UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMATICA
PROGRAMA DE POS-GRADUACAO EM COMPUTACAO

Functional Timing Analysis
of VL SI Circuits Containing Complex Gates

by

JOSE LUISALMADA GUNTZEL

Thesis submitted as partial fulfillment of the requirements
for obtaining the degree of “Doutor em Ciéncia da Computagéo”

Prof. Ricardo Augusto da Luz Reis
Advisor

Porto Alegre, November 2000.

C.1.P. - Catalogacéo na Publicacdo

Guntzel, José Luis Almada

Functional Timing Analysis of VLSI Circuits Containing Complex Gates / by
José Luis Almada Guntzel. — Porto Alegre : PPGC da UFRGS, 2000.

182 p. :il.

Tese (doutorado) — Universidade Federal do Rio Grande do Sul. Programa
de Pos-Graduacdo em Computacdo, Porto Alegre, BR — RS, 2000. Orientador:
Reis, Ricardo Augusto da Luz.

1. Microdletronica. 2. Ferramentas de CAD para Microeletronica. 3.
Verificagdo de Timing. 4. Andlise de Timing. 5. Portas LAgicas Complexas.
I. Reis, Ricardo Augusto da Luz. II. Titulo.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

Reitora: Profé. Wrana Panizzi

Pro-Reitor de Ensino: Prof. José Carlos Ferraz Hennemann

Pro-Reitor Adjunto de Pos-Graduacdo: Prof. Philippe Olivier Alexandre Navaux
Diretor do Instituto de Informatica: Prof. Philippe Olivier Alexandre Navaux
Coordenadora do PPGC: Prof2. CarlaMaria Da Sasso Freitas

Bibliotecaria Chefe do Instituto de Informética: Beatriz Regina Bastos Haro

Acknowledgments

This work is the result of more than five years of research. During this time many
people contributed to its development and | will probably forget to mention somebody that
helped me along the way.

First of all, | thank my family for their support and constant encouragement, mainly
during the difficult periods when | could not see the light at the end of the tunnel. | also thank
my fiancée, Margarida, for her friendship and patience, accepting my excuses for each
working weekend.

| also thank my advisor, Ricardo Reis, for his unconditional support and friendship.

Timing analysis became the focus of my research since the time | have spent at the
Laboratoire d'Informatique, de Robotique et de Micro-éectronique de Montpellier - LIRMM
(France). | acknowledge Prof. Daniel Auvergne who kindly accepted me in his working group.
| thank Nadine Azemard, my direct supervisor, and Séverine Cremoux, my team mate, for
their willingness in working with me and for their patience with my poor French skills.
During 1996, the year | spent in France, | had the chance of meeting many interesting people
whose friendship | really miss. Ricardo Pires, Véronique Moreda, Daniel Séverac, Eric
Vanier, Jean-Michel Daga, Liond Torres and many others, | thank you for all moments we
have shared together. Still during that time, | have the support and friendship of many other
people that | previously knew. | am particularly indebted with André Reis, who has hosted me
during the first two weeks in France. | aso thank André Reis for our discussions on logic
synthesis, technology mapping, timing analysis, BDDs, test and so many other philosophical
topics! | should also mention Renato Ribas, Gilson Wirth and Reginaldo Tavares for both
technical and philosophical discussions.

During the other four years of research, | had the help of undergraduate and graduate
students. | specialy thank Ana Cristina Medina Pinto for helping me in the tediously task of
testing so many versions of path enumeration algorithms. | aso thank her for our endless
discussions on ATPG-based timing analysis. | aso thank Guilherme Da Pizzol for helping
me with the ad hoc timing analysis of carry skip adders and Eduardo d"Avila for the first
implementation of the extended three-valued timed calculus for complex gates.

During al the five years | could always count with the support and friendship of
Fernando Moraes, including some “on-line” helps during my stay in France, for what |
sincerely acknowledge.

Although timing analysis is my main topic of interest, | could not resist checking other
topics. In this sense, | thank to Fernanda Lima, Luigi Carro and Marcelo Johann for having
shared severa discussions and some papers on Masterdlices Architectures for FPGAS. | aso
thank to Fabio Klein Ferreira for developing the path-based power evauation tool, as final
paper of his undergraduate course.

I could not forget to mention the friendship and support of al colleagues of the UFRGS
Microelectronics Group (GME) along all these years. So, thank to all of you: Marcelo Johann,
Marcus Kindel, JoZo Leonardo Fragoso, Fernanda Lima, Erika Cota, César Zeferino, Eduardo
Costa, Jung Choi, Leandro Indrusiak, José Luis Gémez, Rosaldo Rossetti, Alessandro Adario,
Mércio Kreutz and so many others. | also thank to all professors of the GME for their

unquestionable contribution to my research profile: Ricardo Reis, Sergio Bampi, Tiargju
Wagner, Altamiro Susin, Luigi Carro, Marcelo Lubaszewski and Flavio Wagner.

During the first four years of this work, including the year | was in France, | had the
financia support of CAPES Brazilian Agency (Coordenacéo de Aperfeicoamente de Pessoal
de Nivel Superior), for what | gratefully acknowledge.

Finaly, | thank God for providing me with so many opportunities of learning!

To Margarida

Table of Contents

List of AbbreviationS...........cvvveveceiinn,

Listof FIQUIES.......oovvviiiii e

Listof TableS ..o

YA 01 1 = o: TP

IR 1 oo 18 Tox 1 o o PP
1.1ThesisOrganizationccccevieviiiiieinevenenens.
2TheTiming AnalySISAPProachoooiiiiiiiei e
2.1 Topological Timing AnalysiS........coccveveeiiinnnene.

22 FalSEPAtNS
2.3 Functional Timing Analysisand Circuit Delay Computation Models...............

2.4 Component Delay Modelsc.ocoeviiiiininnne.
2.5 Gate Delay Computation Modélsccen.....

2.6 Robustnessand Correctnessof FTA AlgOrithms ...

2.7 Delay Computation M odels, Path Sensitization and FTA Algorithms.............

3Timing AnalysisRelated Terminologyccocoevveiiiiiiiiii i
3.1 B00IEAN AIGEDI A ... e e

3.2 Test Generation TErminologycccovuvvvnennn .

3.3 Delay Testing and Timing Analysis Terminology .

4 Path Sensitization Criteria and Delay Computation Models................
4.1 Delay Computation Models and the Robustness Propertyooovoveii v

4.2 Path Sensitization Criteriacoccvvvveieinnnn .
4.2.1 SEALIC SENSILIZAIION ... en et ettt e e e e e e et e e e e e e e
4.2.2 StaliC COSBNSITIZALION ...ttt et e e e e e e et e e e e e et e eaeaene e e
4.2.3ViIaDility ANAlYSIS .uoiee et e e e e e
4.2.4 Exact Floating-Mode Sensitization
4.2.5 Other SenSItiZation CrItEITAve ittt et et e e e et e e e eaeeeeaennas

4.3 Qualitative Comparison Between Sensitization Criteria.........cccoovvevvvennnnn.

5 Functional Timing AnalysisAlgorithms.....

5.1 Classification of FTA Algorithmsand Historical Reviewc.ccovevene

5.2 ATG-Based Single Path Sensitization Algorithms

11
13
15
17
19

22
25

26
28
30
32
34
35
36
39
39
42
46
49

gL

59
61
64
64
67

67
70

5.2.1 The Best-First Search Path Enumeration Procedure of Yen et al. [YEN89] 71
5.2.2 Best-First Search Path Enumeration Considering Different Fall and Rise Gate 74
3= -
5.3 ATG-Based Multiple Path Sensitization Algorithmscccooiii i 76
5.3. 1 The PODEM AlQOrthm e e e e et e e e 76
5.3.2CUDE SIMUIBLION ... et e e e e e e et e et e ae 78
5.3.3Timed TeSt GENEaION it et e e e e e et e e e e e e 81
5.3l BACKITACE et et e et e e e e e e 82
5.4 SAT-Based Multiple Path Sensitization Algorithmsccoooviiiiinnnes 84
5.4.1 Philosophy of the SAT-Based Method of [MCG93]c.ccoviiiiiiiiiiiiiee, 84
5.4.2 Ternary Delay Simulation and Waveform Calculusoovv v iin e, 85
5.4.3 Computing the Floating Delay under the XBDO Modelcoveiiiiiiiiiieinnnns 90
6 Functional Timing Analysis of Combinational Circuits Containing 95
COMPIEX GAIES ... e e e e e

6.1 Technology M apping and L ayout Generation for Circuits Containing Complex
[T =Y T PRSPPI 95

6.1.1 Simple Gates, General Complex Gates and Static CMOS Complex Gates 98

6.2 The Applicability of Existing Functional Tlmlng AnaIySIsTechnlquesfor 100
Circuits Containing Complex Gates ..

6.3 ATPG-Based FTA of Circuits Containing Complex Gates6.3ccccevevnnnn. 101
6.3.1 Extending the Timed-Calculus to Complex GateSc.coerererierieeieneneseseneee e 106
6.3.2 The Floating Delay Of @ Gaeccociiririiieee e 109
6.3.3 Gate Delay Computational Models and Timed Forward Implication for SCCGs 113
6.3.4 Timed Backward Implication for SCCGSccoririeiiiiiese e 116
T CONCIUSIONS ...ttt 119
8 R VL T =AY o S 121

Appendix 1 The Need for Functional Timing Analysis: a Case Studly 123

Appendix 2 Gate Delay Computation Models and the Complexity of Best- 199
First Search ProCedUIES ..o

Appendix 3 Andise de Timing Funcional de Circuitos VLS| Contendo 137
POrtas COMPIEXEScovvrieuriieiciree st

RE O BN CES ... e e e 173

ATPG
BDD
CAD

BFS
CMOS
Csa
DAG
DFS
EDA
FTA
FSM
FUCAS
iff

mdt
MSF
pS

SCCG

TTA
VLS
XDB

XBDO

List of Abbreviations

Automatic Test Pattern Generation
Binary Decision Diagram
Computer-Aided Design
Breadth-First Search
Complementary Metal-Oxide Silicon
Carry-skip Adder

Direct Acyclic Graph

Depth-First Search

Electronic Design Automation
Functional Timing Analysis

Finite State Machine

FUIl Custom Automatic Synthesis
if and only if

Maximal Delay to Nodet

Multiple Stuck Fault

picoseconds

Static CMOS Complex Gate
single gate delay

single pair gate delay

satisfiability

Single Stuck Fault

Topological Timing Analysis
Very Large Scale Integration
Extended Bounded Delay Model
Extended Bounded-Zero Delay Model

10

11

List of Figures

FIGURE 1.1 - Synchronous sequentia circuit model.c.cccoviviiieiiiinenenn,
FIGURE 2.1 - Combinational circuit example.co.ooeiiiiiiiin e,
FIGURE 2.2 - Processed DAG for the circuit example of figure2.1.c....
FIGURE 2.3 - First example of false path: Hrapcenko'scircuit.ccooevennennen
FIGURE 2.4 - Second example of false path: a 2-bit carry-skip adder.
FIGURE 2.5 - The delay of circuits depends upon the type of inputs considered.
FIGURE 3.1 - Cube representation for the 3-dimensional Boolean space.

FIGURE 4.1 - Transition delay with fixed gate delays: test circuit (a) and timing
Aiagrams (10),(C). « v vvenee e e e

FIGURE 4.2 - Transition delay with fixed gate delays. another instance of the test
circuit of figure 4.1a (a) and timing diagrams (b),(C).cvven.

FIGURE 4.3 - Transition delay with unbounded gate delays: test circuit of figure 4.1a
with unbounded delays (a) and timing diagrams (b),(C).c.eceenes

FIGURE 4.4 - Conditionsfor Static Sensitization.cooeiie i,
FIGURE 4.5 - Example of static sensitization of apath. ...,
FIGURE 4.6 - Static sensitization onthe csaexample.ccoovviviiii i,
FIGURE 4.7 - Static sensitization underestimating circuit delay.cccccovvevniiennnne
FIGURE 4.8 — Conditions for statiC COSENSItIZatioN.ocevviiiiieie e aenn.
FIGURE 4.9 - Example of static cosensitization of paths.cooevii i,
FIGURE 4.10 - Static cosensitization can be pessimistiC.ocvvvveiieieiiniiinennns
FIGURE 4.11 - Conditionsfor viability.cooiiiii e,
FIGURE 4.12 - Example of viable path that is not statically cosensitizable.
FIGURE 4.13 - Conditions for exact floating-mode sensitization.ccueeee.
FIGURE 4.14 - First example of exact floating-mode sensitization.
FIGURE 4.15 - Second example of exact floating-mode sensitization.
FIGURE 4.16 - Third example of exact floating-mode sensitization.
FIGURE 4.17 - Fundamental assumptions made in single-vector exact floating mode.
FIGURE 4.18 - Comparison between sensitization Criteria.ccovveevevniennnnnn.
FIGURE 5.1 - Single path sensitization procedure.c.ovveevieiiiiniiiieieiieeens

FIGURE 5.2 - DAG for circuit of figure 2.1, pre-processed according to the best-first
SEAICN PrOCEAUIE. ... ettt e e e e e e e e e e

FIGURE 5.3 - k-list structure initialized with the first partia paths of the circuit of
FIQUIE 5.2, e

20
26
27
28
29
31

50

51

52

55
55
56
57
58
58
59
60
60
62
62
62
63

65
71

72

74

12

FIGURE 5.4 - k-list structure for the best-first procedure that considers separate fall and
FISEAEIAYS. ..ot e

FIGURE 5.5 - Pseudocode for the topmost call of the PODEM agorithm.
FIGURE 5.6 - Pseudocode for the first search procedure.cooovviiiiniinnnennn.
FIGURE 5.7 - Pseudocode for the second search procedure.c.ccoviii v,
FIGURE 5.8 - PODEM algorithm example. ..o e
FIGURE 5.9 - Binary decision tree for PODEM algorithm.ccoooiiiviiininen.
FIGURE 5.10 - Cube simulation using timed calculus.coovoiii i,
FIGURE 5.11 - Timed test generation example. ..o e,
FIGURE 5.12 - Backtrace eXample.ouuie it e e e e
FIGURE 5.13 - Basic operation of SAT-based FTA algorithms.cooeennn.
FIGURE 5.14 - Example of ternary Waveform.ooviiiiniii e e
FIGURE 5.15 - Delay model for agateinthewave space.ooooveiiiviiiininecnnn,
FIGURE 6.1 - Physical design flow using the FUCAS layout generation strategy
FIGURE 6.2 - EXample Of SCCGt e e eae e
FIGURE 6.3 - Elements of the virtual library SCG(2,2)coiiiniiiiiene e
FIGURE 6.4 - Timed-test generation procedure applied to a single-output circuit
FIGURE 6.5 - Pseudo-code for the topmost call of the timed-test generation procedure .
FIGURE 6.6 - Pseudo-code for the first search procedure..............ccoeniiinininncncceene
FIGURE 6.7 - Pseudo-code for the second search procedure.cccoeeeeveneenenenenennens
FIGURE 6.8 - Pseudo-code for the imply proCeaurecoooeverenereneeieseeeeeeseesieene
FIGURE 6.9 - Three-valued timed calculusfor group 1cccooevenenenenieneeeeneesee e
FIGURE 6.10 - Three-valued timed calculusS for group 2ccoceveeeeiirieeneenenesese e
FIGURE 6.11 - Three-valued timed calculus for group 3ccoceverirerieenenesese e

FIGURE 6.12 - Example of SCCG: logic-level symbol (@), transistor schematics (b) and
FUNCHION TIE (C) .vveeueeeeeeste ettt

FIGURE 6.13 - Using the three-valued timed calculus for evaluating a SCCG
FIGURE 6.14 - The relationship between floating mode (a) and transition mode (b)

FIGURE 6.15 - The relationship between floating mode and transition mode: a floating
vector applied to a 3-input NAND gate (a) and the 8 underlying pairs of
VECLONS (1) .ttt

FIGURE 6.16 - Success (a) and fail (b) conditions for the timed-test generation
PIOCEOUIE ...ttt ettt bbbttt e b b s b b na e beeae e e e

FIGURE 6.17 - Delay of a SCCG under afloating Cube ..o
FIGURE 6.18 - Backward implication in a SCCG by using forward implication rules.....

108

109
110

111

113

115
117

13

List of Tables

TABLE 3.1 —Main properties of the Boolean algebra.coveoieiii i, 39
TABLE 3.2 - Truth-table for the 5-valued AND operation.cooviiiiieineiennnnn 45
TABLE 3.3 - Truth-table for the 5-valued OR operation.ccoceiviiiieiie e 45
TABLE 5.1 - Classification of existing FTA algorithms.cccooiiiiieeee. 69
TABLE 5.2 - Timed calculus with unknown values.cooeviiiiiiiiiinieennen 80
TABLE 5.3 - Truth table for the AND function in ternary algebra.c.cccceeee. 86
TABLE 5.4 - Truth table for the OR function in ternary algebra.ccovvvvviiennnn, 86
TABLE 6.1 - Number of elements for various virtua libraries[DET87]ccccvcvvenene 99
TABLE 6.2 - Three-valued timed calculus for a2-input AND gatecccceeeienencriennenn 105
TABLE 6.3 - Three-valued timed calculus for a 2-input OR gateccoceveeeieeieeicnicnnne 105
TABLE 6.4 - Generalized three-valued timed calculus for n-input ssimple gates............... 106
TABLE 6.5 - Three-valued timed calculus for evaluating SCCGS..........c.ccoovverenerennenne. 108

TABLE 6.6 - Relationship between floating model vectors and transition model vectors 112

TABLE 6.7 - Equivalence between floating and transition modes for the SCCG of
FIQUIE B.17 .ottt sttt 115

14

15

Abstract

The recent advances in CMOS technology have allowed for the fabrication of transistors
with submicronic dimensions, making possible the integration of tens of millions devicesin a
single chip that can be used to build very complex electronic systems. Such increase in
complexity of designs has originated a need for more efficient verification tools that could
incorporate more appropriate physical and computational models.

Timing verification targets at determining whether the timing constraints imposed to the
design may be satisfied or not. It can be performed by using circuit ssmulation or by timing
analysis. Although simulation tends to furnish the most accurate estimates, it presents the
drawback of being stimuli dependent. Hence, in order to ensure that the critical situation is
taken into account, one must exercise all possible input patterns. Obvioudly, this is not
possible to accomplish due to the high complexity of current designs. To circumvent this
problem, designers must rely on timing analysis. Timing analysis is an input-independent
verification approach that models each combinational block of a circuit as a direct acyclic
graph, which is used to estimate the critical delay.

First timing analysis tools used only the circuit topology information to estimate circuit
delay, thus being referred to as topological timing analyzers. However, such method may
result in too pessimistic delay estimates, since the longest paths in the graph may not be able
to propagate a transition, that is, may be false. Functiona timing analysis, in turn, considers
not only circuit topology, but also the temporal and functional relations between circuit
elements.

Functional timing analysis tools may differ by three aspects: the set of sensitization
conditions necessary to declare a path as sensitizable (i.e., the so-called path sensitization
criterion), the number of paths simultaneously handled and the method used to determine
whether sensitization conditions are satisfiable or not. Currently, the two most efficient
approaches test the sensitizability of entire sets of paths at a time: one is based on automatic
test pattern generation (ATPG) techniques and the other translates the timing analysis problem
into a satisfiability (SAT) problem.

Although timing analysis has been exhaustively studied in the last fifteen years, some
specific topics have not received the required attention yet. One such topic is the applicability
of functional timing analysis to circuits containing complex gates. This is the basic concern of
this thesis. In addition, and as a necessary step to settle the scenario, a detailed and systematic
study on functional timing analysisis aso presented.

Keywords. design verification of VLSI circuits, timing analysis, functional timing analysis
(FTA), path sensitization problem, critical delay estimation, complex gates,
automatic test pattern generation (ATPG), satisfiability (SAT).

16

17

TITLE: “ANALISE DE TIMING FUNCIONAL DE CIRCUITOS VLSl CONTENDO
PORTAS COMPLEXAS."

Resumo

Os recentes avancos experimentados pela tecnologia CMOS tem permitido a fabricacéo
de transistores em dimensdes submicrénicas, possibilitando a integracdo de dezenas de
milhdes de dispositivos numa Unica pastilha de silicio, os quais podem ser usados na
implementagdo de sistemas eletrbnicos muito complexos. Este grande aumento na
complexidade dos projetos fez surgir uma demanda por ferramentas de verificagéo eficientes e
sobretudo que incorporassem model os fisicos e computacionais mais adequados.

A verificagcdo de timing objetiva determinar se as restricbes temporais impostas ao
projeto podem ou ndo ser satisfeitas quando de sua fabricagcdo. Ela pode ser levada a cabo por
meio de simulagdo ou por andlise de timing. Apesar da simulagdo oferecer estimativas mais
precisas, €la apresenta a desvantagem de ser dependente de estimulos. Assim, para se
assegurar que a Situacdo critica € considerada, € necessario simularem-se todas as
possibilidades de padrdes de entrada. Obviamente, isto ndo é factivel para os projetos atuais,
dada a alta complexidade que os mesmos apresentam. Para contornar este problema, os
projetistas devem lancar méo da andlise de timing. A andise de timing é uma abordagem
independente de vetor de entrada que modela cada bloco combinacional do circuito como um
grafo aciclico direto, o qual € utilizado para estimar o atraso do circuito.

As primeiras ferramentas de andlise de timing utilizavam apenas a topologia do circuito
para estimar o atraso, sendo assim referenciadas como analisadores de timing topol gicos.
Entretanto, tal aproximagéo pode resultar em estimativas demasiadamente pessimistas, uma
vez que os caminhos mais longos do grafo podem nédo ser capazes de propagar transicoes, i.e.,
podem ser falsos. A andlise de timing funcional, por sua vez, considera ndo apenas a topologia
do circuito, mas também as relagdes temporais e funcionais entre seus el ementos.

As ferramentas de andlise de timing funcional podem diferir por trés aspectos. o
conjunto de condicdes necessérias para se declarar um caminho como sensibilizavel (i.e., o
chamado critério de sensibilizagdo), o nimero de caminhos simultaneamente tratados e o
método usado para determinar se as condi¢cbes de sensibilizacdo sdo solUveis ou néo.
Atuamente, as duas classes de solugbes mais eficientes testam simultaneamente a
sensibilizacdo de conjuntos inteiros de caminhos. uma baseiase em técnicas de geracéo
automética de padrdes de teste (ATPG) enquanto que a outra transforma o problema de
andlise de timing em um problema de solvabilidade (SAT).

Apesar da andlise de timing ter sido exaustivamente estudada nos Ultimos quinze anos,
alguns tépicos especificos ndo tém recebido a devida atencdo. Um tal topico é a aplicabilidade
dos algoritmos de andlise de timing funcional para circuitos contendo portas complexas. Este
congtitui o objeto basico desta tese de doutorado. Além deste objetivo, e como condi¢do sine
gua non para o desenvolvimento do trabalho, € apresentado um estudo sistemético e detalhado
sobre andlise de timing funcional.

Palavras-chave: verificacdo de projeto de circuitos VLSI, andlise de timing, andlise de timing
funcional (FTA), sensibilizagdo de caminhos, estimativa do atraso critico,
portas complexas, geracdo automéica de padrdes de teste (ATPG),
solvabilidade (SAT).

18

19

1 Introduction

The remarkable advances achieved by CMOS fabrication technology in the last three
decades have made possible the amazing expansion that consumer electronics market has
been going through. Thanks to the continuously increasing transistor integration density
offered by CMOS technology, ever more complex systems can be integrated on a single chip,
allowing more sophisticated electronic equipment to be available at relatively low prices.

Obviously, higher transistor densities are obtained by reducing the dimensions of on-
chip components. To afirst approximation, reducing transistor and wiring dimensions would
lead us to believe that higher clock frequencies could easily be achieved, since smaller
transistors switch faster. Indeed, this used to be a well-established law for a long time.
However, since CMOS technology has allowed for submicronic devices, some up till then
ignored side effects have grown in importance, resulting in new phenomena that partially
invalidate the previously mentioned law. One of such phenomena, probably the most cited in
recent years, is the dominance of wiring delays over gate delays, as a consequence of the
increase in RC factor of interconnections.

Since the 80’ s the increasing complexity of electronic systems has made mandatory the
use of automatic synthesis tools. Electronic design automation (EDA) tools covering all steps
of circuit design, from the behavioral to the physical level, were developed. Such tools
incorporated efficient agorithms, able to treat systems with hundreds of thousand gates.
However, by the time submicronic technologies began to be used, the models used by these
tools for estimating performance were revealed completely wrong. Since then, a lot of effort
has been concentrated on developing more accurate circuit models, able to account for the
side effects resulting from submicronic technol ogies.

Among the available EDA tools, those devoted to design verification are currently
playing akey role. Sinceit is not practical to directly prototype the circuit in order to test it on
its working environment, designers must rely on verification tools to certify, before
fabrication, that the circuit will operate properly. Besides certifying proper operation, one may
also desire to explore the target technology in all its extension, looking for achieving the
maximal performance. Hence, we can conclude that verification tools must offer a minimum
of reliability.

Timing verification targets at determining whether the timing constraints imposed to
the design may be satisfied or not. More strictly, timing verification is concerned with
estimating the critical delay of circuits and the maximal operating frequency, in case of
clocked circuits.

As any other type of verification, the accuracy of timing verification is completely
dependent on the accuracy of the adopted circuit models. By circuit models it is meant not
only the physical delay model used to quantify the delay of each component, but aso the
models for computing circuit component delay and the circuit delay itself. Such models are
strongly dependent on the circuit operation model, that is, whether the circuit is assumed to
operate in a synchronous or in an asynchronous manner.

Many of the existing timing verification techniques target at synchronous sequential
circuits. Thus, let us consider the issues arriving while estimating the maximal operating
frequency of a sequential circuit that may be represented as a Mealy finite state machine
(FSM). The Mealy FSM model, depicted by figure 1.1, divides the combinational part into

20

two distinct blocks: the next state logic and the output logic [GAJ99]. The next state logic
computes the next state variables while the output logic is responsible for the output signals. If
memory elements are edge-triggered flip-flops, then at each active clock edge the next state is
loaded into the flip-flops, becoming the current state. At that time, the next state begins to be
computed by the next state logic. Outputs may change as a consegquence of a change in current
state (stored in the flip-flops) or as a consequence of a change at the inputs or even both.

inputs
o1, I clock
v Y A ¢
VDl Ql
ARy
Q]
—»0,
P »D, Q o
. >
next s_tate - ARy output logic 2 > outputs
logic Qj :
—’on
> »D;, Q
FF,
» Q]

FIGURE 1.1 - Synchronous sequentia circuit model.

Consider that the next state logic has maximum and minimum propagation delays T nex:
and the, respectively, while the output logic has maximum and minimum propagation delays
Tout and toy, respectively. Consider also that the edge-triggered flip-flops present maximum
propagation delay Ty, setup time ts and hold time t,,. Then, in order to assure correct circuit
operation, the following conditions must be observed:

o T>maX{ (T + Thext +1s), (T + Tour) }, Where T isthe clock period
* thext >th

e circuit’s inputs must be stable and valid for a period greater than Te¢ + ts before
each active clock edge.

The derived conditions above are quite conservative but allow for a safe synchronous
operation. The first condition assures that clock period is long enough to accommodate the
worst case delay within the next state loop (Tt + Theq + ts) and the worst case delay for the
output logic (T + Toyu). The second condition avoids excessively short clock periods that
could prevent flip-flops from sampling valid new states. The third condition assures that the
input signals to the next state logic are computed in time, such that all outputs of this block
are stable and valid for an amount of time equal or greater than ts before the next clock edge.

In fact, the third condition may be disregarded if extra flip-flops are used to synchronize
the inputs. Moreover, the first condition is conservative enough to alow the outputs to be
sampled using the same clock phase applied to state flip-flops. In case a different phase is
available, this condition could beloosento t > max{ (T + Thex +ts) , Tout }-

21

Let us go a little bit further on evaluating how circuit operation model may affect the
procedure for estimating the clock frequency. Consider that the already discussed circuit
operation model is to be adopted and assume that inputs are synchronized by flip-flops that
are controlled by the same clock applied to the state flip-flops. If the variation in propagation
delays of flip-flops is not significant, one may assume that each combinational block operates
in a completely synchronous manner, in that propagation delay is a consequence of two
consecutive input vectors. However, if the propagation delays of flip-flops vary significantly,
combinational blocks operate in an asynchronous manner, as fast sequences of input vectors
were applied to the circuit before its outputs settle to their final values.

Another important issue is the critical delay estimation of combinational blocks, which
is a complex task per se. The most conservative approach relies on using the topological
delay, that is, the delay of the longest path in the circuit. However, more accurate techniques
test whether the longest path or paths are able to propagate transitions.

The considerations stated in the last two paragraphs are very important for developing
timing verification tools that are stimuli-independent or use simplified component models,
such as switch level simulators. However, in case of detailed circuit ssmulation, the circuit
operation model is implicitly considered in the context of circuit-level detailed models, such
as differential equations or signal waveforms.

Electrical simulation is the most accurate method for verifying the timing requirements
of CMOS circuits. Detailed electric level simulators such as Spice [NAG75] represent the
circuit as a network of passive and active elements (resistors, capacitors, inductors and
controlled sources) and solve the related system of ordinary linear differential equations for
each time step of the simulation run. Unfortunately, electric level simulation demands huge
execution times even for moderately small circuits. To speedup electrica simulation
relaxation methods have been proposed and used (equation relaxation in ELOGIC [KIM86]
and waveform relaxation in RELAX [LEL82], for instance). Even though, electrical
simulation cannot be used solely for determining time performance of state-of-the-art digital
designs.

An alternative to electrical simulation is timing simulation. Timing simulation is
accomplished by ssimplified electric level simulators, such as XPSIM [BAUS88], or enhanced
switch level ssimulators, such as Motis [CHA75], TV [JOU87] and Crystal [OUS85]. Timing
simulation is faster than electrical simulation because it uses less accurate models. In case of
Crystal and TV, for instance, effective resistances are used to model transistors. On the other
hand, results are less accurate than those obtained through electrical simulation.

There are three serious difficulties in using the smulation approach (electrical or timing
simulation) for verifying the timing requirements of circuits. The first is the execution time to
accomplish all necessary computations, which was already discussed. A second problem isthe
effort required for preparing a set of input patterns, since the simulation approach is stimuli
driven. Third one, and maybe the most stringent, is ensuring that the set of patterns exercises
the critical situation that determines the circuit’s critical delay. This constitutes a problem due
to the high complexity of current digital designs. For instance, a combinational network with
n inputs exhibits 2" possible input vectors. Even for medium combinational blocks, where nis
of the order 100, exhaustive circuit simulation would not be possible. Hence, determining a
minimum set of vectors that guaranteesto find the circuit delay is not trivial.

! Thisis known asthe critical path problem, which is discussed along the next chapters of this thesis.

22

Due to these difficulties, the input-independent approach has replaced simulation for
estimating the critical delay of VLSl circuits. This approach, known as timing analysis®,
represents each combinational block of the circuit as a weighted direct acyclic graph (DAG),
where nodes represent gates and edges represent connections. The weights of nodes and edges
represent the delays of gates and connections, respectively. The critical delay of each
combinational block is determined by analyzing the length of the paths in the graph.

The most naive solution relies on disregarding logic behavior of gates and assuming the
delay of the longest path as the critical delay of the combinational block. Hence, the critical
delay problem of a combinational block is reduced to finding its longest path, which can be
solved in linear time by the well-known topological sort algorithm [COR90]. Such approach,
referred to as static or topological timing analysis (TTA), was probably born with the IBM
PERT Project [KIR66] and was used by other timing analyzers such as[HIT82].

However, there may not exist any input pattern that exercises the longest path in the
circuit, or equivalently, it may never transmit any signal transition. In this case, the critical
delay may be smaller than the delay of the topologically longest path. Paths that never
transmit a signal transition are caled false paths [HRA78] (or unsensitizable paths). A
circuit may contain many false paths. In order to improve the accuracy of delay estimates,
timing analysis tools must take path sensitizability into account. Unfortunately, performing
false path-aware timing analysis constitutes a NP-complete problem and thus, many
assumptions must be done in order to obtain safe critical delay estimates.

Although some work has been done for allowing automatic generation of false path-free
circuits (e.g., [KEU91][SAL94][KUK97a][PRAOQ]), most of available high-level synthesis
systems may generate circuits with false paths [BER91].

In late years a lot of research has focused on developing efficient timing analysis
algorithms that consider the path sensitization problem. But as long as CMOS technology
evolves very fast and higher clock rates are continuously being demanded, improving the
accuracy of critical delay estimation is still an issue of relevant importance in design
verification.

Furthermore, some specific topics have not received sufficient attention yet. One such
topic is the applicability of functional timing analysis (FTA), i.e., fase path-aware timing
analysis, to circuits containing complex gates. Some works on logic synthesis have reported
the possibility of area reduction and performance improvements when static CMOS complex
gates (SCCGs) are used [REI98][RIES6]. However, timing analysis of circuits containing
complex gates is rarely mentioned in the literature. Indeed, only some of the existing
algorithms can handle such circuits. The study of functional timing analysis applied to circuits
containing complex gates is the main concern of thisthesis.

1.1 Thesis Organization

This thesis is organized as follows. Chapter 2 reviews the basic issues of the timing
analysis approach. Topological timing analysis is discussed in detail and the reason why it
may furnish too pessimistic estimates is addressed. Functiona timing analysis is then
introduced. The component delay models and the circuit delay computation models
underlying FTA tools are presented. The basic properties to assure that FTA furnishes safe
critical delay estimates are also presented.

2 Inthis thesis, the term timing verification is used to refer to any method that can verify timing requirements of
circuits. However, the term timing analysis will only be used for input-independent timing verification methods.

23

Chapter 3 presents a comprehensive collection of definitions that are necessary to
understand the theory behind FTA and the related algorithms.

Chapter 4 is devoted to the path sensitization problem. The three most important
sensitization criteria, the static sensitization, viability and the exact floating sensitization are
presented.

The main issues that are considered in the development of a FTA tool are presented and
classified in chapter 5. This includes the adopted sensitization conditions and the method used
to determine whether the sensitization conditions are satisfiable. This chapter also discusses
some of the most important existing a gorithms.

Chapter 6 justifies the use of CMOS complex gates in the design of VLSI circuits. It
also discusses the limitations of existing timing analysis methods for estimating the delay of
circuits containing such type of gates. A new solution for performing functional timing
analysis of circuits containing complex gates is then proposed. This solution relies on
extending the three-valued timed cal culus used within the timed-test generation procedure of
Devadas et al. [DEV93a] in order to handle complex gates in a friendly manner (i.e., without
using macro-expansion). The advantages and disadvantages of the proposed solution are
discussed.

Finally, some concluding remarks are offered.

The appendices bring extra information on specific topics. Appendix 1 justifies the
importance of taking into account false paths by studying false paths in carry-skip adders.
Appendix 2 presents an informal evaluation of the time complexity of the best-first algorithm,
used by path enumeration-based FTA tools. Appendix 3 is an extended abstract of the thesis
in portuguese.

This thesis may also be used as a quick introduction to the basic concepts on timing
analysis and timing models used within high level and logic level synthesis algorithms.
Chapters 1 and 2 introduce most of the necessary concepts without using any formalism. For
those interested in going further, the definitions presented in chapter 3 are essential, though.

24

25

2 The Timing Analysis Approach

During the 80's, as design complexity augmented quickly, the verification of timing
requirements of circuits through simulation became impractical due to the increasing
execution time demanded and also to the difficulty in determining a safe set of input vectors
that proven to exercise the critical delay situation. Then, the attention was turned to stimuli-
independent verification methods, in opposition to simulation methods.

But even before, more precisely in 1966, Kirkpatrick and Clark [KIR66] proposed the
use of the management method called PERT (Program Evaluation Review Technique) to
estimate the critical delay of circuits. In their work, a combinational block was represented as
aweighted direct acyclic graph (DAG), with the nodes representing circuit gates and the edges
representing circuit connections. The longest path in the DAG was discovered by using the
topological sort algorithm [COR90] and its delay was assumed to be the critical delay of the
block.

The idea of using PERT to estimate critical delay of combinational circuits was retaken
by Hitchcock in the development of its “Timing Analyzer” program [HIT82], which also
came up with the innovative concept of signal time slacks. Also the expression timing
analysis, currently used by EDA community to designate any input-independent timing
verification tool, seems to be borrowed from Hitchcock’ s work.

However, there may not exist any input pattern® that exercises the longest path in the
circuit, in the sense that no signal transition (or event) can propagate along it. Since PERT-
based timing analysis disregards the logic behavior at circuit's nodes, it may furnish a
needless pessimistic critical delay estimate. In addition, the fact that PERT-based timing
analysis considers only circuit topology has motivated some authors to call it topological
timing analysis (TTA) (e.g., [DEV94]).

Paths that never transmit any signal transition are called false paths [HRA78]. (Some
authors also use the term unsensitizable paths.) A circuit may contain many false paths. The
problem of determining whether a path may be exercised or not is referred to as the path
sensitization problem or as the (general) false path problem [DUB89]. According to
[MCG89], although false paths were known for some time, the first complete discussion on
this topic was due to Hrapcenko, who designed a parametric circuit to show that for some
circuits the true delay could differ from the topological critical delay [HRA78].

Early timing analysis tools took into account false paths by allowing case analysis. The
Timing Anaysis program (TA) from Hitchcock [HIT82], for instance, had a facility called
delay modifiers that could be used to indicate paths that, in the designer’s opinion, would
never be activated. However, aslong as manual detection of all false paths in complex circuits
is impossible, since early it became clear that automatic false path detection should be
pursued. The first attempts for including automatic false path detection was the work of Brand
and lyngar [BRAB88] and that of Benkoski et al. [BEN87]. Since then, most of research in
timing analysis has concentrated on this issue, looking for agorithms that could lead to
accurate delay estimates in a reasonable amount of time. More recently, timing analysis

® The majority of existing timing analysis techniques do not consider explicitly all possible input patterns.
Actudly, the definition of which patterns are allowed depends on how inputs are assumed to be made of, what is
taken into account by the adopted circuit delay computation model (see section 2.3).

26

techniques that consider false paths have been termed functional timing analysis (FTA)
[ASH95][KUK97]. Such terminology is also adopted in this text.

This chapter is concerned with the basic aspects underlying the timing analysis
approach, with specia attention to the models used in FTA. Section 2.1 describes how the
topological sort algorithm is adapted to perform TTA. In section 2.2 the false path problem is
introduced by means of two circuit examples. Section 2.3 discusses delay computation models
in the context of FTA, showing that circuit delay computation depends on the type of inputs
considered. It also associates the possible types of inputs to circuit operation models and to
the so-called modes of operation. Section 2.4 summarizes the most relevant physical
component delay models, while section 2.5 presents the gate delay computation models
commonly used in FTA tools. Section 2.6 discusses the correctness and robustness properties
of timing analysis algorithms. Such properties alow us to evaluate whether a given FTA
technique is able to furnish safe delay estimates or not and in affirmative case, how accurate
such estimates are. Finally, section 2.7 gives an overview on the spectrum of model
possibilities while implementing a FTA tool.

2.1 Topological Timing Analysis

Any timing analysis technique represents each combinational block as a weighted DAG.
In this DAG nodes are associated with gates and edges are associated with connections
(sometimes, nets). The delay of each gate (connection) may be stored at the respective node
(edge). Another possibility is to concentrate (or lump) at each node (or edge) the sum of the
delays of the gate and its output connections. This choice depends on the data structure used
to store DA G information and on the accuracy of physical models used to estimate component
(gates and connections) delays. Dummy nodes, i.e., nodes with zero delay, represent primary
inputs and primary outputs. Frequently, source and terminal (dummy) nodes are added to the
DAG to transform it into a canonical DAG. This may help the devel opment of graph traversal
functions that operate both forward and backwards. In a canonical DAG representation, any
complete path assumes the form (s, €, Vo, €, Vi1, €1, --., Vi, €n, Vie1, &, 1), Where vo and viig
represent the primary input and the primary output, respectively, s and t are the source and
terminal nodes and e; and e are dummy edges. Figure 2.2 shows a DAG representation for the
circuit of figure 2.1.

>
b
NAND5
NAND3

INV1

e sy

NAND4
NANDG6

d _AD_*' E NAND2

NORO

NAND7

FIGURE 2.1 - Combinational circuit example.

27

Topological timing analysis finds the longest path in the DAG, which corresponds to the
path with greatest delay, and assumes it as responsible for the critical delay of the circuit. This
is accomplished by using the topological sort algorithm [COR90], which is known to execute
in linear time with respect to the graph size. It aso may compute the time slack of signals,
which can be used in a performance optimization step.

0

2
5 6,7,
@ 8,10,2

2
0 0
L o) ey w0
11,12,
2 9,10,1

Notation
td
td = delay of the gate
AtRt,S
7,1 At= arrival time of signal
Rt =required time of signal
1,21 i

S = slack of signal

FIGURE 2.2 - Processed DAG for the circuit example of figure 2.1.

Let us illustrate the topological timing analysis procedure on the circuit of figure 2.1.
(DAG of figure 2.2 holds the timing information gathered from such procedure.) For the
current example, assume that graph edges represent circuit nets (instead of connections).
Assume also that the delay of the gates and their output nets are lumped at graph nodes. For
any circuit signal e a 3-tuple of timing values is calculated and annotated at the related graph
edge: the arrival time of e, At(e) which is the time that the signal at edge e settles to its final
(steady state) vaue, the required time of e, Rt(e), which isthe time at which the signal at eis
required to be stable and the slack S(e), calculated as the difference between the required time
and the arrival time (Rt(e)-At(e)). The arrival times of the primary inputs and the required
times of the primary outputs are set by the timing constraints for the block under analysis.
Non-zero arrival times for the primary inputs may be necessary in case of hierarchical
analysis. The topological analysis begins by computing the arrival times for each signa in a
forward manner, beginning from the primary inputs. The arrival time of a signal e, which is
the output of node v, is calculated by:

At(e) = max| {At(e } +d(v) (2.1)

where d(v) is the delay of the gate represented by v and g is the set of input signals to v. Once
the arrival times of all primary outputs are calculated (or alternatively, nodet is reached), the
procedure performs a backward step for calculating the required times of signals, using the
required times of primary outputs. The required time of asignal eis calculated by:

Rt(e) = min| {|Rt(e) - d(v,)} (2.2)

where v; represents the gates that have e as fanin and g are the output edges (nets) of such
gates. Having calculated the required time of a signal, its slack can also be computed.

28

Sometimes this computation of arrival times, required times and slacks is called delay trace
through the network [DEV 94].

Once the graph has been completely processed, the topologically longest path or
topological critical path is the path where each signal has the minimum slack and can be
easily traced. In this example the topological critical path is (s, d, NAND7, NORO, NAND2, INVO,
NAND1, z, t), with delay 11 and slack 1. The slack is also a measure of the criticality of paths
and may be used for identifying gates for resizing and/or buffer insertion points in case of a
delay optimization procedure [JU91][JOU87][CHES34].

Although topological timing analysis may overestimate the critical delay of circuits, it
surely is an upper bound on the critical delay of a combinationa circuit. Indeed, most of
existing high-level and architectural-level synthesis tools still use it as a fast means of
verifying the timing requirements of designs, since at these levels there is an implicit lack of
accuracy in physical delay models of components. However, as operating frequency of VLSI
designs enters the gigahertz range, more accurate delay estimates are demanded. Hence,
considering path sensitizability is mandatory. In the next section the false path problem is
introduced by means of two circuit examples.

2.2 False Paths

Currently, timing, power, area and testability are the criteria used to guide design
optimization during synthesis. Unfortunately, most of optimization procedures introduce
redundancies into designs [KEU91], which constitute one known source of false paths.

If input vector v does not activate a path P, then P is said not to be sensitizable by v. If P
is not sensitizable by any input vector, then Pis said to be false.

Consider Hrapcenko's circuit [HRA78] shown in figure 2.3. Assume that all gates have
delay equal 1 and wires have zero delay. Its topologically longest paths are P1=(i1, G1, Gy, Gs,
Gy, Gg, Gy, Gg, h) and P2:(i2, Gy, Gy, G3, Gy, Gg, Gy, Gg, h), both with delay 7. However,
while i3=0, no signal transition can propagate from a to b. Similarly, while is=1, no signal
transition can propagate from d to f. Aslong as asignal cannot assume two logic values at the
same time, the only possibility to sensitize P; and P, is allowing a sequence of vectors to be
applied at circuit’s inputs such that i;=1 at time 1 and i5=0 at time 4. However, if only pairs of
vectors are alowed, then the previous case is nhot possible. Then, paths P, and P, are false and
the circuit delay islessthan 7.

iy a b h
iy G, C d e

FIGURE 2.3 - First example of false path: Hrapcenko’s circuit.

29

Some classes of circuits are designed to purposely make the topologically longest paths
false, as a strategy for reducing its critical delay. One such a class is composed of carry-skip
adders [KEU91][DEV94][LAM94]. Figure 2.4 shows a 2-bit carry skip adder (csa2). Higher
order adders may be obtained by connecting together csa2s through the carry chain. In this
case the topologically longest path will include the carry chain, which in a single csa2 as the
one showed by figure 2.4 corresponds to path P=(c0, n0, n1, n2, n3, n4, c2), in bold. Thus, to
determine the critical delay of a higher order csa adder, one must begin by anayzing the
sensitizability of such path.

Suppose al gates of the csa2 of figure 2.4 have unit delay and wires have zero delay.
Assuming only pairs of vectors at the circuit’s inputs, in order to sensitize path P, p0, g0, p1,
g1, ctrl_nand n5 must be 1 at times 0, 1, 2, 3, 4 and 5, respectively. However, if p0O, g0, p1
and gl are made fixed at 1, ctrl_n will be fixed at 0 and no transition will reach n4. On the
other hand, no input pair of vectors satisfies pO=1 at time O, p1=1 at time 2 and ctrl_n=1 at
time 4. Thus, path Pisfase.

Moreover, late transitions at cO (i.e., transitions arriving after time t=0) do not change
the sensitizability of path P. This means that in any higher order adder made up from this csa2
the topologically longest path is false. Appendix 1 presents a detailed ad hoc analysis of csas,
using fixed non-unit delay and assuming different fall and rise gate delays.

cO [
0
!
mux2-1
a0 n5
— pO no nl " i
e ", n2 n3
(S :)u
b0 .

ctrl_n

sl

bl

FIGURE 2.4 - Second example of false path: a 2-bit carry-skip adder.

30

2.3 Functional Timing Analysisand Circuit Delay Computation Models

As mentioned in chapter 1, the accuracy of any timing verification tool is completely
dependent on the accuracy of the adopted circuit models. Furthermore, in the specific case of
timing anaysis tools, some assumptions on circuit operation are also required to improve
critical delay estimation, what will become clear in the following paragraphs.

The topological timing analysis procedure presented in section 2.1 may lead to
significant overestimation of critical delay because it ignores the logical behavior of circuit
gates. Considering different fall and rise gate delays in that procedure is easily accomplished
and may result in significant improvement of the estimation accuracy [GUN98][GUN984]. In
a certain manner, the use of different fall and rise gate delays may be seen as a very crude
model for circuit operation, which, however, does not take fal se paths into account.

Due to the false path phenomenon, the critical delay of a circuit may be less than the
delay of its topologically longest path. The difference between the topological delay and the
actua critical delay cannot be neglected in the context of an automated design process since
the designer does not have total control on the resulting generated structure. Further, even for
some hand-made designs the delay estimated by a topological analysis may be too pessimistic
and more accurate estimations would be highly desirable. (That is the case of carry-skip
adders [KEU91][LAM94][DEV94] and some multipliers.)

In order to take false paths into account, it is necessary to revise the concept of critical
delay of a (combinational) circuit. A path-based definition would state that “the critical delay
of acircuit isthe delay (or length) of its longest sensitizable path”, also mentioning that “there
may exist more than one critical path” [CHE93]. Although correct, this definition is quite
limited since not al of the false path-aware timing analysis agorithms work on a per-path
basis.

A more general definition can be found by examining the circuit operation model and
realizing that the essence of timing analysis should be the capture of the exact instant at which
the slowest circuit output(s) settle to its (their) steady-state value(s). Of course, one possible
solution relies on testing the sensitizability of each circuit path, beginning by the longest one.
However, thisis not the only possible solution. Indeed, state-of-art timing analysis techniques
(or algorithms) operate on sets of paths at a time, what generally results in less computation
time. Timing analysis algorithms that considers false paths fal into the functional timing
analysis (FTA) category, and will be discussed in chapter 5.

Having posed the FTA problem from a new point of view, it is possible to redefine the
delay of acircuit. The delay of a circuit under a given input pattern is the minimum amount
of time after which all of its outputs are settled to their steady-state values. By extension, the
circuit's critical delay corresponds to its greatest delay, considering al possible input
patterns. For the sake of simplicity, we may refer to the critical delay of a circuit just as delay
of thecircuit (or circuit delay), since thisis the parameter of interest in thisthesis.

Note that the previously stated definitions implicitly consider path sensitizability.
However, what exactly constitutes an input pattern is not clear. This point was intentionally
left open in order to make the definition of critical delay independent of the circuit operation
model. In redlity, the definition of what constitutes a valid input pattern depends on how the
circuit is assumed to operate and will be considered within the circuit delay computation
model.

