Wi ∀ i ∈ {0, 1, . . . , n}
constructed by (291), where the pair M,N ∈ Rnz×nz is a non-singular solution to (175).

Proof. Consider the same proof presented for Theorem 4.2, except post- and pre-multiply
(274) and (275) respectively with diag{1, Z1, L

−T}, diag{Z1, L
−T, T−1} and their trans-

poses, which yield (297) and (298) when considering (296) and the change of variables
(178), (189), T̂ = T−1, L̂ = L−T, R̂(z, w) = R(z, w)X+Ξ (z, w)MT, Ξ̂ (z, w) = R(z, w)
and Π̂ (z, w) = Π (z, w)L−T. From straightforward inversion of the variable transforma-
tions (178) and (189), one obtains respectively (174) and (188).

According to Corollary 4.1, the parameters from stabilizing controller (295) and the
anti-windup parameters can be synthesized by the convex optimization problem

min
X,Y,L̂,T̂ ,R̂0,...,Π̂m,F̂0,...,Ŵn

tr(Y ) s.t.
{

(168) , (169) , (171) , (286) , (297) , (298)
}

, (299)

where (297) and (298) now verify to be LMIs with respect to all decision variables.

4.4 Numerical Examples

This section illustrates the proposed control design methodology with two numerical
control design examples. The cases to be shown here are the same ones from Section 3.4,
where it was considered a polynomial nonlinear plant subject to a harmonic exosystem
and a strictly rational nonlinear system subject to a chaotic exosystem.

4.4.1 Polynomial Nonlinear Plant with a Harmonic Exosystem

Consider here the same scenario explained in Subsection 3.4.1, where the plant to
be output regulated is given by (192) and the exosystem dynamics is as in (193). The
only difference here is that the control input u ∈ U ⊂ R is now bounded by a compact
constraining set U = [−u, u], for some u > 0.

The overall objective of this example is to design an output feedback controller such
that the error signal e(t) asymptotically approaches zero and u(t) ∈ U ∀ t ≥ 0. In order
to properly deal with such problem, the anti-windup regulation framework explained on
Section 4.2 will be illustrated.

The design of internal model functions φm(ξm, y) and θm(ξm, y) here is identical to
the original case detailed in Subsection 3.4.1. Therefore, the sequel will jump straight to
the stabilizing stage and anti-windup design.

4.4.1.1 Stabilizing stage and anti-windup design

The preliminary stabilizing stage design considerations are assumed equal to the pre-
vious chapter, namely ε = δ(y) = y and λ(y) = 0.

The initial step in this design procedure is to represent the system equations in the
regulation error form (133) using coordinate change (132), which for the example is (200).
By developing all the regulation error system functions fz(z, w, v̂), θz(z, w), gz(z, w),
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hz(z, w) and δz(z, w), one should obtain

fz(z, w, v̂) =






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







z2
a (z21z2 + ω z21w2 + 2ω z1w1w2 + z2w

2
1 + 2 z1z2w1) + b (z3 + v̂1)

z4 + v̂2
z5 + v̂3
z6 + v̂4

−9ω4 z3 − 10ω2 z5 + v̂5
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







,

(300)
θz(z) = z3 and gz(z) = hz(z) = δz(z) = z1, where in comparison to (300) the original
variable v has simply changed to v̂, noting that v̂ denotes the definition from (243).

The second step is to choose an appropriate differential-algebraic representation for
the functions fz(z, w, v̂), δz(z) and now additionally for θz(z). The same vector of ra-
tional nonlinearities ϕ(z, w) from (202) may be used for this purpose. In turn, functions
fz(z, w, v̂), δz(z) and θz(z) may be expressed in the DAR framework of (250) and (251)
with the same matrices from (203) and the following complementary ones for θz(z):

Q =
[

0 0 1 0 0 0
]

, Υ =
[

0 0
]

. (301)

The third step is to define the bounding sets W ⊆ W+ ⊆ R2 and {0} ⊂ int{Z+} ⊆
R6 in order to numerically approach the synthesis problem. The definition for these sets
is here considered identical to the original case explained in Subsection 3.4.1.

An extra design choice in the current input constrained case is the function ν(z, w),
which defines the affinity of free decision variables R(z, w), Ξ (z, w) and Π (z, w) men-
tioned throughout the chapter. Since the considered sets Z+ and W+ impose restrictions
on the dimensions z1, w1 and w2, the function ν(z, w) may be defined accordingly as

ν(z, w) =
[

z1 w1 w2

]

T

. (302)

The system parameters here are the same as those used in Subsection 3.4.1. The
design constraints for lower bound decay rate and upper bound system matrix eigenvalue
are being set respectively as α = 5 · 10−2 and r = 1.2 · 102. It is being also defined w = 1
and e = 3 with respect to the bounding sets Z+ and W+. Lastly, the new input amplitude
constraint is being configured as u = 20. In order to compute the required magnitude
bound of the steady-state control c(w), the optimization problem (272) was evaluated,
which resulted |c(w)| ≤ c = 1.4142 ∀w ∈ W , satisfying the requirement c ≤ u.

Given all these numerical values, the optimization problem (294) was considered in
order to synthesize the stabilizing and anti-windup gains. The iterative procedure in Ap-
pendix A.2 was again employed so as to handle the bilinear terms involving some of the
decision variables. It was necessary to perform 2 iterations in the feasibility phase until
achieving an strictly feasible solution, and it took 8 iterations in the optimization phase in
order to achieve an objective value decrement smaller than 10−4 over the last 4 iterations.
The ultimately obtained solution has the objective value tr(Y ) = 0.4502, the stabilizing



83

parameters

F =













−2.4662 −1.6244 2.1420 −95.216 0.4291 0.0007
0.5743 −2.3124 −0.6389 11.335 −0.0389 −0.0001

−0.1314 0.2395 −1.9264 43.426 0.4034 0.0011
0.0597 −0.0422 −0.6082 −7.2421 −0.0810 −0.0003

−0.4450 0.0707 −2.0177 10.120 −110.23 0.0035
−0.0001 0.0000 −0.0014 0.0040 −0.0001 −107.31


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
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



, G =
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

−27.958
2.2850

−36.062
6.7897
8880.0
5.8784


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,

H =
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

−56.918 7.4569 −7.2729 −17.390 2.0567 −0.0024
−134.09 21.096 74.560 −5629.3 13.540 0.0049
12.096 226.02 42.321 −1111.9 0.3756 0.0042
53.604 −3.4787 737.04 −4987.3 2.1134 0.0277
12.973 23.842 −117.10 4557.7 2.3670 −0.0212


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, K =
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−187.02
−721.00
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441.27

−675.53
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,
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and the following anti-windup gains:

E =







−4.4910
0.2108
3.0697

−2.2942






, W =


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



−0.1611
0.0133

−0.1993
0.0376
49.498
0.0363













. (304)

4.4.1.2 Numerical results and discussion

Figures 16 and 17 show results obtained from a numerical simulation of the closed-
loop system with the proposed controller. For generating these plots, the controller initial
condition was set as ξ(0) = 0 and the exosystem initial state was defined with the default
valuesw(0) = [0 1]T. On the other hand, two different plant initial states were considered,
which are x(0) = [1.1 6.578]T and x(0) = [−1.3 − 3.809]T. The responses for each of
these initial conditions are depicted respectively by black and gray shades on Figures 16
and 17. So as to induce control input saturation, these plant initial states were chosen such
that (z(0), w(0)) is marginally close to the border of the estimated domain of attraction
D, which is subsequently represented by Figure 18.

Figure 16 depicts on top the system output error signals e(t), showing asymptotic
convergence for both initial conditions tested. The bottom plot of Figure 16 and the next
Figure 17 illustrate the control input signals u(t) generated by the designed controller.
In these pictures, one can clearly see the initial saturation effect, followed by a smooth
transition to the steady-state regime, when the signals asymptotically approach c(w(t)).

Lastly, Figure 18 shows the set of viable plant initial conditions x(0). In this figure,
the black contour denotes the border of D when the other initial states are set at the default
scenario, namely ξ(0) = 0 and w(0) = [0 1]T. The gray contours in turn denote a sweep
through several exosystem initial states w(0) inside the admissible disk W . Moreover, the
black dots represent the same initial states used for evaluation of the trajectories presented
by Figures 16 and 17.



84

t

t

e(
t)

u
(t
)

0

0

0

0

1

2

5

5

10

10

10

15

15

20

20

20

25

25

30

30

−1

−2

−20

−10
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a myriad of exosystem initial states w(0) ∈ W . Source: the author.

4.4.2 Rational Nonlinear Plant with a Chaotic Exosystem

Consider now the same example from Subsection 3.4.2, where a strictly rational non-
linear plant is considered as in (209) and it is subject to a chaotic exosystem of the form
(210). The only difference now is that the control input u ∈ U ⊂ R is bounded by a
compact constraining set U = [−u, u], for some u > 0. The overall objective is again
to design an output feedback controller such that the error signal e(t) asymptotically ap-
proaches zero, but also ensuring that u(t) ∈ U ∀ t ≥ 0.

In spite of the additional input constraint, the design of internal model functions
φm(ξm, y) and θm(ξm, y) remains identical to the original case detailed in Subsection 3.4.2.
Therefore, the sequel will skip to the stabilizing stage and anti-windup design.

4.4.2.1 Stabilizing stage and anti-windup design

The preliminary stabilizing stage setups are assumed equal to the original case from
Subsection 3.4.2, where the output measurement vanishing function was defined as δ(y) =
y1 and the candidate gain scheduling function was set as λ(y) = y2.
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The first step required to design the stabilizing stage is to express the system using
coordinate change (132). All functions of the regulation error system (244) now verify to
be:

fz(z, w, v̂) =



















a1
z21

1 + z21
+ z2

a1
z1

1 + z21
+ a3 (z4 − b̂2 z3 + v̂1)

b1 (z4 − z3) + v̂2
b2 z3 − z4 − w1z5 + v̂3
w1z4 − b3 z5 + v̂4



















,

θz(z) = z4 − b̂2 z3 ,

hz(z) = δz(z) = z1 ,

gz(z) =

[

z1
0

]

.

(305)

The candidate controller scheduling function may also be represented in the regulation
error form, which is given by (219).

The second step is to choose an appropriate DAR for the functions fz(z, w, v̂), δz(z)
and θz(z). The same vector of rational nonlinearities ϕ(z, w) from (220) may be used for
this purpose, and the same matrices from (221) may be employed to represent functions
fz(z, w, v̂) and δz(z) according to (250) and (251). On the other hand, one should define
the following complementary matrices in regard of θz(z):

Q =
[

0 0 −b̂2 1 0
]

, Υ =
[

0 0
]

. (306)

The same DAR properties highlighted in Subsection 3.4.2 remain applicable to the present
case. Namely, Ω(z) is non-singular ∀ z ∈ R5, the identity A(w) = A0 + A1 λ(w) holds
for A0 and A1 defined as (222), and lastly, ϕ(z) can be remapped with respect to the
output measurement as (223). Such properties allow the implementation of the controller
(295) and the synthesis can be addressed by a convex optimization problem, as indicated
in (299).

The third step is to define the bounding sets W ⊆ W+ ⊆ R3 and {0} ⊂ {Z+} ⊆
R5 in order to numerically approach the synthesis problem. The definition of these sets
is considered identical to the one in Subsection 3.4.2. In this input constrained case,
there is an extra design choice with respect to function ν(z, w) as mentioned previously
by Remark 4.1. Because the considered sets Z+ and W+ impose restrictions on the
dimensions z1 and w1 solely, the function ν(z, w) is recommended to be set as ν(z, w) =
[z1 w1]

T.

The same original numeric values are being considered for plant and exosystem pa-
rameters. The performance specifications are being set as α = 5 · 10−2 and r = 102, and
additionally, the error bound is being defined as e = 104. The new control input ampli-
tude constraint is being configured as u = 4. In order to compute the required magnitude
bound of the steady-state control c(w), the optimization problem (272) was employed,
which yielded |c(w)| ≤ c = 1.1388 ∀w ∈ W , satisfying the requirement c ≤ u. The
numerical solution of SDP problem (299) resulted tr(Y ) = 0.0364 with the anti-windup
parameters:

E0 =

[

10.987
−3.8164
0.0000

]

, E1 =

[

−0.0000
0.0000

−0.1665

]

, W0 =





−0.0000
−7.5848
10.084
2.4057
0.0885



 , W1 =





0.0102
−0.0000
0.0000

−0.0000
−0.0000



 , (307)
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and with the following stabilizing controller matrices:

F0=







−2.8319 0.0000 −0.0000 −0.0000 0.0000
0.0000 −38.436 1.0877 37.914 −0.0416

−0.0000 29.892 −5.5886 −33.378 −0.0108
−0.0000 −0.2409 −5.3848 −97.606 0.0564
−0.0000 −0.0006 0.0014 0.0238 −70.723






G0=







−0.0000
22.710

−20.209
−30.002
0.0073






Λ0=







−0.0000 −0.0000
0.2960 −0.0068

−0.3090 0.0054
−0.2937 0.0004
0.0000 0.0000






,

H0=





−0.0000 17.319 −11.013 −8.5993 0.0129
0.0000 −0.8341 25.962 28.724 0.0298
0.0000 3.7867 22.623 −9.7841 0.1225
1.4855 −0.0000 0.0000 0.0000 −0.0000



 K0=





−11.151
16.793
3.0488
0.0000



 Θ0=





−0.0011 −0.0013
−0.0035 −0.0065
0.0014 0.0040
0.0000 0.0000



,

F1=







0.0000 0.5995 0.6565 −0.0315 −0.0000
−0.8578 0.0000 −0.0000 −0.0000 −0.0000
−0.5653 −0.0000 0.0000 0.0000 0.0000
0.0120 0.0000 −0.0000 −0.0000 −0.0000

−0.0000 0.0000 −0.0000 −0.0000 0.0000






G1=







0.0159
−0.0000
0.0000

−0.0000
−0.0000






Λ1=







−0.0000 −0.0000
−0.0000 −0.0000
0.0000 −0.0000
0.0000 0.0000

−0.0000 −0.0000






,

H1=





−0.0000 0.0000 −0.0000 −0.0000 0.0000
−0.1675 0.0000 −0.0000 −0.0000 −0.0000
−5.1170 −0.0000 0.0000 0.0000 −0.0000
0.0000 −2.7107 −3.1075 0.6548 0.0002



 K1=





−0.0000
−0.0000
0.0000
0.0359



 Θ1=





0.0000 0.0000
−0.0000 −0.0000
0.0000 0.0000

−0.0000 −0.0000



.

