
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO

GUILHERME GROCHAU AZZI

Improving Conflict Detection in
Double-Pushout Graph Transformation

Thesis presented in partial fulfillment
of the requirements for the degree of
Master of Computer Science

Advisor: Prof. Dr. Leila Ribeiro

Porto Alegre
July 2018

CIP — CATALOGING-IN-PUBLICATION

Azzi, Guilherme Grochau

Improving Conflict Detection in Double-Pushout Graph
Transformation / Guilherme Grochau Azzi. – Porto Alegre:
PPGC da UFRGS, 2018.

137 f.: il.

Thesis (Master) – Universidade Federal do Rio Grande do Sul.
Programa de Pós-Graduação em Computação, Porto Alegre, BR–
RS, 2018. Advisor: Leila Ribeiro.

1. Graph transformation. 2. Double-pushout. 3. Static anal-
ysis. 4. Parallel independence. 5. Critical pair. 6. Initial con-
flict. 7. Category theory. 8. Adhesive category. 9. Subobject.
I. Ribeiro, Leila. II. Título.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Rui Vicente Oppermann
Vice-Reitora: Profa. Jane Fraga Tutikian
Pró-Reitor de Pós-Graduação: Prof. Celso Giannetti Loureiro Chaves
Diretora do Instituto de Informática: Profa. Carla Maria Dal Sasso Freitas
Coordenador do PPGC: Prof. João Luiz Dihl Comba
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro

“The essential virtue of category theory

is as a discipline for making definitions,

the programmer’s main task in life.”

— DAVID RYDEHEARD

ACKNOWLEDGEMENTS

Writing this thesis was a considerable personal and professional achievement, and

it was only possible due to the support and encouragement of several people. In particular,

I would like to thank:

Prof. Leila Ribeiro for accepting and guiding me as a student. The opportunities

you gave me, the examples you set and your ability to motivate students have greatly

enriched my time at UFRGS. Your guidance on technical and professional matters was

fundamental for the completion of this work, and will certainly be helpful for the remain-

der of my academic career.

Prof. Rodrigo Machado for all the help and fruitful discussions during the initial

stages of my masters, helping me transition into the field of graph transformation. Your

technical knowledge and constant excitement with interesting research remains an inspi-

ration.

Prof. Andrea Corradini for the guidance near the final stages of my masters, even

from afar. Thank you for the many Skype calls and prompt reviews of the papers on

which we worked together. The clarity and wealth of experience you bring to research

has deeply impacted my work. Without your help, this thesis would not be the same.

My colleagues for making my stay at UFRGS enjoyable and productive. Thanks

for the many lunches, coffees and conversations about varied topics, academic or oth-

erwise. Thanks especially to Jonas Bezerra, Andrei Costa and Leonardo Rodrigues for

the many fruitful discussions of graph transformation, and for all the cooperation when

developing Verigraph. Also many thanks to Marcelo Prates for all the tips regarding the

experimental part of my work.

The many teachers and professors that sparked my interest in mathematics and

computer science. Especially Profs. Paulo Blauth, Álvaro Moreira, Rafael Bordini and

Sabine Glesner for introducing me to the theoretical aspects of computer science.

The governmental agencies CAPES and CNPq for the financial support.

My parents for their love, support and understanding throughout all these years.

Thank you for being with me during the good and the bad, and for always helping me

follow my dreams.

My friends and family for helping me keep my mind off work when I needed, and

understanding my absence when I couldn’t.

ABSTRACT

Graph transformation is a useful framework for the specification, analysis and develop-

ment of software, particularly within Model-Driven methodologies. In this setting, graphs

or graph-like structures are used to represent states of a system, while its possible transi-

tions are determined by transformation rules. This combines an intuitive visual represen-

tation with a rich theory and several verification techniques. Since the behaviour of these

a rule-based models emerges from the interactions between rules, techniques for under-

standing such interactions are necessary. In this work, we focus on conflicts: situations

where the application of a rule hinders the application of another. Conflict detection is then

a static analysis technique that enumerates a finite but complete set of such situations, in

the sense that every other conflict can be expressed in terms of some detected conflict.

The most common approach to conflict detection is the enumeration of so-called critical

pairs, and it was successfully applied in several contexts. Nevertheless, it still faces some

issues related to scalability. These involve the running time of existing algorithms, but

more fundamentally they stem from the amount of redundant potential conflicts that are

enumerated. In this work, we take an important step towards improving conflict detection

and reducing the redundancy of results. To this end, we develop a theory describing the

root causes of conflicts in the form of conflict essences. Using lattice-theoretical tech-

niques, we were also able to detect further sources of redundancy, identifying irreducible

essences as suitable, less redundant subset. We also show that conflict essences are closely

related to initial conflicts, a recently proposed subset of critical pairs, allowing their ap-

plication to a wider variety of contexts. Moreover, simple algorithms for enumerating

conflict and irreducible essences are provided. Finally, we present experimental evidence

that initial conflicts and irreducible essences allow a significant reduction on the number

of reported conflicts, when compared to the more traditional critical pairs, without loss of

information. All of our results hold for categories of set-valued functors, a generalisation

of graphs and graph structures, and sufficient conditions are identified for most of our

results to hold in other adhesive categories.

Keywords: Graph transformation. double-pushout. static analysis. parallel indepen-

dence. critical pair. initial conflict. category theory. adhesive category. subobject.

Melhorando a Detecção de Conflitos para Transformação de Grafos Algébrica

RESUMO

Transformação de grafos é uma teoria apropriada para a especificação, análise e desen-

volvimento de software, particularmente em abordagens dirigidas a modelos. Nesse con-

texto, grafos ou estruturas semelhantes representam os estados de um sistema, enquanto as

transições são determinadas por regras de reescrita. Assim, uma representação visual e in-

tuitiva é combinada a uma vasta teoria, permitindo o uso de várias técnicas de verificação.

Como o comportamento desses modelos baseados em regras emerge de suas interações,

são necessárias técnicas para entendê-las. Nesse trabalho, focamos nos conflitos entre

regras: situações em que a aplicação de uma regra impede a aplicação de outra. A aná-

lise estática denominada detecção de conflitos busca enumerar um conjunto finito dessas

situações que seja completo, ou seja, tal que qualquer outro conflito possa ser expresso

em termos de um dos conflitos detectados. Em particular, a enumeração de pares críticos

foi aplicada com sucesso em vários contextos. Ainda assim, a ela encontra problemas

relacionados à escalabilidade. Isso envolve o tempo de execução, mas fundamentalmente

advém do grande número de conflitos potenciais redundantes que é identificado. Neste

trabalho, damos um passo importante em direção a uma técnica mais eficiente para detec-

ção de conflitos. Para isso, desenvolvemos uma teoria que descreve a causa principal dos

conflitos na forma de essências de conflito. Usando teoria de reticulados, pudemos detec-

tar mais fontes de redundância, identificando essências irredutíveis como um subconjunto

apropriado e menos redundante. Também mostramos que essas são intimamente relaci-

onadas aos conflitos iniciais, um subconjunto dos pares críticos proposto recentemente.

Assim, a aplicação de conflitos iniciais se torna possível em novos contextos. Além disso,

apresentamos algoritmos para enumerar essências de conflito, conflitos iniciais e essên-

cias irredutíveis. Por fim, apresentamos evidência empírica de que conflitos iniciais e

essências irredutíveis reduzem significativamente o número de conflitos reportados, em

relação aos pares críticos, sem perda de informação. Todos os resultados teóricos deste

trabalho são válidos para categorias de funtores com codomínio na categoria de conjun-

tos, uma generalização de grafos e de graph structures. Também identificamos condições

suficientes para que os principais resultados sejam válidos em outras categorias adesivas.

Palavras-chave: transformação de grafos, duplo-pushout, análise estática, independência

paralela, par crítico, conflito inicial, teoria das categorias, categoria adesiva, subobjeto.

LIST OF ABBREVIATIONS AND ACRONYMS

DPO Double-Pushout

IPO Initial Pushout

NAC Negative Application Condition

PB Pullback

PO Pushout

poset Partially Ordered Set

UML Unified Modelling Language

VK Van Kampen

LIST OF SYMBOLS

Set,Graph,C,D . . . Categories

A,B,G,H,X ,Y . . . Objects of a category (sets, graphs, typed graphs. . .)

f : A→B Morphism from A to B (function, graph morphism. . .)

f : A�B Monomorphism (e.g. injective function)

f : A ↪→ B Inclusion

F : C→D Functor from C to D

f : F .→ G Natural transformation from F to G

A = (Ai)i∈I Indexed family over the index set I

f ◦g Composition of morphisms

ρ = L←K→R Transformation rule

m,n, . . . Matches

t : G
ρ,m
=⇒ H Transformation step with rule ρ and match m

idX : X→X Identity morphism for object X

0 Initial object

!X : 0→X Unique morphism from initial object to X

X ∼= Y Isomorphism relation on objects

f (x) Application of function to an element x

f (X) Image of set X ⊆ dom(f) by function f

f−1(y) = {x ∈ dom(f) | f (x) = y} Preimage for a function f

card(S) Cardinality of set S

Sub(X) Poset of subobjects for object X

∪Sub, ∩Sub,⊆Sub Union, intersection and containment of subobjects

⊆L,⊂L, ·⊂L Partial order, strict order and cover for poset L

∪L, ∩L Join (union) and meet (intersection) for lattice L

LIST OF FIGURES

Figure 2.1 Example state for the elevator control system. ..27
Figure 2.2 Type graph for the elevator control system..27
Figure 2.3 Rules for fulfilling requests. ..28
Figure 2.4 Rules for moving an elevator up..29
Figure 2.5 Rules for switching elevator direction. ..30
Figure 2.6 Hasse diagram for lattice of subgraphs..35
Figure 2.7 Rule move-up-NU as a span ...36
Figure 2.8 Match morphism for rule move-up-NU ..36
Figure 2.9 Transformation step with rule move-up-NU...37
Figure 2.10 Non-applicable match with rule deactivate ...38
Figure 2.11 Examples of parallel independence ...39
Figure 2.12 Examples for the essential condition of parallel independence...................40
Figure 2.13 Extension diagrams..42
Figure 2.14 Initial pushout of typed graphs ..46
Figure 2.15 Deletion object for rule move-up-NU. ..47

Figure 4.1 Conflicting transformation steps of move-up-NU with itself60
Figure 4.2 Causes of conflicts for move-up-NU as spans. ...60
Figure 4.3 Lattice of subgraphs with irreducibles highlighted by shadows....................64
Figure 4.4 Example of subobjects for a pair of typed graphs. ..68

Figure 5.1 Overview of concepts related to conflicts and their root causes, with
new concepts and results written in bold. ...75

Figure 5.2 Overview of main results and categorical assumptions in Chapter 5. Re-
sults are drawn with solid lines while assumptions are drawn with dashed lines...76

Figure 5.3 Examples of disabling essences...78
Figure 5.4 Examples of disabling reason. ...84
Figure 5.5 Extended transformation steps with distinct disabling reasons.84
Figure 5.6 Potential disabling essences for ρ1 =move-up-NU and ρ2 =deactivate,

where c1 ∈ Essdbl(ρ1,ρ2) and c2 ∈ Essdbl(ρ2,ρ1). ...87
Figure 5.7 Conflict essences for move-up-NU. ..91

Figure 6.1 Disabling candidates for rules move-up-ND and deactivate.............101

Figure 7.1 Log-log scatter plot of critical pairs vs. initial conflicts, for each pair of
rules, with the fit of linear regression..112

Figure 7.2 Scatter plot of the fraction of critical pairs that is initial vs. total number
of critical pairs in logarithmic scale, for each pair of rules.113

Figure 7.3 Scatter plot of conflict essences in logarithmic scale vs. irreducible con-
flict essences, for each pair of rules. ...113

Figure 7.4 Scatter plot of disabling essences in logarithmic scale vs. irreducible
disabling essences ...114

Figure 7.5 Log-log scatter plot with running times of Algorithm 6.1 vs. filtering of
irreducible essences, for each pair of rules. ..115

Figure 7.6 Log-log scatter plot with running times of Algorithm 6.2 vs. filtering of
irreducible essences, for each pair of rules. ..116

Figure 7.7 Log-log scatter plot with running time of Algorithm 6.1 vs. checked
overlappings of the left-hand sides, for each pair of rules.116

Figure 7.8 Log-log scatter plot with running time of Algorithm 6.2 vs. checked
overlappings of the left-hand sides and deletion object, for each pair of rules.....117

Figure 7.9 Log-log scatter plot comparing the number of overlappings checked by
Algorithm 6.2 with the total number of overlappings of the left-hand sides,
for each pair of rules. ..117

Figure 7.10 Log-log scatter plot comparing the time spent enumerating conflict and
disabling essences, for each pair of rules..118

LIST OF TABLES

Table 4.1 Main results of Chapter 4 ..61

Table 6.1 Numbers of jointly epic pairs for small sets..98

Table 7.1 Overview of transformation systems used as input for the experiment.111

CONTENTS

1 INTRODUCTION...21
1.1 Problem..22
1.2 Goals...23
1.3 Outline..23
2 ALGEBRAIC GRAPH TRANSFORMATION ...25
2.1 Modelling an Elevator System ...25
2.2 Categories of Graphs and Adhesive Categories ...30
2.3 Rules, Matches and Transformations..35
2.4 Conflicts and Parallel Independence...38
2.5 Conflict Detection..41
2.5.1 Critical Pairs...42
2.5.2 Initial Conflicts ..44
2.6 Initial Pushouts ...45
3 FUNCTOR CATEGORIES AS GENERALIZED GRAPHS51
4 GENERALIZED SUBOBJECTS..59
4.1 Lattice Theory ...62
4.2 Generalised Subobjects ..65
4.2.1 Subobjects for Monic Spans ..66
4.2.2 Subobjects for Pairs of Objects..67
5 CHARACTERIZING CONFLICTS...75
5.1 Disabling and Conflict Essences ..76
5.1.1 Conflict Essence and Extension ...80
5.1.2 Comparing with Previous Work...82
5.2 Potential Essences ...85
5.2.1 Potential Essences and Initial Conflicts ...87
5.2.2 Irreducible Conflict Essences...90
6 ENUMERATING POTENTIAL CONFLICTS ...93
6.1 Enumerating Conflict Essences and Initial Conflicts ..94
6.1.1 Performance Bottleneck...96
6.2 Enumerating Disabling Essences...98
6.3 Finding Irreducible Essences ...105
7 EXPERIMENTAL EVALUATION ...109
7.1 Methods..110
7.2 Results ..112
8 RELATED WORK ...119
8.1 Algebraic Approaches to Graph Transformation ..119
8.2 Categories for Algebraic Graph Transformation ..120
8.2.1 Variations of Adhesivity ..120
8.2.2 Attributed Graphs and Structures...122
8.3 Conflict Detection in the Double-Pushout Approach...123
8.3.1 Applications of Conflict Detection ..124
8.4 Verification Techniques for Graph Transformation ..125
9 CONCLUSIONS ...127
9.1 Contributions...127
9.2 Future Work ..129
REFERENCES...131

21

1 INTRODUCTION

Software is becoming increasingly ubiquitous and complex. No longer confined

to simple managerial tasks, it now controls many important parts of our lives, perform-

ing crucial tasks in banks, cars, trains, aeroplanes and telecommunications, among many

others. Many lives and much of the economy rely on software, leading to significant dam-

ages when it doesn’t work as intended. Thus, understanding the behaviour of software and

ensuring its correctness remains a very relevant topic.

An important tool to understand and verify software are models. By abstracting

from the full complexity of software, they allow engineers and analysts to focus on the

most relevant aspects for the problem at hand. Indeed, in the Model-Driven approach to

software development, models are defined in domain-specific modelling languages tai-

lored to their particular application domain (SCHMIDT, 2006). When equipped with a

formal semantics, it is also possible to analyse a model to extract summarised information

or even prove that is has certain properties.

This thesis is concerned with models based on graph transformation, which have

a visual and intuitive representation along with strong formal underpinnings (ROZEN-

BERG, 1997). Each state of the system is modelled as a graph or similar structure, rep-

resenting entities by nodes and their current relationships by edges. The behaviour of the

system is then specified with transformation rules, which express conditions for a certain

event to occur, and the modified state after its occurrence. That is, they provide pre- and

post-conditions as snapshots of the system state, or part of it.

For many applications, the usual notion of graphs is not sufficient. We often want

to ascribe types to the nodes or edges, to distinguish between different kinds of entities

and relationships. Some of the entities may contain boolean or numeric attributes. Thus,

variations on the notion of graph are used for different applications.

In order to avoid redefining the theory for each notion of graph, the algebraic

approach to graph transformation is based on notions of category theory (EHRIG et al.,

2006). It abstracts from graphs and mappings between them to objects and morphisms

of arbitrary categories, as long as they satisfy certain assumptions. This allows the main

definitions and results, stated and proven for arbitrary categories, to be instantiated for

various notions of “transformed object”. This includes several variations of graphs, such

as graphs with types, subtypes, labels or attributes, but also other structures such as Petri

nets, algebraic signatures and transformation rules themselves.

22

Algebraic graph transformation has found many applications, in particular the

Double-Pushout (DPO) approach. In the context of Model-Driven Engineering, it un-

derlies approaches to model transformation such as triple graph grammars (KLAR et al.,

2010), and model transformation tools like Henshin (ARENDT et al., 2010).

Having a formal semantics, graph transformation allows several analysis tech-

niques for understanding the behaviour of a model. This thesis is concerned with the

detection of conflicts, that is, situations where rules interfere with each other in a particu-

lar way: the application of a rule may hinder the application of another. In this context, the

most common technique is enumeration of critical pairs, which are minimal contexts in

which a pair of rules conflict. Besides helping to understand interactions between rules,

critical pairs can be used to investigate confluence, which is an important property for

several systems.

Indeed, many practical applications of critical pair analysis were reported in the

literature. For example, it has was used to understand interactions between features in

Software Product Lines by Jayaraman et al. (2007), and between refactorings of UML

models by Mens, Taentzer and Runge (2007). Taentzer et al. (2010) used it as a basis for

model versioning. It was also used to validate medical guidelines by Cota et al. (2017) and

requirement models for software by various authors (ERMEL et al., 2011; HAUSMANN;

HECKEL; TAENTZER, 2002; OLIVEIRA JR. et al., 2014).

1.1 Problem

Despite the various applications of critical pair analysis, its computation is some-

times infeasible. The most pressing issue is the large number of critical pairs, even for

relatively small rules. Lambers et al. (2018) identified some sources of redundancy that

occur in critical pairs, proposing initial conflicts as a suitable subset. It was proven com-

plete in the sense that every critical pair is the embedding of an initial conflict into a larger

context. Their existence, however, was only proven for the particular case of typed graphs.

To the best of our knowledge, this result wasn’t yet generalised for other graph models.

Moreover, as will be shown in this thesis, some redundancy may still be left within the

initial conflicts.

A second issue is that manually determining the root cause of a conflict is often

difficult. Lambers, Ehrig and Orejas (2008) formally characterised conflict reasons, but

these may contain elements unrelated to the conflict and lack a direct connection to the

23

definition of conflicts. Furthermore, their relation to initial conflicts has not been reported,

to the best of our knowledge.

1.2 Goals

The main goal of this thesis is to improve the detection of conflicts between rules.

This involves characterising root causes, enumerating all causes for conflicts between a

pair of rules, and reducing redundancy of results. Specific goals of this thesis are the

following.

G1 Identify a class of categories where initial conflicts exist, including typed graphs.

G2 Formally characterise the root causes of conflicting transformations with a clear con-

nection to initial conflicts.

G3 Formally characterise all possible causes of conflicts for pairs of rules.

G4 Design algorithms for enumerating initial conflicts. They should be defined in terms

of categorical constructions, such that they work in all categories identified for G1.

1.3 Outline

Chapter 2 An introduction to Double-Pushout graph transformation is presented. We

begin with an informal introduction along with a running example for this thesis.

The necessary background of category theory is then reviewed, as well as the theory

of Double-Pushout transformation.

Chapter 3 Categories of set-valued functors are proposed as a graph model. It is shown

that they are suitably general, subsuming several commonly used categories includ-

ing those of typed graphs. Nevertheless, they are shown to have important proper-

ties for the remainder of this thesis, while still allowing some proofs to be carried

out set-theoretically.

Chapter 4 In category theory, subobjects generalise the set-theoretical notion of subset.

We further generalise the notion of subobject, characterising in particular the sub-

objects for pairs of objects and for cospans of monomorphisms. These will serve as

24

a basis for the formal characterisation of root causes of conflicts. By showing that

each pair of objects and each span of monomorphisms has a lattice of subobjects,

we allow the use of lattice-theoretical techniques in subsequent chapters.

Chapter 5 Conflict and disabling essences are proposed as a formal characterisation for

the root causes of conflicts between two transformations. Sets of potential conflict

and disabling essences for pairs of rules are also characterised. We prove several

important properties of essences, also relating them to conflict reasons and initial

conflicts. Finally, redundant conflict and disabling essences are detected, and irre-

ducible essences are proposed to avoid this redundancy.

Chapter 6 Algorithms for enumerating conflict and disabling essences are designed, us-

ing categorical constructions as a basis. The performance and scalability of the

proposed algorithms is briefly discussed.

Chapter 7 The concepts and algorithms proposed in this thesis are experimentally eval-

uated. In particular, we investigate how the numbers of critical pairs, conflict

essences and irreducible essences relate to each other. We also validate some claims

about the performance of the algorithms proposed in the previous chapter.

Chapter 8 An overview of the related work is presented, including other approaches

of algebraic graph transformation, classes of categories where these approaches

are commonly instantiated, applications of conflict detection and other verification

techniques.

Chapter 9 Presents concluding remarks. It summarises the main contributions of this

thesis and suggests future directions of research.

25

2 ALGEBRAIC GRAPH TRANSFORMATION

This chapter reviews most of the background necessary for this thesis, including

some topics in category theory and the theory of Double-Pushout (DPO) graph transfor-

mation. Further background in lattice theory is introduced in Chapter 4, where it will be

necessary.

This is not intended as an introduction to category theory, assuming familiarity

with its basic concepts. In particular, readers should be familiar with functors, natural

transformations, limits, colimits and the category of sets with total functions. Suitable

introductions to category theory can be found in the books by Riehl (2017) and Adámek,

Herrlich and Strecker (2009).

The first part of this chapter provides an informal introduction to graph transfor-

mation, presenting also the running example for this thesis: a system controlling one

or more elevators in a building. Subsequent sections review the theory of DPO graph

transformation, introducing some concepts of category theory as they are needed. The

final subsection introduces the concept of initial pushout, an important construction used

throughout this thesis, providing known and novel results. In particular, we relate initial

pushouts to subobjects.

2.1 Modelling an Elevator System

As a motivating example, we will model a system controlling one or more eleva-

tors in a building. This is based on the model proposed by Lambers (2009), but lifting

two restrictions: the system may control multiple elevators, and movement may occur

between arbitrary floors, instead of always involving a main stop. We begin by informally

describing the requirements of the system.

Example 2.1 (Requirements for an Elevator Control System). The elevator control system

is intended for buildings where a series of floors is connected by one or more adjacent el-

evators, all of which service the same floors. Users of the system expect to be transported

between two arbitrary (but distinct) floors.

All floors are equipped with buttons for requesting that an elevator stop at this floor

so that people can get into the elevator and be transported to another floor. Most floors

contain two buttons, which indicate the direction of the request, that is, whether the users

26

expect to reach a floor above or below their current floor. The highest and lowest floors

contain only one button, since only one direction is possible. Note that different users

may simultaneously request both directions for the same floor. Each elevator is equipped

with a series of buttons identifying each of the floors. By pressing such a button, users

signal that they expect to be taken to the corresponding floor.

Each elevator is always moving in a particular direction: either up or down. More-

over, an elevator should only move if there are unfulfilled internal or external requests

at floors in its current direction. Internal requests are caused by pressing a button inside

the elevator, while external requests are caused by pressing buttons on each floor, and are

classified according to their direction. When moving, an elevator should visit each floor in

succession, stopping whenever a floor has one or more appropriate requests and fulfilling

all of them. Internal requests are always appropriate for stopping, while external requests

are only appropriate if their direction is consistent with the current direction of motion.

Thus, an elevator moving up will not stop due to an external request for moving down.

At each point in time, the system state can be suitably represented by a graph,

where nodes and edges are ascribed types to indicate which kind of entity or relation they

represent.

Example 2.2 (Types for the Elevator Control System). There are two kinds of entities in

the elevator system: elevator (denoted by) and floor (denoted by). Edges

between floors may have two different types: next-up (denoted by solid edges) and

below (denoted by dashed edges), indicating the relative positions of the floors. Simi-

larly, a solid edge from an elevator to a floor may have type at (denoted by solid edges),

indicating its current location, or type req-stop (represented by dashed edges), indicat-

ing an internal request for the source elevator to stop at the target floor. Note that self-loop

edges can be interpreted as predicates of an entity, instead of relations. Then self-loop

edges on an elevator indicate its direction of motion, having the type going-up (denoted

by) or going-down (denoted by). Self-loops on floors indicate the existence of

external requests, with type req-up (denoted by) or req-down (denoted by).

Example 2.3 (State of Elevator Control System). Figure 2.1 depicts an example state

for a system controlling two elevators along four floors, where the labels on the floors

are merely illustrative and not part of the graph. Note that there are several edges of

type below, since it is a transitive relation. One of the elevators is located on the second

floor and moving up, while the other is on the fourth floor and moving down. The elevator

27

on the second floor has an internal request for stopping on the fourth floor, while the

second and fourth floors have external requests for going down. Moreover, the third floor

has two external requests, for either direction.

Figure 2.1: Example state for the elevator control system.

A common and concise representation for the types of nodes and edges is a type

graph, where each node and edge represents a distinct type. Type graphs are similar in

nature to UML class diagrams, while the graphs that represent system states are analogous

to object diagrams (OBJECT MANAGEMENT GROUP, 2017).

Example 2.4 (Type Graph for Elevator Control System). The type graph for the elevator

control system is depicted in Fig. 2.2, containing the types described in Example 2.1.

Figure 2.2: Type graph for the elevator control system.

So far, only the static aspects of the system have been described. In order to specify

its behaviour, we use transformation rules, each consisting of two graphs that describe

pre- and post-conditions in a local way. If a system state contains the pre-condition as a

subgraph, we refer to this situation as a match for the rule. Then the rule may be applied

at this match, replacing the appropriate subgraph with the post-condition.