The concept of circuit delay computation model was motivated by the observation that
the delay of a circuit depends on the nature of its inputs, that is, whether the inputs are

31

assumed to be made of pairs of vectors or sequences of vectors. To illustrate this, consider
the test circuit of figure 2.5a (borrowed from [LAM94]), with gate delays as assigned inside
each gate. The longest path of this circuit is (a, ¢, f, y), with delay 5. If the inputs are
considered to be made of pairs of vectors, then the latest output transition occurs at t=1. A
possible input combination that generates a latest output transition is shown in figure 2.5b. On
the other hand, if the inputs are considered to be made of sequences of vectors, then the latest
output transition occurs at t=3. A possible input vector sequence that leads to this late output
transition is shown in figure 2.5c. These results confirm that circuit delay may differ
according to the type of applied inputs.

a —4 c
'2\ d 1 ! 1 \
= _J
b < e
(€Y
Vo Vi Vg V1 V2
\ t l & X tol
a a —l
b b
C Cc |
d d I
€ e
f f
y y
—— /
delay=1 delay=3
(b) (©

FIGURE 2.5 - The delay of circuits depends upon the type of inputs considered.

In order to compute the delay by a pair of vectors, it is assumed that a vector v; is
applied at t=—co and a second vector v, is applied at t=0. The delay of a circuit is then defined
as the maximum arrival time of the last output transition over all possible pairs of vectors.
From the definition it becomes clear that all circuit nodes are assumed to be settle to their
stable values with respect to v; by the time vector v, arrives.

Using the delay by pairs of vectors to estimate the circuit’s critical delay is equivaent to
assuming that the circuit operates in a fully synchronous manner. This type of operation has
been referred to as the transition mode and the critica delay thus obtained is called
transition delay of the circuit [DEV92].

32

It has been conjectured that the transition delay is the exact delay of a circuit [SIL99].
Indeed, this would be true if one could always guarantee a fully synchronous operation of
combinational blocks within synchronous circuits. However, memory elements may present
different propagation times that can lead to the misalignment of inputs. Also, a supposed
benefit of the transition delay method is that, besides the delay estimation, it generates the pair
of vectors responsible for this delay, thus alowing the certification of this delay through
circuit ssimulation.

An implementation of transition delay calculation is proposed in [DEV92] and
[DEV94q]. It uses symbolic simulation aong with some sophisticated delay computation
model. Further improvements concerning event suppression were proposed in an attempt to
reduce the time complexity of this symbolic simulation based implementation [DEV94b]. The
transition delay method presents severe disadvantages that have prevented its use in practical
FTA tools, however. Firstly, the search space for determining the critical input vector pair
situation is 22", with n being the number of primary inputs to the circuit. Secondly, the delay
computation model used, the bounded model (see section 2.4), makes the symbolic simulation
extremely expensive from the computation's point of view.

The problems with delay by pairs of vectors (transition mode) have motivated the
massive use of the single vector approach. The single vector approach is an approximation of
the delay by sequences of vectors. It conservatively assumes the nodes of a circuit to be
arbitrary, i.e. "floating", before they are settle by a single input vector v. The delay of the
circuit is the latest settling time over al possible single vectors vi. The assumption of floating
nodes comes from the fact that the circuit may be still propagating the input vectors applied
before v, what would cause the circuit nodes to be floating. In the literature, the assumption of
the single vector approach is incarnated by the designation of “floating mode of operation”
[CHE91] and the delay thus obtained is referred to as the floating delay of the circuit.

The only known implementation of delay by sequence of vectors is presented in
[LAMO93] and [LAM94]. It is based on a sophisticated formalism called timed Boolean
functions (TBFs), which is claimed to unify the Boolean and the timing behavior of circuits.
The problem with this implementation is that due to the complex formulation, it demands
significant computation effort, mainly if mode detailed delay models are to be used.

Although delay by sequences of vectors would be desirable, the majority of existing
FTA algorithms adopts the single-vector (floating) delay computation model due to its ease of
implementation and smaller computational cost. Moreover, it has been reported in [LAM94]
that for most practical circuits made of simple gates the delay by sequences of vectors and the
single vector delay are coincident. And for the cases where they are not coincident, single
vector delay is an upper bound on the actual circuit delay, while the delay by sequences of
vectors is the exact delay. Also, single-vector techniques may use many of already existing
test generation algorithms.

2.4 Component Delay M odels

Component delay models refers to the physical model (also called circuit-level model)
used to estimate the delay of each circuit component, thus obtaining individual delay
information that will be used to determine the delay of the circuit as awhole. This information
is generally expressed in terms of equations that use parameters derived from extensive
transistor-level and/or device-level simulation of circuit components.

33

Logic synthesis tools as SIS [SEN92] generaly use the linear delay model, which is the
simplest physical model. In the linear delay model of SIS, for instance, the delay across a pin
i, d(i), of agateisgiven by:

di) = A@) +B@) xCi)) (2.3

where A(i) is caled transport delay for the gate at pin i, B(i) is the inverse of the drive
capability of the gate and C,(i) is the total capacitive load of the net represented by i, lumped
at the output of the gate. Although this simple model does not take into account some
important features of CMOS technology (e.g., short channel devices, slow input ramps and
body effect), it is still used by the majority of logic synthesis tools because it does not require
too expensive computations.

However, the study of more sophisticated delay models appears as a major subject of the
work donein the timing verification field during the first half of the 80's. Probably, thisis due
to the fact that these works were directly related to the development of new microprocessors.
This was the case of Ousterhout’s Crystal [OUS85] and Jouppi’s TV [JOU87], which were
used in the timing validation of the RISC Il and MIPS microprocessors, respectively.

Crystal divides the circuit into stages to evaluate the delay. A stage is defined as a chain
of transistors and nodes between a signal source and a place where the signal is used. Hence,
a stage may represent not only the MOS transistor chain up to the gate output but also any
pass transistor chain being driven by the gate. A natural consequence of this switch-level
modeling of MOS circuits is that the delay of connections would be implicitly considered
within stages. Crystal has three physical delay models: the lumped RC model, the lumped
slope model and the distributed slope model. In the lumped RC model each transistor typeis
characterized by two resistance values, being one for the case when the transistor is
transmitting a logic 0 and another when it is transmitting alogic 1. These values are given in
Ohms per square and are multiplied by the transistor’s W/L to obtain the effective resistance.
The delay through a stage is computed by lumping al resistances and capacitances. The
lumped slope model incorporates information about waveform. Each waveform is represented
by its inversion time and its rise time. This tries to model the effect of the load being driven
by the stage on the effective resistance, leading to a more accurate delay estimation. The
lumped model is too pessimistic in estimating the delay of distributed capacitances. The
distributed slope model is similar to the slope model except that, instead of assuming all RC
lumped, it uses the results of Penfield and Rubinstein [RUB83] for the delay of RC trees.

TV uses also the Penfield-Rubinstein model but with two simplifications: only the
waveform estimate is computed, instead of the bounds, and only one path is assumed open
through a tree of pass transistors. This reduces the accuracy of the model because the
influence of the input ramp slope is only roughly considered.

The formerly cited physical models use linear elements to approximate the behavior of
transistors which is non-linear in its essence. Thus, it is not a surprise that a significant error
may occur. Looking for more accurate delay estimations, Horowitz has proposed the use of
non-linear elements for dealing with both transistors and interconnection networks [HOR84].
In his formulation the input ramp slope is modeled by a hyperbolic function while the
transistor is modeled by a simple quadratic function.

A third possibility for delay modeling is to use explicit formulation. According to this
approach the delay is estimated by using a closed formulation that includes parameters for
technology characterization. Some of these parameters may be obtained from device
extraction while others may come from exhaustive electrical simulation. But once the target
technology is appropriately characterized, the delay of circuit componentsis estimated only by

34

using the formulae, without any other supporting means as, for instance, electrical simulation.
Examples of explicit analytical formulations are the apha-power model [SAK88] and the
explicit formulation of [DESS88].

In the explicit formulation of [DES88] the delay of an inverter with minimum W and L
is used as a standard measure for a given technology. To this delay quantity various correction
terms may be applied in order to generalize the delay estimation to nor and nand gates,
possibly with Wn/Wp#1. To consider the effect of slow input ramp a correction term was
added latter to the formulation [AUV90]. Recently, the formulation was revised in order to
account for the effects of submicronic technologies [DAG99].

Recent advances in CMOS technology have shrinked device dimensions to nanometers.
Many electrical effects that were formerly disregarded in micronic technologies became very
important in current submicronic (or nanometric) technologies and constitute sources of errors
that may compromise the correct operation of complex designs. A practical example of such
phenomenon is the effect of circuit interconnections. In submicronic technologies the delay of
interconnections is considerable and frequently dominates the delay of circuit gates
themselves. Hence, physical delay models for interconnections begin to play a very important
role in the delay estimation. The basic models for interconnection analysis are those that
evauates RC networks as the EImore’'s [ELMA48], Sakurai’s [SAK83], Penfield-Rubinstein
[RUBB83], Horowitz [HOR84] and aso the models of Crystal. With the advent of submicronic
technologies interconnection analysis has come into focus again and several works that
simultaneously consider gate and connection delays have been published. A referential work
was the interconnection analysis program called RICE [RAT94], that uses a technique known
as AWE (Asymptotic Waveform Evaluation), which is based on the moments of the impulse
response. Currently, several other works are being developed for modeling the delay of gates
and connections for submicronic technologies (e.g., [FOR97][HIR98]).

A more detailed discussion on physical models for component delay calculation is
beyond the scope of this work. A good review on this issue may be found in [UEB95], which
also presents an analytica semi-empirical delay model that uses a latency time and an
effective linear resistance to model the exponential region of the output curve of a stage.

2.5 Gate Delay Computation Models

The simplest gate delay computation model is known as the fixed delay model
[DEV94]. It assumes that the delay of a gate is a fixed value d. A natural extension to this
model is to assign a fixed delay value d; to each input i of a gate. Another variation is to
consider separate falling and rising delays by either assigning a single pair of delays [df,dr] to
the gate or assigning a pair of delays [dfi,dr;] to each input i. The assignment of a fixed delay
or apair of fixed delays per input is also referred to as pin-to-pin delay.

One important issue that arrives in timing analysis is that it is not intended to provide
the critical delay of a single manufactured instance but the delay of the entire family of
manufactured circuits of the same design. In this sense, the use of TTA aong with maximal
individual gate delays leads just to an upper bound on circuit delay. However, current
submicronic designs demand more accurate delay estimations (at least tighter upper bounds),
what, from the computational's point of view, can be accomplished by using the FTA
approach. On the other hand, the use of maximal gate delaysin FTA is not sufficient to assure
that the estimated circuit delay really represents an upper bound over the entire family of

35

manufactured circuit instances. due to the sensitization phenomenon, maximal individual gate
delays may result in an underestimation of circuit delay, what would be an unacceptable
erroneous prediction. This phenomenon is known as the monotone speedup failure
[MCG91] and will be commented in more detail in the next section.

In order to assure that FTA will not underestimate circuit delay, gate delays must be
specified within a bounded interval [d™",d™], where d™" and d™ represent the minimum
and the maximum delay of the gate, respectively. This is the so-called bounded delay model
and is the model underlying the transition delay computation. The bounded delay may also be
assigned in pin-to-pin format. A modification on the bounded delay model consists of
considering d™" =0, which is commonly referred to as unbounded delay model (meaning
unbounded bellow)*. As it will be shown in the next section, this is the model used for
computing the floating delay under the monotone speed up property.

The previously described gate delay models implicitly divide signal magnitude into two
values, either 0 or 1. Obviously, a more detailed analysis could be performed if signals were
represented with a multi-valued logic. In the case of aternary logic, for instance, a signal may
assume one among the values (0,1,X) at a time, where X represents signal magnitudes
between the O-threshold and the 1-threshold. Ternary logic has been used for hazard detection
and logic simulation [SEG89]. In [MCG93], ternary logic was formalized to be used in the
FTA context, with the addition of the third state (X) to both bounded and unbounded models,
originating the extended bounded delay model (XBD) and the extended bounded-zero
delay model (XBDO), respectively.

2.6 Robustness and Correctness of FTA algorithms

In order to furnish a safe delay estimate any FTA algorithm must satisfy two properties:
robustness and correctness. By safe estimate it is meant a delay value that reflects a tight
upper bound on the delay of all design instances after fabrication. (In fact, the later statement
isan informal definition of the correctness property.)

The robustness property was originally named monotone speedup property by McGeer
and Brayton [MCG89][MCG91]. It basically says that the use of maximal individua gate
delays does not guarantee the estimated delay to be an upper bound on the actual delay of the
whole family of manufactured circuit instances. As a consequence, the use of such an
estimated delay value would be useless for design validation, since it may exist one or more
circuit instances exhibiting greater delays.

Let us examine the circumstance under which the robustness property would fail. In the
analysis of a single design instance, the assumption of maximal individual gate delays may
lead to a sensitization situation in which the longest path declared as sensitizable exhibits a
delay which is smaller than that of the topologically longest path. It means that there is at |east
one unsensitizable path with delay greater than the circuit’s topological delay. Suppose that a
second instance of the same design is to be analyzed. Suppose also that one or more gatesin
this other instance present individual delays which are smaller than their correspondent
maxima. Due to Boolean and timing relations between circuit gates, the path sensitizability
analysis may lead to a situation in which the path declared as sensitizable exhibits a delay
which is greater than the delay of the longest sensitizable path of the former analyzed

“ Maybe, amore appropriate designation would be bounded-zero delay model.

36

instance. This failure in circuit delay estimation was originally called the monotone speedup
failure [MCGB89].

Let {C4,Co,...,Cn} be nfabricated instances of a combinational circuit C. The robustness
property can be defined as follows. (Taken from [SIL99], with modifications.)

Definition 2.1: robustness property

For each true path Pin C;, (i=1, 2,..., n) there must exist atrue path Q in the slowest C;
such that d(Q) = d(P), where d(P) (d(Q)) isthe length or delay of path P (Q).

By true path it is meant exactly (floating-mode) sensitizable path (see subsection 4.2.4).

Assuring that a FTA agorithm follows the robustness property is not sufficient,
however. As observed by severa authors (e.g., [MCG89], [CHE93], [PES94]), it isimperative
not to underestimate the critical delay of a circuit. Otherwise, any of the fabricated instances
may present an erroneous operation.

The correctness property may be defined as follows. (Taken from [SIL99]).

Definition 2.2: correctness property

For each true path P in C, there must exist a path Q such that d(Q) = d(P), where d(P)
(d(Q)) isthe length or delay of path P (Q), which is sensitizable under the adopted set of
sensitization conditions.

Equivalently, the property says that the set of conditions used to test paths sensitizability
must not underestimate the delay of the critical path.

It is clear that while the robustness property refers to the gate delay computation model,
the correctness property concerns the circuit delay computation model. The correctness
property also appears as “critical path correctness’ in [CHE93] and as “delay correctness’ in
[PES94]. Both [CHE93] and [PES94] also refer to the path sensitization correctness property,
according to which a FTA algorithm (and the embedded set of sensitization conditions) is
considered correct if it may not declare atrue path as unsensitizable.

The previously presented properties are used in the evaluation of the existing FTA
techniques, including the set of conditions used to test path sensitization.

2.7 Delay Computation Models, Path Sensitization and FTA Algorithms

Since the middle 80's a lot of work has been developed focusing on agorithms for
accurately determining the delay of circuits (that is, FTA techniques). However, a systematic
classification of existing methods is still very difficult because FTA techniques may differ by
various aspects:

1. thecircuit delay and gate delay computation models,

2. the set of conditions used to test path sensitizability, aso called sensitization
criterion,

3. and the method used to test whether the sensitization conditions are satisfied or not.

Circuit delay and gate delay computation models have already been addressed in
sections 2.3 and 2.5, respectively

37

Several path sensitization criteria are found in the literature (e.g., [BRA88], [DU89],
[MCG89], [PER89], [BEN90Q], [CHE9]], [DEV91] and [DEV93]). The most representative
ones, static sensitization [BEN90], static cosensitization [DEV91], viability [MCG89] and
exact floating-mode sensitization [CHE91], are presented in chapter 4. Chapter 4 begins by
investigating the robustness of transition mode and floating mode-based delay estimations.

Sensitization criteria are only a part of FTA agorithms. The other part concerns the
delay computation agorithm (or technique) itself. Delay computation a gorithms may work on
a per-path basis, testing the sensitizability of one path at a time, or may work on sets of
paths simultaneously. For testing sensitizability, they may assign logical values to circuit
nodes, as done by traditiona ATPG methods (ATPG-based), or may use satisfiability
methods (SAT-based). Hence, there are various possibilities for computing circuit delay.
Such possibilities are further detailed in chapter 5, which also describes some of the most
relevant methods.

Next chapter reviews the terminology related to FTA.

38

39

3 Timing Analysis Related Terminology

Aslong as timing analysis uses many concepts from test generation and logic synthesis,
a revision of the definitions from these areas is concentrated in this chapter. Other timing
analysis related terminologies, as well as some definitions from delay testing, are aso
presented. The chapter is divided into three sections. The first section presents Boolean
algebra definitions, used in logic synthesis. Test generation definitions are presented in the
second section. The last section is devoted to the definitions that are common to delay testing
and timing analysis aress.

3.1 Boolean Algebra

The binary Boolean algebra, considered in thisthesis, is defined by the set B={0,1} and
the operators + and [J, caled digunction and conjunction, respectively, which satisfy the
commutative and distributive laws. The digunction operator, also called sum or OR operator,
has 0 as identity element. The conjunction operator, also called product or AND operator, has
1 asidentity element.

Any element a [0 B has a complement, denoted by a, such that ala=0 and a+ a=1.
The Boolean algebra differs from an ordinary algebra in that distributivity applies to both
operations and because of the presence of a complement. Table 3.1 shows the main properties
of the Boolean algebra.

TABLE 3.1 - Main properties of the Boolean algebra.

at(b+c)=(atbh)+c associativity
allblc) = (alb)[c associativity
a+a=a idempotence
al@=a idempotence
a+(al)=a absorption
alla+b)=a absorption
(a+b)=alb De Morgan
(a[b):a+6 De Morgan
a=a involution

The multi-dimensional space spanned by n binary-valued Boolean variables is denoted
by B". It is often referred to as the n-dimensional cube, because it can be graphicaly
represented as a hypercube. A vertex in B" is represented by a binary-valued vector of
dimension n. When binary variables are associated with the dimensions of the Boolean space,
avertex can be identified by the values of the corresponding variables.

40

A literal is an instance of avariable or of its complement. For instance, a and a are the
literals associated to the variable a. A product of n literals denotes a vertex in the n-
dimensional Boolean space and is considered as a zero-dimensional cube. Products of literals
are frequently called cubes.

Consider the 3-dimensional Boolean space, represented in figure 3.1, with its variables
a, b and c. A vertex in the Boolean space can be expressed by the product of n=3 literals, for

example abc (the symbol Ocan be omitted), or equivalently by the row vector [100]. An
arbitrary subspace can be expressed by a product of literals, for example, ab, or by the row
vector [11X], where X means that the third variable can take any value.

011 111 a'bc abc

001 101 abc ab’'c

b 010 110 a'bc’ abc’

v owl w” wd wd”

FIGURE 3.1 - Cube representation for the 3-dimensional Boolean space.

Definition 3.1: completely specified Boolean function

A completely specified Boolean function is a mapping between Boolean spaces. An n-
input, m-output Boolean function is a mapping f : B" a B™, where B"={0,1}" and
B™={0,1}™

An n-input, mroutput Boolean function can be seen as an array of m scalar functions
over the same domain, and therefore the vector notation is used.
Definition 3.2: incompletely specified Boolean function

An n-input, mroutput incompletely specified Boolean function is a mapping
f:B"a Y™, where B"={0,1}" and Y"={0,1,X}™ The symbol X is used to denote the
points where the function is not defined and is called don’t care condition.

Definition 3.3: on set, off set and dc set

For each output of an n-input, m-output Boolean function, the subsets of the domain for
which the function takes the values 1, 0 and X are called on set, off set and dc set,
respectively.

Consider asingle output Boolean function f.

Definition 3.4: support

Let f(X1,%2,...,.%n) be a Boolean function of n variables. The set {x1,%,...,%} is called
support of f.

4

Definition 3.5: cofactor

The cofactor of f(x1,Xz,..., Xi,...,%a) with respect to variable x; is fi=f(x1,%z,...,1,...,%). The
cofactor of f(X1,Xz,..., Xi,...,Xn) With respect to variable x; is f; =f(X1,X2,-.,0,. -+, Xn).

Definition 3.6: Boolean expansion (or Shannon’s expansion)
Let f: B" a B. Then f(X,%,.... X, X,) = % OF, +;i 0= = (X% +f;)[{;i+ f.)
Oi=1,2,...n.

Definition 3.7: minterm
Any Boolean function f : B" a B can be represented as a sum of products of n literals,
called minterms of the function, by recursively applying the Shannon’s expansion.
After a complete expansion, a Boolean function can be interpreted as a set of its
minterms.

Frequently, set operators are used instead of Boolean operators. This is because
operations and relations on Boolean functions over the same domain can be viewed as
operations and relations on their minterm sets. For example, the sum and the product of two
functions are the union (Y) and the intersection (I) of their minterm sets, respectively, while
implication between two functions corresponds to the containment () of their minterm sets.

Definition 3.8: unate/binate function
A function f(xy,X2,..., Xi,...,Xn) iS (positive/negative) unate in variable x; if f O f;
(fs O f;). Otherwise it is binate (or mixed) in that variable. A function is
(positive/negative) unate if it is variable (positive/negative) unate in all support
variables. Otherwiseit is binate (or mixed).
Definition 3.9: Boolean difference
The Boolean difference of f(x3,xz,..., X;,...,Xn) With respect to variable x; is defined as
o lox =1, O f;.

The Boolean difference of f with respect to x; indicates whether f is sensitive to changes
in input . When it is zero, then f does not depend on x and x; is said to be unobservable.
This concept is of great interest in test generation.

Definition 3.10: consensus

The consensus of f(xg,%2,..., Xi,...,Xn) With respect to variable x is defined as
C.(f)=1, Df;i.

The consensus of f with respect to x; represents the component that is independent of x;.
The consensus can be extended to sets of variables. C,C, (f) =C, (f,, Elfrﬂ)

Definition 3.11: smoothing

The smoothing of f(x3,Xp,..., Xi,...,X,) With respect to variable x is defined as
S.(f)=f, +f-.

42

The smoothing of f with respect to X corresponds to dropping X from further
consideration, as al occurrences of x; were deleted. Obviously, the smoothing may also be
extended to sets of variables: S S (f)=S, (f, + f;): S, (f, + f;) =S S (f)

Xi+1 Xi

Test generation terminology is presented in the sequel.

3.2 Test Generation Terminology

In this thesis a combinational circuit C is represented as a direct acyclic graph (DAG)
C=(V,E), referred to as the circuit graph, where V and E are the set of nodes and the set of
edges, respectively. In the circuit graph nodes represent circuit gates while edges represent
circuit connections (or circuit nets, whenever explicitly indicated). Graph nodes also represent
circuit primary inputs and primary outputs. The primary inputs are nodes with no incoming
edges, while al the nodes with no outgoing edges are primary outputs®. PI(C) and PO(C)
represent the set of primary inputs and the set of primary outputs of C, respectively. For such
DAG representation the following definitions hold.

Definition 3.12: path, complete path and partial path

A path Pin Cis an alternating sequence of nodes and edges. In particular, a complete
or full path has the form (vo, €, V1, €1, ..., Vn, €, Vn+1), Where edge g , 1 <i < n,
connects the output of node v; to an input of node vi+1. Any nodev; , with 1 <i<n,isa
gate; node vp isaprimary input and node v,:+1 isaprimary output. A partial path is
any path that either does not begin in a primary input or does not end in a primary
output. P may also be represented by (Vo, V4, ..., Vi, Vn+1) OF by (&, €y, ..., €). However,
as long as such notations may cause some confusion, they will be used only in the
situations when the compl ete formalism is not needed.

Let P= (V01 €, V1, €1, ...y Vi, €y, Vn+1) beapath

Definition 3.13: side-inputs and on-inputs

The inputs of v; other than g.; are referred to as side-inputs of v; and are represented by
S(v)). The set of al side-inputs along P are referred to as the side-inputs of P, S(P). .1 is
referred to as on-path input or P-input or on-input of v;.

Since this thesis is concerned with combinational circuits represented at the logic level,
only structural faults are of interest. Structural fault models assume that circuit
interconnections may be affected by shorts and opens. A short is formed by connections
between points that were not intended to be connected together, while opens concerns broken
connections. In most fabrication technologies, including CMOS, a short between power or
ground and a circuit line (wire) g causes the signal to be at afixed voltage. The corresponding
logical fault consists of signa e being stuck at a fixed logic value b (b O {0,1}), and is
denoted by g s-a-b. In many technologies, the effect of an open on a unidirectional signa line
with unitary fanout is to make the input that has become unconnected assume a constant logic
value and hence appears as a stuck fault. Thus, a single logical fault of the type g s-ab can

> These definitions may eventually be changed in case the circuit graph is transformed into a canonical DAG by
the addition of source and terminal nodes. For the rest of this text, either this is irrelevant or will be clearly
indicated.

represent many different physical faults. ¢ open, g shorted to power or ground, and any
internal fault in the component driving g that keeps g at the logic value b [ABR90].

The test terminology necessary as a background to understand the timing analysis theory
is derived from the stuck model based test generation, which is also the most widely used
model.

Definition 3.14: single stuck fault (SSF) model and multiple stuck fault (M SF) model

A circuit issaid single stuck faulty if it is assumed to contain a stuck fault in one of its
lines (wires). A circuit is said multiple stuck faulty if it is assumed to exhibit two or
more stuck faults.

Although the multiple stuck is a more realistic fault model, most of test generation
algorithms assume the single stuck fault model. In the following terminology the single stuck
fault is underlying model.

Definition 3.15: test

A test for afault g s-a-b is an input vector that allows for distinguishing a faulty circuit
from agood circuit.

Generally, most of the points within integrated circuits cannot be accessed. Therefore, it
is necessary to provide that by applying the test at the circuit’s primary inputs, at least one of
the primary outputs of the faulty circuit presents a logic value that is different from that
expected for afault-free (i.e., good) circuit.

Definition 3.16: automatic test generation (ATG) or automatic test pattern generation
(ATPG)

Automatic test generation or automatic test pattern generation refer to the procedure of
finding tests for a given set of faults in a circuit by means of computer programs that
automatically (and possibly exhaustively) generate tests by using appropriate algorithms.

Let us now consider the problem of generating a test for the fault ¢ sab in a
combinational circuit C. Any ATPG procedure able to generate a test for this fault presents
two basic steps: fault activation and error propagation. Both steps however may be seen as
direct applications of a generic procedure known asline justification, defined as follows.

Definition 3.17: linejustification

Consider acombinational circuit C. Let g be asimple gate (AND, OR, NAND, NOR) in
C. g has output e and inputs ey, e, ..., &. Justifying the logic value b at ey means
finding an assignment of logic values that applied at the primary inputs of C resultsin b
at ep.

Line justification is a recursive procedure in which a gate's output is justified by an
appropriate assignment of logic values at its inputs and so on, until the primary inputs of the
circuit are reached.

Suppose g is an AND gate. Then there is only one assignment of inputs that justifiesa 1
at its output, which is setting all inputs to 1. However, there are 2%-1 possible assignments that
justify a O at its output. In this case, the smplest way of justifying a O at g's output is
(arbitrarily) selecting one of itsinputsto set to O, while the others are set to 1.

Definition 3.18: fault activation

Aninput vector wis said to activate fault g s-a-b iff it setsline g to the logic value E)

In other words, to activate the fault & s-ab it is necessary to justify e with the logic
value b.

Before defining error propagation let us introduce two important concepts: error signal
and gate controllability.

The error signal was introduced by Roth in [ROT66] and allows for confronting signal
valuesin afaulty circuit with those in afault-free circuit. Consider the instances N and N of a
given circuit C, being N a fault-free instance and N¢ a faulty instance. Consider also that both
instances are submitted to the same input vector. In this case, if a given node g exhibits the
logic value 1 in N and logic value O in Ns, then the composite value 1/0 indicates a potential
source of error and is represented by the symbol D. Similarly, if node g exhibits the logic
value 0 in N and 1 in Ny, then the composite value 0/1 aso indicates a potential source of

error, but is represented by the symbol D. The composite values 0/0 and 1/1 do not indicate
any abnormal behavior and hence are represented by 0 and 1, respectively. By using this
notation, it is possible to consider both fault-free and faulty circuits at the same time, in test
generation agorithms. Besides these four values, the X symbol is required in order to
represent the indeterminate value.

The properties of the Boolean algebra hold for the composite values of the set
{0,1,0,D,X}, since they are operated in a bitwise manner, as for instance, in the expression
D+0=0/1+0/0=0+0/1+0=0/1=D. The use of these five values within the Boolean

algebra gives rise to the D-calculus. Tables 3.2 and 3.3 show the results for the 5-valued
AND and OR operations, respectively, used in the D-calculus.

The concept of gate controllability, by its turn, holds only for smple gates and concerns
the phenomenon of state absorption. The important definitions are that of
controlling/noncontroling values and controlled/noncontrolled values of a gate.

Let g beasimple gate (AND, OR, NAND, NOR).
Definition 3.19: controlling value and controlled value

The controlling value of g is defined as being the logic value that solely determines the
logic value at the output of g. The controlled value of g isthe logic value resulted from
applying the controlling value to a least one of g's inputs. For instance, O is the
controlling value for AND and NAND gates. However, the controlled value for AND
gatesis 0, while the controlled value for NAND gatesis 1.

Definition 3.20: noncontrolling value and noncontrolled value

The noncontrolling value of g is the logic value, which is not the controlling value of
g. The noncontrolled value of g is the logic value resulted from applying the
noncontrolling value to al inputs of g. For instance, 1 is the noncontrolling value for
AND and NAND gates. However, the noncontrolled value for AND gatesis 1, while the
noncontrolled value for NAND gatesis 0.

Note that the correct generalization of the gate controllability concept is the Boolean
difference, given in definition 3.9.

45

TABLE 3.2 - Truth-table for the 5-valued AND operation.

AND

X|Ollo|OIllo|CTlI

elNoliolNeol Nl N

X|OllO|r|O
X OIlO|r|O|F
X o|O|O|lo| O
XX | X|X|o| X

TABLE 3.3 - Truth-table for the 5-valued OR operation.

OR

X | Ol |~ |TOIl0I

X|OIlO|lr|O| O
RPlRr|RP|R|R|F
X~ |O|r—r|O| O
XX | X|kL|X]| X

X|OllO|r—| O

Now it is possible to define the error propagation procedure.
Definition 3.21: error propagation

Consider the fault @ s-ab in circuit C and assume that P is a (possibly partial) path
beginning at & and ending a a primary output of C. An input vector w is sad to
propagatetheerror signal D or D iff it sets all side-inputs of P to their noncontrolling
values.

All noncontrolling values applied to P must be justified. If it is not possible to find such
apath, then the error cannot be propagated and hence, the fault is not testable. Otherwise, the
path(s) used to propagate the error is (are) called sensitizable. The test concept of path
sensitizability is too restrictive. Therefore, it will be conveniently presented in the next
section. Anyway, it is worth to mention that multiple path sensitization refers to the case
when more than one path is needed to propagate the error signal.

As mentioned earlier, there may exist more than one assignment of input values that
justifies a gate output value. On the other hand, in circuits with reconvergent fanout the
implication problems are not independent, and sometimes, different logic values may be
required to be assigned to the same line. This is a conflict (aso caled inconsistency or
contradiction) that must be solved by changing one of the decisions made by the algorithm.

Definition 3.22: backtracking

Backtracking is the process of recovering from inappropriate decisions, thus restoring
the state of the computation to the previous conditions.

The backtracking strategy may also allow for a systematic search of the complete space
of possible solutions.

46

In practical terms, a decision consists of selecting a set of value assignments to some
gates' inputs (even in the case of selecting a path to propagate the error signal). These values
may imply in other values (in other circuit lines).

Definition 3.23: implication

Implication is the process of determining all values derived from an assignment
resulted from a decision made and checking for the consistency of all derived values with
respect to the previously existing ones.

Next, delay testing and specific timing analysis terminology is presented.

3.3 Delay Testing and Timing Analysis Ter minology

In delay testing and timing analysis areas the circuit component delay information must
be considered. Hence, the DAG representation presented in the previous section must be
augmented. Firstly, the circuit graph C is assumed to be aweighted DAG. Each node v; of Cis
assumed to have a delay d(v;) and each connection g is assumed to have a delay d(e), which
may be a fixed value or may vary within an interval.°. Nodes representing primary inputs and
primary outputs have zero delay.

Let C be acombinational circuit.

Definition 3.24: length of a path or delay of a path

The length or delay of a path P, d(P), is the sum of the delays of the nodes and the
edges aong it. In particular, if P isacomplete path, then itslength is given by:

n+l n

d(P) = Z d(v;) + ;d(a) (CXY

Definition 3.25: stable value

Let w be an input vector applied to C. The logic value settled at the end of an edge (i.e.,
circuit connection) e under w is referred to as the stable value of e under w and denoted
by sv(ew). Similarly, the logic value settled at the output of gate v under w is referred to
asthe stable value of v under w and denoted by sv(v,w).

Definition 3.26: stabletime

Let w be an input vector applied to C. The time by which edge e settles to its final value
under w is referred to as the stable time of e under w and denoted by st(e,w). Similarly,
the time by which the output of gate v settles to its final value under w is referred to as
the stable time of v under w and denoted by st(e,w).

The definitions specifically related to the timing analysis track are based on the concept
of event propagation, defined as follows.

® Thisisin agreement with the adopted component delay model (section 2.4) and gate delay computation model (section
2.5).

47

Definition 3.27: event and event propagation

Aneventisatransition0 - 1(t)or 1 - 0(!) at agate. Consider a sequence of events
{ro, r1, ..., rn} occurring at gates {go, 01 , -.., On} @ong a path P, such that r; occurs as a
consequence of r;. The event ry is said to propagate along path P.

Definition 3.28: event sensitizable path

If there exists an input vector pair such that by assuming appropriate delays to the
circuit components (gates and connections) an event can propagate along a path P, then
Pissaid to be event sensitizable.

Definition 3.29: single event sensitizable path

If there exists an input vector pair such that by assuming arbitrary delays to the circuit
components (gates and connections) an event can propagate along a path P, then P is
said to be single event sensitizable.

49

4 Path Sensitization Criteria and Delay Computation
Models

This chapter is concerned with delay computation models that are both correct and
robust and whose realizations are of practical use from the computation time' s point of view.

It begins by analyzing the use of the transition mode with fixed and unbounded gate
delay models. It is shown by a simple example that the transition mode results in a robust
delay computation only if gate delays are assumed to be unbounded. However, unbounded
symbolic simulation has a prohibitive computational cost, preventing its practical use. Then, it
is argued that the floating mode is a natural alternative for computing delay because it leads to
simpler implementations. Moreover, under the floating mode, the fixed and the unbounded
gate delay models become equivalent.

The floating mode makes pessimistic assumptions regarding the states of circuit nodes,
however. Due to this it is assured that floating mode-based delay computations provide an
upper bound on the circuit delay, since it is assured that the sensitizability of circuit paths is
tested by using safe conditions.

The set of conditions used for a given delay computation algorithm to decide whether a
path can be responsible for the circuit delay (i.e., whether it is sensitizable) is termed path
sensitization criterion. Declaring that a path is sensitizable is equivalent to declare that such
path may be responsible for the circuit delay.

However, not al sensitization criteria are safe. Some of them may lead to an
underestimation on circuit delay. Thus, one of the targets of most publications on timing
analysis in last fifteen years has been the search for a sensitization criterion that, used in
conjunction with a choice of delay computation models (circuit and gate), leads to the tightest
possible circuit delay estimate. Such criterion must also never underestimate circuit delay.
Assuming the floating mode, section 4.2 reviews four relevant sensitization criteria.

4.1 Delay Computation M odels and the Robustness Property

Let us now consider the monotone speedup property in the context of circuit and gate
delay computation models. Assume the transition delay is the circuit delay model to be used
in the delay computation of the test circuit shown in figure 4.1a (borrow from [MCG89] and
re-edited in [DEV94]). The delay of each gate is assigned inside it. Recalling that in transition
delay the inputs are made of pairs of vectors, in order to find the delay of the circuit it will be
necessary to simulate two input vector situations: (vo,v1) and (vi,vo), where vp=(a=0) and
vi=(a=1). These situations correspond to 01 and 1- 0 input transitions, respectively. As
shown by the timing diagrams (figures 4.1b and 4.1c), applying 0 1 and 1 O transitions at
the primary input a does not change the output h from 0. Thus, the transition delay (also
caled the delay under the transition mode) of this circuit for the given fixed gate delays is
zero.

50

N~
@

Vo . Vi Vo . Vi

\ \
a a |
b b
C C
d d
e e
f f
g g
h h

®) delay=0 ©

FIGURE 4.1 - Transition delay with fixed gate delays: test circuit (a) and timing diagrams
(b),(0).

Now consider another instance of the circuit of figure 4.1a, shown in figure 4.2a, in
which al gates have the same delays as the former instance, except one of the buffers at one
of the nor's inputs, which has delay zero. It might be expected that speeding up one of the
circuit's components would not increase the critical delay of the circuit. However, as it is
shown in figure 4.2b, applying a 0 1 transition at a makes h to switch both at time 5 and 6.
Although this behavior concerns a hazard, the output only settles to its steady state at time 6.
Thus, 6 isthe critical delay of the circuit.

The latter result shows that a FTA agorithm that assumes pairs of vectors (i.e., the
transition mode) as circuit delay computation model along with fixed gate delays is not robust
to the monotone speedup property and thus may underestimate the circuit delay.

51

@

Vo fo Vi Vo f A
a a ‘
b b
C C
d d
e e
f f
g g
h h
- 7
~
delay=6 delay=0
(b) (©

FIGURE 4.2 - Transition delay with fixed gate delays: another instance of the test circuit of
figure 4.1a (a) and timing diagrams (b),(c).

It is interesting to remark that in traditional worst-case design methodology, upper
bound delay values are assigned to the gates and the delay estimation is supposed to report the
(worst-case) critical delay of the circuit. (Hence, in the last example, the fixed gate delays
actually represent upper bounds!) This reinforces the need for adopting (monotone-speedup)
robust delay computation models in the development of FTA agorithms, as stated in section
2.6. In this sense, the use of fixed gate delays along with the transition mode is a bad
assumption for it is unable to accommodate possible inaccuracies of the gate delay physical
model. The natural alternative isto consider that gate delays may vary within closed intervals,
which isin fact the essence of the bounded and unbounded gate delay models. To investigate
the effect of using such kind of gate delay model, consider the circuit of figure 4.3a, which is
identical to the circuit of figure 4.2a, except that the unbounded gate delay model is used: the
delay of each gate may vary within the range [0,d™(g)], where d™(g) is the upper bound on
the delay of gate g. The delay values assigned to the circuit of figure 4.2a will be assumed as
d™ for the gates of figure 4.3a.

52

@

Vo A Vo X Vi
X to l X 0 l
a a
b b
c c
d d
e e
f f
g — g
h h
. ~ /
delay=6 delay=0
(b) (©

FIGURE 4.3 - Transition delay with unbounded gate delays: test circuit of figure 4.1awith
unbounded delays (a) and timing diagrams (b),(c).

Again, to determine the circuit delay it is necessary to simulate the two input vector
situations: (Vo,v1) and (vi,Vo), with vp=(a=0) and v;=(a=1). On the other hand, due to the
unbounded gate delay model, the simulation itself is much more complicated, since the
transitions at the circuit nodes may occur at any time between t=0 and tma, Where tmax
depends on both gate delays and gate functionalities. Consider that the input vector pair (vo,v1)
is applied at the circuit input. The timing diagram for this situation is shown in figure 4.3b.
Signal c, for instance, goes through a 0- 1 transition between t=0 and t=2, while signal d
makes a 1- 0 transition between t=0 and t=3. Signal f, by its turn, may pass through a 0 1
transition at any time between t=0 and t<4. If thisis the case, a1 - 0 transition will take place
between t>2 and t=4. Otherwise, f stays at 0. In the waveform of signal f (figure 4.3b) the
timing interval between t=0 and t=4 is dimmed, representing the uncertainty in the logic value
of f. Going further in the analysis, the waveform of signa h shows a late possible transition
may occur at t=6. Thus, the critical delay of thiscircuit is 6.

By using the unbounded delay simulation method [DEV 944, the critical delay of a
circuit is determined as a byproduct, for it is the latest time a transition may occur. Besides
this, the analysis itself takes the monotone speedup failure into account. But on the other
hand, as any simulation method, the search space is 22" where n is the number of primary
inputs to the circuit. Another problem is the complexity of performing simulation with
unbounded delays, which is much more difficult than fixed delay ssimulation. Finaly, it is not

53

clear whether such a symbolic smulation method can be considered as an input-independent
timing verification method.

Due to the previously mentioned difficulties the transition mode is not of practical use
for implementing timing verification tools. This also reinforces the use of the FTA technique
based on the floating mode. As mentioned in section 2.3, this model assumes the nodes of the
circuit to be at arbitrary values and determines the circuit delay by a single vector. Comparing
to the transition delay, the floating delay is significantly easier to compute for both fixed and
unbounded gate delay models. There is no need for storing sets of waveforms at circuit nodes,
for instance.

However, the ease of implementation does not come from free. In fact, the assumption
of arbitrary values at the circuit nodes is pessimistic. In particular, this assumption makes the
fixed and the unbounded gate delay models equivalent, which, on the other hand, should be
explored to facilitate the implementation of robust floating delay computation methods.

To understand why the fixed and the unbounded gate delay models are equivalent under
the floating mode consider acircuit C with fixed delays assigned to its components. Let P be a
path of C and v, be a vector applied to C. In order to determine if P is responsible for the
delay of C on v,, the side-inputs of P must be checked in the following sense: at each gate g of
P the side-inputs of g must be at noncontrolling values when the transition that is supposed to
propagate through P arrives at the on-input of g. (This is an informal version of the exact
floating sensitization criterion, which is further formalized in section 4.4.) If the value at a
side-input i to g is noncontrolling on v,, the monotone speedup property (under transition or
floating delay model) allows us to disregard the time that the noncontrolling value arrives at
the respective side-inputs of P. Assume the delay of all paths from the primary inputsto i are
greater than the delay of the subpath corresponding to P and ending at g. Under the
unbounded delay model, the pathsto i can always be speedup because the delay of each circuit
component is assumed to be within the range [0,d™]. Under the floating delay model with
fixed component delays, it is not possible to change the delays of the paths to i, but one can
assume that vy, the vector applied before v,, was providing the noncontrolling value. Thus, it
is not necessary to wait for v, to provide the noncontrolling value. In either case, the arrival
time of noncontrolling values on side-inputs does not matter.

Such considerations justify the floating mode as being an appropriate circuit delay
computation model for the FTA technique, since it is “speedup robust” for both fixed and
unbounded gate delay models and leads to less complex algorithmic implementations. In
addition, it allows for the implementation of input-independent delay computation algorithms,
which corresponds to the philosophy of timing analysis.

Once the adoption of the floating mode computation model is well justified, the next
step is to investigate the necessary conditions to determine whether a given path may be
responsible for the delay of the circuit, that is, whether it is sensitizable or not under the
floating mode. Since 1986, when Brand and lyngar first proposed a set of conditions to test
whether a path is responsible for the delay of a circuit (an extended version of their work is
presented in [BRAS88]), many other sets of sensitization conditions were proposed and
implemented within FTA tools. Each set of conditions is referred to as a sensitization
criterion. Sensitization criteria are the object of the next section.

54

4.2 Path Sensitization Criteria

The reason for the existence of several sensitization criteria is the tradeoff between
computational complexity of FTA agorithms and the accuracy of the resulted delay estimates.
To afirst approximation, the more complex are the sensitization tests, the more accurate are
the delay estimates, obviously, implying higher computational costs.

Most of sensitization criteria were originaly defined using topological parameters. To
be more specific, the conditions under which a path is declared to be responsible for the delay
of the circuit consider signal values at on-inputs and side-inputs of the path and, in some
cases, the time these signals become stable. (Not surprisingly, many timing analysis
techniques are based on ATPG algorithms.) The sensitization criteria definitions presented in
the following subsections also employ topological parameters.

Sensitization criteria may be classified either as delay-dependent or delay-
independent. In delay-dependent criteria not only the logic value of signals applied to the
path side-inputs are considered but also the time such signals become stable. In opposition to
delay-dependent, delay-independent criteria do not care about the time the signals become
stable.

In the following subsections two delay-independent and two delay-dependent
sensitization criteria, defined in the context of the floating mode, are presented: static
sensitization [BEN9Q], static cosensitization [DEV91], viability [MCG89] and exact
floating-mode sensitization [CHE91]. The correctness and robustness of these criteria are
also discussed, using some circuit examples.

4.2.1 Static Sensitization

Static sensitization [BEN90] was one of the first sets of sentitization conditions to be
formalized and used in timing anaysis. If delay by pairs of vectors were assumed (i.e., the
transition mode), it would correspond exactly to the same concept of sensitization used for
propagating the error signal in stuck fault test generation.

Let P= (Vo, €0, V1, €1, ..., Vi, €n, Vn+1) De @ path. The sensitizability of P can be defined as
follows.
Definition 4.1: static sensitization
Path Pis said to be statically sensitizable if and only if thereis at least one input vector
w such that for each vj, 1 <i < n, each side-input of v; settles to nc(v;) under w.
Figure 4.4 illustrates this condition for any gate of a path P.

Observing that in the floating mode a path can be statically sensitized to 1 without being
statically sensitized to O (and vice-versa), Devadas and collaborators presented another
definition for static sensitization, making the two cases explicit [DEV93]. These cases are
stated in definition 4.2.

55

0/1

< nc
side

inputs nc
of v;

nc

t

FIGURE 4.4 - Conditions for static sensitization.

Definition 4.2: static sensitization

An input vector w is said to statically sensitize to 1(0) path P in C if and only if the
value of vp+1is1(0), and for each vi, 1 <i < n, if v; has a controlled value, then the edge
g.1 isthe only input of v; that presents a controlling value.

Note that from the definition above, if a vector w statically sensitizes a path, then it
either statically sensitizes the path to 1 or to 0. Indeed, this is a direct consequence of the
floating mode.

Finally, path P is said to be statically sensitizable if there exists at least one input vector
w satisfying definition 4.2.

In order to analyze the correctness of this condition, consider the circuit of figure 4.5.
The path shown in bold has been statically sensitized by the vector 100X (with X representing
the undefined or the unknown value). This means that when the vector pair {110X,100X} is
applied to the circuit inputs, atransition propagates along this path.

e
: O

FIGURE 4.5 - Example of static sensitization of a path.

1

0

Now consider the csa2 stage of figure 2.4, reproduced in figure 4.6. It is not possible to
find an input vector that statically sensitizes the path shown in bold. This is because in order
to sensitize this path it is necessary to set all of its side-inputs to noncontrolling values, that is,
p0=g0=p1=gl=ctrl_n=1 (with ctrl_n being the control input to the multiplexer). However,
ctrl_n=1 implies that either pO or pl to be O or both, what disagrees from the former
assumptions. Thus, this path is not statically sensitizable. (As demonstrated in section 2.2, we
also know that it is not possible to find an input vector pair under the given fixed gate delays
that propagates a transition along this path.)

56

c0

-»

0
!
mux2-1
a0
La 0 n0 i
— p nl
e T
. X o)
b0 ’
O -
ctrl_n 1
al sl
—4 or
4
bl
D

FIGURE 4.6 - Static sensitization on the csa example.

Let us now examine athird example of static sensitization. Consider the circuit of figure
4.7a (borrow from [MCG89]) and assume all its gates have delay equal 1. Paths (a,d,f,g) and
(b,d,f,g) are not statically sensitizable. This is because to statically sensitize (a,d,f,g) alis
required on e, implying that both a and b have to be at 0. However, this requires that the AND
gate with output d must have both inputs at controlling values, which disagrees from the static
sensitization definition. A similar analysis can be done for the path (b,d,f,g). This anaysis
could induce the conclusion that the critical delay of the circuit is 2. However, keeping c at 0
and applying a 1 0 transition to both a and b inputs makes the circuit output to settle to 0
only at time 3, as shown in figure 4.7b. Thus, a path may not be statically sensitizable but can
still be responsible for the delay of the circuit.

Indeed, it can be shown that static sensitization is a sufficient condition for a path to be
responsible for the delay of a circuit under the floating mode. To understand this, consider a
vector v, being applied to a circuit C where v, statically sensitizes path P to 1. On v;, al side-
inputs of P are at noncontrolling values. Under the floating mode, on any particular gate g of
P, the values of the side-inputs of g on the previously applied vector v; can be assumed to be
at noncontrolling values. This implies that we have steady noncontrolling values at each side-
input. Thus, by the time the event propagating along P arrives at any gate g of P, al side-
inputs of g are stable at noncontrolling values. Obviously, thisimpliesthat P is responsible for
the delay of C.

57

1 d f
c
@
Vg bov

. —
b
C
d
e
f
g

—

delay=3

(b)

FIGURE 4.7 - Static sensitization underestimating circuit delay.