(308)

4.4.2.2 Numerical results and discussion

Figures 19 and 20 present numerical simulations of the closed-loop system with initial
conditions marginally close to the border of the estimated domain of attraction D, in order
to induce control input saturation. The chosen initial states are in turn x(0) = [4 1851.4]T

and x(0) = [−4 − 1863.9]T, where for both cases ξ(0) = 0 and the default exosystem
initial condition w(0) from (230) were used. The graphical representation of the set D
and the considered initial states are afterwards shown in Figure 23.

Figure 19 shows on top the system output error signals e(t), where asymptotic conver-
gence to the origin is verified. Figure 20 and the bottom frame of Figure 19 also detail the
control input signals u(t) produced by the simulation runs, where one can clearly observe
the effect of the saturation nonlinearity. Past the initial saturated period, the input signals
smoothly approaches the non-vanishing and non-periodic excitation required to achieve
output regulation. The tridimensional portraits in Figures 21 and 22 also expose the inter-
nal model trajectories generated by the simulations, respectively focusing on the transient
and steady-state periods. In Figure 21, bold lines indicate the activation of the control
input saturation, whereas thin lines mean the control input is unsaturated. Subsequently
in Figure 22, one may observe ξm asymptotically approaching the zero-error trajectory
σm(w) = a2a

−1
3 w, which is the chaotic Lorenz exosystem trajectory scaled by the factor

a2a
−1
3 .
The set of all plant initial conditions x(0) with assured theoretical convergence is

represented in Figure 23. The black contour denotes the border of D when the other
initial states are set at the default scenario, which is ξ(0) = 0 and w(0) according to
(230). The gray patches in turn represent a sweep through several conditions w(0) inside
the positively invariant set W of the exosystem. Figure 24 is also comparing the region D
with the estimated domain of attraction in case the proposed anti-windup compensation
is disabled, in this case evaluated by numerical simulations for a discrete set of initial
states. One may clearly observe the gray crossings inside the D contour, cases where
the anti-windup action was verified to be necessary in order to maintain the closed-loop
stability.
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Figure 19: On top: the output regulation error signals e(t). On bottom: the control input
signals u(t) compared to the zero-error steady-state signals c(w(t)) (dashed line). Shades
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4.5 Final Remarks

This chapter dealt with the output regulation problem for rational nonlinear systems
subject to input saturation. One important contribution of this study is the adaptation of
the anti-windup scheme, originaly developed by GOMES DA SILVA JR et al. (2014),
to the nonlinear regulation problem, where the compensation was considered into both
internal model and stabilizing stages. Furthermore, the differential-algebraic representa-
tion led to stability analysis and synthesis procedures for the stabilizing and anti-windup
parameters. The proposed work is expected to have significant scientific relevance, since
the literature on nonlinear output regulation mostly neglects the effects of input saturation,
e.g. (LU; HUANG, 2015; XU; CHEN; WANG, 2017). The material developed through-
out this chapter was organized in the following journal paper to be soon submitted:

• CASTRO, R. S.; FLORES, J. V.; SALTON, A. T.; GOMES DA SILVA JR, J. M.
Anti-Windup Stabilization for Output Regulation of Rational Nonlinear Systems.
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5 EXTENSION FOR THE PRACTICAL OUTPUT REGU-

LATION

This chapter extends the previously developed methodologies for the more general
problem called practical output regulation (MARCONI; PRALY, 2008), where the objec-
tive of asymptotic output error convergence to zero is relaxed and replaced by an ultimate
boundedness requirement. This objective change is referred to as practical because in
most real world applications it is highly demanding – and sometimes even unfeasible – to
achieve output regulation in the original sense. Moreover, in most practical engineering
problems, the desired goal is the best trade-off between residual steady-state error, con-
trol implementation complexity and smoothness of the control action. In short, the main
features of the practical output regulation framework to be presented in this chapter are
the following:

(a) Addressing systems described by non-triangular differential equations;

(b) Implementing reduced order internal model stages;

Item (a) refers to systems with non-triangular dynamical description, which can not
be expressed in the form of (76). For these cases, the solution of the regulator partial dif-
ferential equations is not systematic and might be impracticable to be determined analyt-
ically, thus possibly violating the Assumption 3.1. In the practical regulation framework,
this assumption can be dropped and it is sufficient to consider approximated steady-state
mappings, which can be obtained by a numerical procedure. As the plant zero-error
steady-state approximation gets closer to the actual solution, a lower theoretical ultimate
error bound will be achievable by the stability conditions to be presented, reaching zero
in the limit where the steady-state mappings are exact.

Furthermore, there exist systems where the required internal model order for achieving
perfect output regulation is infinite, thus posing a challenge for implementation. Another
highly relevant feature of the practical output regulation framework is thus the possibility
of considering reduced order internal model stages, as highlighted by (b). In this context,
there is usually a trade-off between control complexity and residual steady-state error.

In this chapter, Section 5.1 introduces the new problem to be considered, followed
by Section 5.2 where the practical control design framework is detailed. The main the-
oretical results are contained afterwards in Section 5.3, where stability, performance and
boundedness conditions are presented. Lastly, Section 5.4 illustrates the proposed practi-
cal regulation framework with a numerical example.



93

5.1 Problem Statement

Consider the usual closed-loop architecture where the system, exosystem, and out-
put feedback controller are described respectively by (113), (114) and (115), where the
control input is constrained inside region U defined as in (231). The preliminary basic
assumptions are the same as considered before (i.e. Assumptions 2.1 and 2.2).

The following definition introduces the concept of achieving practical output regu-
lation which is directly based on MARCONI; PRALY (2008), except for an additional
complement so as to distinguish boundedness within a finite time.

Definition 5.1. The closed-loop system (113), (114), (115) is said to:

• achieve practical output regulation in D ⊆ R
nx × R

nξ × R
nw for some ultimate

error bound γ∞ ≥ 0 if the closed-loop system is bounded1 in D and furthermore:

(

x(0), ξ(0), w(0)
)

∈ D ⇒ lim
t→∞

||e(t)|| ≤ γ∞ . (309)

• achieve practical output regulation in D ⊆ R
nx×R

nξ×R
nw for some ultimate error

bound γτ ≥ 0, within a finite time τ > 0, if the closed-loop system is bounded in D
and furthermore:

(

x(0), ξ(0), w(0)
)

∈ D ⇒ ||e(t)|| ≤ γτ ∀ t ≥ τ . (310)

One should note that the practical output regulation definition is a relaxation of the
standard output regulation introduced by Definition 2.2 (which is the special case where
the ultimate error bound is enforced as γ∞ = 0). Furthermore, one should see that (310)
becomes equivalent to (309) in the limit where τ goes to infinity.

Provided these newly stated concepts, the control design problem is now expressed as
follows.

Problem 5.1. Design controller functions φ(ξ, y) and θ(ξ, y) such that the closed-loop
system (113), (114), (115) achieves practical output regulation in some region D ⊆ Rnx×
Rnξ ×W for some ultimate error bound γτ with the control input signal restricted to the
set (231).

5.2 Practical Control Framework

In order to solve the highlighted practical output regulation design problem, the con-
sidered architecture is exactly as shown previously in Figure 15, where the controller is
composed by a saturation function (232), by an internal model stage as (233) and by a
stabilizing stage as (241). The anti-windup feedback loops, as described in Section 4.2,
are also considered here.

Regarding the output regulation in the original sense, it was pointed out by Lemmas
3.1 and 4.1 that an invariant and zero-error steady-state manifold must exist, which is
equivalent to the existence of smooth mappings π(w), c(w), d(w) and σm(w), satisfying
the set of regulator equations, i.e. (120), (121) and (130). Since the zero-error steady-state

1The concept of being bounded is described in Definition 2.2.



94

property is not strictly required now, one may consider regulator equations with residuals
for practical design purposes, respectively as2











∂π̃(w)

∂w
s(w) = f(π̃(w), w, c̃(w))−∆f (w)

d̃(w) = g(π̃(w), w)
0 = h(π̃(w), w)−∆h(w)

∀w ∈ W , (311)







∂σ̃m(w)

∂w
s(w) = φm(σ̃m(w), d̃(w))−∆φ(w)

c̃(w) = θm(σ̃m(w), d̃(w))
∀w ∈ W , (312)

0 = δ(d̃(w))−∆δ(w) ∀w ∈ W . (313)

In here, ∆f : W → Rnx , ∆h : W → Rne , ∆φ : W → Rnm and ∆δ : W → Rnε are
introduced as residual functions, while π̃ : W → Rnx , c̃ : W → U , d̃ : W → Rny and
σ̃m : W → Rnm are mappings which define an approximated manifold

M̃ =
{

(x, ξm, ξs, w) ∈ Rnx × Rnm × Rns ×W : x = π̃(w) , ξm = σ̃m(w) , ξs = 0
}

.

(314)
Due to the introduction of residual terms, it is noticeable that M̃ is neither invariant
nor error-zeroing, however, as ∆f (w), ∆h(w), ∆φ(w) and ∆δ(w) approach zero, M̃
approaches the ideal zero-error and invariant manifold M defined by (75). Moreover, this
relaxed formulation allows the usage of numerical algorithms able to compute a proximate
solution to the regulator equations, including the internal model functions. Any numerical
method able to approximate the solution of partial differential equations can be applied in
this case, ranging from a traditional nonlinear programming using interior-point solvers
(BERTSEKAS, 1999) to heuristic based procedures such as neural networks (LAGARIS;
LIKAS; FOTIADIS, 1998).

It is important to emphasize that the subsequent control design methodology nei-
ther requires working with the regulator equations nor using an internal model stage.
For instance, with respect to the plant equations (311), one can always consider the
trivial solution π̃(w) = 0 and c̃(w) = 0, where in this case the residuals are readily
∆f(w) = f(0, w, 0) and ∆h(w) = h(0, w). However, for improving the control design
and possibly attaining lower ultimate error bounds, it is recommended to employ numer-
ical optimization routines so as to find solutions which help to reduce the residuals along
the domain of interest W . A procedure able to deal with this problem is described subse-
quently, where it is only assumed a priori knowledge of the plant and exosystem functions
f(x, w, u), g(x, w), h(x, w) and s(w):

(a) Approximation of the plant zero-error steady-state: search for smooth mappings
π̃(w) : W → Rnx and c̃(w) : W → Rnu according to the following numerical
optimization problem

min
π̃(w) , c̃(w)

∫

W

(

||∆f(w)||2 + ||∆h(w)||2
)

dw s.t. (311) . (315)

2Without loss of generality, residual terms are not considered in the equations for d̃(w) and c̃(w), since
these functions can always be displaced in order to eliminate any residual.



95

(b) Internal model synthesis: given the result from phase (a), search for functions
φm(ξm, y), θm(ξm, y) and for a smooth mapping σ̃m(w) : W → Rnm according
to the following numerical optimization problem:

min
φm(ξm,y) , θm(ξm,y) , σ̃m(w)

∫

W

||∆φ(w)||2 dw s.t. (312) . (316)

If c̃(w) = 0, skip this step and do not use an internal model stage.

(c) Approximation of the output vanishing function: given the result from phase (a),
search for a function δ(y) according to the following numerical optimization prob-
lem:

min
δ(y)

∫

W

||∆δ(w)||2 dw s.t. (313) . (317)

In order to numerically solve the optimization problems (315), (316) and (317), one
should perform a parametrization of the unknown functions and residuals using a series
of free decision variables q1, q2, . . . , qnq

∈ R. A general guideline in this case is to assign
a candidate polynomial structure with free coefficients to each unknown function, an ap-
proach which will be exemplified in Subsection 5.4.1. Another important consideration
for numerical tractability is the discretization of the integrals in (315), (316) and (317),
which may be substituted by a sum over a finite grid W̃ approximating the desired do-
main W . Given these considerations, a nonlinear programming approach, for instance, is
applicable in order to numerically determine the free variables.

For the validity of the regulator equations under the presence of input saturation and
also for the subsequent usability in the stabilization phase, one should a posteriori check
if the supreme bounds of c̃(w) inside the set W do not exceed the maximum control
amplitudes, i.e.

sup
w∈W

|c̃j(w)| ≤ cj < uj ∀ j ∈ {1, 2, . . . , nu} . (318)

The values c1, c2, . . . , cnu
can again be systematically determined by the methodology

explained in Subsection 4.3.3.
In possession of solutions π̃(w), c̃(w), σm(w), φ̃m(ξm, y), θm(ξm, y), δ(y), ∆f (w),

∆h(w), ∆φ(w) and ∆δ(w) from previous phases (a), (b) and (c), and assuming that (318)
holds, one should move to the next step in the control design, which is related to closed-
loop stabilization. The methodology related to this last step is the main contribution of
this chapter, as presented in the subsequent section.