Example 2.5 (Fulfilling Requests). When an elevator is moving down and reaches a floor

with an external req-down, it should stop and fulfil this request. This is encoded by

rule fulfil-D, which is depicted in Fig. 2.3a with the pre-condition drawn on the left

and the post-condition on the right. It essentially deletes the req-down edge. Analogous

28

rules fulfil-U and fulfil-S are also shown in Fig. 2.3a, fulfilling req-up requests

when the elevator is moving up and req-stop requests regardless of direction.

Rule fulfil-Dmay be applied to the state of Example 2.3 as shown in Fig. 2.3b,

where the subgraph corresponding to the pre-condition is shown in black and the rest of

the state, in grey.

Figure 2.3: Rules for fulfilling requests.

(a) Rules

(b) Transformation with rule fulfil-D

Example 2.6 (Moving an Elevator Up). Any elevator that is moving up should keep

moving up as long as there are requests in higher floors. In this case, it should al-

ways proceed to the next floor up. Note that this can occur with a request of any kind:

req-up, req-down or req-stop. Moreover, the request may be on the next floor

up, or on a floor further above. Thus, we have six different pre-conditions for moving

up, and we need to model this with six different rules. They will be named with the fol-

lowing convention: all rules are prefixed with move-up-, followed by a letter indicating

the location of the request (N for the next floor up, A for a floor further above) and then

a letter indicating the kind of request (U or D for external requests going up or down,

and S for internal requests to stop at a floor). These rules are shown in Fig. 2.4a, all of

them deleting the at edge for the current position of the elevator, then creating a new

at edge to the floor above. Node labels in Fig. 2.4a are not part of the graphs themselves,

but used to indicate how they are preserved by rules. Note that in rules move-up-NU

and move-up-NS, the elevator reaches a floor with requests that can be fulfilled. We

have chosen to immediately fulfil such requests, thus these rules delete the corresponding

edges.

29

Several of these rules can be applied to the system state of Example 2.3 to move

the elevator from the second floor. The application of rule move-up-NU is shown

in Fig. 2.4b, immediately fulfilling an external request in the third floor. The applica-

tion of move-up-AS is shown in Fig. 2.4c, where no request is yet fulfilled, requiring a

subsequent application of fulfil-U.

Figure 2.4: Rules for moving an elevator up.

(a) Rules

(b) Transformation with rule move-up-NU

(c) Transformation with rule move-up-AS

Note that, with the rules defined in Example 2.6, an elevator may move out of a

floor without fulfilling all appropriate requests. In order to avoid this, the rule would have

to be extended with a Negative Application Condition (NAC), which forbids the applica-

tion of a rule in the presence of additional elements (HABEL; HECKEL; TAENTZER,

1996). Similarly, one may use constraints to encode invariants that should hold in every

system state (EHRIG et al., 2004). Both NACs and constraints, however, are outside the

scope of this thesis. Integrating them to our main contributions is an important direction

30

Figure 2.5: Rules for switching elevator direction.

for future work.

Beside the rules mentioned above, a model for the elevator control system needs

rules for moving elevators down, analogous to those that move it up, and for switching

its direction of motion, shown in Fig. 2.5. A complete model consists of the type graph

from Example 2.4, an initial state such as Example 2.3 and all the rules defined in this

section.

2.2 Categories of Graphs and Adhesive Categories

The concept of graph used in algebraic graph transformation is generally that of a

directed multigraph, that is, allowing parallel edges. This is also known as a quiver.

Definition 2.7 (Graph). A graph G = (V,E,s, t) has sets V of nodes and E of edges, along

with source and target functions s, t : E→V .

Functions, as mappings between sets, can be generalized to mappings between

graphs. These are called graph morphisms, mapping nodes (edges) of a graph to nodes

(edges) of another. Since graph morphisms have well-defined notions of domain, codo-

main and composition, they determine a category.

Definition 2.8 (Category of Graphs). A graph morphism f : G→G′ is a pair of functions

f = (fV : V→V ′, fE : E→E ′) that preserve incidence, that is, fV ◦ s = s′ ◦ fE and fV ◦ t =

t ′ ◦ fE . Graphs and graph morphisms determine the category of graphs, denoted Graph.

As seen in the previous section, we often want to ascribe types to the nodes and

edges of a graph. Recall also that the collection of types can be expressed as a type

graph T , where each node and edge represents a type. Then graph morphisms provide

a suitable way to formalize typing: fixing a type graph T , a morphism g : G→T can be

interpreted as a typing of G, or as a T -typed graph. A natural notion of type-preserving

morphism also arises.

Definition 2.9 (Category of T -typed Graphs). Let T be an arbitrary but fixed graph, re-

ferred to as the type graph. Then a T -typed graph is a morphism g : G→ T . Given

31

typed graphs g : G→T and g′ : G′→T , a type-preserving morphism is just a graph mor-

phism f : G→G′ such that g′ ◦ f = g, i.e. diagram (2.1) commutes. This determines the

category GraphT of T -typed graphs with type-preserving morphisms, which is essentially

the slice category Graph↓T .

G G′

T

f

g g′
(2.1)

Remark 2.10. Typing will often be left implicit, denoting a typed graph g : G→T by G.

The categories of (typed) graphs have a lot of structure, which allows the definition

of rules and transformations. For example, they are complete and cocomplete as they

have all small limits and colimits, in particular all pullbacks and pushouts. Here we recall

some well-known properties of pushouts and pullbacks, which will be used in subsequent

proofs.

Fact 2.11 (Composition). Assume diagram (2.2) commutes.

(i) If squares 1© and 2© are pullbacks, then rectangle 1©+ 2© is also a pullback.

(ii) If squares 1© and 2© are pushouts, then rectangle 1©+ 2© is also a pushout.

Fact 2.12 (Decomposition). Assume diagram (2.2) commutes.

(i) If rectangle 1©+ 2© and square 2© are pullbacks then square 1© is also a pullback.

(ii) If rectangle 1©+ 2© and square 1© are pushouts then square 2© is also a pushout.

A B C

D E F

1© 2© (2.2)

Fact 2.13 (Trivial Pullbacks/Pushouts). If the square in diagram (2.3) commutes, having

h monic and g an isomorphism, then it is a pullback. Dually, if the square in diagram (2.4)

commutes having g epic and h an isomorphism, then it is a pushout.

A B

C D

g

f

h

k

(2.3)
A B

C D

g

f

h

k

(2.4)

Fact 2.14 (Pullbacks Preserve Monomorphisms). If the square in diagram (2.3) is a pull-

back and h is monic, then g is also monic.

Besides having all pullbacks and pushouts, in categories of (typed) graphs the

pushouts along monos are well-behaved with respect to pullbacks, interacting similarly

32

to unions and intersections. This behaviour is captured formally in the definition of a

Van Kampen square, which was discussed at length by Lack and Sobocinski (2005).

Definition 2.15 (Van Kampen Square). A square (2.5) is a Van Kampen (VK) square if

it is a pushout and it satisfies the following condition, for every cube as below where

the bottom face corresponds to (2.5) and the back faces are pullbacks: the top face is a

pushout if and only if the front faces are pullbacks.

A B

C D

g

f

h

k

(2.5)

A′

B′ C′

A D′

B C

D

(2.6)

Definition 2.16. A pushout along mono is a pushout square (2.5) such that f or g is monic.

Lemma 2.17 (LACK; SOBOCINSKI, 2005). In the categories Set, Graph and GraphT

for any type graph T , all pushouts along monos are VK squares.

It turns out that having all pushouts along monos be VK squares ensures many of

the properties necessary for graph transformation. Then a suitable class of categories in

this context are adhesive categories, defined by Lack and Sobocinski (2005).

Definition 2.18 (Adhesive Category). A category C is adhesive if and only if:

(i) It has all pullbacks.

(ii) It has all pushouts along monos.

(iii) All pushouts along monos are VK squares.

When studying adhesive categories, Lack and Sobocinski (2005) proved many

useful properties for the theory of DPO transformation, some of which we now recall.

Theorem 2.19 (LACK; SOBOCINSKI, 2005). Categories Set, Graph and GraphT are

adhesive, for any type graph T .

Importantly, many standard constructions of categories preserve adhesivity, as

shown by Lack and Sobocinski (2005). Adhesivity is also related to the concept of ele-

mentary topos, a class of categories widely used for geometry, logic and the foundations of

33

mathematics (MACLANE; MOERDIJK, 2012). Indeed, being adhesive is strictly weaker

than being an elementary topos.

Theorem 2.20 (LACK; SOBOCINSKI, 2005). Let C and D be adhesive categories, and

let X be an arbitrary category.

(i) The product category C×D is adhesive.

(ii) The (co)slice categories C ↓C and C ↓ C are adhesive, for any object C of C.

(iii) The functor category CX is adhesive.

Theorem 2.21 (LACK; SOBOCINSKI, 2005). Every elementary topos is adhesive.

The following properties are widely used in the theory of graph transformation.

They are often called High-Level Replacement (HLR) properties.

Theorem 2.22 (LACK; SOBOCINSKI, 2005). All adhesive categories have the following

HLR properties.

(i) Pushouts along monos are also pullbacks: if square (2.7) is a pushout with monic l

or k, then it is also a pullback.

(ii) Pushouts preserve monos: if square (2.7) is a pushout with monic l (or k), then

g (or m) is also monic.

(iii) Uniqueness of pushout complements: given morphisms l and m as in diagram (2.7),

if l is monic and there are k and g making diagram (2.7) a pushout, then these

morphisms are unique up to isomorphism.

(iv) PO-PB decomposition: if rectangle 1©+ 2© of diagram (2.8) is a pushout and

square 2© is a pullback, where morphisms l and f are monic, then squares 1© and 2©
are pushouts.

K L

D G

k

l

m

g

(2.7)
K D D′

L G G′
l

k

g

k′

g′

m

1©

f

2© (2.8)

Another fundamental property of adhesive categories is related to the concept of

subobject, a generalization of notions like subset and subgraph. Indeed, in adhesive cat-

egories, the subobjects of any arbitrary object behave like subsets: they have unions and

intersections which distribute over each other. This is because sets of subobjects are dis-

tributive lattices, a topic that will be further discussed in Chapter 4.

34

Definition 2.23 (Subobject). Let X be an object of a category C. Two monos a : A→
X and b : B→X are isomorphic when there exists an isomorphism f : A→B making

diagram (2.9) commute, i.e. with b ◦ f = a. A subobject of X is an isomorphism class

of monos with codomain X . Moreover, Sub(X) is the partially ordered set of subobjects

for X , where a ⊆X b if and only if there exists a mono f : A�B making diagram (2.9)

commute.
A B

X
a

f

b
(2.9)

Theorem 2.24 (LACK; SOBOCINSKI, 2005). In an adhesive category, Sub(X) is a dis-

tributive lattice for any object X . Then it is equipped with the following notions, given

subobjects a,b ∈ Sub(X).

(i) The intersection a ∩X b is obtained from a pullback over a and b. That is, given

pullback 1© from diagram (2.10), a ∩X b∼= x◦ iX = y◦ iY .

(ii) The union a ∪X b is obtained from a pushout over the intersection. That is, given

pullback 1© from diagram (2.10) and pushout 2© from diagram (2.11), then the

mediating morphism u : U→X is monic, and a ∪X b∼= u.

(iii) The top or maximum subobject is >∼= idX ∈ Sub(X).
A

I X

B

a

iY

iX

1©
b

(2.10)

A

I U X

B

a
aU

iY

iX

2© u

b

bU

(2.11)

Example 2.25 (Lattice of Subgraphs). Fig. 2.6 shows the lattice of subobjects for a par-

ticular graph, which is exactly its lattice of subgraphs.

Note that the lattice of subobjects of Example 2.25 has a bottom element, which

is the empty graph. In fact, this is a suitable generalisation for the notion of “emptiness”

Remark 2.26. The bottom subobject ⊥ ∈ Sub(X) can be seen as the “empty subobject”,

when it exists. This is consistent with the categorical characterisation of emptiness using

strict initial objects.

Definition 2.27. An object 0 is initial in a category C if, for each object X of C, there

is a unique arrow !X : 0→X . An initial object 0 is strict if, for any arrow f : X→ 0, the

domain X is also initial.

35

Figure 2.6: Hasse diagram for lattice of subgraphs

G =

Example 2.28. In Set, the empty set is a strict initial object. In Graph, the empty graph

is a strict initial object. In the category of sets and partial functions, the empty set is also

initial, but it is not strict: there is a partial function f : {1}→∅, but {1} is not initial.

Fact 2.29. If any initial object is strict, all initial objects are, since they are isomorphic.

Furthermore, if 0 is strict, then every arrow !X : 0→X is monic.

Fact 2.30. If category C has a strict initial object 0, then for each object X of C the bottom

subobject⊥∈ Sub(X) is determined by the strict initial object. That is,⊥∼= !X ∈ Sub(X).

2.3 Rules, Matches and Transformations

In this section, we formally introduce the fundamental concepts of the Double-

Pushout (DPO) approach to graph transformation. An important aspect of this approach

is that the definitions and theorems are stated in categorical terms. Then, the entire theory

can be instantiated for different notions of “transformed object”, instead of just graphs,

as long these objects live in a category with the necessary properties. For a more detailed

discussion, we refer to the book by Ehrig et al. (2006).

We begin by giving a categorical account of rules, which must not only con-

tain objects representing the pre- and post-conditions, but also characterise what the

rule deletes, creates and preserves. Thus, besides having a pair of objects, a rule also

contains their intersection, defining what is preserved, along with embeddings into the

pre- and post-condition objects. The part of the pre-condition outside the intersection is

then deleted, while creation is characterised analogously with the post-condition.

36

Definition 2.31. A span is a pair of morphisms A
f←C

g→ B with shared domain. Dually,

a cospan is a pair of morphisms A
f→C

g← B with shared codomain.

Definition 2.32 (Rule). A rule is a span ρ = L
l
� K

r
� R, with monic l and r. We call L

and R the left- and right-hand sides, respectively, while K is called the interface.

Example 2.33. Several rules for moving an elevator up were described in Example 2.6.

Their left- and right-hand sides were given, but interfaces were omitted. In Fig. 2.7, the

rule move-up-NU is given as a span. Nodes of type floor are mapped according to

their labels, while the remainder of the mappings is uniquely determined.

Figure 2.7: Rule move-up-NU as a span

Recall that, in order for a rule to be applied, it requires a match in the system

state G. That is, there must be a subgraph isomorphic to the pre-conditions graph L. This

can be formalised as a mono m : L�G, which represents a subobject of the system state.

Definition 2.34 (Match). Let ρ = L
l
� K

r
� R be a rule and G an arbitrary object, repre-

senting the system state. A match for ρ in G is a monomorphism m : L�G.

Example 2.35. Recall the match for rule move-up-NU, as shown in Example 2.6.

In Fig. 2.8, it is presented as a graph morphism from the left-hand side to the system

state, where the mapping of nodes is presented with dotted lines. The mapping of edges

is omitted for readability, since it is uniquely determined from the nodes.

Figure 2.8: Match morphism for rule move-up-NU

The application of a rule at a match is then defined using pushouts as a gluing

construction, as discussed extensively by Ehrig et al. (2006).

37

Figure 2.9: Transformation step with rule move-up-NU

Definition 2.36 (Transformation). Given a match m : L�G for rule ρ , a transformation

step t : G
ρ,m
=⇒ H corresponds to a diagram like (2.12), where both squares are pushouts.

In an adhesive category, the left pushout is unique up to isomorphism when it exists,

guaranteeing that the transformation caused by a particular match is deterministic.

L K R

G D H

m

l r

k m′

l′ r′

(2.12)

Example 2.37. Recall the rule move-up-NU, given in Example 2.33, and its match

given in Example 2.35. The corresponding step is show in Fig. 2.9. Note that the pushout

square on the left deletes the necessary elements, while the pushout on the right creates.

Note that not every match determines a transformation step, since the existence of

a pushout complement is not guaranteed.

Example 2.38 (Non-Applicable Match). Consider an office building that, in order to save

electricity, deactivates some of the elevators at night and on weekends. Assume this

behaviour was modelled with a rule deactivate as shown in Fig. 2.10a, which deletes

the corresponding elevator node. The match shown in Fig. 2.10b does not determine

a transformation step. In fact, the necessary pushout complement does not exist because

it would have to delete the elevator node, but preserve its incident req-stop edge.

This problem is commonly referred to as a dangling edge.

Finally, when modelling with graph transformation, we usually assemble a trans-

formation system by combining a set of rules with an initial state.

38

Figure 2.10: Non-applicable match with rule deactivate

(a) Rule deactivate

(b) Non-applicable match

Definition 2.39 (Transformation System). A transformation system consists of a set R of

rules and an object G0 representing the initial state.

2.4 Conflicts and Parallel Independence

An important tool for understanding the behaviour of a transformation system

is the notion of parallel independence, which ensures that two transformation steps do

not interfere with each other. Essentially, steps H1
ρ1,m1⇐= G

ρ2,m2
=⇒ H2 are parallel inde-

pendent when there exist residual matches m′1 : L1→H2 and m′2 : L2→H1 as well as

steps H1
ρ2,m′2=⇒ H and H2

ρ1,m′1=⇒ H reaching the same state1. If they are not parallel indepen-

dent, it is said they are in conflict.

Example 2.40. Recall the rules move-up-NU and move-up-ND from Example 2.6,

which move an elevator up into a floor with a request of type req-up or req-down,

respectively. Fig. 2.11a shows their application to a state with two floors and two eleva-

tors, each of the rules acting on a different elevator. These transformations are parallel

independent, as the converging steps of Fig. 2.11a shows.

Example 2.41. A different case is shown in Fig. 2.11b, where the rules move-up-NU

and move-up-ND act on the same elevator. These transformations disable each other

mutually: the existence of residual matches is hindered when the at edge is deleted.

The intuition behind parallel independence is that the elements matched by either

rule are preserved by the other, and thus still available after the application. Ehrig (1978)

formalised this in set-theoretical terms as follows: steps (t1, t2) : H1
ρ1,m1⇐= G

ρ2,m2
=⇒ H2 are

1Note that this is related to, but distinct from, local confluence. The latter allows the transforma-
tions H1 =⇒∗ H and H2 =⇒∗ H to contain multiple steps, possibly involving other rules of the system.

39

Figure 2.11: Examples of parallel independence

(a) Parallel independent transformations with rules move-up-NU and move-up-ND

(b) Transformations in conflict with rules move-up-NU and move-up-ND

parallel independent when the intersection of the matches is exactly the intersection of

preserved elements: m1(L1)∩m2(L2) = m1(l1(K1))∩m2(l2(K2)). In order to prove that

this implies the existence of H1
ρ2,m′2=⇒ H and H2

ρ1,m′1=⇒ H, Ehrig (1978) has shown it equiva-

lent to Definition 2.42. Being stated in categorical terms, it was then taken as the standard

definition of parallel independence, as described in the foundational texts by Corradini et

al. (1997) and Ehrig et al. (2006).

Definition 2.42. A pair of transformation steps (t1, t2) : H1
ρ1,m1⇐= G

ρ2,m2
=⇒ H2 satisfies the

standard condition of parallel independence if and only if there exist monos q12 : L1 �D2

and q21 : L2 �D1 making diagram (2.13) commute.

R1 K1 L1 L2 K2 R2

H1 D1 G D2 H2

n1

l1r1

k1 m1 q12m2q21 k2

l2 r2

n2

g1h1 g2 h2

(2.13)

More recently, Corradini et al. (2018) noted that, although this categorical for-

mulation is equivalent to the set-theoretical version, its intuitive meaning is different:

the former emphasises the existence of residual matches, while the latter emphasises the

preservation of required elements. To capture the latter intuition categorically, the es-

sential condition was proposed, using pullbacks as a categorical generalisation of inter-

sections. Corradini et al. (2018) proved this is equivalent to the standard condition in

adhesive categories. In this thesis, we take the essential condition as the definition of

40

parallel independence.

Definition 2.43 (Parallel Independence). Transformation steps (t1, t2) : H1
ρ1,m1⇐= G

ρ2,m2
=⇒ H2

are parallel independent if and only if, given pullbacks 1©, 2© and 3© as in diagram (2.14),

the arrows K1L2→L1L2 and L1K2→L1L2 are isomorphisms.2

K1L2 L1L2 L1K2

R1 K1 L1 L2 K2 R2

H1 D1 G D2 H2

∼=
2© p2p1

∼=
3©

n1

l1r1

k1 m1 m2 k2

l2 r2

n2

g1h1

1©

g2 h2

(2.14)

Remark 2.44. If t1 and t2 are not parallel independent, we say they are in conflict. When

K1L2→L1L2 is not an isomorphism, we say t1 disables t2; when L1K2→L1L2 is not an

isomorphism, we say t2 disables t1.

Figure 2.12: Examples for the essential condition of parallel independence

(a) Parallel independent transformations with rules move-up-NU and move-up-ND

(b) Transformations in conflict with rules move-up-NU and move-up-ND

2 Since l1 and l2 are monos, this is equivalent to requiring existence of arrows L1L2→K1 and L1L2→K2
making the resulting triangles commute. However, this simpler condition is not helpful for the characteri-
sation of conflicts to be proposed in Chapter 5.

41

Example 2.45. Recall the rules move-up-NU and move-up-ND from Example 2.6,

which move an elevator up into a floor with a request of type req-up or req-down,

respectively. Fig. 2.12a shows their application to a state with two floors and two eleva-

tors, each of the rules acting on a different elevator. These steps are parallel independent,

as Fig. 2.12a shows: computing the pullbacks, the expected arrows are isomorphisms.

Example 2.46. A different case is shown in Fig. 2.12b, where the rules move-up-NU

and move-up-ND act on the same elevator. We would not expect them be parallel in-

dependent, which is indeed the case: neither of the necessary arrows are isomorphisms,

since the at edge is deleted. Thus, the transformation steps are in conflict. In fact, they

disable each other mutually.

2.5 Conflict Detection

The concepts introduced in the previous section describe the conflicts between two

particular transformation steps. When analysing a transformation system, however, one

requires an overview of all potential conflicts for each pair of rules. However, since the

set of potential conflicts is usually infinite, enumerating them is not viable.

The problem of conflict detection is then to find a finite set of conflicts while

still expressing all possible interactions. This is formally grounded on the extension of

transformations into larger contexts, such that extended transformations have essentially

the same behaviour as the original ones. Thus, the finite set of conflicts produced by

conflict detection must generate all possible conflicts by extending into larger contexts.

Definition 2.47 (Extension). An extension diagram over transformation step t : G
ρ,m
=⇒ H

and extension morphism e : G→G is a diagram like (2.15) where m = f ◦m is monic and

there is some t : G
ρ,m
=⇒ H defined by the four pushout squares of diagram (2.16). When

extension diagram (2.15) exists, we say t is embedded into t, and t is an extension of t.

G H

G H

e

t

f

t

(2.15)

L K R

G D H

G D H

m

l

k

r

n

e d

g h

f

g h

(2.16)

42

Example 2.48. Figure 2.13 presents extension diagrams with the rules move-up-NU

and move-up-ND from Example 2.6.

Figure 2.13: Extension diagrams

Problem 2.49 (Conflict Detection). Given rules ρ1 and ρ2, find a finite set S of conflicts

such that, for every conflict (t1, t2) : H1
ρ1,m1⇐= G

ρ2,m2
=⇒ H2 there exists some pair (t1, t2) ∈ S

that can be extended into (t1, t2) as in diagram (2.17).

H1 G H2

H1 G H

f

t1 t2

t1 t2

(2.17)

The problem of conflict detection is usually formulated differently, in terms of a

completeness theorem for a particular set of conflicts (e.g. Theorem 2.56). We introduce

this formulation to emphasise the fact that different solutions may exist.

2.5.1 Critical Pairs

The most common solution to conflict detection is given by critical pairs, adapted

from the context of term rewriting. Critical pairs are pairs of conflicting transformation

steps in a minimal context, where the state is completely covered by the matches. This is

formalised categorically as a jointly epic pair of matches.

Definition 2.50 (Jointly Epic). A pair of morphisms X
f→ Z

g← Y with same codomain

is jointly epic when h1◦ f = h2◦ f and h1◦g= h2◦g implies h1 = h2 for all h1,h2 : Z→Z′.

X

Z Z′

Y

f h1

h2g
(2.18)

Fact 2.51. Every pushout is jointly epic.

43

Fact 2.52. In Set, Graph and GraphT , a pair of morphisms X
f→ Z

g← Y is jointly epic

if and only if it is jointly surjective, that is, when f (X)∪g(Y) = Z.

Definition 2.53 (Critical Pair). A critical pair is a conflict (t1, t2) : H1
ρ1,m1⇐= G

ρ2,m2
=⇒ H2

such that the matches (m1,m2) are jointly epic.

Example 2.54. The conflicting transformation steps caused by rules move-up-NU and

move-up-ND given in Example 2.46 are a critical pair. On the other hand, the steps

caused by rules move-up-NU and move-up-AS given in Example 2.6 are not a critical

pair. Although they are in conflict, they are not in a minimal context. In fact, many

elements of the system state are outside the images of the matches, including the first

floor, the elevator on the left and most edges of type below.

Inspecting critical pairs is viable because, given rules with finite left-hand sides,

the set of critical pairs is also finite. Enumerating critical pairs for every pair of rules is

called critical pair analysis and is the basis for many applications which will be presented

in Chapter 8. On the other hand, inspecting critical pairs is guaranteed to uncover all

potential conflicts because every pair of conflicting transformation steps is the extension

of a critical pair, having essentially the same effect in an enlarged context. This holds in

categories with unique epi-mono pair factorisations, that is, where every pair of matches

can be uniquely decomposed into a jointly epic pair followed by a monomorphism.

Definition 2.55. A category has unique epi-mono pair factorisation when, given mor-

phisms m1 and m2 as in diagram (2.19), there exists a unique jointly epic pair (m1,m2)

and monomorphism f making diagram (2.19) commute, up to isomorphism.

L1

G G

L2

m1

m1

f

m2
m2

(2.19)

Theorem 2.56 (Completeness of Critical Pairs). In any adhesive category with unique

epi-mono pair factorisation, for every pair (t1, t2) : H1
ρ1,m1⇐= G

ρ2,m2
=⇒ H2 of conflicting trans-

formation steps there exists a critical pair (t1, t2) : H1
ρ1,m1⇐= G

ρ2,m2
=⇒ H2 that can be embedded

into (t1, t2) as in diagram (2.20).