4.2.2 Static Cosensitization

Static cosensitization is another delay-independent criteria similar to but less restrictive
than static sensitization. It can be defined as follows [DEV91]. Let P= (v, €, V1, €1, ..., Vn, €n,
Vn+1) be apath in acircuit C.

Definition 4.3: static cosensitization

An input vector w is said to statically cosensitize to 1(0) path P in C if and only if the
value of vp+1is1(0), and for each vi, 1 <i < n, if v; has a controlled value, then the edge
6.1 presents a controlling value.

As in the case of static sendgitization, if a vector w statically cosensitizes a path, then it
either statically cosensitizes the path to 1 or to 0. A path P is said to be staticaly
cosensitizable if there exists at |east one input vector w satisfying the previous definition.

58

Figure 4.8 illustrates the static cosensitization conditions.

v nc c
< nc < nc
side
inputs nc ne
of v,
nc c
t t
@ (b)

FIGURE 4.8 - Conditions for static cosensitization.

Let us discuss the accuracy of the delay estimate obtained by static cosensitization.
Figure 4.9 reproduces the circuit of figure 4.7a. It can be seen that the input vector (0,0,0)
staticaly cosensitizes paths (a,d,f,g) and (b,d,f,g). Thus, if static cosensitization were the
sensitization condition used, the delay reported for this circuit would be 3.

0

a) e 1
0

b

FIGURE 4.9 - Example of static cosensitization of paths.

Static cosensitization can be pessimistic. Consider the trivial circuit of figure 4.10a. The
path with length 6 (in bold) is statically cosensitized by input vector a=0. However, by
applying the 0- 1 and 1,0 transitions at the circuit input, one can notice that the circuit
output settle to its steady state at time t=5 and thus 5 isits delay. Thisis showed by the timing
diagrams (figures 4.10b and c).

It can be shown that static cosensitization is a necessary condition for a path to be
responsible for the delay of a circuit under the floating mode. To understand this, consider a
path P that is not statically cosensitizable. This means that for any applied vector v, thereis at
least one gate g on P a which the on-input has a noncontrolling value and some other side-
input of g has a controlling value. The controlling value at this side-input will always control
the output of g. If the noncontrolling value arrives before the controlling value, the gate output
will go to the controlled value after the controlling value arrives. Alternately, if the controlling
value arrives before the noncontrolling value, the gate output will be at the controlled value
before the noncontrolling value arrives. In either case, P is not responsible for the delay of the
circuit on V.

59

>~ N
L b
@
vy, by vi v,
a a -
b b
c c
d d
e e
f f
9 g
N — / - . J
delay=5 delay=5
(b) ©

FIGURE 4.10 - Static cosensitization can be pessimistic.

4.2.3 Viability Analysis

The viability analysis, presented by McGeer and Brayton in [MCG89], is in fact a
complete FTA technique based on the concept of viable paths. A set of delay-dependent
conditions is used to test whether a path may be considered as responsible for the delay of the
circuit under an input vector w. In case yes, such path is declared to be aviable path.

Let P=(Vo, €, V1, €1, .., Vi, €n, Vne1) e apath in acircuit C.

Definition 4.4: viable paths

Path P is said to be viableif and only if thereis at least one input vector w such that for
each gate vi, 1 <i < n, and for each side-input e of v, if st(ew) < st(e.1,w), then sv(e,w)
must be equal nc(v;).

Notice that neither the value of the on-input nor the stable values at the side-inputs
presenting st(e,w) > st(e.1,w) matter. Figure 4.11 illustrates viability conditions.

60

side

of v,

FIGURE 4.11 - Conditions for path viability.

Viability, however, does not imply static cosensitization. A path may be declared viable
without being statically cosensitizable, and thus, be false.

Consider the simple circuit of figure 4.12, taken from [CHE93], where all gates have
delay equal 1 except the inverter, which has zero delay. Consider also that each connection
has zero delay. The path showed in bold is viable for input vector {1,0}. This is because by
applying such vector the stable time at the AND gate inputs are equal, allowing us to
disregard the stable value at the side-input to this gate. The same happens with respect to the
OR gate (figure 4.12a). However, this path is not statically cosensitizable. For a=1, c=0 and
thus d=0, which is the AND gate controlled value. But viability requires that a, being the on-
input to the AND gate, must be at the AND gate noncontrolling value, i.e., a=0. Similarly, for
a=0, d=0 and e=1. Again, the side-input (with respect to the OR gate) presents a controlling
value while the on-input has the noncontrolling value (figure 4.12b). Hence, this path is not
statically cosensitizable.

1 (0) 1(0) d
1 —
: 0(1)
0(2

—I>o—°<,o(0) DL f
0(1)

1 e

0(0)),
b 0) 0(0)

oy ;Dl_f
S

(b)

FIGURE 4.12 - Example of viable path (a) that is not statically cosensitizable (b).

61

As a theory, viability is remarkable because it presented the first set of conditions
inherently considering the monotone speedup. Indeed, it was demonstrated in [MCG91] that
viability is both robust and correct on networks composed of symmetric gates (although it is
defined on networks of complex gates, as will be detailed in chapter 5). However, it was not
demonstrated that viability is the exact delay estimate. Nevertheless, it is known that the delay
value returned by viability is correct.

4.2.4 Exact Floating-M ode Sensitization

The two delay-independent sensitization conditions, static sensitization and static
cosenditization, are sufficient and necessary, respectively, for a path to be declared as
responsible for the delay of a circuit. However, the necessary and sufficient condition for a
path to be responsible for the delay of a circuit under the floating mode is a delay-dependent
condition that is stronger than static cosensitization but weaker than static sensitization. It has
been introduced in [CHE91] and is currently referred to as the exact floating-mode
sensitization criterion.

Let P=(Vo, €, V1, €1, .., Vi, €n, V1) e apath in acircuit C.

Definition 4.5: exact floating-mode sensitization

Path P is said to be exactly sensitizable or true (under the floating mode) if and only if
thereis at least one input vector w such that for each gate v; dlong P, 1 < i < n, one of the
following conditions hold:

1. If sv(e.1) = c(v;), then for each side-input e of v; , if sv(e) = c(vi), then st(e) = st(e.1)
2. If sv(e.1) = nc(v), then for each side-input e of v;, sv(e) = nc(v;) with st(e) < st(e.1)

In other words, for a path to be responsible for the delay of a circuit under the floating
mode it is necessary that, for each gate g along the path:

1. If the output of g is at the controlled value, then its on-input must present the
controlling value of g and furthermore, has to have a stable value no greater than the
stable values of the side-inputs having the controlling of g.

2. If the output of g is at the noncontrolled value, then its on-input has to have a stable
time no smaller than the stable times of al the side-inputs of g.

These conditions are depicted by figure 4.13.

Let us use these conditions to determine the delay of the previously studied circuits.
Consider the circuit of figure 4.1a, reproduced in figure 4.14. Applying a vector a=1 sensitizes
the path of length 6 shown in bold. In the figure, each connection has both alogical value and
a stable time vaue, the later in parenthesis. This result illustrates that the sensitization
condition takes into account the monotone speedup property, unlike transition delay
simulation with fixed gate delays.

62

/— /—
o < -

side

rous < [~ <

of v,

nc

@ (b)

FIGURE 4.13 - Conditions for exact floating-mode sensitization.

0@
1(0) 0@ —|> Dﬂ .
a __* >O—o 2
N
D

FIGURE 4.14 - First example of exact floating-mode sensitization.

Now consider the circuit of figure 4.5, reproduced in figure 4.15. Applying the vector
000 gives a floating delay of 3, illustrating that the sensitization condition is weaker than

static sensitization. The paths (a,d,f,g) and (b,d,f,g) can be considered as responsible for the
delay of the circuit.

a 000
—_— e 1(1)

d 0(1)

0(2
0(0)

Cc

FIGURE 4.15 - Second example of exact floating-mode sensitization.

Finaly, consider the circuit of figure 4.7, reproduced in figure 4.16. Applying a=0
sensitizes path (a,b,d,f,g) under the floating mode, while applying a=1 sensitizes path
(a,c,d,e,g), aso under the floating mode. As long as both paths have delay=5, the floating
delay of this circuit is 5. This also shows that the exact floating-mode sensitization condition
is stronger than static cosensitization. Recall that static cosensitization reports a delay of 6 for
this circuit.

63

The previous considerations justify the true floating (single-vector) abstraction as a
necessary and sufficient condition for a path to be responsible for the delay of a circuit under
the floating model.

b
'|> |'> o
0(00 d o 0 (5)
¢ 02 N~ oo
b= 12~
@
b
|'> |'> 16
1(0 1@ 1(2 1(5
a 1O DL @ :D_g
'2\ c 1(2) '\ f 1(6)
12~ |2~

(b)
FIGURE 4.16 - Third example of exact floating-mode sensitization.

Note that the conjunction of the single-vector delay model with the sensitization
conditions presented in definition 4.5 gives rise to a set of fundamental assumptions that are
implicitly assumed by any floating delay computation method. Such assumptions are shown in
figure 4.17. Assume the AND gate of figure 4.17a has delay d and is embedded in a larger
circuit, and a vector pair (vi,v2) is applied to the circuit inputs, resulting in arising transition
occurring at time t; on the first input of the AND gate and arising transition at time t, on the
second input. The output of the gate rises at a time given by max(t;,t;)+d. Under the floating
mode, only the values on v, are considered. Thus, in this case, a1 arrives at the first input at t;
and a 1 arrives at second input at t,. As a consequence, a 1 appears at the output at time
max (t1,to)+d. Similarly, in the case of figure 4.17b, two falling transitions arrive at the AND
inputs at time t; and t,, respectively, resulting in a faling transition at the output at time
min(t,ty)+d. The abstraction under the floating mode considers a 0 arriving at the first input at
time t; and a O arriving at the second input at time t,. A O appears at the output at time
mi n(tl,tz) +d.

Now consider the situation of figure 4.17c, where arising transition occurs at time t; on
the first input of the AND gate and a falling transition occurs at time t; on the second input.
Depending on the arriving order of the transitions occurring at the gate inputs, the output may
either stay at O (if t;>t) or glitch to 1 (if t;<ty). If circuit simulation were used, the occurrence
of aglitch would be easily detected. However, under the floating model only v, is considered,
asit isasingle-vector approach. The 1 at the first input of the AND gate arrives at t;, and the
0 at the second input arrives at t,. The output of the AND gate obviously settlesto 0 on v,. But
the problem is determining at what time this occurs: if t;=>t,, then the output is always 0, but if
t1<ty, then the output becomes 0 only at to+d. In order not to underestimate the critical delay of
acircuit, any sensitization condition for single-vector computation model have to assume that
the noncontrolling value (the 1, in the case of AND gate) arrives before the controlling value
(the O, in the case of AND gate), or in other words, t;<t,. Under the floating mode this
corresponds to assuming that the values on the previous vector v, were noncontrolling.

64

events assumptions

_] 1

@ b ’ - [> .)
_I max(t,,t,)+d 1] max(t,,t;)+d
t, t,
-1 .

(b) t d 1 |:> A o
| min(t,,t,)+d o T min(t,,t,)+d
t, t,

o

I
© v T ipl [>] ’
T T t+d ty+d] tz+d

t, 2

—

FIGURE 4.17 - Fundamental assumptions made in single-vector exact floating mode.

The rules illustrated in figure 4.17 represent a timed calculus for single-vector
simulation with delay values that can be used to determine the exact floating mode delay
under an applied vector v, (assuming pessimistic unknown values for v;) and the paths that are
responsible for the delay under v,. The rules can be generalized as follows:

1. If the gate output is at a controlled value, pick the minimum among the delays of the
controlling values at the gate inputs. (Of course, there has to be at least one input
with a controlling value. The noncontrolling values are ignored.) The delay at the
gate output is obtained by adding the gate delay to the selected input delay.

2. If the gate output is at a noncontrolled value, pick the maximum of all the delays at
the gate inputs. (All the gate inputs have to settle at noncontrolling values.) The
delay at the gate output is obtained by adding the gate delay to the selected input
delay.

4.25 Other Sensitization Criteria

The former subsections presented the most important sensitization criteria. Obvioudly, a
number of other sensitization criteria exist, but all of them are in fact approximations of the
exact floating-mode criterion. Examples of other criteria are the approximate criterion
[CHE93] and the vigor ous criterion [CHA93].

4.3 Qualitative Comparison Between Sensitization Criteria

It is worth to notice that the concept of path sensitizability is relative. Indeed, the
accuracy of delay estimates does not depend solely on the used sensitization criterion. It is
important to recall that there is a set of delay computation models underlying any FTA
algorithm. Thus, the exact floating-mode sensitization criterion is just an upper bound on the

65

circuit delay, not only because it assumes the pairs of vector condition, but also because it has
to be (monotone speedup) robust.

At this point, it has to be mentioned that the customary terminology may cause some
confusion, since the delay computation models underlying path sensitization criteria are rarely
made clear. Let us consider the exact floating-mode criterion. Although it has been defined
under the floating mode, its original name was just “exact criterion”. In order to avoid any
misunderstanding that the term “exact” may cause, it has lately been referred to as exact
floating-mode criterion.

From section 2.1 it became clear that the topological delay is aways an upper bound on
the delay of a circuit. However, it may be too pessimistic because the longest paths may be
false.

Although easy to implement, the static criterion is not adequate for furnishing a safe
delay estimate because it may declare false a path that is true. Thus, it constitutes a lower
bound on the circuit delay. Considering the single vector delay model, the exact criterion and
viability are safe delay estimates because they are guaranteed not to underestimate circuit
delay. Moreover, such criteriaare currently the ones providing the tightest delay estimates.

Finally, the true delay of a circuit could be ideally obtained by using a delay calculation
based on delay by sequences of vectors. Unfortunately, no efficient implementation of input-
independent technique using this model exists.

tighter delay estimate
true delay
(sequences
of vectors)

exact floating topological

static and viability delay

sensitization

v
unsafe estimate

FIGURE 4.18 - Comparison between sensitization criteria.

66

67

5 Functional Timing Analysis Algorithms

The most representative sensitization criteria were presented and discussed in the
previous chapter. Although the sensitization criterion is a fundamental issue of a timing
analysis algorithm, it is not the only one. FTA agorithms may greatly differ by the delay
computation procedure, which basically corresponds to the way path sensitizability is taken
into account for determining acircuit delay estimate.

This chapter discusses some of the most relevant delay computation algorithms. It
begins by proposing a taxonomy that alows for classifying the existing FTA algorithms
according to two other aspects, different from the sensitization criterion:

* The number of paths simultaneously handled and

» The method used to determine whether the sensitization conditions are satisfiable or
not.

Section 5.1 presents a brief historical review of FTA algorithms. The mentioned
algorithms are classified following the proposed taxonomy.

Afterwards, three types of FTA agorithms are discussed in more detail: ATPG-based
single path sensitization, ATPG-based concurrent path sensitization and SAT-based
concurrent path sensitization. For each type, atypical example of algorithm is detailed.

5.1 Classification of FTA Algorithmsand Historical Review

Although many works on path sensitization criteria and FTA agorithms and techniques
have been published in the last fifteen years, the absence of a standard taxonomy on these
subjects represents a serious difficulty, mainly to those researchers debuting activities in these
fields. It is true, however, that some authors have been more cautious with the terminology
aspects. This seems to be the case of McGeer-Brayton's works, Devadas' and collaborators
works, and more recently, Ashar-Malik’s and Silva-Sakallah’ s works.

Given the similarities between the functional timing analysis (FTA) problem and the
automatic test generation (ATPG) problem, it is obvious that many of existing solutions to the
latter are of interest for the former. Hence, while the two classes of problems may share a
number of basic algorithms, they aso share a common terminology, which basic concepts are
stated in chapter 3, and are further employed in the sequel.

Early FTA algorithms operated on a per-path basis, by using an adapted version of D-
algorithm. This was the case of the works presented in [BEN87] (detailed in [BEN9Q]),
[BRAS8S], [CHE91] and [CHE93]. In the two latter cases, not only static logic values were
asserted, but also the time these signals became stable was tracked. All of these algorithms
shared a common feature that was, only one path was considered at a time, concerning the
sensitization tests. In practice, this corresponds to the ATPG concept of single path
sensitization!

68

But since early, it has been recognized that some circuits may exhibit hundreds of
thousands of false paths greater than the critical path [KEU91][DEV94][LAM94], rendering
the per-path operation impractical due to its prohibitive computational cost. On the other
hand, early ATPG algorithms had aready the ability of dealing with multiple paths at a time,
or in other words, were able to perform concurrent (or multiple) path sensitization. Not
surprisingly, some FTA solutions tried, and actually succeeded, to catch such ability. Among
them, the most remarkable are the work of Devadas et a. [DEV91] [DEV934], that of Silva
and Sekallah [SIL94] [SIL94a] and that of Ashar and Maik [ASH95]. Actualy, the
contribution of the latter work concerns a circuit equivalent form alowing for using
unmodified ATPG agorithms to resolve the FTA problem. A mixed approach is also
encountered in the literature [CHA93]. In this, a set of potential critical pathsis identified by
concurrent path sensitization. Single path sensitization is then applied to this set to identify the
critical path.

Another issue, theoretically independent on the number of paths that an agorithm can
handle, is the method used to determine whether the sensitization conditions are satisfiable or
not. Recall all previously mentioned agorithms. The method they use to determine the
sensitizability of paths (either operating on a single path or on multiple paths) relies on
asserting logic values to some of the circuit nodes (on-inputs and side-inputs, in case of single
path) and then, by implicating these values to other circuit nodes, watching whether any
inconsistency occurs or not. Such procedure has also been borrowed from classical ATPG
algorithms, thus being referred to as ATPG-based.

In 1989 McGeer and Brayton called the attention to the fact that the set of conditions
necessary to declare a path as sensitizable (under a given criterion) could be formally stated as
a path sensitization function [MCG89]. Hence, forma methods could be used to resolve the
path sensitization problem, instead of the traditional ATPG-based method. Their first
solutions to this alternative formulation of the sensitization problem involved dynamic
programming [MCG89] and BDDs [MCG91].

Naturally, it would be expected that the same type of formulation to be straightforward
applicable to ATPG. In this case, however, the formalized set of conditions tends to present
higher complexity since not only the propagation conditions must be taken into account, but
also the conditions for fault activation. The work incarnating this shift in terms of ATPG
methods is that of Larrabee [LAR92]. Larrabee used Boolean satisfiability to solve a
formulation that expressed the Boolean difference between faulty and fault-free circuits.

This shift on methods came again to the FTA field by means of the so-called path
recursive functions, defined by McGeer and Brayton in [MCG91a], which provided the
formalization necessary to apply Boolean satisfiability algorithms. After that, satisfiability-
based (or SAT-based) FTA has evolved. Some other SAT-based FTA techniques deserving
citation are [MCG93], [SIL93], [SIL96], [SIL98] and [SIL99].

Summarizing the taxonomy that was presented along with the historical review, the
existing solutions to the FTA problem may be classified according to the following issues:

» The path sensitization criterion used,
* The number of paths simultaneously handled and
* The method used to test path sensitizability.

69

Path sensitization criteria were subject of chapter 4. Concerning the number of paths
simultaneously handled, a FTA algorithm may use one of the following possibilities:

» Single path sensitization,

» Concurrent (or multiple) path sensitization or

* A mixed approach

Finally, the possible methods to check for path sensitizability are:
s ATPG-based,

o SAT-based or

» Other (e.g., BDDs)

A classification of some existing FTA a gorithms, following the proposed taxonomy, is
presented table 5.1.

TABLE 5.1 - Classification of existing FTA algorithms.

algorithm sensjtizgtion number of paths method. f.or t.%ting
criterion handled sensitization
SLOCOP [BEN9(] static single path ATPG-based
ACPA [CHE93] approximate single path ATPG-based
[LI\; E:Ael?sﬂsﬁ[m coet] viability snglepath | BDDsor SAT-based
ﬁ\/? C[:)C(;)91 aA[MCGO3] exact floating concurrent SAT-based
VIPER [CHA93] vigorous mixed* ATPG-based
TrueD-F [DEV93q] exact floating concurrent ATPG-based
TA-LEAP [SIL94] “safe” static concurrent ATPG-based
STA [SIL93] static concurrent SAT-based
GRASP [SIL96] static or viability concurrent SAT-based
CGRASP[SIL99] static or viability concurrent SAT-based’

" Partialy concurrent path, partially single path sensitization.
" Uses circuit structure information for guiding decision backtracking.

A final note on the proposed taxonomy is required. In the literature, the term ATPG-
based (or equivalently, ATPG or TG-based) is generally associated to ATPG-based concurrent
path sensitization. This might be because single path sensitization does not use directly ATPG
algorithms, but adapted versions of them. Similarly, in the literature the term SAT-based
implicitly assumes concurrent path sensitization, since this kind of solution is powerful
enough for dealing with multiple paths at atime’. However, for didactic reasons, in this text a
more compl ete characterization of FTA agorithms will be used. This way, for the purpose of
presenting the most representative classes of algorithms, we may use composed terms, as

" In other words, it would not be expectable using SAT methods for testing a path at a time, although it would be
possible.

70

ATPG-based single path sensitization, ATPG-based concurrent path sensitization and SAT-
based concurrent path sensitization. These types of algorithms are detailed in the following
three sections.

Before beginning the discussions on FTA agorithms, it is worth to mention that any
FTA agorithm presents three basic steps that can be presented as:

1. Circuit graph creation
2. Graph pre-processing, to compute maximal delays
3. Circuit delay computation

Thus, different types of algorithms differ from each other by the third step. This step can
indeed be further divided in other substeps that may greatly differ, according to the proposed
classification. These differences will be focused in the next sections.

5.2 ATPG-Based Single Path Sensitization Algorithms

ATPG-Based single path sensitization algorithms check the sensitization conditions
of a given path by asserting logic values to on-inputs and side-inputs and implicating these
valuesto other circuit nodes, in a D-algorithm-like fashion. Indeed, such technique tends to be
less complex than the D-algorithm because only the propagation phase is of interest.
Moreover, only single path sensitization is tried.

In order to guarantee that the critical path delay is found, the algorithm must begin by
examining the topologically longest path. If the sensitization conditions are satisfied, such
path is assumed to be the one responsible for the circuit critical delay and its delay is assumed
to be the circuit critical delay. Otherwise, the next topologically longest path must be traced
and checked. The procedure continues until a sensitizable path is found.

Single path sensitization algorithms (sometimes called per-path agorithms) share a
common problem that is tracing paths according to a non-increasing order of their delays. The
most efficient algorithms to accomplish this, referred to as path enumeration algorithms, are
of complexity O(n log n), with n equals the number of graph nodes [PIN98]. The procedure
may be speeded up dlightly if the sensitizability check is accomplished while the path is being
traced. In this case, the steps for testing sensitizability would be basically the same as in the
D-algorithm: implication and justification [ROT66]. For each new gate appended to the path
being traced, logic values are asserted to the side-inputs. Then, these values are propagated
backward to the primary inputs and forward to the primary outputs. In the case of delay-
dependent sensitization conditions, the stable time of these values are aso taken into account.
Non-evaluated nodes remain with don’t care values. Figure 5.1 depicts the execution of such a
single path sensitization procedure.

While justifying a given set of propagation conditions at a gate, more than one set of
possible logic values may exist for the nodes within the logic cone arriving to the considered
gate. These possible sets are stored in a list for future evaluation, in case any inconsistency
occurs while evaluating the propagation conditions at the next gates of the path. If there exist
at least one assignment of logic values to the circuit nodes satisfying to the sensitization
conditions, then the path is declared sensitizable (with respect to the applied sensitization
condition and delay models). On the other hand, a path cannot be declared unsensitizable until
all possible assignments of logical values have been tested.

71

forward implication

— 1 (td
X (0) : (td, X (2) X ())
0(0) — [{>c '
‘/\ X (?)
backward implicatio

/ X (?) X (2) X (?)

D-frontier

FIGURE 5.1 - Single path sensitization procedure.

In order to speedup execution time, some ATPG-based single path sensitization
algorithms (as [DU89] and [CHE93]) do not perform the justification step, since most false
paths may be detected in the implication step. However, the implication step is not able to
identify all sensitizable paths [PES94] and thus, when justification is not performed, an
unsensitizable path may be declared sensitizable, resulting in an overestimation of the circuit
delay.

As mentioned earlier, one important issue in single path sensitization algorithms is the
path enumeration agorithm itself. The problem of tracing paths of a combinational circuit
has been studied since the 80's, when various path enumeration algorithms were proposed.
Some of them were direct implementations of the classical Breadth-First Search (BFS) and
Depth-First Search (DFS) graph traversal procedures (e.g., those presented in [YENSS]).
However, as long as these agorithms do not consider pre-processed graph information,
tracing paths in an arbitrary order of depth, they were not efficient for enumerating circuit
paths in a non-increasing order of lengths (i.e., path delays). Other algorithms applied pruning
heuristics based on designer’s knowledge of the circuit, as those in [OUS85]. However, the
most efficient algorithms are those based on the Best-First Search procedure [WIS84], as the
ones presented in [YEN89] and [YEN91] (and generalized in [MCG91]), and thus will be
further discussed in the following subsections.

5.2.1 The Best-First Search Path Enumeration Procedure of Yen et al. [YENS89]

The best-first search algorithm, also called A* [WIS84], is an algorithm that decides the
search tragjectory based on pre-computed path lengths. The main reason for using such
algorithm for path enumeration of combinational circuitsis that it allows for a continuous and
organized exploration of the search space with time complexity O(nlogn) [MCG91].

The best-first search procedure implemented by Yen et a. [YEN89] assumes a single
delay per gate and can be divided into three main phases:

1. circuit graph creation
2. graph pre-processing phase
3. path enumeration phase.

72

In the first phase, a DAG is created to represent the circuit under analysis. In this DAG,
each CMOS gate is represented by a node and each connection, by an edge. Dummy nodes
(i.e., with zero delay) are added to represent primary inputs and primary outputs. A source
node s and a terminal node t are also created; a dummy edge is added between node s and
each primary input node and between each primary output node and node t. With this
canonical DAG representation, any circuit path assumes the form P = (o, V1, V2, V3, ...Vh, Vi1
), where v, is agraph node. If o= sand vn+1 = t, then P is said to be a complete path. If vo# s
or Vpr1 £ t, then P is said to be a partial path. Figure 5.2 shows the DAG for the circuit of
figure 2.1. For the sake of simplicity, consider that the delay of connections is lumped at
circuit nodes, i.e., the delay represented by a given net is assigned at its fanin node.

An important aspect that must be considered in the implementation of path enumeration
algorithms is the adopted gate delay computation model. That is, the enumeration agorithm
must take into account whether a single delay or a pair of delays is assigned to each circuit
gate. By pair of delaysit is meant separate fall and rise delays and thus, the polarity of signals
must be considered in the calculation of path delays.

199,261

0

/ a
| 118,158

1047,999

1156

0
237,284
,0

0
b

202,362
362 0

0,0

406,383
453

921,817 I
1064

501,564 Notation

1047,999
611 tdhl,tdlh

‘s
1051,10¢7
1193 0,0
1193 ‘ \ » tdlh = rise delay of the gate
mdtf,mdtr mdtf = maximal delay to t
0,0 mdt for falling transition
d) 1051,1015 611,748 mdtr = maximal delay to t
Y 1193 858

for rising transition

tdhl = fall delay of the gate

1015,1051
1193

FIGURE 5.2 - DAG for circuit of figure 2.1, pre-processed according to the best-first search
procedure.

In the ssimpler case, when a single delay is assigned to each circuit gate, the delay of a
path is computed just by adding the delay of each gate of the path. Signa polarity is
disregarded. For a partial path P = (Q, Va1), With Q = ('S, w1, Vo, V3, ...V,) the delay is
calculated by:

d(P) = d(Q) +td(v,.,) (5.1)
where td(vn+1) isthe delay of gate vi.1 appended to partial path Q.

For ordering path tracing, the best-first procedure of Yen et al. [YENS89] goes through a
pre-processing phase in which the maximal delay to nodet (mdt) is calculated for each node
and stored in the data structure. The mdt(v) is defined as the maximum of the delays of all
possible partial paths starting at node v and ending at nodet and is calculated by the formula:

mdt(v) = d(v) + max{ mdt(u,)} (5.2)

73

where u, O adj(v) (i.e., the list of successors of node v). The procedure for calculating the
mdts of al nodes in the graph starts at node t and goes backwards in a breadth-first order. A
node v will have its mdt computed only after all of its successors mdts have been computed.
The procedure ends when node s has its mdt calculated. At the same time the mdt of a node v
is calculated, its list of successors, adj(v), is sorted in a non-increasing order of each
successor’s mdt. In the graph of figure 5.2 the value used as gate delay for calculating mdt(v)
is max{ tdlh(v),tdhl(v)}.

The mdt is a valuable information, which allows to avoid searching branches that will
not result in paths having greater delay than the smallest delay among the paths already
discovered. It aso permits to keep the partial paths candidates ordered according to their
esperances. The esperance of a partial path P = (vy, Vi, Vo, Vs, ...V, Vi), Obtained by appending
node v.,; to the partia path Q = (vy, Vi, Vs, Vs, ...V,), IS the maximum delay of all complete
paths that have Q as a prefix [BEN87] and is calculated by:

&(P) = d(Q) +mdt(v, ,) (53

In the path enumeration phase the k most critical paths are found and stored in a linear
structure named k-list, in anon-increasing order of their delays. Each position of k-list stores a
given path P (initialy, a partial path, but at the end of the procedure, a complete path), its
delay, d(P), and its esperance, e(P). At the beginning of the procedure, the first d, partial paths
made up of node s and each of its successors will be stored in the first d, positions of k-list,
with d; being the outdegree of node s. If ds > k, then only the first k partial paths will be kept
(k is a user provided value). Once k-list is initialized with the first partial paths, a function
caled extend_and_replaceis invoked for each partial path of k-list, beginning from the first
position, k-list[0]. This function takes the partial path stored in k-list[i] and extends it until
nodet has been reached. Suppose that v is the last node of partial path P = (Vo, Vi, Vs, Vs, ...V),
stored at k-list[i], which isto be extended, and adj(v) ={ Uy, Uy, Uy, Us, ...} iSitsordered list of
successors. Extending P through u, originates a new partial path Py , with the same esperance
of P (because u, is the first successor of v). Thus, Py will replace P in position k-list[i].
However, extending P through node u, creates a new partiad path P; with esperance
e(P,) =d(P) + mdt(u,) . Similarly, extending P through node u, creates a new partial path P,
with esperance e(P,) = d(P) + mdt(u,) and so on. Before extending path P by appending node
Uo, €ach “side” partial path except Py has its esperance calculated in order to know whether
this new partial path will be inserted in k-list or not. If the new partial path’s esperance is
greater than the esperance of the partial path stored in k-list[k-1] (i.e.,, the last position of k-
list), then it is inserted in an ordered manner. Otherwise, neither this partial path nor the next
side partial paths will be inserted because partial paths are examined in the same order of the
elements in adj(v). This results in a prune of the search space. In case a new side partial path
is to be inserted, the insertion position j will be within the range (i <j < k-1) and the path
stored in position k-list[k-1] will be automatically discarded. Each new partia path P; that is
inserted in k-list will have its delay calculated by:

d(R) =d(P) +d(u) (5.4)

Once path P, stored in k-list[i], is completely extended, d(P) = e(P) because it is a
complete path. Then, function extend_and_replace will be called for the partial path stored
in k-list[i+1]. The path enumeration phase will end when the partial path stored in k-list[k-1]
is completely extended. At this point, k-list holds the k-most critical paths of the circuit.
Figure 5.3 shows the contents of k-list after itsinitialization, for the circuit represented by the
graph of figure 5.2.

74

It is interesting to note that while the path stored in k-list[i] is being extended it is not
possible to precise which will be the next partial path to be extended. On the other hand, once
path of k-list[i] has been completely extended, the next path to be extended is the one stored
in k-list[i+1]. This systematic search of the space of possibilitiesis responsible for the greatest
advantages of the best-first procedure over the depth-first procedure [Y EN89][MCG91]: paths
are traced in anon-increasing order of their delays with no need for costly backtracks.

i d | e |pah
0 Joues [°[7 d)
1o me] s W o |
2 [g luse| ——{] s 557 b I
3 g e =] s L= a)
, 00|\
ki (0|0 |\

FIGURE 5.3 - k-list structure initialized with the first partial paths of the circuit of figure 5.2.

5.2.2 Best-First Search Path Enumeration Considering Different Fall and Rise Gate
Delays

This section describes the modifications to the basic best-first search of Yen et a.
needed for dealing with separate fall and rise gate delays. Although of maximal interest for
implementing useful FTA agorithms, such modified best-first procedure is described in detail
only in [GUN98], [GUN98b] and [GUN99]. The basic idea s to store two lists of successors
at each graph node: one for the faling transition and another for the rising transition at the
node’'s output. This also implies in calculating two mdts, as will be explained in the sequel.
Many of the ideas described here may also be applied in the context of ATPG-based
concurrent path sensitization algorithms.

In order to consider different fall and rise gate delays, each topological path is
decomposed into two distinct logical paths by fixing the type of the transition taking place at
its primary input. Thus, the delay of a partial logical path P = (Q, Vn+1), With Q = ('S, V1, Vo,
Vs, ...V) is calculated by:

d(P) =d(Q +tdhi(v,,,) (55)
if the input of vi+1 IS undergoing arising transition and
dP) =d(Q +tdih(v,,) (5.6)

if the input of vh1 IS undergoing a faling transition. By considering signal polarity, these
calculations are implicitly adding some primitive information on the relationship between the
gates of a path.

In the pre-processing phase, the procedure for calculating the mdts of al nodes is
essentially the same, except that for each node two values of mdts must be calculated: mdtf
and mdtr. For a given node v, mdtf(v) and mdtr(v) give the maximum of the delays of all
possible partial logical paths starting at node v and ending at node t, for a falling transition
and for arising transition at the output of v, respectively, and are calculated by:

75

mdtf(v) = tdhl(v) + max{ mdtr(u,)} (5.7)
mdtr(v) = tdlh(v) + max{ mdtf(w,)} (5.8)

with u; O adjf(v) (the list of successors of v for afalling transition) and w; [adjr(v) (the list
of successors of v for arising transition).

Hence, each node v has two lists of successors, adjf(v) and adjr(v), sorted in a non-
increasing order of each successor’s mdtf and mditr, respectively.

Similarly, the esperance of a partial logical path P = (Q, Va1), Obtained by appending
node v+ to the partial logical path Q = (s, 1, V2, V3, ...V), is calculated by:

eP) =d(Q) + mdtf(v,.,) (5.9
if the input of vh+1 iSundergoing arising transition and
e(P) =d(Q) + mdtr(v,,,) (5.10)

if the input of v« IS undergoing a falling transition. Figure 5.2 also shows the pre-processed
mdtf and mdtr values for the DAG that represents the circuit of figure 2.1.

For determining the transition type at the end of a (partial) logica path two fields have
been added to each position of structure k-list: type, which tells the transition type applied to
the path input, and level, which indicates the number of nodes that compose the current stored
(partia) logical path.

The enumeration phase begins by storing the first 2d; partial logical paths made up from
node s and its successors from adjf(s) or from adjr(s), with d, being the outdegree of node s.
The nodes taken from adjf(s) and adjr (s) are chosen following a unique order. If 2d; > k, then
only thefirst k partial paths will be kept. A modified version of extend_and_replace function
is then called for each partial path, beginning from the path stored in k-list[0]. This new
version is essentially the same as the original one, except that it deals with logical paths rather
than topological paths. When partial logical path P = (Vo, Vi, Vs, V3, ...V), stored in position k-
list[i] is to be extended, the information of k-list[i].type and k-list[i].level is used to choose
between adjf(v) and adjr(v) and to calculate the esperances and the path delays of each
extended path. Figure 5.4 shows the contents of k-list when the modified procedure is
extending the most critical path of circuit example.

type| d | e |path

0 1 (2173|1051 [S [d_[++{[nanDd\]
1[1 [0 [1051] =[5 [T c I
2(0 [0 |1047| =] S [+ b]\
3 o | o |1047] =T S T4 a [\]
40 [0 [105] =T s 4 c]
5| 0| 0 [1015] T 5 [+ c |\
6] 1[0 999 —T 5 [+ c N
7[1]0Jo9| —+T5 [Tc N
8 0lo [\

: oo |\
k-1 0 0 |\

FIGURE 5.4 - k-list structure for the best-first procedure that considers separate fall and rise
delays.

76

It is important to remark that the proposed solution for dealing with separate fall and
rise delays does not imply duplication of graph nodes, as does the solution presented in
[L189]. Instead, different fall and rise delays are considered by keeping track of the transition
type along paths in order to choose a node’ s next successor from either adjf or adjr.

Appendix 2 presents a study on the performance of best-first search-based path
enumeration procedures gathered from the following publications: [GUN98a], [GUN98b],
[PIN98], [GUN99] and [GUN99a]. This study considers the gate delay model (single gate
delay or separate fall and rise gate delays) and also the type of data structure used for storing
partial paths (linear dynamic list or binary tree).

5.3 ATPG-Based Concurrent Path Sensitization Algorithms

Searching for a vector v, that satisfies sensitization conditions for a particular path can
take 0(2") time, with n being the number of primary inputs of the circuit. If this search isto be
performed on one path at atime, as single path sensitization algorithms do, then the execution
time is multiplied by the number of unsensitizable long paths that will be analyzed before the
first sensitizable one is found. Furthermore, the time complexity of the fastest path
enumeration algorithms is O(n log n), where n is the number of nodes in the circuit graph
[PIN98]. All these problems prevent single path sensitization to be used in FTA of large
circuits.

An alternate strategy is to directly answer the question of what the true critical delay of
the circuit is and operate on sets of paths rather than a single path at a time [DEV93a]. The
guestion stated is. Is the delay of the circuit greater than or equal to &? The value & can
initially be set as the delay of the topologicaly longest path of the circuit and then be
progressively decreased while the answer to the question is“yes’.

A straightforward 0(2") algorithm to find the true critical delay of a circuit that does not
require explicit path enumeration is to simulate each of the 2" input vectors or minterms using
the timed cal culus and determine the longest delay seen at the circuit output. This process can
be speed up by using cube simulation instead of using minterm simulation. This can be
accomplished by using a modified version of the PODEM algorithm [GOE81], as proposed in
[DEV934].

In the next subsection the basic PODEM algorithm is described. Subsections 5.3.2, 5.3.3
and 5.3.4 describe the modifications to the PODEM algorithm proposed in [DEV93a] to
perform atimed cube calculus.

5.3.1 The PODEM Algorithm

PODEM [GOES81] is an enumeration agorithm that implicitly and exhaustively
enumerates the input space using cubes rather than minterms, while trying to satisfy a given
objective. The following explanation is oriented to a timing analysis implementation and was
taken from [DEV94], with modifications.

The topmaost call of the procedure PODEMis described by the pseudocode in figure 5.5: it
simply inserts the given primary output line po on a justification list j1ist with value
I val ue, and calls a search procedure SEARCH_1. | val ue is the logical value (either O or 1) to

77

bejustified. Let us assume that a given logical value out_value (either O or 1) isto be justified
at output pol of a circuit. Thus, for the first call of the PODEM procedure, po —pol and
| val ue —out_value. This can be seen as detecting an (out_value) stuck-at fault at output pol
of the circuit.

PODEM po, | val ue) {

jlist = po with |ogical value |value;

status = SEARCH 1(jlist);
return(status);

FIGURE 5.5 - Pseudocode for the topmost call of the PODEM algorithm.

The search procedures are described by the pseudocodes of figures 5.6 and 5.7. The
procedure SEARCH_1 calls a BACKTRACE procedure to find a primary input whose logical value
is currently unknown, beginning from the primary output po. The primary input is (initially)
set to logical value 1 and the 1 MPLY procedure is caled. This procedure in PODEM
corresponds to standard three-valued cube simulation (i.e., without any delay information).
The implication procedure may produce a logical conflict. If no conflict occurs, SEARCH_1 is
called recursively. The procedure terminates successfully in SEARCH 1 if the justification list
is empty. In the case a logical conflict occurs in SEARCH_1 the agorithm backtracks to the
most recent primary input assignment. The primary input is set to the logical value O, and the
SEARCH_2 procedure shown in figure 5.7 is caled. Failure results if either the backtrace
procedure is unable to find a primary input to set or if the space has been completely
enumerated without success in SEARCH 2. In the case of conflict or failure, the network must
be restored to the state it was immediately prior to the primary input setting that caused the
failure.

SEARCH 1(jli st)
if(length of jlist is zero) return SUCCEED,

i f (BACKTRACE(po, po_val ue, &pi, &pi _val ue) == FALSE)
return(FAI LED) ;

i f(IMPLY(pi,pi_value,jlist) !'=1MPLY_CONFLICT){
search_status = SEARCH 1(jlist);
i f(search_status) == FAILED){

restore the state of the network to what it was
prior to the nost recent prinmary input assignment;
search_status = SEARCH 2(jlist, pi, 1-pi _val ue);

el se{
restore the state of the network;
search_status = SEARCH 2(jlist, pi, 1-pi _val ue);

return(search_status);

FIGURE 5.6 - Pseudocode for the first search procedure.

78

SEARCH 2(jlist, pi, pi_val ue)
{

backtracks = backtracks + 1 ;
i f (backtracks > BACKTRACK LIM T) return(ABORTED);
i f(IMPLY(pi,pi_value,jlist) !'=1MPLY_CONFLICT){
search_status = SEARCH 1(jlist);
i f(search_status == FAI LED)
restore the state of the network;
}el se{
search_status = FAI LED;
restore the state of the network;

return(search_status);

FIGURE 5.7 - Pseudocode for the second search procedure.

In order to illustrate the PODEM a gorithm, consider the following situation: we need to
find an input vector that sets the output of the circuit of figure 5.8 to 1. As afirst step, the
PODEM algorithm sets all primary inputs to 2 (a=2, b=2 and c=2), which will represent the
unknown value. The simulation or implication of these input values resultsin a2 on all wires
including g, the output. Backtracing sets input a to 1. Implication immediately sets the g to 0
as shown in figure 5.8a. The value of 0 at the output corresponds to a conflict since it was
asked for justifying a 1 at the output. Thus, it is necessary to backtrack to the most recent
primary input setting and change it. In this case a was set to 0. The output remains at 2 for the
vector a=0, b=2 and c=2. Then, it is necessary to backtrace to another primary input b and set
it to 1. Implication sets the output to O as illustrated in figure 5.8b, and we again have a
conflict. The conflict results in backtracking to the most recently set primary input, in this
case b. The input value is changed to 0. The vector a=0, b=0, c=2 results in an output of 2 as
shown in figure 5.8c. Setting the remaining unknown input ¢ to 1 sets the output to the
required value of 1, as shown in figure 5.8d. The search procedure ends in success.

The sequence of decisions taken in the previous example may be represented in terms of
a decision tree as the one shown in figure 5.9. The nodes of the tree correspond to primary
inputs, and the left and right edges from each node correspond to input settings of 1 and O,
respectively. The leaves of the tree correspond to primary output settings.

5.3.2 Cube Simulation

In order to use the PODEM agorithm for delay computation, we are interested in
arriving at a timed calculus over three logica values, 0, 1 and 2 (unknown), that has the
following properties [DEV 94]:

e Itisequivaent to the timed calculus for computing the floating delay presented in
subsection 4.2.4, in the case where inputs are completely specified;

e Given an incompletely specified vector, it produces an upper bound on the
achievable delay over any of the minterms in the vector;

« Given anincompletely specified vector, it produces alower bound on the achievable
delay over any of the minterms in the vector;

79

a l
% e 0
2 1
b
g o0
1
] d 2
f 2
1 1
2
Cc
€Y
ald o 0
1 1
b
g 0
1
] d 0
f 2
! 1
2
c
(b)
ald o 1
0 1
b
g 2
1
] d 0
f 2
! 1
2
c
(©)
g 1

(d)

FIGURE 5.8 - PODEM algorithm example.

The timed calculus for cube simulation is given in table 5.2 for a two-input AND gate.
The calculus for an OR gate would be similar, except that the role of controlling and
noncontrolling values is interchanged. For each entry, we have the logical value at the AND
gate output and the lower and upper bounds on the achievable delay. d is the delay of the
AND gate.

80

[o]

FIGURE 5.9 - Binary decision tree for PODEM algorithm.

TABLE 5.2 - Timed calculus with unknown values.

oo 0 1 2
I2

0 0 0
0 MIN(I1l5)+d I+ MIN(I1l5)+d
MI N(Ul,Uz)'l'd u,+d Uo+d
0 1 2
1 [,+d MAX(|1,|2)+d [,+d
u;+d MAX(U]_,Uz)"‘d MAX(U]_,Uz)"‘d
0 2 2
2 MIN(I1l5)+d |+ MIN(I1l5)+d
u;+d MAX(U]_,Uz)"‘d MAX(U]_,Uz)"‘d

Each input of the AND gate has an associated logical value in {0,1,2} and alower and
upper bounds on the delay corresponding to the value. For input iy, for instance, the lower
bound is |, and the upper bound is u;. The logical values in the table correspond to standard
three-valued simulation with 0, 1 and 2 values. To illustrate the process, it will be explained
the calculation of the lower and upper bounds.

When the inputs are at {0,1}, the rules of figure 4.17 are obeyed. When we have two 0s
at the AND gate inputs, we choose the minimum of the lower (upper) bounds to calculate the
lower (upper) bound at the output. When we have two 1s, we choose the maximum of lower
(upper) bounds to calculate the lower (upper) bound at the output. When we have a0 and a 1,
we simply use the lower and the upper bounds of the O input.

When a 2 is at the input of an AND gate, the calculus gives the lower and upper bounds
on the achievable delay with either (0 or 1) setting of the 2 value. For example, consider the
entry in thetablewheni;islandi,is 2. The logical value at the AND output is 2. If i, is set
to 0, the lower (upper) bound on the delay will be I,+d (up,+d). However, if i, is set to 1, the
lower (upper) bound on the delay will be MAX(ll)+d (MAX(ug,ux)+d). Since
[,<MAX(I1,l2), |> represents the lower bound on the achievable delay, and since
MAX (ug,up)=u, MAX (ug,Up) represents the upper bound on the achievable delay.

8l

Now consider the situation where i, is 0 and i, is 2. In this case the value and the upper
bound of i, are passed through to the output. If i, is set to 1, its delay will not matter. If iy is
set to 0, then the delay at the output will be MIN(uy,uz)+d. However u;=MIN(uy,Up), and thus
we take u;+d. By the same reasoning, the lower bound will be MIN(I4,12)+d.

When both inputs of the AND gate are 2, the lower bound on the achievable delay at the
output is clearly MIN(l4,l2)+d. The upper bound on the achievable delay at the output is
MAX (up,up)+d. Similarly, for the other entries.

Figure 5.10 illustrates the cube simulation using timed calculus. Each wire has a logical
value and two delay values. For example, 0(1,2) implies that the logical value of the wireisO,
the lower bound on the achievable delay is 1 and the upper bound on the achievable delay is 2.
In figure 5.10a we have a vector with two 2 entries being simulated on the circuit. The output
of the circuit is 2, and for the minterms that are contained in 00210, the maximum achievable
delay is4. When cis set to 1, the maximum achievable delay at the output is reduced to 3.

It is important to emphasize that the computed delays using the timed calculus merely
give the range of the achievable delays over all the minterms contained in the partia input
setting (input cube). Even if a wire is at a known value under a partial input setting v, the
delay of the wire may be arange rather than a constant. For instance, consider the case where
the first input of a two-input AND gate with zero delay is at O with ;= u;=4. If the second
input is at 2 with |,= u,=3, then the lower bound on the output is achieved when the second
input is set to O0; we obtain a delay of 3 at the output. The upper bound of 4 is achieved when
the second input is set to 1. The output of the AND gate is O for both cases.

0(0,0) 0(L1)

1 f)

0(0,0) 1)j > g 2(12) h 2(2,3)

b ——— {>O 1 224) out
2(0,0)

. 1(0,0) ‘
2(0,0) } 2(1,1)

@

e
a 90.9) 0(1,1)
—] f :
0(0,0) 1 g 1(11) h 0(2.2)
p 200 @ >0 >0 M o
1(0,0)
1(0,0) _
d 200) L >| 2(1,1)
o ——2]

®
FIGURE 5.10 - Cube simulation using timed calculus.

5.3.3Timed Test Generation

The application of the PODEM algorithm to compute the floating delay is described in
the sequdl. In order to use the PODEM algorithm for computing the floating delay, the timed

82

calculus of table 5.2 must be used. It will be necessary to justify both logical values on wires
and delay values, and therefore the procedure is called timed test generation [DEV 93].

The procedure is given alogical value L 0 {0,1} and a number 9, and asked to find an
input vector, if such avector exists, which sets the output of the circuit to L and which results
in afloating mode delay >0.

The procedure follows the same steps as the PODEM algorithm. However, there are
some important differences. The implication procedure uses the timed calculus of table 5.2
rather than a purely logical calculus. Conflicts occurring during implication may be logical
conflicts or time conflicts. Logical conflicts as before correspond to the case when the output
is set to the value L. A time conflict occurs when the output is set to L but the upper bound on
the delay at the output is strictly less than d. In this case too we have to backtrack since we
cannot find an input vector within the cube corresponding to the current settings of the
primary inputs that has a delay =d. The procedure ends successfully if the output has been set
to L and the lower bound on the computed delay at the output is>0.