(d) Stabilizing stage and anti-windup synthesis: given the result from phases (a), (b)
and (c), and for a given scheduling function λ(y), design stabilizing parameters
F0 , . . . , Kn and anti-windup parameters E0 , . . . , Wn such that practical output
regulation is achieved for some ultimate bound γτ .

In the literature, one may find methodologies able to solve steps (a), (b) and (c), similar
to those described here. One example is BYRNES; GILLIAM (2007), where the regulator
equations are proximatelly solved by fixed point and Newton iteration methods. Another
case is KHAILAIE; ADHAMI-MIRHOSSEINI; YAZDANPANAH (2011), where the so-
called Galerkin method is considered for determining an approximate system zero-error
steady-state. The main innovation presented here is thus the methodology for addressing
step (d), where for any given approximate solution to the regulator equations, a systematic
ultimately bounded stabilization approach is provided for rational nonlinear dynamics.
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5.3 Main Results

In this section, a new methodology is presented in order to systematically approach
the design phase (d), which can be seen as a direct extension of the material developed
in Chapters 3 and 4. The major difference in the current formulation is the presence of
residual non-vanishing terms in the regulation error dynamics, a consequence for allow-
ing approximate solutions to the regulator equations. Moreover, it is necessary now to
characterize additional regions defining the ultimate bounds of the regulation error state
trajectory.

Initially in Subsection 5.3.1, the system equations are arranged in a practical regula-
tion error form, followed by the employment of the DAR in Subsection 5.3.2. Stability,
performance and boundedness conditions are then presented in Subsection 5.3.3, leading
to design conditions in Subsection 5.3.4, including a convex special case demonstrated in
the end.

5.3.1 Practical Regulation Error System

A change of state-space coordinates z ∈ Rnz (nz = nx + nm) is again considered as

z ,

[

zx
zm

]

,

[

x− π̃(w)
ξm − σ̃m(w)

]

, (319)

which will be subsequently referred to as the practical regulation error states. Unlike the
previous chapters, the steady-state approximations π̃(w) and σ̃m(w) do not represent exact
solutions to the regulator equations and are now associated with the relaxed conditions
(311) and (312).

By performing the time-derivative of z in (319) and by considering the derivative of
π̃(w) and σ̃m(w) along the exosystem trajectories as in (311) and (312), one should arrive
at the following equations:







ż = fz(z, w, v̂) + ∆fz(w)
e = hz(z, w) + ∆hz

(w)
ε = δz(z, w) + ∆δz(w)

. (320)

Functions fz : Rnz×Rnw×Rnv → Rnz , hz : Rnz×Rnw → Rne and δz : Rnz×Rnw → Rnε

are constructed exactly as shown before in (245), where the original mappings π(w) and
σm(w) are simply substituted by the approximate ones π̃(w) and σ̃m(w). The auxiliary
definition v̂ ∈ Rnv is the same as in (243), which denotes the effective plant and internal
model stabilizing inputs. In turn, the new system components ∆fz : Rnw → R

nz , ∆hz
:

Rnw → Rne and ∆δz : R
nw → Rnε are constructed from the regulator equations residuals

as:

∆fz(w) =

[

∆f(w)
∆φ(w)

]

, ∆hz
(w) = ∆h(w) , ∆δz(w) = ∆δ(w) . (321)

These terms represent non-vanishing dynamic components, a consequence for consid-
ering the coordinate change with an inexact solution to the regulator equations. Even
though it still verifies that fz(0, w, 0) = 0, hz(0, w) = 0 and δz(0, w) = 0 ∀w ∈ W , in
this case if ∆fz(w) 6= 0, then the origin z = 0 cannot be characterized as an equilibrium
point of the system (320) ∀w ∈ W , unlike the exact regulation error system defined in
(244). Similarly, if ∆hz

(w) 6= 0 and ∆δz(w) 6= 0, then the output error hz(z, w) and
the auxiliary function δz(z, w) are not zero in the origin point z = 0. Nevertheless, it is
evident that as the regulator equations residuals approach zero, the practical regulation



97

error representation (320) approaches the ideal form (244), where z = 0 is an exact equi-
librium point ∀w ∈ W . The magnitude of ∆fz(w), ∆hz

(w) and ∆δz(w) will thus have a
direct influence in the system ultimate bound estimates, which will be developed relative
to coordinates introduced in (319).

In the present context, the stabilizing stage equations are the same as used previously,
i.e. (246). Furthermore, the unconstrained control signal µ is still expressed in the same
manner as in (244), except for the use of mapping c̃(w):

µ = θz(z, w) + c̃(w) + vu . (322)

Other previous definitions such as (248) and (249) still remain the same.

5.3.2 Differential-Algebraic Representation

In order to deal with the dynamic representation (320) for design purposes, the system
functions are considered to be representable in a DAR as mentioned in Assumption 4.13

and as stated in the following assumption with respect to the new residual terms.

Assumption 5.1. Nonlinear functions ∆fz(w), ∆δz(w) and ∆hz
(w) of the system (320)

can be represented as

∆fz(w) = Ã(w)w + Φ̃(w) ϕ̃(w)

∆δz(w) = C̃ w + Γ̃ ϕ̃(w)

∆hz
(w) = C̃ew + Γ̃e ϕ̃(w)

(323)

with a rational nonlinear function ϕ̃ : W+ → Rnϕ̃ satisfying

0 = Ψ̃(w)w + Ω̃(w) ϕ̃(w) (324)

such that:

(i) Set W+ satisfies W ⊆ W+ ⊆ Rnw .

(ii) Matrices Ã : W+ → Rnz×nw , Φ̃ : W+ → Rnz×nϕ̃ , Ψ̃ : W+ → Rnϕ̃×nw and
Ω̃ : W+ → Rnϕ̃×nϕ̃ are affine with respect to w.

(iii) Matrices C̃ ∈ Rnε×nw , Γ̃ ∈ Rnε×nϕ̃ , C̃e ∈ Rne×nw and Γ̃e ∈ Rne×nϕ̃ are constant.

(iv) Matrix Ω̃(w) is non-singular ∀w ∈ W+.

Similarly to earlier cases, there exists a proper DAR according to Assumption 5.1
whenever ∆fz(w), ∆hz

(w) and ∆δz(w) are regular rational functions ∀w ∈ W+. In
turn, this property is naturally verified whenever the original system functions and the
candidate steady-state mappings are also rational. Further details on how to setup a proper
DAR have been thoroughly explained in Subsection 3.3.2.

Regions Z+ and W+ are again considered as (145), i.e. sets defined by a convex hull
of vertices Vz and Vw. Set Z+ is also considered in the form (146) for some known vectors
p1, p2, . . . , pnk

∈ Rnz . At this point, it is important to define an additional ellipsoidal set

WE =
{

w ∈ R
nw : wTP̃ w ≤ 1

}

, W ⊆ WE ⊆ W+ , (325)

3In here, it is being additionally assumed that hz(z, w) admits a DAR in the same form of δz(z, w) in
Assumption 4.1, with matrices denoted as Ce ∈ Rne×nz and Γe ∈ Rne×nϕ .
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for a symmetric matrix P̃ ∈ Rnw . This definition will later allow the use of Lemma A.5
in order to deal with the w-dependence in the residual regulation error dynamics.

Provided the established DAR framework, the practical regulation error system equa-
tions can be written as






























ż = A(z, w) z + Φ(z, w)ϕ(z, w) +BJ(z, w)ψ(µ) + Ã(w)w + Φ̃(w) ϕ̃(w) + B v
µ = Q(z, w) z +Υ(z, w)ϕ(z, w) + c̃(w) +D v

ε = C z + Γ ϕ(z, w) + C̃ w + Γ̃ ϕ̃(w)

e = Ce z + Γe ϕ(z, w) + C̃ew + Γ̃e ϕ̃(w)
0 = Ψ(z, w) z + Ω(z, w)ϕ(z, w)

0 = Ψ̃(w)w + Ω̃(w) ϕ̃(w)

.

(326)
By then considering an augmented system state vector in the form of (138) and by joining
the stabilizing controller equations, one is able to express the closed-loop system dynam-
ics as:






















ż = A(z, w) z+Φ(z, w)ϕ(z, w) + J(z, w)ψ(µ) + Ã(z, w)w + Φ̃(z, w) ϕ̃(w)
µ = Q(z, w) z+Υ(z, w)ϕ(z, w) + c̃(w)

e = C z+ Γ ϕ(z, w) + C̃ w + Γ̃ ϕ̃(w)
0 = Ψ(z, w) z+Ω(z, w)ϕ(z, w)

0 = Ψ̃(w)w + Ω̃(w) ϕ̃(w)

.

(327)
The matrices in here that also appear in (253) are defined exactly as in (149) and (254),
whereas the new augmented matrices Ã : Z+ × W+ → Rna×nw , Φ̃ : Z+ × W+ →
Rna×nϕ̃ , Ψ̃ : Z+ × W+ → Rnϕ̃×nw and Ω̃ : Z+ × W+ → Rnϕ̃×nϕ̃ , C ∈ Rne×na ,
Γ ∈ Rne×nϕ , C̃ ∈ Rne×nw and Γ̃ ∈ Rne×nϕ̃ are denoting:

Ã(z, w) =

[

Ã(w) +BK(z, w)C̃

G(z, w)C̃

]

, Φ̃(z, w) =

[

Φ̃(w) +BK(z, w)Γ̃

G(z, w)Γ̃

]

,

Ψ̃(w) = Ψ̃(w) , Ω̃(w) = Ω̃(w) , C =
[

Ce 0
]

, Γ = Γe , C̃ = C̃e , Γ̃ = Γ̃e .
(328)

Similarly to previous chapters, it is considered an a priori given controller scheduling
function λ(y) such that (137) is linear with respect to (z, w), ensuring that all matrix
functions in (327) are affine with respect to (z, w).

5.3.3 Analysis Conditions

Towards developing stability, performance and boundedness analysis conditions for
the practical output regulation problem in hand, the following complementary definition
is introduced with respect to the system representation (327).

Definition 5.2. For every initial condition in D ⊆ Rna ×W , the practical regulation error
system (327) is said to be4:

• ultimately bounded in B∞ ⊂ D if
(

z(0), w(0)
)

∈ D ⇒ lim
t→∞

z(t) ∈ Z∞ , B∞ , Z∞ ×W ; (329)

• ultimately bounded in Bτ ⊂ D within a finite time τ > 0 if
(

z(0), w(0)
)

∈ D ⇒ z(t) ∈ Zτ ∀ t ≥ τ , Bτ , Zτ ×W . (330)
4In this definition, it is implicit that w(t) ∈ W ∀ w(0) ∈ W , according to Assumption 2.2.
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Given this new definition, the logical formulation of stability, performance and bound-
edness relations are divided into two categories. Primarily, conditions for input-to-state
boundedness (i.e. from w to z) are derived, where an ultimate bounding set B∞ is char-
acterized. Secondly, conditions for state-to-output boundedness (i.e. from z to e) are
obtained, where an ultimate error bound γ∞ is established according to Definition 5.1.
Thus, the basic overall procedure is summarized as follows:

(

z(0), w(0)
)

∈ D ⇒ lim
t→∞

z(t) ∈ Z∞ ⇒ lim
t→∞

||e(t)|| ≤ γ∞ . (331)

The conditions to be presented are in fact more general then (331) and also characterize
ultimate bounds within some finite time τ > 0, i.e.

(

z(0), w(0)
)

∈ D ⇒ z(t) ∈ Zτ ∀ t ≥ τ ⇒ ||e(t)|| ≤ γτ ∀ t ≥ τ . (332)

Even further, an exponential transitory performance condition is addressed according to
Definition 5.3 presented in the sequence. This criterion is based on (P1) from Defini-
tion 3.1, now generalized for the current practical context.

Definition 5.3. Practical Exponential Performance (P3): the trajectories z(t) exponen-
tially approach Z∞ with decay rate faster than α > 0, i.e. ∃ ǫ > 0 such that ||z(t)||2 ≤
ǫ e−2αt + ǫ∞ ∀ t ≥ 0 for every initial condition (z(0), w(0)) ∈ D, where ǫ∞ ≥ 0 is the
smallest scalar such that ||z||2 ≤ ǫ∞ ∀ z ∈ Z∞.

Given all these preliminary considerations, Theorem 5.1 presents the main result of
the chapter.