H1 G H2

H1 G H

f

t1 t2

t1 t2

(2.20)

Proof. Shown, for example, by Ehrig et al. (2006).

44

2.5.2 Initial Conflicts

Despite being finite, sets of critical pairs are often very large. Indeed, there is often

redundancy such as in Fig. 2.13, where both the upper and lower pairs of steps are critical

pairs, but one is an extension of the other. In order to curb this redundancy, Lambers et

al. (2018) proposed a notion of initiality with respect to extension.

Definition 2.57 (Initial Transformation Pair). Given a pair of transformation steps (t1, t2) :

H1
ρ1,m1⇐= G

ρ2,m2
=⇒ H2, the pair (s1,s2) : J1

ρ1,n1⇐= I
ρ2,n2
=⇒ J2 is an initial transformation pair

for (t1, t2) if it satisfies both of the following.

(i) The pair (s1,s2) can be embedded into (t1, t2) as in diagram (2.21).

J1 I J2

H1 G H2

f

s1 s2

t1 t2

(2.21)

(ii) For every pair (t1, t2) : H1
ρ1,m1⇐= G

ρ2,m2
=⇒ H2 that can be embedded into (t1, t2) as in

the lower part of diagram (2.22), then (s1,s2) can be embedded into (t1, t2) as in the

upper part of the diagram.

J1 I J2

H1 G H2

H1 G H2

h

s1 s2

g

t1 t2

t1 t2

(2.22)

Initial transformation pairs are not guaranteed to exist in any category, but Lambers

et al. (2018) proved they exist in categories of typed graphs. When they do exist, they are

a subset of critical pairs that also solves the problem of conflict detection. Moreover,

since they are often much less numerous, they are a more efficient solution. Indeed, a pair

of relatively simple rules provided by Lambers et al. (2018) has 21,478 critical pairs, but

only 7 initial conflicts. More evidence of this will be provided in Chapter 7.

Definition 2.58 (Initial Conflict). A conflict (t1, t2) : H1
ρ1,m1⇐= G

ρ2,m2
=⇒ H2 is initial when it

is isomorphic to its initial transformation pair.

Example 2.59. The upper pair shown in Fig. 2.13 is an initial conflict.

45

2.6 Initial Pushouts

An important tool for the theoretical development of this thesis is the initial push-

out. In many categories, it characterises the “differences” between the domain and co-

domain of a morphism. In particular, it identifies parts of the codomain that are missing

from the domain, serving as a kind of “complement” for subobjects.3

Definition 2.60 (Initial pushout). Given a morphism f : X→Y , diagram (2.23) is an initial

pushout (over f) when, for any pushout 3© with monic x and y, there are unique arrows b∗

and c∗ making diagram (2.24) commute and square 2© a pushout. That is, pushout (2.23)

is initial with respect to all pushouts 3©: pushouts along mono resulting in f .

B X

C Y

b

f f

c

(2.23)
B U X

C V Y

b

f

b∗ x

g f

c

c∗ y

2© 3© (2.24)

Remark 2.61. The subobject b : B→X is the boundary of f , while c :C→Y is the context.

Fact 2.62 (GABRIEL et al., 2014). In an adhesive category, any commutative square 2©
is a pushout when 3© and (2.23) are pushouts.

Lemma 2.63. In adhesive categories, a context completely determines the initial pushout.

Proof. Since initial pushouts are along mono, they are also pullbacks. Thus, the initial

pushout for a morphism f can be constructed by pulling back the context along f .

Note that initial pushouts do not exist in every category. Nonetheless, they do have

a well-known construction in categories of graphs and typed graphs.

Construction 2.64 (EHRIG et al., 2006). Let f : X→Y be a graph morphism, with

Y = (V,E,s, t). In order to construct the initial pushout of f , by Lemma 2.63, we need

only construct the context. Thus, we will construct the context graph C as a subgraph

of Y , taking the inclusion c : C ↪→ Y as context morphism.

The context graph C = (V ′,E ′,s′, t ′) for f can be constructed as follows. We de-

note by card(X) the cardinality of set X , by f [S] = { f (x) | x ∈ S} the image of a set and

3It is actually the dual notion of a pseudo-complement, but a lattice-theoretical characterisation of initial
pushouts is beyond the scope of this thesis.

46

by f−1[S] = {x ∈ X | f (x) ∈ S} the preimage.

E ′ =
{

e ∈ E | card
(

f−1[{e}]
)
6= 1
}

s′(e) = s(e) for e ∈ E ′

V ′ =
{

v ∈V | card
(

f−1[{v}]
)
6= 1
}
∪ s[E ′]∪ t[E ′] t ′(e) = t(e) for e ∈ E ′

Informally, we select nodes and edges of Y that are either outside the image of f ,

or are the identification by f of multiple elements from X . We also add the necessary

source and target nodes for the graph to be well-defined. The source and target functions

are just restricted on their domain.

Example 2.65. Fig. 2.14 shows an initial pushout in the category of typed graphs for the

elevator control system, that is, with the type graph from Example 2.4. Note that the con-

text graph contains floor y, since it has two preimages under f , and the req-stop edge

from the elevator to floor y, since it is outside the image of f . It also contains the

elevator node, even though it has a unique preimage, because it is the source of the

req-stop edge.

Figure 2.14: Initial pushout of typed graphs

Moreover, Gabriel et al. (2014) have shown the existence of initial pushouts in all

finitary adhesive categories, which are adhesive categories where each object has a finite

set of subobjects. These are appropriate for most applications, since rules are almost

always composed of finite graphs, and system states are also usually finite.

Definition 2.66 (Finite Object, Finitary Category). An object X is finite if it has a finite

number of subobjects, that is, if the poset Sub(X) is finite. A category is finitary if all its

objects are finite. The finitary restriction of a category is its full subcategory containing

exactly the finite objects.

Lemma 2.67 (GABRIEL et al., 2014). The finitary restriction of an adhesive category is

also adhesive. In a finitary adhesive category, all morphisms have initial pushouts.

Given a transformation rule, initial pushouts can be used to determine which parts

of the left-hand side are deleted.

47

Definition 2.68. Given rule ρ = L
l
�K

r
�R, its deletion object cl ∈ Sub(L) is the context

of the initial pushout over l.

Example 2.69. The deletion object for rule move-up-NU is shown in Fig. 2.15.

Figure 2.15: Deletion object for rule move-up-NU.

Moreover, initial pushouts can be used to determine if a match is applicable, that

is, if the necessary pushout complement exists. This is the so-called gluing condition.

Lemma 2.70 (Gluing Condition). In any adhesive category, let l : K �L and m : L→G

be monomorphisms and square 2© of diagram (2.25) be an initial pushout over m. Then

there exists a pushout square 1© if and only if there is a morphism b∗ with bm = l ◦b∗.

K L Bm

D G Cm

l

k m

bm

b∗

m

g

1© 2©

bm

(2.25)

Proof. Shown, for example, by Ehrig et al. (2006).

Since the context of an initial pushout should contain the parts of the codomain

that are “different” from the domain, the context of an isomorphism should be empty in

some sense. It is easy to see that this is the case for categories of graphs: each element

has a unique preimage under a bijection, thus no elements are in the context. Indeed, this

holds for the lattice-theoretical generalisation of “emptiness” as the bottom subobject, as

described in Remark 2.26. Then in all adhesive categories, the context c ∈ Sub(Y) of (the

initial pushout over) an isomorphism is the bottom subobject.

48

Lemma 2.71. In any adhesive category, let f : X �Y be a mono and c ∼= ⊥ ∈ Sub(Y).

Then the square of diagram (2.26) is an initial pushout over f if and only if it commutes

and f is an isomorphism.

B X

C Y

f

b

f

c

(2.26)

Proof. First note that f is an isomorphism. In fact, we have the subobject f ◦b ∈ Sub(Y)

with f ◦b ⊆Y c∼=⊥, as witnessed by f . This implies that f ◦b∼=⊥, that is, the witness f

must be an isomorphism.

[Only if part] If the square is an initial pushout and f is an isomorphism, then so

is f , since in adhesive categories pushouts preserve isomorphisms (Theorem 2.20).

[If part] Assume the square commutes and f is an isomorphism. Since f is also

an isomorphism, the square is a trivial pushout. It remains to show it is initial.

B U X

C V Y

u

b

f

x

h f

v

c

y

(2.27)

Assume the right square of diagram (2.27) is a pushout. We obtain a mono v with

c = y · v because y ⊆Y ⊥ ∼= c. Analogously, we obtain u with f ◦ b = f ◦ x ◦ u and, since

f is monic, b = x ◦ u. Finally, the left square of diagram (2.27) commutes because y is

monic and y◦ v◦ f = c◦ f = f ◦b = f ◦ x◦u = y◦h◦u.

Finally, we present a few important properties of initial pushouts. Interestingly,

they are idempotent. Moreover, they are both preserved and reflected by pushouts along

monos, as shown by Ehrig et al. (2006). We present a slightly modified statement of these

results, emphasising their relation to pushout squares instead of double-pushout diagrams.

Lemma 2.72 (IPO Reflected by PO Along Mono). In any category, every unique pushout

induced by an initial pushout is also initial. That is, if rectangle 1©+ 2© in diagram (2.28)

is an initial pushout, square 2© is a pushout with monic x and y, and square 1© is the

unique pushout making the diagram commute, then square 1© is also an initial pushout.

B U X

C V Y

b

f

b∗ x

g f

c

c∗ y

1© 2© (2.28)

49

Proof. Assume diagram (2.29) is a pushout with monic u and v. We need to show the

existence of unique b∗∗ and c∗∗ making diagram (2.30) commute, and its front-left face

a pushout. This follows from the fact that 3©+ 2© is a pushout, providing the unique

morphisms, and that x and y are monic, making the whole diagram commute.

U ′ U

V ′ V

u

h g

v

3© (2.29)

B U X

U ′

C V Y

V ′

b∗

f
b∗∗ g

x

f
u

c∗

c∗∗

y

2©

v

h
(2.30)

Corollary 2.73 (Initial Pushouts are Idempotent). If square 2© below is an initial pushout

over f , then 1© is also an initial pushout. Equivalently, square 3© below is an initial

pushout over f if and only if b and c are isomorphisms.

B B X

C C Y

f

idB

f

b

f

idC c

1© 2© (2.31)
B B X

C C Y

f

b

f

b

f

c c

3© 2© (2.32)

Proof. Follows from Lemma 2.72, since idB and idC are the unique morphisms making

the diagram above left commute.

Lemma 2.74 (IPO Preserved by PO Along Mono). In any category, if squares 1© and 3©
in diagram (2.33) are initial pushouts over f and h, while square 2© is a pushout with

monic g and k, then rectangle 1©+ 2© is an initial pushout. Moreover, the unique arrows b∗

and c∗ making diagram (2.33) commute are isomorphisms.

B W X B′

C Y Z C′

f

b

f

g

h

b′

h

b∗

c k

1© 2©

c′

3©

c∗

(2.33)

Proof. Since 1©+ 2© is a pushout, there are unique morphisms b∗ and c∗ making the dia-

gram above commute, and diagram (2.34) a pushout. If we show these are isomorphisms,

it follows immediately that 1©+ 2© is an initial pushout.

B′ B

C′ C

b∗

h f

c∗

4© (2.34)
B B′ W

C C′ Y

b

b′

f

b◦b∗

h f

c

c′ c◦c∗

5© 4©+ 1© (2.35)

50

Now consider diagram (2.35). Since 4©+ 1© is a pushout along mono and the

outer rectangle is an initial pushout, there are unique morphisms b′ and c′ making the

diagram commute and square 5© a pushout. By Lemma 2.72, 5© is also an initial pushout,

and since initial pushouts are idempotent, b′ and c′ are isomorphisms. It then follows

from diagram chasing that b ◦ b∗ = b ◦ b′ and, since b is monic, b∗ = b′, which is an

isomorphism. Analogously, c∗ = c′ is also an isomorphism.

51

3 FUNCTOR CATEGORIES AS GENERALIZED GRAPHS

As explained in the previous chapter, the algebraic approach to graph transfor-

mation is largely defined in terms of category theory. This allows its application in many

different contexts, using suitable graph-like structures such as labelled, typed or attributed

graphs, Petri nets, algebraic specifications or transformation rules themselves.

Nevertheless, some of the latest results regarding the characterisation of conflicts

have not been proven categorically. In fact, the three main advances in this field have

some results proven specifically for categories of (typed) graphs: the conflict reasons and

essential critical pairs of Lambers, Ehrig and Orejas (2008); the conflict atoms, parts and

reasons of Born et al. (2017); and the initial conflicts of Lambers et al. (2018). In all of

these cases, some of the proofs required a notion of “element” which was not available in

the categorial setting.

In this chapter, we propose categories of set-valued functors1 as a novel context

for graph transformation. We will show how this generalises many important graph-like

structures, having the necessary properties for graph transformation: adhesivity, epi-mono

pair factorisation and initial pushouts. Moreover, it still provides an appropriate notion

of “element”, allowing proofs to be carried out at a set-theoretical level. The reader is

assumed familiar with the notions of functor and natural transformation.

Definition 3.1 (Set-Valued Functor Category). Given any category S, the category SetS

has functors S→Set as objects and natural transformations as arrows.

Remark 3.2. If t : F .→G is a natural transformation between functors F,G : S→Set and

S is an object of S, we denote by tS : F(S)→G(S) the component of t on S.

It is easy to see that the category of graphs is isomorphic to SetG, where G is

depicted in diagram (3.1). A functor G : G→Set selects two sets G(V) and G(E) as well

as two functions G(s),G(t) : G(E)→G(V). A natural transformation f : G .→G′ has two

components fV : G(V)→G′(V) and fE : G(E)→G′(E), then naturality corresponds to

preservation of incidence.

G= V E
s

t
(3.1)

In fact, set-valued functors generalise graph structures, which in turn generalise

graphs and many variations (e.g. labelled graphs, hypergraphs, E-graphs), as described by
1By duality, these are precisely the categories of presheaves, that is, of contravariant set-valued functors.

Indeed, we use many results from the theory of presheaves, but avoid explicitly considering contravariant
functors SetS

op
due to notational overhead.

52

Ehrig et al. (1997).

Definition 3.3 (Graph Structure). A graph structure signature Σ = (S,Ω) contains a

set S of sorts and a family Ω = (Ωs,t | s, t ∈ S) determining operation names. A graph

structure G is a Σ-algebra of a graph structure signature Σ. That is, G = (A,O) where

A = (As | s ∈ S) is a family of carrier sets for each sort, along with an assignment of func-

tions to each operation name O = (On : As→At | s, t ∈ S,n ∈Ωs,t).

Definition 3.4 (Category of Graph Structures). Given a graph structure signature‘Σ as

well as graph structures A and A′, a graph structure morphism f : A→A′ is a family of

functions (fs | s ∈ S) that is compatible with the operations. That is, given an operation On

for the name n ∈ Ωs,t , it holds that O′n ◦ fs = ft ◦On. Graph structures for a signature Σ

along with their morphisms form the category of graph structures AlgΣ.

Fact 3.5. The category of graphs is the category of graph structures for a signature with

the sorts {V,E} and the operations {s, t}= ΩE,V .

Lemma 3.6. Every category of graph structures is isomorphic to SetS for some small and

free category S.

Proof. A graph structure signature Σ defines a graph by taking sorts as nodes and opera-

tion symbols as edges. Let S be the free category generated by this graph. It is easy to see

that the category of Σ-algebras is isomorphic to SetS.

Interestingly, the construction of functor and slice categories preserve the nature

of set-valued functors.

Lemma 3.7. Let S and T be small categories and C : S→Set a functor.

(i) The functor category (SetS)
T

is isomorphic to SetS×T.

(ii) The slice category SetS ↓C is equivalent to SetC, for some small category C.

Proof. Item (i) follows from a standard property of exponentials, proven e.g. by MacLane

and Moerdijk (2012). Item (ii) was shown in the same book, and in this case C is the

category of elements for the functor C.

It follows trivially that typed graphs are set-valued functors. Moreover, cate-

gories of spans over some SetS are also categories of set-valued functors, since they are

just (SetS)
P

for P depicted in diagram (3.2). These categories are the basis for higher-

order graph transformation, as proposed by Machado, Ribeiro and Heckel (2015), which

53

is useful to express modifications of software in the maintenance or evolution phase of

development. Note that such categories are not always graph structures, since the product

category with P is often not free, for example P×G.

P= L K Rl r (3.2)

Set-valued functor categories SetS are particularly well-behaved. It is well known2

that they inherit a lot of structure from Set, and that many categorical concepts can be

considered pointwise for each object of S. When dealing with such concepts, we will

apply set-theoretical reasoning to SetS.

Remark 3.8. Henceforth, let S be an arbitrary small category.

Lemma 3.9. In SetS, limits and colimits are constructed pointwise for each object of S.

In particular, there is a strict initial object 0 composed only of empty sets.

Proof. Proven by MacLane and Moerdijk (2012).

Lemma 3.10. In SetS, a morphism f : X→Z is monic (epic) if and only if each compo-

nent fS is injective (surjective). A pair of morphisms X
f→ Z

g← Y is jointly epic if and

only if each pair of components (fS,gS) is jointly surjective.

Proof. Recall that f is monic if and only if its pullback along itself results in the identity,

which by the previous lemma is equivalent to having each component fS be monic. The

case for epimorphisms follows by duality. Moreover, the case for jointly epic pairs follows

from the fact that a pair (f ,g) is jointly epic if and only if the morphism f +g : X +Y→Z,

induced by the coproduct and defined componentwise, is an epimorphism.

Remark 3.11. Statements in SetS involving pullbacks, pushouts, monomorphisms, epi-

morphisms and jointly epic pairs can be proved with set-theoretical reasoning. Then,

given X,Y ∈ SetS and f : X→Y, we will write X, Y and f instead of X(S), Y(S) and fS

for an implicit, universally quantified S.

The suitability of set-valued functors as a basis for DPO transformation follows

from its adhesivity. It also has unique epi-mono factorisations, necessary for the com-

pleteness of critical pairs.

Lemma 3.12. Given a small category S, the category of functors SetS is a topos. Then it

is adhesive and has unique epi-mono factorisations.
2These results are usually stated for presheaves, but they hold trivially for set-valued functors by duality.

54

Proof. The fact that SetS is a topos was shown, for example, by Johnstone (2002), who

has also shown that toposes have unique epi-mono factorisations. Lack and Sobocinski

(2005) have shown that toposes are adhesive.

In the context of graph transformation, we often have commutative squares that

are both a pullback and a pushout, including all pushouts along monos. A set-theoretic

characterisation will be useful in the following.

Lemma 3.13. In any category of functors SetS, let square (3.3) be a pullback. It is also a

pushout if and only if both of the following hold for any element z ∈ Z.

(i) If z /∈ f (X), there is a unique y ∈ Y with z = g(y).

(ii) if z /∈ g(Y), there is a unique x ∈ X with z = f (x).

W X

Y Z

f ′

g′

f

g

(3.3)

Proof. We will use set-theoretical reasoning as explained in Remark 3.11.

[Only if] Assume square (3.3) is a pushout and take any element z ∈ Z. We will

prove item (i) leaving the analogous proof of (ii) to the reader.

Assuming z 6∈ f (X), since (f ,g) is jointly epic it must hold that z ∈ g(Y). This

implies the existence of some y ∈Y with z = g(y). To prove its uniqueness, assume y′ ∈Y

with z = g(y′).

Recall that the pushout is equivalent to the coequalizer over a coproduct. That

is, if jX and jY are the coproduct injections in diagram (3.4), and e is the coequalizer

of (jX ◦ g′, jY ◦ f ′), then f = e ◦ jX and g = e ◦ jY . Since g(y) = g(y′) and jX is monic,

it must also hold that e(y) = e(y′). Moreover, since e is a coequalizer, there must be

w,w′ ∈W with f ′(w) = y, f ′(w′) = y′ and g′(w) = g′(w′). But then z = f (g′(w)) ∈ f (X),

contradicting our assumption.

X

W X +Y Z

Y

jX
fg′

f ′

e

jY
g

(3.4)

55

[If] Assume that (i) and (ii) hold. We will show that square (3.3) is a pushout by

showing it is isomorphic to any pushout of (f ′,g′), as in diagram (3.5).

X

W U Z

Y

f ′′
f

g′

f ′

h

g′′ g

(3.5)

Assuming that the inner square of diagram (3.5) is a pushout, we have a unique

morphism h making the diagram commute. Note that (f ,g) is jointly surjective: for every

z∈ Z, having z /∈ f (X) and z /∈ g(Y) contradicts assumptions (i) and (ii). If we show that h

is monic, we will have two epi-mono pair factorisations for (f ,g), namely h after (f ′′,g′′)

and idZ after (f ,g). Then, by uniqueness of epi-mono pair factorisations, h must be an

isomorphism.

In order to prove h is monic, by Theorem 3.10 we may show that all components

of h are injective: taking any elements u1,u2 ∈U such that h(u1) = h(u2), we will show

u1 = u2. Since (f ′′,g′′) is a pushout and thus jointly epic, u1,u2 ∈ f ′′(X)∪ g′′(Y). We

have the following cases.

• Assume u1 and u2 have preimages on either object, which without loss of generality

we assume to be u1 ∈ f ′′(X) and u2 ∈ g′′(Y). There is x ∈ X with u1 = f ′′(x) and

y ∈ Y with u2 = g′′(y). We will show that x and y are identified by (f ,g), so they

have a common preimage in the pullback W and they must be identified in the

pushout U .

First note that f (x) = h(f ′′(x)) = h(u1) = h(u2) = h(g′′(y)) = g(y). Since

(f ′,g′) is the pullback of (f ,g), there is some w ∈W with x = g′(w) and y = f ′(w).

Then u1 = f ′′(x) = f ′′(g′(w)) = g′′(f ′(w)) = g′′(y) = u2.

• Assume that u1 and u2 only have preimages in one of the objects, which without

loss of generality we assume to be X . There are x1,x2 ∈ X with u1 = f ′′(x1) and

u2 = f ′′(x2), but there is no y ∈ Y with u1 = g′′(y) or u2 = g′′(y). We will prove by

contradiction that x1 = x2, which implies u1 = u2. Thus assume x1 6= x2.

Note that, since u1 and u2 are identified by h, x1 and x2 must be identified

by f : we have f (x1) = h(f ′′(x1)) = h(u1) = h(u2) = h(f ′′(x2)) = f (x2). Then

there is no unique x ∈ X with f (x1) = f (x), since this holds for x1 and x2. By

the contrapositive of assumption (ii), this implies the existence of some y ∈ Y with

f (x1) = g(y).

56

But the identification of x1 and y by (f ,g) implies they are also identified

by (f ′′,g′′). In fact, since (f ′,g′) is the pullback of (f ,g), when f (x1) = g(y) there

exists some w ∈W with x1 = g′(w) and y = f ′(w). Then f ′′(x1) = f ′′(g′(w)) =

g′′(f ′(w)) = g′′(y).

This contradicts our assumption that u1 has no preimage in Y , since now

g′′(y) = f ′′(x1) = u1. Thus, x1 6= x2 must be false.

From the previous lemma, we can define a construction for initial pushouts. In

fact, its contrapositive determines which elements must be in the context: those with-

out a unique preimage. The following construction takes only those elements along with

their boundary, which necessary to make an object well-defined. Compare it to Construc-

tion 2.64, which it generalises.

Construction 3.14. Given a morphism f : X→Y in category SetS, its context object C⊆Y

can be constructed by taking all elements y ∈Y whose preimage f−1(y) is not a singleton

set, along with their boundary. Then the context morphism is just the inclusion c : C ↪→Y .

Formally, we denote the preimage f−1
S (y)= {x ∈ X(S) | y = fS(x)} and by card(Z)

the cardinality of a set Z. Then we define the action of C on each object S ∈ S with

equations (3.6) and (3.7). Then for each morphism k : T → S of S, we define C(k) by

restricting Y (k) on its domain.

CS =
{

y ∈ Y (S) | card(f−1
S (y)) 6= 1

}
(3.6)

C(S) =
{

Y (k)(y) | T ∈ S, y ∈CT , k : T→S
}

(3.7)

Intuitively, equation (3.6) selects elements of Y that are either outside the image

of f , or are the identification by f of multiple elements from X . Then equation (3.7) adds

the necessary “subelements” to ensure that the construction is well-defined.

Lemma 3.15. Every category of functors SetS has initial pushouts for all arrows, whose

context corresponds to Construction 3.14.

Proof. Construct c in diagram (3.8) as in Construction 3.14, then obtain rectangle 1©+ 2©
as a pullback.

B U X

C V Y

b

f ′
b∗ u

g f

c

c∗ v

1© 2© (3.8)

To show that the constructed rectangle is a pushout, by Theorem 3.13 it suffices to

show that every y ∈ Y outside the image of c has a unique preimage by f . This follows

57

directly from the construction of C: if y had no or multiple preimages by f , it would be

in CS and therefore in C.

To show the constructed pushout is initial, take any pushout 2© as in diagram (3.8).

For each y ∈C ⊆ Y , again by Theorem 3.13, there is a unique y′ ∈V with v(y′) = y. This

determines a morphism c∗ : C→V making the lower triangle commute. Then by the

pullback property there is a unique b∗ making the whole diagram commute.

Finally, from the construction of initial pushouts, we can provide a set-theoretical

characterisation of the gluing condition from Lemma 2.70, which ensures the existence of

pushout complements. This corresponds to the usual dangling condition for graphs, stat-

ing that no unmatched elements of the system state may be incident to a deleted element.

If there were such elements, they would be left “dangling” by the transformation.

Lemma 3.16 (Dangling Condition). In a category SetS of set-valued functors, given

monomorphisms l : K �L and m : L�G the following statements are equivalent.

(i) There exists a pushout square 1© as in diagram (3.9)

(ii) For every y ∈ GT \m(LT) incident to some x ∈ m(LS), that is, with Gi(y) = x for

some i : T→S in category S, it holds that x ∈ m(l(KS)).

K L Bm

D G Cm

l

k m

bm

b∗

m

g

1© 2©

bm

(3.9)

Proof. Given the initial pushout 2© over m, we will show that item (ii) holds if and only if

there exists some b∗ with bm = l ◦b∗, which is equivalent to (i) by Lemma 2.70. Assume

also, without loss of generality, that the context of the initial pushout corresponds to

Construction 3.14, and that morphisms l and bm are inclusion. Then, if b∗ exists, it must

also be an inclusion.