Consider the example of figure 5.11. The delay of each gate is assigned inside the gate.
We wish to justify a 1(3) at the output of the circuit. Initialy, all inputs are set to 2 with delay
zero. Implication resultsin a 2 logical value at the output with a delay range (2,3) as shown in
figure 5.11a. Backtracking setsato 1. Implication immediately sets the output to O, which isa
logical conflict. We backtrack to the most recently set primary input and change its value.
Hence, a is set to 0. Implication results in a 2 at the output with a delay range of (2,3).
Backtrack sets b to 1, resulting in a O at the output, a logical conflict, as shown in figure
5.11b. We backtrack to set b to 0. The output is unknown with the input setting corresponding
to a=0, b=0 and c=2. Setting c to 1 results in the output being set to 1, but with a delay of
(2,2), as shown in figure 5.11c. This is a time conflict since the upper bound on the delay is
strictly less than the required delay. Finally, setting c to O resultsin a 0 at the output, alogical
conflict, as shown in figure 5.11d. We have failed to find an input vector that resultsin a1 at
the output of the given circuit with floating mode delay 3. Note that we did not have to
simulate al of the 22 different input minterms.

It is possible to find an input vector that results in a delay of 3 that produces a O at the
output, as shown in figure 5.11d.

5.3.4 Backtrace

In PODEM the backtrace procedure is called when the primary output of the circuit is at
an unknown value for the current primary input settings. It begins from the primary output of
the circuit and traces back through the gates in the circuit to a primary input that is still at the
unknown value. All gates traversed exhibit the property that their outputs are at unknown
values. The required value at the output may dictate the required value at these gates, but in
general there will be choices as to which path the backtrace follows. The backtrace procedure
uses heuristics in following paths that begin from a primary input with an unknown value
which when set will likely set the output to the desired value. The particular value that the
primary input is set to, either O or 1, is also decided heuristicaly.

The backtrace procedure in timed test generation is similar to the purely logica
backtrace of PODEM except that it uses both the logical and the desired delay value at the
output to choose what path to follow. The backtrace procedure is called when the primary
output is at the value 2, or if the lower and upper bounds on the computed delay at the output

are not equal. Thisis illustrated in figure 5.12, where we have a fragment of a circuit with a
partial setting of its primary inputs. The logical value and the upper bound on the delay value
for each wire is shown in the figure. The desired value at the primary output is 1(10) and is
shown in bold. The current value of the output is unknown with an upper bound on the delay
being 11.

aM' e 2(1’1)
2(0,0) 1
b
DLZ(Z’S)
— L d 2(1,1) ;
2(1,2)
c 200
(@
a 000 e 0(1,1)
b 00 1
DLO(Z’Z)
— L d 0(1,1) ;
2(1,2)
¢ 2000
(b)
a 000 e 1(1,1)
0(0,0) 1
b
Duz,z}
— L d 0(1,1) ;
1(1,1)
¢ 10,0
©
am, e 1(111)
b 200 1
DLO(3Y3)
— L d 0(1,1) ;
0(2,2)
¢ 00,0

(@
FIGURE 5.11 - Timed test generation example.

Backtracing begins at the OR gate connected to the primary output. Since we requirea 1
at the primary output and the other two inputs to the OR gate are 0, we can infer that we
require a 1 at the first input to the OR gate. Furthermore, the delay value required is 9. We
now move to the AND gate and note that we require a 1(9) at this output (in bold in the

84

figure). This means that all of its inputs have to be at 1. The first and second inputs to the
AND gate are at 2. We will choose to follow the path corresponding to the first input because
that is the only path that can satisfy the delay value of 9 at the AND gate output. Next, we
move to the NOR gate with a require output value of 1(8). Both its inputs are at unknown
values, and it is possible for either input to provide a 0(6) value. The backtrace procedure
randomly selects one of the inputs and continues until it reaches a primary input.

0(6) «—

2(7) P -—
20) 1(10)
2(10
_,— 1) (10) 2(11)
2(6) - 1
24) 03 — |
1(6) o)

FIGURE 5.12 - Backtrace example.

5.4 SAT-Based Concurrent Path Sensitization Algorithms

As discussed in previous two sections, in the ATPG-based algorithms path sensitization
is either considered explicitly, by tracing a path at a time and checking its sensitizability, or
implicitly, by justifying logical values at each output while decreasing the minimal output
stable time T. Both cases use modified ATPG algorithms derived from the classical D and
PODEM agorithms.

In the SAT-based algorithms however, path sensitizability is implicitly tested by using
the satisfiability approach (SAT). Indeed, this is a broader solution, since sensitization testing
(and also any stuck-at fault detection problem) may be formulated as a genera satisfiability
problem.

In subsection 5.4.1 it is described a SAT-based FTA technique proposed by McGeer et
a. [MCG93], to illustrate a possible implementation solution for the floating delay
computation. This currently appears as the most accepted SAT-based algorithm for
performing FTA of combinational circuits. Moreover, it clams to allow the analysis of
circuits composed of general complex possibly asymmetric gates without using macro-
expansion.

5.4.1 Philosophy of the SAT-Based Method of [M CG93]

The SAT-Based method proposed by McGeer et a. [MCG93] uses an extension of the
unbounded gate delay model called XBDO (Extended Bounded Delay-0), in which a third
value 2 is added to the set of values {0,1} of the ordinary Boolean algebra. The third value
models both the indeterminate state and the unknown state. It is also adopted a formalism
caled waveform algebra introduced by Augustin in [AUGS89]. The resulting waveform-
based algebraic model is analogous in the static domain to the switching algebra over Boolean
operators. Within this framework, the gate delay computation mode! is redefined, in order to
merge the logical functionality with the gate delay. Hence, a gate may be seen as an operator

85

that takes the waveforms applied to its inputs and generates an output waveform. It is claimed
that this theory may be used to avariety of delay models.?

The main idea of the exact analysis method is to characterize recursively the set of all
input vectors that make the signal value of a primary output stable at alogic value (either O or
1) by a given required time T. Once these sets are identified both for constants O and 1, it is
necessary to compare these against the on-set and the offset of the primary output
respectively, to see if the output is actually stable for all input vectors by the required time T.
Circuit delay computation starts with T being set to the topological critical delay minus &>0.
Then, T is gradually decreased (or equivaently, & isincreased) until some input vector cannot
make the output stable by the required time T under evaluation. Guessing the next value for T
can be speeded up by using a binary search. Figure 5.13 illustrates the exact analysis method.

In the following subsections the waveform calculus is presented along with the concept
of characteristic functions. The implementation itself is aso discussed.

True delay
Primary outputs ¢
VO * 6'5 6_4 63:_62 6_1

]
|

- .
* .
a M
- .
- .
- .

.
» .
+ .
+ .
+ .

o]
v

T
V, represents the input vector that /
leads to the worst case delay of
network N SAT failed

SAT ok topological critical delay

FIGURE 5.13 - Basic operation of SAT-based FTA algorithms.

5.4.2 Ternary Delay Simulation and Waveform Calculus

The ternary algebra used in this analysis is formed by adding a third value, denoted 2, to
the Boolean algebra. The third value is concerned with two phenomena:

* The indeterminate state, which occurs while a gate is switching from logic O to logic 1
or vice-versa. In other words, it models the analog behavior of asignal.

» The unknown state, when signal is either O or 1, but it is not possible to precise its
value. Thus, it servesto model the uncertainty in each of the variables that determine
the delay of circuit components, as process variation, crosstalk, slope of the input
waveform etc.

8 Indeed, an extension to the bounded delay model, called XBD model, is also presented. As in the XBDO model, the XBD
model uses aternary algebra.

86

Summarizing, 2 represents every case where the value at a gate's output cannot be
assured to be a Boolean value. This leads to a straightforward extension of the binary algebra
to the ternary behavior given in the following truth tables.

TABLE 5.3 - Truth table for the AND function in ternary algebra.
ab

atb

A ternary variable ranges over the set T "={0,1,2} and a ternary function g is a
mapping:
g:T"aT (5.11)
The addition of the third value 2 to the Boolean algebra introduces a partial order [1 over
T, defined as follows:

tOtforeachtd T, and further, 002, 102 (5.12)

Indeed, the partial order operator O also represents increasing instability. Thus a 0O b
means b is more unstable than a. The operator [extends also to vectors:

{X1,..., %o} O{y1,...,yn} ifandonlyif x Oy foreachi (5.13)

The ternary space T " is related to the underlying binary space B" through the following.
A vector x={Xy,..., X,} over T "issaid to be avertex if each x, 0 {0,1}. Hence, if vector xisa
vertex, then g (xa,..., X,) 0 {0,1}. The evaluation rule for g over an arbitrary vector {x,..., X}
0 T is defined as follows:

1 glyy..., V) =10{y1,..., Yo} O{X0,..., Xn}
g(le---,Xn): o g(YL---,yn)ZOD{yly---;Yn} D{le---,xn}
2 otherwise

87

The correspondence between vectors of the ternary space and cubes is evident. For this
reason, if g(xa,..., X0)=1, { X1,..., X, } is said to be an implicant of g. And a maximal such
implicant issaid aprime of g.

The evaluation rule gives rise to the following lemma:
Lemmas.1:

Let g be an arbitrary function of {xy,..., Xm}, Where each x ranges over the set {0,1,2}.
Let {py,..., pn} be the primes of g and {qy,..., g} be the primes of g'. Then, g(x,...,
Xm)=2 if and only if there is no prime p; such that pi(xs,..., Xn)=1 and no prime ¢ such
that gi(Xa,. .., Xm)=1.

In other words, the output of a gate is constant if the values applied to its inputs are
contained in a prime in the on-set or offset of the ternary function that represents it. And this
evaluation is independent of the gate structure.

A delay model augments this algebra by associating atime t with each value of a gate or
wire; the value of agate at timet, g(t) isafunction of the values of the gate and its inputs over
some interval (to,t;), where t;<t.

Definition 5.1: waveform
Given agate g, an associated waveform for g, Q%, is amap:
Q°:0a{0,12} (5.14)

such that, for every t, every £>0, if Q9(t+£)zQ(t), Q%(t+¢) and Q(t) both in {0,1}, then
there is some t<t;<t+¢ such that Q%(t;)=2.

The definition of a waveform models a logic signal varying over time. The restriction
that any changes in signal forces a transition through 2 models the continuity of the physical
waveform and that 0 and 1 are physically separate values. Figure 5.14 shows an example of a
ternary waveform.

Vdd

Vhigh _\ /\/\\/"\

0 1 2 0 2 1 2 0

0.80 1.10 1.80
0.90 125 3.30

FIGURE 5.14 - Example of ternary waveform.

88

Given awaveform Q and area interval |, the partial waveform of interval I, Q,, isthe
waveform Q restricted to the domain | .

Definition 5.2: map for a gate
Map M for agate G, with inputsfy,..., f.:
M : Q"0p x Q%0 X...x Qo x Q% a Q%(t) (5.15)

is a delay modd if for any subset S of inputs where Qfs(o‘t) is a constant function for
each s S and cube c=[ss (f=Q"0y), G(c) is a constant, then Q®(t)=G(c).

The definition treats transitions on a gate. The output waveform of a gate at t is
determined by the input waveform as well as gate waveform occurring between 0 and some
time t' preceding t. By convention, O is chosen as the base time; choosing a fixed base time
for all model mappings enforces the intuition that the value given by the delay model should
be independent of any time shift.

A Boolean algebra consists of a set of variables, each of which can assume a value
within {0,1}; a combinational network, evaluated statically, is the realization of a function
over itsinput variables. A delay model, a network of gates and wires, a set of input variables,
and a set of possible waveforms for each input variable yield a waveform algebra. An
assignment of one waveform to each input corresponds to an input wavefor m vector. The set
of all waveform vectors forms awave space, which (for n inputs) is denoted W,. A waveform
vector is the equivalent, in wave space, to an input vertex in Boolean space. Further, a pair
(gate, delay model) is the equivalent, in wave space, to the gate in Boolean space. A pair
(gate, delay model) takes an input wave and produces an output wave. This is illustrated in
figure 5.15.

FIGURE 5.15 - Delay model for a gate in the wave space.

The concept of characteristic functions also holds for the wave space.

89

Definition 5.3: characteristic function
A characteristic function over awave space is a mapping:
X:W" a{0,1} (5.16)
conventionally, x is associated with some set SO W™ x(w)=1if andonlyif wO S

The exact analysis method uses extensively characteristic functions, particularly those of
the form:

x & = {wjw is awaveform producing waveform Q° on signal g} (5.17)

In current case, characteristic functions represent sets of waveform vectors. A waveform
is an uncountable sequence of symbols from the set {0,1,2}, representing the values of the
wave at each real point in time t. However inputs are not toggled infinitely often. Thus, as a
result, there are relatively few waveform vectors of interest and these are easily encoded. For
example, in most timing analysis problems, the inputs switch only once, at t=0. In this case,
the waveform space W" may be represented as the space B" x B", where (v1,v») represents the
binary input vectors applied at t=—c and t=0, respectively. Under these circumstances, the
wave characteristic function is:

x:B"xB" a{0,1} (5.18)
and is conveniently represented in the standard ways.

Specific delay computation models typically avoid an enumeration by giving rules for
computing the output waveform given the input waveforms. In [MCG93] the various existing
delay computation models are discussed in the context of the ternary algebra. Here, the
discussion will be restricted to the bounded and unbounded delay models, renamed Extended
Bounded Delay model (XBD) and Extended Bounded Delay-0 model (XBDO), respectively

~ Under the XBD model, the delay associated to input i of gate g is within the range
[d™",d™] and represents a transition region of uncertain width. As a result, pure transation
in time of the input waveform to the output is not allowed. The computation of Q(t) is given
as a two-step process.

fi fi -
F()= Q (t-dm -ty Q (tecdme ¢_qminy 1S @ constant
2 otherwise

Q%(t) = g(Fi(b), ..., Fa(t)) (5.19)
The values Fi(t) form “effective values” of the input waves, as presented to the outpuit,

at time t. If Q(fl_ gresy_qney 1S @ CONStant, then input f; has not changed over the interval

(t-d™ t-d™"); since any change in the state of f, can only propagate to the output g at t if
that change in state occurred between (t-¢™® t-di™"), it follows that the present state of input
f; is simply the constant state of the interval (t-¢i™® t-di™"). If, on the other hand, f; changed
state between (t-di™ t-di™"), then the presented value of the input might be any state of f;
between the intervals, or a transient; the only reasonable value to choose in such
circumstances is 2. The value of Q(t) is then easily obtained as the static ternary evaluation of
g on the Fi(t).

90

The XBDO model is equivalent to the XBD model, except that di™"=0 for any input i of
a gate g. The XBDO model is the model underlying both viability [MCG89] and floating
[CHEN93][DEV 93] delay calculations.

5.4.3 Computing the Floating Delay under the XBDO M odel

Based on the waveform space concept and the associated definitions, the combinational
timing verification problem can be defined.

Definition 5.4: combinational timing verification problem

Given a circuit C, a delay model M and a family of possible waveforms on the
combinational inputs of C such that each such waveform is a constant binary value on the
intervals (—«,0) and (t,©) (i.e., each input changes state only in the interval (0t)), the
combinational timing verification problem is to find the least positive d such that, for any
possible combination of input waveforms, Q%q.«) is a binary constant for each circuit output
g.

Under the XBDO model, an input waveform for input a is one of two forms:

Qa: { X(—00,00) or
X(-0.0)200,t21 X(ta.)

where x 0 {0,1} and t, is a positive constant associated with input a. This leads to the
following result concerning properties of circuit waveforms.

Lemmab.2:

Let g be any gatein alogic circuit. Under the XBDO model, under any waveform vector,
Q%(t) O{1,0} for t>0implies Q%(t;) =Q°(t) for all t;>t.

The proof of lemma 5.2 is by induction. By definition, the result holds for the primary
inputs. Suppose it is true for al gates of level<N and consider a gate g at level N, and an
arbitrary waveform w. Let Q° be induced by w with Q%(t)=1. We have g(fi, ..., f,), and by the
XBDO evaluation model, 1 = Q%(t) = g(F4(t), ..., Fn(t)), where

fi " .
Fi (t) = Q (t_dimax’ 1) Q (t_dimax’ 1) IS a constant
2 otherwise

Since g(F(t), ..., Fna(t))=1, by lemma 5.1 there is some prime p of g, such that p(Fi(t),
..., Fa(t))=1. Consider an arbitrary t;>t. Since each input to g is of level<N, if Q"(t) 0 {0,1},
then by induction Q"(t;) O {0,1}, and hence Fi(t) 0 {0,1} O Fi(ty) = Fi(t); hence, sincepisa
positive unate function of its literals, p(Fi(ty), ..., Fn(t))=1, and by lemma5.1 Q%(t;)=1.

This lemma permits a characterization of the waves given by the XBDO model.

91

Theorem 5.1:
Let g be any gate in a logic circuit. Under the XBDO model and any alowed input
waveform vector:
Xy or
Q%= X (-0.0) 2001 X t.) or
X -0.0) 20051 X t.)
for somex [1{0,1}.

This theorem is an immediate consequence of the preceding lemma.

By this theorem, any waveform of a gate g is fully characterized. The next step isto use
the derived theory to resolve the timing analysis problem. Equation 5.17 states the following:

x < ={wjwisawaveform producing waveform Q° on signal g}

9
Qi) o1

Now, consider the set x

This is the set of al input waveforms such that g is a binary constant on the interval
(t,0). Under the XBDO model, the delay of a circuit with primary outputs o,...,0,, Under input
waveform vector w, is:

d, = maxnin%DwD XQ?I"”D{M}@ (5.20)

Hence the delay over all waveform vectors may be written:

d, = maxnin%D)(Qz'“)D{o'l} = 1@ (5.21)

It is important to note that d is the exact delay of the circuit. It is the exact minimum
time after which all outputs have stabilized. Thus, for any d;<d there is an input waveform

vector and some output o; such that Q9 (d) = 2. Now:

Qi oL Q?

% (to) X (tew) =0 +X9?t',w> =1 (5_22)

From lemma5.2.

Xt = yTO0 (523

9 -
(tw) 1

X T = x0T (508

Q9 (t)=0

Thus, it is necessary to calculate x and x”®* to complete the formulation for

the exact delay computation.

92

Lemmab.3:

Let g be agate with inputs fy,..., f.. Let pa,..., p, be al the primes of g, and qa,..., g, al
the primesof g'. Then:

XTOT=S (pF,F)=D[] AT CE (5.25)
i=1

k=1 vJF,

XT3 (R F) D[] 3 XYY (529)
=1

k=1 vUF,

[y

For the proof of this lemma consider the following. If wa % %, then Q9(t)=1 when w
is applied as the input waveform vector. Hence there is some prime p; such that
pi(F1,...,F)=1, and, further, F, 0 Q™ (t - d"™) i.e,

wi Z y2 @A™ (5 o7
VU Fy

for al k. Conversely, let wO Z)(ka (=4"™=¥ for al k, and, further, let pi(Fy,...,F)=1. Then
VR

Q9 (1)L

Q(t)=1 by the evaluation rule, and hence w ¥

Q9 (1)=0 Q8 (t)=1

The expression for both x and x
on the sensitization functions of the fanin of g.

may be rewritten so that they depend only

Lemmab.4:

Let g be agate with inputs fy,..., f.. Let pa,..., p, be al the primes of g, and qa,..., g, al
the primes of g'. Let Fy(p) denote the value of input f, in a prime p. Then:

x* 7= 3 [THEm=00 x* e =0)o x* 8 529

i=1 k=1

(F 002 Jilil B{(Fk(q) :1)D Xofk(t—dk"‘a*)=}{(|:k(qj) _ O)D X (t—dk"‘a*)=}g (5.29)

These results follow from equations 5.25 and 5.26 because if Fy(p)=2, then

vOF, (p)

And thisfollows since for any gate f,

i max, _ Ty ;o ymax T o ymax _
XQk(t—dk ’)—o_I_XQ K (t- o):1+XQk(t d"®=2 =1

The previous equations suggest a recursive scheme for the computation of exact path
delay under the XBDO model. This can be accomplished by using the path recursive function
technique described in [MCG914]. The sensitization functions x ™ and x*®™ at agateg
are computed using only the sensitization functions of its immediate fanin.

The overall process has two steps. In the first step the times for which sensitization

functions are required at each gate are determined by a reverse topological traversal: given a
list of times at a gate g, the times required at each fanin fy are determined by subtracting the

93

delay from fx to g from each time in the list. In the second step, distinct path delays (from
primary inputs) are determined at each gate; this is done by a forward propagation of path
lengths using a topological traversal. At the end of this step, for each gate g, thereis alist of
times required in computing the sensitization functions at g and alist of actual path lengths up

to g from any primary input. Suppose the sensitization function XQg =1 is to be computed.
Let t, be the greatest path length to g such that t, < t;. Since no event occurs between t, and t;,
&7 = D2 This matching between required times and path lengths is performed at
each gate for each required time.

Finally, the characteristic functions of the sensitization functions Q%(t)=1 and Q°(t)=0
are built up in topological order. A node representing a characteristic function is created for
each path length, which is matched by some required time. The function of each such node is
linear in the number of primes of the gate (or its complement), and the number of fanin of the
gate. The existence of a sensitizable path is determined by calling a satisfiability program, as
described in [MCG914)].

The complexity of the method deserves some comments. As mentioned by the authors
themselvesin [MCG93], in very large circuits and/or circuits with distinct delays on nearly all
the connections, the number of characteristic functions become very large. Indeed, if t is the

least time for which XQg © is to be computed at a gate g, the number of functions required at

g is bounded above by the distinct path lengths between t and the longest path length
terminating at g. This potential explosion may be alleviated by using some pruning rules.

94

95

6 Functional Timing Analysis of Circuits Containing
Complex Gates

Functional timing analysis has been massively investigated from the beginning of
current decade. First FTA techniques performed single path sensitization by using a modified
D agorithm and a variety of sensitization criteria. Indeed, in most of proposed criteria the
sensitization conditions were kindly simplified attempting to reduce the time taken for testing
conditions, while providing conservative (but still safe) delay estimates.

Since path-by-path identification of false paths has proved to be impractical, concurrent
path sensitization has come into focus. With concurrent path sensitization, FTA techniques
shifted from a “path enumeration-based false path identification” approach to a “delay
enumeration-based delay computation” approach. Besides discarding the costly enumeration
phase, concurrent path sensitization techniques have also alowed the use of the exact
floating-mode sensitization criterion, which uniquely furnishes the exact circuit delay under
the floating mode of operation.

However, all theory underlying the methods used to test path sensitizability and also the
sensitization conditions themselves were developed assuming combinational circuits to be
made of simple gates, i.e., inverters, AND/NAND and OR/NOR gates. Consequently, if a
combinational circuit containing more complex gates is to be analyzed, the FTA tool must be
able to recognize such gates and treat the circuit properly under the adopted delay
computation model. This may be accomplished either by adding a pre-processing phase or by
extending the circuit delay computation method/algorithm and the sensitization conditions of
the chosen criterion.

The availability of efficient CMOS macrocell generators, as the ones presented in
[CAD99] and [MOR97], and efficient library-free technology mapping tools [REI97] has
made possible the extensive use of complex gates (mainly static CMOS ones) in the physical
design of large combinational blocks. Hence, the ability of handling circuits containing
complex gates became highly desirable for current FTA tools.

This chapter investigates FTA of circuits containing complex gates, which is intended to
be the main contribution of this thesis. Section 6.1 discusses some basic issues associated to
the technology mapping and layout generation making use of static CMOS complex gates
(SCCGs). Section 6.2 discusses possible solutions for performing FTA of circuits containing
complex gates. Section 6.3 presents an extended ATPG-based algorithm able to perform FTA
of circuits containing complex gates.

6.1 Technology Mapping and Layout Generation for Circuits Containing
Complex Gates

In traditional VLSI physical design methods random logic blocks are generated using
pre-characterized (standard) cells from a library. The reasons for adopting this library-based
approach were the ease of developing tools to automate layout generation and the good
electrical performance predictability of the resulting design. However, the amazing evolution
of CMOS technology has shortened the life cycle of libraries. re-design and re-

96

characterization is becoming more frequent, which in turn increases the cost associated to
their maintenance. Another drawback of the library-based approach is the limited number of
primitives: the higher is the number of cell options, concerning both function availability and
driving capability, the higher is the flexibility offered to the technology mapping tool.
Obvioudly, this last tradeoff establishes a conflict, since libraries with many elements are
more expensive to maintain. A third issue is concerned with electrica performance
predictability. In current submicronic technologies, the delay introduced by the routing
dominates over the delays of the gates. Hence, the linear physical model (see section 2.4),
which is commonly used in delay estimation of cell-based layouts, is no longer able to offer
the required accuracy for assuring the correct operation of the fabricated design.

An dternative to the cell-based layout generation is the macrocell generation approach.
A macrocell generator does not use cells from a library. Instead, it generates each element
(transistors and connections) according to a layout pattern that is intrinsically programmed
within its algorithms. The pioneer works on automatic cell generation were those of Lopez
and Law [LOP80] and Uehara and Cleemput [UEH81]. The formers' introduced a layout style
known as gate matrix, while the latters’ presented the so-called linear matrix layout style.
Both works were originally developed having in mind the automatic generation of cell
libraries. Current macrocell generators are mainly based on the linear matrix style and are able
to generate combinational modules with up to some tenths of thousands of transistors
[MOR94][MOR97][CAD99][EIJ94][GUR97].

A very important feature of macrocell generators is that they are potentialy able to
generate any type of static CMOS gate. This introduces a new paradigm in the technology
mapping problem, since the maor part of existing technology mapping tools use the Boolean
matching technique, which is not an efficient solution for libraries with a large number of
elements [REI98]. This new problem is being referred to as the “library-free” or “virtual
library” technology mapping problem [REI95], due to the absence of a physical library of
cells. Recently proposed solutions for performing technology mapping over a virtua library
rely on associating the arcs of the BDD that represents a given logic function to the transistors
of static CMOS gates [REI98][RIESE].

The shift from the traditional cell-based to the library-free layout generation strategy is
unavoidable, not only because cell libraries became too expensive, but also because physical
models used to estimate performance (up till now) do not work for current CMOS
technologies.

On the other hand, the increase of flexibility provided by the library-free strategy may
only be explored if appropriate tools are available. For instance, it is reported in [REI98] a
reduction in the total number of transistors when technology mapping considers not only
simple CMOS gates (inverters, NAND and NOR gates), but also more complex static CMOS
gates, generaly referred to as SCCGs [REI95] (and formerly as supergates). This result
indicates a possible increase in the performance of designed circuits that must be carefully
investigated by the use of appropriate CAD tools.

Figure 6.1 shows a physical design flow using the FUCAS (FUIl Custom Automatic
Synthesis) layout generation strategy [REI99]. Among the basic features of FUCAS, it is
proposed the extensive use of SCCGs as a means of improving both logic density and
electrical performance. Within FUCAS strategy, the current macrocell generator to be used is
TROPIC, which has been developed as part of a doctoral thesis [MOR94]. Concerning
technology mapping for SCCGs, there is a specific tool under development called
TRABUCO, which isthe evolution of atechnology mapping prototype called TABA [REI9S].

97

initial logic-level
description

« O« «
I 2

logic synthesis
and optimization
(e.g. SIS)

v n
optimized logic- | > logic-level
level description simulation
\/
y
I 'S
tech. mapping
TABA/TRABUCO

v .

mapped logic- > timing verification
level description (FTA)

— A y

»O

v cell generation

cell layout
patterns

test vector

generaton

routing
test vectors + n

..................... S layout extraction | > tlmlng(\léfzrrlAf;canon ko

circuit layout

-

v
prototyping

v

circuit
prototype

testing [>

FIGURE 6.1 - Physical design flow using the FUCAS layout generation strategy.

The design flow with the FUCAS strategy obviously requires a timing verification tool
able to validate the timing requirements of designs. Hopefully, such tool must be able to
provide fast, safe and accurate delay estimates of large combinational blocks containing
SCCGs that will be used to guide the physical design as a whole. Doubtlessly, the timing
analysis technique is the natural choice for performing timing verification because it is input-
stimuli independent. Furthermore, it presents a lower computation cost when comparing to
circuit simulation, thus being much faster. Within timing analysis techniques, functional
timing analysis is the one able to provide the most accurate estimates. Hence, the physical
design with FUCAS represents areal need for a FTA tool able to handle complex gates.

98

6.1.1 Simple Gates, General Complex Gates and Static CMOS Complex Gates

The expressions “simple gates’ and “complex gates” are intensively used in the fields of
logic synthesis, technology mapping, test generation and timing analysis. As long as such
expressions may be employed with slightly different meanings in each of the mentioned
fields, it seems to be advisable beginning by redefining them within the context of the current
work.

In the context of this thesis, a simple gate corresponds to a (possible) physical
implementation of the basic operators of the Boolean algebra, complemented or not. Thus, the
whole set of simple gates may be enumerated as follows: n-input AND, OR, NAND, NOR
gates and the inverter (sometimes called NOT gate), withn ={2, 3, 4,...}. Particularly, the set
of simple CMOS gates is a subset of the simple gates set, since the basic Boolean operators
that may be directly implemented with the CMOS technology are: n-input NAND, NOR gates
and inverters.

A general complex gate, or simply complex gate, corresponds to a physical
implementation of any single output Boolean function of higher complexity than the basic
Boolean operators. Strictly speaking, a static CMOS complex gate, or SCCG for shortly,
corresponds to a complex gate implemented using the CMOS technology. Consequently, any
SCCG implements an inverting Boolean function.

Although thiswork is intended to investigate FTA algorithms that are able to operate on
general complex gate networks, let us first turn our attention to the SCCG case, as afirst step
for extending FTA theory for complex gates and at the same time, taking advantage on the
real-case design opportunity provided by the FUCAS design strategy.

A static CMOS gate may also be classified as a “full restoring” network of CMOS
transistors because it is composed of two distinct networks of transistors: a PMOS transistor
network connected between the power supply (Vdd) and the gate output and a NMOS
transistor network connected between the ground (Gnd) and the gate output. The networks
have equal number of transistors and are commonly referred to as NMOS-network and
PMOS-network. For the sake of simplicity, we are going to assume that a SCCG is a static
CMOS gate in which both networks are made up from seria/parallel only associations and
also that the NMOS-network is the dua of the PMOS-network, in terms of transistor
association. Figure 6.2 shows an example of SCCG. Note that, for an n-input static CMOS
gate, there are n pairs of NMOS-PMOS transistors connected together through the gate
terminal to form each of the n inputs to the gate.

It is interesting to notice that in a ssimple CMOS gate the NMOS and PMOS networks
are either parallel only or series-only. On the other hand, SCCGs present series/parallel
transistor NMOS and PM OS transistor networks with at least 3 inputs.

Static CMOS gates (including SCCGs) may be classified according to the number of
serial/paralel transistors encountered in their NMOS/PMOS networks. The set of static
CMOS gates formed by no more than n (p) serial NMOS (PMOS) transistors is referred to as
virtual “library” [REI98] and may be designated by SCG(n,p). We may also use the notation
SCCG(2,2) to designate the subset of SCG(2,2) formed by SCCGs only. Figure 6.3 (borrowed
from [REI98]) shows the elements of the set SCG(2,2), while table 6.1 (also borrowed from
[REI98]) shows the number of elements for various virtual libraries.

99

B—d b—c
A r—q[_
p—d b—E
z el
E — o
? — e

(b)
FIGURE 6.2 - Example of SCCG.

—>o—

353"‘ :ﬂj}
Ba | Do

FIGURE 6.3 - Elements of the virtual library SCG(2,2) [REI9S].

TABLE 6.1 - Number of elementsfor various virtual libraries [DET87].

number of serial PMOStransistors
1 2 3 4
number of | 1 1 2 3 4
serial 1o 2 7 18 42 90
NMOS
transistors 3 3 18 87 396 1677
4 4 42 396 3503 28435
5 5 90 1677 28435 425803

100

6.2 The Applicability of Existing Functional Timing Analysis Techniques
for Circuits Containing Complex Gates

Although many FTA agorithms were developed in the past decade, most of them are
not able to work directly on circuits containing complex gates. In the case of ATPG-based
algorithms, such limitation is due to the fact that all sensitization theory has been developed
for smple gates only. Of course, the extension of sensitization criteria to complex gates
results in more complicated rules, making traditional single path sensitizability testing even
more complicated. At afirst glance, SAT-based algorithms seem to be more promising since
characteristic equations are potentially able to represent any Boolean function. However, in
order to reduce the complexity in solving SAT instances, some SAT-based a gorithms assume
simple gates-only combinational circuits.

The simplest solution for treating circuits with complex gates relies on replacing each
complex gate by an equivalent sub-circuit composed of simple gates. This technique is known
as macro-expansion and offers the advantage of allowing the use of gate-level FTA tools
originally developed for simple gates [MCG91][HSU98]. Macro-expansion presents two
severe drawbacks, however [HSU98]. Firstly, it is very difficult to accurately model the delay
of macro-expanded complex gates. Consequently, the resulted circuit delay estimates may not
be sufficiently accurate. The use of sophisticated delay models for macro-expanded gates can
reduce this loss in accuracy, but may overly increase the complexity of the macro-expansion
step, aso increasing the overall execution time. Secondly, macro-expansion procedures
increase the number of nodes in the circuit graph. In an ATPG-based algorithm, extra nodes
represent potential extracircuit linesto bejustified. In the case of SAT-based agorithms, each
extra node originates an extra characteristic function. In any case, the overhead in execution
time will depend on the complexity of equivalent sub-circuits used to model complex gates.

The second possible solution relies on modifying the sensitization tests in order to
handle complex gates. Such modifications include not only the sensitization criterion but also
the sensitization testing algorithm itself. Since path sensitizability testing may be
accomplished by different algorithms, this solution represents indeed a group of possible
solutions.

In[HSU98], for instance, a FTA algorithm able to operate directly on circuits containing
complex gates is presented. In order to avoid macro-expansion, the exact floating-mode
sensitization conditions are extended to consider complex gates. The extended sensitization
conditions are then used within a single path sensitization procedure derived from the
classical D-algorithm. The practical results presented in [HSU98] allow for a comparison
between some macro-expansion procedures, featuring different delay models for complex
gates, and the direct application of the extended sensitization criterion. However, al results
were obtained through the use of a single path sensitization agorithm. Although the
advantage of directly treating sensitization of complex gates becomes clear, single path
sensitization procedures suffer from the path explosion problem and thus do not represent the
state-of-the-art in FTA.

As presented in section 5.3, the timed-test generation procedure of Devadas et al.
[DEV93a] is an ATPG-based multiple path sensitization agorithm derived from the PODEM
[GOE81] test generation agorithm. In the timed-test generation procedure the delay
computation problem is transformed into a set of single stuck-at fault test generations in
which the algorithm tries to justify “timed” stuck-at faults at the primary outputs of the circuit.
This is accomplished by using an appropriate subset of PODEM functions along with a set of

101

three-valued timed calculus rules that allows the application of “timed” logic vaues through
the circuit lines. The three-valued timed calculus assumes the exact floating-mode
sensitization criterion. Although the possibility of extending this procedure to circuits
containing complex gatesis mentioned in [DEV93a], thisissue is not further detailed.

SAT-based algorithms, and especially the one presented in section 5.4 [MCG93],
implicitly consider path sensitizability by applying the concept of sensitization characteristic
functions. The characteristic functions are computed recursively for each circuit node,
assuming a given required time T at the circuit outputs. The elegance of this approach relies
on the fact that characteristic functions are potentially able to represent any type of Boolean
functionality, including the general complex gate case. However, SAT solver algorithms are
heavily CPU intensive and the only way to make the approach feasible for timing analysisis
to control the size of the SAT problem, or equivaently, the size of the characteristic functions
network. Kukimoto et al. [KUK97] observes that using the two basic pruning rules presented
in [MCG93] is not sufficient to assure that the method can be used in the analysis of more
complex designs, and proposes two approximation schemes. One of them is based on
designer’s knowledge of circuits (the control/data dichotomy proposed in [YAL95]). The
other one concerns a simplification on calculating arrival times at circuit gates. Unfortunately,
both approximations may result in a significant loss of accuracy, which may partialy cancel
the gain obtained in execution time.

Another problem with the SAT-based approach relies on the fact that the use of more
accurate delay models increases the number of SAT instances that must be solved due to
wrong decisions taken during the solving steps. In order to aleviate this problem, Silva
proposed in [SIL99] a mixed approach that maintains circuit structure information while using
a SAT solver. By doing so, it is possible to apply acceleration techniques commonly used in
test generation, as non-chronological backtracking and recursive learning.

Due to the mentioned difficulties presented by SAT-based implementations and
considering that many acceleration techniques exist for ATPG agorithms, the use of the
timed-test generation procedure to work directly on combinational blocks containing complex
gates seems to be the most promising possibility, in terms of both CPU execution time and
delay estimate accuracy. Hence, the rest of this chapter is devoted to further investigate this
option.

6.3 ATPG-Based FTA of Circuits Containing Complex Gates

Although the timed-test generation procedure has already been addressed in subsection
5.3.3, it will be necessary to go deeper into the implementation details in order to detect which
modifications are needed to allow it operating directly on circuits containing complex gates.

The timed-test generation procedure serves as the core of the ATPG-based concurrent
path sensitization FTA algorithm called TrueD-F [DEV93a]. Therefore, before proceed the
analysis of the timed-test generation procedure itself it is convenient to examine how TrueD-F
computes the floating delay of a combinational block.

Consider a single-output combinational block. TrueD-F determines the maximum delay
at the block’s output by answering the question “is this delay greater than or equal &7’ & is
initially set to T-€o, where T is the circuit topological delay and € is a small quantity greater
than 0. To answer the question, input cube simulation is accomplished by using a modified
version of the PODEM algorithm [GOES81], the so-called “timed-test generation procedure’

102

[DEV93a]. While the answer to the question is “no”, the timed-test generation procedure is
successively called for & = T-g;, with i=0,1,2,...., &+1 > €. A “yes’ answer means that the
output’s maximum delay is between the current value of d (say T-&) and the previous one (T-
€k-1). Hence, T-g.1 represents a safe upper bound on the maximum delay of current output. In
case a more accurate delay value is needed a binary search may be performed on the interval
[T-Ek , T-Ek-l].

Since the block’ s output may stabilize either with logic value 0 or with logic value 1, the
timed-test procedure must be performed twice for each delay value & (except in case a “yes’
answer occurs for the first logic value tested). Figure 6.4 depicts the timed-test generation
procedure.

In the case of a multi-output combinational block, the timed-test generation procedure
must be called for each output for both O and 1 logic values and for each &. A first
approximation to the lower bound on the circuit delay (i.e., T-&) is determined by the first
“yes’ answer arriving.

“ " true delay topological
yes (unknown) N delay
| >
delay l
T-¢, T-s3 T-82 T-sl T

FIGURE 6.4 - Timed-test generation procedure applied to a single-output circuit.

In order to determine whether the delay of a circuit’s output is greater than or equal to

o for alogic value | val ue, the timed-test procedure tries to justify | val ue at the considered
output with delay greater than or equal &. This is done by using cube simulation, in a
PODEM-like fashion. Since PODEM allows for a systematic and exhaustive exploration of
the input space, once it failsin finding an input cube that justifies| val ue at a circuit’s output
under the considered delay &;, then the answer to the question is “no” for that output (and for
logic value | val ue). In other words, the problem of determining the maximum delay is
transformed into a test generation problem for a single stuck-at fault at the circuit’s output.

The topmost call of the procedureti med_t est is described by the pseudo-code in figure
6.5. Asin the purely logica PODEM, there is a justification list j I i st holding circuit lines
that must be justified. The procedure begins by inserting a given primary output line po into
jlist with logic value I val ue (either O or 1) and assuming del ay as circuit delay lower
bound to be tested (&;). Then, procedure SEARCH 1 is called.

ti med_test(po, del ay, | val ue)

{

v.val ue = |val ue;
v. |l ower = del ay;
v.upper = INFINTY;

modi fy jlist (po,v,jlist);
backward schedul e po;

status = SEARCH 1(jlist);
return(status);

}
FIGURE 6.5 - Pseudo-code for the topmost call of the timed-test generation procedure.

103

The search procedures are described by the pseudo-codes of figures 6.6 and 6.7. They
are similar to the search procedures of PODEM. The procedure SEARCH 1 calls a BACKTRACE
procedure to find a primary input which logical value is currently unknown, beginning from
the primary output po. The primary input is (initially) set to logic value 1 and the | MPLY
procedureis called. This procedure performs a timed-test cube simulation that considers exact
floating-mode sensitization conditions (in PODEM, it corresponds to three-valued cube
simulation without any delay information). The implication procedure may produce a logical
or a temporal conflict. If no conflict occurs, SEARCH 1 is called recursively. The procedure
terminates successfully in SEARCH_1 if the justification list is empty. In case a conflict occurs
in SEARCH 1 the algorithm backtracks to the most recent primary input assignment. The
primary input is set to logic value 0, and SEARCH_2 procedure shown in figure 6.7 is called.

Failure resultsif either the BACKTRACE procedure is unable to find a primary input to set
or if the space has been completely explored without success in SEARCH 2. A conflict occurs
when it is not possible to set a given circuit line to the required logic value at the required
time. In the case of conflict or failure, the network must be restored to the state it was
immediately prior to the primary input setting that caused the conflict or the failure.

SEARCH_1(jli st)
if(length of jlist is zero) return SUCCEED,

i f (BACKTRACE(gat e, val ue, del ay, &pi, &pi _val ue) ==FALSE)
return(FAI LED);

i f(IMPLY(pi,pi_value,jlist)!=lMPLY_CONFLI CT)
{

search_status = SEARCH 1(j!list);
i f(search_status == FAI LED)
{

restore the state of the network;
search_status = SEARCH 2(jlist, pi, 1-pi _val ue);
}

el se

restore the state of the network;
search_status = SEARCH 2(jlist,pi,1-pi_val ue);

return(search_status);

FIGURE 6.6 - Pseudo-code for the first search procedure.

The timed-test generation procedure assumes that each circuit gate (and additionally,
each circuit edge) has a “timed-value’ variable, composed of three fields. a lower and an
upper bound on the delay of the gate (actualy, stable times) and a logic value. A pre-
processing step initializes all logic values to the unsigned value, i.e. 2, and lower and upper
bounds to the minimal and maximal topological delays from any primary input. In the test
generation phase, while primary inputs are set to known logic values, the delay bounds are
tightened during the forward simulation due to the sensitization or blocking of paths. The
lower and upper bounds are also modified by backward implication, by the time new values
are inferred at particular gates, given logic and delay values requirements at the primary
outputs.

104

SEARCH 2(jlist, pi, pi_val ue)
{

backtracks = backtracks + 1 ;
i f (backtracks > BACKTRACK LIM T) return(ABORTED);

i f (1 MPLY(pi,pi_val ue,jlist)!=1MPLY_CONFLI CT)
{

search_status = SEARCH 1(jlist);
i f(search_status == FAI LED)
restore the state of the network;

}

el se

{
search_status = FAI LED,

restore the state of the network;

return(search_status);

FIGURE 6.7 - Pseudo-code for the second search procedure.

Another important component of the procedure is the justification list. Gates are added
to the justification list during backward implication and removed from it during both forward
and backward implication. At any time, the justification list holds the gates whose logic or
delay values must be justified by setting more primary inputs. By the time the justification list
becomes empty the search is successfully completed. Hence, the answer to the question “is the
delay of the circuit (when alogic value lv is assigned to the output) greater than or equal &7’
is “yes’. On the other hand, if the search space has been completely enumerated without the
justification list becoming empty, the search has failed: the answer to the question is“no”. As
a third situation, the search may be abandoned due to excessive backtracking, with the
guestion remaining unanswered.

It is important to notice that the same “timed-value’ variable is used for storing actual
logic and delay values at a gate due to primary input settings, and the required values inferred
by backward implication. The difference is that in the latter case, the gate will be on the
judtification list. Indeed, all gates whose inputs do not produce the values in the gate
“timed_value” variable should be on the justification list. On the other hand, any gate whose
inputs produce the values in the gate “timed_value” variable should not be on the justification
list. These two assertions form the best definition for the justification list.

Having presented the topmost procedure and the two search procedures, let us examine
the i npl y procedure, which is called by both sear ch1 and sear ch2 procedures. The i nply
procedure is showed by the pseudo-code of figure 6.8. The primary input is set to the given
logic value and the effect is propagated into the circuit using the f or war d_set procedure. The
forwar d_set procedure schedules the fanout of the changed primary input, and event-driven
timed simulation is performed by f orward_i npl y. forward_i npl y is followed by backward
implication (procedure backwar d_i npl y). These two procedures are iterated over till the
circuit values do not change. In general, setting a gate in the circuit to a particular value during
forward or backward implication requires the forward scheduling of all its fanouts, and the
backward scheduling of all fanouts that are on the justification list.

Conflicts are detected during both implication procedures. These conflicts may be time
conflicts or logical conflicts. It is worth to remind that gates may be removed from the
justification list during both forward implication and backward implication. However, gates
may be added to the justification list only during backward implication.

105

i mply(pi,pi_value,jlist)
{

v = pi.tined_val ue;
v.val ue = pi _val ue;
status = forward_set(pi,v,jlist);

whi | e(st at us==1 MPLY_NORNVAL)
{
status=forward_i mply(jlis
i f(status!=I MPLY_CONFLICT
st at us=backward_i np

)
y(jlist);

—_— —~+

return status;

FIGURE 6.8 - Pseudo-code for the imply procedure.

The key for determining whether it is possible to justify a logic value at a circuit’'s
output within the required time or not relies on using a three-valued timed calculus that takes
into account the conditions stated by the exact floating-mode sensitization criterion. Consider
a 2-input AND gate with delay d. Each input i; of the gate may present alogic valuein {0,1,2}
with lower and upper bounds on its delay given by |; and u;, respectively. The term “delay of a
signa” will be used rather than “stable time” [CHE93] because even gates presenting the
value 2 at the output have lower and upper delays. The timed calculus for cube simulation for
2-input AND gates and 2-input OR gates are given in tables 6.2 and 6.3, respectively. In these
tables Iv is the logic value at the gate's output, while I, and u, represent the lower and the
upper bounds on the delay at the gate’ s output, respectively.

TABLE 6.2 - Three-valued timed calculus for a 2-input AND gate.

. 0 1 2
Iv 0 0 0
0 lo| min(lyly)+d [,+d | min(ly,l2)+d
U | mi n(ul,u2)+d Uo+d ux+d
Iv 0 1 2
1 lo [;+d max(ll,I2)+d [1+d
Uo up+d | max(ug,Uz)+d | max(ug,uy)+d
Iv 0 2 2
2 lo| min(lgly)+d l,+d | min(ly,l2)+d
Uo up+d | max(ug,Uz)+d | max(ug,u,)+d

TABLE 6.3 - Three-valued timed calculus for a 2-input OR gate.

’ & 0 1 2
Iv 0 1 2
0 lo maX(|1,|2)+d l,+d l,+d
Uo | max(ug,up)+d up+d | max(ug,up)+d
Iv 1 1 1
1 lo l+d mi n(|1,|2)+d mi n(|1,|2)+d
Uo ux+d | min(ug,uy)+d ux+d
Iv 2 1 2
2 lo l+d mi n(|1,|2)+d mi n(|1,|2)+d
Uo | max(ug,up)+d u;+d | max(ug,up)+d

106

6.3.1 Extending the Timed-Calculusto Complex Gates

The rules presented in tables 6.2 and 6.3 are easily extended to n-input AND and OR
gates. Furthermore, they may also be extended to NAND and NOR gates if gate function
polarity is accounted for. Therefore, before considering their use for complex gates, it is
convenient to generalize the three-valued timed calculus to any type of n-input simple gates.
In order to do that, let us first recall the concepts of controlling/non-controlling and
controlled/non-controlled values, as they are defined within ATPG theory. The
controlling/controlled value of an AND (OR) gate g, c(g)/cd(g) islogic O (logic 1), while the
non-controlling/non-controlled value of an AND (OR) gate g, nc(g)/ncd(g), is logic 1 (0).
Then, given an n-input AND/OR gate g, we may classify the cases listed in tables 6.2 and 6.3
according to the following groups:

1. Casesinwhich at least one of the inputs of g presents a controlling value (c(g)). The
others may present either non-controlling values (nc(g)) or the 2 value;

2. Thecaseinwhich all inputs of g present non-controlling values (nc(g));

3. Casesin which at least one of the inputs of g presents a 2 value, but none presents a
controlling value (c(g)). The others may present non-controlling values (nc(g)).

Now, we may generaize the timed-calculus for smple gates, and a the same time
include NAND and NOR gates, by the ruleslisted in table 6.4.

TABLE 6.4 - Generalized three-valued timed calculus for n-input ssimple gates.

group rules lv
1 lo | min{ I |i=c(g)ori=2} +d
U | min{ uj[j=c(g)} +d

pol(g) O c(g)

lo [max{ l;} +d
2 g e pol(g) 0 ne(g)
3 lo | min{ I;]i=2} +d 5

U | max{ uj }+d

Now, in order to apply the rules of table 6.4 to AND gates, for instance, one has to
assume ¢(g)=0, nc(g)=1 and pol(g)=0. In the case of a NOR gate, ¢(g)=1, nc(g)=0 and
pol(g)=1. Each of the three groups of rules are further illustrated by figures 6.9, 6.10 and 6.11,
respectively. Note that for the ease of explanation, we have assumed a single delay per gate.
More sophisticated gate delay computation models may also be used, however. Subsection
6.3.2 elaborates more on the gate delay computation model issue.