Theorem 5.1. Suppose there exist a symmetric matrix P ∈ Rna×na, a diagonal matrix

T ∈ Rnu×nu, matrices L ∈ Rnϕ×nϕ , L̃ ∈ Rnϕ̃×nϕ̃ , R0, . . . ,Rm ∈ Rnu×nz , Ξ0, . . . ,Ξm ∈
R

nu×ns , Π0, . . . ,Πm ∈ R
nu×nϕ and scalars α̃, η∞ ∈ R such that (153), (154), (156),

(273), (274),
α η∞ > α̃ > 0 , 1 > η∞ > 0 , (333)

H



































PA(z, w) + αP PΦ(z, w) PJ(z, w) P Ã(z, w) P Φ̃(z, w)
LΨ (z, w) LΩ(z, w) 0 0 0
TR(z, w) TΠ (z, w) −T 0 0

0 0 0 −α̃P̃ 0

0 0 0 L̃Ψ̃(w) L̃Ω̃(w)



































≺ 0

∀ (z, w) ∈ Vz × Vw ,
(334)

where R(z, w) ,
[

R(z, w) Ξ (z, w)
]

, Π (z, w) , Π (z, w) and (276) for any linear

function ν : Z+ ×W+ → Rm, m ∈ N. Then the system (327) is ultimately bounded in

B∞ =
{

(z, w) ∈ Rna ×W : zTP z ≤ η∞
}

,

Bτ =
{

(z, w) ∈ Rna ×W : zTP z ≤ ητ
}

, ητ , (1− η∞) e−2ατ + η∞ , τ > 0 ,
(335)

and satisfies (P2) and (P3) for every initial condition in (157). Moreover, suppose for

some τ > 0 there exist matrices U ∈ Rnϕ×nϕ , Ũ ∈ Rnϕ̃×nϕ̃ and scalars β, β̃, γ2τ ∈ R such

that

β > 0 , 1− β ητ > β̃ > 0 , γ2τ > 0 , (336)



100













γ2τ C Γ C̃ Γ̃

⋆ βP −Ψ
T(z, w)UT 0 0

⋆ ⋆ −H{UΩ(z, w)} 0 0

⋆ ⋆ ⋆ β̃P̃ −Ψ̃
T

(w)ŨT

⋆ ⋆ ⋆ ⋆ −H{ŨΩ̃(w)}













≻ 0 ∀ (z, w) ∈ Vz × Vw . (337)

Then the closed-loop system (113), (114) with controller (232), (233), (241) also achieves

practical output regulation with ultimate error bound γτ for every initial condition in

(157).

Proof. Consider the usual quadratic Lyapunov function (158), for a symmetric and positive-
definite matrix P , noting that V (z) > 0 ∀ z ∈ Rna, z 6= 0. The derivative of (158) along
the trajectories of the system (327) is given by V̇ (z, w) = H{zT

Θ1(z, w) ζ(z, w)}, where
Θ1(z, w) and ζ(z, w) are defined as

Θ1(z, w) ,
[

PA(z, w) PΦ(z, w) PJ(z, w) P Ã(z, w) P Φ̃(z, w)
]

, (338)

ζ(z, w) ,
[

z
T ϕT(z, w) ψT(µ) wT ϕ̃T(w)

]

T

, (339)

with µ = Q(z, w) z+Υ(z, w)ϕ(z, w)+c̃(w). From notation (339), the algebraic equality
constraints in (327) can be expressed as Θ2(z, w) ζ(z, w) = 0 and Θ3(w) ζ(z, w) = 0,
where

Θ2(z, w) ,
[

Ψ(z, w) Ω(z, w) 0 0 0
]

, Θ3(w) ,
[

0 0 0 Ψ̃(w) Ω̃(w)
]

.

(340)
Consider also Lemma 4.2 with functions θ(z, w) and ϑ(z, w) expanded as (279), where
matrices R(z, w) ,

[

R(z, w) Ξ (z, w)
]

and Π (z, w) , Π (z, w) are constructed by
(276) for any linear function ν : Z+ ×W+ → R

m, m ∈ N. According to Lemma 4.2, if
(z, w) ∈ S then (257) is satisfied, which is identical to H{ψT(µ)Θ4(z, w) ζ(z, w)} ≥ 0
where

Θ4(z, w) ,
[

TR(z, w) TΠ (z, w) −T 0 0
]

, (341)

for some diagonal and positive-definite matrix T . Furthermore, consider the candidate
domain of attraction estimate D = {(z, w) ∈ Rna × W : V (z) ≤ 1} and suppose that
D ⊂ Z

+×W+ and D ⊂ S, conditions which are satisfied if (154) and (274), as discussed
in the proof of Theorem 4.1. Now suppose there exist matrices L ∈ R

nϕ×nϕ , L̃ ∈ R
nϕ̃×nϕ̃

and scalars α > 0, α̃ > 0 and 1 > η∞ > 0 such that the following inequality holds:

V̇ (z, w) + 2α (V (z)− η∞) + 2α̃ (1− wTP̃ w) + . . .

. . . + H
{

ϕT(z, w)LΘ2(z, w) ζ(z, w) + ϕ̃T(w) L̃Θ3(w) ζ(z, w)
}

+ . . .
. . . + H

{

ψT(µ)(z, w)Θ4(z, w) ζ(z, w)
}

< 0 ∀ (z, w) ∈ Z
+ ×W+ , z 6= 0 .

(342)

Since Θ2(z, w) ζ(z, w) = 0, Θ3(w) ζ(z, w) = 0, ψT(µ)(z, w)Θ4(z, w) ζ(z, w) ≥ 0 and
(1− wTP̃ w) ≥ 0 ∀ (z, w) ∈ D, it follows that (342) implies:

V̇ (z, w) < −2α (V (z)− η∞) ∀ (z, w) ∈ D , z 6= 0 , (343)

V̇ (z, w) < 0 ∀ (z, w) ∈ (D − B∞) ,
{

(z, w) ∈ R
na ×W : η∞ ≤ V (z) ≤ 1

}

. (344)

From this development, it is noticeable that

(z(0)w(0)) ∈ D ⇒ lim
t→∞

(z(t), w(t)) ∈ B∞ ,
{

(z, w) ∈ R
na ×W : V (z) ≤ η∞

}

,

(345)
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and thus, the system (327) is ultimately bounded in B∞ for every initial condition in D.
Moreover, from the previous condition (343), it follows that

(V (z(t))− η∞) ≤ (V (z(0))− η∞) e−2αt ≤ (1− η∞) e−2αt ∀ (z(0), w(0)) ∈ D ,

V (z(t)) ≤ ηt ∀ (z(0), w(0)) ∈ D , ηt , (1− η∞) e−2αt + η∞ , t ≥ 0 ,

(z(0)w(0)) ∈ D ⇒ (z(t), w(t)) ∈ Bτ ,
{

(z, w) ∈ Rna ×W : V (z) ≤ ητ
}

∀ t ≥ τ ,

(346)
and therefore, the system (327) is also ultimately bounded in Bτ within finite time τ > 0
for every initial condition in D. In addition, since λmin(P ) ||z||2 ≤ V (z) = z

TP z, where
λmin(P ) ∈ R is the smallest eigenvalue of P , the following relation is also true:

||z(t)||2 ≤ λmin(P )
−1 (1− η∞) e−2αt + λmin(P )

−1 η∞ ∀ (z(0), w(0)) ∈ D . (347)

Thus according to Definition 5.3, the practical exponential performance criteria (P3) is
satisfied. Finally, by developing (342) with Θ1(z, w) , . . . , Θ4(z, w) and factorizing out
[1 ζT(z, w)]T, one should obtain the conditions in (333) and (334) .

Additionally, suppose for a given ητ there exist matrices U ∈ Rnϕ×nϕ , Ũ ∈ Rnϕ̃×nϕ̃

and scalars β > 0, β̃ > 0 and γτ > 0 such that:

γ−2
τ ||e||2 + β (ητ − z

TP z) + β̃ (1− wTP̃ w) +H
{

ϕT(z, w)UΘ2(z, w) ζ(z, w)
}

+ . . .

. . . + H
{

ϕ̃T(w) ŨΘ3(w) ζ(z, w)
}

≤ 1 ∀ (z, w) ∈ Z
+ ×W+ .

(348)
Since Θ2(z, w) ζ(z, w) = 0, Θ3(w) ζ(z, w) = 0, (1−wTP̃ w) ≥ 0 and (ητ − z

TP z) ≥ 0
∀ (z, w) ∈ Bτ , it verifies from (348) that

||e|| ≤ γτ ∀ (z, w) ∈ Bτ . (349)

So, according to Definition 5.1, the closed-loop system (113), (114), (232), (233),
(241) achieves practical output regulation within finite time τ and with ultimate error
bound γτ for every initial condition in (157). Finally, by re-arranging the expression
(348) and factorizing [1 z

T ϕT(z, w) wT ϕ̃T(w)], one obtains the conditions in (336) and:









βP −Ψ
T(z, w)UT 0 0

⋆ −H{UΩ(z, w)} 0 0

⋆ ⋆ β̃P̃ −Ψ̃
T

(w)ŨT

⋆ ⋆ ⋆ −H{ŨΩ̃(w)}









−Θ
T

5 γ
−2
τ Θ5 ≻ 0 ∀ (z, w) ∈ Vz × Vw ,

(350)
where Θ5 = [C Γ C̃ Γ̃ ]. At last, relation (337) is obtained by applying Schur’s
Complement (Lemma A.2) into (350).

Based on Theorem 5.1, it is possible to analyze if the closed-loop achieves practical
output regulation, to determine a set of admissible initial conditions and also to deter-
mine ultimate bounds for the regulation error states and output error. In order to cast
such analysis problem in the form of a traditional SDP, one must consider a priori given
stabilizing and anti-windup parameters F0, . . . ,Wn, a diagonal matrix T and a decay-rate
performance target α > 0. Differently from the previous chapters, an ultimate bounding
set B∞ is being characterized in here, which is simply a scaled down version of domain
of attraction estimate D by the factor η∞ < 1. Thus, by minimizing the scalar η∞, the gap
between D and B∞ is increased, i.e. the volume of the region (D − B∞) is maximized.
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In order to achieve equivalence with the previous methodologies, the following SDP is
proposed:

min
P,L,L̃,α̃,η∞,R0,...,Πm

κ η∞ + (1− κ) tr(P ) s.t.

{

(153) , (154) , (156) , (273) , . . .
. . . , (274) , (333) , (334)

}

,
(351)

where the free scalar κ ∈ [0 , 1] establishes the priority between maximization of the
(D−B∞) gap and the pure maximization of D as previously considered. Given a solution
pair P and η∞ from (351), an additional SDP should also be performed a posteriori in
order to determine an estimate for the ultimate error bound γτ for a given τ > 0:

min
U,Ũ ,γ2

τ ,β,β̃
γ2τ s.t.

{

(336) , (337)
}

. (352)

5.3.4 Design Conditions

So as to deal with the design of stabilizing and anti-windup parameters, the usual
congruence transformations for output feedback synthesis can be applied into conditions
from Theorem 5.1. This additional development is detailed in the following theorem. As
considered in the previous chapters, the stabilizing controller order is henceforth enforced
as ns = nz.

Theorem 5.2. Suppose there exist symmetric matricesX, Y ∈ Rnz×nz , a diagonal matrix

T̂ ∈ Rnu×nu, matrices L ∈ Rnϕ×nϕ , L̃ ∈ Rnϕ̃×nϕ̃ , R̂0, . . . , R̂m ∈ Rnu×nz , Ξ̂0, . . . , Ξ̂m ∈
Rnu×nz , Π̂0, . . . , Π̂m ∈ Rnu×nϕ , F̂0, . . . , F̂n ∈ Rnz×nz , Ĝ0, . . . , Ĝn ∈ Rnz×nε , Ĥ0, . . . , Ĥn

∈ Rnv×nz , K̂0, . . . , K̂n ∈ Rnv×nε , Ê0, . . . , Ên ∈ Rnm×nu , Ŵ0, . . . , Ŵn ∈ Rnz×nu and

scalars α̃, η∞ ∈ R such that (168), (169), (171), (286), (287), (333),

H






































































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Y A(z, w)+

Ĝ(z, w)C +
αY
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Ĝ(z, w)Γ
Ŵ (z, w)

Y Ã(w)+

Ĝ(z, w)C̃

Y Φ̃(w)+

Ĝ(z, w)Γ̃

LΨ(z, w)X LΨ(z, w) LΩ(z, w) 0 0 0

R̂(z, w) Ξ̂ (z, w) Π̂ (z, w) −T̂ 0 0

0 0 0 0 −α̃P̃ 0

0 0 0 0 L̃Ψ̃(w) L̃Ω̃(w)
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≺ 0

∀ (z, w) ∈ Vz × Vw ,
(353)

where F̂ (z, w) , . . . , K̂(z, w) are defined as in (172), Ê(z, w) and Ŵ (z, w) are repre-

sented by (289) and matrices R̂(z, w), Ξ̂ (z, w) and Π̂ (z, w) are the same as in (290) for

any linear function ν : Z+ × W+ → Rm, m ∈ N. Then the system (327) is ultimately

bounded in (335) and satisfies (P2) and (P3) for every initial condition in (157) with P
given by (173), with stabilizing controller parameters Fi , . . . , Ki ∀ i ∈ {0, 1, . . . , n}
obtained by (174) and anti-windup parameters Ei and Wi ∀ i ∈ {0, 1, . . . , n} constructed

by (291), where the pair M,N ∈ Rnz×nz is a non-singular solution to (175). Moreover,

suppose for some τ > 0 there exist matrices U ∈ Rnϕ×nϕ , Ũ ∈ Rnϕ̃×nϕ̃ and scalars

β, β̃, γ2τ ∈ R such that (337). Then the closed-loop system (113), (114) with controller

(232), (233), (241) also achieves practical output regulation with ultimate error bound γτ
for every initial condition in (157).
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Proof. Suppose conditions from Theorem 5.1 hold for ns = nz and for P decomposed
as (176), where X, Y ∈ Rnz×nz are symmetric matrices and M,N ∈ Rnz×nz are generic
square matrices. Since P−1P = I , then condition (175) must be satisfied. Consider the
same blocks Z1, Z2 ∈ Rna×na shown in (177), where PZ1 = Z2. Applying the congru-
ence transformations Z1, diag{1, Z1}, diag{Z1, Z1}, T−1, diag{1, Z1, I} and
diag{Z1, I, T

−1, I, I} into (153), (154), (156), (273), (274) and (334) leads respectively
to (168), (169), (171), (286), (287) and (353) when considering the change of variables
(178), (292), T̂ = T−1, R̂(z, w) = R(z, w)X + Ξ (z, w)MT, Ξ̂ (z, w) = R(z, w) and
Π̂ (z, w) = Π (z, w). By inversion of (178) and (292), one obtains respectively (179) and
(293), which leads to (174) and (291). Also, matrix P can be reconstructed as (173) since
P = Z2 Z

−1
1 . Thus, conditions from Theorem 5.1 are then equivalent to Theorem 5.2

when considering a full order controller ns = nz.