[If] Assume the inclusion b∗ exists, that is, Bm ⊆ K ⊆ L. Let y ∈ GT \m(LT)

be incident to some some x ∈ m(LS)⊆ GS. It follows from Construction 3.14 that y ∈CS
m

and x ∈ CT
m. Then, since square 2© is a pullback, there is a preimage x′ ∈ Bm with

x = m(x′) = m(x). But since x′ ∈ Bm ⊆ K, we also have x = m(l(x′)), and we conclude

that x ∈ m(l(KT)).

[Only if] Assuming item (ii) holds, we will show that Bm ⊆ K by taking any

x′ ∈ Bm ⊆ L and showing that x′ ∈ K. Consider the image x = m(x′) = m(x′) ∈Cm ⊆ G,

it follows from Construction 3.14 that there exists some incident y ∈ GT and i : T→S

such that x = Gi(y) and card(m−1(y)) 6= 1. Moreover, since m is injective, we have

58

card(m−1(y)) = 0 and y ∈ GT \m(LT). It then follows from item (ii) that x ∈ m(l(KS)).

We conclude, since l is an inclusion, that x′ ∈ Bm.

59

4 GENERALIZED SUBOBJECTS

An important goal of this thesis is to provide a formal account for root causes of

conflicts between transformation steps and rules. Recall from Section 2.4 that conflicts

occur when a transformation step deletes parts of the system state that are necessary for

another step. When dealing with a particular pair of steps, an appropriate characterisation

will identify such elements of the system state, that is, an appropriate subobject.

To analyse a transformation system, however, one requires an overview of poten-

tial conflicts between each pair of rules. In this case, referring to particular system states

should be avoided. An alternative, given a pair a rules, is to identify the parts of the

left-hand sides that cause a conflict when identified by the matches.

In set-theoretical terms, given rules ρ1 and ρ2, a potential conflict could be char-

acterised by an appropriate set S ⊆ L1× L2. Such a set would contain pairs (x1,x2) of

elements from the left-hand sides such that, when a pair of matches identifies all those

elements, they cause a conflict.

Example 4.1 (Set-Theoretic Characterization of Conflicts). Recall from Example 2.6 the

rule move-up-NU. It has multiple potential conflicts with itself, as shown in Fig. 4.1.

The causes of these conflicts could be described by the following sets containing pairs

of edges. We denote each edge by their label from Fig. 4.1a, with a subscript to indicate

whether they are matched by the transformation step on the left (e1) or right (e2).

S1 = {(at1,at2)} (4.1)

S2 = {(req1,req2)} (4.2)

S3 = {(at1,at2),(req1,req2)} (4.3)

Note that each of the conflicts shown in Fig. 4.1 corresponds to a different over-

lapping of the left-hand sides. Note also that set S3 is just the union of S1 and S2, because

the corresponding transformation overlaps exactly the edges from S1 and S2.

An advantage of a set-theoretical characterisation is that the a notion of “subcause”

is naturally defined by containment of sets, and composing or decomposing the causes is

also possible with set-theoretical constructions. On the other hand, its precise definition

would have to be restated for each kind of transformed object. In fact, it may not be

obvious how to define it for some kinds of objects, such as attributed or symbolic graphs.

Therefore, a category-theoretic characterisation would be preferred.

60

Figure 4.1: Conflicting transformation steps of move-up-NU with itself

(a) Rule move-up-NU with edges labelled according to Example 4.1.

(b) Conflict characterised by S1 in Example 4.1.

(c) Conflict characterised by S2 in Example 4.1.

(d) Conflict characterised by S3 in Example 4.1.

A natural generalisation for subsets of a Cartesian product are spans. For causes

of conflicts, spans of monomorphisms are appropriate. They generalise the intuition that,

since the matches are monic, each element from a rule’s left-hand side can only be iden-

tified with a single element from the other rule.

Example 4.2 (Characterization with Spans). Each set Si identified in Example 4.1 corre-

sponds to the span Ci of monomorphisms shown in Fig. 4.2.

Figure 4.2: Causes of conflicts for move-up-NU as spans.

C3 =

C1 = C2 =

L1 = = L2

The generality of this view, however, comes at a cost: notions of containment,

composition and decomposition are not immediately available for such spans. The main

goal of this chapter is to reconstruct these notions in a categorical setting, applying notions

61

of lattice theory to appropriate sets of spans Indeed, lattice theory is the natural language

for reasoning about containment (which is a partial order) as well as composition and

decomposition (having notions similar to union and intersection).

Interestingly, the tools we desire are already available for the categorical notion

of subobject (Definition 2.23). The set Sub(X) of subobjects for an object X is naturally

equipped with a “containment” relation. Moreover, in adhesive categories, Sub(X) is a

distributive lattice (Theorem 2.24). Then, when it is finite, Birkhoff’s representation theo-

rem implies that Sub(X) behaves exactly like a lattice of subsets. In fact, finite distributive

lattices are built from their irreducible elements, each element corresponding to a set of

irreducibles. The utility of lattice theory in the context of adhesive categories was recog-

nised by Baldan et al. (2011), who provided many useful results regarding irreducible

subobjects.

In the remainder of this chapter, we will use subobjects as a basis to provide an

appropriate context for characterising causes of conflicts between transformation steps

and rules. First, we will review some definitions and important results of lattice theory.

Then we will define a generalised notion of subobject for arbitrary diagrams, and study in

particular the partially ordered sets Sub(L1
m1→G

m2← L2) of subobjects for a monic cospan,

and Sub(L1,L2) of subobjects for a pair of objects. The former will be useful when

characterising conflicts for a particular pair of steps, and the latter for potential conflicts

between rules. An overview of the main results is provided in Table 4.1.

Table 4.1: Main results of Chapter 4

Required
Context Result

Any category Theorem 4.36 Sub(m1,m2)⊆ Sub(L1,L2)

Adhesive
category C

Theorem 4.38 Sub(L1,L2) =
⋃{

Sub(m1,m2) | L1
m1
� G

m2
� L2

}
Corollary 4.33 Sub(m1,m2) is distributive lattice

Adhesive
category with

equalisers

Theorem 4.48 Sub(L1,L2)]{>} is a lattice
Lemma 4.46 Construction of intersections in Sub(L1,L2)
Lemma 4.47 Construction of unions in Sub(L1,L2)
Lemma 4.51 Characterisation of irreducibles in Sub(L1,L2)

Remark 4.3. As we will show, the notions of containment, union and intersection coin-

cide for Sub(m1,m2) and Sub(L1,L2). Thus, in the following chapters, we will denote

them by a ⊆Sub b, a ∪Sub b and a ∩Sub b, whenever the pair of objects (L1,L2) or the co-

span of monos (m1,m2) is clear from the context. The subscript Sub will also be omitted

62

when no ambiguity arises.

4.1 Lattice Theory

This section briefly introduces some important concepts of lattice theory. For a

more thorough explanation, we point to the textbook by Davey and Priestley (2002).

Definition 4.4 (Poset). A partially ordered set (poset) is a set P equipped with a reflexive,

anti-symmetric and transitive relation, denoted ⊆P and called a partial order.

Fact 4.5 (Strict Order, Cover). Every poset P determines a strict order ⊂P and a cov-

ering relation ·⊂P defined as follows. Moreover, every strict order or covering relation

uniquely determines a partial order.

(i) a ⊂P b if and only if a ⊆P b and a 6= b.

(ii) a ·⊂P b if and only if a ⊂P b and a ⊆P a′ ⊂P b implies a′ = a, for every a′ ∈ P.

Definition 4.6 (Top, Bottom). A poset P may have a top element that is greater than all

other elements, denoted >. Dually, it may have a bottom element denoted ⊥.

If posets don’t have a top or bottom element, it is sometimes useful to add one.

Then we define P> = P]{>}, where a ⊆P>> for every a ∈ P>, and a ⊆P> b if and only

if a ⊆P b for every a,b ∈ P. The poset P⊥ is defined analogously.

Definition 4.7 (Supremum, Infimum). Let P be a poset and S⊆ P. An upper bound for S

is an element a ∈ P such that b ⊆P a for every b ∈ S. Then the supremum for S is its least

upper bound, which may not exist. Dually, the infimum for S is its greatest lower bound.

Posets where every finite subset has a supremum and infimum are particularly

well-behaved, and called lattices. In this case, suprema and infima determine binary oper-

ations that are usually called join and meet, and sometimes called union and intersection.

Definition 4.8 (Lattice). A poset L is a lattice when every two elements a,b∈ L have a su-

premum and an infimum. Then the supremum of {a,b} is called a join and denoted a ∪L b.

Dually, the infimum of {a,b} is called a meet and denoted a ∩L b.

Fact 4.9. Any non-empty finite subset S⊆ L of a lattice has a supremum and an infimum.

Remark 4.10. We will refer to joins as unions and to meets as intersections. These

names are usually reserved for distributive lattices as defined below, but in the context of

subobjects we will apply them to non-distributive lattices as well.

63

Lattices where all subsets have suprema and infima are called complete. In this

case, joins and meets can be defined as operations over subsets of the lattice. Moreover,

these operations are compatible with the unions and intersections of subsets.

Definition 4.11 (Complete Lattice). A lattice L is complete when every subset S ⊆ L has

a supremum and an infimum. Then the supremum and infimum of S are also called its

join (or union) and meet (or intersection), denoted
⋃

L S and
⋂

L S, respectively.

Fact 4.12. Every finite lattice is complete.

Fact 4.13. Every complete lattice L has >=
⋃

L L and ⊥=
⋂

L L.

Fact 4.14. For all subsets A,B⊆ L of a complete lattice L, equations (4.4) and (4.5) hold.(⋃
L

A
)
∪L

(⋃
L

B
)
=
⋃

L
(A∪B) (4.4)(⋂

L
A
)
∪L

(⋂
L

B
)
=
⋂

L
(A∪B) (4.5)

Lattices where unions and intersections distribute over each other are called dis-

tributive, and are even more well-behaved. In fact, every finite distributive lattice is iso-

morphic to some lattice of powersets, a result known as Birkhoff’s representation theo-

rem. For a thorough discussion of these concepts we refer to the textbook by Davey and

Priestley (2002).

Definition 4.15 (Distributive Lattice). A lattice L is distributive when equations (4.6)

and (4.7) hold for every a,b,c ∈ L.

a ∪L (b ∩L c) = (a ∪L b) ∩L (a ∪L c) (4.6)

a ∩L (b ∪L c) = (a ∩L b) ∪L (a ∩L c) (4.7)

Interestingly, there is an appropriate notion of minimal “building blocks” for a lat-

tice. These are the irreducible elements: non-bottom elements that cannot be decomposed

as a union of strictly smaller elements. It turns out that every element of a lattice is a union

of irreducible elements.

Definition 4.16 (Irreducible Element). Let L be a lattice. An element a ∈ L is weak irre-

ducible when a = b ∪L c implies that a = b or a = c, for every b,c ∈ L. Moreover, a is

irreducible when it is weak irreducible and a 6=⊥.

Fact 4.17. In a finite lattice L, an element a ∈ L is irreducible if and only if it covers

exactly one element, that is, when there is a unique b ∈ X with b ·⊂L a.

64

Fact 4.18. In a finite lattice L, every element is a union of irreducibles. In fact, equa-

tion (4.8) holds for every a ∈ L.

a =
⋃

L
{b ∈ L | b ⊆L a, b irreducible} (4.8)

Example 4.19 (Irreducible Subgraphs). Every graph determines a lattice of subgraphs.

In this lattice, the irreducible elements are those subgraphs containing exactly one node

or exactly one edge along with its source and target. Figure 4.3 presents the lattice of

subgraphs for a particular graph, highlighting the irreducible elements.

Figure 4.3: Lattice of subgraphs with irreducibles highlighted by shadows

G =

Finally, we present an induction principle for elements of finite posets, including

finite subsets of a lattice. It is based on the height of an element, which is the maximal

distance between it and any minimal element.

Definition 4.20. A chain is a poset C with a total order, that is, where a ⊆C b or a ⊆C b

for every a,b ∈C. Given a poset P, we call a poset C ⊆ P with total order a chain in P.

Definition 4.21. Let P be a poset. A subset S ⊆ P is a down-set when a ⊆P b and a ∈ S

imply b∈ S, for every a,b∈ P. Moreover, the down-set of a∈ P is ↓a = {b ∈ P | b ⊆P a}.

Definition 4.22. In a finite1 poset P, the height h(a) of an element a ∈ P is the size of the

longest maximal chain in ↓a. That is, denoting by card(X) the cardinality of set X , we

define h(a) = max{card(C) |C ⊆ ↓a, C is a chain}.

Fact 4.23. If a ⊂P b, then h(a)< h(b).
1We could require a weaker property of the poset, namely that it has no infinitely descending

chains (DAVEY; PRIESTLEY, 2002), that is, for every chain c0 ⊇ c1 ⊇ c2 ⊇ . . . there is some i with ci = c j
for every j ≥ i.

65

Remark 4.24. We can prove statements about all elements of a finite poset using math-

ematical induction on the height of these elements. That is, we have to show that the

statement holds for all minimal elements and, if it holds for all elements of lesser height,

then it holds for a particular element.

4.2 Generalised Subobjects

In order to define a generalised notion of subobject, we first review some concepts

of category theory related to diagrams. The reader is assumed familiar with the defini-

tion of diagram as a functor from a small category, which is given in most textbooks of

category theory such as Riehl (2017).

Definition 4.25 (Diagram). Let C be a category and I a small category. A diagram of

shape I in C is a functor D : I→C. We denote by |D|= (Di ∈ C)i∈I the family of objects

contained in diagram D, indexed by the objects of I.

Remark 4.26. A pair of objects in a category C can be seen as a diagram of shape P,

where P contains only two objects and their identities. Similarly, a cospan L1
m1→ G

m2← L2

can be seen as a diagram of shape S, where S contains three objects, their identities and

the two morphisms with same codomain.

Sources and sinks generalise morphisms, allowing multiple domain or codomain

objects. Cones for a diagram D are sinks with codomain |D|, covering the whole diagram

and commuting with all its morphisms. There is a dual notion of cocone, but it will not

be relevant for this work.

Definition 4.27 (Source, Sink). Given a family of objects L = (Li)i∈I as well as objects A

and G, a source a : A→L is a family of morphisms (ai : X→Li)i∈I and a sink m : L→G

is a family (mi : Li→G)i∈I . A source (sink) is fully monic when all its components are

monic.

Definition 4.28 (Cone). Let D be a diagram of shape I in C. A cone for diagram D is a

source a : A→|D| in C such that diagram (4.9) commutes for all morphisms d : Di→D j

in the diagram D. Given cones a : A→|D| and b : B→|D|, a cone morphism f : a→b is

a morphism f : A→B in category C such that ai = bi ◦ f for every Di ∈ |D|. That is, all

triangles as in diagram (4.10) commute.

66

A

Di D j

ai a j

d

(4.9)

Di

A B
...

D ja j

ai

f

bi

b j

(4.10)

Fact 4.29. Cone morphisms are mono or isomorphisms if and only if their underlying

morphisms are.

We can now define a generalised notion of subobject for arbitrary diagrams. Recall

that subobjects for an object X are monomorphisms with codomain X . Similarly, the

subobjects of a diagram D are its fully monic cones.

Definition 4.30 (D-Subobject). Let D be a diagram on a category C. Any cones a :

A�D and b : B�D are isomorphic, denoted a ∼= b, if and only is there exists a cone

isomorphism between them. Then a D-subobject is an isomorphism class of fully monic

cones over D. Moreover, Sub(D) is the poset of D-subobjects, with a ⊆D b if and only

there exists a cone monomorphism f : a�b, called a witness.

Remark 4.31. When diagram D consists of a single object X , the poset Sub(D) is ex-

actly Sub(X) in the sense of Definition 2.23.

The properties of the poset Sub(D) vary greatly according to the diagram D and

underlying category C. In the following, we study subobjects for monic cospans and for

pairs of objects, which will be useful in Chapter 5 to characterise the root causes of con-

flicts between transformation steps and of potential conflicts between rules, respectively.

4.2.1 Subobjects for Monic Spans

When characterising the conflict for a particular pair H1
ρ1,m1⇐= G

ρ2,m2
=⇒ H2 of trans-

formations, we must consider the matches (m1,m2). Then any span L1
e1←C

e2→ L2 char-

acterising the conflict should commute with the matches as in diagram (4.11), since only

elements matched by both rules can cause a conflict.

C

L1 L2

G

e1 e2

m1 m2

(4.11)

67

A suitable context for characterising these conflicts is the poset Sub(m1,m2) of

subobjects for the matches. Since it imposes more restrictions than the poset Sub(L1,L2)

of subobjects for the left-hand sides, namely commutation with the matches, it has a

richer structure. Indeed, if L1
p1← L1L2

p2→ L2 is the pullback of the matches, Sub(m1,m2)

is isomorphic to Sub(L1L2), which in adhesive categories is a distributive lattice. Thus,

we obtain notions of union, intersection and emptiness for m-subobjects.

Theorem 4.32. Let L1
m1→G

m1← L2 be a cospan of monos with pullback object L1L2. Then

the poset Sub(m1,m2) is isomorphic to Sub(L1L2).

L1

A L1L2 G

L2

m1

a2

a1

â

p1

p2 m2

(4.12)

Proof. This follows directly from the universal property of pullbacks. In fact, given a

cone L1
a1
� A

a2
� L2 commuting with (m1,m2), there is a unique morphism â : A→L1L2

making diagram (4.12) commute. Since a1 = p1 ◦ â is monic, â is also monic, thus we

constructed a unique mono corresponding to the cone. Given a mono â : X �L1L2, we

can construct the cone a = (p1 ◦ â, p2 ◦ â). These constructions establish a bijection.

Corollary 4.33. In an adhesive category, Sub(m1,m2) is a distributive lattice, with the

following notions analogous to Theorem 2.24 and Remark 2.26, given a,b∈ Sub(m1,m2).

(i) The intersection a∩m b is obtained from a pullback.

(ii) The union a∪m b is obtained from a pushout over the intersection.

(iii) The top or maximum subobject > ∈ Sub(m1,m2) is the pullback of (m1,m2).

(iv) The bottom or minimum subobject ⊥ ∈ Sub(m1,m2) can be seen as the empty

subobject, if it exists. When the category has a strict initial object 0, then ⊥ is

determined by it.

4.2.2 Subobjects for Pairs of Objects

When characterising potential conflicts for a pair of rules, we cannot explicitly

depend on pairs of matches: each potential cause should implicitly represent multiple

pairs of matches. Thus, the appropriate context to investigate potential conflicts is the

poset Sub(L1,L2) of subobjects for the left-hand sides.

68

Unfortunately, subobjects for the left-hand sides are not as well-behaved as sub-

objects for pairs of matches. In fact, they may fail to have upper bounds and therefore

unions, so Sub(L1,L2) is often not a lattice. Nevertheless, in the remainder of this sec-

tion we will provide appropriate notions of intersection, union (as a partial function) and

irreducible elements for Sub(L1,L2).

Remark 4.34. Henceforth, let L = (L1,L2) be an arbitrary pair of objects.

Example 4.35. Let L1 and L2 be the graphs shown in Fig. 4.4. Graph L1 contains two

nodes of type floor, denoted a and b, while L2 contains a single node of this type,

denoted c. Their poset of subobjects Sub(L1,L2) is shown in Fig. 4.4. Note that the spans

corresponding to {(a,c)} and {(b,c)} have no upper bound, since they are both maximal

elements. Indeed, the span corresponding to {(a,c),(b,c)} has a non-monic projection

to L2 and therefore does not determine a subobject. Since a pair of elements has no upper

bound and therefore no supremum, the poset Sub(L1,L2) is not a lattice.

Figure 4.4: Example of subobjects for a pair of typed graphs.

L1 = = L2

Sub(L1,L2) =

Even though the elements of Sub(L1,L2) are not explicitly related to any pair of

matches, we can reveal a lot of its structure by exploring their implicit relations. Indeed,

given any object G and cospan m : L �G, every (m1,m2)-subobject is also a subobject

of (L1,L2). Thus, each element of Sub(L1,L2) may be also in Sub(m1,m2) for zero or

more cospans m : L �G. Moreover, the partial orders for Sub(m1,m2) and Sub(L1,L2)

are compatible, and the former is a down-set of the latter.

Theorem 4.36. Let m : L �G be a cospan of monos.

(i) Sub(m1,m2)⊆ Sub(L1,L2)

(ii) Given a,b ∈ Sub(m1,m2), a ⊆L b if and only if a ⊆m b

(iii) Given a,b ∈ Sub(L1,L2), if a ⊆L b and b ∈ Sub(m) then a ∈ Sub(m)

69

Proof. Note that all cones for (m1,m2) are also cones for (L1,L2), and all cone morphisms

for (m1,m2) are also cone morphisms for (L1,L2). Diagram (4.13) illustrates the proof.

L1

A B G

L2

m1

aB

a1

a2

b2

b1

m2

(4.13)

(i) Given a ∈ Sub(m1,m2), since a is a cone for (L1,L2), then a ∈ Sub(L1,L2).

(ii) Given a,b∈ Sub(m1,m2) with a ⊆m b, the witness aB : a�b is also a cone mono-

morphism for (L1,L2), witnessing a ⊆L b.

(iii) Since b : B�L is a cone for m, we have m1 ◦b1 = m2 ◦b2. Moreover, a ⊆L b is

witnessed by some cone monomorphism aB : a�b. Then a : A�L is also a cone for m,

since m1 ◦a1 = m1 ◦b1 ◦aB = m2 ◦b2 ◦aB = m2 ◦a2 (compare the diagram above).

Remark 4.37. Henceforth, we will omit the subscripts from a ⊆L b and a ⊆m b when

there is no ambiguity.

In adhesive categories, we have an even stronger result: Sub(L1,L2) is the union

of all Sub(m1,m2). That is, every (L1,L2)-subobject is also a subobject for some monic

cospan. An important consequence of this relates the lattice-theoretical notion of upper

bounds to the categorical property of commuting with a cospan.

Theorem 4.38. Let C be an adhesive category with L1,L2 ∈ C and a,b ∈ Sub(L1,L2).

(i) Sub(L1,L2) =
⋃{Sub(m1,m2) | m : L �G, G ∈ C}

(ii) a ⊆L b if and only if a ⊆m b for some m : L →G.

Proof. (i) Equation (4.14) follows from Theorem 4.36, so we must show equation (4.15).

Sub(L1,L2)⊇
⋃
{Sub(m1,m2) | m : L �G, G ∈ C} (4.14)

Sub(L1,L2)⊆
⋃
{Sub(m1,m2) | m : L �G, G ∈ C} (4.15)

Given b ∈ Sub(L1,L2), consider the pushout n = L1
n1→ G

n2← L2 of (b1,b2). By

adhesivity, n1 and n2 are monic. Then b is a cone for n : L �G, which implies:

y ∈ Sub(n1,n2)⊆
⋃
{Sub(m1,m2) | m : L �G, G ∈ C} (4.16)

(ii) The if direction follows from Theorem 4.36. For the only if direction, take

any a,b ∈ Sub(L1,L2) with a ⊆L b. It follows from (i) that b ∈ Sub(m1,m2) for some

m : L →G, and then from Theorem 4.36 that a ∈ Sub(m1,m2) and a ⊆m b.

70

Corollary 4.39. In an adhesive category, any subobjects a,b∈ Sub(L1,L2) have an upper

bound a ⊆L c ⊇L b if and only if a,b ∈ Sub(m1,m2) for some m : L →G.

Proof. If a and b have an upper bound c, then c∈ Sub(m) for some m : L →G and, since

a ⊆m c ⊇m b, we have a,b ∈ Sub(m). On the other hand, if a,b ∈ Sub(m), then their

union a ∪m b is also an upper bound in Sub(L).

We have fully characterised the elements of Sub(L1,L2) and their partial order in

adhesive categories. Next, we investigate the existence of unions (suprema) and intersec-

tions (infima). As Example 4.35 shows, suprema don’t always exist in Sub(L1,L2), but

we will show that they are well-behaved. Moreover, under mild categorical assumptions,

all infima exist and then Sub(L1,L2) behaves nearly as a lattice.

Remark 4.40. We will refer to suprema and infima in Sub(L1,L2) as global unions and

intersections. In contrast, unions and intersections taken in some Sub(m1,m2) will be

called local.

Interestingly, all Sub(m1,m2) agree on local unions and intersections. Then every

local union and intersection is also global. Moreover, every global union is the local union

from some Sub(m1,m2).

Lemma 4.41. Let a,b ∈ Sub(L1,L2), and let m : L �G and n : L �H be cospans.

If a,b ∈ Sub(m1,m2) and a,b ∈ Sub(n1,n1), then a ∪m b = a ∪n b and a ∩m b = a ∩n b.

Proof. [Intersection] Since intersections are lower bounds we have a⊇ a ∩m b⊆ b. Then,

since intersections are greatest lower bounds, it follows that a ∩n b ⊆ a ∩m b. We can

analogously show that a ∩m b⊆ a ∩n b, concluding that a ∩m b∼= a ∩n b.

[Union] Recall from Corollary 4.33 that unions are obtained from the intersec-

tions, by pushing out witnesses of a ⊇ a ∩m b ⊆ b. Since the intersections are the same

in Sub(m1,m2) and Sub(n1,n2), the corresponding witnesses and pushouts are also the

same.

Lemma 4.42. Let m : L →G be a monic cospan and x,y ∈ Sub(m1,m2).

(i) The local intersection a ∩m b is also the global intersection of a and b in Sub(L1,L2).

(ii) The local union a ∪m b is also the global union of a and b in Sub(L1,L2).

Proof. (i) Take any lower bound c ∈ Sub(L1,L2) with a ⊇ c ⊆ b. It follows from The-

orem 4.38 that c ∈ Sub(m1,m2). Since c is a lower bound in Sub(m1,m2), we have

71

c ⊆ a ∩m b. We conclude that a ∩m b is the global intersection, that is, the infimum

in Sub(L1,L2).