The extension of the generalized three-valued timed calculus to complex gates is
straightforward since we assume each gate function to be represented as a factored form,
using a convenient data structure. For instance, consider the SCCG of figure 6.2, re-edited in
figure 6.12. The logic function implemented by this gate, S= A [{(B [T) +(D [E)), is easily
retrieved from its transistor-level description and may be represented as a tree. By examining
this “function tree” one notice that, given an assignment of input timed-values (logic values
with lower and upper bounds on delays), the corresponding output timed-values may be
computed by successively applying the rules showed in table 6.4 to each subtree, beginning
from the bottom most, since the following is assumed:

107

1. All subtrees, except the topmost one, have no delay and polarity equals zero

2. The gate delay is applied to the gate output lower and upper bounds, i.e., only to the
timed-values resulted from the evaluation of the topmost subtree.

3. gate polarity istreated when the topmost subtree is processed.

11 ul .

| | cl@ it pol(g) 0 c(q)
12 u2
| | 2 —li2 g 12+d u1+d’
3 3 o— | |

| [c@—i3 //
14 ud min{ |, [i=c(g) or i=2} +d

| | ne@ i min{ u; |j=c()} +d

N

d=gate dlay
FIGURE 6.9 - Three-valued timed calculus for group 1.

11 ul .
| | ne@ it pol(g) 0 ne(g)
12 u2 11+d u3 +d
| | nc(g) —i2
9 | [
13 u3 0
| [nc@— i3 /‘ ’\
14 u4 max{ |, } +d max{u;} +d
| | nc(g) —lia
d=gate delay

FIGURE 6.10 - Three-valued timed calculus for group 2.

11 ul _
| [n@ it
2

I|2 u| 2 —li2 12+d ul3+d

13 u3 g o[| | 2

| [2 i3 /‘ \
14 ud
| [nc@ —|i4 min{l,]i=2}+d max{u}+d

d= gatedelay

FIGURE 6.11 - Three-valued timed calculus for group 3.

The first and second assumptions allow us to split the timed evaluation of a SCCG into
two independent steps. In the first step the output logic value and the lower and upper bounds
with zero gate delay are computed. We may call such delay interval as “first-order delay

108

bounds’. In the second step actual lower and upper bounds are computed by adding the gate
delay to thefirst order delay bounds.

B—q b—c c -
A—[D
p—q b—E c
I ° @
" o
B—] j—o 0 (7)
c— —e

@ Q
> o

FIGURE 6.12 - Example of SCCG: logic-level symbol (@), transistor schematics (b) and
function tree (c).

In order to facilitate its comprehension and aso its use, we may rewrite the three-valued
timed calculus rules to be used in the first step of SCCG evaluation as shown in table 6.5.

TABLE 6.5 - Three-valued timed calculus for evaluating SCCGs.

lower subtrees topmost subtree

group first-order delay bounds lv output lv

lo | Min{ I; |i=c(g) ori=2}
1 . . c(g) ol(g) O c

o | min{ 4 |j= (@)} Poll9) D <9y
lo | max{ I}

2 © ! nc I
0o | max{ u} (9) pol(g) U nc(g)

3 lo | min{ I [i=2} > 2
Uo | max{ uj }

Figure 6.13 illustrates the three-valued timed-test evaluation procedure on the SCCG of
figure 6.12. The intermediate dummy nodes shown in this figure are actually dispensable in
case of arecursive implementation.

It isinteresting to notice that in case of SCCGs, all subtrees belonging to the same level

corresponds to either the same logic operation or to aleaf. In the (original) function tree a |eaf
represents a gate input. Another property of SCCG function trees concerns the fact that any
two subsequent levels present different logic operations, either AND or OR.

109

Intermediate dummy
nodes

>

S1

m O O @
|8
w

: »» bo
cS\@ c 5

FIGURE 6.13 - Using the three-valued timed calculus for evaluating a SCCG.

The procedure for evaluating SCCGs presented above may be directly applied to any
complex gate in which the only possible polarity inversion concerns the gate output. In case of
existing an inversion in any input or intermediate subtree, this may be accounted for by a
polarity-checking step occurring at the end of subtree evaluation.

Having proposed a procedure able to evaluate any complex gate, one may imagine its
natural extension to characterize macrocells, looking for performing “hierarchical floating
delay computation”. Of course, the accuracy of such hierarchical approach depends on both
gate and circuit delay computation models. Delay computation models for complex gates are
studied in depth in the following subsection.

6.3.2 The Floating Delay of a Gate

Once the procedure for evaluating the output logic value and the first-order delay
bounds of a gate has been detailed, it is necessary to investigate gate delay computation
models that may be adopted to determine the gate delay value to be used in the computation of
the lower and upper delay bounds of the gate.

As showed in section 2.5, the basic types of gate delay computational models fall into
three main categories. fixed delay models, bounded delay models and unbounded delay
models. Particularly, in section 4.1 it was proved, through theoretical arguments, that the fixed
and the unbounded models are equivalent under the floating mode, since we assume maximal
gate delay values for the former case.

On the other hand, concerning verification tools, it is clear that the accuracy of any
estimation depends on the accuracy of the models underlying the tools used. In this sense,
(physical) component delay models, gate delay computation models and circuit delay
computation models form the core of any FTA tool. Further, the accuracy of a FTA tool
depends not only on the accuracy of each model individually, but also on the compatibility of
such models.

Concerning the circuit delay computation model, the timed-test procedure assumes the
floating mode. However, it makes no restriction with respect to component delay or to gate
delay computation models. Hence, it is advisable to further investigate the relationships

110

between these models, in order to identify the existing options, as well as their respective
accuracies.

As mentioned in the previous paragraph, the timed-test procedure computes the floating
delay of a circuit. Thus, the study starts by assuming the floating mode circuit delay
computation model. In addition, this study targets at investigating the circumstances under
which the most accurate estimates are achieved and which is the computational effort
involved.

In order to establish relationships between the circuit delay computation model and both
gate delay computation and physical models, consider the inverter of figure 6.14(a). Consider
also the application of the logic value 1 at the inverter’s input, which will result in the logic
value 0 at its output. As long as the floating mode does not make assumptions on the previous
state of circuit nodes, under such delay model, the 1 at the inverter’s input may represent
either arising transition or a steady 1. Given this, it results that the O at the inverter’s output
may be either a falling transition or a steady O (figure 6.14(b)). However, in order not to
underestimate the circuit delay, we have to consider the worst case, that is, a falling output
transition.

Note that, although the floating mode does not make any assumption on the previous
state of a node, the whole history needed for analyzing the inverter of figure 6.14(Q)
corresponds to the two input situations shown in figure 6.14(b). Thus, in the inverter case, the
falling delay under the floating mode corresponds to the falling delay under the transition
mode. By equivalent arguments, it is possible to affirm that the rising floating delay of the
inverter corresponds to itsrising transition delay.

afloating vector underlying pairs of vectors

1 : 0 lort : Oor !

@ (b)
FIGURE 6.14 - The relationship between floating mode (a) and transition mode (b).

Consider now the 3-input NAND gate of figure 6.15(a). Consider also the input vector
v=(a=1;b=1;c=0) is applied to this NAND gate. In order to determine the floating delay of the
NAND gate under v, it is necessary to examine al possibilities represented by such vector,
finding the worst-case delay. To begin with, it is necessary to recall that under the floating
mode, a 0 represents either afalling transition or asteady 0, while a 1 represents either arising
transition or a steady 1. Thus, by replacing 0 by « or by 0 and replacing 1 by + or by 1, we get
a total of 8 possibilities. Not surprisingly, each of these cases represents a pair of vectors
(figure 6.15(b)). This, of course, establishes a relationship between the floating mode and the
transition mode, concerning delay modeling of logic gates.

111

afloating vector

I 1
1 — |
0 B

@

=

underlying pairs of vectors

t+ 1 + 1+ 1 1 1 1 lort
torporjortorjorqorjor] [
L1 0 1 0 0 00—/

(b)

FIGURE 6.15 - The relationship between floating mode and transition mode: a floating vector
applied to a 3-input NAND gate (a) and the 8 underlying pairs of vectors (b).

Before proceeding with the discussion, let us introduce the definitions of floating vector
and floating delay:

Definition 6.1: floating vector and floating delay

A floating vector is an assignment of logic values applied to the gate inputs or to the
circuit inputs, when the circuit is assumed to operate under the floating mode. The
computed gate (circuit) delay by assuming such mode is then called floating delay of
the gate (circuit).

Given the definition of floating vector, it isworth to highlight that an n-variable floating
vector contains exactly 2" pairs of vectors, among them one is made up from two equal
vectors. Table 6.6 shows all existing floating vectors and respective pairs of vectors for a 3-
input NAND gate. The light-hashed pairs produce a single transition at the gate' s output while
the dark-hashed ones may either produce a glitch or do not affect the gate’'s output. The
bottom row shows the output logic values resulted from the application of each of the 8
possible input floating vectors.

Going a little further, it is possible to build a “floating mode/transition mode
equivalence table” like table 6.6 for each of the 256 existing 3-input logic functions. Since the
association between floating vectors and pairs of vectors is fixed, 3-input logic functions will
be distinguished by the output logic values and aso by the vector pairs responsible for
transitions or glitches. Naturally, it is also possible to build such equivalence table for any n-
input logic function.

A fundamental contribution of the floating mode/transition mode equivalence table is
that it allows for identifying which are the possible gate delay computation models to be used
within the computation of the floating delay of a circuit. More specificaly, the table says that
a gate may present at least one (possibly) different delay value for each input floating vector.
In a conservative assumption, we may consider that the most detailed gate delay computation
model under the floating mode corresponds to assuming a gate delay per input floating vector.
We will refer to thismodel as the vector delay model.

112

TABLE 6.6 - Relationship between floating model vectors and transition model vectors.

input vector 000 001 010 011 100 101 110 111
000 001 010 011 100 101 110 111
100 101 110 111 100 101 110 111
0t0 | 011 | 000 | 011 110 | 111 | 1:0 | 111
underlying pairs | 00! 001 011 011 10! 101 111 111
of vectors 110 11 110 i1l 110 11l 110 1l
10l L0t 111 111 10! 1 01 111 111
0Ll Ot 0t (O 11l 1it 111 11
Ly Lt L1l i1t Til Tit Tl ()
output logic value 1 1 1 1 1 1 1 0

A less accurate, but still correct gate delay computation model corresponds to grouping
the input floating vector situations according to the transition type taking place at the gates
output. Thus, the gate will be assigned with a falling delay, taken from the delays of those
vectors that cause a falling output transition, and a rising delay, whose value comes from the
vectors producing a rising output transition. This corresponds to a pair of separate fall/rise
delay model.

A third gate delay computation model corresponds to assigning a single delay per gate,
thus being called single delay model. Naturally, this is the most crude delay model, although
correct from the floating delay computation’s point of view.

It is important to remark that, in order to get a robust floating delay computation, the
gate delay values considered in each of the three models must represent an upper bound on the
delay of that gate for all instances of a whole circuit family. This means that the adopted
physical delay model or component delay estimation method must furnish worst-case delay
values for each circuit component.

A more careful analysis of table 6.6 alows us to conclude that the pin-to-pin delay
format normally used in standard-cell characterization is not appropriate for floating delay
computation since this kind of model takes into account only a part of all input pairs of
vectors that may cause a transition at the gate's output. For instance, in the case of a 3-input
gate, the pin-to-pin delay format would cover only six pairs of vectors. 111, 111, 114, 111,
111,111. That is, only single input transition situations.

A second contribution of the floating mode/transition mode equivalence table is that it
lists al pairs of vectors underlying a given floating vector. Such information is useful for
carrying out the delay characterization of a gate through ssimulation. In this case, only those
pairs of vectors able to produce a transition at the gate output need be simulated. This may
reduce significantly the number of cases to be simulated: in the case of a 3-input NAND gate,
only 26 cases from atotal of 64. On the other hand, if gate delays are obtained through any
analytical formulation, this information may be used to calibrate or to adapt the delay
modeling formulae in order to cover only the floating vector pairs of interest.

113

6.3.3 Gate Delay Computational Models and Timed Forward Implication for SCCGs

Table 6.6 alows usidentifying all pairs of vectors that influence on the delay of agiven
input-floating vector, in the case of a 3-input NAND gate. However, thus far it was not
mentioned the criterion to determine the gate delay value itself under the considered input-
floating vector. Of course, whatever this criterion is, it is necessary to guarantee the
correctness of the delay computation procedure (see section 2.6), that is, it is necessary to
guarantee that the delay computation procedure provides a safe upper bound on the circuit
delay. Therefore, let us examine what are the circumstances leading to the safe upper bound
floating delay for the timed-test generation procedure.

As dready explained, the timed-test generation procedure operates on a single primary
output at atime. Given adelay value d and alogic value Iv (0 or 1), it will result in success if
itispossibleto justify v at the primary output with lower delay greater than or equal d. Thus,
a success means that the delay at the considered primary output is never less than & for lv. On
the other hand, if it is not possible to justify Iv at the primary output, or if it is possible to
justify it but the upper bound on the delay is strictly less than 9, then the procedure results in
fail. Figure 6.16 illustrates these two situations.

success fail

lower_d upper_d lower_d upper_dj

@ (b)
FIGURE 6.16 - Success (a) and fail (b) conditions for the timed-test generation procedure.

Given a multi output circuit and a delay vaue 9, if the timed-test procedure results in
fail for both 0 and 1 logic values for each primary output, then the next step for searching the
circuit floating delay is to guess anew o, smaller than the previous one and restart to test each
primary output. At this point, it is assumed with 100% of certitude that the circuit floating
delay is less than the aready tested &. This certitude must be assured, whatever the models
used are.

This way, the criterion for determining the delay of a gate under a given floating vector
must reinforce the previous premise. Considering the whole process of determining the
floating delay of a circuit with the timed-test generation procedure, a safe upper bound
estimate is associated to the action of avoiding decreasing the value of & whenever the
accuracies of the underlain models are questionable. Indeed, this is exactly the case: we are
looking for a criterion that allows determining the floating delay of a gate from a set of
possible transition delays. Hence, it seemsto be logical that for determining the floating delay
of a gate one should take the greatest value among all transition delays associated to a given
floating input vector because this may contribute to shift right both lower and upper delays at
circuit nodes with respect to the time axis. Shifting right delay bounds, by its turn, is a

114

conservative action because it increases the chances of the timed-test generation to return a
success. Due to the already posed arguments, the delay of a gate under a given input-floating
vector must correspond to the maximum among the delays caused by the pairs of vectors
underlying such floating vector.

On the other hand, the separate fall/rise delay model corresponds to an approximation of
the vector delay model in which al floating vectors causing the same logic value at the gate
output are grouped together. As a consequence, a gate may exhibit as many different delays
for a given (output) logic value as the number of floating vectors that cause this logic value.
Since we have already been conservative in determining floating vector delays, one may
improve the gate delay computational model by considering a pair of delays for each logic
value instead of a single value per logic value. To do that, each logic value 0 and 1 is assumed
to have a maximum and a minimum delay value, taken from the slowest and fastest floating
vectors that cause the logic value, respectively. The minimum value is added to the lower
delay bound, while the maximum value is added to the upper delay bound. Using the same
arguments, the single delay model may be transformed into a pair of delays model in which a
maximum and a minimum delay values are assumed.

Once we have derived safe rules for determining the delay of gates under any of the
three gate delay computation models, it is necessary to consider the application of such rules
while computing the lower and upper bounds of a gate within a forward implication
procedure. Recalling the rules of the three-valued timed calculus described in tables 6.4 and
6.5, the input floating vector situations that may occur can be classified according to the
following three groups:

1. Casesinwhich at least one of the inputs of g presents a controlling value (c(g)). The
others may present either non-controlling values (nc(g)) or the 2 value;

2. Thecaseinwhich all inputs of g present non-controlling values (nc(g));

3. Casesin which at least one of the inputs of g presents a 2 value, but none presents a
controlling value (c(g)). The others may present non-controlling values (nc(g)).

Groups 1 and 3 refer to cases where one of the gate inputs may present a 2 value. Within
the three-valued calculus, a 2 represents the existence of either logic value 0 or logic value 1.
Thus, we may introduce the definition of a floating cube as follows.

Definition 6.2: floating cube

Given the three-valued calculus, afloating cube is an assignment of logic values, being
at least one of such values equal to 2. The number of floating vectors underlying a
floating cube is 2™, where mis the number of positions presenting the value 2.

Indeed, afloating cube contains at least two floating vectors and thus can be viewed as a
variation of the separate fall/rise delay model. In order to guarantee maximum accuracy, it is
necessary to consider the maximum and the minimum delay values for a cube. By doing this,
the delay of a cube has an invariant form, independently on the gate delay computation model
used. To understand this, consider that the floating cube 022 is applied to the SCCG of figure

6.17, which logic function is S= A + BLC. Table 6.7 shows the equivalence between
floating and transition modes for such gate. Note that this gate evaluates to 1 for floating
vectors {000, 001, 010} and evaluates to O for floating vectors {011, 100, 101, 110, 111}. If
the delay computation procedure has assumed the vector delay model, then the delay of this
SCCG under cube 022 will present maximum and minimum values given by

115

max{ d(000),d(001),d(010),d(011)} and min{d(000),d(001),d(010),d(011)}, respectively,
where d(000), d(001), d(010) and d(011) are the delays of floating vectors 000, 001, 010 and
011. On the other hand, if the delay computation procedure has assumed the separate fall/rise
delay model, the maximum and minimum values are given by max{tp.ymax , tPHLmax} and
Min{tPLumin , tPHLmint- HOwever, for this SCCG, tp.nma=max{d(000),d(001),d(010)} and
tpLHmin=min{ d(000),d(001),d(010)}, while tpymax=tprLmin=d(011), which results the same
maximum and minimum delay values as in the floating vector delay model case. By
equivalent arguments, we may claim that the floating delay of this cube under the pair of
delays model will result in the same maximum and minimum delay values computed for the
other two gate delay models.

afloating cube

@

underlying floating vectors

lorjorQor(Q — Oorl

(b)
FIGURE 6.17 - Delay of a SCCG under afloating cube.

TABLE 6.7 - Equivalence between floating and transition modes for the SCCG of figure 6.17.

input vector 000 001 010 011 100 101 110 111
000 001 010 011 100 101 110 111
100 101 110 111 100 101 110 111
0.0 011 010 011 1.0 11 110 11
underlying pairs | 00! 001 011 01t 10! 101 111 111
of vectors o | 11 [110 | 1t | 110 | 111 | 110 | 111
o 101 L1 L1t 10! 101 114 111
0Ll Ou1 014 Ot 111 1it 11l 111
Ll Lit L1l i1t Til Tit 11l Tt
output logic value 1 1 1 0 0 0 0 0

Analyzing again any equivalence table, it is possible to affirm that the delay of any gate
depends only on the cube (or vector) applied to its inputs. Particularly in the case of the

116

separate fall/rise delay model, we can affirm that the delay of a gate may be perfectly defined
by the group(s) to which the input floating vector (cube) belongs. This conclusion ratifies the
assumption of splitting the timed-value computation of a gate into two independent subtasks:

» The computation of the gate output logic value and the first-order delay bounds

» Theidentification of the floating delay of the gate, used to calculate the actual delay
bounds.

From this verification, it becomes clear that the modifications needed to allow
computing the timed-value of arbitrary complex gates, including SCCGs, were aready
covered. Theseinvolve:

1. Thefunction tree and the appropriate procedures for computing the gate output logic
value and the first-order delay bounds;

2. The use of one of the three derived gate delay computation models (vector delay,
pair of delays and single delay) to compute the lower and upper bounds on gate
output delay.

6.3.4 Timed Backward Implication for SCCGs

The extended three-valued timed calculus detailed in the previous subsection allows for
performing forward implication on complex gates. However, the timed-test generation
procedure also has to perform backward implication during its execution. Thus, it is necessary
to investigate how to deal with complex gates while performing backward implication.

Given a gate, logical backward implication consists of finding an input assignment with
respect to this gate that setsits output to the desired logic value. Obviously, the desired output
logic valueisaknown value, i.e., either a0 or a 1. A conflict occurs when a given gate output

that presentslogic value lv isrequired to have logic value |v.

In the case of timed backward implication, it is not sufficient to check for logical
conflicts. It is also necessary to check whether the lower and upper bounds on the delay
required to each input are within the already set lower and upper bounds for the given input.
Given a simple gate and a desired logic value at the gate's output, the original timed-test
generation procedure searches for the cube able to set the gate output to the desired logic
value by exploiting the concept of controlling and noncontrolling values. Consider that alogic
O isto be set at an AND gate. Since 0 is the controlling value of an AND gate, there may exist
various possible vectors able to set the gate output to 0. Thus, the procedure searches for the
fastest gate input able to be set to logic 0. If such input does not exist, then it is not possible to
backward the logic 0 through the considered gate.

In the case of complex gates, the concept of controlling and noncontrolling values
cannot be directly applied. However, we may realize that backward implying a logic value
through a gate is in fact a kind of “guessing procedure”, in which we are asked to find an
assignment of input values that cause the desired output values. In this sensg, it is obvious that
any backward implication procedure able to treat complex gates is indeed a generalization of
the ssimple gate case.

The basic heuristics used by the timed-test generation procedure for performing
backward implication on simple gates relies on setting the smallest number of inputs because

117

such procedure results in a potentially smaller number of circuit lines that will have to be
justified. Thus, it is necessary to perform a systematic exploration of the local Boolean
subspace (i.e., the Boolean space associated to the logic function implemented by the gate
under consideration), and at the same time, setting one input variable at atime.

The reasoning developed in the two last paragraphs suggests the possibility of using a
systematic input space enumeration procedure along with the three-valued timed calculus
presented in table 6.6 to accomplish the logical backward implication on complex gates.
Figure 6.18 exemplifies the backward implication procedure when a logic O is desired at the
output of the SCCG of figure 6.17. In order to do that, we begin by setting the topmost input
to 0. Forward implication of this assignment resultsin a 2 at the SCCG output (figure 6.183a).
This means that it is necessary to set one or more inputs. Assigning a 0 value to the middle
input results in logic 1 at the SCCG’s output (figure 6.18b), which is a conflict. Thus, we
backtrack this assgnment and replace de O by 1. The forward implication of this new
assignment results in a 2 at the SCCG’s output (figure 6.18c). Setting the bottom most input
to O results in logic 1 at the output (figure 6.18d), which is also a conflict. Finally, by
changing the bottom input to logic 1 results the desired logic O at the gate outpui.

0 0
2 — 2 0 — 1
2 — 2 —]
@ (b)
0 0
1 — 2 1 — 1
2 —] 0 —
© (d)
0
1 — 0
1 —]

©
FIGURE 6.18 - Backward implication in a SCCG by using forward implication rules.

The previously described solution for backward implication of complex gates is
equivaent to the PODEM agorithm applied to a single gate, but with significantly smaller
time complexity, since we restrict the number of inputs for complex gates. However, the most
important aspect on such procedure is that it may use the three-valued timed rules and
function tree already developed. The only extra resource needed is an enumeration
mechanism, for controlling the subspace exploration.

Having found a procedure for performing logical backward implication on complex
gates, let us now move to the timed backward implication. Similarly to the timed forward
implication, we will split the procedure into two steps:

1. Logica backward implication
2. First-order delay bounds computation and conflict detection.

118

The first step has aready been described. The second one is composed of the following
sub-steps, by the order:

1. Determine the gate delay under the selected input cube k (i.e., gate input assignment)

2. From the output lower and upper bounds, computes the first-order lower and upper
bounds for each gate input by using the formulae: |, =lo-d(Kmax) @and uy’ =Ug-d(Kmin),
where d(kmax) and d(kmin) are the maximum and minimum delays for cube k assigned
to the gate inputs, respectively.

3. For each gate input i, compute the intersection between the input lower and upper
delay bounds and the first-order lower and upper delay bounds computed in the
previous step.

In step 3, aconflict is detected if |, <l; or if u,’<u;. Note that a gate input may provoke a
conflict even if itslogic valueis 2.

Once timed forward and backward implication procedures able to handle complex gates
have been developed, the timed-test generation procedure has been made sufficiently general
to treat circuits containing complex gates.

It is important to notice that the proposed method to perform the three-value timed
calculus on complex gates does not represent a significant increase in the overall execution
time because macrocell generators are generally not allowed to generate complex gates with
more than five serial transistors, due to technological reasons.

119

7 Conclusions

This thesis was concerned with the functiona timing analysis (FTA) of combinational
circuits, with emphasis to the applicability of FTA agorithms and models to circuits
containing complex gates. Contributions were given to both FTA general theory and to FTA
of circuits containing complex gates.

As afundamental contribution, it was provided probably the deepest systematic study on
timing analysis models and algorithms ever found in the literature. In order to facilitate the
comprehension of the whole scenario, a new taxonomy for classifying FTA agorithms was
proposed. According to this taxonomy, FTA algorithms may be classified with respect to the
number of paths simultaneously handled in sensitization tests (single path sensitization,
concurrent path sensitization or mixed approach), with respect to the method used to
determine whether sensitization conditions are satisfiable or not (ATPG-based, SAT-based or
other) and with respect to the sensitization criterion itself.

Still within the FTA theory, it was claimed that synchronous circuits implemented with
current fabrication technologies might present an asynchronous behavior that cannot be
properly captured by the transition delay model. It means that, in order to avoid
underestimating the circuit delay, one would rather compute the delay under sequences of
vectors than the delay under pairs of vectors. On the other hand, the floating delay model is
the only one able to provide a safe upper bound on the circuit delay under sequences of
vectors. As long as the floating delay model is the delay model underlying FTA, this is a
strong argument to justify the use of FTA as the timing verification method.

Experimental results on path enumeration procedures presented in appendix 2
confirmed the severity of the so-called “path explosion problem” faced by the single path
sensitization method. Due to this, concurrent path sensitization methods (either ATPG-based
or SAT-based) represent the state-of-art in FTA agorithms.

Concerning FTA with complex gates, the TrueD-F algorithm proposed by Devadas et al.
was chosen for serving as basis of an ATPG-based concurrent path sensitization technique
that deals with circuits containing complex gates without requiring macro-expansion. The
choice of the ATPG-based approach was motivated by the problems exhibited by the SAT-
based approach when more realistic delay models are used. Another argument for choosing
the ATPG-based approach is the existence of several acceleration techniques for ATPG
algorithms.

The most important contribution of this thesis to FTA with complex gates concerns the
extension of the timed-calculus to complex gates. Within the TrueD-F agorithm, the timed
calculus consists of a set of rules used to compute logic values at gates and the related lower
and upper bounds on delay. According to the proposed method, the computation of the timed-
value of a complex gate may be accomplished by a recursive procedure that evaluates each
sub-tree, beginning from the leaves. For a maximum of 4 serial transistors in both PMOS and
NMOS networks, the maximal number of sub-trees that any SCCG may exhibit is 11,
including the topmost one. Considering that the evaluation of a single sub-tree consists of a
simple computation of delay intervals and logic values over the involved inputs, one can
expect that operating directly on complex gates can lead to execution times that are at most
equivalent to those necessary to perform the timed-value computation on an equivalent

120

macro-expanded network. However, it is worth to mention that applying an ATPG-based
algorithm to an equivalent macro-expanded network may lead to significant overhead in
execution time due to the potential increase in the number of circuit lines to be justified.

Other important contributions to the FTA with complex gates resulted from the
investigation of the computational delay models applicable to the complex gates case. The
floating mode/transition mode equivalence table identifies the pairs of vectors underlying each
floating vector. It also leads to the identification of the three valid gate delay computation
models under the floating circuit delay model. These are the vector delay, the separate fall/rise
delay and the single delay. Although being the most accurate, the vector delay model requires
adelay value (or apair of values) for each 2" floating vectors, where n is the number of inputs
of the gate. Considering SCCGs with no more than 4 serial transistors, the maximal n is 16,
which gives a total of 2'°= 65536 floating vectors. On the other hand, the separate fall/rise
delay model groups al floating vectorsinto two cases, thus reducing the delay values of a gate
to two (or two pairs), while still assuring an upper bound on the gate delay.

The identification of the pairs of vectors underlying a given floating vector is of great
interest when gate delay characterization is to be performed. In case of electrical simulation,
only the vector pairs that may cause an output transition must be considered. In case of delay
characterization by analytical formulation, this information may be used to adapt the delay
modeling formulae in order to cover only the vector pairs of interest. However, identifying all
pairs of vectors of interest for gates with many inputs constitutes a very hard task that must be
further investigated. On the other hand, a very important conclusion that can be stated from
the equivalence table is that the pin-to-pin delay format normally used in standard-cell
characterization may result in an underestimation of gate delay since it takes into account only
apart of al input floating vectors that may cause atransition at gate’ s output.

Finadly, from the floating mode/transition mode equivalence table it was possible to
introduce the concept of floating delay of a cube, as a generalization of the vector delay
model.

Timed forward implication for complex gates is accomplished by using the procedure
that computes the timed-value of gates. As aready argued, the resulted time complexity is
expected to be at most equivalent to that resulted from working on an equivalent macro-
expanded network. Timed backward implication with complex gates, by its turn, cannot be
directly derived from backward implication with ssimple gates because the concepts of
controlling/non-controlling values are not applicable to complex gates. Thus, the proposed
method relies on using the same procedure that computes the timed-value in forward
implication, but in a PODEM-like fashion, by using input cube simulation on each gate. Input
cube simulation presents a worst-case execution time that is proportional to the input space of
the gate. For instance, the input space of a SCCG with 4 seria transistors in both networks has
at most 2'°= 65536 floating vectors. Of course, this affects the execution time of the overall
FTA agorithm.

This thesis showed that it is possible to perform ATPG-based concurrent path
sensitization FTA of circuits containing complex gates without macro-expanding complex
gates. The main advantage of such approach is the potential reduction in the number of circuit
lines that must be justified, with comparison to the approach that uses macro-expansion.
Nevertheless, the complexity of backward implication is significantly increased mainly when
complex gates with many inputs are present in the circuit. This problem may be alleviated by
the use of testability measures to guide the gate input space exploration.

121

Finally, the proposed extended timed calculus along with the complex gate delay valid
models form a set of macro-modeling rules that make possible to perform “hierarchical
floating delay computation”. This is a consequence of the fact that complex gates are the
correct generalization of the smallest portion of any CMOS network.

7.1 Future Work

The performance of the proposed approach is greatly dependent on the ability of making
right decisions. Such quality can be attained by making use of testability measures, as done in
PODEM and FAN agorithms. Thus, the computation of testability in circuits with complex
gatesis apoint to be addressed in short term.

The studies on valid gate delay computation models helped to fill the gap existing
between physical and computation delay models. There are several points deserving attention,
however. One of them is the (automatic) identification of the pairs of vectors responsible for
transitions at gates' outputs. Another one is the gate delay characterization itself. This latter
one involves either electrical ssimulation or analytical characterization, but both respecting the
valid gate delay floating models. A third one concerns the maximal number of inputs of
complex gates, which directly influences the performance of the proposed ATPG-based FTA
method. The number of inputs in complex gates is aso responsible for preventing the use of
the floating vector delay model, which is the most accurate. Limiting the number of serial
transistors to 4 is a commonly used design strategy that assures reasonable electrical
performance for SCCGs, but still leads to a total of 3503 possibilities of SCCGs. A very
useful work consists on investigating the actual capabilities of state-of-art technology
mapping algorithms in order to determine a practical limit on the number of inputs of SCCGs.

The proposed approach must be compared to the macro-expansion approach both in
terms of performance and in accuracy, to certify that the reduction in the number of linesto be
justified overcomes the increase in complexity of timed forward and backward implication
procedures.

Investigating the accuracy and the performance of hierarchical floating delay
computation is also a very important work. It seems to be clear that the acceleration obtained
by the hierarchical mode may allow FTA of circuits with at least one or two orders of
magnitude. However, it is necessary to investigate the impact of the gate delay computation
model on the resulted accuracy.

Last, but also quite important, is a broad comparison between the SAT-based approach
and the proposed one, which is an ATPG-based approach. One basic difficulty relies on
selecting a set of delay computation models that are valid on both cases and at the same time
are able to provide delay estimates with acceptable accuracy. Another difficulty relies on
choosing an existing SAT-based tool (or algorithm) able to deal with complex gates.

122

123

Appendix 1 The Need for Functional Timing Analysis. a
Case Study

Concerning delay computation techniques and algorithms, a question that frequently
arises is whether it is worth to perform FTA, since the computational effort is significantly
greater than in TTA case. Obviously, this would be quite simple to answer if one could always
assure to have total control over the design under development. However, due to the
increasing complexity of current VLS| designs and to the use of EDA tools, it is not possible
for the designer to know all details of each design. Thus, since TTA and FTA may provide
different delay estimates for the same circuit, it is important to measure how severe this
difference can be and what would be its impact in the maxima operating frequency
estimation.

There are some classes of combinational circuits that have been extensively used to
illustrate the effect of disregarding the influence of path sensitization in delay estimation.
Carry-skip adders (csas) constitute one such class for it is well known they may contain
hundreds of thousands of false paths [LAM94][DEV94]. Although in the case of csas the
difference between the delay estimated by TTA and the delay estimated by FTA may represent
an extreme case, it is still necessary to consider that for automatically generated designs this
difference may also be significant.

In order to evaluate the difference between TTA and FTA estimations originated from
considering or not path sensitizability, a discussion on delay estimation of csasis carry out in
the sequel. To be more redlistic, a non-unitary component delay model is used [DAG96].

Figure A1.1 reproduces the 2-bit csa showed in figure 2.4. This csa2 has been mapped
using simple CMOS gates (in this case, 2-input nands and inverters). Assume a fixed gate
delay computation model with separate falling and rising delays. In order to construct higher
order adders, csa2 stages are connected together through the carry in/carry out pins, as shown
in figure A1.2. Thus, a practical approach for estimating the delay of higher order csasis first
characterize a single csa2 stage and then use the results of this characterization to infer the
whole circuit delay.

If TTA is the chosen method, then the circuit delay is found by identifying the longest
topological path, which is clearly the carry chain.

However, if FTA is the computation method to be used, then it will be necessary to
identify the longest path able to propagate a transition. This means that path sensitizability
must be considered. The fact that the only connection between two adjacent stages in higher
order csas is through the carry chain suggests the classification of stages into three groups
[GUN99q]:

» first stage
e intermediate stages
+ last stage

For each of these three cases an ad hoc sensitization analysisis then performed. It isaso
possible to take advantage on the regularity exhibited by csas. all analyses may be performed
over the same csa2 instance. In order to facilitate the analyses, the transition mode will be

124

assumed (see section 2.3). The error of such assumptions may not be significant in the specific
case of csas.

c0 [
0
!
mux2-1
n5

& —

| 0 no [

P >_"j:>)_ nl n4 c2
Damap LIl

(S :)u

b0 .
>
ctrl_n

al ¢y sl

. pl

bl

FIGURE A1.1 - A 2-bit carry-skip adder (csa2) mapped using 2-input nands and inverters.

The target of the sensitization analysis of the first stage is to find the pair of longest
sensitizable paths beginning at any primary input and ending at output c2, being one
responsible for a faling transition at c2 and the other responsible for the rising transition at
c2.

For an intermediate stage, the target is to find the pair of longest sensitizable paths
beginning at cO and ending at c2, with one of the paths beginning by afalling transition (at cO)
and the other beginning by arising transition at (c0).

Finally, the analysis of the last stage is to find the pair of longest sensitizable paths
beginning at cO and ending at any output, where one of the paths begins with a falling
transition (at cO) and the other begins with arising transition at (c0).

The longest sensitizable path is then determined by summing the delay of al stages,
taking into account signal polarity. Note that the described method allows for performing an
approximate hierarchical FTA without enumerating circuit paths.

125

albl a0b0 c0
: b
first stage 9
a3b3 a2b2
\
v Vbl]
sl 0
intermediate a5p5 adbd
oges R]
13 w2
arb7 abh6
b ddel] .
6 possible critical paths
5 #4
last stage 3
\
c8 s/ 6

FIGURE A1.2- An 8-bit carry-skip adder made of csa2 stages.

Consider an intermediate csa2 stage. There are only two topological paths between cO
and c2. Each topological path may be divided into two logical paths, being one associated to
the falling transition (at its input) and the other associated to the rising transition (at its input).
Thus, for an intermediate stage, the logical paths of interest are POt =(1 c0, n0, n1, n2, n3, n4,
c2), POI=(1c0, nO, n1, n2, n3, n4, c2), P11=(1cO, n5, c2) and P1l=(1cO, n5, c2), which
delays are 1204ps, 1134ps, 546ps and 482ps, respectively.

The ad hoc anaysis will try to determine whether PO1 is sensitizable or not by checking
all possible conditions that may activate it. If it is not possible to find a set of signal
conditions that activates POt1, then P1t will be analyzed. The search of a sensitizable logical
path beginning with a falling transition will also follow the path delay order: POl and then
P1.. To reduce the search space, the check begins by setting stable logic values (either O or 1)
to circuit nodes whenever possible. Otherwise, 0— 1 and 1- 0 transitions will have to be
considered, along with the required stable times. Of course, the second possibility increases
the analysis complexity, and thus should be avoided.

Figure A1.3 shows a set of signal conditions for trying to sensitize POt : inputs a0 and
b0 have been assigned to static values in such a manner that both pO and g0 have a static 1.
This allows a transition to propagate from c0 to nO and from n0O to nl1. However, given the
previous conditions, it is not possible to assign static values to gl, pl, ctrl_n and n5 in order
to allow atransition to propagate from n2 to c2. Thus, it will be necessary to consider signal
transitions at g1, p1, ctrl_n and n5, along with the required stable times.® In figure A1.3, these
delay-dependent conditions are expressed in terms of inequations, annotated at the respective
signals. By assembling appropriate inequation systems it is possible to determine whether a
sensitization condition exists or not for the path PO1 :

° Note that the analysis of any path in the intermediate stages (and also for pathsin the last stage) must consider a possibly
non-zero arrival time of atransition applied to c0, to model the effect of previous csa2 stages.

126

1pl>399 +A
I1pl+285<662+A (Al'l)
and
1p1<399 +A
(A1.2)
tpl+212>662 + A

By evaluating inequations A1.1 and inequations A1.2 one conclude that it is not
possible to find an arriving time value at input cO (A) that combined with either afalling or a
rising transition at node p1 (1 p1 or t pl) could result in a valid sensitization condition. None
of the other possible signal assignments resulted in valid sensitization conditions. Thus, the
conclusion isthat path POt is not sensitizable.

c0 . 10+A

11204+A

| po 1108+A
1399+A
o JTM:D# 1528+A n31662+A c
n
. ; ARl .
1 0 1
bO ¢ | >646+A
" 1 <646+A
:D e
1212 ctr|_n
al —4 s
) I Pl | >399+A

r 1<399+A
bl

[gl
FIGURE A1.3 - A set of signal conditions for trying to sensitize PO1.

Similar analyses on the other paths lead us to the conclusion that P11 and P1! are the
sensitizable paths for any intermediate csa2 stage.

Applying the same procedure to the first csa2 stage we find that the longest sensitizable
paths generating a falling transition at c2 are P21 =(1 a0, 4-X0, p0, nO, n1, n2, n3, n4, c2) and
P31=(1 b0, 3-X0, p0, nO, nl, n2, n3, n4, c2), both with delay 1559ps. And the longest
sensitizable paths generating arising transition at c2 are P41 =(1 a0, 1-X10, 3-X0, p0, n0, n1,
n2, n3, n4, c2), P51 =(1 b0, 2-X0, 4-X0, p0, n0, n1, n2, n3, n4, c2), P61 =(1 al, 1-X3, 3-X3, p1,
ctrl_n, sel-X11, n5, c2) and P71 =(1 b1, 2-X3, 4-X3, p1, ctrl_n, sel-X11, n5, c2), al of them
with delay 1435ps.

127

Finally, for the last csa2 stage, the longest sensitizable paths are P81 =(1 c0O, n0, n1, 2-
X5, 4-X5, s1) and P91 =(1c0, nO, n1, 2-X5, 4-X5, s1), with delays of 1074ps and 998ps,
respectively.

The delay values obtained from the sensitization analysis should be combined to derive
general formulae to approximate the delay of csa adders made up from the analyzed csa2
stage. The formulae will give approximate values because they do not account for the
modifications on gate delays arriving from the new fanin/fanout relations when csa2 stages
are connected together. The equations that approximate the (output) falling and the rising
critical delays of csa adders are:

tdmax | = 546% Bﬂ - ZH+ 2433 [ps] (A1.3)
02 o
O 1= 482 @g - 2§+ 2633 [pg (AL4)

where m J (4,8,16,..), corresponding to 4-bit, 8-bit, 16-bit csa adders. To estimate the critical
delay of a given adder (csa4, csa8 etc), equations A1.3 and A1.4 must be evaluated. The
critical delay will be given by max(tdmax! ,tdmax?)-

And the equations that approximate the (output) falling and the rising topological delays
are:

tOhma 1= 1134x 30 ~ 15+ 1605 [p (ALS)
02 O
tOhma 1= 1204% %’2 —1§+ 1766 [ps (AL6)

Similarly, the topological delay of a given adder is given by max(tdmax! ,tdmax 1), where
tdmax! and tdmac? are obtained through equations A1.5 and A1.6. The estimations for 2, 4, 8,
16, 32 and 64-bit adders are shown in table A1.1.

TABLE A1.1 - Critical delay estimations for csa adders.

topological critical /(2

29| aetay (ps) | detay (ps) @2
csa2 1766 1560 1.13
csa4.2 2970 2633 1.12
csa8.2 5378 3597 1.49
csal6.2 10194 5709 1.78
csa32.2 19826 10077 1.96
csab4.2 39090 18813 2.07

The results of table A1.1 show that in case of adders built up from the analyzed csa2 the
difference between the topological delay and the critical delay (i.e., the delay obtained by
testing path sensitizability) may be significant. In the case of csab4.2, for instance, the
topological analysis has overestimated the delay by 100%. This means that the clock
frequency obtained through atopological analysis could still be speeded up by afactor of 2!

128

The previous results illustrate the importance of considering path sensitization in timing
analysis. And although the carry-skip adder case would represent a very particular class of
circuits, there are other important classes of circuits exhibiting significant difference between
the topological delay and the (actual) critical delay.

129

Appendix 2 Gate Delay Computation Modelsand the
Complexity of Best-First Search Procedures

The crudest gate delay computation model that can be used in a FTA tool is the single
fixed delay that assigns one delay value per gate. The target of the following discussions is
investigating the computational effort necessary to use a pair of delays per gate within best-
first search path enumeration procedures. Throughout this discussion, the referred gate delay
models were renamed to single gate delay (sgd), which assumes only one delay per gate, and
single pair gate delay (spgd), which considers a pair of delays per gate, being one for the
falling (output) transition and another for the rising (output) transition [GUN98a][GUN98h].

In order to investigate the relevance of using the spgd method in path enumeration
(instead of the sgd method), it was initially considered the problem of finding the longest
(topological) path of the CMOS gate chains listed in table A2.1. These chains are either
single-type (i.e., containing only one type of CMOS gate) or multiple-type (i.e., containing
more than one type of CMOS gate). All chains have 20 gates. Note that in the sgd case, the
delay of a path is computed smply by adding the delay of each gate along the path, according
to equation 5.1. However, in the spgd, each topological path originates two logical paths,
possibly with distinct delays calculated by equations 5.5 and 5.6.

TABLE A21 - List of CMOS gate chains used to evaluate sgd and spgd path delay

calculations.
chain description
p_nand2 2-input nand chain
p_nand3 3-input nand chain
p_nand4 4-input nand chain
p_nor2 2-input nor chain
p_nor3 3-input nor chain
p_nor4 4-input nor chain
p_nand3-4 chain with 3 and 4-input nands
p_nor3-4 chain with 3 and 4-input nors
p_n3ndi chain with inverters, 3 and 4-input
nands and nors
p_n3n4 3 and 4-input nands and nors

For estimating individual gate delays, a linear delay model was used. This moddl is
associated to the cells of a sea-of-gates library, developed in standard 0.8um CMOS
technology. Although the linear delay model is not very accurate, it serves for the purpose of
comparing the two methods under evaluation.

Considering that the adopted component delay model is able to furnish a pair of delays
per gate, the spgd method was used as reference to evaluate the loss of accuracy resulted from
using the sgd method. To derive the delay of each gate v for the sgd case, three possibilities
were considered [GUN98]: td(v)=max{tdlh(v),tdhl(v)}, td(v)=(tdIh(v)+tdhl(v))/2 and

130

td(v)=min{tdih(v),tdhl(v)}, which will be referred as max, typical and min cases,
respectively. Figure A2.1 shows the percent error resulted from using the sgd method (instead
of the spgd method) for the CMOS gate chains.

60%-

@ max
2o m typical
* omin
20%-
0%
-20%-
-40% -]
-60%-
S) 3 o Q T ¥ < S <
= = 2 <} <] 5] ™ ™ c S
S| S| 3 c < < ° 5 2 c
c c c | | | c < |
I I | 2 o o @ S & o
o o o CI o
o
circuit

FIGURE A2.1 - Percent error resulted from using the sgd method.

For all chains, max case overestimated the critical path delay up to 57%, while min case
underestimated the critical path delay up to 57%. Typ case has presented no error for the first
6 cases (from p_nand2 to p_nor4), which are single-type gate chains. For the remaining 4
circuits, which are multiple-type gate paths, the error of typ case was within the range 3%-
17%. Since in real-life digital designsit is not practical to avoid multiple-type gate paths, we
cannot disregard the fact that typ case may underestimate the critical path delay.

Another aspect of relevance in the performance of best-first search path enumeration is
the type of data structures used to store partial paths. In the best-first procedure of Yen et al.
[YENB89] k-list was originally described to be a static linear list used to store both partial and
complete paths. At the beginning of the procedure it was initialized with partial paths, sorted
by their esperances. After al partial paths had been extended k-list holds the k-most critical
paths of the circuit. Thus, the procedure controls the total amount of memory to be allocated
by allowing only the first k paths to be traced and by using a static data structure. However, in
path-based FTA, i.e. single path sensitization algorithms, it is not possible to precise
beforehand how many paths must be traced until the first sensitizable one is found. In case the
original procedure is used, the absence of a sensitizable path within the k-most critical paths
will demand another run with a greater k. For circuits containing hundreds of thousands of

long unsensitizable paths, the need for re-running the enumeration procedure many times may
render FTA impracticable.

In order to allow the procedure to stop by other criteria (e.g., when the first sensitizable
path is found), the data structure used in the modified best-first search procedure of subsection
5.2.2 was mostly modified [PIN98][GUN99]. For storing partial paths, two options of data
structures were made available: a dynamic linear list and a binary tree. During the whole
process of path enumeration partial paths are kept ordered by using the esperance value, as in
the original version of [YENS89]. In the binary tree case, a heapsort procedure [COR9(] is
used to maintain the order. Hence, the main feature of this “heapified” binary tree is that the
partial path having the greatest esperance is stored on its root. From now on, the two versions
of partial path lists are going to be referred to as linear and tree.

131

A second (linear) list called list_of pathsis used to store complete paths. This list does
not require any specia insertion scheme since the best-first procedure assures that paths are
traced in an ordered manner. Figure A2.2 depicts the possible data structures for storing
partial paths, along with the structure that stores complete paths.

partial pathslist complete pathslist

Linear list
(“linear version”)

M

or
Heaped binary tree —
(“tree version”) /

(Linear list)
O/Qo <§

FIGURE A2.2 - Data structures of the best-first procedure for path enumeration.

These later data structures gave rise to two versions of the best-first procedure, which,
by they turn, could use either the sgd or the spgd path delay calculations [GUN99]. Thus, four
versions of best-first enumeration procedure were available, as summarized in table A2.2.

TABLE A2.2 - Versions of the best-first procedure for path enumeration.

version path delay calculation type of list for storing
method complete paths partial paths
spg-linear spd dynamic linear dynamic linear
spgd-linear spad dynamic linear dynamic linear
Spg-tree spd dynamic linear binary tree
spgd-tree spad dynamic linear binary tree

The described versions of the best-first search based path enumeration algorithm were
implemented using C language.

To evauate the performance of the best-first search based path enumeration algorithms
the circuits of the ISCAS 85 suite were used. These circuits were mapped using only simple
CMOS static gates (neither transmission gates nor CMOS complex gates were used). Table
A2.3 shows the complexity of the DAGs that represent these circuits.

132

TABLE A2.3 - Complexity of the ISCAS 85 benchmark circuits.

circuit # of gates #of nets | # of graph nodes | # of graph edges
c432 182 222 231 448
c499 364 405 439 883
c880 529 589 617 987
c1355 604 645 679 1227
c1908 955 988 1015 1656
c2670 1605 1762 1828 2773
c3540 2307 2357 2381 3671
c5315 3249 3427 3552 5752
c6288 2672 2704 2738 5152
c7552 4556 4762 4871 7608

The evaluation of the execution time was accomplished by running the algorithms on a
Sun Ultra2™ workstation with 256 Mbytes of RAM memory and 586 Mbytes of swap
memory for several values of k (number of paths traced). Execution times for linear version
with k=10000 are showed in figure A2.3. From these results one can conclude that the
execution time of the linear version is greater than that of the tree version. Furthermore, this
difference is significant for the most complex circuits. It is also possible to observe that for
the majority of the circuits the execution time of the spgd case is greater than the execution
time of the sgd case (for both linear and tree versions). This result was expected since the
number of partial path insertions tends to be greater in the spgd case. However, the difference
issignificant only for circuit ¢880 and ¢1355 (3.2 seconds and 7 seconds, respectively). For all
other cases, the spgd-based procedure is at most 1 second slower.