Using the conditions of Theorem 5.2, the optimization problem (351), originally con-
structed for analyzes purposes, can be reframed as

min
X,Y, L, L̃, α̃, η∞, T̂ ,

R̂0, . . . , Π̂m, F̂0, . . . , Ŵn

κ η∞+(1−κ) tr(Y ) s.t.

{

(168) , (169) , (171) , (286) , . . .
. . . , (287) , (333) , (353)

}

,
(354)

where stabilizing and anti-windup parameters are here included as decision variables.
After the controller parameters have been synthesized by (354), one can evaluate (352) so
as to determine an ultimate error bound estimate γτ for a given τ .

It is noticeable that (354) contains the usual bilinearity involving variables L and
X , similar to what have been presented in the previous chapters. Although, whenever
Assumption 3.3 is true, it is again possible to substitute the original stabilizing stage
(241) with the modified one (295), so as to eliminate the before-mentioned bilinearity.
The adaptation of Theorem 5.2 for this convex special case is presented by the subsequent
corollary.

Corollary 5.1. Suppose there exist symmetric matrices X, Y ∈ Rnz×nz , a diagonal

matrix T̂ ∈ R
nu×nu, matrices L̂ ∈ R

nϕ×nϕ , L̃ ∈ R
nϕ̃×nϕ̃ , R̂0, . . . , R̂m ∈ R

nu×nz ,

Ξ̂0, . . . , Ξ̂m ∈ Rnu×nz , Π̂0, . . . , Π̂m ∈ Rnu×nϕ , F̂0, . . . , F̂n ∈ Rnz×nz , Ĝ0, . . . , Ĝn ∈
Rnz×nε , Ĥ0, . . . , Ĥn ∈ Rnv×nz , K̂0, . . . , K̂n ∈ Rnv×nε , Λ̂0, . . . , Λ̂n ∈ Rnz×nϕ , Θ̂0, . . . , Θ̂n

∈ Rnv×nϕ , Ê0, . . . , Ên ∈ Rnm×nu , Ŵ0, . . . , Ŵn ∈ Rnz×nu and scalars α̃, η∞ ∈ R such

that (168), (169), (171), (286), (297), (333),
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BĤ(z, w)+
αX

A(z, w)+

BK̂(z, w)C +
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Φ(z, w)L̂+

BΘ̂(z, w)

BDT

mÊ(z, w)−
BDTT̂

Ã(w)+

BK̂(z, w)C̃

Φ̃(w)+

BK̂(z, w)Γ̃

F̂ (z, w)+
αI

Y A(z, w)+

Ĝ(z, w)C +
αY

Λ̂(z, w) Ŵ (z, w)
Y Ã(w)+

Ĝ(z, w)C̃

Y Φ̃(w)+

Ĝ(z, w)Γ̃

Ψ(z, w)X Ψ(z, w) Ω(z, w)L̂ 0 0 0

R̂(z, w) Ξ̂ (z, w) Π̂ (z, w) −T̂ 0 0

0 0 0 0 −α̃P̃ 0

0 0 0 0 L̃Ψ̃(w) L̃Ω̃(w)
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∀ (z, w) ∈ Vz × Vw ,
(355)

where F̂ (z, w) , . . . , K̂(z, w) are defined as in (172), Θ̂(z, w) and Λ̂(z, w) are identical to

(187), Ê(z, w) and Ŵ (z, w) are represented by (289) and matrices R̂(z, w), Ξ̂ (z, w) and
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Π̂ (z, w) are the same as in (290) for any linear function ν : Z+ ×W+ → Rm, m ∈ N.

Then the system (327) is ultimately bounded in (335) and satisfies (P2) and (P3) for every

initial condition in (157) with P given by (173), with stabilizing controller parameters

Fi , . . . , Θi ∀ i ∈ {0, 1, . . . , n} obtained by (174) and (188) and anti-windup parameters

Ei and Wi ∀ i ∈ {0, 1, . . . , n} constructed by (291), where the pair M,N ∈ Rnz×nz is a

non-singular solution to (175). Moreover, suppose for some τ > 0 there exist matrices

U ∈ R
nϕ×nϕ , Ũ ∈ R

nϕ̃×nϕ̃ and scalars β, β̃, γ2τ ∈ R such that (337). Then the closed-

loop system (113), (114) with controller (232), (233), (295) also achieves practical output

regulation with ultimate error bound γτ for every initial condition in (157).

Proof. Consider the same proof presented for Theorem 5.2, except post- and pre-multiply
(274) and (334) respectively with diag{1, Z1, L

−T}, diag{Z1, L
−T, T−1, I, I} and their

transposes, which yield (297) and (355) when considering the change of variables (178),
(189), T̂ = T−1, L̂ = L−T, R̂(z, w) = R(z, w)X + Ξ (z, w)MT, Ξ̂ (z, w) = R(z, w) and
Π̂ (z, w) = Π (z, w)L−T. From straightforward inversion of the variable transformations
(178) and (189), one obtains respectively (174) and (188).

Considering the stabilizing stage (295) and the conditions from Corollary 5.1, the
previous optimization problem (354) is reformulated as

min
X,Y, L, L̃, α̃, η∞, T̂ ,

R̂0, . . . , Π̂m, F̂0, . . . , Ŵn

κ η∞+(1−κ) tr(Y ) s.t.

{

(168) , (169) , (171) , (286) , . . .
. . . , (297) , (333) , (355)

}

,
(356)

which is now subject to LMI constraints.

5.4 Numerical Example

This section is dedicated to illustrating the proposed practical output regulation method-
ology using a numerical example. The plant to be regulated is considered here as

{

ẋ1 = x2 + a1 u
ẋ2 = a3 w

2
1x2 + a3 w2(x1 − w1)

2 + a2 u
, y = e = x1 − w1 , (357)

where x ∈ R2 is the system state vector, u ∈ R is the control input, y ∈ R is the output
measurement, e ∈ R is the output error and a1, a2, a3 ∈ R are constant parameters.
The system is directly influenced by a harmonic exosystem described by (193), where
w ∈ R2 is the exosystem state and ω ∈ R is a constant parameter denoting the disturbance
frequency.

So as to motivate the use of a practical output regulation approach in this example, a
preliminary analytic inspection of the problem is performed. In comparison to the previ-
ous numerical examples showed in Chapters 3 and 4, the plant dynamics in (357) contains
a fundamental difference, which is the presence of a control input term in all the plant
states time-derivatives. If a1 6= 0, the system equations do not match the triangular form
presented by (76) and, consequently, the plant zero-error steady-state solution cannot be
recursively determined by (77).

By verifying the plant regulator equations, one is able to conclude that π1(w) = w1,
in order to satisfy the condition 0 = h(π(w), w) = π1(w)−w1. The remaining condition
π̇(w) = f(π(w), w, c(w)) then yields the following partial differential equations:







ωw2 = π2(w) + a1 c(w)

ω w2
∂π2(w)

∂w1
− ω w1

∂π2(w)

∂w2
= a3w

2
1 π2(w) + a2 c(w)

. (358)
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By setting π2(w) = ω w2 − a1 c(w) and plugging into the second equation in (358), it
results:

−a1ω w2
∂c(w)

∂w1
+ a1ω w1

∂c(w)

∂w2
= a3 ω w

2
1w2 + ω2w1 + (a2 − a3w

2
1) c(w) . (359)

Now suppose the solution c(w) for equation (359) is a polynomial function of degree
nc ∈ N. Note that a3 ω w2

1w2 + ω2w1 is of degree 3, that ∂c(w)/∂w1 and ∂c(w)/∂w2

are of degree nc − 1, and that (a2 − a3w
2
1) c(w) is of degree nc + 2. The left and right

side of equation (359) are thus respectively of degree nc and max{3, nc + 2}. Therefore
∀nc ∈ N, both sides of (359) have different degrees, and there is no polynomial solution
c(w) with finite degree. Consequently, the exact theoretical solution c(w) must be an
infinite order polynomial series. This observation represents a challenge not only for the
evaluation of c(w), but also for designing a proper internal model capable of rendering
this steady-state control signal, since and infinite order immersion would be required.
Moreover, these arguments motivate the use of a practical output regulation methodology,
where the steady-state mappings can be approximated and a reduced internal model stage
can be considered.

5.4.1 Approximate Solution of the Regulator Equations

In the following pages, the proposed methodology is demonstrated with three different
cases. In the first, no internal model stage is considered, providing a baseline for the com-
parative analysis. On the other hand, the second and third cases will contain an internal
model stage, respectively of second and fourth-order. In all configurations, the approxi-
mate solution to π1(w) will be fixed as the exact analytic solution previously discussed,
i.e.

π̃1(w) = w1 . (360)

Remaining mapping variables, such as π2(w) and c(w), and even the internal model
functions are to be numerically determined, following the procedures mentioned in Sec-
tion 5.2. Parametrized candidate solutions are initially set for each case, where q1, q2, . . . ,
qnq

∈ R denote free decision variables to be computed by numerical optimization.

• No internal model case:

π̃2(w) = q1w1 + q2w2 , c̃(w) = 0 . (361)

• Second-order internal model case:

π̃2(w) = q1 w1 + q2w2 , c̃(w) = q3 w1 + q4w2 ,

θm(ξm) = ξm1 , φm(ξm) =

[

ξm2

q5 ξm1 + q6 ξm2

]

, σ̃m(w) =

[

c̃(w)
˙̃c(w)

]

. (362)

• Fourth-order internal model case:

π̃2(w) = q1w1 + q2w2 + q3 w
3
1 + q4w

3
2 + q5w

2
1w2 + q6 w1w

2
2 ,

c̃(w) = q7w1 + q8 w2 + q9w
3
1 + q10 w

3
2 + q11w

2
1w2 + q12w1w

2
2 ,

θm(ξm) = ξm1 , φm(ξm) =













ξm2

ξm3

ξm4

q13 ξm1 + q14 ξm2 + . . .
. . .+ q15 ξm3 + q16 ξm4













, σ̃m(w) =













c̃(w)
˙̃c(w)

(2)

c̃ (w)
(3)

c̃ (w)













.

(363)
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The candidate solutions π̃2(w) and c̃(w) are being defined as generic polynomials with
unknown coefficients and different degrees, where in this case, even-degree terms were
skipped because the solutions c(w) and π2(w) have odd symmetry. In turn, the internal
model candidates are being constructed according to the traditional immersion structure
explained in Lemma 2.3, however now with a priori unknown coefficients. In each case,
the degree of c̃(w) is in accordance to the established internal model order.

For each scenario, it is also necessary to parametrize the residual functions ∆f (w),
∆h(w) and ∆φ(w) with respect to the relaxed regulator equations. To do so, additional
free decision variables q are being considered, as presented next.

• No internal model case:

∆f (w) =

[

q3w1 + q4 w2

q5w1 + q6w2 + q7w
3
1 + q8 w

2
1w2

]

(364)

• Second-order internal case:

∆f (w) =

[

q7w1 + q8 w2

q9w1 + q10 w2 + q11 w
3
1 + q12w

2
1w2

]

, ∆φ(w) =

[

0
q13w1 + q14w2

]

.

(365)

• Fourth-order internal model case:

∆f(w) =





q17 w1 + q18 w2 + q19 w
3
1 + q20w

3
2 + q21 w

2
1w2 + q22 w1w

2
2

q23w1 + q24w2 + q25w
3
1 + q26 w

3
2 + q27w

2
1w2 + . . .

. . .+ q28 w1w
2
2 + q29 w

5
1 + q30w

4
1w2 + q31 w

3
1w

2
2 + q32w

2
1w

3
2



 ,

∆φ(w) =









0
0
0

q33 w1 + q34w2 + q35w
3
1 + q36 w

3
2 + q37 w

2
1w2 + q38w1w

2
2









.

(366)

In every case it follows that ∆h(w) = 0 since π̃1(w) = w1. One should also note that, in
all cases, ∆f2(w) contains polynomial terms of fifth-degree, which are originated by the
term w2

1 π̃2(w) in the regulator equations. Moreover, the output measurement vanishing
function is defined for all cases as the identity ε = δ(y) = y, which readily satisfies the
last regulator equation (313) with ∆δ(w) = 0, since d̃(w) = 0.

Regarding the harmonic exosystem (193), it verifies that w(0) ∈ W ⇒ w(t) ∈ W
∀ t > 0 for any circular region of the form

W =
{

w ∈ R
2 : ||w|| ≤ w

}

, (367)

where w > 0 represents the maximum admissible exogenous state amplitude. In order
to numerically solve the plant zero-error steady-state and synthesize the internal model
functions, the target domain W̃ is set as an uniform grid on top of the disk W , according
to W̃ = W̃1 × W̃2, where W̃1 and W̃2 denote

W̃1 = W̃2 =
{

− w , −0.75w , −0.5w , −0.25w , 0 , 0.25w , 0.5w , 0.75w , w
}

.