(ii) Take any upper bound c ∈ Sub(L1,L2) with a⊆ c⊇ b. It follows from Theo-

rem 4.38 that there is some n : L →G with c ∈ Sub(n1,n2). Then a,b ∈ Sub(n1,n2) by

Theorem 4.36. Since c is an upper bound in Sub(n1,n2), we have a ∪n b ⊆ c. Finally, it

follows from Lemma 4.41 that a ∪m b∼= a ∪n b⊆ c. We conclude that a ∪m b is the global

union, that is, the supremum in Sub(L1,L2).

Lemma 4.43. Let m : L →G be a monic cospan. If a,b ∈ Sub(m1,m2), have an upper

bound a⊆ c⊇ b, then their global union exists and is a ∪m b for some m : L →G.

Proof. From Theorem 4.38, there is some m : L →G with c ∈ Sub(m1,m2). It also

follows from Theorem 4.36 that a,b ∈ Sub(m1,m2). We will show that a ∪m b is the

least upper bound in Sub(L1,L2). Take any upper bound a ⊆ d ⊇ b and n : L →H with

a,b,d ∈ Sub(n1,n2). Since d is an upper bound in Sub(n1,n2), we have a ∪n b⊆ d. It then

follows from Lemma 4.41 that a ∪m b∼= a ∪n b⊆ d.

Corollary 4.44. Subobjects a,b ∈ Sub(L1,L2) have a global union if and only if they

have an upper bound, or equivalently if a,b ∈ Sub(m1,m2) for some m : L →G.

Unlike unions, global intersections may be non-local. As the following exam-

ple shows, two subobjects a,b ∈ Sub(L1,L2) may have a global intersection even when

they share no cospan of monos m : L →G with a,b ∈ Sub(m1,m2). In fact, all global

intersections exist in adhesive categories with equalisers.

Example 4.45 (Non-Local Intersections). Recall graphs L1 and L2 from Example 4.35.

As Fig. 4.4 shows, the subobjects corresponding to {(a,c)} and {(b,c)} have a global

intersection, namely the empty graph ∅. This is, however, not a local intersection. In

fact, any cospan m : L →G that commutes with both subobjects has non-monic m1, since

it must identify a and b.

Lemma 4.46 (Construction of Global Intersections). In an adhesive category with equa-

lisers, all global intersections exist and are constructed as limits. Let a,b ∈ Sub(L1,L2)

be subobjects and i : I→|D| be the limit of diagram D as in (4.17). Then we can construct

the intersection a ∩L b ∼= (a1 ◦ iA,a2 ◦ iA) = (b1 ◦ iB,b2 ◦ iB). Note that this limit can be

72

constructed by an equaliser over a pullback.

X Y

L1 L2

D =

I

W

x1
x2 y1 y2

iX iY

wX wY

h

(4.17)

Proof. We will show that (a1 ◦ iA,a2 ◦ iA) is the greatest lower bound for a and b in the

poset Sub(L1,L2). Take any lower bound c∈ Sub(L1L2) with a⊇ c⊆ b. The witnesses cA

and cB determine a cone for diagram D. Then there exists a unique cone morphism h :

c→ i, which is monic because cA = iA ◦h is monic. Finally, h witnesses c⊆ i.

Having a construction for intersections, we can use it to construct unions. In this

case, however, we must check that the construction is a valid (L1,L2)-subobject.

Lemma 4.47 (Construction of Global Unions). In an adhesive category with equalisers,

global unions can be constructed as a pushout over the intersection. Let a,b ∈ Sub(L1,L2)

have intersection i ∼= a ∩L b. Let also square 3© in diagram (4.18) be the pushout of the

witnesses for a⊇ i⊆ b, which induces unique morphisms u1 and u2 making the diagram

commute. If u1 and u2 are both monic, they determine the union a ∪L b = (u1,u2). If

either of them isn’t monic, there is no union.

A L1

I U

B L2

aU

a1
a2

iB

iA

3©
u1

bU

b2

b1
u2

(4.18)

Proof. Assume the cone u = (u1,u2) : U→L , constructed as above, is fully monic.

Then we have u ∈ Sub(L1,L2) and, by Theorem 4.36, there is some m : L →G with

u ∈ Sub(m1,m2). Since the construction above is essentially the same as the construction

of local unions from Corollary 4.33, we have u ∼= a ∪m b. Then, since local unions are

also global, u is a global union of a and b.

On the other hand, assume a global union a ∪L b exists. Then it is also a local

union a∪L b∼= a∪m b, by Lemma 4.43. But then by Corollary 4.33 we must have a∪m b∼=
u, which implies u1 and u2 are monic. Thus, if u1 or u2 isn’t monic, they have no global

union.

73

We can now conclude that, in adhesive categories, Sub(L1,L2) behaves almost

like a lattice. In fact, it is missing only a top element: the poset Sub(L1,L2)> is a lattice,

constructed by adding a top element (Definition 4.6).

Theorem 4.48. In an adhesive category with equalisers, Sub(L1,L2)> is a lattice.

Proof. [Infima] If follows from Lemma 4.46 that any two elements of Sub(L1,L2) have

an infimum, the global intersection. Moreover, for any a ∈ Sub(L1,L2)>, since a ⊆L> >
the infimum of a and > exists and is a.

[Suprema] Corollary 4.44 ensures that any two elements that have an upper bound

have a supremum, the global union. Any two elements of Sub(L1,L2) that have a supre-

mum c will have the same supremum in Sub(L1,L2)>, since c ⊆ >. On the other hand,

elements with no supremum in Sub(L1,L2) had no upper bound, thus their supremum

in Sub(L1,L2)> is their only upper bound >. Finally, given any a ∈ Sub(L1,L2)>, since

a ⊆L> > the supremum of a and > exists and is >.

Then we can apply the notion of irreducibility to L -subobjects, with the result

that every L -subobject is a union of irreducibles. In Chapter 5 we will exploit a similar

result to choose a minimal set of “causes for conflicts”, reducing redundancy without loss

of information.

Definition 4.49 (Irreducible L -subobject). An irreducible L -subobject is an irreducible

element of Sub(L1,L2)> different from >.

Lemma 4.50. Every L -subobject is a union of irreducible L -subobjects.

Proof. Follows directly from Definition 4.49 and Fact 4.18.

The final result of this chapter is a characterisation of irreducible L -subobjects. It

turns out they are exactly the irreducible m-subobjects for each m : L �G, which in turn

are just irreducible subobjects in the original sense. Baldan et al. (2011) provided many

useful results about irreducible subobjects in adhesive categories.

Lemma 4.51. A L -subobject a∈ Sub(L1,L2) is irreducible if and only if it is irreducible

in every Sub(m1,m2) such that a ∈ Sub(m1,m2), with m : L →G.

Proof. [If] Assume a is irreducible in all Sub(m1,m2). Take any b,c ∈ Sub(L1,L2) with

a∼= b ∪L c. Then there is some n : L �H with a,b,c ∈ Sub(n1,n2), by Theorems 4.36

and 4.38. It follows by Lemma 4.42 that b ∪L c ∼= b ∪n c. Then since a is irreducible

in Sub(n1,n2), we must have a∼= b or a∼= c. We conclude a is irreducible in Sub(L1,L2).

74

[Only if] Assume a is irreducible in Sub(L1,L2). Take any m : L →G such that

a ∈ Sub(m1,m2), and any b,c ∈ Sub(m1,m2) with a ∼= b ∪m c. Since a is irreducible

in Sub(L1,L2) and b ∪m c ∼= b ∪L c, we must have a ∼= b or a ∼= c. We conclude a is

irreducible in Sub(m1,m2).

Remark 4.52. Due to Theorem 4.32, every irreducible m-subobject corresponds to an

irreducible subobject in the original sense.

75

5 CHARACTERIZING CONFLICTS

In this chapter, we tackle the problem of characterising root causes of conflicts.

This includes the concrete conflicts in pairs of transformation steps, as well as potential

conflicts between rules.

First, we will propose conflict and disabling essences for pairs of transformation

steps, showing they have many important properties. They are trivially related to parallel

independence, which we will show equivalent to having empty conflict essence. More-

over, essences are preserved and reflected by extension in many adhesive categories of

interest. They are also more precise than the conflict reasons proposed by Lambers, Ehrig

and Orejas (2008), since the conflict essence for a pair of steps is always contained in its

conflict reason.

In the second part of this chapter, we will turn to the potential conflicts and di-

sablings for pairs of rules. We will define the sets of potential conflict and disabling

essences for such a pair, showing that potential conflict essences uniquely determine the

initial conflicts proposed by Lambers et al. (2018) in many adhesive categories of interest.

Additional redundancy is also characterised, and irreducible essences are proposed as an

appropriate subset for manual inspection, avoiding redundancy with no loss of informa-

tion.

The main concepts involved in this chapter are shown in Fig. 5.1 along with

their relations. The main results and the necessary categorical assumptions are shown

in Fig. 5.2.

Figure 5.1: Overview of concepts related to conflicts and their root causes, with new
concepts and results written in bold.

Conflict

Conflict
Essence

Irreducible
Essence

Conflict
Reason

Critical Pair

Essential
Critical Pair

Initial
Conflict

represented
by unique

is a

has unique

uniquely determines

represented
by unique is a

is a
represented

by unique

has unique

contained
in

uniquely determines is a

is union
of 1..*

Available for: Adhesive Categories SetS GraphT

76

Figure 5.2: Overview of main results and categorical assumptions in Chapter 5. Results
are drawn with solid lines while assumptions are drawn with dashed lines.

Empty conflict essence
equivalent to

parallel independence
(Theorem 5.6)

Essences contained in
deletion objects

(Lemma 5.7)

Essences contained
in reasons

(Theorem 5.14)

Adhesivity
(Definition 2.18)

Proto-Essence
Inheritance

(Definition 5.8)

Essence
Inheritance

(Theorem 5.9)

PO-PB Decomposition
via Proto-Essence

(Definition 5.22)

Potential essences
determine

initial conflicts
(Theorem 5.26)

Finite Objects
(Definition 2.66)

Potential essences
are unions of

irreducible essences
(Theorem 5.30)

5.1 Disabling and Conflict Essences

Recall from Section 2.4 that transformation steps (t1, t2) : H1
ρ1,m1⇐= G

ρ2,m2
=⇒ H2 de-

termine a disabling when some element is matched by both steps and deleted by at least

one of them, as illustrated in Example 2.46. Since matches are monic, they determine

subobjects of G and the pullback L1L2 as their intersection, as in diagram (5.1). Pulling it

back along l1 removes exactly the elements that would be deleted by step t1 and that are

matched by t2. This informally justifies the essential condition of parallel independence

presented in Definition 2.43.

K1L2 L1L2 L1K2

R1 K1 L1 L2 K2 R2

H1 D1 G D2 H2

∼=
2© p2p1

∼=
3©

n1

l1r1

k1 m1 m2 k2

l2 r2

n2

g1h1

1©

g2 h2

(5.1)

In order to determine which elements are deleted by pullbacks 2© and 3©, we use

77

an initial pushout over the arrow K1L2→L1L2 (Definition 2.60). In fact, in any adhesive

category with initial pushouts, the context of a mono f : X �Y is the smallest subob-

ject c ∈ Sub(Y) such that c ∪Sub f ∼=>, that is, containing the parts of Y which are not in

the image of f . This brings us to the following definition.

Definition 5.1 (Conflict and Disabling Essence).

(i) Let l1 : K1 �L1, m1 : L1 �G and m2 : L2→G be monos. Then the proto-essence

for (m1,m2) under l1, denoted essl1(m1,m2), is defined as follows. If squares 1©
and 2© in diagram (5.2) are pullbacks, and 4© is an initial pushout over q2, then

essl1(m1,m2)∼= (p1 ◦ c, p2 ◦ c) ∈ Sub(m1,m2).

B C

K1L2 L1L2 L2

K1 L1 G

b

q2

c4©

q1

q2

p1

p2

m2

l1 m1

2© 1©
(5.2)

(ii) If the proto-essence is taken for the matches of (t1, t2) : H1
ρ1,m1⇐= G

ρ2,m2
=⇒ H2 under the

left morphism of ρ1 = L1
l1
� K2

r1
� R2, we call it the disabling essence of (t1, t2),

denoted essdbl(t1, t2) ∈ Sub(m1,m2).

(iii) The conflict essence of transformation steps (t1, t2) : H1
ρ1,m1⇐= G

ρ2,m2
=⇒ H2, denoted

esscfl(t1, t2) ∈ Sub(m1,m2), is the union of disabling essences in both directions.

That is, esscfl(t1, t2) = essdbl(t1, t2) ∪Sub essdbl(t2, t1).

Remark 5.2. We will omit subscripts from essdbl and esscfl when clear from the context.

Remark 5.3. Because of Theorem 4.32, the disabling and conflict essences can be equiv-

alently seen as subobjects of L1L2, as originally presented by Azzi, Corradini and Ribeiro

(2018). Essences are also subobjects of the system state G, since the composite mor-

phism m1 ◦ p1 ◦ c = m2 ◦ p2 ◦ c : C�G is monic.

Lemma 5.4. Since each disabling essence corresponds to a subobject of L1L2, conflict

essences can be obtained as a pushout over the pullback of these subobjects.

Proof. Follows from Theorems 2.24 and 4.32.

Example 5.5. Recall the conflicting transformations from Examples 2.45 and 2.46. Their

construction of their disabling essences is shown in Fig. 5.3. In Fig. 5.3a, where transfor-

mations are independent, the essence is empty. In Fig. 5.3b, where a disabling exists, the

essence contains an edge from elevator to floor.

78

Figure 5.3: Examples of disabling essences

(a) Essence for transformations of Fig. 2.12a (b) Essence for transformations of Fig. 2.12b

From Example 5.5 we may expect that an empty disabling essence is equivalent

to having no disabling. More generally, we can show that this holds in every adhesive

category, interpreting “empty essence” as the bottom element of Sub(m1,m2).

Theorem 5.6. In any adhesive category, let (t1, t2) : H1
ρ1,m1⇐= G

ρ2,m2
=⇒ H2 be a pair of trans-

formations. Then essdbl(t1, t2)∼=⊥ if and only if t1 doesn’t disable t2, and esscfl(t1, t2)∼=⊥
if and only if t1 and t2 are parallel independent.

Proof. Recall that morphism q2 from diagrams (5.1) and (5.2) is monic, and note that

essdbl(t1, t2)∼=⊥ if and only if c∼=⊥ ∈ Sub(L1L2). Then the case for disabling essences

follows directly from Lemma 2.71: c ∼= ⊥ if and only if q2 is an isomorphism, which

means that t1 doesn’t disable t2, according to Definition 2.43.

For conflict essences, recall that esscfl(t1, t2) ∼= essdbl(t1, t2)∪ essdbl(t2, t1). Then

esscfl(t1, t2)∼=⊥ if and only if essdbl(t1, t2)∼=⊥ and essdbl(t2, t1)∼=⊥, which is equivalent

to having no disablings and thus parallel independence.

Another important property of disabling essences caused by a rule ρ1 is that they

are contained in the deletion object of ρ1 (Definition 2.68). This means that every essence

contains only deleted elements, or elements of their boundary.

The next result is exploited in Section 5.1.2 to relate our notion to the disabling

reasons proposed by Lambers, Ehrig and Orejas (2008). It may also be the basis for a

precise comparison of conflict essences with the basic conflict conditions introduced by

Born et al. (2017), which is left for future work.

Lemma 5.7. In any adhesive category, let (t1, t2) : H1
ρ1,m1⇐= G

ρ2,m2
=⇒ H2 be a pair of transfor-

mations with disabling essence essdbl(t1, t2) = (e1,e2)∈ Sub(m1,m2), and let the deletion

79

object of ρ1 be cl1 ∈ Sub(L1). Then e1 ⊆L1 cl1. Equivalently, the disabling essence fac-

tors uniquely through the deletion object, that is, there is a unique mono e1 : C �Cl1

with e1 = cl1 ◦ e1. Moreover, essl1
(m1 ◦ cl1,m2)∼= (e1,e2).

Bl1 Cl1 C

K1 L1 L1L2 L2

G

bl1

l1

cl1 e1 e2

e1

c

l1

1©

m1 m2

(5.3)

Proof. Recall that the deletion object is obtained by the initial pushout 1© over l1, as

in diagram (5.3). Note that any morphism e1 : C→Cl1 making diagram (5.3) commute is

monic, since cl1 ◦ e1 = e1 is monic, and unique, since cl1 is monic. Thus, we need only

show that such a morphism exists.

First, construct square 3© and rectangle 2©+ 3© of diagram (5.4) as pullbacks. By

pullback decomposition, there is a unique hL making square 2© a pullback.

Cl1L2 L1L2 L2

Cl1 L1 G

p1

p2

hL

p1

p2

m2

cl1 m1

2© 3© (5.4)
B K1L2 Bl1L2

C L1L2 Cl1L2

b

b∗

q2 q2

hK

c

c∗

4©
hL

5© (5.5)

Next, consider diagram (5.7), where the front right face and the back left face 6©
are constructed as pullbacks. Note that the front left face is the pullback square 2©. Then

there is a unique hK making the cube commute and the back right face a pullback, by pull-

back composition and decomposition. Since the bottom face is a pushout by construction,

and the vertical faces are all pullbacks, by adhesivity the top face is a pushout.

B C

Bl1L2 Cl1L2 L2

Bl1 Cl1 G

b∗ c∗4©+ 5©

q1

q2

p1

p2

m2

l1
m1◦cl1

6© 2©+ 3©

(5.6)

Bl1L2

Cl1L2 K1L2

L1L2 Bl1

Cl1 K1

L1

q2

q1

hK

hL

p1

q2

q1

bl1
l1

cl1

6©

l1

p1

(5.7)

80

Now consider diagram (5.5), where square 4© is an initial pushout over q2 so that

e1 = p1 ◦c and e2 = p2 ◦c. Square 5© corresponds to the top face in diagram (5.7), which

is a pushout. Then there exist unique b∗ and c∗ making the diagram commute.

Finally, if we define e1 = p1 ◦ c∗, it follows from commutativity of diagrams (5.5)

and (5.7) that cl1 ◦e1 = p1 ◦c = e1. Moreover, we obtain from the initial pushout over q2,

as in diagram (5.6), the proto-essence essl1
(m1◦cl1,m2)∼= (p1◦c∗, p2◦c∗) = (e1,e2).

5.1.1 Conflict Essence and Extension

Recall that the extension of a transformation step into a larger context (Defini-

tion 2.47) underlies the concept of completeness of critical pairs and initial conflicts. In

fact, any pair of conflicting steps is the extension of a critical pair (Theorem 2.56) and of

an initial conflict. Thus, it is important to understand how the the root causes for conflicts

behave with respect to extension.

Lambers et al. (2018) has already shown that conflicts are reflected by extension,

i.e. when the extension of a transformation pair is in conflict, the original pair of steps

is in conflict as well. It turns out they are also preserved by extension in categories of

set-valued functors, and in particular of graphs and typed graphs. Furthermore, conflict

essences are also preserved, which means the root causes of a conflict don’t change with

extension.

The central notion for these results is proto-essence inheritance, from which we

can prove inheritance of conflict and disabling essences.

Definition 5.8 (Proto-Essence Inheritance). A category C has proto-essence inheritance

when the following statement holds for all morphisms l1, m1, m2 and f as in diagram (5.8).

If the composites f ◦m1 and f ◦m2 are monic and squares 1© and 2© in dia-

gram (5.8) are pushouts, then the proto-essences over l1 for (f ◦m1, f ◦m2) and (m1,m2)

are the same. That is, essl1(f ◦m1, f ◦m2)∼= essl1(m1,m2)∼= (e1,e2)∈ Sub(L1,L2), which

is witnessed by an isomorphism h as in diagram (5.9).
C

K1 L1 L2

D1 G

D1 G

e1 e2
l1

k1 m1 m2

g1

d1 f

1©

g1

2©

(5.8)
C

L1 C L2

e1 e2
h

e1 e2

(5.9)

81

Theorem 5.9 (Essence Inheritance). In an adhesive category with proto-essence inheri-

tance, let (t1, t2) : H1
ρ1,m1⇐= G

ρ2,m2
=⇒ H2 and (t1, t2) : H1

ρ1,m1⇐= G
ρ2,m2
=⇒ H2 be pairs of transfor-

mation steps and f : G→G be any morphism.

(i) If the left extension diagram of (5.10) exists, then the transformation pairs share a

disabling essence, that is, essdbl(t1, t2)∼= essdbl(t1, t2) ∈ Sub(L1,L2).

(ii) If both extension diagrams of (5.10) exist, then the transformation pairs share a

conflict essence, that is, esscfl(t1, t2)∼= esscfl(t1, t2) ∈ Sub(L1,L2).

H1 G H2

H1 G H2

f

t1 t2

t1 t2

(5.10)

Proof. Inheritance of disabling essences follows directly from from proto-essence in-

heritance. In fact, if the left extension diagram in (5.10) exists, then f ◦m1 = m1 and

f ◦m2 = m2 are monomorphisms, and we have the necessary pushouts of diagram (5.8).

Then we have essdbl(t1, t2)∼= essl1(m1,m2)∼= essl1(m1,m2)∼= essdbl(t1, t2).

Inheritance of conflict essences, in turn, follows directly from the previous point:

esscfl(t1, t2)∼= essdbl(t1, t2)∪ essdbl(t2, t1)

∼= essdbl(t1, t2)∪ essdbl(t2, t1)∼= esscfl(t1, t2)

Corollary 5.10. In an adhesive category with proto-essence inheritance, assume the ex-

tension diagrams of (5.10) exist. Then t1 disables t2 if and only if t1 disables t2. Further-

more, t1 and t2 are in conflict if and only if t1 and t2 are in conflict.

Importantly, all categories of set-valued functors have proto-essence inheritance.

Then the previous results hold in many categories of interest, including those of graphs

and typed graphs.

Lemma 5.11. Every category SetS of set-valued functors has proto-essence inheritance.

Proof. Given any l1, m1, m2 and f as in diagram (5.8), let m1 = f ◦m1 and m2 = f ◦m2.

Moreover, assume squares 1© and 2© are pushouts in diagram (5.8).

Now consider diagram (5.11) where L1
p1← L1L2

p2→ L2 and L1
p1← L1L2

p2→ L2 are

pullbacks for (m1,m2) and (m1,m2), respectively, and hL : L1L2→L1L2 their unique me-

diating morphism. Constructing the squares 4© and 3©+ 4© as pullbacks, by decom-

position there is a unique monomorphism hK making 3© a pullback. Recall also that

essl1(m1,m2) = (p1 ◦c, p2 ◦c) and essl1(m1,m2) = (p1 ◦c, p2 ◦c), where c1 and c1 are the

contexts of the initial pushout over q2 and q2, respectively.

82

We will show that square 3© is also a pushout. Then, since initial pushouts are

reflected by pushouts along monomorphisms (Lemmas 2.72 and 2.74), there is an iso-

morphism hC : C→C with c◦hC = hL ◦c. This witnesses essl1(m1,m2)∼= essl1(m1,m2) ∈
Sub(L1,L2), since (p1◦c)◦hC = p1◦hL◦c = p1◦c and analogously (p2◦c)◦hC = p1◦c.

K1L2 K1L2 K1 D1 D1

L1L2 L1L2 L1 G G

hK

q2

q1

q1

q2

k

l1 g1

d1

g1

hL

p1

p1

3©

m1

m1

4©

f

1© 2© (5.11)

To show that square 3© is a pushout, assume without loss of generality that all

vertical morphisms of (5.11) are inclusions, as well as hL and hK . Then by Lemma 3.13

it suffices to show that (hL,q2) is jointly epic, which can be done by set-theoretical rea-

soning according to Remark 3.11. We will show that every element x ∈ L1L2 that is not

in L1L2 must be in K1L2.

So assume such an x ∈ L1L2 \L1L2 and consider the elements y1 = m1(p1(x)) ∈ G

and y2 = m2(p2(x)) ∈ G. These elements of G are distinct, but identified by f . In fact,

x /∈ L1L2 implies that m1(p1(x)) 6= m2(p2(x)), that is, y1 6= y2. On the other hand, since

(p1, p2) is a pullback of (m1,m2), we have m1(p1(x)) = m2(p2(x)), which is equivalent

to f (y1) = f (y2).

Since 2© is a pushout and pullback, and f (y1) ∈ G has two distinct preimages by

f , it follows from Lemma 3.13 that f (y1) has a unique preimage by g. That is, f (y1) ∈
D1 ⊆ G. Then, since 4©+ 1©+ 2© is a pullback and f (m1(p1(x))) = f (y1) = g1(d1(y1)),

x must have a preimage by q2. That is, x ∈ K1L2 ⊆ L1L2.

In conclusion, every x ∈ L1L2 \ L1L2 is such that x ∈ K1L2 and therefore 3© is

a pushout. This implies that q2 and q2 have isomorphic initial pushouts, witnessing

essl1(m1,m2)∼= essl1(m1,m2) ∈ Sub(L1,L2).

5.1.2 Comparing with Previous Work

Conflict essences are not the first attempt to formally characterise the root causes

of conflicts. In fact, Lambers, Ehrig and Orejas (2008) proposed a similar notion of

conflict reasons. Nonetheless, we claim that essences have several advantages, as we will

83

show in this section. We begin by recalling the definition of conflict reason.

Definition 5.12 (Disabling and Conflict Reason). In an adhesive category, let (t1, t2) :

H1
ρ1,m1⇐= G

ρ2,m2
=⇒ H2 be a pair of transformation steps.

(i) The disabling reason s1 ∈ Sub(m1,m2) for (t1, t2) is defined as follows1. Let the

deletion object for ρ1 be cl1 ∈ Sub(L1), obtained by the initial pushout 1© over l1

in diagram (5.12). Let also (o1,s12) be the pullback of (m1 ◦ cl1,m2). Then we

define s1 ∼= (s11,s12) ∈ Sub(m1,m2), where s11 = cl1 ◦o1.

S1

Bl1 Cl1

K1 L1 L2

G

o1

s12

b∗

l′1

bl1 cl11©

l1
m1 m2

(5.12)

(ii) A disabling reason satisfies the conflict condition if and only if there is no mor-

phism b∗ : S1→Bl1 making diagram (5.12) commute.

(iii) The conflict reason s ∈ Sub(m1,m2) for (t1, t2) is defined as follows. Let the disa-

bling reasons for (t1, t2) and (t2, t1) be s1,s2 ∈ Sub(m1,m2), respectively. If both s1

and s2 satisfy the conflict condition, then s∼= s1∪s2 ∈ Sub(L1L2). If only s1 satisfies

the conflict condition, then s∼= s1; analogously for s2.