60000 -
k=10000
50000
40000
spgd-linear
30000

sgd-linear sgd-tree

20000 -

N

execution time {ms)

spgd-tree

10000 -

04

c432 c499 c880 ¢1355 1908 <2670 ¢c3540 ¢5315 6288 7552
circuit

FIGURE A2.3 - Execution times for k=10000 paths.

The time complexity of the best-first procedure is basically dominated by inserting
partial paths in the partial path list. Thus, reducing the partial path insertion time may
significantly reduce the overall execution time. Indeed, the curves execution time X number of
traced paths showed by figure A2.4 confirm this supposition [PIN98][GUN99]. It can be seen

133

that the time complexity of linear version is exponential with respect to k, while the time
complexity of tree version is amost linear. As a result, the execution time overhead of the
spgd method is greatly reduced by the use of the “heaped” binary tree.

Figure A2.5 shows the curves memory used x number of traced paths for the same
circuits of figure A2.3. It can be seen that in terms of memory use the behavior is exactly the
opposite: the linear version presents linear dependency on the number of traced paths k, while

the tree version presents exponential dependency.

18000 1

16000

c1355
16000 1 €1908 14000
14000 1 - 12000 —aA— sgd-linear
12000 4 - Sgd_lm‘ear —— sggd-linear
—O—spgd-linear 10000 —e—sgd-tree
10000 4 —e—sgd-tree 8000 —O0—spgd-tree
8000 4 —O— spgd-tree

6000 -

4000 4

2000 A

0 +HO=0

8000 1

7000 A

6000 | —aA— sgd-linear 7000 1 |—&— sgd-linear
—— spgd-linear 6000 4 [~ spgd-linear
5000 { |—¢— sgd-tree —&— sgd-tree
—O— spgd-tree 5000 1 |—o— spgd-tree
4000

3000 A

2000 A

1000 A

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

6000

4000

2000

0 Harrl2

9000 1

8000 A

4000 4

3000 A

2000 A

1000 A

0 4

c3540

1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

FIGURE A2.4 - Curves execution time(ms) x number of traced paths for some ISCAS85
circuits.

In atiming analysis tool that checks sensitizability, the tree version would be preferred
because it is not possible to know a priori how many paths will be traced to find a sensitizable
one. Thus, the use of a linear version (solely) would result in excessively long execution
times. On the other hand, the tree version would not finish executing for circuits with too
many false paths, as the carry-skip adders studied in Appendix 1. The solution for this can be
the integration of both algorithms in atiming analysis tool, such that the user can choose the
algorithm she/he wants to use. Another possibility is to perform hierarchical timing analysis.
But even in this case, enumeration-based timing analysis tools would have embedded one or
both discussed algorithms.

Let us now turn our attention to the applicability of the explicit enumeration method for
performing FTA of a rea-life case. Consider again the carry-skip adders discussed in
Appendix 1. As it was mentioned, the only connection between two adjacent csa stages is
through logical paths POt, POl, P1t, or P1i. It was shown that both logica paths POt and
POl are not sensitizable for the assumed gate delay assignment. Therefore, one could think of
logical paths POt and POL as being blocking trunks for any signal propagation through
adjacent csa stages and use this information to detect false paths in an explicit enumeration
loop [GUN994]. In order to do this, the best-first search procedures previously described
(spgd-linear and spgd-tree) were adapted: each time a new path is completely extended, a

134

checking procedure searches for the presence of any blocking logical trunk, which are
previously furnished by the user, through an ASCII file. As long as paths are enumerated in a
non-increasing order of delays, the first path not containing any blocking trunk is assumed to
be the critical path of the circuit.

4.00E+13, 1.60E+134

3.50E+131 1908 c1555
: 1.40E+131 —A— sgd-linear
—A—sgd-linear sg d-linear
3.00E+13] . | —{— -
* —0O—spgd-linear 1.20E+13 Pg
—e— sgd-tree
2.50E+131 —&—sgd-tree 1.00E+13- —o— spgd-tree
—O—spgd-tree
2.00E+134 8.00E+124

1.50E+13 6.00E+12

1.00E+134 4.00E+12

5.00E+124 2.00E+12

0.00E+00+

0.00E+004 00,0 0"
1 3 5 7 9 20 30 50 70 90 1 3 5 7 9 20 40 60 80 100

1.80E+134 3.50E+134

€c2670 c3540

1.60E+134 3.00E+13/

140E+13 —A&—sgd-linear —aA—sgd-linear
’ | ——spgd-linear 2 50E+13] ——spgd-linear

1.20E+13 —&—sgd-tree —e—sgd-tree

1.00E+131 O—spgd-tree 2.00E+13/ —O—spgd-tree

8.00E+12 1.50E+13

6.00E+124
1.00E+13
4.00E+124

5.00E+124
2.00E+12

0.00E+004 RO 0.00E+004
1 3 5 7 9 20 40 60 80 100 1 3 5 7 9 20 40 60 80 100
FIGURE A3.5 - Curves memory used (bytes) x number of traced paths for some ISCAS85
circuits.

Table A2.4 shows the approximate execution times for the semi-automatic
unsensitizable path detection procedure for the carry-skip adders of Appendix 1. It has run on
an Ultral0 SparcStation with 512Mbytes of physical memory. It is also showed the computed
critical delays and the number of traced paths until the first sensitizable path was found and
the approximate running time. The computed critical delays may differ from the calculated
ones (also in Appendix 1) because in the semi-automatic procedure the fanout loads resulted
from connecting two adjacent csa stages are considered in detail by the physica delay
modeler.

The execution times confirm the limitation of explicit path enumeration procedures
running in flat mode: the two most complex circuits did not complete due to the large number
of unsensitizable long paths. In the case of csa32.2, the enumeration tool has traced more than
300 thousand paths without finding any sensitizable one!

135

TABLE A24 - Execution time for the semi-automatic unsensitizable path detection

procedure.
adder topological | computed | # of traced W /) executior*l*

delay (ps) (1) | delay (ps) (2) paths time (ms)
csa2 1766 1560 7 1.13 30
csad.2 2970 2652 16 1.12 70
csa8.2 5378 3654 786 1.47 680
csal6.2 10194 5658 40190 1.80 157000
csa32.2 19826 * - - -
csab4.2 39090 * - - -

* Not finished after 24 hours.
" Execution times for the spgd-linear procedure.

One advantage of the presented semi-automatic method is that it reduces the effort
needed to perform the ad hoc sensitization analysis, since only unsensitizable trunks must be
found. Another advantage is the better accuracy obtained in delay calculation, when compared
to the calculation method proposed in section 3.4, since actual fanin and fanout are considered
in the delay calculation phase. As a counterpart, the method suffers from the path explosion
problem [MCG93], since the explicit path enumeration tool runs only on flat circuit
descriptions. It is interesting to remark that the spgd-tree version has presented memory
allocation problems that prevented its use for the largest circuits. On the other hand, the spgd-
linear version has not presented memory problems, but execution time problems, since it
could not finish executing after 24 hours.

136

137

Appendix 3 Analise de Timing Funcional de Circuitos
VL SI Contendo Portas Complexas

Este anexo apresenta um resumo estendido em portugués desta tese.

A verificacdo de timing tem como objetivo determinar se as restricbes temporais
impostas ao projeto podem ser satisfeitas ou ndo. De modo mais objetivo, a verificagdo de
timing esta relacionada com a estimativa do atraso critico dos circuitos e com a maxima
frequéncia de operacdo. A precisdo da verificagdo de timing depende da precisdo dos
model os adotados. Por model os entende-se ndo apenas os modelos fisicos de atraso usados
para quantificar o atraso de cada componente do circuito, mas também os modelos
computacionais para os atrasos dos componentes e do circuito como um todo. Estes ultimos
estdo relacionados a0 modelo de operagdo do circuito, isto €, se o circuito opera no modo
sincrono ou no modo assincrono.

A maioria das técnicas de verificagdo de timing sdo orientadas a circuitos seqlienciais
sincronos. Desta forma, consideremos 0s aspectos mais importantes ao se estimar a maxima
freqiiéncia de operagé@o de um circuito seqiencia gque pode ser representado pelo modelo de
Mealy. O modelo de Mealy, mostrado na figura A3.1, divide o bloco combinacional em dois
sub-blocos distintos: a légica de proximo estado e a l6gica de saida [GAJ99]. Considerando-
se que os elementos de armazenamento sdo flip-flops disparados pela borda, entéo, a cada
borda ativa do relégio, o préximo estado € carregado nos flip-flops, tornando-se estado atual.
Neste momento, 0 novo préximo estado comega a ser computado pela I6gica de proximo
estado. As saidas podem mudar como consequiéncia de uma mudanca no estado atual ou como
consequiéncia de uma mudanca nas entradas ou como conseqiiéncia de ambos.

entradas
Lo, I relogio
A A 4 v ¢ y y
> pD, Q
FF,
>
———»0,
> . b, @ .
Iog;ch de . W | 6gica de saida 2 saidas
proximo > g :
estado ————»0,
‘DS Q3
FF,
» Q|

FIGURA A3.1 - Modelo de circuito sequiencial sincrono.

Considere que a logica de proximo estado possui atraso de propagacdo maximo e
Minimo Theq € thext, reSPectivamente, e que a légica de saida possui atraso de propagacéo

138

maximo e minimo Toy € tou, respectivamente. Considere também que os flip-flops
apresentam maximo atraso de propagacdo igua a Ty, tempo de preparacdo (setup time) igua a
ts e tempo de manutencéo (hold time) igual at,. Ent&o, para que o circuito opere corretamente,
deve-se assegurar as seguintes condicoes:

o T>maX{ (Tt + Thext +ts), (Ttr + Tout) }, ONde T € 0 periodo do relégio
e thet >th

¢ assaidas do circuito devem estar estévels e validas durante um tempo maior do que
Thext + ts antes de cada borda ativa do rel 6gio.

As condicBes anteriores sdo bastante conservadoras, porém asseguram uma operacao
sincrona correta. A primeira condicdo assegura que o periodo do reldgio sgja longo o
suficiente para acomodar 0 pior caso em termos de atraso do lago de realimentacdo do
préximo estado (T + Thext + ts) € 0 pior caso de atraso para aldgica de saida (T + Tour). A
segunda condi¢éo assegura que o periodo do reldgio € longo o suficiente para que os flip-flops
possam amostrar um novo estado. A terceira condicdo assegura que o0s sinais de entrada da
|6gica de proximo estado sejam computados atempo, de modo que todas as saidas deste bloco
estgjam estéveis e vdlidas por um tempo maior ou igua ats antes da préxima borda ativa do
rel6gio.

Considere que se adote 0 modelo de operacéo descrito anteriormente e que as entradas
segjam sincronizadas por flip-flops. Se ndo houver variagdo significativa nos tempos de
propagacéo dos flip-flops, pode-se assumir que cada bloco combinacional opera de maneira
completamente sincrona, de modo que o atraso de propagacdo € consequiéncia da aplicagéo de
dois vetores de entrada consecutivos. Entretanto, caso os tempos de propagacao dos flip-flops
sgam sSignificativamente diferentes, os blocos combinacionais operardo de maneira
assincrona, como se seqiiéncias rapidas de vetores fossem aplicadas as suas entradas.

Dentre as técnicas existentes para a estimativa do atraso critico de blocos
combinacionais, a simulacéo elétrica é a que fornece os resultados mais precisos. Por outro
lado, o esforco computacional requerido por esta técnica limita seu uso prético para circuitos
de tamanho moderado, segundo padrdes atuais de complexidade.

A simulacdo de timing € uma técnica similar a smulagdo elétrica, mas que utiliza
modelos de atraso simplificados. Em funcdo disso, a simulagdo de timing pode ser até duas
ordens de grandeza mais rdpida que a simulagdo el étrica, ao custo de uma reducdo de precisdo
da estimativa de atraso.

Existem, entretanto, trés dificuldades sérias com relacdo a0 uso de simulagdo para se
determinar o atraso critico de circuitos complexos. A primeira é o longo tempo de execucéo.
A segunda diz respeito ao esforco necess&rio para a preparacéo do conjunto de estimulos a
serem usados na simulacdo. A terceira, e provavelmente amais séria, reside em garantir que o
conjunto de estimulos propostos exercita a situacdo na qual o atraso critico do circuito se
manifesta. Sem davida, somente a simulagdo exaustiva nos ofereceria tal garantia. No entanto,
tomando-se, por exemplo, um bloco combinacional com 100 entradas, existem 2'® possiveis
vetores. Restringindo-se a simulagdo exaustiva a apenas pares de vetores (modo sincrono)
seria necessario simularem-se 219 situaces diferentes.

Em funcéo das dificuldades citadas anteriormente, a técnica denominada analise de
timing tem sido extensivamente utilizada pelos projetistas na estimativa do atraso critico de
circuitos VLSI estado-da-arte.

139

A3.1 A Analisede Timing

A andlise de timing é uma técnica para estimar-se 0 atraso critico de circuitos que
dispensa a aplicacdo de estimulos as entradas do circuito. Para que isso sgja possivel, cada
bloco combinacional é representado como um grafo aciclico direto (DAG) no qua os nodos
representam as portas e as arestas representam as conexfes. Associado as arestas e as
conexdes existem pesos que representam os atrasos de portas e conexdes, respectivamente. As
entradas e as saidas primarias do circuito sdo representadas por nodos de entrada e de saida
(i.e., com peso zero), respectivamente. Freguentemente, o grafo € polarizado pela inclusdo de
um nodo fonte e de um nodo terminal. Ao nodo fonte estéo ligados todos os nodos de entrada,
a0 passo gque os nodos de saida se ligam ao nodo terminal. Num DAG polarizado, um
caminho completo assume aforma (s, e, Vo, €, V1, €1, ..., Vh, €n, Vns1, &, t), Onde v; € um nodo
e ¢ é uma aresta. Em especial, vo e Vo1 representam a entrada priméria e a saida priméria,
respectivamente, s e t sdo os nodos fonte e termina e e; e g sdo arestas sem atraso. Um
caminho parcial € um caminho que ou ndo termina comt ou N& comega com s.

A andlise de timing topologica (topological timing analysis - TTA) assume que 0
atraso critico de um bloco combinacional corresponde ao atraso do caminho mais longo, o
qual é encontrado com o uso do algoritmo topological sort [COR90]. Este algoritmo apresenta
custo computacional muito reduzido e que aumenta de maneiralinear com relacéo ao tamanho
do grafo. Entretanto, o caminho topologicamente mais longo ou caminho critico topol6gico
pode n&o permitir a propagacdo de transicdes. Um caminho que ndo permite a propagacdo de
transi ¢des é denominado caminho falso ou ndo-sensibilizavel.

O primeiro estudo sistematizado sobre falsos caminhos se deve a Hrapcenko. Considere
o circuito da figura A3.2, retirado de [HRA78]. Suponha que neste circuito cada porta tem
atraso unitario e as conexdes possuem atraso igual a zero. Este circuito possui dois caminhos
criticos tOpO'égiCOS: P]_:(il, G, Gy, G3, Gy, Gg, Gy, Gg, h) e Pzz(iz, G, Gy, G3, Gy, Gg, G7, Gg,
h), ambos com atraso 7. Entretanto, enquanto i3=0, nenhuma transicdo consegue se propagar
de a para b. Similarmente, enquanto i;=1, nenhuma transi¢éo consegue se propagar de d para
f. Desde que um sinal ndo pode assumir ambos valores |6gicos a0 mesmo tempo, a Unica
maneira de se sensibilizar P; e P, é aplicar uma seqliéncia de vetores nas entradas do circuito
de modo que i3=1 no tempo 1 e i3=0 no tempo 4. Entretanto, se apenas pares de vetores séo
permitidos, entéo P; e P, so declarados falsos e 0 atraso do circuito € menor do que 7.

le — Gs \ e
B h
|)
Gs N 9

FIGURA A3.2 — Exemplo de caminho falso: circuito de Hrapcenko.

Algumas técnicas de sintese l6gica sdo responsaveis pela introducdo de redundancias
Nos circuitos, as quais sao sabidamente uma fonte de falsos caminhos [KEU91]. Além disso,
algumas classes de circuitos séo projetados de maneira que os caminhos topologicamente

140

mais longos sdo propositadamente tornados fal sos. Este € o caso, por exemplo, dos somadores
tipo carry skip [DEV94][LAM94]. Conclui-se, entdo, que a ocorréncia de falsos caminhos €
um fato bastante comum, principalmente devido ao uso extensivo de ferramentas de sintese
automética no fluxo de projeto de circuitos VLSI. Por outro lado, caso os caminhos
topol 6gicos mais longos sejam falsos, a atraso topol6gico podera representar uma estimativa
deveras pessimista para 0 atraso critico do circuito. Assim sendo, é atamente desgjavel que
um analisador de timing seja capaz de considerar o fendbmeno dos falsos caminhos.

A fim de se considerar o fenébmeno dos falsos caminhos, faz-se mister que se revise o
conceito de atraso critico de blocos combinacionais. A definicdo mais tradiciona € a baseada
em caminhos. “0 atraso critico de um bloco combinacional corresponde ao atraso do
caminho sensibilizadvel mais longo”, acrescentando ainda que “pode existir mais de um
caminho critico” [CHE93]. Apesar de correta, tal definicéo foi derivada considerando apenas
as técnicas baseadas em caminhos, as quais determinam o atraso critico avaliando a
sensibilizagdo de cada caminho, iniciando pelo mais longo. Uma definicdo mais geral pode
ser derivada notando-se que a esséncia da andlise de timing deve ser a captura do exato
instante em que a(s) saida(s) mais lenta(s) do circuito estabiliza-se(zam-se) com seu(s)
valor(es) final(is). Assim sendo, pode-se redefinir o atraso de um circuito combinacional: o
atraso de um circuito sob um dado padréo de entradas corresponde a minima quantidade de
tempo apos a qual todas as saidas sdo garantidas estar estévels. Por extensdo, 0 atraso critico
do circuito corresponde ao maior atraso, considerando todos os padrdes possiveis de entradas.
Por uma questdo de simplicidade, o atraso critico sera referenciado apenas por atraso do
circuito, uma vez que este é o parametro de maior interesse neste trabalho. No contexto da
nova definicdo, a técnica baseada em caminhos é uma solucéo possivel, porém ja hd um certo
tempo ndo corresponde a0 estado-da-arte. Na atualidade, as técnicas de andlise de timing
(“estado-da-arte”) operam sobre conjuntos de caminhos, o que resulta em significativa
reducéo do tempo de execucdo. De um modo geral, qualquer técnica (algoritmo) de andlise de
timing que leve em consideracdo os falsos caminhos recai na categoria da analise de timing
funcional (functional timing analysis- FTA).

Note-se que na redefinicdo de atraso e atraso critico, a sensibilizagdo de caminhos esta
implicitamente considerada. Porém, ndo é detalhado como sdo constituidos os padres de
entrada. Esta questéo foi intencionalmente deixada em aberto para que a definicdo de atraso
critico ficasse independente do modo de operacdo assumido para o circuito. Na realidade, o
que constitui um padrdo de entradas vadido depende do modo de operacdo do circuito, e é
considerado no contexto do modelo de computacéo de atraso de circuitos.

O conceito de modelo de computagdo de atraso de circuitos foi motivado pela
observacdo de que o atraso de um circuito depende da natureza dos sinais aplicados as suas
entradas, isto €, se as entradas sd0 assumidas como sendo par es de vetor es ou seqliéncias de
vetores [LAM94]. Parailustrar isso, considere o circuito teste da figura A3.3a, onde o atraso
de cada porta esta assinalado no interior da mesma. O caminho mais longo deste circuito € (a,
c, f, y), com atraso 5. Se considerarmos pares de vetores sendo aplicados as entradas do
circuito, entdo a Ultima transicdo de saida ocorre em t=1. A figura A3.3b mostra um dos
possiveis pares de vetores capazes de gerar uma transicdo em t=1. Por Outro lado, se forem
aplicadas sequiéncias de vetores as entradas do circuito, entdo a Ultima transicdo de saida
ocorre em t=3. A figura A3.3c mostra uma possivel combinacdo de entradas do tipo seqiéncia
de vetores capaz de provocar uma transicdo em t=3. Estes resultados revelam que o atraso de
um circuito combinaciona depende da maneira como vetores sdo aplicados as entradas.

141

a —4¢ c
|'> P) f . A\
T
@
Vo Vi Vo V10V
\ t i X X tol

a a —l

b b

Cc Cc |

d d |

e e

f f I_

y y L
— N S
atraso=1 atraso=3

(b) ()

FIGURA A3.3 - O atraso dos circuitos depende da maneira como vetores sdo aplicados as
entradas.

O cdlculo do atraso para pares de vetores assume que um vetor v; € aplicado em t=—w e
um segundo vetor v, é aplicado em t=0. O atraso do circuito € entdo definido como sendo o
pior caso dentre os tempos de estabilizacdo das saidas, considerando-se todos os pares de
vetores possiveis. Por essa defini¢do fica claro que todos os nés do circuito sdo assumidos
como estando estéveis sob v; quando v; € aplicado.

O atraso para pares de vetores € equivalente a assumir-se que o circuito opera de modo
totalmente sincrono. Este tipo de operacdo € referenciado como modo de transicédo
(transition mode) e o atraso por ele obtido é chamado atraso de transicao (transition delay)
[DEV92].

Alguns autores, dentre os quais Silva et a. [SIL99], sustentam que o atraso de transi¢éo
de um circuito corresponderia a0 seu atraso exato. De fato, tal conjectura seria correta caso se
pudesse sempre garantir a operacdo totalmente sincrona. Entretanto, os elementos de
memoria, tais como latches e flip-flops, apresentam tempos de propagacdo cuja discrepancia
de valores pode causar um desalinhamento de sinais nas entradas dos blocos combinacionais.
Tal desalinhamento tem o efeito de uma seqliéncia rdpida de vetores, caracterizando assim um
funcionamento assincrono. Outro suposto beneficio de se estimar o atraso usando o modo de
transicdo seria a possibilidade de identificar o par de vetores responsavel pelo atraso critico, o
qual poderia ser usado numa simulagdo para a certificagdo da estimativa. Entretanto, os
resultados mostrados pelos agoritmos que computam o atraso de transi¢éo (e.g., [DEV92],

142

[DEV94a], [DEV94Db]) revelam o alto custo computacional, uma vez que todos se baseiam em
simulacdo de pares de vetores.

A dificuldade encontrada na implementacéo de algoritmos eficientes para a computacéo
do atraso de transi¢cdo motivou a adocéo da abordagem de um vetor Unico. Esta abordagem é
uma aproximagdo do atraso para sequiéncia de vetores. A abordagem do vetor Unico assume
valores |6gicos arbitrarios para os nés do circuito, como se estes estivessem “flutuando”, até
que a aplicacdo de um Unico vetor de entrada v determine os valores estaveis finais. O atraso
do circuito é definido como sendo 0 maior tempo de estabilizacgo das saidas, considerando-se
todos os possiveis vetores Unicos vi. A assertiva referente aos nés estarem flutuando decorre
do fato de que o circuito pode ainda estar propagando vetores de entrada aplicados antes de v.
Na literatura, a abordagem do vetor Unico é mais conhecida por modo de operacao flutuante
(floating mode) [CHE91] e o atraso computado segundo esta € denominado atraso flutuante
(floating delay).

Apesar do atraso para sequéncias de vetores ser teoricamente o método exato, a
inexisténcia de algoritmos eficientes resultou na adogdo generalizada por parte dos agoritmos
de FTA do método do vetor Unico. Esta escolha vem a ser corroborada pelos resultados
apresentados em [LAM94], os quais demonstraram que na prética, 0 atraso por um vetor
anico (atraso flutuante) ou é coincidente com o atraso para seqiéncias de vetores, ou
representa um limite superior para este. Outro fator que contribuiu para a ampla utilizagéo do
método do vetor Unico reside na sua semelhanca com o problema da geragdo automética de
vetores de teste (ATPG), semelhanca esta que permite o aproveitamento das diversas técnicas
de aceleracao existentes.

Os problemas relacionados a computagdo do atraso de blocos combinacionais
constituem, a grosso modo, apenas metade do problema da estimativa de atraso. A outra
metade esta relacionada aos chamados modelos fisicos de atraso (physical models) ou
modelos no nivel de circuito (circuit-level models), os quais séo usados para estimar 0 atraso
individual dos componentes do circuito, tais como portas l6gicas e conexdes. Tipicamente, 0S
modelos fisicos de atraso sdo constituidos por conjuntos de equacdes com pardmetros que
caracterizam atecnologia a ser usada na fabricagdo do circuito. Alguns destes parametros séo
obtidos por meio de medicbes em chips de teste, enquanto que outros sdo provenientes de
simul agOes el étricas exaustivas.

Dentre os modelos fisicos, 0 mais simples é o chamado modelo linear, dado pela
equacao:
d(i) = A(i) + B(i) x C.(i) (A3.2)

onde A(i) € o atraso de transporte com relacdo a saida i, B(i) € o inverso da capacidade de
carga da porta e C_(i) é a carga capacitiva total da rede i, concentrada na saida da porta.
Apesar deste modelo ndo levar em consideracdo caracteristicas importantes da tecnologia
CMOS corrente (e.g., efeito do cana curto, rampas de entrada lentas), ele ainda é bastante
utilizado pela maioria das ferramentas de sintese légica. Por outro lado, sua simplicidade
acarreta uma baixa precisdo que o torna pouco Util no contexto de uma ferramentas de analise
detiming.

Diversos modelos fisicos mais sofisticados tém sido desenvolvidos desde o inicio dos
anos 80. Dentre estes, os pioneiros foram os modelos apresentados no contexto dos
simuladores de timing Crystal [OUS85] e TV [JOU87], os quais levam em consideracdo
atraso de portas e de conexdes de maneira simultanea. Apoés, diversos outros trabalhos
surgiram, porém, concentrando-se ou no atraso das portas, ou no das conexfes. Como
exemplos dos primeiros citam-se [SAK88], [DES88], [AUVI0] e [DAG99]. Exemplos do

143

segundo caso sdo [SAKS83], [RUB83], [HOR84] e [RAT94]. Porém, aguns trabalhos ainda
procuram tratar portas e conex0es de maneira simultinea. Como exemplos, citam-se
[UEB95], [FOR97] e [HIR98].

Dada a existéncia de diversas possibilidades de model os fisicos de atraso, outro aspecto
importante diz respeito a como os atrasos individuais dos componentes serdo considerados no
contexto da computacdo do atraso do circuito. Este aspecto € considerado pelo modelo de
computacédo de atraso de porta. O modelo mais simples € o modelo de atraso fixo, o qual
assume um valor fixo d por porta. Uma extensdo natura do modelo fixo reside em se
considerar um atraso d; para cada entradai da porta. Outra possibilidade é considerar-se atraso
de descida e de subida em separado, podendo ser um par descida/subida por porta [df,dr] ou
um par descida/subida por entradai [dfi,dr]. O assinalamento de um valor (fixo) de atraso ou
de um par de valores (fixos) de atraso por entrada é referenciado por atraso pino-a-pino.

Os modelos citados no parégrafo anterior assumem valores fixos que normamente
correspondem ao méximo atraso individual dos componentes. Tais valores, quando usados no
contexto da andlise de timing topoldgica (TTA), jamais fornecerdo uma subestimativa do
atraso do circuito. Porém, é bastante comum que fornecam uma sobrestimativa, cuja
gravidade dependera da diferenca de atraso entre o caminho critico topolégico e o caminho
critico rea (sensibilizavel). Por outro lado, em fungdo do fenémeno dos falsos caminhos, o
uso de valores (fixos) méximos de atraso no contexto da andlise de timing funcional (FTA)
pode conduzir a uma subestimativa do atraso do circuito, constituindo assim uma estimativa
errbnea inaceitavel. Este ultimo fendmeno foi chamado de falha da aceleracdo monétona
(monotone speedup failure) por McGeer e Brayton [MCG91].

A fim de se garantir que a estimativa de atraso fornecida pela FTA sgja segura(i.e., néo
sga uma subestimativa), os atrasos das portas devem ser especificados por intervalos
limitados do tipo [d™",d™], onde d™" e d™ representam o minimo e 0 méximo atrasos que
uma dada porta pode apresentar nos varios exemplares do circuito fabricado. Este é o
chamado modelo de atraso limitado (bounded delay model) e € o modelo implicitamente
assumido pelo modo de transi¢do. O modelo limitado também pode ser usado no formato
pino-a-pino. Uma modificagdo do modelo limitado consiste em assumir d™" =0, dando
origem ao chamado modelo né&o-limitado (unbounded delay model). Conforme serd
comentado mais adiante, 0 uso do modelo limitado permite que a computacéo do atraso
flutuante do circuito fornega uma estimativa segura e mais precisa, pois leva em consideracéo
afalha da aceleragdo monétona.

Uma vez detalhados os modelos de computacdo de atraso, tem-se os subsidios basicos
para considerar-se a andlise dos algoritmos de FTA existentes, bem como para determinar os
requisitos basicos no desenvolvimento de novos algoritmos. Neste sentido, € importante
ressaltar que o objetivo da FTA é fornecer uma estimativa segura de maxima precisdo do
atraso critico do circuito. Por estimativa segura de méxima precisdo entende-se um vaor que
represente uma sobrestimativa mais justa possivel para o atraso de todos os exemplares
fabricados do circuito. Para cumprir este objetivo, um agoritmo de FTA deve satisfazer a
duas propriedades. Sdo €elas, a robustez e a corretude. Diz-se que um algoritmo de FTA é
robusto se ele assegura uma estimativa de atraso vaida para qualquer um dos exemplares
fabricados do circuito. Em outras palavras, um agoritmo robusto € capaz de levar em conta a
aceleracdo mondtona e por isso, também € denominada propriedade da aceleracdo monétona
[MCG89][MCG91]. J4 a propriedade da corretude diz que o conjunto de testes de
sensibilizacdo ndo devem subestimar o atraso critico do circuito. As defini¢gdes formais destas
duas propriedades encontram-se na secéo 2.6 desta tese.

144

As diversas possibilidades para o desenvolvimento de algoritmos de FTA se
diferenciam pelos seguintes aspectos:

» 0osmodelos de computacdo de atraso para as portas e para o Circuito;

e conjunto de condigbes usadas para testar a sensibilizacdo dos caminhos. Este
conjunto de condicbes € normal mente referenciado por critério de sensibilizacéo e

¢ método usado paratestar se as condi¢des de sensibilizacdo sdo satisfeitas ou néo.

A secdo A3.2 trata dos critérios de sensibilizagdo, ao passo que a se¢do A3.3 apresenta
um estudo sistemético das diversas possibilidades de agoritmos de FTA, explicitando os
métodos possiveis para se testar a sensibilizacdo de caminhos.

A3.2 Critérios de Sensibilizacéo

A medida em que eram desenvolvidos os primeiros trabalhos em FTA, diversos critérios
de sensibilizagdo foram propostos. A razéo para isso era a busca de um bom compromisso
entre a precisao da estimativa de atraso e o tempo de execucdo do algoritmo usado no teste de
sensibilizagdo. Com efeito, este compromisso foi extremamente importante para as primeiras
ferramentas de FTA, as quais testavam a sensibilizagdo caminho por caminho, a partir dos
caminhos topol ogicamente mais longos.

Os critérios de sensibilizacdo podem ser divididos em critérios independentes de
tempo e critérios dependentes de tempo. Enquanto que 0s primeiros consideram apenas 0s
valores 16gicos dos sinais aplicados as entradas laterais das portas, ou sgja, as entradas que
ndo fazem parte do caminho considerado, os segundos levam em consideracdo também o
tempo em que tais sinais estabilizam. A seguir, sdo apresentados dois critérios independentes
de tempo e dois dependentes de tempo, todos assumindo o0 modo flutuante. S&o eles:
sensibilizacdo estatica [BEN90], co-sensibilizacéo estatica [DEV91], viabilidade [MCG89]
e sensbilizacdo exata do modo flutuante [CHE91]. Exemplos e consideracOes sobre a
corretude de cada um dos métodos citados encontram-se na se¢éo 4.2.

A sensibilizag8o estética constitui, provavelmente, o primeiro critério de sensibilizacdo
que se tem noticia. Ela é herdeira direta do conceito de sensibilizagcdo empregado em geracéo
de teste, sendo inclusive coincidente, caso se adote pares de vetores ao invés de um vetor
anico.

Sgja um caminho P= (vp, €, V1, €1, ..., Va, €, Vns1). Diz-Se que o vetor de entrada w
sensibiliza estaticamente P para 1(0) no circuito C se e somente se 0 valor de vp.1 € 1(0), e
paracadavi, 1<i < n, sev; possui 0 valor controlante, entéo a aresta g., € a Unica entrada de v
gue apresenta o valor controlante. Esta definicdo foi apresentada por Devadas e colaboradores
em [DEV93]. Cabe ainda observar que, se w sensibiliza estaticamente um caminho, entdo ele
sensibiliza estaticamente ou para 1 ou para 0. Esta propriedade € uma consequiéncia direta do
modo flutuante.

A co-sensibilizaco estética é outro critério independente de tempo, porém um pouco
menos severa que a sensibilizacdo estética, no sentido de que as condi¢bes necessarias para se
declarar um caminho como co-sensibilizavel estaticamente sdo menos restritivas. Diz-se que o
vetor de entrada w co-sensibiliza estaticamente P para 1(0) no circuito C se e somente se 0
valor de vn+1 € 1(0), e paracadavi, 1 < i < n, sev; possui 0 valor controlante, entéo aarestae.;

145

apresenta o valor controlante. Como no caso da sensibilizagdo estética, se w co-sensibiliza
estaticamente um caminho, entdo ele co-sensibiliza estaticamente ou para 1 ou para 0.

A andlise de viabilidade, apresentada por McGeer e Brayton em [MCG89], constitui, na
realidade, um algorimto completo de FTA baseado no conceito de caminhos viaveis. Um
conjunto de condi¢Bes dependentes de tempo é usado para testar se um caminho pode ser
considerado como responsavel pelo atraso do circuito sob um vetor de entrada w. Em caso
afirmativo, tal caminho é declarado ser viavel. Dado um caminho P= (vo, €, V1, €1, ..., Vh, €n,
Vn+1) €M um circuito C, P é dito vidvel se e somente se existe a0 menos um vetor de entrada w
tal que para cada portavi, 1 <i < n, e para cada entrada lateral e de v;, se e estabiliza antes de
6.1, entdo e deve apresentar o valor ndo-controlante de v;. Note-se que nem o valor 16gico
apresentado por e.;, nem o tempo de estabilizagdo das entradas laterais que sdo mais lentas
gue g.1 interessam.

As condicles para a sensibilizac8o estatica sdo suficientes para se concluir que um
caminho pode ser responsavel pelo atraso do circuito. Por outro lado, as condi¢des para a co-
sensibilizagdo estética sdo apenas necessarias, mas ndo suficientes. As condicles necessarias e
suficientes para um caminho ser responsavel pelo atraso do circuito no modo flutuante foram
introduzidas em [CHE91] e referenciadas por critério de sensibilizacdo exato do modo
flutuante, ou simplesmente critério exato.

Sgja um caminho P= (Vo, €, Vi, €1, ..., Vn, €1, Vn+1) €M um circuito C. P é dito
exatamente sensibilizavel ou verdadeiro (sob o modo flutuante) se e somente se existe ao
menos um vetor de entradaw tal que, para cada portav; ao longo de P, com 1 <i < n, umadas
condicdes que seguem é satisfeita:

1. se e apresenta o valor controlante de v;, entdo cada entrada lateral e de v; que
apresentar o valor controlante de v; deve ser, no maximo, téo rapida quanto g ;.

2. seeg.; apresenta o valor ndo-controlante de v;, entdo cada entrada lateral e de v; deve
ser, no minimo, tdo rdpida quanto g1, e deve apresentar o valor ndo-controlante de
V.

Assim sendo, para um caminho ser responsavel pelo atraso do circuito sob 0 modo
flutuante é necessario que, para cada porta g ao longo do caminho:

1. se a saida de g apresentar o valor controlado, entdo sua entrada principal deve
apresentar 0 valor controlante e as entradas laterais que também apresentarem o
valor controlante ndo devem ser mais répidas que a entrada principal.

2. se a saida de g apresentar o valor ndo-controlado, entdo todas as entradas devem
apresentar o valor ndo-controlante de g e sua entrada principal ndo deve ser mais
rapida que as entradas | aterais.

Uma andlise qualitativa dos critérios de sensibilizac8o discutidos é apresentada na segdo
4.3.

A3.3 Algoritmos de Andlise de Timing Funcional

Apesar do grande nimero de trabalhos sobre critérios de sensibilizacdo e algoritmos de
FTA publicados desde o fim da década dos 80, a auséncia de uma terminologia padréo é uma

146

séria dificuldade para o desenvolvimento de atividades de pesguisa nestes temas, sobretudo
para principiantes.

Esta secdo discute agoritmos de computagdo de atraso usados em FTA. A fim de
sistematizar a discussdo, propde-se uma nova taxonomia para a classificagdo dos algoritmos
de computacéo de atraso.

Os primeiros algoritmos de FTA testavam a sensibilizacdo dos caminhos, um apés o
outro, usando adaptactes do algoritmo D [ROT66]. Este era 0 caso dos trabal hos apresentados
em [BEN9Q], [BRAS8S], [CHE91] e [CHE93]. Nos dois ultimos, os critérios de sensibilizagdo
usados eram dependentes de atraso. Esta caracteristica de testar um caminho por vez
corresponde ao conceito de sensibilizacdo individual de caminhos existente em ATPG.

Porém, logo alguns autores reconheceram ser bastante comum a ocorréncia de circuitos
com centenas de milhares de falsos caminhos com atraso maior do que o atraso do caminho
critico (verdadeiro) [KEU91][DEV94][LAM94], de modo que o teste de sensibilizaco
caminho por caminho foi reconhecido ser de uso limitado, na pratica. Por outro lado, surgiram
diversas propostas de algoritmos de FTA capazes de tratar ssmultaneamente a sensibilizacéo
de conjuntos de caminhos, habilidade esta que em ATPG é conhecida por sensibilizacdo
concorrente de caminhos. Dentre tais algoritmos merecem destague o procedimento de
geracdo de teste temporal (timed-test generation procedure), de Devadas et a. [DEV91]
[DEV934q] e o trabalho de Silva e Sakallah [SIL94] [SIL94a]. Existe ainda uma abordagem
mista, proposta em [CHA93], na qual um conjunto de potenciais caminhos criticos é
identidicado usando sensibilizagdo concorrente de caminhos. Apds, sensibilizacgo individual
€ aplicada ao conjunto.

Outra questéo, a principio independente do nimero de caminhos tratados, diz respeito
a0 método usado para determinar se as condicdes de sensibilizacdo podem ser satisfeitas ou
ndo. Nos algoritmos citados nos dois paragrados anteriores, valores |0gicos sdo assinalados a
alguns dos nés do circuito e entdo, implicados para os demais nés. Tal procedimento é
derivado dos algorimos tradicionais de ATPG, sendo portanto referenciados por baseados em
ATPG.

Em 1989 McGeer e Brayton chamaram a atencdo para o fato de que as condi¢cdes de
sensibilizagdo poderiam ser formamente expressas por uma fungdo de sensibilizagdo de
caminho [MCGB89]. Assim, o problema de sensibilizagdo de caminhos poderia ser resolvido
usando algum método mais formal, baseado em programacdo dindmica ou em BDDs, ta
como o proprio McGeer propds em [MCG89] e [MCG91], respectivamente.

Naturalmente, é de se imaginar que tal fomulacdo possa também ser aplicada aos
algoritmos que realizam sensibilizagdo concorrente de caminhos, obviamente com um
aumento significativo na complexidade. Neste sentido, dois trabalhos representam marcas
importantes. O primeiro foi o de Larrabee [LAR92], que utilizou solvabilidade (satisfiability)
Booleana para resolver uma formulagdo que expressava a diferenca Booleana entre circuitos
com falhas e sem falhas. O segundo, apresentado por McGeer e Brayton [MCG914a], prop0s as
chamadas fungdes recursivas, as quais proveram o formalismo necessério para a aplicacéo de
solvabilidade Booleana para FTA. Nasciam assm os algoritmos de FTA baseados em
solvabilidade (SAT). Outros algoritmos de FTA baseados em SAT que merecem citagdo sdo
apresentados em [MCG93], [SIL93], [SIL96] and [SIL99].

Sumarizando a taxonomia apresentada juntamente com a revisao histérica anterior, as
solucBes possivels para FTA podem ser classificadas conforme as seguintes questdes:

147

1. critério de sensibilizacdo usado;

2. numero de caminhos simultaneamente tratados e

3. método usado para determinar se as condicdes de sensibilizacdo sdo satisfeitas ou

nao.

Com relacdo ao numero de caminhos simultaneamente tratados, um algoritmo de FTA
pode utilizar uma das seguintes estratégias.

» senshilizagdo individual de caminhos,

» sensibilizagdo concorrente de caminhos;

« abordagem mista

Finalmente, os métodos possiveis para o teste de sensibilizacéo sdo:

* baseado em ATPG,

» baseado em solvabilidade (baseado em SAT)

e outros (e.g., BDDs)

A tabela A3.1 classifica aguns dos algoritmos de FTA mais importantes encontrados na
literatura, fazendo uso da taxonomia aqui proposta.

TABELA A3.1 - Classificag&o dos principais algoritmos de FTA encontrados na literatura.

algoritmo 1 2 3
SLOCOP [BEN9(] estética individual ATPG
ACPA [CHE93] aproximada individual ATPG
LLLAMA viabilidade individual SAT ou BDDs
[MCG89|[MCG9]]

XBDO exata concorrente SAT
[MCG91g][MCG93]

VIPER [CHA93] vigorosa mista ATPG
TrueD-F [DEV93a) exata concorrente ATPG
TA-LEAP [SILY] estatica“ segura’ concorrente ATPG
STA [SIL93] estatica concorrente SAT
GRASP [SIL96] estatica ou viabilidade concorrente SAT
CGRASP[SIL99] estatica ou viabilidade concorrente SAT

Faz-se necesséria, ainda, uma observacdo final sobre terminologia. Na literatura, a
designacdo “baseada em ATPG” estd associada aos algoritmos baseados em ATPG que usam
sensibilizacdo concorrente. Isto ocorre por razdes historicas, pois que na redidade a
sensibilizagdo individual, que é derivada do agoritmo D, surgiu antes da sensibilizacdo
concorrente. De modo similar, a designacéo “baseado em SAT” assume implicitamente a
sensibilizagdo concorrente. Embora tal técnica pudesse ser aplicada a sensibilizacdo
individual, seu poder reside justamente em tratar 0s caminhos de maneira concorrente. Por

razdes didaticas, este texto utiliza a taxonomia proposta anteriormente.

148

A seguir, serdo discutidas as seguintes classes de algoritmos: baseados em ATPG com
sensibilizagdo individual, baseados em ATPG com sensibilizacdo concorrente e baseados em
SAT com sensibilizagdo concorrente. A discussdo se utilizara de um exemplo tipico para cada
um dos trés tipos de algoritmos.

Antes de se inciar a discussdo, faz-se mister mencionar que a quase totalidade dos
algoritmos de FTA apresentam trés passos basi cos:

1. criagdo do grafo que representa o circuito,
2. pré-processamento do grafo para computar maximos atrasos e
3. computacdo do atraso (critico) do circuito

As trés classes de algoritmos citadas se diferenciam basicamente pelo terceiro passo.
Particularmente, o terceiro passo pode ser dividido em sub-passos, 0s quais variam
significativamente, de acordo com a classificagéo proposta.

A3.3.1 Algoritmos Baseados em AT PG com Sensibilizacdo I ndividual

Os algoritmos baseados em ATPG com sensbilizagdo individual testam as
condicdes de sensibilizacdo de um caminho assinalando valores 16gicos as entradas principais
e as entradas laterais das portas ao longo do caminho e implicando os val ores assinalados para
os demais nés do circuito. Isto normalmente é feito por um agoritmo derivado do algoritmo D
[ROT66], mas que apresenta menor complexidade do que aguele, pois apenas a fase de
propagacdo é implementada. Além disso, os testes de sensibilizac8o sdo aplicados a um anico
caminho por vez.

A fim de garantir que o caminho critico sgja encontrado, o algoritmo deve iniciar
examinando o caminho topologicamente mais longo. Se as condigdes de sensibilizacdo séo
satisfeitas, tal caminho € declarado como sendo responsavel pelo atraso do circuito e seu
atraso € assumido como sendo o atraso do circuito. Caso contrério, o proximo caminho
topologicamente mais longo deve ser tragcado e sua sensibilizagdo deve ser testada. Este
procedimento continua até que um caminho sensibilizavel seja encontrado.

Os algoritmos de sensibilizacgo individual necessitam utilizar um procedimento capaz
de enumerar caminhos segundo a ordem ndo decrescente dos atrasos. Os agoritmos de
enumeracdo de caminhos mais eficientes apresentam complexidade de execucéo O(n log n),
com n igua ao nimero de nodos do grafo [PIN98]. O procedimento pode ser ligeiramente
acelerado se o teste de sensibilizacdo for sendo realizado a medida que o caminho for sendo
tracado. Neste caso, 0s passos para o teste da sensibilizagdo sdo os mesmos do agoritmo D:
implicacdo e justificacdo [ROT66]. Para cada nova porta que é acrescida ao caminho que
estd sendo tracado, valores 16gicos sdo assinalados as entradas laterais. Entdo, tais valores sdo
propagados para tras, em direcdo as entradas primérias, e para frente, em diregdo as saidas
primérias. No caso de condi¢des de sensibilizacdo dependentes de atraso, os tempos de
estabilizacdo dos vaores légicos sdo também considerados. Os nos ndo avaliados
permanecem com valores desconhecidos (don't cares). A figura A3.4 ilustra este
procedimento.

Como pode existir mais de um conjunto de valores |6gicos capazes de justificar um
conjunto de condi¢des de propagacdo para uma porta, 0s conjuntos de valores possivels sdo
armazenados numa lista. No caso de ocorrer alguma inconsisténcia quando da propagacdo das
condi¢Bes para as demais portas do caminho, os Ultimos valores assinalamentos devem ser
desfeitos. Entéo, um novo conjunto de valores deve ser escolhido da lista, e propagado para o

149

resto do circuito. Se, ao final do processo, for encontrado um assinalamento de valores | 6gicos
que satisfaca as condi¢des de sensibilizacdo, entdo o caminho serd declarado sensibilizavel
(com respeito ao critério de sensibilizagdo e aos model os de atraso adotados). Por outro lado,
um caminho ndo pode ser declarado ndo-sensibilizavel até que todas as possibilidades de
assinalamentos de valores | 6gicos tenham sido testadas.

I mplicagdo para diante
X (0) — 1(td,
0(0) [

Retro-implicacao

P

/ X (?) X (2) X (?)

Fronteira-D

FIGURA A3.4 — Procedimento de sensibilizagdo individual de caminho.

A fim de reduzir o tempo de execucdo, alguns algoritmos baseados em ATPG com
sensibilizagcdo individua (e.g., [DU89] e [CHE93]) néo realizam o passo de justificacdo, uma
vez gue seus autores alegam que a maioria dos caminhos falsos podem ser detectados no
passo de implicacdo. Entretanto, de acordo com Peset Llopis, 0 passo de implicagdo néo é
capaz de detectar todos os caminhos falsos [PES94] e assim, quando a justificaco ndo €
realizada, um caminho ndo-sensibilizavel pode ser declarado sensibilizavel, resultando numa
sobrestimativa do atraso do circuito.

Conforme j& mencionado, a fase de enumeracdo de caminhos € extremamente
importante para qualquer algoritmo de sensibilizagdo individual. O problema de tragar
caminhos em circuitos combinacionais tem sido estudado desde o inicio dos anos 80, quando
vérios agoritmos de enumeracéo foram propostos. Alguns deles eram implementacdes diretas
dos procedimentos cléssicos para percorrer grafos, a busca “primeiro em largura’ (Breadth-
First Search BFS) e a busca “primeiro em profundidade” (Depth-First Search DFS).
Exemplos sdo encontrados em [Y EN88] e [OUS85]. Entretanto, tais procedimentos ndo eram
capazes de tracar os caminhos de forma ordenada, pois ndo consideravam informagdes pré-
anotadas no grafo. Assim, para poder ser aplicada, havia a necessidade de armazenar os
caminhos numa lista, que deveria ser posteriormente ordenada. Tal procedimento logo se
mostrou infactivel em funcdo do grande nimero de caminhos que um circuito pode
apresentar. Para solucionar este problema, Yen e Du propuseram em [YENS89] (e com mais
detalhes em [YEN91]) o uso do procedimento de busca “primeiro o melhor” (Best-First
Search), também conhecido por A* (A-star) [WIS84], o qua foi extensivamente utilizado
pel os algoritmos de sensibilizacdo individual que sucederam.

O procedimento de busca “primeiro o melhor” e seu uso nos agoritmos baseados em
ATPG com sensibilizacgo individual sdo detalhadamente discutidos nos itens 5.2.1 e 5.2.2
desta tese. Uma andlise pratica sobre sua complexidade aparece no anexo 2.