(368)
Considering the system parameters a1 = a2 = 1, a3 = −1, ω = 1 and w = 1, the
optimization problems (315) and (316) were cast in the form of a nonlinear programming
and evaluated in the software MATLAB using an interior-point solver. For each case, the
obtained solutions q1,q2,. . .,qnq

are shown next.
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• No internal model case: q1 = 3.3894 · 10−3, q2 = 9.8596 · 10−1, q3 = 3.3894 · 10−3,
q4 = −1.4038 ·10−2, q5 = 9.8596 ·10−1, q6 = −3.3894 ·10−3, q7 = −3.3894 ·10−3

and q8 = −9.8596 · 10−1.

• Second-order internal model case: q1 = 2.5754 · 10−1, q2 = 4.6403 · 10−1, q3 =
5.3550 · 10−1 , q4 = −2.5742 · 10−1, q5 = −1, q6 = 0, q7 = 1.2301 · 10−4,
q8 = −4.5936 ·10−4, q9 = 2.0661 ·10−1, q10 = 2.7795 ·10−1, q11 = −2.5754 ·10−1,
q12 = −4.6403 · 10−1, q13 = 0 and q14 = 0.

• Fourth-order internal model case: q1 = 4.6767 · 10−1, q2 = 5.3452 · 10−1, q3 =
−1.9442 · 10−1, q4 = 5.8339 · 10−3, q5 = 1.5364 · 10−2, q6 = −7.1938 · 10−3,
q7 = −4.6771 · 10−1, q8 = 4.6546 · 10−1, q9 = 1.9448 · 10−1, q10 = −5.8233 · 10−3,
q11 = −1.5354 · 10−2, q12 = 7.2010 · 10−3, q13 = −9, q14 = 0, q15 = −10,
q16 = 0, q17 = −4.1732 · 10−5, q18 = −1.4281 · 10−5, q19 = 5.0466 · 10−5,
q20 = 1.06042 · 10−5, q21 = 1.0558 · 10−5, q22 = 7.2101 · 10−6, q23 = 6.6805 · 10−2,
q24 = −2.2165·10−3, q25 = −2.5783·10−1, q26 = 1.3704·10−3, q27 = 1.9023·10−2,
q28 = −6.0264 ·10−3, q29 = 1.9442 ·10−1, q30 = 1.5364 ·10−2, q31 = 7.1938 ·10−3,
q32 = 5.8339 · 10−3, q33 = 0, q34 = 0, q35 = 0, q36 = 0, q37 = 0 and q38 = 0.

For each configuration, the solution accuracy can be analyzed by the summation of
||∆fz(w)||2 for all points in W̃ , where ∆fz(w) was defined in (321). The Table 1 com-
pares this computation for each case. Complementary, Figure 25 depicts the dominant
components ∆f2(w) using a tridimensional surface plot over the w-domain. From Ta-
ble 1 and Figure 25, it is evident that the regulator equations residuals are significantly
diminished as the parametrization complexity is increased.

Table 1: Accuracy measure of the regulator equations approximate solutions for different
internal model orders. Lower values indicate a better approximation. Source: the author.

Internal model order Zero Second Fourth
∑

w∈W̃

||∆fz(w)||2 1.2586 · 101 6.5552 · 10−1 6.9572 · 10−3

5.4.2 Stabilizing Stage Design

The initial step in order to design the stabilizing stage is to represent the system equa-
tions in the practical regulation error form (320) using coordinate change (319). For each
respective setup case, function fz(z, w, v̂) is according to:

• No internal model case:

fz(z, w, v̂) =

[

z2 + a1 v̂1
a3 (w

2
1z2 + w2z

2
1) + a2 v̂1

]

. (369)
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Figure 25: Graphical representation of the residual function ∆f2(w) respectively for the
zero, second and fourth-order internal model case. Source: the author.
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• Second-order internal model case:

fz(z, w, v̂) =









z2 + a1 (z3 + v̂1)
a3 (w

2
1z2 + w2z

2
1) + a4w2z

2
1 + a2 (z3 + v̂1)

z4 + v̂2
q5 z3 + q6 z4 + v̂3









. (370)

• Fourth-order internal model case:

fz(z, w, v̂) =

















z2 + a1 (z3 + v̂1)
a3 (w

2
1z2 + w2z

2
1) + a2 (z3 + v̂1)

z4 + v̂2
z5 + v̂3
z6 + v̂4

q13 z3 + q14 z4 + q15 z5 + q16 z6 + v̂5

















. (371)

Moreover, all cases have in common hz(z, w) = δz(z, w) = z1, λ(y) = 0 and λ(z, w) =
0. Also, the last two scenarios are associated with θz(z, w) = z3, whereas θz(z, w) = 0 in
the first one.

The second step is to choose an appropriate differential-algebraic representation for
the functions fz(z, w, v̂), hz(z, w) and δz(z, w), as detailed in Subsection 5.3.2. For this
purpose, it is suffcient to consider, in all configurations, the following vector of rational
nonlinearities:

ϕ(z, w) =
[

w1z2 w2z1
]

T

. (372)

Given this choice, the system matrices, as in Assumption 4.1, may be specified as follows.

• No internal model case:

A =

[

0 1
0 0

]

, Φ(z, w) = a3

[

0 0
w1 z1

]

, B =

[

a1
a2

]

,

C =
[

1 0
]

, Γ =
[

0 0
]

,

Q =
[

0 0
]

, Υ =
[

0 0
]

,

Ψ(w) = −
[

0 w1

w2 0

]

, Ω =

[

1 0
0 1

]

,

(373)

• Second-order internal model case:

A =









0 1 a1 0
0 0 a2 0
0 0 0 1
0 0 q5 q6









, Φ(z, w) = a3









0 0
w1 z1
0 0
0 0









, B =









a1 0 0
a2 0 0
0 1 0
0 0 1









,

C =
[

1 0 0 0
]

, Γ =
[

0 0
]

,

Q =
[

0 0 1 0
]

, Υ =
[

0 0
]

,

Ψ(w) = −
[

0 w1 0 0
w2 0 0 0

]

, Ω =

[

1 0
0 1

]

,

(374)
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• Fourth-order internal model case:

A =

















0 1 a1 0 0 0
0 0 a2 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 q13 q14 q15 q16

















, Φ(z, w) = a3

















0 0
w1 z1
0 0
0 0
0 0
0 0

















, B =

















a1 0 0 0 0
a2 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

















,

C =
[

1 0 0 0 0 0
]

, Γ =
[

0 0
]

,

Q =
[

0 0 1 0 0 0
]

, Υ =
[

0 0
]

,

Ψ(w) = −
[

0 w1 0 0 0 0
w2 0 0 0 0 0

]

, Ω =

[

1 0
0 1

]

,

(375)

In the practical output regulation problem being addressed, is it furthermore required
to choose an appropriate differential-algebraic representation for the residual terms
∆fz(w), ∆hz

(w) and ∆hz
(w) according to Assumption 5.1. To do so, one may consider

the following complementary vector of rational nonlinearities ϕ̃(w).

• No internal model and second-order internal model cases:

ϕ̃(w) =
[

w1w2 w2
1

]

T

. (376)

• Fourth-order internal model case:

ϕ̃(w) =
[

w1w2 w2
1 w2

2 w2
1w

2
2 w3

1w2 w4
1 w2

1w2 w3
1

]

T

. (377)

The additional system matrices, as in Assumption 5.1, may be specified in the following
manner.

• No internal model case:

Ã =

[

q3 q4
q5 q6

]

, Φ̃(w) =

[

0 0
q8w1 q7w1

]

,

C̃ =
[

0 0
]

, Γ̃ =
[

0 0
]

,

Q̃ =
[

0 0
]

, Υ̃ =
[

0 0
]

,

Ψ̃(w) = −
[

0 w1

w2 0

]

, Ω̃ =

[

1 0
0 1

]

,

(378)

• Second-order internal model case:

Ã =









q7 q8
q9 q10
0 0
q13 q14









, Φ̃(w) =









0 0
q12w1 q11w1

0 0
0 0









,

C̃ =
[

0 0
]

, Γ̃ =
[

0 0
]

,

Q̃ =
[

q3 q4
]

, Υ̃ =
[

0 0
]

,

Ψ̃(w) = −
[

0 w1

w2 0

]

, Ω̃ =

[

1 0
0 1

]

,

(379)
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• Fourth-order internal model case:

Ã =























q17 q18

q23 q24

0 0
0 0
0 0

q33 q34























, Φ̃(w) =























q21 w1+
q22 w2

q35 w1 q36 w2 0 0 0 0 0

q27 w1+
q28 w2

q25 w1 q26 w2
q31 w1+
q32 w2

q30 w1 q29 w1 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

q37 w1+
q38 w2

q35 w1 q36 w2 0 0 0 0 0























,

C̃ =
[

0 0
]

, Γ̃ =
[

0 0 0 0 0 0 0 0
]

,

Q̃ =
[

q7 q8
]

, Υ̃(w) =
[

q11 w1+
q12 w2

q9 w1 q10 w2 0 0 0 0 0
]

,

Ψ̃(w) = −

























0 w1

w2 0
0 w2

0 0
0 0
0 0
0 0
0 0

























, Ω̃(w) =

























1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 −w2 0
0 0 0 0 1 0 −w1 0
0 0 0 0 0 1 0 −w1

−w1 0 0 0 0 0 1 0
0 −w1 0 0 0 0 0 1

























,

(380)

In all scenarios, it also follows that Ce = C, C̃e = C̃, Γe = Γ and Γ̃e = Γ̃ .
Considering the exosystem invariant domain W declared in (367), the bounding ellip-

soid WE ⊇ W in the form of (325) may be set with P̃ = w −2 I . Moreover, the bounding
convex set W+ ⊇ WE may be specified as W+ = Co{Vw1} × Co{Vw2} for the set of
vertices Vw1 = Vw2 = {−w , w }. On the other hand, the convex region Z+ may be
defined by Z+ = Co{Vz1} ×Rnz , where Vz1 = {−e , e } , with e denoting the maximum
admissible value of |z1(t)| = |e(t)| ∀ t ≥ 0.

The parameters a1, a2, a3, ω and w are the same as previously considered for the
numerical solution of the regulator equations. In turn, the design specifications are being
considered here as e = 3, α = 0.4 and r = 40, which are identical for all cases in order to
provide a fair comparative analysis. Also, in this initial comparison, no control input limit
is established. Given these numerical setup, the proposed synthesizing optimization (354)
was evaluated for all cases, where the objective selector was set as κ = 1 so as to fully
prioritize the maximization of the region (D − B∞). The obtained stabilizing controller
parameters are presented next.

• No internal model case:

F =

[

−1.1986 0.0532
−0.0054 −35.808

]

, G =

[

39.180
0.0031

]

,

H = [ −39.180 −0.1506] , K = −46.690 .

(381)

• Second-order internal model case:

F =







−4.8119 28.545 −0.1580 −0.0006
−0.0350 −4.6286 0.0003 −0.0003
−0.0000 −0.0001 −0.7016 0.0483
−0.0000 0.0003 −0.2453 −35.835






, G =







62.975
−0.1045
−1596.9
1.7793






,

H =

[

−11.914 −0.2665 0.0008 0.0001
−57.332 −6.4064 −2.1336 −0.0036
−0.1182 −1598.2 0.8457 0.0122

]

, K =

[

−47.125
−842.99
−1891.6

]

.

(382)
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• Fourth-order internal model case:

F =













−10.167 0.1241 −1.9474 −0.1083 8.2752 −0.0069
0.0001 −10.169 0.0405 0.2609 −0.0775 −0.0127

−0.0002 0.0051 −10.528 −0.0511 0.8353 0.0017
−0.0000 0.0068 0.0007 −10.776 −0.2136 0.0337
0.0005 0.0167 0.0582 −0.5630 −0.7580 0.0170
0.0000 0.0012 0.0019 −0.0764 0.0693 −35.817













, G =













789.59
−5.2093
76.666

−22.740
898.32
3.9626













,

H =









−0.7302 −0.0161 0.0352 0.0052 −0.0040 0.0004
−7.4245 −19.964 6.1958 1.9575 5.9325 0.0127
−0.0020 −200.09 144.06 31.905 −13.803 0.1170
−0.0142 21.944 709.66 −25.955 −61.279 −0.0489
6.5977 −27.291 −623.50 −914.87 29.716 −1.0878









, K =









−47.941
−1056.6
−4434.9
−1346.1
23884









.

(383)

For each case with zero, second, and fourth-order internal model, the lowest achieved
objective η∞ was respectively 4.9610 · 10−6, 4.5203 · 10−7 and 1.1610 · 10−8. The sub-
sequent Figures 26 and 27 depict the resulting ultimate bounding set B∞ and the set of
admissible initial conditions D, where both of them are projected into the (z1, z2)-plane,
i.e. the zx-plane. While in all cases the domain of attraction D has a similar volume, a
significant reduction is observed in B∞ as the internal model order increases. Comple-
mentary, Table 2 shows a series of finite time bounds ητ for τ ∈ {5, 15, 20, 25, 30, 35},
in seconds, calculated as in (335). The optimization problem (352) was also evaluated a

posteriori so as to determine an ultimate bound γ∞ for the output error norm ||e||, which
yielded 6.6820 · 10−3, 2.0170 · 10−3 and 3.2328 · 10−4 for zero, second and fourth-order
internal models. Since in here z1 is equal to e, the value of γ∞ denotes extreme points
inside B∞ with respect to the z1 axis, as may be seen in Figure 26. The optimization prob-
lem (352) was also checked for finite time periods from Table 2, yielding the numerical
results presented in the sequence by Table 3.