Note that the relation between disabling reasons and any condition of parallel in-

dependence is not very direct. Lambers, Ehrig and Orejas (2008) have shown that a

disabling exists (in the sense of Definition 2.43) if and only if the corresponding disa-

bling reason satisfies the conflict condition, but the proof is much more involved than that

of Theorem 5.6.

Interestingly, both Definitions 5.1 and 5.12 use the same operations, but in reversed

orders. More explicitly, the disabling reason is obtained by first taking the context of (the

initial pushout over) l1, containing all elements deleted by ρ1 (and the boundary), and

then the intersection with the image of m2. The disabling essence, on the other hand, first

restricts on the elements which are matched by both transformation steps, and then takes

the context, thus filtering out boundary elements of l1 that are not relevant for the conflict.

1The span we call a disabling reason was actually unnamed in the original definition.

84

This suggests that disabling essences are in general smaller than disabling reasons, as

illustrated by the following example.

Example 5.13. Recall the pairs of transformations from Examples 2.45 and 2.46, involv-

ing the rules move-up-NU and move-up-ND. Conflict reasons for them are constructed

in Fig. 5.4. In Fig. 5.4a, even though the transformations were independent, the reason

contains both floors. In Fig. 5.4b, the floor y is part of the reason despite not being in-

volved in the conflict.

Figure 5.4: Examples of disabling reason.
(a) Disabling reason for Example 2.45. (b) Disabling reason for Example 2.46.

As Example 5.13 shows, the disabling and conflict reasons may contain elements

that aren’t directly related to the conflict. In the case of graphs, these are isolated bound-

ary nodes, as noted by Lambers et al. (2018). That is, they are nodes adjacent to a

deleted edge, where this deletion does not cause a disabling. Comparing with Exam-

ple 5.5 indicates that this is not the case for the essences.

The presence of isolated boundary nodes provides another disadvantage: extend-

ing a transformation pair may modify the disabling reason by introducing new isolated

boundary nodes, as shown in Fig. 5.5. This cannot happen for conflict essences, as proved

in Theorem 5.9.

Figure 5.5: Extended transformation steps with distinct disabling reasons.
(a) Extension diagrams from Example 2.48

(b) Reason for
upper pair.

(c) Reason for
lower pair.

85

We conclude this section with a formal proof that every conflict essence is more

precise than the corresponding reason, that is, essences are contained in reasons.

Theorem 5.14 (Precision of Essences). In any adhesive category, let the pairs of trans-

formations (t1, t2) : H1
ρ1,m1⇐= G

ρ2,m2
=⇒ H2 have conflict (or disabling) essence ess(t1, t2) and

reason s∈ Sub(m1,m2). Then ess(t1, t2)⊆ s∈ Sub(m1,m2), witnessed by a unique mono-

morphism h : C�S that commutes with both spans.

Proof. [Disabling] Let Cl1 be the context of (the initial pushout over) l1. By Lemma 5.7,

there is a unique monomorphism e1 with e1 = cl1 ◦ e1, which makes the outer square

of diagram (5.13) commute. Now recall from Definition 5.12 that the inner square is a

pullback. Then there is a unique h making diagram (5.13) commute.

C S1 L2

Cl1 G
e1

e2

h s12

o1 m2

m1◦cl1

(5.13)

[Conflict] If only s1 satisfies the conflict condition, then s = s1 by Definition 5.12.

In this case t2 does not disable t1 and, by Theorem 5.6, the disabling essence c2 is the

bottom of Sub(m1,m2), which implies c∼= c1∪⊥∼= c1, and thus c∼= c1 ⊆ s1 ∼= s.

The case when only s2 satisfies the conflict condition is symmetrical. If both s1

and s2 satisfy it, then s = s1∪ s2. Then since c1 ⊆ s1 and c2 ⊆ s2, it follows from distribu-

tivity of Sub(m1,m2) that c∼= c1∪ c2 ⊆ s1∪ s2 ∼= s.

5.2 Potential Essences

In the previous section, we have defined conflict and disabling essences as a char-

acterisation for the root causes of a conflict between two transformation steps. In order

to analyse a transformation system, however, one requires an overview of all potential

causes for conflicts for a pair of rules. Ideally, given a pair of rules (ρ1,ρ2), there should

be a set of potential conflict essences containing the conflict essences for every pair of

steps H1
ρ1,m1⇐= G

ρ2,m2
=⇒ H2. In this section, we will define this set and relate it to initial

conflicts. Moreover, we will show that the set of potential essences is often redundant and

provide a suitable subset to avoid this redundancy.

We begin with the straightforward definition of potential essences for a pair of

rules, which is the set of essences for all pairs of transformation steps.

86

Definition 5.15 (Potential Essences). Let ρ1 and ρ2 be transformation rules. Then the sets

of potential conflict and disabling essences for (ρ1,ρ2) are defined as follows.

Essdbl(ρ1,ρ2) =
{

essdbl(t1, t2) | (t1, t2) : H1
ρ1,m1⇐= G

ρ2,m2
=⇒ H2, object G

}
Esscfl(ρ1,ρ2) =

{
esscfl(t1, t2) | (t1, t2) : H1

ρ1,m1⇐= G
ρ2,m2
=⇒ H2, object G

}

Remark 5.16. We will write Ess(ρ1,ρ2) when the context makes it unambiguous.

Remark 5.17. Note that a pair of rules (ρ1,ρ2) may determine an infinite set of trans-

formation pairs
{
(t1, t2) : H1

ρ1,m1⇐= G
ρ2,m2
=⇒ H2 | object G

}
. Nevertheless, since multiple

pairs of steps may share the same essence, Ess(ρ1,ρ2) may be finite. In fact, since

Ess(ρ1,ρ2) ⊆ Sub(L1)× Sub(L2), rules with finite left-hand sides will always have a

finite set of essences.

Remark 5.18. Henceforth, we will often refer to concrete essences for a pair of steps, as

opposed to potential essences for a pair of rules.

Fact 5.19. Potential essences are subobjects for (L1,L2), i.e. Ess(ρ1,ρ2)⊆ Sub(L1,L2).

Clearly, every potential conflict essence is a union of potential disabling essences.

However, the converse does not hold: some unions of potential disabling essences are not

conflict essences, as the following example shows.

Fact 5.20. Potential conflict essences are always unions of potential disabling essences.

That is, every e ∈ Esscfl(ρ1,ρ2) is such that e = e1 ∪ e2 for some e1 ∈ Essdbl(ρ1,ρ2)

and e2 ∈ Essdbl(ρ2,ρ1).

Proof. Follows directly from Definitions 5.1 and 5.15.

Example 5.21. Recall the rules move-up-NU and deactivate, introduced in Ex-

amples 2.6 and 2.38. A potential disabling essence caused by move-up-NU, as shown

in Fig. 5.6, contains only the at edge. Its union with the empty disabling essence caused

by deactivate, however, is not a conflict essence. In fact, any match that com-

mutes with this union must also identify the going-up edges. Otherwise the match

of deactivate will not be applicable since it leaves the unmatched going-up edge

dangling. Then the conflict essence will include the going-up edge, which is not

present in the aforementioned union.

87

Figure 5.6: Potential disabling essences for ρ1 =move-up-NU and ρ2 =deactivate,
where c1 ∈ Essdbl(ρ1,ρ2) and c2 ∈ Essdbl(ρ2,ρ1).

5.2.1 Potential Essences and Initial Conflicts

In previous work, potential conflicts were characterised with critical pairs or with

initial conflicts. It turns out that potential conflict essences are closely related to initial

conflicts. In fact, in categories with proto-essence inheritance and another property we

will now introduce, these concepts are in one-to-one correspondence.

Recall that initial conflicts are initial transformation pairs (Definition 2.57), where

initiality is postulated with respect to embedding into larger contexts. Their existence,

however, is not guaranteed in every category. In fact, Lambers et al. (2018) have only

proved their existence in categories of graphs and typed graphs. It is an open problem

whether they exist in all adhesive categories.

It turns out that, in categories of set-valued functors, concrete conflict essences can

be used to construct initial transformation pairs. Indeed, this result holds in any adhesive

category with two additional assumptions: proto-essence inheritance (Definition 5.8) and

the PO-PB decomposition via proto-essence that we now introduce.

The following theorem shows that initial transformation pairs exist in any adhe-

sive category with proto-essence inheritance and PO-PB decomposition via proto-essence.

These properties should, in general, be much simpler to prove than the complete theorem.

Definition 5.22 (PO-PB Decomposition via Proto-Essence). An adhesive category has

PO-PB decomposition via proto-essence when the following statement holds for every

diagram as in (5.14). Given essl1(f ◦ n1, f ◦ n2) ∼= (e1,e2) such that conditions (i)–(iv)

hold, then both squares 1© and 2© are pushouts.

(i) Rectangle 1©+ 2© is a pushout and square 2© is a pullback.

(ii) Diagram (5.14) commutes.

(iii) Morphisms l1, f ◦n1 and f ◦n2 are monic.

(iv) The pair (n1,n2) is jointly epic.

88

K1 D′1 D1

L1 I G

C L2

l1

k′1

g′

f ′

g

n1

1©
f

2©

e1

e2

n2

(5.14)

Theorem 5.23 (Construction of Initial Transformation Pairs). In any adhesive category

with proto-essence inheritance and PO-PB decomposition via proto-essences, let (t1, t2) :

H1
ρ1,m1⇐= G

ρ2,m2
=⇒ H2 be a pair of transformation steps. Then the pushout L1

n1→ I
n2← L2

of the conflict essence esscfl(t1, t2) ∼= L1
e1← C

e2→ L2 determines an initial transformation

pair (s1,s2) : J1
ρ1,n1⇐= I

ρ2,n2
=⇒ J2 for (t1, t2).

Proof. According to Definition 2.57, we have to show that the pushout L1
n1→ I

n2← L2

(a) determines a transformation pair (s1,s2) which (b) can be embedded into (t1, t2)

via some morphism f and (c) can be embedded into any other pair of transformation

steps (t1, t2) that is embedded into (t1, t2).

Note that (c) follows from (b). In fact, by essence inheritance (Theorem 5.9), we

have ess(t1, t2)∼= ess(t1, t2). Then (n1,n2) is also the pushout of esscfl(t1, t2), and it follows

from (b) that the corresponding pair of steps can be embedded into (t1, t2).

To prove (a) and (b), we will construct diagram (5.15), where rectangle 1©+ 2©
is the pushout determining step t1. First, we obtain f as the unique mediating morphism

from the pushout (n1,n2) constructing square 2© as a pullback. Then we also obtain a

mediating morphism k′1 making the diagram commute.

K1 D′1 D1

L1 I G

C L2

l1

k′1

k1

g′

f ′

g

n1

1©
m1

f

2©

e1

e2

n2
m2

(5.15)

Now it follows from PO-PB decomposition via proto-essence that squares 1©
and 2© are pushouts. The former ensures the existence of step s1, as required by (a),

while the latter ensures that s1 can be embedded into t1, as required by (b). We omit the

analogous proof that a step s2 exists and can be embedded into t2.

Corollary 5.24. In any adhesive category with proto-essence inheritance and PO-PB de-

composition via proto-essences, sets of initial conflicts exist and solve the problem of

89

conflict detection (Problem 2.49).

Having a construction for initial transformation pairs, we can now provide a simple

characterisation for initial conflicts. In fact, we can show they correspond bijectively to

potential conflict essences.

Corollary 5.25. In an adhesive category with proto-essence inheritance and PO-PB de-

composition via proto-essences, a conflict (t1, t2) : H1
ρ1,m1⇐= G

ρ2,m2
=⇒ H2 is initial if and

only if its essence is the pullback of its matches, i.e. esscfl(t1, t2)∼=> ∈ Sub(m1,m2).

Theorem 5.26. In an adhesive category with proto-essence inheritance and PO-PB de-

composition via proto-essence, the set of initial conflicts for rules ρ1 and ρ2 corresponds

bijectively to Esscfl(ρ1,ρ2)\{⊥}, up to isomorphism.

Proof. Given a potential essence e ∈ Esscfl(ρ1,ρ2) \ {⊥}, it follows from Theorem 5.23

that its pushout determines an initial transformation pair (s1,s2) : J1
ρ1,n1⇐= I

ρ2,n2
=⇒ J2 with

esscfl(s1,s2)∼= e. Since e 6∼=⊥, the pair (s1,s2) is in conflict by Theorem 5.6. Thus it is an

initial conflict. On the other hand, each initial conflict (s1,s2) determines a unique conflict

essence esscfl(s1,s2). Since initial conflicts are isomorphic to their initial transformation

pairs, the pushout of esscfl(s1,s2) determines transformations isomorphic to (s1,s2).

Finally, we show that categories of set-valued functors have PO-PB decomposition

by disabling essence. Thus, the previous results hold in many adhesive categories of

interest, including those of graphs and typed graphs.

Lemma 5.27. Every category of set-valued functors has PO-PB decomposition via proto-

essences.

Proof. Let diagram (5.14) be taken in SetS, satisfying conditions (i)–(iii) from Defini-

tion 5.22 and having essl1(f ◦ n1, f ◦ n2) ∼= (e1,e2). Note that, since pushouts and pull-

backs preserve monos, g and g′ are also monos. Moreover, morphisms e1, e2, n1 and n2

are monos by the definition of proto-essence and because f ◦n1 and f ◦n2 are monos.

Let us explicitly construct the proto-essence in diagram (5.16). We take the pull-

back (p1, p2) of (f ◦n1, f ◦n2), then the pullback 4© of (p1, l1) and the initial pushout 3©
over q2. Note that the unlabelled square may not commute, but its composition with f

90

or c does, that is: f ◦n1 ◦ p1 = f ◦n2 ◦ p2 and n1 ◦ p1 ◦ c = n2 ◦ p2 ◦ c.

K1 D′1 D1

B K1L2 L1 I G

C L1L2 L2

k′1

l1 g′

f ′

g

q2

b

q2

q1

n14© f

1© 2©

c

3© p1

p2

n2

(5.16)

We will show that square 1© is a pushout, which by decomposition implies that

square 2© is also a pushout. Without loss of generality, assume that all vertical morphisms

of diagram (5.16) as well as b and c are inclusions, denoted in the diagram by an arrow

with a hook.

This can be shown using set-theoretical reasoning, as described in Remark 3.11.

Indeed, by Theorem 3.13, it suffices to show that every element x ∈ I \ n1(L1) has a

unique preimage by g′, that is, x ∈D′1 ⊆ I. Taking any such x, since (n1,n2) is jointly epic

and x /∈ n1(L1), we must have x ∈ n2(L2). Thus, there is y2 ∈ L2 with x = n1(y2).

Now, consider f (x) ∈ G. Recall that (f ◦n1,g) is a pushout and thus jointly epic,

then f (x) must be in the image of f ◦n1 or g. We will show that it is always in the image

of g, that is, f (x) ∈ D1. Then, since 2© is a pullback, x ∈ D′1 as we needed to show.

When f (x) is in the image of f ◦ n1, there is y1 ∈ L1 with (f ◦ n1)(y1) = f (x) =

(f ◦n2)(y2). Then since (p1, p2) is a pullback, there is a unique z ∈ L1L2 with p1(z) = y1

and p2(z) = y2. But z cannot be in the proto-essence C, otherwise it would hold that

x = (n2 ◦ p2 ◦ c)(z) = (n1 ◦ p1 ◦ c)(z), contradicting the assumption that x /∈ n1(L1). Then

we must have z ∈ K1L2, since (c,q2) is jointly epic. Finally, since squares 1©, 2© and 4©
commute, we have f (x) = (f ◦n1 ◦ p1)(z) = (f ′ ◦ k′1 ◦q1)(z) ∈ D1.

5.2.2 Irreducible Conflict Essences

An important motivation for developing initial conflicts and potential essences was

avoiding redundancy that was observed on critical pairs. Although we have reached this

goal, and evidence supporting this will be presented in Chapter 7, we may wonder if

there is still any redundancy in potential essences. The following example confirms our

suspicions, showing that some potential essences are just the union of other essences.

91

Example 5.28. Recall that the rule move-up-NU presented in Example 2.6 may conflict

with itself. Its three potential conflict essences are presented in Fig. 5.7. The first essence

contains only the at edge, representing situations when both transformations move the

same elevator. The second essence contains only the req-up edge, representing situa-

tions when both transformations fulfil the same request. The last essence is just a union

of the previous two.

Figure 5.7: Conflict essences for move-up-NU.

C3 =

C1 = C2 =

L1 = = L2

When manually inspecting the potential essences for a transformation system, the

unions of other essences add little to no information, while increasing the time and effort

spent. Ideally, we should select a small subset of potential essences while guaranteeing

that all omitted essences are unions of reported essences.

Recall that the irreducible elements of a lattice have this property (Fact 4.18), so

we define an analogous concept of irreducible essence. The proof of Fact 4.18 can be

trivially adapted for irreducible essences.

Definition 5.29. An irreducible conflict or disabling essence e∈Ess(ρ1,ρ2) is a potential

essence that is neither the bottom nor decomposable as a union of other essences. That is,

e 6∼=⊥, and e∼= a∪b implies a∼= e or b∼= e for any a,b ∈ Ess(ρ1,ρ2).

Theorem 5.30. Let ρ1 and ρ2 be a pair of rules with finite Sub(L1,L2). For every con-

flict or disabling essence e ∈ Ess(ρ1,ρ2) there exists a set S of irreducible essences such

that e∼= ⋃
Sub S.

Proof. Note that x =
⋃

Sub {x} holds for every x ∈ Ess(ρ1,ρ2). Then if x is an irreduci-

ble essence, the statement holds trivially. It only remains to show that it holds for non-

irreducible elements, which we do by induction on the element’s height (Remark 4.24).

[Base] All minimal elements are trivially irreducible.

92

[Step] Take x ∈ Ess(ρ1,ρ2) and assume that all elements with lesser height are

unions of irreducibles. Then assume x = y∪ z for y,z ∈ Ess(ρ1,ρ2), with y⊂ x and z⊂ y.

If follows from Fact 4.23 that y and z have lesser height than x, so by the induction

hypothesis there are sets Y and Z of irreducible essences with y∼= ⋃
SubY and z∼= ⋃

Sub Z.

Then we have x∼= (
⋃

SubY) ∪Sub (
⋃

Sub Z)∼= ⋃
Sub (X ∪Y) by Fact 4.14.

We conclude that a manual analysis of potential essences can often be simplified

by taking only irreducible essences. In this case, no information is lost, since all omitted

essences are just unions of irreducibles.

93

6 ENUMERATING POTENTIAL CONFLICTS

In the last few chapters, we have provided a theory describing the potential causes

of conflicts for a pair of rules. Now we apply this theory to the problem of conflict

detection (Problem 2.49), that is, of enumerating a finite but complete set of conflicts. We

restrict our scope to categories of set-valued functors, which generalise many adhesive

categories of interest as described in Chapter 3. Some other important categories, such as

attributed graphs, are left for future work.

In these categories, we can solve the problem of conflict detection by enumerating

all potential conflict essences, since they bijectively correspond to initial conflicts.

Theorem 6.1. In a category of set-valued functors, given rules ρ1 and ρ2 with finite left-

hand sides, the set Esscfl(ρ1,ρ2) solves the problem of conflict detection (Problem 2.49)

through its bijective correspondence with initial conflicts.

Proof. First note that Esscfl(ρ1,ρ2) is finite. In fact, it is a subset of Sub(L1)×Sub(L2),

which is finite since the left-hand sides are finite. Moreover, Esscfl(ρ1,ρ2) bijectively

corresponds to the set of initial conflicts for the rules (Theorem 5.26), which in categories

of set-valued functors is complete (Corollary 5.24, Lemmas 5.11 and 5.27).

In the remainder of this chapter, we discuss the problem of enumerating potential

conflict and disabling essences, as well as their irreducible variants. While the enumer-

ation of conflict essences allows us to solve the problem of conflict detection, disabling

essences may also be useful for some use cases. In fact, current implementations of con-

flict detection often enumerate critical pairs indicating a “direction” for the conflict, which

was used for example by Mens, Taentzer and Runge (2007).

The main contribution of this chapter are generic algorithms for enumerating con-

flict and disabling essences as well as post-processing steps for selecting irreducible

essences, proven correct for categories of set-valued functors. Being stated in terms of

categorical operations, the algorithms could be instantiated for other categories, although

the correctness of these instantiations must still be ascertained.

The algorithms described in this chapter were implemented in the Verigraph sys-

tem, which allows rapid prototyping of new ideas from the theory of algebraic graph

transformation. Verigraph is an open source project implemented in Haskell, and its

source code was published online by Bezerra et al. (2017). Its architecture, as described

by Azzi et al. (2018), provides a series of categorical interfaces, allowing the algorithms

94

to be implemented abstractly in terms of categorical primitives. These implementations

can then be instantiated with concrete datatypes that implement different categories, for

example those of typed graphs.

Remark 6.2. When implementing concepts of category theory, we face non-determinism

of representation. For example, when computing the pullback of two given morphisms,

the result may be chosen from an infinite number of isomorphic pullbacks. In the follow-

ing, we always assume that implementations of categorical concepts produce one arbi-

trary representative for each isomorphism class of valid results, e.g. an arbitrary pullback.

We do not impose any assumptions over which representative is chosen.

This also applies to operations producing a set of results, such as enumerating

all jointly epic pairs with given domains. In this case, instead of producing an infinite

set with many isomorphic elements, we expect the resulting set to contain exactly one

representative for each isomorphism class of elements. We often emphasise this point,

writing that a subroutine produces a given set up to isomorphism.

6.1 Enumerating Conflict Essences and Initial Conflicts

We propose Algorithm 6.1 to enumerate conflict essences, using the same strategy

currently employed by Verigraph to enumerate critical pairs. The algorithm inspects all

monic overlappings of the left-hand sides, that is, all jointly epic pairs L1 �G� L2,

testing if they determine initial conflicts. If they do, they are added to a set of initial

conflicts, and their conflict essence is added to the set of potential essences.

Remark 6.3. The Algorithm 6.1 is written at a high level of abstraction, assuming the im-

plementation of certain categorical primitives that are called as subroutines. In particular,

it calls subroutines for computing pullbacks and initial pushouts, as well as testing if a pair

of morphisms has a pushout complement, if a monomorphism represents the bottom sub-

object of its codomain and if an arbitrary morphism is in fact an isomorphism. Moreover,

the subroutine jointlyEpicPairsOfMonos, when given two objects L1 and L2, should

produce all jointly epic L1
m1
� G

m2
� L2, up to isomorphism.

95

Algorithm 6.1: Enumerate Conflict Essences and Initial Conflicts
Input : Rules ρ1 = (l1,r1) and ρ2 = (l2,r2)
Output: Set S of initial conflicts and E of conflict essences
— Compare diagram (6.1)

1 S :=∅;
2 E :=∅;
3 for (m1,m2) ∈ jointlyEpicPairsOfMonos(L1,L2) do
4 if hasPushoutComplement(l1,m1) and hasPushoutComplement(l2,m2)

then — squares 1© and 2© exist
5 (p1, p2) := pullback(m1,m2); — square 3©
6 (q11,q12) := pullback(l1, p1); — square 4©
7 (q22,q21) := pullback(l2, p2); — square 5©
8 (b1,c1,q12) := initialPushout(q12); — square 6©
9 (b2,c2,q21) := initialPushout(q21); — square 7©

10 c := c1 ∪Sub c2;
11 if not isBottomSubobject(c) and isIsomorphism(c) then
12 S := S∪{(m1,m2)};
13 E := E ∪{(p1 ◦ c, p2 ◦ c)};
14 end
15 end
16 end

B1 C1 C C2 B2

K1L2 L1L2 L1K2

R1 K1 L1 L2 K2 R2

H1 D1 G D2 H2

b1

q12

c16© c c2 7©
q21

b2

q11

q12

4© p2p1 q22

q21

5©
l1r1

m1 m2

l2 r2

1©
3©

2©

(6.1)

Note that Algorithm 6.1 corresponds directly to the categorical definitions and

results. In fact, it should be read in the context of Definitions 2.36 and 5.1 as well as

Corollary 5.25, with diagram (6.1) summarising the whole construction. Then, given a

correct implementation of the categorical primitives, the correctness of this algorithm is

easy to ascertain.

Lemma 6.4. In a category of set-valued functors, the jointly epic pairs with domains L1

and L2 correspond bijectively to quotients of the disjoint union L1]L2. Thus, if L1 and L2

are finite, there is a finite amount of jointly epic pairs (up to isomorphism).

96

Proof. To establish the bijection, first note that the disjoint union L1]L2 is a coproduct of

L1 and L2. Thus, given a jointly epic pair (m1,m2) there is a unique morphism h making

diagram (6.2) commute, which moreover must be epic and therefore a quotient of L1]L2.

On the other hand, given a quotient h : L1]L2→G, we can construct a jointly epic pair

(h◦ j1,h◦ j2). Clearly this establishes a bijection.

It is trivial in categories of set-valued functors that the disjoint union of finite

objects is also finite, and that finite objects have a finite amount of quotients.

L1 L1]L2 L2

G

j1

m1
h

j2

m2
(6.2)

Theorem 6.5 (Correctness of Algorithm 6.1). Let Algorithm 6.1 be interpreted in a cat-

egory of set-valued functors, with correct implementations of the categorical primitives

that it calls, as described in Remark 6.3. When the input rules ρ1 and ρ2 have finite left-

hand sides, the algorithm terminates producing a set E that contains exactly the conflict

essences for (ρ1,ρ2), up to isomorphism. Moreover, set S solves the problem of conflict

detection, containing all initial conflicts, up to isomorphism.

Proof. It is easily seen that set S contains only initial conflicts and set E contains only con-

flict essences, since the algorithm directly reflects the appropriate definitions. Moreover,

since each initial conflict is determined by a jointly epic pair of matches, we are guaran-

teed to enumerate all of them. Termination follows directly from the finite left-hand sides

and Lemma 6.4.

6.1.1 Performance Bottleneck

The strategy employed in Algorithm 6.1 has a clear performance bottleneck: the

number of jointly epic pairs that must be inspected. Even in the category of sets, this

number grows exponentially with the cardinality of the domains.

Lemma 6.6. Given sets L1 and L2 of cardinality n, the number of jointly epic pairs of

monomorphisms is Ω(2n) and O(2nn!).