150

A3.3.2 Algoritmos Baseados em AT PG com Sensibilizacdo Concorrente

A busca de um vetor de entrada v que satisfaca as condictes de sensibilizacgo para um
dado caminho apresenta uma complexidade de execucdo de ordem 0(2"), onde n é o nimero
de entradas primérias do circuito. Se esta busca deve ser realizada para cada caminho, como
ocorre na sensibilizacdo individual, entdo o tempo de execucdo total € proporciona ao nimero
de caminhos longos ndo-sensibilizavels que precisam ser analisados até que o caminho critico
sgja encontrado. Estas dificuldades relacionadas a sensibilizacdo individual de caminhos
motivaram o surgimento de uma outra estratégia baseada ndo na enumeracéo de caminhos,
mas na enumeracao de atrasos. Esta estratégia reside em testar se as saidas primarias do
circuito estdo estaveis (ou em 0 ou em 1) para um dado tempo 8. Caso positivo, d € reduzido e
todas as saidas sdo testadas novamente. Caso negativo, i.e., se alguma saida primaria ndo
estiver estavel, entdo o atraso do circuito esté entre o valor & testado e o vaor anterior de .
Ao testar uma saida, 0 algoritmo estara considerando implicitamente um conjunto de
caminhos que podem influenciar a saida em questdo e estarg, portanto, realizando
sensibilizagdo concorrente de caminhos. No caso dos agoritmos de FTA baseados em ATPG,
0s procedimentos utilizados para verificar se uma saida esta estdvel em 0 ou em 1 no tempo &
sa0 derivados de algoritmos de ATPG.

O exemplo mais significativo de algoritmo baseado em ATPG com sensibilizagdo
concorrente € o algoritmo TrueD-F, desenvolvido por Devadas e colaboradores [DEV93g].
Este algoritmo responde a seguinte pergunta: o atraso do circuito € maior ou igual a 8? O
valor o é inicializado com T-go, onde T € o atraso topolégico do circuito e €5 € um pequeno
valor maior que zero. Para responder a pergunta, € empregado o método de simulacdo de
cubos de entrada (input cube simulation) por meio de uma versdo modificada de agoritmo
PODEM [GOES8L1], denominada de procedimento de geracao de teste temporal (timed-test
generation procedure) [DEV93a]. Enquanto a resposta a pergunta for “ndo” para cada uma
das saidas primérias, o procedimento de geracéo de teste temporal € sucessivamente invocado
para & = T-g, com i=0,1,2,...., €1 > €. Se a resposta for “sim” para uma saida, entdo esta
saida apresenta um atraso entre o valor corrente de & (digamos T-gx) e o vaor anterior (T-gx.1).
Assim, T-g.1 representa um limite superior seguro para 0 maximo atraso do circuito. Caso se
desgje um valor mais preciso para o atraso, pode-se aplicar pesquisa binéria sobre o intervalo
[T-Ek , T-Ek-l].

Como o circuito pode estabilizar com o valor 16gico 0 ou com o valor légico 1, para
cada valor &, o procedimento de geracdo de teste temporal deve ser aplicado duas vezes a
cada saida primaria (exceto no caso em gue a resposta for “sim” para o primeiro valor |6gico
testado). A figura A3.5 ilustra o procedimento béasico do algoritmo TrueD-F.

P atraso real PR atraso
sim ” néo -
(desconhecido) topolégico
| [| | >
atraso l [| I [|
T-¢, T-g, T-g, T-£, T

FIGURA A3.5 - Procedimento de geracéo de teste temporal aplicado a um circuito de uma
Unica saida

151

A fim de determinar se 0 atraso méaximo (atraso critico) numa saida primaria do
circuito é maior ou igual a & para o valor légico | val ue, 0 procedimento de geracéo de teste
tenta justificar | val ue na saida considerada com atraso maior ou igual a . Isto é feito por
meio de simulacdo de cubos, de maneira similar a realizada pelo algoritmo PODEM. Como o
PODEM permite uma exploragdo sistemética e exaustiva do espaco das entradas, caso ele
falhe em encontrar um cubo de entrada capaz de justificar | val ue na saida do circuito parao
valor de atraso & considerado, entdo a resposta a pergunta sera “ndo” (para a saida testada e
para o vaor l6gico | val ue considerado). Em outras palavras, o problema de determinar o
atraso do circuito é transformado num problema de geracdo de teste para uma faha de
colagem simples localizada na saida priméria do circuito.

A chamada de mais dta hierarquia do procedimento de geracdo de teste temporal
(timed_test) € descrita pelo pseudocddigo que segue (figura A3.6). Ta qua no algoritmo
PODEM puramente |6gico, ha uma lista de justificagdo j 1 i st armazenando as linhas do
circuito que precisam ser justificadas. O procedimento inicia pela inser¢éo de uma dada saida
priméaria po emjlist com valor l6gico | val ue (0O ou 1) e assumindo del ay como sendo o
limite inferior do atraso do circuito a ser testado (&;). Entéo, o procedimento SEARCH 1 é
chamado.

ti med_test(po, del ay, | val ue)

{

v.val ue = |val ue;
v. |l ower = del ay;
v.upper = INFINTY;

modi fy jlist (po,v,jlist);
backward schedul e po;

status = SEARCH 1(jlist);
} return(status);
FIGURA A3.6 — Pseudocodigo para a chamada de mais alta hierarquia do procedimento de
geracao de teste temporal.

As funcgdes de busca sdo similares aguelas encontradas no algoritmo PODEM e estéo
descritas pelos pseudocodigos das figuras A3.7 e A3.8. A funcdo SEARCH 1 chama a funcéo
BACKTRACE para, partindo da saida primaria po, encontrar uma entrada primaria cujo valor
|6gico ainda € desconhecido. A entrada primaria identificada € inicialmente gjustada ao valor
l6gico 1 e entdo a funcdo | MPLY é chamada. Esta, por sua vez, leva a cabo uma rodada de
simulacdo de cubos para teste temporal considerando as condicbes de sensibilizacdo do
critério exato do modo flutuante (no PODEM original, que a partir dagui sera referido por
PODEM légico, afuncéo | MPLY corresponde a simulagdo de cubos com trés valores |6gicos e
sem informagado de atrasos). A funcdo de implicacdo pode levar a uma situacdo de conflito, o
qgual pode ser de duas naturezas distintas. l6gica ou temporal. Se ndo ocorrer conflito,
SEARCH_1 serd chamada recursivamente. O procedimento termina com sucesso em SEARCH 1
se a lista de justificagdo tornar-se vazia. No caso de ocorréncia de conflito em SEARCH 1, O
algoritmo retrocede ao assinalamento de entrada primédria mais recente, assinalando-lhe o
valor 16gico 0. Entdo, afuncdo SEARCH_2, mostrada na figura A3.8, € chamada.

O procedimento BACKTRACE falha se suas fungdes forem incapazes de encontrar uma
entrada priméria livre de assinalamento ou se 0 espaco das entradas tiver sido completamente
explorado sem sucesso em SEARCH_2. Ocorre conflito se ndo for possivel atribuir a uma linha
do circuito o valor 16gico que Ihe é requerido com o periodo de tempo necessario. Em caso de

152

conflito ou falha, € necessario desfazer todos os assinalamentos originados do assinalamento
de entradas que causou o conflito ou falha.

SEARCH_1(jli st)
{
if(length of jlist is zero) return SUCCEED,

i f (BACKTRACE(gat e, val ue, del ay, &pi, &pi _val ue) ==FALSE)
return(FAI LED);

i f(IMPLY(pi,pi_value,jlist)!=lMPLY_CONFLI CT)
{

search_status = SEARCH 1(j!list);
i f(search_status == FAI LED)

restore the state of the network;
search_status = SEARCH 2(jlist, pi, 1-pi _val ue);
}
}

el se

restore the state of the network;
search_status = SEARCH 2(jlist,pi,1-pi_val ue);

return(search_status);

FIGURA A3.7 — Pseudocodigo para o primeiro procedimento de busca.

O procedimento de geracdo de teste temporal assume que cada porta do circuito (e
também cada aresta) possui uma “varidvel 16gico-temporal” formada por trés campos. um
limite inferior e um limite superior de atraso da porta (atrasos no contexto do circuito como
um todo) e um valor 16gico. Um passo de pré-processamento inicializa os campos de valores
l6gicos com o valor 2 (o qual indica que o valor l6gico ainda ndo esta determinado) e os
limites inferior e superior de atraso com 0s minimos e maximos atrasos topolbgicos
computados a partir das entradas primérias. Na fase de geracdo de teste, ap serem assinalados
valores |6gicos conhecidos as entradas primarias, os limites inferior e superior de atraso vao
sendo aproximados durante a simulacéo para diante, devido a sensibilizacdo ou bloqueio dos
caminhos. Os limites inferior e superior sdo também modificados pela retro-implicacdo, no
momento em que novos valores sdo inferidos em algumas portas, como decorréncia dos
valores | 6gicos e respectivos tempos requeridos para as saidas primarias.

SEARCH 2(jlist, pi, pi_val ue)
{

backtracks = backtracks + 1 ;
i f (backtracks > BACKTRACK LIM T) return(ABORTED);

i f(1MPLY(pi,pi_value,jlist)!=IMPLY_CONFLI CT)
{
search_status = SEARCH 1(jlist);
i f(search_status == FAILED)
restore the state of the network;
el se

{
search_status = FAI LED,

restore the state of the network;

return(search_status);

FIGURE A3.8 - Pseudocodigo para o segundo procedimento de busca.

153

Outro elemento importante do procedimento de geracdo de teste temporal € a lista de
justificagdo. Portas sdo incluidas a esta lista durante a retro-implicacdo e retiradas tanto
durante implicagdo para diante quanto durante a retro-implicacéo. A qualquer tempo, alistade
justificagdo contém as portas cujos valores 16gicos ou de atraso precisam ser justificados, o
que sb se concretiza pelo assinalamento de novas entradas primérias. O fato da lista de
justificagdo ficar vazia significa que a busca foi concluida com sucesso. Entdo, a resposta para
a guestdo “o atraso do circuito € maior ou igual a & (quando o valor légico lv é assinalado a
saida considerada)?” € “sim”. Por outro lado, caso o0 espaco de busca tiver sido
completamente enumerado sem que a lista de justificagdo tenha sido esvaziada, a busca
falhou: a resposta para a pergunta é “nédo”. Uma terceira situacéo seria 0 caso em que a busca
€ abandonada devido ao nimero excessivo de retrocessos, quando entdo a pegunta permanece
sem resposta.

E importante ressaltar que a variavel |6gico-temporal é usada para armazenar tanto os
valores reais (l6gicos e de atraso) quanto agueles valores inferidos por meio da retro-
implicagdo. A diferenca entre esse dois casos reside no fato de que, no segundo caso a porta
relacionada estar4 na lista de justificacdo. De fato, todas as portas cujos valores de entradas
ndo produzem os valores constantes em sua variavel 16gico-temporal devem estar na lista de
justificagdo. Por outro lado, qualquer porta cujas entradas produzem os valores constantes em
sua variavel l6gico-temporal ndo deve estar na lista de justificacdo. Estas duas assertivas
anteriores caracterizam de maneira precisa a lista de justificagéo.

Tendo apresentado as duas fungdes de mais alta hierarquia do procedimento, passemos a
examinar afuncdo i npl y, aqua é chamada dentro das fungdes sear ch1 esear ch2. A funcéo
i mpl y € detalhada pelo pseudocodigo da figura A3.9. A entrada primaria é assinalada com o
valor légico devido e o efeito deste assinalamento € propagado pelo circuito usando a fungdo
f orwar d_set . Estafuncdo, por suavez, arrola o tratamento do fanout da entrada priméria que
foi modificada e entdo a funcéo f or war d_i npl y realiza uma simulacéo temporal digirida por
eventos. f orwar d_i npl y € seguida de uma retro-implicacdo (funcéo backwar d_i npl y). Estas
duas fungbes sdo chamadas de maneira iterativa até que os valores no circuito ndo mudem
mais. Geramente, 0 assinalamento de um valor légico particular a uma porta durante a
implicacdo para diante ou durante a retro-implicacdo exige a previséo de tratamento diante de
todos os seus fanouts e a previsdo de tratamento para tras de todos os seus fanins que estdo na
lista de justificacéo (forward e backward scheduling).

Os eventuais conflitos sdo detectados por ambas fungdes de implicacdo. Estes conflitos
podem ser de natureza logica (conflitos |6gicos) ou de natureza tempora (conflitos
temporais).

i mpl y(pi,pi_value,jlist)
{

v = pi.tinmed_val ue;
v.val ue = pi _val ue;
status = forward_set(pi,v,jlist);

whi | e(st at us==l MPLY_NORMNAL)

status=forward_i nply(jlist);
i f(status! =1 MPLY_CONFLI CT)
st at us=backwar d_i npl

return status,;
}
FIGURA A3.9 — Pseudocdédigo para o procedimento de implicac&o.

154

A chave para determinar se € possivel ou ndo justificar um valor 16gico numa saida do
circuito paraum dado tempo reside na adocdo de um calculo temporal de trés valores que leva
em consideracdo as condi¢bes de sensibilizacdo do critério exato do modo flutuante.
Considere uma porta E de duas entradas com atraso d. Cada uma das entradas desta porta ij
pode apresentar um valor légico pertencente ao conjunto {0,1,2} com limites inferior e
superior de atraso dados por |; e u;, respectivamente. O termo “atraso do sinal” serd utilizado,
a0 invés de “tempo de estabilizagdo” [CHE93], pois mesmo portas que apresentam valor
l6gico ndo assinalado (i.e., 2) em suas saidas, apresentam valores coerentes para os limites
inferior e superior do atraso. Os resultados para uma simulagdo de cubos usando o célculo
tempora para uma porta E de duas entradas e para uma porta OU de duas entradas sdo
mostrados nas tabelas A3.2 e A3.3. Nestas tabelas, Iv é o vaor |6gico na saida da porta,
enquanto |, e U, representam os limites inferior e superior do atraso na saida da porta,
respectivamente.

TABELA A3.2 — Céculo temporal de trés valores para uma porta E de duas entradas.

. 0 1 2
Iv 0 0 0
0 lo| min(lyly)+d [,+d | min(ly,l2)+d
Uo | mi n(ul,u2)+d u,+d Uo+d
Iv 0 1 2
1 lo [;+d max(ll,I2)+d [1+d
Uo uptd | max(ug,Uz)+d | max(ug,uy)+d
Iv 0 2 2
2 lo| min(ly,ly)+d [,+d | min(ly,l2)+d
Uo uptd | max(ug,U)+d | max(ug,u,)+d

TABELA A3.3 - Célculo temporal de trés valores para uma porta OU de duas entradas.

’ & 0 1 2
Iv 0 1 2
0 lo maX(|1,|2)+d l1+d l1+d
Uo | max(ug,up)+d up+d | max(ug,up)+d
Iv 1 1 1
1 lo l+d mi n(|1,|2)+d mi n(|1,|2)+d
Uo ux+d | min(ug,uy)+d ux+d
Iv 2 1 2
2 lo l+d mi n(|1,|2)+d mi n(|1,|2)+d
Uo | max(ug,up)+d u;+d | max(ug,up)+d

O fato dos algoritmos de FTA baseados em ATPG (com sensibilizagdo concorrente)
serem derivados dos préprios algoritmos de ATPG os torna bastante interessantes, pois que as
inlmeras técnicas de aceleracdo ja desenvolvidas para os Ultimos podem ser aplicadas quase
que diretamente aos primeiros.

155

A3.3.1 Algoritmos Baseados em SAT com Sensibilizacdo Concorrente

Conforme discutido nas duas subsecdes anteriores, nos algoritmos baseados em ATPG,
a sensibilizacéo é considerada ou de forma explicita, tracando e testando a sensibilizacéo dos
caminhos um a um, ou de forma implicita, justificando valores |6gicos nas saidas do circuito
para um dado valor limite de atraso T. Estes procedimentos baseiam-se no algoritmo D e no
algoritmo PODEM, respectivamente.

Nos algoritmos baseados em SAT, entretanto, a sensibilizacdo é testada de forma
implicita, usando solvabilidade Booleana (SAT). Trata-se de uma solugdo mais ampla, ja que
0 teste de sensibilizagdo (e também a deteccdo de falhas de colagem) pode ser formulada
como um problema de solvabilidade.

No contexto dos algoritmos de FTA baseados em SAT, 0 método proposto por McGeer
et al. [MCG93], chamado método exato, merece destaque em funcdo de sua ampla aceitacéo
junto a comunidade de andlise de timing. Este método utiliza uma extensdo do modelo de
atraso ndo-limitado denominado XBDO (Extended Bounded Delay-0), no qual um terceiro
valor é acrescido ao conjunto de valores Booleanos {0,1}. Este terceiro valor, normalmente
simbolizado por 2, é utilizado para modelar o estado indeterminado e também o estado
desconhecido. O método também utiliza um formalismo denominado algebra de formas de
onda, introduzido por Augustin em [AUG89]. O modelo algébrico baseado em formas de
onda seria equivaente a algebra de chaveamento com os operadores Booleanos, tomada no
dominio estético. Dentro desta nova plataforma, o modelo de computacéo de atraso de porta é
redefinido, com o intuito de unir funcionalidade I6gica e atraso de porta. Assim, pela nova
definicdo de atraso de porta, uma porta é vista como um operador que toma as formas de onda
aplicadas as suas entradas e encontra a forma de onda da saida.

Ta como os algoritmos baseados em ATPG com sensibilizacdo concorrente, o0 método
exato também baseia-se em enumeracdo de atrasos, ao invés de enumeracdo de caminhos.
Para enumerar atrasos, 0 método exato se utiliza de um procedimento andlogo aguele
discutido na segdo anterior, apenas mudando o método utilizado para testar se todas as saidas
primérias estdo estabilizadas para o tempo o testado. Para este teste, o procedimento
empregado caracteriza recursivamente o conjunto de todos os vetores de entrada capazes de
fazer com que uma determinada saida primaria estabilize com um valor |égico (0 ou 1), parao
que é utilizadauma dgebraternéria e o calculo de forma de onda (waveform calculus).

A dgebraternaria € formada pela adicdo de um terceiro valor ao conjunto de valores da
algebra Booleana, denotado por 2, e tem o intuito de representar os seguintes fendmenos:

« estado indeterminado, que ocorre enquanto a saida de uma porta esté transicionando
de 0 para 1 ou vice-versa. Em outras palavras, modela o comportamente anal 6gico
deum sinal;

¢ estado desconhecido, quando ndo é possivel determinar o vaor légico de um sinal,
apesar de se saber que 0 mesmo vale 0 ou 1. Assim, o vaor 2 também serve para
modelar a incertitude de cada variavel que determina o atraso dos componentes do
circuito, tais como variagdo do processo de fabricagcdo, crosstalk, inclinagdo da
rampa do sinal de entrada etc.

Sumarizando, o valor 2 representa 0s casos em que o valor na saida de uma porta néo
pode ser assegurado como sendo um valor Booleano.

Dado um tempo & em que se deseja testar a estabilizacdo de uma saida, 0 método exato
encontra a funcdo caracteristica de cada né. Por meio da funcdo caracteristica, € possivel

156

determinar se as condicdes (Booleanas e temporais) necessérias para que 0 nd estgja
estabilizado no tempo desgado podem ser satisfeitas ou ndo, o que é feito utilizando
solvabilidade Booleana. Assim, 0 método exato determina, de maneira recursiva, as equacoes
caracteristicas dos nos do circuito que podem influenciar a saida que se desgja testar. Apds, é
aplicada solvabilidade Booleana ao conjunto de fungdes caracteristicas. Se for possivel
resolver o sistema de funcéo caracteristicas, entéo a saida esté estédvel no tempo 6. Por outro
lado, caso ndo seja possivel encontrar uma solucdo, entdo a saida ndo esté estavel e seu atraso
é maior do que &. E importante ressaltar que, dado um tempo 8, este procedimento deve ser
realizado para cada saida. Além disso, para cada novo valor de & seré necessario testar-se cada
uma das saidas. Ora, sabendo-se que os métodos de testes de solvabilidade exigem grande
esforgo computacional, conclui-se que a complexidade (em termos de tempo) dos algoritmos
de FTA baseados em SAT é proporciona ao passo de tempo utilizado. Além disso, conforme
mencionado em [MCG93], em circuitos muito grandes e/ou em circuitos que apresentam um
grande nimero de caminhos com atrasos distintos, 0 nimero de funcBes caracteristicas
necessarias torna-se muito grande, aumentando ainda mais o tempo de execucdo. Em funcéo
disso, foram propostas algumas regras de poda no procedimento de geracdo das funcdes
caracteristicas que, no entanto, conseguem minorar o problema apenas de forma parcial. Em
funcdo desta dificuldade, os algoritmos baseados em SAT com sensibilizagcdo concorrente tem
se mostrado de aplicacdo restrita quando modelos fisicos de atraso mais redistas séo
utilizados. Isto porque, da adogéo de tais model os resulta uma individualizagdo dos caminhos,
no sentido de que poucos caminhos compartilham um mesmo valor de atraso.

A formulagdo tedrica do método exato esta descrita em maiores detalhes nas subsegoes
5.4.2 e5.4.3 destatese.

A préxima secdo apresenta um agoritmo de FTA baseado em ATPG, com
sensibilizagcdo concorrente, capaz de operar sobre circuitos que contenham portas complexas.

A3.4 Analise de Timing Funcional de Circuitos Contendo Portas
Complexas

As primeiras técnicas de FTA redlizavam sensibilizacdo individual de caminhos
utilizando variacBes do agoritmo D e critérios de sensibilizacdo simplificados, buscando
reduzir o tempo execugdo. Entretanto, logo a sensibilizagcdo individual se mostrou
impraticavel mesmo para circuitos de complexidade moderada, e a sensibilizagdo concorrente
tomou-lhe o lugar. Com a sensibilizacdo concorrente as técnicas de FTA passaram a utilizar
uma abordagem baseada em “ enumeracdo de atraso”, ao invés de uma abordagem baseada em
“enumeracdo de caminhos’. Além de ndo necessitar da fase de enumeracdo, a sensibilizacdo
concorrente também permite a adocéo do critério de sensibilizacdo exato do modo flutuante, o
qual é o tnico capaz de fornecer o atraso exato sob 0 modo flutuante.

Entretanto, toda a teoria que embasa os métodos de teste de sensibilizacdo de caminhos
e também os proprios critérios de sensibilizacdo foram desenvolvidos assumindo circuitos
compostos por portas simples, isto é portas E/NAO-E, OU/NAO-OU e inversores.
Conseguientemente, se um circuito combinacional que contenha portas mais complexas deve
ser analisado, a ferramenta de FTA a ser utilizada deve estar apta ndo somente a reconhecer
tais portas mas também de tratar coerentemente o circuito de acordo com o modeo
computacional de atraso adotado. Isto pode ser realizado ou pelainclusdo de uma fase de pré-
processamento ou pela extensdo do algoritmo/método de computagéo do atraso do circuito e
das condicbes de sensibilizagdo do critério adotado.

157

A disponibilizacdo de geradores de macrocélulas CMOS eficientes tais como 0s
apresentados em [CAD99] e [MOR97], e de ferramentas de mapeamento tecnoldgico
independentes de bibliotecas [REI97] tornou possivel o uso extensivo de portas complexas
(sobretudo portas CMOS estéticas) no projeto fisico de grandes blocos combinacionais. Deste
modo, a capacidade de tratar circuitos que contenham portas complexas passa a ser altamente
desgjavel paranovas ferramentas de FTA.

Antes de iniciar uma discussdo sobre a andise de timing funcional de circuitos que
contenham portas complexas, é importante prover definicbes para portas simples e portas
complexas. NO contexto desta tese, uma porta simples corresponde a uma implementacéo
fisica de um operador bésico da dgebra Booleana. Assim, sdo portas simples as portas E, OU,
NAO-E, NAO-OU (com qualquer niimero de entradas) e o inversor. Particularmente, portas
simples CM OS sdo portas simples que podem ser implementadas diretamente em tecnologia
CMOS, ou sgja, portas NAO-E, NAO-OU e inversor. Uma porta complexa corresponde a uma
implementagcdo fisica de qualquer funcdo Booleana de complexidade maior do que os
operadores Booleanos bésicos. Especificamente, uma porta complexa CMOS estética (Satic
CMOS Complex Gate - SCCG) corresponde a uma porta complexa implementada em
tecnologia CMOS.

Iniciamente, serd investigado o caso particular das SCCGs, em funcdo de sua
importancia. Apos, serdo feitas consideragdes sobre a extensdo dos modelos e agoritmos
propostos para o caso de portas complexas quai squer.

Uma porta CMOS estética € implementada por uma rede de transistores CMOS
conectados segundo uma topol ogia de “restauracéo completa’, composta por uma rede PMOS
e uma rede NMOS. A rede PMOS é capaz de prover um caminho entre a saida da porta e a
massa (Vdd), enquanto que a rede NMOS é capaz de prover um caminho entre a saida da
porta e aterra (Gnd). As redes NMOS e PMOS possuem mesmo nimero de transistores. Por
uma questdo de simplicidade, iremos assumir que uma SCCG é uma porta CMOS estética na
qual ambas redes de transistores apresentam apenas associaces série/paraelo, e sendo rede
PMOS o dual darede NMOS, em termos de associacdo de transistores. A figura A3.10 mostra
um exemplo de SCCG. Note-se que, para uma porta CMOS estética de n entradas, ha n pares
NMOS/PMOS conectados pela grade, formando cada par uma entrada da porta.

B—d b—c
A r—q[_
p—d b—E
B s | s
; >
E — o
? — e

(b)
FIGURA A3.10 - Exemplo de SCCG.

158

As portas CMOS estéticas, incluindo as SCCGs, podem ser classificadas de acordo com
0 nimero de transistores série/paralelo existentes nas redes NMOS e PMOS. O conjunto das
portas CM OS estéticas que apresentam ndo mais do que n (p) transistores NMOS (PMOS) em
série é definido como sendo uma “biblioteca virtual” [REI98] que pode ser designada por
SCG(n,p). Pode-se também utilizar a notagdo SCCG(n,p) para designar o subconjunto de
SCG(n,p) composto apenas por SCCGs. A tabela A3.4, retirada de [DET87], detaha o
nimero de SCGs existentes para bibliotecas virtuais de até 5 transistores série.

TABELA A3.4 — Numero de elementos para vérias bibliotecas virtuais [DET87].

numerodetransistoresPMOSem srie
1 2 3 4
nimerode |1 1 2 3 4
transistores 2 2 7 18 42 90
NMOSem
Srie 3 3 18 87 396 1677
4 4 42 396 3503 28435
5 5 90 1677 28435 425803

Muitos algoritmos de FTA foram desenvolvidos na década dos 90. Entretanto, a maioria
destes n&o considera a possibilidade de tratar circuitos que contenham portas complexas. No
caso dos agoritmos baseados em ATPG, tal limitagdo deve-se ao fato da teoria de
sensibilizagdo de caminhos ter sido desenvolvida unicamente para portas simples.
Obviamente, a extensdo de um critério de sensibilizagdo para considerar portas complexas
resulta em regras mais complicadas. O uso de tais regras por um algoritmo de sensibilizagéo
individual de caminhos tende a piorar significativamente o desempenho deste. Em uma
primeira andlise, os agoritmos baseados em SAT parecem ser mais promissores, uma vez que
as eguaches caracteristicas sdo potencialmente capazes de representar qualquer funcéo
Booleana. Entretanto, a fim de reduzir a complexidade das instancias de SAT a serem
resolvidas, alguns algoritmos baseados em SAT assumem que 0s circuitos combinacionais S50
compostos unicamente de portas simples.

A solucéo mais simples para realizar-se FTA de circuitos contendo portas complexas
consiste em substituir-se cada porta complexa por um subcircuito equivalente composto de
portas simples. Esta técnica € conhecida como macroexpansado [MCG91][HSU98] e, quando
utilizada a titulo de pré-processamento, viabiliza 0 uso de qualquer ferramenta de FTA que
tenha sido desenvolvida para tratar circuitos constituidos unicamente por portas simples.
Entretanto, a macroexpansdo apresenta dois inconvenientes [HSU98]. Em primeiro lugar, é
muito dificil modelar com precisdo o0 atraso das portas complexas macroexpandidas. Em
segundo lugar, a macroexpansao cria novos nés no circuito. Estes novos nds representam um
potencial aumento no nimero de linhas que devem ser justificadas, no caso de FTA baseada
em ATPG, ou hum aumento do nimero de egquacao caracteristicas, no caso de FTA baseada
em SAT. Em qualquer um destes casos, 0 aumento no tempo de execucdo dependera da
complexidade das portas complexas e dos model os de atraso utilizados para estas.

Uma segunda solucdo reside em modificar os testes de sensibilizagdo de modo a torng&
los aptos a tratar de circuitos que contenham portas complexas. Ta modificacdo refere-se néo
apenas ao critério de sensibilizacdo, mas também ao agoritmo que testa a sensibilizacéo.

159

Desde que ha mais de um algoritmo para testar a sensibilizacdo de caminhos, esta solugdo
pode ser desdobrada em vérias solucdes.

Em [HSU98], por exemplo, € apresentado um algoritmo de FTA capaz de operar
diretamente sobre circuitos com portas complexas. Com o intuito de evitar a macroexpansao,
as condicbes para sensibilizacdo exata no modo flutuante sdo estendidas, de modo a
considerar portas complexas. Estas condicOes de sensibilizacéo estendidas sdo utilizadas por
um algoritmo baseado em sensibilizagdo individua derivado do agoritmo D. Os resultados
mostrados em [HSU98] permitem comparar modelos de atraso para macroexpansdo, bem
Como comparar 0 uso da macroexpansdo com o agoritmo que testa diretamente portas
complexas. Por outro lado, todos os resultados foram obtidos pelo uso de algoritmos baseados
em sensibilizagdo individual de caminhos, a qual, sabidamente, ndo representa o estado-da-
arte por sofrer de um problema conhecido por “explosdo de caminhos’.

Conforme ja apresentado no item A3.3, o procedimento de geracéo de teste temporal de
Devadas et a. [DEV93a] € um agoritmo de sensibilizagdo concorrente de caminhos baseado
em ATPG derivado do algoritmo PODEM [GOES8L1]. No procedimento de geracdo de teste
temporal, o problema de se calcular o atraso de um circuito € transformado num conjunto de
geracdo de testes para falhas de colagem “temporais’ imaginadas como ocorrendo nas saidas
primérias do circuito. O procedimento tem entdo o objetivo de justificar tais fahas de
colagem.

A fim de se poder estender o procedimento de geracdo de teste temporal para circuitos
que contenham portas complexas, é necessario generalizar o célculo tempora para portas
E/OU de n entradas. Para tanto, langa-se mé&o dos conceitos de valor controlante e valor néo-
controlante, conforme definidos no escopo de teste. Assim, dada uma porta g tipo E/OU de n
entradas, podemos classificar seu estado 16gico conforme os seguintes casos.

1. Casos em que a0 menos uma das entradas de g apresenta o valor controlante (c(g)).
As demais entradas podem apresentar ou o valor ndo-controlante (nc(g)) ou o valor
2;

2. Caso em que todas as entradas de g apresentam o valor ndo-controlante (nc(g));

3. Casos em gue a0 menos uma das entradas de g apresenta o valor 2, mas nenhuma
entrada apresenta o valor controlante (c(g)). As demais entradas podem apresentar o
valor ndo-controlante (nc(g)).

A partir da identificacdo dos casos possiveis, chega-se a generalizacdo das regras
originalmente expressas nas tabelas A3.2 e A3.3. Também ¢é possivel expandir tais regras de
modo a se considerar a polaridade de saida das portas, 0 que permite tratar portas NAO-E e
NAO-OU. As regras generalizadas sio mostradas natabela A3.5.

TABELA A3.5 — Regras generalizadas para o calculo temporal de trés valores para portas
simples de n entradas.

grupo regras Iv
mir{ l; |i=c(g)ori=2} +d
Uo | min u [j=c(g)} +d

pol(g) O c(g)

lo [max{ |;} +d
2 e | max{ u) +d pol(g) O nc(g)
3 lo [min{ I;|i=2} +d 5

Uo | max{ u; }+d

160

As regras resumidas na tabela A3.5 podem ainda ser representadas de maneira gréfica,
conforme mostram as figuras A3.11, A3.12 e A3.13. Por uma questéo de simplicidade, tanto
natabela A3.5 como nas figuras A3.11, A3.12 e A3.13 assumiu-se um atraso Unico por porta.
M odel os computacionais de atraso mais sofisticados seréo discutidos mais adiante.

11 ul _
| | c@ it pol(g) 0 c(g)
12 u2
| | 5 —li2 12+d ul+d
| 2
13 u3 — | |
| [c(9)—i3 /
14 ud min{ |, [i=c(g) or i=2} +d
| [ncg) —ia min{ u; |j=c()} +d

d=gate dlay

FIGURA A3.11 — Céculo temporal de trés valores para o grupo 1.

11 ul .
| |_nc@ it pol(g) O ne(g)
12 u2 _ 11+d u3+d
| [nc(g) —i2 ;
13 u3 — | |
| Inc(@)i3 /‘ ’\
14 u4 max{ |, } +d max{ u;} +d
| [nc(@ —i4
d=gate delay
FIGURA A3.12 - Cdculo temporal de trés valores para o grupo 2.
11 ul
| [nclg it
12 u | 3+d
| | 2 —i2 2+d u
13 u3 T | | 2
| [2_ i3 /‘ ’\
14 u4
| | nc(g) —i4 min{ |i |i=2} +d max({ Uj}"’d
d= gatedelay

FIGURA A3.13 - Calculo temporal de trés valores para o grupo 3.

Assumindo-se que a funcéo |6gica de uma porta qualquer g esteja na forma fatorada e
utilizando-se uma estrutura de dados apropriada para represent&la, a aplicagdo das regras
generalizadas é direta. Considere, por exemplo, a SCCG mostrada na figura A3.14a. A funcéo

161

|6gica desta porta é dadapor S= A [{(B [T) +(D [EE)) e pode ser representada por uma “ arvore
da funcdo” (figura A3.14c). Examinando-se esta arvore da funcdo nota-se que, dado um
assinalamento de valores temporais de entrada (valores | 6gicos e respectivos limites inferior e
superior de atraso), os valores temporais na saida podem ser obtidos mediante a aplicacéo
sucessiva das regras da tabela A3.5 para cada subarvore, iniciando-se pela subarvore mais
préxima da base, desde que sejam feitas as seguintes assertivas:

1. Todas as subéarvores, exceto a raiz, apresentam atraso de propagacdo zero e
polaridade igual azero

2. atraso de propagacdo da porta é aplicado somente sobre os limites inferior e superior
de atraso da saida da porta, i.e., sobre os valores temporais resultantes da avaliagéo
da subarvore de maior hierarquia.

3. A polaridade da porta é tratada somente quando a subarvore de maior hierarquia é
processada.

A primeira e a segunda assertiva permitem que se divida a avaliagdo temporal da SCCG
em dois passos independentes. No primeiro passo, o valor 16gico da saida e os limites inferior
e superior de atraso sdo computados para um atraso de propagacdo da porta igua a zero.
Chamaremos este intervalo de atrasos de “limites de atraso de primeira ordem”. Num segundo
passo, os limites inferior e superior reais s&o computados por meio da adicdo do atraso de
propagacao da porta aos limites de atraso de primeira ordem. Este segundo passo leva em
conta 0 modelo computacional de atraso adotado para as portas.

B—d b—c c —
A—q[D
p—q b—E c
T ° @
" o
B—] j—o 0 (+)
c— —e

R Q
>4 o

FIGURA A3.14 - Exemplo de SCCG: simbolo para o nivel 16gico (a), esquemético de
transistores (b) arvore dafungdo (c).

A figura A3.15 ilustra a aplicacdo das regras do célculo tempora aplicadas a SCCG da
figuraA3.14.

162

nodos
intermediarios

>

m O O @

. :D51

eoe 000 » »@
dvdo 9 © &

FIGURA A3.15 —Uso do célculo temporal de trés valores para avaliar uma SCCG.

Uma vez proposto um procedimento para determinar os limites de atraso de primeira
ordem na saida de uma porta complexa, faz-se necessério investigar modelos computacionais
de atraso para portas que sejam validos para o calculo do atraso flutuante de um circuito. A
fim de revelar a relagdo gue existe entre 0 modelo computacional de atraso de circuitos e o
modelo computacional de atraso de portas (e também, o modelo fisico de atraso),
consideremos a porta NAO-E de 3 entradas mostrada na figura A3.16. Considere também que
o vetor v=(a=1;b=1;c=0) sgja aplicado a suas entradas. A fim de se determinar o0 atraso
flutuante desta porta NAO-E sob o vetor v, é necessario examinar todas as combinagBes de
entrada contidas em tal vetor, encontrando o pior atraso. Parainiciar, € necessério lembrar que
no modo flutuante, um valor O representa tanto a transicdo de descida quanto o valor 0
estético, enquanto que um valor 1 representa tanto a transicéo de subida quanto o valor 1
estético. Entdo, substituindo-se O por | ou por 0 e substituindo-se 1 por + ou por 1, obtém-se
um total de 8 possibilidades de pares de vetores (figura A3.16b) o que permite estabelece-se
uma relagéo entre 0 modo flutuante e 0 modo de transi¢cdo, no que se refere ao modelo de
atraso de portas l0gicas.

um vetor flutuante

=

@

pares de vetores associados

1 ¢+ + 1 1 1+ 1
torrorfortorjortorlor]
i L1 0 Vv 0 O O

lort

(b)

FIGURA A3.16 — Relacéo entre modo flutuante e modo de transi¢do: um vetor flutuante
aplicado auma porta NAO-E de 3 entradas (a) e 0s 8 pares de vetores associados (b).

163

Antes de continuar a discussdo, € conveniente definir-se vetor flutuante e atraso
flutuante.

Definicdo A3.1: vetor flutuante e atraso flutuante

Um vetor flutuante € um assinalamento de valores |6gicos aplicado as entradas de uma
porta ou as entradas do circuito, quando assume-se gque 0 circuito estd operando no
modo flutuante. O atraso computado para a porta (para o circuito) assumindo-se tal
modo de operacdo é chamado atraso flutuante da porta (do circuito).

Dada a definigéo para vetor flutuante, vale lembrar que um vetor flutuante de n variavels
contém 2" pares de vetores, dentre os quais um é composto por dois vetores iguais. A tabela
A3.6 mostra todos os vetores flutuantes possivels e 0s pares de vetores associados para uma
porta NAO-E de 3 entradas. Os pares hachureados em cinza claro sio responsaveis por uma
Unica transi¢éo de saida, enquanto que os pares hachureados em cinza escuro podem provocar
umatransi¢éo espuria (glicth) na saida da porta.

TABELA A3.6 — Relagéo entre vetores do modo flutuante e vetores do modo de transi ¢&o.

vetor deentrada | 000 001 010 011 100 101 110 111
000 001 010 011 100 101 110 111
100 101 110 111 100 101 110 111
0t0 | 011 | 000 | 011 110 | vl | 1:0 | 111
pares de vetores 00! 001 014 011 101 101 114 111
associados 1o 11 110 i1 110 Tl 110 1l
10! 101 11 11 10l 1 01 11l T 11
0l Ol 0t ort 11 1t 171 It
b it LTl 11 Tl it Tl T
valor ldgico da saida 1 1 1 1 1 1 1 0

Indo um pouco aém, é possivel criar-se uma tabela de equivaléncia entre modo
flutuante e modo de transicdo como a tabela A3.6 para cada uma das 256 func¢des Booleanas
de 3 variaveis. Desde que a associagdo entre vetores flutuantes e pares de vetores é fixa, as
funcbes logicas de 3 entradas se distinguiriam pelos valores |6gicos resultantes na saida e
também pelos pares de vetores que influenciam a computacdo do atraso da porta
Potencialmente, pode-se construir tabelas de equivaléncia para qualquer funcéo légica de n
entradas.

Uma contribuicdo da tabela de equivaléncia reside no fato de que ela permite a
identificagdo dos modelos computacionais de atraso para portas a serem usados para calcular
o atraso flutuante de um circuito. Mais especificamente, a tabela diz que uma porta pode
apresentar a0 menos um atraso distinto por vetor flutuante de entrada. De maneira mais
conservadora, pode-se considerar que o modelo computacional de atraso de porta mais
detalhado para 0 modo flutuante corresponde a assumir-se um valor de atraso por vetor
flutuante. Tal modelo serareferenciado por modelo de atraso de vetor .

164

Um modelo menos preciso, porém ainda correto do ponto de vista da andlise de timing,
corresponde a agrupar os vetores flutuantes de entrada de acordo com o tipo de transicdo de
saida da porta. Assim, a cada porta € assinalado um atraso de descida, correspondendo ao
maximo atraso dentre os vetores flutuantes que provocam uma transicdo de descida, e um
atraso de subida, correspondendo a0 méximo atraso dentre os vetores flutuantes que
provocam uma transicdo de subida. Tal modelo serd chamado modelo de atraso de
subida/descida.

Um terceiro modelo corresponde a assinalar um Unico valor de atraso por porta,
chamado de modelo de atraso Unico. Naturalmente, este € 0 modelo menos preciso, embora
ainda correto.

E importante ressaltar que, para obter-se um céculo robusto de atraso flutuante do
circuito, os valores de atraso de portas a serem usados em cada um dos trés modelos deve
corresponder ao limite superior para o atraso da porta, considerando-se todas as instancias do
circuito fabricado. Isto significa que o modelo fisico de atraso usado ou o método de
estimativa de atraso deve ser capaz de fornecer o valor correspondente ao pior caso
individualmente para cada componente.

Uma andlise mais cuidadosa da tabela A3.6 permite ainda concluir que o formato de
atraso pino-a-pino, normalmente utilizado na caracterizagdo de standard-cells, ndo é
apropriado para a computacdo do atraso flutuante desde que considera somente parte de todos
os vetores flutuantes de entrada. Por exemplo, no caso de uma porta de 3 entradas, o formato
pino-a-pino cobre apenas seis pares de vetores: 111, 111, 111, 111, 111, 111. Ou sga,
apenas as situaches em que ocorre uma Unica transi o de entrada.

Uma segunda contribuicdo da tabela de equivaléncia entre modo flutuante e modo de
transi¢cdo é a propria associacado entre um dado vetor flutuante e os pares de vetores subscritos.
Tal informacdo é Util quando se desegja caracterizar 0 atraso de uma porta, sobretudo se o
método de caraterizagdo for simulacdo elétrica. Neste caso, apenas 0s pares de vetores que
podem produzir uma transicdo de saida devem ser simulados, 0 que pode reduzir
significativamente o nimero de casos. Por outro lado, no caso de caracterizagdo por meio de
formulacdo analitica, a informacéo da tabela de equivaléncia pode ser usada para gjustar ou
adaptar o conjunto de equagdes de modo a cobrir apenas os pares de vetores de interesse.

Tendo derivado regras seguras para determinar 0 atraso das portas sob qualquer um dos
trés modelos computacionais de atraso de porta, faz-se necessario considerar a aplicagdo de
tais regras no cdlculo dos limites inferior e superior de atraso de uma porta usando o
procedimento de implicagdo para diante. Retomando as regras do célculo tempora de trés
valores descritas na tabela A3.5, as situagdes possiveis de vetores flutuantes podem ser
classificadas nos trés grupos que seguem:

1. Casos em que a0 menos uma das entradas de g apresenta o valor controlante (c(g)).
As demais entradas podem apresentar ou 0 valor ndo-controlante (nc(g)) ou o valor
2;

2. Caso em que todas as entradas de g apresentam o valor ndo-controlante (nc(g));

3. Casos em gue a0 menos uma das entradas de g apresenta o valor 2, mas nenhuma
entrada apresenta o valor controlante (c(g)). As demais entradas podem apresentar o
valor ndo-controlante (nc(g)).

Os grupos 1 e 3 referem-se aos casos onde uma das entradas da porta apresenta o valor

2. No contexto do célculo de trés valores, um 2 representa a existéncia ou do valor 16gico 0 ou
do valor l6gico 1. Em decorréncia disto, podemos introduzir a defini¢do de cubo flutuante:

165

Definicdo A3.2: cubo flutuante

Dado o cédlculo de trés valores, um cubo flutuante é um assinalamento de valores
l6gicos tal que a0 menos um destes corresponde ao valor 2. O nimero de vetores
flutuantes contidos em um cubo flutuante é igual a 2™, onde m é o nimero de posicoes
gue apresentam o valor 2.

Com efeito, um cubo flutuante contém ao menos dois vetores flutuantes e desta forma,
pode ser visto como uma variagdo do modelo de atraso de subida/descida. A fim de se garantir
maxima precisao, é necessario considerar 0 maximo e 0 minimo atrasos da porta sob um dado
cubo. A partir de tal assertiva, o atraso de uma porta sob um cubo tera uma forma invariante,
independentemente do modelo computacional de atraso de porta. Para efeitos ilustrativos,
considere a aplicacdo do cubo flutuante 022 & SCCG da figura A3.17, a qual implementa a

funcdo légica S = A + B [C. A tabela A3.7 mostra a equivaléncia entre o modo flutuante e o
modo de transi¢éo paratal porta. Note que a saida desta SCCG sera 1 quando o vetor flutuante
aplicado a suas entradas pertencer a {000, 001, 010} e serd O quando o vetor flutuante
aplicado a suas entradas pertencer a{011, 100, 101, 110, 111}. Se o procedimento de calculo
do atraso assumir o modelo de atraso de vetor, entdo o atraso desta SCCG para o cubo 022
terda madximo e minimo limites de atraso dados por max{d(000),d(001),d(010),d(011)} e
min{ d(000),d(001),d(010),d(011)}, respectivamente, onde d(000), d(001), d(010) e d(011) séo
0s atrasos para os vetores flutuantes 000, 001, 010 e 011. Por outro lado, se 0 procedimento de
célculo do atraso assumir 0 modelo de atraso de subida/descida, ent&o 0 maximo e 0 minimo
limites de atraso serdo dados por max{ tpLHmax » tPHLmax} € MIM{ tPLHmin » tPHLmMin} - ENtretanto,
para esta SCCG, tp,ymax=max{ d(000),d(001),d(010)} e tp.Hmin=min{d(000),d(001),d(010)},
enquanto que tprLmax=tPrHLmin=d(011), resultando nos mesmos valores de maximo e minimo
atrasos fornecidos pelo modelo de atraso de vetor. De forma andloga, pode-se declarar que o
atraso flutuante deste cubo para 0 modelo de atraso subida/descida ird resultar nos mesmos
valores de maximo e minimo atrasos cal culados pel os outros dois model os de atraso de porta.

um vetor flutuante

@

pares de vetores associados

1oriorgorQ —o Oorl

(b)
FIGURA A3.17 — Atraso da SCCG dafigura A3.17 para o cubo flutuante 022.

166

TABELA A3.7 — Equivaléncia entre modo flutuante e modo de transicdo paraa SCCG da
figuraA3.17.

vetor deentrada | 000 001 010 011 100 101 110 111
000 001 010 011 100 101 110 111
100 101 110 111 100 101 110 111
010 011 010 011 1.0 111 170 171
pares de vetores 00! 001 014 011 101 101 114 111
associados WO | 11 | 110 | 112 | 110 | 141 | 110 | 111
10! 101 N 111 10l 101 114 111
0Ll 0l1 o1l 011 111 11 1ty 1t
[Lt 1l 11 1l 1t 11l 111
valor ldgico da saida 1 1 1 0 0 0 0 0

Analisando novamente as tabelas de equivaléncia, é possivel afirmar que o atraso de
qualquer porta depende apenas do cubo (ou vetor) aplicado as suas entradas. Particularmente
no caso do modelo subida/descida, pode-se afirmar que o atraso de uma porta fica
perfeitamente definido pelos grupos aos quais o vetor (ou cubo) flutuante de entrada pertence.
Ta conclusdo ratifica a decisdo de se dividir o clculo do valor tempora de uma porta em
duas subtarefas independentes:

1. Cdéculo do valor I6gico da saida e dos limites de primeira ordem;

2. ldentificacdo do atraso flutuante da porta e aplicacdo deste no calculo dos limites de
atraso reais.

A partir desta verificagdo, torna-se claro que 0s recursos necessarios para reaizar-se a
computacdo do valor tempora para portas complexas arbitrérias ja foram propostos. Estes
recursos sao:

1. A é&vore dafuncdo e os procedimentos necessarios para computar o valor 1égico na
saida das portas e os limites de atraso de primeira ordem;

2. O uso de um dentre os trés modelos de célculo de atraso de porta (atraso de vetor,
atraso de subida/descida ou atraso Unico) para calcular os limites inferior e superior
do atraso das portas.

Uma vez detalhado o procedimento para redlizar-se a implicagdo para diante, resta-nos
investigar o procedimento para a retro-implicagéo.

Dada uma porta e um valor 16gico desejado para a sua saida, a retro-implicacdo consiste
em encontrar um assinalamento de entradas capaz de produzir tal valor. Obviamente, o valor
l6gico desgjado na saida da porta € um valor conhecido, ou sgja, 0 ou 1. Ocorre conflito
quando a saida de alguma porta apresenta valor 16gico oposto ao que se desgja.