In what follows, the closed-loop numerical simulation is analyzed and compared for
each designed controller. The considered initial conditions were x(0) = [−2 − 100]T,
ξ(0) = 0 and w(0) = [0 1]T, for which practical output regulation is theoretically ensured
in all cases with ultimate error bounds as in Table 3. Figure 28 primarily shows transient
plots of the output error signal e(t) and the control input u(t), indicating no major dif-
ferences between the different scenarios. Figure 29 afterwards focuses in the steady-state
behavior of the signals e(t) and u(t), where as expected, a visible output error attenuation
is observed as the internal model complexity increases.

Figure 30 compares the approximated zero-error steady-state trajectory corresponding
to the mappings π̃1(w), π̃2(w) and c̃(w), as defined in (361), (5.4.1) and (5.4.1) respec-
tively for the zero, second and fourth-order internal model case. In the last case, the
mappings π̃(w) and c̃(w) were set as polynomials of third-degree, which yielded a very
close proximity to the actual simulated steady-state trajectory, showed in thin black line.



113

×z1(∞)

z 2
(∞

)

0

0

1

2

2

3

4 6 8

−1

−2

−2
−3

−4−6−8

10−3

Zero
Second
Fourth

Figure 26: Projection of the ultimate bound region B∞ into the zx-plane for different
internal model orders. Source: the author.
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Figure 27: Projection of the initial condition region D into the zx-plane for different
internal model orders. Source: the author.
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Table 2: Theoretical upper bounds ητ of the Lypunov function V (z) according to the
internal model order. Source: the author.

Internal model order Zero Second Fourth

Initial V -level bound (η0) 1 1 1

V -level bound after 5 s (η5) 1.8321 · 10−2 1.8316 · 10−2 1.8316 · 10−2

V -level bound after 10 s (η10) 3.4042 · 10−4 3.3591 · 10−4 3.3547 · 10−4

V -level bound after 15 s (η15) 1.1105 · 10−5 6.5962 · 10−6 6.1558 · 10−6

V -level bound after 20 s (η20) 5.0735 · 10−6 5.6456 · 10−7 1.2415 · 10−7

V -level bound after 25 s (η25) 4.9631 · 10−6 4.5409 · 10−7 1.3671 · 10−8

V -level bound after 30 s (η30) 4.9610 · 10−6 4.5206 · 10−7 1.1648 · 10−8

V -level bound after 35 s (η35) 4.9610 · 10−6 4.5203 · 10−7 1.1611 · 10−8

Ultimate V -level bound (η∞) 4.9610 · 10−6 4.5203 · 10−7 1.1610 · 10−8

Table 3: Theoretical upper bounds γτ of the output error norm ||e|| according to the
internal model order. Source: the author.

Internal model order Zero Second Fourth

Initial error bound (γ0) 3 3 3

Error bound after 5 s (γ5) 4.0606 · 10−1 4.0601 · 10−1 4.0600 · 10−1

Error bound after 10 s (γ10) 5.5352 · 10−2 5.4984 · 10−2 5.4947 · 10−2

Error bound after 15 s (γ15) 9.9973 · 10−3 7.7049 · 10−3 7.4431 · 10−3

Error bound after 20 s (γ20) 6.7574 · 10−3 2.2541 · 10−3 1.0570 · 10−3

Error bound after 25 s (γ25) 6.6834 · 10−3 2.0216 · 10−3 3.5079 · 10−4

Error bound after 30 s (γ30) 6.6820 · 10−3 2.0171 · 10−3 3.2382 · 10−4

Error bound after 35 s (γ35) 6.6820 · 10−3 2.0170 · 10−3 3.2330 · 10−4

Ultimate error bound (γ∞) 6.6820 · 10−3 2.0170 · 10−3 3.2328 · 10−4
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Figure 28: Transient output error signals e(t) (on top) and control signals u(t) (on bot-
tom). Source: the author.
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Figure 29: Steady-state output error signals e(t) (on top) and control signals u(t) (on
bottom). The dashed line denotes the steady-state approximation c̃(w(t)) as used in the
last scenario. Source: the author.
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Figure 30: Approximated zero-error steady-state trajectories (π̃1(w), π̃2(w), c̃(w)) for the
different evaluated cases. The thin black line denotes an actual simulated trajectory con-
sidering the last scenario. Source: the author.

5.4.3 Extended Design with Input Saturation and Anti-Windup

So as to demonstrate the full extent of the proposed methodology, the stabilizing stages
are here redesigned considering input saturation and anti-windup compensation, where
the maximum control amplitude is now enforced as u = 50.

In order to synthesize the controllers in the presence of saturating inputs, it is fur-
thermore necessary to determine magnitude bounds for the steady-state control mapping
approximations, i.e. supw∈W |c̃(w)| ≤ c. By employing the optimization problem (272),
it was determined c = 0, c = 0.5942 and c = 0.6599 respectively for the zero, sec-
ond and fourth internal model case. An additional design choice here is the function
ν(z, w), which defines the affine relation of free decision variables related to the sector
condition. Following previous considerations, the function ν(z, w) was accordingly set as
ν(z, w) = [z1 w1 w2]

T. Given this extended numerical setup, the synthesizing optimiza-
tion (354) was reevaluated for all cases, where the newly obtained stabilizing controller
parameters are presented next.

• No internal model case:

F =

[

8.7557 2.6972
−0.3120 −35.839

]

, G =

[

27.490
−0.1882

]

,

H = [ −27.407 −2.1450] , K = −41.116 .

(384)
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• Second-order internal model case:

F =







−4.1350 0.0023 0.6670 −0.4459
0.0001 −4.1365 −0.5442 0.4420

−0.0005 0.0283 6.9127 −8.8513
0.0001 −0.0001 0.6404 −35.948






, G =







22.830
−18.377
369.87
7.2463






,

H =

[

−26.890 15.020 1.0482 0.2557
−106.48 147.96 8.9083 −0.0790
46.369 339.78 8.9715 0.3184

]

, K =

[

−38.564
−199.83
−218.46

]

.

(385)

• Fourth-order internal model case:

F =













−4.1348 0.0000 −0.0002 0.0032 −0.3282 −0.0564
0.0000 −4.1349 0.0001 −0.0023 0.2701 0.0536
0.0000 0.0001 −4.1349 0.0072 −0.9583 −0.1853

−0.0000 −0.0000 −0.0002 −4.1430 1.1815 0.2691
−0.0001 −0.0003 −0.0037 −0.0649 7.7528 2.1583
0.0000 −0.0000 0.0005 −0.0044 −0.3474 −35.842













, G =









52.712
−43.156
152.51

−187.50
−1883.6









,

H =









−13.179 7.5166 −0.7280 5.4249 −0.8482 0.0286
−51.812 67.108 8.0407 61.939 −6.2685 0.1116
10.653 144.14 136.19 194.65 −6.9990 0.2932

−1.7635 −15.798 384.40 −185.98 43.307 −0.4923
123.30 −2.3364 −854.95 −1673.5 70.563 −2.4519









, K =









−33.890
−427.82
−910.52
1198.2
6359.6









.

(386)

Moreover, the following anti-windup gains were synthesized, recalling that E is related to
the internal model stage, while W is associated with the stabilizer.

• No internal model case:

W =

[

0.8878
−0.1803

]

. (387)

• Second-order internal model case:

E =

[

−6.3297
−5.9531

]

, W =







0.8371
−0.6858
13.833
3.9579






. (388)

• Fourth-order internal model case:

E =







−16.477
−33.129
44.974
234.59






, W =













2.3023
−1.8902
6.6868

−8.2399
−82.662
10.449













. (389)

For each internal model scenario in consideration, the achieved theoretical bounds η∞
is presented by Table 4 and the a posteriori determined bounds for the output error norm
is also shown in Table 5. The graphical representation of the ultimate bounding set B∞

and the set of admissible initial conditions D are complementary exposed in Figures 31
and 32. A major reduction in the volume of B∞ is still observed as the internal model
order increases, whereas the change in the volume of D is insignificant between all cases.
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The subsequent Figures 33 and 34 present a numerical simulation of the closed-loop
system for each designed controller when subject to input saturation. The considered
initial conditions were x(0) = [−2.5 − 10]T, ξ(0) = 0 and w(0) = [0 1]T, for which
(z(0), w(0)) is inside and near the frontier of D in every scenario. In Figure 33, where the
transient behavior is being focused, one may clearly see the input saturation effect acting
in the control signal. In Figure 34, where the steady-state response is zoomed in, the same
expect result is verified, i.e. the residual error diminishes according to the internal model
order.

Table 4: Theoretical ultimate bound η∞ of the Lypunov function V (z) for each internal
model order case when the controllers are subject to input saturation. Source: the author.

Internal model order Zero Second Fourth

Ultimate V -level bound (η∞) 2.1222 · 10−3 2.0394 · 10−4 5.0034 · 10−6

Table 5: Theoretical ultimate bound γ∞ of the output error norm ||e|| for each internal
model order case when the controllers are subject to input saturation. Source: the author.

Internal model order Zero Second Fourth

Ultimate error bound (γ∞) 1.3820 · 10−1 4.2842 · 10−2 6.7105 · 10−3

5.5 Final Remarks

In this chapter, a novel ultimately bounded stabilization framework was developed for
the practical output regulation of rational nonlinear systems, which represents a direct ex-
tension of the original methodology devised in Chapters 3 and 4. One of the main features
of this extended work is the possibility to deal with systems without an exact knowledge
of the zero-error steady-state conditions, thus relaxing previous assumptions regarding
the analytic solution of the regulator equations. Another important feature, as empha-
sized earlier, is the possibility to use reduced order internal models, so as to simplify the
implementation of the control law. In comparison to practical nonlinear output regula-
tion design methods in the literature (MARCONI; PRALY, 2008), the contribution of this
work is the consideration of systems that cannot be expressed in a normal form, which
may also be subject to input saturation. The utilized methodology can also be extended
for a wide range of future studies, including digitalization effects such as time-sampling
and quantization.
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Figure 31: Projection of the ultimate bound region B∞ into the zx-plane for different
internal model orders when the controllers are subject to input saturation. Source: the
author.
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Figure 32: Projection of the initial condition region D into the zx-plane for different
internal model orders when the controllers are subject to input saturation. Source: the
author.



120

t

t

e(
t)

u
(t
)

0.05

0.05

0.1

0.1

0.15

0.15

0.2

0.2

0.25

0.25

0.3

0.3

0.35

0.35

0.4

0.4
−3

−1.5

0

0

0

0

1.5

−25

25

50

Zero Second Fourth

Figure 33: Transient output error signals e(t) (on top) and control signals u(t) (on bottom)
when the controllers are subject to input saturation. Source: the author.
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bottom) when the controllers are subject to input saturation. Source: the author.
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6 CONCLUSION AND PERSPECTIVES

In closing, this chapter brings an overview of the research highlighting the fulfillment
of the established objectives and the main contributing aspects. The perspective for related
future works is also exposed afterwards.

6.1 Overview of the Thesis

The overall objective of this thesis was to explore the usage of the differential-algebraic
representation in order to systematically approach the output regulation design problem
for rational nonlinear systems. Towards this goal, several theoretical results have been
obtained as presented throughout the text.

Chapter 3 initially devised the basic foundation of the proposed framework, focusing
on systems with rational regulation error dynamics with unbounded control input. In this
first chapter, the text detailed the fundamental proposal for incorporating the differential-
algebraic representation into a nonlinear output regulation problem, subsequently leading
to stability and performance conditions, both for analysis purposes and for stabilization
by output feedback. Subsequently Chapter 4 addressed systems subject to input satura-
tion and, moreover, considered the design of anti-windup compensation for both internal
model and stabilizing stages. Afterwards, in Chapter 5, the scope was extended for the
practical output regulation context, where an ultimately bounded stabilization method was
developed for the use of reduced order internal models and approximate solutions of the
regulator equations.

As emphasized earlier, state-of-art methods on nonlinear output regulation commonly
impose restrictions with respect to the structure of the controlled plant, for instance normal
form representation, minimum-phase and affinity with respect to the control input. On
the other hand, the developed work only requires rational regulation error dynamics and
is also capable of dealing with the input saturation effect. On top of that, this work
considered the anti-windup design for internal models and stabilizing controllers, which
is a novel approach in the nonlinear output regulation field.

6.2 Future Perspectives

Among future investigations, one possibility is employing the proposed method in or-
der to solve the master-slave synchronization problem (WIELAND; ALLGÖWER, 2009).
In this context, the objective is to ensure that the state of a controlled slave system asymp-
totically tracks the state of an autonomous master system. Naturally, this is a particular
case of the general output regulation, noting that the master system is an exosystem and
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the slave system is a controlled plant. The proposed methodology is therefore readily
applicable to this scenario. Nevertheless, a dedicated approach could take advantage of
particular characteristics of the synchronization problem, for instance the identical dy-
namic structure between master and slave systems.

Another relevant but challenging extension would be the extension of the methodol-
ogy in this thesis for multi-agent output regulation and syncronization cases considering
cooperative control systems (SU; HUANG, 2012). In this scenario, one opportunity is
dealing with the consensus problem (HU et al., 2014), where the objective is to ensure the
trajectories of every agent system are ultimately synchronized with respect to each other.

A subject of particular interest is the study of ways to achieve less conservative domain
of attraction estimates and ultimate bound regions. In this sense, one possibility is to
employ refined a posteriori analyzes methods with state-dependent Lyapunov functions
and annihilators, based on work of TROFINO; DEZUO (2014). Regarding the practical
output regulation context, it is also possible to consider an additional numerical evaluation
of the steady-state manifold, after the proposed synthesis procedure is completed. This
approach may further reduce the regulation error system residuals in order to perform the
analyzes.