Proof. We can generate the desired pairs with the following process. Choose 0 ≤ i ≤ n

elements of L1 that will be identified with L2, leaving n− i elements of L1 disjoint from L2.

Choose also i elements of L2 that will be identified with L1. There are i! possible pairings

97

for the chosen subsets of L1 and L2. Thus, formula (6.3) expresses the number of jointly

epic pairs of monomorphisms, with lower and upper bounds given by equations (6.4)

and (6.5).

n

∑
i=0

(
n
i

)(
n
i

)
i! =

n

∑
i=0

(
n
i

)
n!

(n− i)!
(6.3)

n

∑
i=0

(
n
i

)
n!

(n− i)!
≥

n

∑
i=0

(
n
i

)
= 2n (6.4)

n

∑
i=0

(
n
i

)
n!

(n− i)!
=

n

∑
i=0

n!2

(n− i)!2 i!
≤

n

∑
i=0

n!2

(n− i)! i!
= 2nn! (6.5)

For graphs, the exact number of jointly epic pairs depends on their topology. Nev-

ertheless, we can find lower and upper bounds for this number, which also grows expo-

nentially with the size of the graph.

Lemma 6.7. Given graphs L1 and L2 containing n nodes and e edges each, the number of

jointly epic pairs of monomorphisms is Ω(2n) and O(2n+e(n+ e)!).

Proof. A lower bound can be determined by considering jointly epic pairs of injections

from the sets of nodes V1 and V2, instead of the full graphs L1 and L2. In fact, given any

such pair V1
n1
�V

n2
�V2, we can construct L1

m1
� G

m1
� L2 by taking G = (V,E1 +E2,s, t),

where s = n1 ◦ s1 +n2 ◦ s2 and t = n1 ◦ t1 +n2 ◦ t2. This determines an injective mapping

from jointly epic pairs with domains V1 and V2 into those with domains L1 and L2. We

conclude that the cardinality of the latter set has a lower bound of 2n.

For the upper bound, consider the forgetful functor U : Graph→Set taking each

graph G = (V,E,s, t) to the disjoint union UG =V +E. Each jointly epic L1
m1
� G

m2
� L2

is mapped into a jointly epic pair of functions UL1
Um1
� UG

Um2
� UL2. Moreover, since

functor U is faithful, this mapping is injective. We conclude that the number of jointly

epic pairs with domains L1 and L2 is bounded by the number of jointly epic pairs with

domains UL1 and UL2. Since these disjoint unions have cardinality n+ e, we obtain an

upper bound of 2n+e(n+ e)!.

The lower bounds provided above are also an asymptotic lower bound for the

running time of Algorithm 6.1. In fact, since it must execute at least a constant-time

operation for each jointly epic pair of matches, its time complexity is Ω(2n). Thus, its

performance is extremely sensitive to the sizes of the left-hand sides. As illustrated by

98

Table 6.1, removing a single node may reduce the (lower bound for the) number of jointly

epic pairs by an order of magnitude, even for small graphs.

Table 6.1: Numbers of jointly epic pairs for small sets.
Cardinality of
sets L1 and L2

Number of jointly epic
pairs of injections

0 1
1 2
2 7
3 34
4 209
5 1546
6 13327
7 130922
8 1441729
9 17572114

10 234662231

6.2 Enumerating Disabling Essences

For some applications, it might be useful to enumerate disabling essences, since

they also give a sense of “directionality” to the conflict. It turns out that, in some cases, it

might also be computationally cheaper.

Recall from Lemma 5.7 that conflict essences are always contained in the deletion

object cl1 : Cl1�L1 of the rule ρ1 that causes the disabling. In other words, any elements

of L1 that are not in the deletion object cannot be in the disabling essence, and therefore

need not be identified by the matches. Thus, it should be possible to inspect overlappings

of Cl1 and L2, instead of L1 and L2. Since Cl1 is generally smaller than L1, this could lead

to a greatly reduced number of overlappings.

In order to formalise this idea, we show that every disabling essence caused by a

rule ρ1 corresponds to a conflict essence caused by its minimal effects rule, whose left-

hand side is the deletion object of ρ1.

Definition 6.8. Given a rule ρ , its minimal effects rules eff(ρ) = Cl1
l1
� Bl1

idBl1
� Bl1 is

determined by the initial pushout 1© over l1, as in diagram (6.6)

Cl1 Bl1 Bl1

L1 K1 R1

cl1 1© bl1

l1 idBl1

l1 r1

(6.6)

99

Lemma 6.9. In a category of set-valued functors, let ρ1 and ρ2 be rules with some disa-

bling essence (e1,e2) ∈ Essdbl(ρ1,ρ2). If e1 : C→Cl1 is the unique morphism such that

e1 = cl1 ◦ e1, guaranteed to exist by Lemma 5.7, then (e1,e2) ∈ Esscfl(eff(ρ1),ρ2).

Proof. Since (e1,e2) ∈ Essdbl(ρ1,ρ2), there is some conflict (t1, t2) : H1
ρ1,m1⇐= G

ρ2,m2
=⇒ H2

with (e1,e2) ∼= essdbl(t1, t2). From Lemma 5.7 we get a unique e1 with e1 = cl1 ◦ e1, and

such that essl1
(m1◦cl1,m2)∼=(e1,e2). Then, constructing the pushout (m1,m2) of (e1,e2),

we get a unique morphism f such that diagram (6.7) commutes. We must show that

(i) transformation step t1 : G
eff(ρ1),m1
=⇒ H1 exists, (ii) transformation step t2 : G

ρ2,m2
=⇒ H2

exists and (iii) esscfl(t1, t2)∼= (e1,e2).
C

Bl1 Cl1 L2

G

K1 L1

G

e1 e2

bl1

l1

cl1

m1 m2

m2
f

2©

l1

1©

m1

(6.7)

Bl1 D1 D1

Cl1 I G

C L2

l1

f

g

m1

3©
f

4©

e1

e2

m2

(6.8)

(i) Since we have the proto-essence essl1
(m1 ◦ cl1,m2) ∼= (e1,e2), we can apply

PO-PB decomposition via proto-essence to diagram (6.8), where the pushout 3©+ 4© ex-

ists because of step t1 and square 4© is constructed as a pullback. This yields a pushout 3©,

which ensures the existence of t1 : G
eff(ρ1),m1
=⇒ H1.

(iii) Recall from part (i) that squares 3© and 4© are pushouts in diagram (6.8).

It follows from proto-essence inheritance that essl1
(m1,m2) ∼= essl1

(f ◦m1, f ◦m2) =

essl1
(m1 ◦ cl1,m2). Moreover, assuming item (ii) holds, we have the disabling essence

essdbl(t1, t2)∼= essl1
(m1,m2). It remains to show that this is also the conflict essence.

Since square 2© of diagram (6.7) is a pullback, the top element of Sub(m1,m2) is

> ∼= (e1,e2), by Theorem 2.24. Then, since the disabling essence is the top element of

Sub(m1,m2), the conflict essence is also the top element, as shown by equation (6.9).

esscfl(t1, t2)∼=> ∪Sub essdbl(t2, t1)∼=> (6.9)

(ii) Since the steps (t1, t2) : H1
ρ1,m1⇐= G

ρ2,m2
=⇒ H2 exist, it follows from Lemma 3.16

that both (m1, l1) and (m2, l2) satisfy the dangling condition. We will show that any poten-

tially dangling element for (m2, l2) is actually part of the disabling essence for (t1, t2), and

therefore it doesn’t violate the dangling condition. Without loss of generality, assume that

the morphisms bl1, cl1, l1 and l1 are inclusions, thus Bl1⊆K1⊆ L1 and Bl1⊆Cl1⊆ L1. As-

sume also that C⊆ L1×L2 is a subset of the Cartesian product, with pair projections c1, c1

100

and c2.

Formally, let x ∈ GS be a potentially dangling element for (m2, l2), because it

is incident to a deleted element y ∈ m2(LT
2 \KT

2) ⊆ GT . That is, Gi
(x) = y for some

i : S→T . Then, since (m1,m2) is jointly epic, x ∈ m1(CS
l1)∪m2(LS

2). If x ∈ m2(LS
2), it

trivially satisfies the dangling condition for (m2, l2). On the other hand, if x ∈ m1(CS
l1),

it has a preimage x1 ∈CS
l1 with m1(x1) = x. We will show that x1 is part of the disabling

essence, that is, (x1,x2) ∈CS for some x2 ∈ LS
2. Then x = m1(x1) = m2(x2) ∈ m2(LS

2), so

it satisfies the dangling condition for (m2, l2).

Recall that (m2, l2) satisfies the dangling condition. In particular, this condition

cannot be violated by the image f (x) = m1(x1) ∈ GS, even though it is incident to the

deleted f (y) ∈ m2(LT
2 \KT

2)⊆ GT . Thus, we must have some deleted x2 ∈ LS
2 ⊆ KS

2 with

m2(x2) = f (x) = m1(x1).

Now note that, since x1 ∈Cl1 is in the context of the initial pushout over l1, there

must be some deleted element z1 ∈ LU
1 \KU

1 incident to x1, by Lemma 3.15. That is, we

have L j
1(z1)= x1 for some j :U→T . Moreover, the image m1(z1) is incident to the deleted

element f (y), since Gi◦ j(m1(z1)) = m1(L
i◦ j
1 (z1)) = m1(Li

1(x1)) = m1(y1) = f (y). But

then, since (m2, l2) satisfies the dangling condition, we must have m1(z1) ∈ m2(LU
2 \KU

2)

and some preimage z2 ∈ LU
2 \KU

2 with m2(z2) = m1(z1).

Since m1(z1) is deleted by t1 and matched by t2, it is part of the disabling essence

for (t1, t2), that is, (z1,z2) ∈CT . Then we can conclude that x1 is also part of the disabling

essence, since (x1,x2) =C j(z1,z2) ∈CT .

Since disabling essences for (ρ1,ρ2) are always conflict essences for (eff(ρ1),ρ2),

we can consider the latter candidates for the former. Such candidates may be spurious,

that is, they may not actually be disabling essences for (ρ1,ρ2).

Definition 6.10. Given any conflict essence (e1,e2) ∈ Esscfl(eff(ρ1),ρ2), let cl1 be the

deletion object for ρ1, and let e1 = cl1 ◦ e1. Then the pair (e1,e2) ∈ Sub(L1,L2) is a disa-

bling candidate for rules (ρ1,ρ2). The candidate is spurious when (e1,e2) /∈ essdbl(ρ1,ρ2).

Example 6.11. Consider rules move-up-NU and move-up-ND from Example 2.6, as

well as rule deactivate shown in Fig. 6.1a. Figure 6.1b shows a disabling candidate

for move-up-NU and -ND, along with the matches for the corresponding initial conflict

between eff(move-up-NU) and move-up-ND. This candidate is actually a disabling

essence, and an appropriate pair of matches for move-up-NU and -ND is also shown.

On the other hand, Fig. 6.1c shows a spurious disabling candidate, also showing

101

matches for the initial conflict between eff(move-up-ND) and deactivate. This

candidate is spurious because any pair of matches that commutes with it will be non-

applicable, since deleting the elevator would leave the going-up edge dangling. Again,

an example of such matches is also shown.

Figure 6.1: Disabling candidates for rules move-up-ND and deactivate

(a) Rule deactivate

(b) Non-spurious disabling candidate for move-up-NU and -ND

(c) Spurious disabling candidate for move-up-ND and deactivate

When checking if a particular disabling candidate is spurious, we must only find

a pair of applicable matches that commutes with the candidate. The candidate is then

guaranteed to be the disabling essence for the induced transformation steps.

102

Lemma 6.12. In any adhesive category with proto-essence inheritance and PO-PB de-

composition via proto-essence, let (t1, t2) : H1
ρ1,m1⇐= G

ρ2,m2
=⇒ H2, and let (e1,e2) be a disa-

bling candidate for (ρ1,ρ2). If m1 ◦ e1 = m2 ◦ e2, then essdbl(t1, t2)∼= (e1,e2).

Proof. We first construct an intermediate pair of matches (m′1,m
′
2) by constructing the

pushout 1© in diagram (6.10) and setting m′2 = f ◦m2. We will (i) relate the proto-essences

of (m1,m2) and (m′1,m
′
2), then (ii) relate the proto-essences of (m′1,m

′
2) and (m1,m2),

concluding that the disabling essence of (m1,m2) is indeed the candidate.
Cl1 C L2

L1 G

G′

G

cl1 m1

e2e1

m2

m2

m′2

m′1

m1

f

1©

h

(6.10)

Bl1 Cl1

D1 G

D1 G′

k1

l1

m1

d′1

g

f

2©

g′

3©

(6.11)

(i) We want to show that essl1
(n1◦cl1,n2)∼= (e1,e2) by proto-essence inheritance.

In order to do so, we will construct a pushout square 3© as in diagram (6.11). The other

pushout 2© also exists, being part of the initial conflict determined by (m1,m2). Then,

we have essl1
(m′1 ◦ cl1,m′2) ∼= (e1,e2) by proto-essence inheritance and, by Lemma 5.7,

essl1(m′1,m
′
2)
∼= (e1,e2).

In order to construct pushout 2©, consider diagram (6.12), where the top and front-

right faces of the cube are pushouts, the back-right face of the cube is an initial pushout

over l1 and square 4© is an initial pushout over m1. From the initial pushout 4©, we obtain

a unique morphism b∗ with l1 ◦b∗ = bm1, which we will use to construct a pushout.

Bl1

D1 Cl1 Bm1

K1 G Cm1

D′1 L1

G′

bl1

l1k1

g1

d1

m1

cl1

bm1

m1

b∗

l1
k′1

f

cm1

4©

g′1 m′1

(6.12)

103

Now we construct the square 5© of diagram (6.13) as the pushout of (m1,bl1 ◦b∗).

Moreover, since l1 ◦ (bl1 ◦ b∗) = cl1 ◦ bm1, the rectangle 5©+ 6© is also a pushout. Then

by decomposition we get a unique morphism g1 making square 6© a pushout. Note that

square 6© is also the bottom face of the cube in diagram (6.12). We can finally obtain

the pushout 3©, which is the front-left face of the cube, by pushout composition and

decomposition.

Bm1 K1 L1

Cl1 D′1 G′

bl1◦b∗

m1

cl1◦bm1

k1

l1

m′1

f◦cm1

g′1

5© 6© (6.13)
K1 D′1 D1

L1 G′ G

k′1

l1

k1

g′1

d1

g1

m′1 h

6© 7© (6.14)

(ii) Recall from part (i) that essl1(m′1,m
′
2)
∼= (e1,e2). We will show by proto-

essence inheritance that essl1(m1,m2) ∼= essl1(m′1,m
′
2), and therefore essdbl(m1,m2) ∼=

(e1,e2). We first obtain a unique mediating morphism h : G′→G making diagram (6.10)

commute. Then note that rectangle 6©+ 7© in diagram (6.14) is a pushout, part of transfor-

mation t1. Moreover, square 5© corresponds to the bottom face of diagram (6.12), which

was shown to be a pushout in part (i). We obtain a unique d1 making 6© a pushout by de-

composition, concluding by proto-essence inheritance that essl1(m′1,m
′
2)
∼= (e1,e2).

Corollary 6.13. In any adhesive category with proto-essence inheritance and PO-PB de-

composition via proto-essence, a disabling candidate (e1,e2) for rules (ρ1,ρ2) is spurious

if and only if there is no pair of transformation steps (t1, t2) : H1
ρ1,m1⇐= G

ρ2,m2
=⇒ H2 such that

m1 ◦ e1 = m2 ◦ e2.

Proof. We will show the contrapositives of both directions. If the candidate (e1,e2) is

not spurious, then there are steps (t1, t2) : H1
ρ1,m1⇐= G

ρ2,m2
=⇒ H2 for which it is the disa-

bling essence, and clearly m1 ◦ e1 = m2 ◦ e2. On the other hand, if there are transforma-

tions (t1, t2) such that m1 ◦ e1 = m2 ◦ e2, it follows from Lemma 6.12 that the candidate is

the disabling essence of (t1, t2) and therefore not spurious.

The previous considerations bring us to Algorithm 6.2, which enumerates disa-

bling essences for a particular pair of rules.

Remark 6.14. Algorithm 6.2 also assumes the implementation of certain categorical

primitives that are called as subroutines. In particular, it calls subroutines for com-

puting initial pushouts and for testing if a pair of morphisms has a pushout comple-

ment. Moreover, the subroutine jointlyEpicSquaresOfMonos, when given morphisms

104

L1
e1←C

e2→ L2, should produce all jointly epic L1
m1
� G

m2
� L2 such that m1 ◦ e1 = m2 ◦ e2,

up to isomorphism.

Algorithm 6.2: Enumerate Disabling Essences
Input : Rules ρ1 = (l1,r1) and ρ2 = (l2,r2)
Output: Set E of disabling essences

1 E :=∅;
2 (bl1,cl1, l1) := initialPushout(l1);
3 eff(ρ1) := (l1, idBl1);
4 for (e1,e2) ∈ Esscfl(eff(ρ1),ρ2) do — computed with Algorithm 6.1
5 e1 := cl1 ◦ e1;

— check if candidate (e1,e2) is spurious
6 for (m1,m2) ∈ jointlyEpicSquaresOfMonos(e1,e2) do
7 if hasPushoutComplement(l1,m1) and

hasPushoutComplement(l2,m2) then
— candidate is not spurious, stop searching

8 E := E ∪{(e1,e2)};
9 break;

10 end
11 end
12 end

Once again, the correctness of this algorithm is easy to ascertain when interpret-

ing it in a category of set-valued functors, and assuming correct implementations of the

categorical primitives.

Theorem 6.15 (Correctness of Algorithm 6.2). Let Algorithm 6.2 be interpreted in a

category of set-valued functors, with correct implementations of the categorical primitives

that it calls, as described in Remark 6.14. Let also the input consist of rules ρ1 and ρ2

with finite left-hand sides. Then the algorithm terminates producing a set E that contains

exactly the disabling essences for (ρ1,ρ2), up to isomorphism.

Proof. Termination follows directly from the finite left-hand sides as well as Lemma 6.4

and Theorem 6.5. Correctness follows directly from Lemma 6.9 and Corollary 6.13.

Regarding the performance of Algorithm 6.2, the nested loops present a possible

issue. At first sight, it seems that we repeatedly check all jointly epic pairs of matches

for (ρ1,ρ2), which grow exponentially with the size of the left-hand sides, once for each

disabling candidate. This is, however, not the case: as shown in Lemma 6.12, each pair

of matches commutes with only one disabling candidate, which is its disabling essence.

105

Thus, each jointly epic pair of matches for (ρ1,ρ2) will be visited at most once. In fact,

we might expect that the algorithm never visits most of these matches: only the matches

that commute with spurious candidates are guaranteed to be visited. This point will be

experimentally explored in Chapter 7.

The other performance-critical part of Algorithm 6.2 is the enumeration of disa-

bling candidates. At this point, Algorithm 6.1 is executed with (eff(ρ1),ρ2) as input.

Since the left-hand side of eff(ρ1) is generally smaller than in ρ1, this should often be

much faster than computing conflict essences for (ρ1,ρ2), as its running time increases

exponentially with the sizes of the left-hand sides. This will also be subjected to experi-

ments in Chapter 7.

6.3 Finding Irreducible Essences

Having enumerated the conflict or disabling essences, their irreducible counter-

parts can be obtained with a post-processing step that checks if each essence is irredu-

cible. A naive approach would be to compute the unions of all pairs of essences, then

check if each essence is isomorphic to any such union. However, it is easy to see that the

computational cost of this process would be prohibitive.

A much more efficient approach can be devised from the following observation: if

an essence is not irreducible, then it is the union of its lower cover. In fact, the converse

implication is also true. Thus, we can test if a particular essence is irreducible by finding

the lower cover, computing its union and checking if it is isomorphic to the essence.

Remark 6.16. Recall that the poset Ess(ρ1,ρ2) is equipped with the partial order of its

superset Sub(L1,L2), restricted to the subset. We will denote the cover relation (Fact 4.5)

of Ess(ρ1,ρ2) by x ·⊂Ess y, for x,y ∈ Ess(ρ1,ρ2). Note that the cover of Ess(ρ1,ρ2) may

significantly differ from that of Sub(L1,L2).

Fact 6.17. Let P be a poset and x,x′,y ∈ P. If x⊆ x′ ⊆ x ∪P y, then x ∪P y = x′ ∪P y.

Lemma 6.18. Given rules ρ1 and ρ2 in an adhesive category, a conflict or disabling

essence x ∈ Ess(ρ1,ρ2) is irreducible if and only if it is not the union of its lower cover,

that is, equation (6.15) does not hold.

x∼=
⋃

Sub
{u ∈ Ess(ρ1,ρ2) | u ·⊂Ess x} (6.15)

Proof. [If] We will show the contrapositive, so assume x is not irreducible. Then there

106

are distinct y,z ∈ Ess(ρ1,ρ2) such that x ∼= y ∪Sub z with x 6∼= y and x 6∼= z. From this we

can obtain two distinct essences y′ and z′ in the lower cover of x, such that x∼= y′ ∪Sub z′.

Take any essence y′ ∈Ess(ρ1,ρ2) such that y⊆ y′ ·⊂Ess x. It follows from Fact 6.17

that x ∼= y ∪Sub z ∼= y′ ∪Sub z. We can analogously pick some z′ with z ⊆ z′ ·⊂Ess x and

x ∼= y′ ∪Sub z′. Moreover, y′ and z′ must be distinct. Otherwise y′ ∼= z′ would be an upper

bound for y and z, which implies x∼= y ∪Sub z⊆ y′, contradicting y′ ·⊂Ess x.

Now let x′ ∼= {u ∈ Ess(ρ1,ρ2) | u ·⊂Ess x} be the union of the lower cover of x.

Given that y′ and z′ are in the lower cover, we have x∼= y′ ∪Sub z′ ⊆ x′. On the other hand,

x is an upper bound for its lower cover and, since x′ is the least upper bound, we have

x′ ⊆ x. We can conclude that, assuming x is not irreducible, equation (6.15) holds.

[Only if] Assume x is irreducible. We will show that, if equation (6.15) could

hold, we would have distinct elements y and z in the lower cover of x such that x∼= y ∪Sub z,

contradicting the irreducibility of x.

So assuming equation (6.15), first note that the lower cover of x must contain at

least two distinct elements. If it were empty we would have x ∼= ⋃
Sub∅ ∼= ⊥, which

contradicts the assumption that x is irreducible. If it were {y}, then x ∼= ⋃
Sub {y} ∼= y,

which contradicts the assumption that y ·⊂Ess x.

Then take any distinct essences y,z ∈ Ess(ρ1,ρ2) in the lower cover of x, that is,

with y ·⊂Ess x and z ·⊂Ess x. We cannot have y∼= y ∪Sub z since it implies z⊂ y⊂ x, contra-

dicting z ·⊂Ess x. Moreover, it holds that y ∪Sub z⊆ ⋃Sub {u ∈ Ess(ρ1,ρ2) | u ·⊂Ess x} ∼= x,

since y and z are members of the lower cover. Then we must have y ∪Sub z ∼= x, other-

wise we would have y ⊂ y ∪Sub z ⊂ x, contradicting the fact that y ·⊂Ess x. We conclude

that equation (6.15) implies the existence of distinct y,z ∈ Ess(ρ1,ρ2) with x ∼= y ∪Sub z,

contradicting irreducibility of x.

Corollary 6.19. Given rules ρ1 and ρ2 in an adhesive category, if a conflict or disabling

essence x ∈ Ess(ρ1,ρ2) has less than two essences in its lower cover, then either x∼=⊥ or

x is an irreducible essence.

Proof. If the lower cover of x is empty and we have x∼= ⋃
Sub∅∼=⊥, then x is the bottom

essence. If its lower cover is {y}, we cannot have x∼= ⋃
Sub {y} ∼= y, since this contradicts

y ·⊂Ess x. In this case, x is irreducible.

Given the previous results, we can propose an algorithm that identifies irreducible

essences from a precomputed set of conflict or disabling essences Ess(ρ1,ρ2). It consists

of the following three steps. We discuss their worst-case time complexity with respect to

107

the cardinality m of Ess(ρ1,ρ2) and the size n of the left-hand sides, which is an upper

bound for the size of the essences.

1. Assemble a directed acyclic graph (DAG) representing the poset Ess(ρ1,ρ2), with

essences as nodes and with edges pointing from containing essences to the con-

tained ones. This could have a time complexity of O(nm2), because comparing

two essences can be done in O(n) time. The actual implementation in Verigraph is

O(nm2 logn) due to the use of balanced binary trees.

2. Compute the transitive reduction of this DAG, removing all edges that correspond to

transitive paths and obtaining a representation of the cover relation for Ess(ρ1,ρ2).

This can be done with a simple algorithm proposed by Gries et al. (1989), which

has a time complexity of O(m3).

3. Check if each non-empty essence is irreducible by inspecting its lower cover, which

is obtained from the outgoing edges on the DAG. If the lower cover has less than

two elements, the essence is irreducible. Otherwise, we compute the union of all

essences in the lower cover and check if it is isomorphic to the essence. This could

have a worst-case time complexity of O(nm2), since checking isomorphism of two

essences can be done in O(n) time. This is much faster than the usual isomorphism

check because, in this case, the desired isomorphism must commute with the mono-

morphisms from the essences into the left-hand sides. This greatly constrains the

search space. The actual implementation in Verigraph is O(nm2 logn) due to the

use of balanced binary trees.

The complete implementation in Verigraph has a worst-case time complexity of

O(nm2 logn+m3). Thus, this post-processing step is expected to be much faster than

the enumeration of conflict or disabling essences, in most practical cases. This will be

explored experimentally in Chapter 7.

108

109

7 EXPERIMENTAL EVALUATION

In the previous chapters, we have developed a theory describing the root causes of

conflicts, as well as algorithms applying this theory to the problem of conflict detection.

We have claimed that the proposed concepts are an improvement over critical pairs, by

reporting a smaller number of potential conflicts. In this chapter, we provide experimental

evidence supporting this argument. We propose the following research questions.

Q1 Is the number of initial conflicts (and thus conflict essences) in general smaller than

that of critical pairs?

Q2 Is the number of irreducible essences in general smaller than all conflict or disabling

essences?