No caso da retro-implicacéo temporal, ndo basta verificar a ocorréncia de conflitos
|6gicos. Para cada entrada de cada porta, € necessario verificar se os limites inferior e superior
de atraso requeridos estdo dentro dos limites inferior e superior de atraso pré-existentes. Dada
uma porta simples e um valor l6gico desgada para sua saida, o procedimento origina de

167

geracdo de teste temporal procura pelo cubo capaz de produzir tal valor [6gico explorando os
conceitos de valor controlante/valor ndo-controlante. Considere que se desgje colocar a saida
de uma porta E no valor 16gico 0. Como 0 € o vaor controlante da porta E, existe mais de
uma possibilidade de vetores capazes de satisfazer a condigdo desgjada. Assim, 0O
procedimento procura pela entrada capaz de produzir um 0 na saida da porta, e sendo esta
enrada a mais répida. Se tal entrada no existe, entdo ndo é possivel implicar paratras o valor
|6gico 0 pela porta considerada.

No caso das portas complexas, os conceitos de valor controlante/valor ndo-controlante
ndo podem ser aplicados diretamente. Entretanto, percebe-se que implicar para trés um valor
l6gico por uma porta pode corresponder a um “processo de adivinhagdo”, no qual se tenta
descobrir um assinalamento de entradas capaz de produzir o vaor |6gico de saida desejado.
Neste sentido, o procedimento de retro-implicagdo para portas complexas vem a ser uma
generalizagao do caso das portas simples.

A heuristica usada pelo procedimento de geracéo de teste temporal na retro-implicacédo
com portas simples reside em definir o valor 16gico do menor nimero possivel de entradas da
porta, pois isto resultara num menor nimero de linhas do circuito necessitando justificag&o.
Ta procedimento pode ser visto como uma exploracdo sistemética do subespaco Booleano
local (i.e., espaco Booleano associado a funcdo realizada pela porta considerada), ao mesmo
tempo em que uma variavel por vez € “ setada’.

O raciocinio desenvolvido nos dltimos dois paragrafos sugere 0 uso de um
procedimento de enumeracdo sistematica do espaco de entradas, juntamente com o calculo
temporal de trés valores apresentado natabela A3.5, pararedlizar aretro-implicacéo I6gicaem
portas complexas. A figura A3.18 exemplifica o procedimento de retro-implicagdo quando se
desgja 0 vaor 16gico 0 na saida da SCCG da figura A3.17. Para tanto, inicia-se colocando o
valor 16gico 0 na entrada superior. Implicando-se para diante, descobre-se que a saida da
SCCG mantém-se com valor 2 (figura A3.184d). Isto significa que é necessario “setar” uma ou
mais entradas. Assinalando-se o valor 0 a entrada do centro resulta que a saida da SCCG tera
valor légico 1 (figura A3.18b), o que corresponde a um conflito. Entdo, retrocede-se ao estado
anterior, substituindo-se o valor da entrada central pelo seu oposto, i.e., 1. A implicacéo desta
nova situagdo de entradas resulta no valor 2 na saida da SCCG (figura A3.18c). Aplicando-se
o valor 0 na entrada inferior resulta no vaor l6gico 1 na saida (figura A3.18d), o que
corresponde a um conflito. Finalmente, trocando-se o valor da entrada inferior para 1 obtém-
se o0 valor 16gico 0 desgjada para a saida.

A solucéo pararetro-implicagdo com portas complexas descrita acima equivale a aplicar
o algoritmo PODEM a uma Unica porta, o que exige tempo de execucdo reduzido, desde que
se restrinja 0 nimero de entradas da porta. Entretanto, o aspecto mais importante de tal
solucdo reside no fato dela permitir o uso das regras do célculo tempora de trés valores e da
arvore da funcdo propostos neste trabalho. O Unico recurso extra de que se necessita € um
mecanismo de enumeracao que permita o controle do subespaco referente a porta cuja saida se
desgaretro-implicar.

168

0 0
2 2 0 1
2 — 2
@ (b)
0 0
1 — 2 1 — 1
2 — 0 —
© (d)
0
1 — 0
1 —]

©
FIGURA A3.18 — Retro-implicacéo aplicada a SCCG dafiguraA3.17.

Uma vez encontrado um procedimento para realizar a retro-implicacéo |6gica em portas
complexas, deve-se pensar em como estendé-lo a retro-implicacéo temporal. Similarmente a
implicacdo temporal para diante, pode-se compor tal procedimento assumindo-se 0s seguintes
passos:

1. Retro-implicacéo l6gica;
2. Céculo doslimites de atraso de primeira ordem e detecéo de conflito.

O primeiro passo ja foi descrito nos paragrafos anteriores. O segundo passo pode ainda
ser subdividido em:

1. Determinar o atraso da porta sob o cubo de entrada k selecionado (i.e.,, sob o
assinalamento escolhido para as entradas da porta)

2. A partir doslimitesinferior e superior da saida, calcular os limitesinferior e superior
de primeira ordem para cada entrada da porta usando as seguintes formulas: |, =lo-
d(Kmax) € Uy =Uo-d(Kmin), onde d(kmax) € d(kmin) correspondem ao méaximo e minimo
atrasos para o0 cubo k assinalado a entrada da porta, respectivamente.

3. Paracadaentradai da porta, calcular aintersecdo entre os limites inferior e superior
de atraso da entrada e os limites inferior e superior de primeira ordem cal culados no
passo anterior.

No passo 3, um conflito € detetado se |y’ <l; ou se uy’ <u;. Note que pode ocorrer conflito
a0 se verificar a entrada de uma porta (passo 3 anterior) ainda que a mesma apresente valor
l6gico 2. Neste caso, seria um conflito temporal .

Uma vez propostos procedimentos gque realizam a implicacdo para diante e a retro-
implicacdo sobre portas complexas, o procedimento de geracdo de teste temporal foi
suficientemente generalizado de modo a permitir a andlise de circuitos que contenham portas
complexas.

E importante notar que o método proposto para realizar o célculo tempora de trés
valores sobre portas complexas ndo ira representar significativo aumento no tempo total de

169

EXecucao uma vez que, por razdes tecnol 6gicas, 0s projetistas costumam limitar a4 o nimero
de transistores em série nas portas CMOS.

A3.5 Conclusao e Per spectivas Futuras

O tema central desta tese foi a andise de timing funcional (functional timing analysis -
FTA) de circuitos combinacionais, com énfase na aplicabilidade dos model os e algoritmos de
FTA acircuitos que contenham portas complexas. As contribuic¢des desta tese dizem respeito
tanto ateoriageral de FTA quanto a FTA com portas complexas.

Como contribuicdo fundamental, foi apresentada um ampla e sistematica revisdo sobre
modelos e agoritmos de andlise de timing. Com o intuito de facilitar a compreensdo dos
diversos aspectos da FTA, foi proposta uma nova taxonomia para a classificagdo dos
algoritmos de FTA. De acordo com esta taxonomia, os algoritmos de FTA podem ser
classificados pelo nimero de caminhos tratados simultaneamente, quando dos testes de
sensibilizagdo (sensibilizacéo individual de caminhos, sensibilizagdo concorrente de caminhos
ou abordagem mista), pelo método usado para determinar se as condic¢fes de sensibilizacéo
sd0 satisfeitas ou ndo (baseado em ATPG, baseado em solvabilidade — SAT, outros) e pelo
critério de sensibilizacdo usado.

Ainda com relacdo a teoria de FTA, foi especulado que os circuitos sincronos
implementados com o uso da tecnologia CMOS estado-da-arte podem apresentar um
comportamento assincrono impossivel de ser apropriadamente capturado pelo modelo de
atraso de transi¢do. Isto significa que, afim de evitar uma subestimativa do atraso do circuito,
seria preferivel calcular o atraso para sequiéncias de vetores do que para pares de vetores. Por
outro lado, na auséncia de métodos eficientes capazes de utilizar o modelo de atraso para
sequéncias de vetores, 0 modelo de atraso flutuante seria 0 Unico capaz de fornecer uma
estimativa segura para o atraso dos circuitos. Esta argumentacdo também justifica o uso da
andlise de timing funcional, uma vez que esta baseia-se essenciamente no modelo de atraso
flutuante.

Considerando-se os agoritmos de FTA, foram realizados experimentos com métodos de
enumeracdo de caminhos que confirmaram a seriedade do chamado “ problema de exploséo de
caminho”. Em funcdo deste problema, os méodos que usam sensibilizac8o individual de
caminhos foram abandonados, cedendo lugar para os métodos que usam sensibilizaco
concorrente.

No que se refere a FTA com portas complexas, escolheu-se o algoritmo TrueD-F,
proposto por Devadas et a., para servir de base para um algoritmo de sensibilizagéo
concorrente baseado em ATPG e que sgja capaz de tratar circuitos que contenham portas
complexas, sem requerer macroexpansdo. Esta escolha foi motivada pela existéncia de
inlmeras técnicas de aceleracdo de algoritmos de ATPG. Outro argumento que sustenta a
escolha de um agoritmo baseado em ATPG advém dos problemas de desempenho
apresentados pel os algoritmos baseados em SAT, quando modelos de atraso mais realistas sdo
adotados.

A contribuicdo mais importante desta tese para a andlise de timing funciona concerne a
extensdo do célculo tempora para 0 caso de portas complexas. No contexto do algoritmo
TrueD-F, o clculo tempora consiste em um conjunto de regras que sdo usadas para calcular
os valores l6gicos e os limites inferior e superior dos atrasos nas saidas das portas. De acordo
com 0 método proposto, o célculo dos valores temporais de uma porta complexa € levado a

170

cabo por um procedimento recursivo que avalia cada subarvore, iniciando pelas folhas. Para
um maximo de 4 transistores em série narede PMOS e narede NMOS, o nimero maximo de
subéarvores que qualquer SCCG pode apresentar € 11, incluindo a subérvore raiz.
Considerando-se que a avaliacdo de uma Unica subérvore consiste no calculo do valor l6gico e
dos intervalos de atraso, pode-se esperar que, operando-se diretamente sobre portas
complexas, 0s tempos de execucdo serdo, na pior das hipotese, equivalentes aos tempos de
execucdo para um método que fagca uso de macroexpansdo. Entretanto, vale mencionar que a
aplicacdo de um algoritmo baseado em ATPG a uma rede macroexpandida pode levar a um
aumento significativo no tempo de execucdo, uma vez que havera forte tendéncia de aumento
no nimero de linhas do circuito, e portanto, aumento no nimero de linhas que devem ser
justificadas.

Outras contribuicbes importantes para a FTA com portas complexas resultam da
investigacdo de model os computacionais de atraso aplicaveis ao caso das portas complexas. A
tabela de equivaléncia modo flutuante/modo de transi¢cdo permite a identificacéo dos pares de
vetores contidos num dado vetor flutuante. Este tipo de tabela também conduziu a
identificacdo dos trés modelos computacionais de atraso de portas validos para 0 modo
flutuante, quais sgfam: modelo de atraso de vetor, modelo de atraso de subida/descida e
modelo de atraso Unico. Apesar de ser 0 mais preciso, 0 modelo de atraso de vetor requer 2"
valores de atraso (ou pares de atrasos) por porta, onde n € o nimero de entradas da porta.
Considerando-se SCCGs com ndo mais do que 4 transistores em série, 0 valor maximo paran
é 16, produzindo um total de 2'°= 65536 vetores flutuantes. Por outro lado, 0 modelo de
subida/descida separa os vetores flutuantes em dois grupos, o que reduz para dois valores de
atraso (ou dois pares) por porta, sem deixar de garantir um limite superior para o atraso da
porta.

A identificagdo dos pares de vetores contidos num dado vetor flutuante € de grande
interesse quando se desgja caracterizar 0 atraso das portas. No caso de se utilizar smulagéo
elétrica, apenas o0s pares de vetores capazes de provocar uma transicdo na saida da porta
precisam ser simulados. Para 0 caso de caracterizagdo por meio de formulacdo andlitica, a
mesma informagdo pode ser usada para se adaptar as formulas de modo a cobrir apenas 0s
pares de vetores que séo de interesse. Entretanto, a tarefa de identificagcéo dos pares de vetores
capazes de provocar transi¢éo na saida de uma porta €, per se, umatarefa dificil que demanda
mais investigagéo. Por outro lado, uma conclusdo muito importante que pode ser derivada da
tabela de equivaéncia € que o formato de atraso pino-a-pino, normamente usado na
caracterizacdo de células de bibliotecas standard-cells, conduz a uma subestimativa do atraso
das portas, uma vez que € capaz de considerar somente uma parte dos vetores flutuantes que
podem causar transi¢do na saida das portas.

Finalmente, a partir da tabela de equivaléncia modo flutuante/modo de transicdo, foi
possivel introduzir o conceito de atraso flutuante de um cubo, generalizando asssm o modelo
de atraso de vetor.

A implicacéo temporal para diante para portas complexas faz uso de um procedimento
que calcula o vaor temporal das portas. Conforme ja argumentado, espera-se que a
complexidade de execucdo de tal procedimetno sgja, no maximo, equivalente aguela
resultante de se operar sobre circuitos macroexpandidos. A retro-implicaggdo temporal com
portas complexas, por seu turno, ndo pode ser derivada diretamente da retro-implicagdo com
portas simples porque os conceitos de valor controlante/valor ndo-controlante ndo pode ser
aplicado diretamente sobre as portas complexas. Assim, 0 método proposto consiste em usar o
mesmo procedimento da implicacdo temporal para diante, porém seguindo a filosofia do
algoritmo PODEM, ou sga, usando smulagcdo de cubos sobre cada porta. O tempo de

171

execucdo para a simulacdo de cubos €, no pior caso, proporcional ao espaco das entradas da
porta. Por exemplo, 0 espaco das entradas de uma SCCG com 4 transistores em série em cada
uma das redes é de, no méximo, 2'°= 65536 vetores flutuantes. Obviamente, isto afeta o
tempo de execucdo do algoritmo de FTA como um todo.

Esta tese mostrou que € possivel redlizar FTA de circuitos que contenham portas
complexas usando a abordagem baseada em ATPG, com sensibilizagdo concorrente de
caminhos, sem o uso de macroexpansdo. A principal vantagem de tal abordagem € a potencial
reducéo no nimero de linhas do circuito que precisam ser justificadas, em comparacdo com a
abordagem que usa macroexpansdo. Apesar disso, a retro-implicagdo tende a ser
significativamente mais complexa sobretudo nos casos em que houver a presenca de portas
complexas com significativo nimero de entradas. Este efeito pode ser minimizado pelo uso de
métricas de testabilidade para guiar a exploragdo do espaco de entradas.

Finalmente, a extensdo proposta para o calculo temporal, juntamente com os modelos de
atraso vaidos para 0 modo flutuante, formam um conjunto de regras de macromodel amento
que abrem a possibilidade para se redlizar uma “ computacdo hierérquica do atraso flutuante”
de circuitos. Esta é a consequéncia do conceito de porta complexa constituir uma
representacdo genérica de qual quer porcdo possivel de circuito CMOS.

O desempenho da abordagem proposta depende grandemente da habilidade do
algoritmo em tomar decisdes acertadas. Tal qualidade pode ser incorporada através do uso de
medidas de testabilidade, conforme feito pelos algoritmos PODEM e FAN. Assim, caculos
de testabilidade para portas complexas constituem um ponto a ser abordado no futuro
préximo.

Os estudos de modelos computacionais de atraso validos gjudou a preencher a lacuna
que existe entre modelos fisicos e modelos computacionais de atraso. Porém, ha ainda
diversos pontos que necessitam de maior investigacdo. Um destes corresponde a identificacéo
automética dos pares de vetores responsavels por transicdes nas saidas de uma dada porta.
Outro ponto importante € o préprio método de caracterizacdo do atraso, sgja pelo uso de
simulagéo elétrica, sgja pelo uso/desenvolvimento de modelos analiticos. Um terceiro ponto
diz respeito a0 méximo nimero de entradas para as portas complexas, fator este que
influencia diretamente o desempenho do método de FTA proposto: um nimero elevado de
entradas por porta pode inviabilizar o uso do modelo de atraso de vetor, o qual tende a ser o
mais preciso. A limitagdo do nuimero de transistores em sé&rie para 4 € uma estratégia
norma mente adotada pelos projetistas para garantir o desempenho elétrico do circuito. Mas
ainda com tal limitagdo, ha 3503 possibilidades de SCCGs. Um trabalho Util consiste em
investigar um limite pratico no nimero de componentes das bibliotecas (virtual) de SCCGs,
com base no desempenho das ferramentas de mapeamento tecnol égico do estado-da-arte.

A abordagem proposta deve ser comparada com a abordagem baseada em
macroexpansdo, em termos de tempo de execugdo e precisao, para certificar-se que a reducéo
no nimero de linhas a serem justificadas se sobrepde ao aumento de compl exidade associado
aos procedimentos de implicagéo aplicados a portas complexas.

Outro aspecto a ser investigado € o desempenho e a precisdo de uma computacdo
hierarquica do atraso flutuante. Em uma primeira aproximagado, pode-se esperar que o uso do
modo hierarquico permita a andlise de circuitos com complexidade de uma a duas ordens de
grandeza maior do que no modo plano. Porém, € necessério investigar a influéncia dos
model os computacionais de atraso de porta sobre a estimativa de atraso resultante no modo
hierarquico.

172

Por fim, um trabalho futuro de grande envergadura consiste em estabelecer uma ampla
comparagdo entre a abordagem proposta, que é baseada em ATPG, e alguma abordagem
baseada em SAT. Neste trabalho, uma dificuldade bésica reside em se escolher um conjunto
de modelos computacionais de atraso que sgjam validos para ambas abordagens e ao mesmo
tempo propiciem estimativas de atraso com precisdo aceitavel. Outra dificuldade reside em
escolher algum algoritmo de FTA (ou ferramenta) baseada em SAT que sga capaz de tratar
portas complexas.

[ABROO]

[ASHO5]

[AUGS9]

[AUVOQ]

[BAUSS]

[BENS7]

[BEN9O]

[BENO1]

[BER91]

[BRASS]

[CAD99]

173

References

ABRAMOVICI, M.; BREUER, M.; FRIEDMAN, A. Digital Systems Testing
and Testable Design. Piscataway, NJ: IEEE Press, 1990. 652p.

ASHAR, Pranav; MALIK, Sharad. Functional Timing Anaysis Using ATPG.
|[EEE Transactions on Computed-Aided Design of Integrated Circuits and
Systems, Los Alamitos, California, v.14, n.8, p.1025-1030, August 1995.

AUGUSTIN, L. An Algebra of Waveforms. Stanford, Californiaz Computer
Systems Laboratory, University of Stanford, Stanford, 1989. Technical Report.

AUVERGNE, D.; AZEMARD, N.; DESCHACHT, D.; ROBERT, M. Input
Waveform Slope Effects in CMOS Delays. |IEEE Journal of Solid-State
Circuits, Piscataway, NJ, CA, v.25, n.6, p.1588-1590, Dec. 1990.

BAUER, R. e a. XPSim: A MOS VLSl Simulator. In: IEEE/ACM
INTERNATIONAL CONFERENCE ON COMPUTER-AIDED DESIGN, 1988.
Santa Clara, California. Proceedings... Los Alamitos, California: IEEE Computer
Society Press, 1988. p.66-69.

BENKOSKI, J. et . Efficient Algorithms for Solving the False path Problem in
Timing Verification In: IEEE/ACM INTERNATIONAL CONFERENCE ON
COMPUTER-AIDED DESIGN, 1987. Proceedings... Los Alamitos, California
|[EEE Computer Society Press, 1987. p.44-47.

BENKOSKI, J; VAN DEN MEERSCH, E.; CLAESEN, L.; DE MAN, H.
Timing Verification Using Statically Sensitizable Paths. |EEE Transactions on
CAD of Integrated Circuits and Systems, Los Alamitos, California, v.9, n.10,
p.1073-1084, Oct. 1990.

BENKOSKI, J.; STEWART, R. TATOO: An industrial Timing Analyzer with
False Path Elimination and Test Pattern Generation. In: EUROPEAN DESIGN
AUTOMATION CONFERENCE, 1991. Los Alamitos, Cdliforniaz |IEEE
Computer Society, 1991. p.256-260.

BERGAMASCHI, R. The Effects of False Paths in High-Level Synthesis. In:
IEEE/ACM INTERNATIONAL CONFERENCE ON COMPUTER-AIDED
DESIGN, 1991, Santa Clara, California. Proceedings... Los Alamitos, California
|[EEE Computer Society Press, 1991. p.80-83.

BRAND, D.; IYENGAR, V. Timing Analysis Using Functional Analysis. |IEEE
Transactions on Computers, Piscataway, NJ, v.37, n.10, p.1309-1314, October
1988

CADABRA. CLASSIC-SC Automated Transistor Layout Tool. Available at:
<http://lwww.cadabradesign.com>. Visited on September 24, 1999.

[CHAT75]

[CHAO3]

[CHA96]

[CHE91]

[CHEQ3]

[CHE934]

[CHEY4]

[CHS93]

[COR90]

[DAGO6]

[DAGO9]

174

CHAWLA, B. R.; GUMMEL, H. K.; KOZAK, P. MOTIS — An MOS Timing
Simulator. |EEE Transactions on Circuits and Systems, Los Alamitos,
Cdlifornia, v.CAS-22, n.12, p.901-909, December 1975.

CHANG, Hoon; ABRAHAM, Jacob A. VIPER: An Efficient Vigorousy
Sensitizable Path Extractor. In. ACM/IEEE DESIGN AUTOMATION
CONFERENCE, 30., 1993, Dadlas, Texas. Proceedings.. Los Alamitos,
California: IEEE Computer Society Press, 1993. p.112-117.

CHANDRAMOULI, V.; SAKALLAH, Karem A. Modeling the Effects of
Temporal Proximity of Input Transitions on Gate Propagation Delay and
Transition Time. In: ACM/IEEE DESIGN AUTOMATION CONFERENCE, 33,,
1996, Las Vegas, Nevada. Proceedings.. Los Alamitos, Cdiforniaa IEEE
Computer Press, 1996. p.617-622.

CHEN, H.-C.; DU, D. Pah Senstization in Critica Path Problem. In:
IEEE/ACM INTERNATIONAL CONFERENCE ON COMPUTER-AIDED
DESIGN, 1991, Santa Clara, California. Proceedings... Los Alamitos, California:
|EEE Computer Society Press, 1991. p.208-211.

CHEN, H.-C; DU, D. Path Senstization in Critical Path Problem IEEE
Transactions on CAD of Integrated Circuits and Systems, Los Alamitos,
California, v.12, n.2, p.196-207, February 1993.

CHEN, H.-C.,; DU, D. Critica Path Selection for Performance Optimization
I[EEE Transactions on CAD of Integrated Circuits and Systems, Los
Alamitos, California, v.12, n.2, p.185-195, February 1993.

CHENG, S.; CHEN, H.-C,; DU, D.; LIM, A. The Role of Long and Short Paths
in Circuit Performance Optimization | EEE Transactions on CAD of Integrated
Circuitsand Systems, Los Alamitos, California, v.13, n.7, p.857-864, July 1994.

CHENG, S.; CHEN, H.-C.; HSU, Y .-C.; DU, D. A Path Sensitization Approach
to area Reduction In: INTERNATIONAL CONFERENCE ON COMPUTER
DESIGN: VLSl IN COMPUTERS AND PROCESSORS, 1993, Cambridge
(Mas.). Proceedings... Los Alamitos, California: IEEE, 1993. p.73-76.

CORMEN, Thomas H.; LEISERSON, Charles E.; RIVEST, Ronad L.
Introduction to Algorithms. Cambridge: MIT, 1990.

DAGA, J-M.; TURGIS, S,; AUVERGNE, D. Design Oriented Standard Cell
Delay Modeling. In: INTERNATIONAL WORKSHOP ON POWER AND
TIMING MODELING, OPTIMIZATION AND SIMULATION, PATMOS, 1996.
Bologna, Italy. Proceedings... Bologna, Italy: Pitagora Editrice Bologna, 1996.
p.265-274.

DAGA, J-M.; AUVERGNE, D. A Comprehensive Delay Macro Modeling for
Submicrometer CMOS Logics. IEEE Journal of Solid-State Circuits,
Piscataway, NJ, v.34, n.1, p.42-55, Jan. 1999.

[DESSS]

[DETS7]

[DEV91]

[DEV92]

[DEVO3]

[DEV934]

[DEVY4]

[DEV944]

[DEV94b]

[DUS9)]

[E1J94]

175

DESCHACHT, D.; ROBERT, M.; AUVERGNE, D. Explicit Formulation of
Delays in CMOS Data Paths. |EEE Journal of Solid-State Circuits,
Piscataway, NJ, v.23, n.5, p.1257-1264, October 1988.

DETJENS, E.; GANNOT, G.; RUDELL, R. L. Technology Mapping in MIS. In:
IEEE/ACM INTERNATIONAL CONFERENCE ON COMPUTER-AIDED
DESIGN, 1987. Proceedings... Los Alamitos, California: IEEE Computer Society
Press, 1987. p.116-119.

DEVADAS, S, KEUTZER, K., MALIK, S Delay Computation in
Combinational Logic Circuits; Theory and Algorithms. In: IEEE/ACM
INTERNATIONAL CONFERENCE ON COMPUTER-AIDED DESIGN, 1991,
Santa Clara, California. Proceedings... Los Alamitos, California: IEEE Computer
Society Press, 1991. p.176-179.

DEVADAS, S.; KEUTZER, K.; MALIK, S; WANG, A. Certified Timing
Verification and the Transition Delay of a Logic Circuit. In: ACM/IEEE DESIGN
AUTOMATION CONFERENCE, 29., 1992, Anaheim, California. Proceedings...
Los Alamitos, Californiac IEEE Computer Society Press, 1992. p.549-555.

DEVADAS, S.; KEUTZER, K.; MALIK, S. Computation of Floating Mode
Delay in Combinational Circuits: Theory and Algorithms. |EEE Transactions on
Computed-Aided Design of Integrated Circuits and Systems, Los Alamitos,
Cdlifornia, v.12, n.12, p.1913-1923, Dec. 1993.

DEVADAS, S.; KEUTZER, K.; MALIK, S.; WANG, A. Computation of
Floating Mode Delay in Combinational Circuits: Practice and Implementation.
|[EEE Transactions on Computed-Aided Design of Integrated Circuits and
Systems, Los Alamitos, California, v.12, n.12, p.1924-1936, December 1993.

DEVADAS, S.; GHOSH, A.; KEUTZER, K. Logic Synthesis. New York:
McGraw-Hill, 1994. 404p.

DEVADAS, S,; KEUTZER, K.; MALIK, S; WANG, A. Certified Timing
Verification and the Transition Delay of a Logic Circuit. |[EEE Transactions on
Very Large Scale Integration (VLSI) Systems, Los Alamitos, California, v.2,
Nn.3, p.333-342, September 1994.

DEVADAS, S.; KEUTZER, K.; MALIK, S.; WANG, A Event Suppression:
Improving the Efficiency of Timing Simulation for Synchronous Digital Circuits.
|[EEE Transactions on Computed-Aided Design of Integrated Circuits and
Systems, Los Alamitos, California, v.13, n.6, p.814-822, June 1994.

DU, David H. C.,; YEN, Steve H. C.; GHANTA, S. On the General False Path
Problem in Timing Anaysis In: ACM/IEEE DESIGN AUTOMATION
CONFERENCE, 26., 1989, Las Vegas, Nevada. Proceedings... Los Alamitos,
California: IEEE Computer Society Press, 1989. p. 555-560.

EIINDHOVEN, JT.J. van. CMOS cell generation for Logic Synthesis. In:
INTERNATIONAL CONFERENCE ON ASICS, ASICON, 1994, Beijing, China.
Proceedings... Beijing, China: Electr. Ind. Publishing House, 1994. p. 75-78.

[ELM48]

[FOR97]

[GOES1]

[GAJO9]

[GUNOS]

[GUNO98d]

[GUN9S8b]

[GUNO99]

176

ELMORE, W. C. The Transient Response of Damped Linear Networks with
Particular Regard to Wide-Band Amplifiers. Journal of Applied Physics, New
York, v.19, n.1, p.55-63, Jan. 1948.

FORZAN, C.; FRANZINI, B.; GUARDIANI, C. Accurate and Efficient
Macromodel of Submicron Digital Standard Cells. In: ACM/IEEE DESIGN
AUTOMATION CONFERENCE, 34., 1997, Anaheim, California. Proceedings...
Los Alamitos, Californiac IEEE Computer Society Press, 1997. p.633-637.

GOEL, Prabhakar. An Implicit Enumeration Algorithm to Generate Tests for
Combinational Logic Circuits. |[EEE Transactions on Computers, Piscataway,
NJ, v.C-30, n.3, p.215-222, Mar. 1981.

GAJSKI, D. Principlesof Logic Design. New Jersey: Prentice Hall, 1999. 447p.

GUNTZEL, José L.; PINTO, Ana Cristina M.; REIS, Ricardo A. L. Improving
Path Enumeration Accuracy by Considering Different Fall and Rise Gate Delays.
In: WORKSHOP IBERCHIP 4., 1998, Mar del Plata, Argentina. Memorias...
Buenos Aires: IBERCHIP/Universidad Nacional de LaPlata, 1998. p.91-100.

GUNTZEL, José Luis, PINTO, Ana Cristina M.; REIS, Ricardo. Considering
Different Fall and Rise Gate Delays in Path Enumeration. In: UFRGS
MICROELECTRONICS SEMINAR, 13., 1998, Bento Gongalves, Brazil.
Proceedings... Porto Alegre, Brazil: UFRGS, 1998. 196p. p.59-65.

GUNTZEL, José L. et a. An Improved Path Enumeration Method Considering
Different Fall and Rise Gate Delays. In: BRAZILIAN SYMPOSIUM ON
INTEGRATED CIRCUIT DESIGN, SBCCI, 11., 1998, Buzios, Brazil.
Proceedings... Los Alamitos, Californiac IEEE Computer Society, 1998. p.208-
211.

GUNTZEL, José L. et al. Path Enumeration Algorithms for Timing Analysis of
Digital Circuits. In: WORKSHOP IBERCHIP, 5., 1999, Lima, Peru. Memorias...
Lima, Peru: IBERCHIP/Pontificia Universidad Catélica del Pert, 1999. p.334-
341.

[GUN99a] GUNTZEL, José Luis; DALL PIZZOL, Guilherme M.; REIS, Ricardo. Exploiting

[GUR97]

[HIR98]

Circuit Regularity in Functiona Timing Anaysis. In: UFRGS
MICROELECTRONICS SEMINAR, 14., 1999, Pelotas, Brazil. Proceedings...
Porto Alegre, Brazil: UFRGS, 1999. 175p. p.77-82.

GURUSWAMY, M. et a. Cdlerity: A Fully Automatic Layout Synthesis System
for Standard Cell Libraries. In: ACM/IEEE DESIGN AUTOMATION
CONFERENCE, 34., 1997, Anaheim, California. Proceedings... Los Alamitos,
California: IEEE Computer Society Press, 1997. p.327

HIRATA, A.; ONODERA, H.; TAMARU, K. Proposal of a Timing Model for
CMOS Logic Gates Driving a CRC mtLoad. In: ACM/IEEE INTERNATIONAL
CONFERENCE ON COMPUTER-AIDED DESIGN, 1998, Santa Clara,
California. Proceedings... Los Alamitos, Californiac IEEE Computer Society
Press, 1998. p.537-544.

[HIT82]

[HORS4]

[HRAT78]

[HUA94]

[HSU9S]

[JOUST]

[JU91]

[KEU91]

[KIM86]

[KIMOS]

[KIRG6E]

[KUK97]

177

HITCHCOCK, R. B. Timing Verification and the Timing Analysis Program. In:
ACM/IEEE DESIGN AUTOMATION CONFERENCE, 19., 1982, Las Vegas,
Nevada. Proceedings... Los Alamitos, California: IEEE Computer Society Press,
1982. p.594-604.

HOROWITZ, M. Timing Models for MOS Circuits. Stanford, California
Stanford University, 1984. 120p. Ph.D. Thesis.

HRAPCENKO, V. Depth and Delay in a Network. Soviet Math. Dokl.,[S.I.],
v.19, n.4, p.1006-1009, 1978.

HUANG, Shiang-Tang; PARNG, Tai-Ming; SHYU; Jyou-Min Timed Boolean
Calculus and Its Applications in Timing Analysis. I[EEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, Los Alamitos,
Cadlifornia, v.13, n.7, p.875-883, July 1994.

HSU, Y.-C.; CHEN, H.-C,; SUN, S,; DU, D. Timing Analysis of Combinational
Circuits Containing Complex Gates. In: INTERNATIONAL CONFERENCE ON
COMPUTER DESIGN: VLSl IN COMPUTERS AND PROCESSORS, 1998,
Austin, Texas. Proceedings... Los Alamitos, California: IEEE, 1998. p.407-412

JOUPPI, Norman P. Timing Analysis and Performance Improvement of MOS
VLSI Designs. |[EEE Transactions on Computer-Aided Design, Los Alamitos,
California, v.CAD-6, n.4, p.650-665, July 1987.

JU, Y.-C,; SALEH, R. Incremental Techniques for the Identification of Statically
Sensitizable Critical Paths. In. ACM/IEEE DESIGN AUTOMATION
CONFERENCE, 28., 1991, San Francisco, California. Proceedings... New Y ork:
|EEE, 1991. p.541-546.

KEUTZER, K.; MALIK, S.; SALDANHA, A. Is Redundancy Necessary to
Reduce Delay? |EEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, Los Alamitos, California, v.10, n.4, p.427-435, April
1991.

KIM, Y. H. ELOGIC: A Relaxation-Based Switch-Level Simulation
Technique. Berkeley, Californiaz University of California, Department of
Electrical Engineering and Computer Sciences, 1986. 39p. (UCB/ERL M86/2).

KIM, Juho; DU, David H.C. Performance Optimization by Gate Sizing and Path
Sensitization. |EEE Transactions on CAD of Integrated Circuits and Systems,
Los Alamitos, California, v.17, n.5, p.459-462, May 1998.

KIRKPATRICK, T. W.; CLARCK, N. Pert as an Aid to Logic Design. IBM
Journal of Research and Development, Armonk, v.10, n.2, p.135-141, March
1966.

KUKIMOTO, Y. et al. Approximate Timing Analysis of Combinational Circuits
under the XBDO Model. In: ACM/IEEE INTERNATIONAL CONFERENCE ON
COMPUTER-AIDED DESIGN, 1997, San Jose, California Proceedings... Los
Alamitos, California: IEEE Computer Society Press, 1997. p.176-181.

178

[KUK97a] KUKIMOTO, Y.; BRAYTON, R. Removing False Paths from Combinational

[LAMO3]

[LAM94]

[LAR9Z]

[LEL82]

[LIMOQ]

[LI189]

[LINO4]

[LINOS]

[LOPS0]

[MCG89]

Modules. In: ACM/IEEE INTERNATIONAL WORKSHOP ON TIMING
ISSUES IN SPECIFICATION AND SYNTHESIS OF DIGITAL SYSTEMS,
TAU, 1997. Proceedings... [S.].:s.n.], 1997.

LAM, W.; BRAYTON, R.; SANGIOVANNI-VINCENTELLI, A. Circuit Delay
Models and Their Exact Computation Using Timed Boolean Functions. In:
ACM/IEEE DESIGN AUTOMATION CONFERENCE, 30., 1993, Dallas, Texas.
Proceedings... Los Alamitos, Californiac IEEE Computer Society Press, 1993.
p.128-134.

LAM, W.; BRAYTON, R. Timed Boolean Functions. A Unified Formalism for
Exact Timing Analysis. Norwell, MA: Kluwer Academic Publishers, 1994. 273p.

LARRABEE, T. Test Pattern Generation Using Boolean Satisfiability. |IEEE
Transactions on CAD of Integrated Circuits and Systems, Los Alamitos,
Cdlifornia, v.11, n.1, p.4-15, Jan. 1992.

LELARASMEE, E.; SANGIOVANNI-VICENTELLI, A. RELAX: A New
Circuit Simulator for Large Scale MOS Integrated Circuits. In: ACM/IEEE
DESIGN AUTOMATION CONFERENCE, 19., 1982, Las Vegas, Nevada
Proceedings... Los Alamitos, Californiac IEEE Computer Society Press, 1982.
p.682-690.

LIMA, Fernanda Gusmdo de. Projeto com Matrizes de Células Logicas
Programaveis. Porto Alegre: Ingtituto de Informatica da UFRGS, 1999. 123p.
Dissertacéo de Mestrado.

LI, W.; REDDY, S.; SAHNI, S. On Path Selection in Combinational Logic
Circuits. IEEE Transactions on CAD of Integrated Circuits and Systems, Los
Alamitos, California, v.8, n.1, p.56-63, Jan. 1989.

LIN, H.-R.; HWANG, T-T. Dynamical Identification of Critical Paths for Iterative
Gate Sizing. In: IEEE/ACM INTERNATIONAL CONFERENCE ON
COMPUTER-AIDED DESIGN, 1994, Santa Clara , California. Proceedings...
Los Alamitos, California: IEEE Computer Society Press, 1994. p.481-484.

LIN, H.-R.; HWANG, T-T. Power Reduction by Gate Sizing with Path-Oriented
Slack Calculation. In: ASIAN AND SOUTHERN PACIFIC DESIGN
AUTOMATION CONFERENCE, 1995, August Chiba, Japan. Proceedings...
[S..]: SIGDA, 1995. p.7-12.

LOPEZ, A.D.; LAW, H.S. A Dense Gate Matrix Layout Method for MOS VLS.
|EEE Transactions on Electron Devices, New York, v.ED-27, n.8 p.1671-1675,
Aug. 1980.

MCGEER, P.; BRAYTON, R. Efficient Algorithms for Computing the Longest
Viable Path in a Combinational Circuit In: ACM/IEEE DESIGN AUTOMATION
CONFERENCE, 26., 1989, Las Vegas, Nevada. Proceedings... Los Alamitos,
California: IEEE Computer Press, 1989. p.561-567.

179

[MCG91] MCGEER, P.; BRAYTON, R. Integrating Functional and Temporal Domains
in Logic Design: The False Path Problem and its Implications. Norwell, MA:
Kluwer Academic Publishers, 1991. 212p.

[MCG91a] MCGEER, P. et a. Timing Analysis and Path Delay-Fault Test Generation using
Path-Recursive Functions. In: IEEE/ACM INTERNATIONAL CONFERENCE
ON COMPUTER-AIDED DESIGN, 1991, Santa Clara, California. Proceedings...
Los Alamitos, Californiac IEEE Computer Society Press, 1991. p.180-183.

[MCG93] MCGEER, P. et a. Delay Models and Exact Timing Anaysis. In. SASAO, T.
(Ed.). Logic Synthesis and Optimization. Norwell, MA: Kluwer Academic
Publishers, 1993. p.167-189.

[MOR94] MORAES, Fernando. Synthése Topologique de Macro-Cellules en Technologie
CMOS. Montpellier, France: Université Montpellier 11, 1994. Thése de Doctorat.

[MOR97] MORAES, F.; REIS, R,; LIMA F. An Efficient Layout Style for Three-Metal
CMOS Macro-Célls. In: REIS, R.; CLAESEN, L. (Ed.). VLSI: Integrated
Systems on Silicon. London: Chapman & Hall, 1997. p.415-426.

[NAG75] NAGEL, W. SPICE2, A Computer Program to Simulate Semiconductor
Circuits. Berkeley, California: University of California, Department of Electrical
Engineering and Computer Sciences, 1975. 63p. (UCB/ERL M75/520).

[NEM98] NEMANI, M.; NAIM, F. Delay Estimation of VLSI Circuits from a High-Level
View In: ACM/IEEE DESIGN AUTOMATION CONFERENCE, 35., 1998, San
Francisco, California. Proceedings... Los Alamitos, California: IEEE Computer
Society Press, 1998. p.591-594.

[OUS85] OUSTERHOUT, John K. A Switch-Level Timing Verifier for Digital MOS
VLSI, IEEE Transactions on Computer-Aided Design, Los Alamitos,
Cadlifornia, v. CAD-4, n. 3, p.336-349, July 1985.

[PER89] PERREMANS, S.; CLAESEN, L.; DE MAN, H. Static Timing Analysis of
Dynamically Sensitizable Paths. In: ACM/IEEE DESIGN AUTOMATION
CONFERENCE, 26., 1989, Las Vegas, Nevada. Proceedings... Los Alamitos,
Californiac IEEE Computer Society Press, 1989. p.568-573.

[PES94] PESET LLOPIS, R. Exact Path Sensitization in Timing Anaysis In:
EUROPEAN DESIGN AUTOMATION CONFERENCE, 1994, Grenoble.
Proceedings... Los Alamitos: IEEE, 1994. p.380-385.

[PIN98] PINTO, Ana Cristina M.; GUNTZEL, José Luis; REIS, Ricardo. Performance
Evaluation of the sgd and spgd Path Enumeration Methods. In: UFRGS
MICROELECTRONICS SEMINAR, 13., 1998, Bento Gongalves, Brazil.
Proceedings... Porto Alegre, Brazil: UFRGS, 1998. 196p. p.67-72.

[PRAOO] PRADO, A.; LUBASZEWSKI, M.; REIS, A. Ildentifying Stuck-at Faults with
Vertex Precedent BDDs. In: WORKSHOP IBERCHIP, 6., 2000, S50 Paulo,
Brazil. Anais... S0 Paulo, Brazil: CTI/CYTED, 2000. 196p. p.235-244.

[RABOS]

[RATO4]

[RIE96]

[REI95]

[REI97]

[REIOS]

[REI9Q]

[ROT66]

[RUBS3]

[SAKS3]

[SAKSS]

[SALO4]

180

RABAEY, Jan. M. Digital Integrated Circuits: a Design Perspective. Upper
Saddle River, New Jersey: Prentice Hall, 1996. chapter 4, p.210-222.

RATZLAFF, C. L.; PILLAGE, L. T. RICE: Rapid Interconnect Circuit
Evaluation Using AWE. |IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, Los Alamitos, California, v.13, n.6, p.763-776,
June 1994.

RIERA i BABURES, Jordi. Mapatge Tecnologic Orientat a Generadors de
Moduls. Bellaterra, Espanya: Universitat Autonoma de Barcelona, 1996. Tesi
Doctoral.

REIS, André |. et a. Associaing CMOS Transistors with BDD Arcs for
Technology Mapping. | EE Electronic Letters, London, v.31, n.14, p.1118-1120,
July 1995.

REIS, André I. et a. Library Free Technology Mapping. In: REIS, R,
CLAESEN, L. (Ed.). VLSI: Integrated Systems on Silicon. London: Chapman &
Hall, 1997. p.303-314.

REIS, André |I. Assignation Technologique sur Biblioteques Virtueles de
Portes Complexes CMOS. Montpellier: Université Montpellier [, 1998. 122p.
Thése de Doctorat.

REIS, Ricardo A. L. FUCAS: FUIl Custom Layout Synthesis. Available at:
<http://www.inf.ufrgs.br/~reis/rese99.html>. Visited on September 23, 1999.

ROTH, J.P. Diagnosis of Automata Failures: A Calculus and a New Method In:
IBM Journal of Research and Development, Armonk, v.10, n.6, p.278-291,
July1966.

RUBINSTEIN, J.; PENFIELD, P. J.; HOROWITZ, M. A. Signa Delay in RC
Tree Networks. | EEE Transactions on Computer-Aided Design, Los Alamitos,
California, v.CAD-2, n.3, p.202-210, July 1985.

SAKURAI, Takayasu Approximation of Wiring Delay in MOSFET LSI. |IEEE
Journal of Solid-State Circuits, Piscataway, NJ, v.SC-18, n.4, p.418-426,
August 1983.

SAKURAI, Takayasu. CMOS Inverter Delay and Other Formulas Using a-Power
Law MOS Mode. In: ACM/IEEE INTERNATIONAL CONFERENCE ON
COMPUTER-AIDED DESIGN, 1988, Santa Clara, California. Proceedings...
Los Alamitos, California: IEEE Computer Society Press, 1988. p.74-76.

SALDANHA, A.; BRAYTON, R.; SANGIOVANNI-VICENTELLI, A. Circuit
Structure Relations to Redundancy and Delay. |IEEE Transactions on CAD of
Integrated Circuits and Systems, Los Alamitos, California, v.13, n.7, p.875-883,
July 1994,

[SEG89]

[SEN92]

[SIL93]

[SIL934]

[SIL94]

[SIL944]

[SIL96]

[SIL9g]

[SIL99]

[SUN94]

[UEB95]

181

SEGER, Carl-Johan. A Bounded Delay Race Model. In: IEEE/ACM
INTERNATIONAL CONFERENCE ON COMPUTER-AIDED DESIGN, 1989,
Santa Clara, California. Proceedings... Los Alamitos, California: IEEE Computer
Society Press, 1989. p.130-133.

SENTOVICH, E. M. et a. SIS. A System for Sequentia Circuit Synthesis.
Berkeley, California: Electronics Research Laboratory, University of California
May 1992. 45p. (Memorandum No UCB/ERL N92/41)

SILVA, Jodo P.M.; SAKALLAH, Karem. Concurrent Path Sensitization in
Timing Anaysis. In. THE EUROPEAN CONFERENCE ON DESIGN
AUTOMATION WITH THE EUROPEAN EVENT IN ASIC DESIGN, 1993,
Paris, France. Proceedings... Los Alamitos, California IEEE Computer Society
Press, 1993.

SILVA, Jodo P.M.; SAKALLAH, Karem. An Anaysis of Path Sensitization
Criteria. In: INTERNATIONAL CONFERENCE ON COMPUTER DESIGN:
VLSl IN COMPUTERS AND PROCESSORS, 1993, Cambridge, MA.
Proceedings... Los Alamitos, California: IEEE, 1993. p.68-72.

SILVA, Jodo P.M.; SAKALLAH, Karem. Efficient and Robust Test Generation-
Based Timing Analysis. In: IEEE INTERNATIONAL SYMPOSIUM ON
CIRCUITS AND SYSTEMS, 1994, London. Proceedings... Piscataway: |IEEE
1994. v.1, p.303-306.

SILVA, Jodo P.M.; SAKALLAH, Karem. Dynamic Search-Space Pruning
Techniques in Path Sensitization. In: ACM/IEEE DESIGN AUTOMATION
CONFERENCE, 31., 1994, San Diego, California. Proceedings... Los Alamitos,
California: IEEE Computer Society Press, 1994.

SILVA, Jodo P.M.; SAKALLAH, Karem. GRASP — A New Search Algorithm for
Satisfiability. In: IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND
SYSTEMS, 1996, San Jose, California. Proceedings... Los Alamitos, California
|EEE Computer Society Press, 1996. p.220-227.

SILVA, Luis Guerra et a. Redistic Delay Modeling in Satisfiability-Based
Timing Anaysis. In: IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS
AND SYSTEMS, 1998. Proceedings... Piscataway: IEEE, 1998. v.6, p.215-218.

SILVA, LuisJorge B. M. G. e. Modelsand Algorithmsfor Timing Analysis of
Combinational Circuits. Lisboa: Instituto Superior Técnico (IST), Universidade
Técnicade Lisboa, 1999. 84p. Master Dissertation.

SUN, Shang-zhi; DU, David H.C.; CHEN, Hsi-Chuan. Efficient Timing Analysis
of CMOS Circuits Considering Data Dependent Delays. In: IEEE/ACM
INTERNATIONAL CONFERENCE ON COMPUTER-AIDED DESIGN, 1994,
Santa Clara, California. Proceedings... Los Alamitos, California: IEEE Computer
Society Press, 1994. p.156-159.

UEBEL, Luis Felipe. Verificagdo de Timing em Circuitos VLSl CMOS
Digitais. Porto Alegre: CPGCC da UFRGS, 1995. 222p. Dissertagéo de Mestrado.

[UEHS1]

[YAL95]

[YENSS]

[YENS9]

[YENO1]

[WIS84]

182

UEHARA, T.; CLEEMPUT, W.M. Optimal Layout of CMOS Functional Arrays.
| EEE Transactions on Computers, Piscataway, NJ, v.C-30, n.5, p.305-312, May
1981

YALCIN, H.; HAYES, J. Hierarchica Timing Analysis Using Conditional
Delays. In: IEEE/ACM INTERNATIONAL CONFERENCE ON COMPUTER-
AIDED DESIGN, 1995, Santa Clara, California. Proceedings... Los Alamitos,
Californiac IEEE Computer Society Press, 1995.

YEN, S.; GHANTA, S,; DU, D. A Path Selection Algorithm for Timing Analysis
In. ACM/IEEE DESIGN AUTOMATION CONFERENCE, 25., 1988.
Proceedings... Los Alamitos, Californiac IEEE Computer Society Press, 1988.
p.720-723.

YEN, S.; DU, D.; GHANTA, S. Efficient Algorithms for Extracting the K Most
Critical Paths in Timing Analysis In. ACM/IEEE DESIGN AUTOMATION
CONFERENCE, 26., 1989, Las Vegas, Nevada. Proceedings... Los Alamitos,
California: IEEE Computer Society Press, 1989. p.649-652.

YEN, S.; DU, D.; GHANTA, S. Efficient Algorithms for Extracting the K Most
Critical Paths in Timing Anaysis. International Journal of Computer Aided
VLS Design,[SI1.],v.3, n.2, p.193-215, 1991.

WISTON, Patrick H. Altificial Intelligence. 2 ed. Reading, Massachusetts:
Addison-Wesley Publishing Company, 1984. 524p.