Lastly, the theoretical methodology devised in thesis could be investigated in a miryad
of real world applications. One perspective in this context is the regulation of offshore
actuated platforms (FARIA et al., 2016), in order to smoothly compensate for the mo-
tion produced by sea waves. Another related practical case is the blade pitch regulation of
wind turbines (CASTRO et al., 2017), where the objective is to alleviate periodic mechan-
ical loads in the structure. Furthermore, an interesting perspective is spacecraft control
(SALTON et al., 2017), where one could explore the problem of orbit synchronization for
rendezvous and docking.
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APPENDIX A COMPLEMENTARY MATERIAL

This appendix organizes a complementary material for the main text of the thesis.
Primarily, Section A.1 shows a brief introduction on linear matrix inequalities and some
useful related lemmas. In the sequence, Section A.2 details an approach for dealing with
optimization problems subject to bilinear matrix inequalities.

A.1 Linear Matrix Inequalities

A linear matrix inequality (LMI) is a particular type of constraint defined by an affine
relation

F(x) = F0 +

m
∑

i=1

Fi xi ≻ 0 , (390)

where x = [x1 x2 . . . xm]
T ∈ Rm is the vector of decision variables and Fi ∈ Rn×n

∀ i ∈ {0, 1, . . . , m} are symmetric matrices. An important property of an LMI is the
convexity of its correspondent set F = {x ∈ Rm : F(x) ≻ 0}.

Problems involving LMI constraints are typically a feasibility problem or a convex
optimization problem. A feasibility problem consists simply on finding some x such that
x ∈ F . On the other hand, an optimization problem consists on minimizing a linear
objective function f(x) = cTx, c ∈ Rm, subject to x ∈ F , i.e.

min
x

cTx s.t. F(x) ≻ 0 . (391)

This particular kind of convex optimization problem is also referred to as semidefinite
programming (SDP) (BOYD et al., 1994).

Over the past years, there was a significant development on numerical tools, such
as interior point methods, which are able to efficiently solve LMI feasibility and SDP
problems (BOYD et al., 1994). The development of these numerical methods have been
specially attractive for the field of control theory because it is possible to cast a wide range
of problems in the LMI framework. A classical example is the stability of linear systems
ẋ = Ax with a quadratic Lyapunov function V (x) = xTPx, which is equivalent to finding
a symmetric and positive-definite matrix P such that PA + ATP ≺ 0 (CHEN, 1970).
There also exist software packages able to translate problems such as this, from original
matrix form, to the standard form (390) and subsequently apply the solution algorithm
(GAHINET et al., 1994).

Some particular lemmas are often used in order to cast problems in the form of LMI
constraints. In the following, there is a selection of important LMI related lemmas that
are used in this work.
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Lemma A.1. (Congruence transformation) Let P,Q ∈ Rn×n be symmetric matrices such

that Q is non-singular. Then

P ≻ 0 ⇔ QP QT ≻ 0 . (392)

Proof. Pre- and post-multiplying both sides of P ≻ 0 by Q and QT yield QP QT ≻ 0.
Conversely, pre- and post-multiplying both sides of QP QT ≻ 0 by Q−1 and Q−T results
P ≻ 0 back, provided that Q is non-singular.

Lemma A.2. (Schur’s complement) Consider matrices P = P T ∈ R
n×n, R ∈ R

n×m and

= QT ∈ Rm×m such that Q ≻ 0. Then

P − RQ−1RT ≻ 0 ⇔
[

P R
RT Q

]

≻ 0 . (393)

Proof. The following identity holds:

X ,

[

P R
RT Q

]

= Y ZY T , Y ,

[

I RQ−1

0 I

]

, Z ,

[

P − RQ−1RT 0
0 Q

]

. (394)

From Lemma A.1 and since Y is non-singular, one deduces that X ≻ 0 if and only if
Y −1XY −T ≻ 0, which is thus equivalent to Z ≻ 0. In turn, Z ≻ 0 if only if P −
RQ−1RT ≻ 0 and Q ≻ 0.

Lemma A.3. (Affine uncertainties) Let X ⊂ Rn be a convex hull formed by a set of

finitely many vertices V , i.e. X = Co{V}, and let a symmetric matrix P (x) be an affine

function with respect to x. Then

P (x) ≻ 0 ∀ x ∈ V ⇔ P (x) ≻ 0 ∀ x ∈ X . (395)

Proof. Consider V = {v1, v2, . . . , vm} where v1, . . . , vm ∈ Rn, m ∈ N. Because P (x)
is an affine matrix function with respect to x, condition P (x) ≻ 0 ∀ x ∈ Co{V} can be
re-arranged in the following polytopic form (BOYD et al., 1994):

m
∑

i=1

αi P (vi) ≻ 0 ∀α ∈ P ,

{

α ∈ R
m :

m
∑

i=1

αi = 1 , αi > 0

}

. (396)

If P (vi) ≻ 0 ∀ i ∈ {1, 2, . . . , m}, i.e. P (x) ≻ 0 ∀ x ∈ V , then it follows that α1P (v1) +
α2P (v2) + . . . + αmP (vm) ≻ 0 ∀α ∈ P , or equivalently P (x) ≻ 0 ∀ x ∈ Co{V}. Thus
P (x) ≻ 0 ∀ x ∈ V ⇒ P (x) ≻ 0 ∀ x ∈ X and since V ⊂ X the converse also verifies:
P (x) ≻ 0 ∀ x ∈ X ⇒ P (x) ≻ 0 ∀ x ∈ V .

Lemma A.4. (Finsler’s lemma) Consider matrices P = P T ∈ Rn×n and R ∈ Rm×n.

Then xTPx > 0 ∀ x ∈ L, x 6= 0 where

L =
{

x ∈ R
n : Rx = 0

}

, (397)

if there exists a matrix L ∈ Rn×m such that

P +H{LR} ≻ 0 . (398)
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Proof. Suppose x ∈ L. Inequality xTPx > 0 can then be re-expressed as

xTPx+ xTLRx+ xTRTLTx > 0 , (399)

for any matrix L ∈ R
n×m, since Rx = 0. If (398) is true, then (399) holds ∀ x 6= 0 and,

moreover, xTPx > 0 ∀ x ∈ L, x 6= 0 is satisfied.

Lemma A.5. (S-Procedure) Consider symmetric matrices P0, P1, . . . , Pm ∈ Rn×n. Then

xTP0 x > 0 ∀ x ∈ Q, x 6= 0 where

Q =
{

x ∈ R
n : xTPi x ≤ 0 , i = 1, 2, . . . , m

}

, (400)

if there exist non-negative scalars τ1, τ2, . . . , τm ∈ R such that

P0 +

m
∑

i=1

τi Pi ≻ 0 . (401)

Proof. Suppose x ∈ Q. If for some scalars τ1, τ2 . . . , τm ≥ 0 it verifies that

xTP0 x+ τ1 x
TP1 x+ τ2 x

TP2 x+ . . .+ τm x
TPm x > 0 , (402)

then xTP0 x > 0, because xTPi x ≤ 0 ∀ i ∈ {1, 2, . . . , m}. Consequently, if (401) is true
then (402) holds ∀ x 6= 0 and xTP0 x > 0 ∀ x ∈ Q, x 6= 0 is satisfied.

Lemma A.6. (Ellipsoid inclusion) Consider a symmetric positive-definite matrix P ∈
Rn×n, vectors b1, b2, . . . , pm ∈ Rn and scalars a1, a2, . . . , am ∈ R. Let P be an ellip-

soidal set defined as

P =
{

x ∈ R
n : xTPx ≤ 1

}

(403)

and let X be a polyhedral set defined by

X =
{

x ∈ R
n : | bTi x | ≤ ai , i = 1, 2, . . . , m

}

. (404)

Then P ⊂ X if and only if

[

a2i bTi
bi P

]

≻ 0 ∀ i ∈ {1, 2, . . . , m} . (405)

Proof. Suppose the following holds:

±a−1
i (pT

i x+ xTpi) ≤ 1 + xTP x ∀ i ∈ {1, 2, . . . , m} . (406)

If x ∈ P then ±a−1
i (bTi x + xTbi) ≤ 2 ⇒ ±a−1

i (bTi x) ≤ 1 ⇒ ±(bTi x) ≤ ai ⇒ |bTi x| ≤ ai
∀ i ∈ {1, 2, . . . , m}, and so x ∈ X as well. Notice that (406) can be re-arranged as

[

±a−1
i xT

]

[

a2i bTi
⋆ P

] [

±a−1
i

x

]

≥ 0 ∀ i ∈ {1, 2, . . . , m} . (407)

If condition (405) is true then (407) holds ∀ x ∈ Rn and consequently: (405) ⇒ P ⊂ X .
One can also prove that P ⊂ X ⇒ (405) according to BOYD et al. (1994).
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A.2 Bilinear Matrix Inequalities

This complementary section details a procedure capable of addressing optimization
problems subject to bilinear matrix inequalities, such as some cases highlighted in the
main methodology from Chapters 3, 4 and 5.

In order to illustrate the suggested approach, let x ∈ R
n, y ∈ R

m and z ∈ R
p denote

decision variables of an optimization problem as x = [x1 x2 . . . xn]
T, y = [y1 y2 . . . ym]

T

and z = [z1 z2 . . . zp]
T. Moreover, consider a matrix inequality constraint in the form of

F(x, y, z) , A+

n
∑

i=1

Bi xi +

m
∑

i=1

Ci yi +

p
∑

i=1

Di zi +

m
∑

i=1

p
∑

j=i

Eij yizj ≻ 0 , (408)

for some symmetric matrices A,B1,. . .,Bn,C1,. . .,Cm,D1,. . .,Dp,E11,. . .,Emp ∈ Rq×q. The in-
equality expressed by (408) is said to be a bilinear matrix inequality (BMI) with respect
to decision variables y and z, which means that if either y or z are regarded as fixed (not
as decision variables), then (408) becomes a standard linear matrix inequality (LMI) such
as (390). It should be clear though that the correspondent set of a BMI, i.e.

F =
{

(x, y, z) ∈ R
n × R

m × R
p : F(x, y, z) ≻ 0

}

, (409)

is not convex in general, unlike sets formed by LMIs (VANANTWERP; BRAATZ, 2000).
The class of optimization problems to be dealt here is described according to:

min
x,y,z

cTx s.t. F(x, y, z) ≻ 0 , (410)

for some c ∈ Rn which defines the objective function. In spite of (410) being presented
in a standard form, one should see that this optimization problem is equivalent to the ones
previously presented as (180), (294) and (354). Take for instance (180):

min
X,Y,L,F̂0,...,K̂n

tr(Y ) s.t.
{

(168) , (169) , (170) , (171)
}

. (411)

where there are bilinear terms involving matrices L and X on inequality (170). In this
case, “y” may be regarded as the elements of L in vector form, and likewise “z” may be
considered as vectorization of the elements in matrix X . Lastly, “x” denote all linearly
related variables, which are the ones in Y , F̂0, . . . , K̂n. It should also be clear that mul-
tiple matrix inequality constraints, such as {(168) , (169) , (170) , (171)}, can always be
represented as a single constraint by block diagonal concatenation.

Towards establishing a procedure able to solve (410), notice that because (408) is a
BMI, if either y or z are fixed, then (410) become a standard semidefinite optimization
problem (SDP), which is convex and can be addressed efficiently by numerical solvers
(GAHINET et al., 1994). This simple observation can be used in order to break the
problem (410) down into an iterative series of SDP sub-problems, where y and z are
alternated between decision variables and fixed constants. An approach such as this has
been proposed for robust output feedback control synthesis purposes, and it is known as
D-K iteration on the literature (KANEV et al., 2004).

Prior to addressing the objective function cTx of (410) it is necessary to find a feasible
solution either for y or z. So as to tackle this problem, a modified version of problem
(410) may be considered:

min
x,y,z,γ

γ s.t. F(x, y, z) + γI ≻ 0 , (412)
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where γ ∈ R is an additional scalar variable. In contrast to the original case, the relaxed
condition F(x, y, z) + γI ≻ 0 has the advantage of guaranteed feasibility, since there
should always exists some γ ∈ R such that F(x, y, z) + γI becomes positive-definite.
Moreover, if one is able to find a solution to (412) for some γ < 0, then the same solution
is guaranteed to be feasible with respect to the original constraint F(x, y, z) ≻ 0. After
having found such a feasible solution, one can naturally consider the original objective
function cTx of (410) in the pursuance of a proximate locally optimal solution. Provided
this explanation, the following iterative algorithm can be employed in order to address
(410) in general.

(a) Feasibility phase:

(a.1) Define some initial guess for variable y. One may consider y = 0 by default.

(a.2) Regarding z as decision variable and y as fixed with the value obtained from
previous step, solve the SDP

min
x,z,γ

γ s.t. F(x, y, z) + γI ≻ 0 . (413)

(a.3) Regarding now z as fixed with the value obtained from previous step and y as
decision variable, solve the SDP

min
x,y,γ

γ s.t. F(x, y, z) + γI ≻ 0 . (414)

(a.4) Return to step (a.2). Stop this loop when γ is negative, meaning that a feasible
solution has been found.

(b) Optimization phase:

(b.1) Regarding z as decision variable and y as fixed with the value obtained from
previous step, solve the SDP

min
x,z

cTx s.t. F(x, y, z) ≻ 0 . (415)

(b.2) Regarding now z as fixed with the value obtained from previous step and y as
decision variable, solve the SDP

min
x,y

cTx s.t. F(x, y, z) ≻ 0 . (416)

(b.3) Return to step (b.1). Stop this loop when cTx does not decrease significantly
between iterations, meaning that a proximate locally optimal solution has been
found.