We have also made various conjectures in Chapter 6 about the performance of

the proposed algorithms. One such conjecture is that the post-processing step that filters

irreducible essences consumes, in practice, less time than the enumeration of all conflict

or disabling essences. This is formulated on the following research question.

Q3 Is the time spent enumerating conflict or disabling essences larger than than the time

spent identifying irreducible essences?

Recall also that Algorithms 6.1 and 6.2 enumerate conflict and disabling essences

by checking overlappings of the left-hand sides and, in the case of disablings, a dele-

tion object. We have shown that the running time of these algorithms is at least linear

with respect to the number of checked overlappings. Then we have claimed that Algo-

rithm 6.2 checks, in general, only a fraction of all overlappings, since it is only guaranteed

to check all overlappings of left-hand sides that commute with spurious disabling candi-

dates. These considerations lead us to the following research questions.

Q4 Is the running time of Algorithms 6.1 and 6.2 determined by the number of overlap-

pings that it checks?

Q5 How large is the number of spurious disabling candidates?

Q6 Is the total number of overlappings checked by Algorithm 6.2, including overlappings

of the deletion object, larger than the total number of overlappings of left-hand

sides?

Q7 Is the time required to enumerate all disabling essences for a pair of rules, in both di-

rections, generally larger than the time required to enumerate the conflict essences?

110

7.1 Methods

In order to investigate these research questions, we have selected 11 graph trans-

formation systems from the literature, as well as an extended version of the elevator sys-

tem presented in Chapter 2. From each transformation system, all pairs of rules were

extracted and used as input data for the tests. In practice, transformation systems con-

tain negative application conditions (NACs), and this is the case for all of the analysed

systems. Since our techniques do not support NACs, we have removed them for the ex-

periment. It is left for future work to adapt our approach for rules with NACs, and to

determine how their presence influences the numbers of critical pairs and initial conflicts.

We have implemented the algorithms proposed in Chapter 6 in Haskell, using the

categorical operations provided by the Verigraph system. Additional bookkeeping was

introduced recording for each pair of rules the numbers ncp of critical pairs, nce of ini-

tial conflicts/conflict essences, ndc of disabling candidates, nde of disabling essences nde,

nie of irreducible essences, nco of total checked overlappings, ncol of checked overlap-

pings of the left-hand sides and nto of total overlappings of the left-hand sides. We also

record the running time te for the enumeration algorithm and tf for the filtering of irredu-

cible essences, in terms of CPU time. The experiment was repeated ten times in an Intel

Core i5-3330 processor, running at 3GHz, with 16GiB of RAM. We have checked that

the counts are the same in every execution, and taken the average running times. Since

Haskell uses lazy evaluation by default, we have taken care to ensure the full evaluation

of each disabling and conflict essence.

The graph transformation systems selected for the experiment are described in

the following, and summarised in Table 7.1. Most of them were reconstructed in the

AGG tool (TAENTZER, 2003), except for fmedit, which was exported from Henshin into

the GGX format. This yields 3277 ordered pairs of rules, used for calculating disabling

essences, and 1708 unordered pairs of rules, used for calculating conflict essences.

automaton Models the behaviour of non-deterministic automata, and was provided by

Lambers et al. (2018) as a motivating example for initial conflicts.

elev Models the behaviour of a single elevator. It was used by Lambers (2009) as a case

study for static analysis techniques, including conflict detection.

multi-elev Models the behaviour of multiple elevators in a single building. This is an

extended version of the transformation system presented in Chapter 1.

111

Table 7.1: Overview of transformation systems used as input for the experiment.

Transformation Number Size of LHSs

System of Rules min max

automaton 2 13 20
elev 9 1 10

elev-new 12 7 9
med1 9 4 7
med2 11 5 12
med3 12 5 12
mutex 13 1 7

pacman 6 5 7
server 4 4 6

treeToList 4 3 7
uml-refac 8 2 6

fmedit 49 1 23

med1–3 These three transformation systems model medical guidelines for a therapeutic

intervention. They were created by Cota et al. (2017) to validate the guidelines with

static analysis, detecting several issues in the original text.

mutex Models a distributed mutual exclusion algorithm. Provided by Varró, Schürr and

Varró (2005) as a benchmark for graph transformation tools.

pacman Models the game of pacman. Provided by Ehrig et al. (1997) as an introductory

example to graph transformation.

server Models the exchange of messages between clients and servers. Provided by

Machado, Ribeiro and Heckel (2015) to motivate the development of second-order

graph grammars.

tree-rotation Encodes tree rotations that underlie many implementations of balanced bi-

nary trees. Used by Costa et al. (2016) to compare the performance of different

tools that enumerate critical pairs.

uml-refac Encodes refactorings of UML class models. Provided by Mens, Taentzer and

Runge (2007), who used conflict detection to understand the interactions between

these refactorings and propose guidelines for their application.

fmedit Encodes several possible transformations and refactorings of feature models that

are implemented in model transformation tools. Adapted from Strüber et al. (2016),

who proposed it as a benchmark for the scalability of model transformation tools.

112

Subtyping and boolean attributes were simulated with additional edge types, since

neither is supported by our approach.

7.2 Results

Of the 1708 unordered pairs of rules, only 693 pairs have at least one potential

conflict. The other 1015 were found to be parallel independent. Similarly, only 951 of

the 3277 ordered pairs of rules have at least one potential disabling. Each repetition of

the test took around 36min, with around 6min spent enumerating and filtering conflict

essences, and around 30min spent for disabling essences. Thus, Algorithm 6.1 seems

feasible for practical applications, while Algorithm 6.2 seems less feasible. Moreover,

both algorithms may not scale for larger case studies.

Regarding question Q1, the experiments have presented evidence that the num-

ber nce of conflict essences, or equivalently of initial conflicts, is generally smaller than

the number ncp of critical pairs. In fact, a paired t-test has refuted the null hypothesis that

nce ≥ ncp with p < 0.01, N = 693. This can also be observed in Fig. 7.1, since most points

are below the line nce = ncp, and none are above.

Moreover, the fraction of critical pairs that are initial seems to decrease with

the number of critical pairs. In fact, there is a strong correlation between log(nce) and

log(ncp), giving Pearson’s correlation coefficient r = 0.729±0.036 with 99% confidence.

This can also be observed on the scatter plot presented by Fig. 7.1. We can there-

Figure 7.1: Log-log scatter plot of critical pairs vs. initial conflicts, for each pair of rules,
with the fit of linear regression.

100 101 102 103 104

100

101

102

103

Number ncp of critical pairs

N
um

be
rn

ce
of

in
iti

al
co

nfl
ic

ts

rule pairs
linear regression fit

nce = ncp

113

fore fit a linear model log(nce) = α +β log(ncp) using ordinary least squares, obtaining

α = 0.02±0.08 and β = 0.36±0.03 with 99% confidence. From this fit we obtain the

following approximation for the ratio nce
ncp

, which is a monotonically decreasing function

of ncp. This decreasing behaviour can also be observed in Fig. 7.2.

nce ≈ eα ·nβ
cp ≈ n0.36

cp (7.1)
nce

ncp
≈ n−0.64

cp (7.2)

Regarding question Q2, we have evidence that the number of irreducible essences

is proportional to the logarithm of the total number of essences. In the case of conflict

Figure 7.2: Scatter plot of the fraction of critical pairs that is initial vs. total number of
critical pairs in logarithmic scale, for each pair of rules.

100 101 102 103 104

0.00

0.25

0.50

0.75

1.00

Number ncp of critical pairs

Fr
ac

tio
n

n c
e

n c
p

of
in

iti
al

co
nfl

ic
ts

rule pairs
linear regression fit

Figure 7.3: Scatter plot of conflict essences in logarithmic scale vs. irreducible conflict
essences, for each pair of rules.

100 101 102 103

5

10

15

20

Number nce of conflict essences

N
um

be
rn

ie
of

ir
re

du
ci

bl
e

es
se

nc
es rule pairs

114

Figure 7.4: Scatter plot of disabling essences in logarithmic scale vs. irreducible disabling
essences

100.0 100.5 101.0 101.5 102.0

3

6

9

12

15

Number nde of disabling essences

N
um

be
rn

ie
of

ir
re

du
ci

bl
e

es
se

nc
es rule pairs

essences, with sample size N = 693, we have a correlation coefficient r = 0.94±0.009 for

the variables nie and log(nce), with 99% confidence. The case of disabling essences is sim-

ilar: given N = 951, we compare nie and log(nde) obtaining r = 0.95±0.006. This corre-

lation is also visible on the scatter plots of Figs. 7.3 and 7.4.

An interesting related result is that all irreducible essences detected in the experi-

ment had less than two essences in their lower cover. It is left for future work to determine

if this holds in all cases. This would simplify the algorithm that finds irreducible essences,

since computing the union of the lower cover would no longer be necessary.

We conclude that enumerating conflict or disabling essences seems strictly better

than critical pairs, especially for pairs of rules with large left-hand sides, which tend to

have more critical pairs. Moreover, when reporting irreducible essences is possible, it

provides an advantage by cutting the number of essences logarithmically.

Filtering irreducible essences, however, could have a significant computational

cost. Nevertheless, in the context of Q3, Fig. 7.5 shows that the enumeration of conflict

essences demanded more time than the subsequent filtering of irreducible essences, in the

vast majority of cases. The single outlier is a pair of rules with 1566 conflict essences,

of which only 24 are irreducible, taking about 18s to enumerate and almost 3min to fil-

ter. Arguably, the time spent filtering all these essences is worth it, given the significant

reduction. Moreover, having that many essences seems to be the exception, rather than

the rule. In fact, this was the only pair of rules with more than 150 essences, and one of

only five pairs with more than 50 essences. We have indeed refuted the null hypothesis

that tf ≥ te using a paired t-test (p < 0.01, N = 1708). Unfortunately, we cannot rule out

115

the fact that both processes have the same asymptotic behaviour. In fact, when fitting the

model tf = eα · tβ
e by ordinary least squares, we obtain β = 0.85± 0.28 and correlation

r = 0.74±0.03, with 99% confidence for our sample size.

For disabling essences, on the other hand, we obtain β = 0.68±0.06 for the same

model, with the scatter plot shown in Fig. 7.6. This suggests that filtering the irreducible

disabling essences is asymptotically faster than enumerating all such essences. In this

case, we were also able to refute the null hypothesis that tf ≥ te using a paired t-test

(p < 0.01, N = 3277).

The evidence suggests that the time spent filtering irreducible essences is, in gen-

eral, less than the time spent enumerating them. Nevertheless, it may still incur a signifi-

cant computational cost, especially for conflict essences.

When comparing the running times of Algorithms 6.1 and 6.2 to the number of

overlappings they have checked, as postulated by Q3, we have evidence of a strong cor-

relation between their logarithms. This correlation can be observed in the scatter plots

of Figs. 7.7 and 7.8, along with the fitted linear models. In the case of conflict essences,

we have a correlation coefficient r = 0.98± 0.003 between log(te) and log(nco). Us-

ing ordinary least squares regression, we fit a model log(te) = α +β log(nco), obtaining

α =−2.42±0.51 and β = 1.13±0.15 with 99% confidence. Since we can approximate

te ≈ eα · nβ
co, indicating that the running time of Algorithm 6.1 is approximately linear

with respect to the number of checked overlappings.

For disabling essences, on the other hand, we have r = 0.93± 0.009, as well as

the linear model with α = 17.44±1.94 and β = 1.62± 0.91, for 99% confidence. This

Figure 7.5: Log-log scatter plot with running times of Algorithm 6.1 vs. filtering of irre-
ducible essences, for each pair of rules.

10−1 100 101 102 103 104

10−2

100

102

104

Enumeration time te (ms)

Fi
lte

ri
ng

tim
e

t f
(m

s)

rule pairs
linear regression fit

tf = te

116

Figure 7.6: Log-log scatter plot with running times of Algorithm 6.2 vs. filtering of irre-
ducible essences, for each pair of rules.

10−2 100 102 104 106

10−3

10−2

10−1

100

101

102

103

Enumeration time te (ms)

Fi
lte

ri
ng

tim
e

t f
(m

s)

rule pairs
linear regression fit

tf = te

Figure 7.7: Log-log scatter plot with running time of Algorithm 6.1 vs. checked overlap-
pings of the left-hand sides, for each pair of rules.

100 101 102 103 104 105

10−1

100

101

102

103

104

105

Number nco of checked overlappings

E
nu

m
er

at
io

n
tim

e
t e

(m
s)

rule pairs
linear regression fit

suggests that the running time of Algorithm 6.1 is between linear and cubic with respect

to the number of checked overlappings.

Part of these checked overlappings is due to the number of spurious disabling can-

didates, each of which forces the algorithm to check a potentially large number of over-

lappings. Fortunately, evidence indicates that spurious candidates are a rare occurrence:

only 1.7% of the candidates produced by the experiment were spurious, which answers

question Q5. Moreover, non-spurious candidates could be detected after checking a very

small number of overlappings. In fact, in almost 98% pairs of rules, each candidate re-

quired checking only one overlapping to show that it is not spurious.

117

Figure 7.8: Log-log scatter plot with running time of Algorithm 6.2 vs. checked overlap-
pings of the left-hand sides and deletion object, for each pair of rules.

100 101 102 103 104 105

100

102

104

106

Number nco of checked overlappings

E
nu

m
er

at
io

n
tim

e
t e

(m
s)

rule pairs
linear regression fit

Figure 7.9: Log-log scatter plot comparing the number of overlappings checked by Al-
gorithm 6.2 with the total number of overlappings of the left-hand sides, for each pair of
rules.

100 101 102 103 104 105

100

101

102

103

104

105

Total number nto of overlappings for the left-hand sides

N
um

be
rn

co
of

ch
ec

ke
d

ov
er

la
pp

in
gs rule pairs

nco = nto

When investigating Q6, our results are consistent with the previous few statements:

the total number of overlappings checked by Algorithm 6.2 is usually less than the total

number of overlappings of left-hand sides. This is supported by a paired t-test, which

refutes the null hypothesis that nco ≥ nto with p < 0.01 and N = 3277, in spite of the

algorithm checking not only overlappings of the left-hand sides, but also overlappings

of the deletion object of a rule with the left-hand side of the other. As Fig. 7.9 shows,

individual pairs of rules may require checking a larger number of overlappings. In fact,

since the t-test compares the population means, its result applies to sets of rules that

are “large enough”, ensuring that their mean approaches the population mean with high

118

probability. Determining minimal sizes to ensure this is left for future work.

Finally, comparing the running time of Algorithms 6.1 and 6.2 for Q7 led to in-

conclusive results. Figure 7.10 compares, for each pair of rules, the time required to

enumerate conflict essences with the time spent enumerating disabling essences in both

directions. A t-test could not refute the null hypothesis that these times are equal. On the

other hand, each repetition of the complete experiment took around 6min to enumerate

and filter all conflict essences, and around 30min for the disabling essences. Investigat-

ing whether the enumeration of disabling essences is indeed more costly than conflict

essences is left for future work.

Figure 7.10: Log-log scatter plot comparing the time spent enumerating conflict and di-
sabling essences, for each pair of rules.

10−1 100 101 102 103 104

100

102

104

106

Time spent enumerating conflicts (ms)

Ti
m

e
sp

en
te

nu
m

er
at

in
g

di
sa

bl
in

gs
(m

s)

rule pairs
equal times

119

8 RELATED WORK

8.1 Algebraic Approaches to Graph Transformation

Graph transformation has been developed under various approaches. For an in-

troduction to the most traditional ones, we refer to the “Handbook of Graph Grammars

and Computing by Graph Transformation” edited by Rozenberg (1997). In this thesis, we

have focused on the Double-Pushout (DPO) approach, one of the algebraic approaches,

which are based on category theory. The DPO approach was originally developed by

Ehrig, Pfender and Schneider (1973) explicitly for the category of graphs and graph mor-

phisms. It was later generalised to arbitrary categories (that satisfy certain assumptions)

by Ehrig et al. (1997), Lack and Sobocinski (2005), Ehrig et al. (2004). As discussed in

the introduction, this has allowed the main definitions and results to be instantiated for

several kinds of “transformed structures”, beyond the usual notion of graph. Of particu-

lar interest were notions of attributed graph, further discussed in Section 8.2.2, allowing

nodes and edges to have attributes of boolean, numeric, textual or even user-defined type.

The book by Ehrig et al. (2006) provides a thorough exposition of the DPO approach.

There are actually four variations of the DPO approach, since both the matches and

right-hand morphisms K→R may or may not be monic. Habel, Müller and Plump (1998)

investigated the four variations in terms of their expressive power and properties. They

have shown that allowing non-monic right-hand morphisms increases expressiveness, al-

lowing the rules to “merge” nodes or edges. However, this comes at a cost: rules and

transformations are no longer reversible, an otherwise trivial property, and the theory of

parallel and sequential independence becomes more complex. On the other hand, requir-

ing monic matches increases the expressive power of rules, while keeping reversibility

and the theory of parallel and sequential independence intact. Most of the subsequent

work on conflict and dependency detection requires monic right-hand morphisms, such

as Ehrig et al. (2004), Lambers (2009). Much of it also requires monic matches, such

as Lambers, Ehrig and Orejas (2008), Born et al. (2017), Lambers et al. (2018). We

have chosen to impose both restrictions, remaining in line with previous work in conflict

detection without loss of expressive power.

The DPO approach is particularly well-behaved, which has allowed a simple but

powerful theory of parallelism and concurrency. However, rules are limited in their ex-

pressive power, since their application must have purely local effects. That is, a transfor-

120

mation step cannot modify any parts of the system state outside the match, even if they are

incident to some matched element. Moreover, they cannot clone nodes or edges, which is

useful for some applications such as refactorings of UML models. In order to overcome

these limitations, several approaches have been proposed in the literature.

The first such approach was derived by Raoult (1984) from the insight that rules

ρ = L←K→R can also be seen as partial morphisms ρ : L→R with domain K. Thus,

we can work in the category of graphs and partial graph morphisms, instead of the total

morphisms used for DPO. In this category, given a (total) match m : L→G and a rule

ρ : L→R, a transformation step can be expressed as the pushout of m and ρ . This is

called the Single-Pushout (SPO) approach, differing from DPO because it allows some

modification to the boundary of the match. In fact, if there is some unmatched edge in

the system state incident to a deleted node, the SPO approach will also delete it, while the

DPO approach will forbid an application of the rule at this match. The SPO approach was

further developed in the category of graphs by Löwe (1991), and generalised to categories

of spans (that satisfy certain assumptions) by Montserrat et al. (1997).

The generalisation of SPO to categories of spans highlighted the notion of final

pullback complement as a construction similar to pushout complements. This was ex-

ploited by Corradini et al. (2006) to define the Sesqui-Pushout (SqPO) approach, which

is a strict generalisation of DPO with monic matches. It has a similar behaviour to SPO,

deleting edges on the boundary of the match. Moreover, when the left-hand morphism

K→L is non-monic, rules can express the cloning of nodes with all incident edges. In

order to control which incident edges are cloned along with each node, the AGREE ap-

proach was proposed by Corradini et al. (2015) and, later, the PBPO approach was pro-

posed by Corradini et al. (2017). It was the study of parallelism in AGREE by Corradini

et al. (2016) that led to the essential condition of parallel independence, which served as

the foundation for this thesis.

8.2 Categories for Algebraic Graph Transformation

8.2.1 Variations of Adhesivity

As discussed in Chapter 2, the Double-Pushout (DPO) approach to graph trans-

formation uses pushouts as a basis for “gluing” the rules to the contexts where they are

applied. Given the important role that pushouts play in this setting, any category used as

121

a background for DPO transformation should have well-behaved pushouts.

In fact, the generalisation of algebraic graph transformation to multiple categories

began by identifying several High-Level Replacement (HLR) properties necessary for

graph transformation. Lack and Sobocinski (2005) have shown that these properties are

satisfied in all adhesive categories (see Theorem 2.22). Nevertheless, adhesivity is often

too strong a requirement, particularly for dealing with attributed graphs. This led to the

definition of several relaxed versions of adhesivity that still ensure the necessary HLR

properties. Adapting the results of this thesis to such variations is left for future work.

The first relaxed version, proposed already by Lack and Sobocinski (2005), are

quasi-adhesive categories. These categories satisfy all adhesivity properties, but only

with regular monomorphisms1. When applying the DPO approach to these categories,

transformation rules must contain only regular monos. This is a strict generalisation of

adhesive categories: all adhesive categories are quasi-adhesive, since regular monos are

a particular class of monomorphisms. In fact, adhesive categories are exactly the quasi-

adhesive categories where all monos are regular.

Further relaxations were surveyed by Ehrig, Golas and Hermann (2010). Notably,

this includes M -adhesive categories, where adhesivity properties hold for a distinguished

class M of monomorphisms, which are those appropriate for transformation rules. In fact,

pullbacks and pushouts need only exist along M -morphisms, and such pushouts are only

weak VK squares, imposing further assumptions on the vertical morphisms of the cube.

This is a strict generalisation of quasi-adhesive categories: quasi-adhesive categories are

M -adhesive choosing as M the class of regular monos. This allows DPO transformation

to be instantiated for, among others, Petri nets and algebraic specifications.

In the context of labelled and attributed graphs, however, M -adhesivity is often

too strong. Indeed, as noted by Habel and Plump (2012), categories of partially labelled

graphs are necessary to allow rules that relabel nodes. In this case, nodes have different

labels on the left- and right-hand sides, but are left unlabelled in the interface. These

categories, however, are not M -adhesive. In fact, pushouts along M -morphisms are only

guaranteed to exist if the M -morphism is being pushed out along a monomorphism.

Therefore, Habel and Plump (2012) proposed M ,N -adhesive categories by se-

lecting a class N of morphisms that are appropriate for matches, besides the class M

of monos that are appropriate for rules. Then pushouts are only required to exist when

one of the morphisms is in M and the other in N , and only these are required to be

1Regular monos are those that equalise some pair of morphisms. They have important properties of
injective functions that may not hold for all monos.

122

weak VK squares. Deckwerth (2017) further distinguished between classes L and R of

morphisms appropriate for the left and right sides of a rule, defining L ,R,N -adhesive

categories. These were used to provide static analysis techniques for attributed graph

transformation.

8.2.2 Attributed Graphs and Structures

In many applications, the entities of a system have associated attributes, which

may be boolean, numeric, textual or of some user-defined type. In this case, system states

should be represented by attributed graphs, which contain a graphical part that will be

modified during execution, an immutable universe of attribute values, and an assignment

of attributes to the elements of the graphical part, which may also change with the execu-

tion of the system. There are many approaches to attributed graphs. Extending the results

of this thesis to handle attributed graphs is left for future work.

The most traditional approach to representing attributed graphs is presented, for

example, by Ehrig et al. (2006). In this approach, the universe of attributes is assumed

to be an algebra for a particular signature. The values of this algebra are seen as special

nodes of the graph, and the attribution is then given by special edges with a regular node

as source, and with an attribute node as a target. This defines an underlying category of

typed attributed graphs, given a particular type graph and algebraic signature, which is

M -adhesive.

A variation on this is the notion of symbolic graphs, proposed by Orejas and Lam-

bers (2010), taking a more syntactic approach. In this case, a fixed algebra is taken for

the entire category. Instead of associating values with the elements of the graph, symbolic

graphs use variables, along with a formula in first-order logic that constrains the values

these variables may take. Thus, each symbolic graph represents a (possibly empty) set

of attributed graphs. Categories of symbolic graphs were shown by Deckwerth (2017) to

be M ,N -adhesive. Deckwerth (2017) also developed conflict detection techniques for

symbolic graphs that combine the usual analysis with off-the-shelf SMT solvers.

A third approach are the categories of attributed structures proposed by Duval

et al. (2014). This approach combines two independent categories, one describing the

structures (e.g. graphs) and another describing the attributes, emphasising the separation

between the “mutable” graphical part and the immutable attributes. An advantage of this

approach is the flexibility in the choice of attributes with a uniform theory. Determining

123

under which conditions the categories of attributed structures are adhesive is an open

problem. Thus, conflict detection techniques have not yet been developed for them, to the

best of our knowledge.

8.3 Conflict Detection in the Double-Pushout Approach

The theoretical basis for conflict detection, as well as the related problem of depen-

dency detection, is the theory of parallelism and concurrency for graph transformation. In

fact, the parallel and sequential combinations of rules and transformations, as surveyed by

Corradini et al. (1997), were studied in the early days of algebraic graph transformation.

Conflict detection itself, in the form of critical pairs, was originally developed in the field

of term rewriting by Knuth and Bendix (1970), then adapted for graph transformation by

Plump (1993). These results were among the first to be brought into the framework of

adhesive categories by Ehrig et al. (2004).

The theory of critical pairs was later adapted to support Negative Application Con-

ditions by Lambers (2009), and to support Nested Application Conditions by Ehrig et al.

(2012). The issue of redundant critical pairs was identified by Lambers, Ehrig and Ore-

jas (2008), who proposed essential critical pairs as a smaller solution to the problem of

conflict detection. Essential critical pairs were developed for the category of typed graphs

and, to the best of our knowledge, not yet generalised to adhesive categories. Neverthe-

less, they were a major source of inspiration for this thesis. In fact, we have taken the

same approach of finding a characterisation for the root causes of conflicts, then using it

to determine an appropriate subset of critical pairs.

During the development of this thesis, Lambers et al. (2018) proposed the notion

of initial conflicts as an even better solution for conflict detection than essential critical

pairs. Interestingly, it turned out to coincide with our own variation of essential critical

pairs. Further work in this direction was the study of root causes for conflicts by Born

et al. (2017). They have provided many new concepts with varying levels of granularity,

from conflict atoms which are individual elements that cause a conflict when identified, to

the conflict reasons originally proposed by Lambers, Ehrig and Orejas (2008). Comparing

these various notions to the generalised subobjects and conflict essences proposed in this

thesis is left for future work.

124

8.3.1 Applications of Conflict Detection

Conflict detection and the related technique of dependency detection have found

applications in a wide variety of fields, particularly related to Model-Driven approaches

to software development. Dependencies are essentially the opposite of disablings: instead

of hindering the application of a rule that was previously applicable, one transformation

enables the application of a rule that was not previously applicable. Applying the concepts

of this thesis to dependency analysis is left for future work, but this should be easily

achieved since every dependency of a rule ρ1 on a rule ρ2 = L←K→R corresponds to a

conflict between ρ1 and the inverse rule ρ
−1
2 = R←K→L.

Conflict and dependency detection have been used as a basis for the certification

of various properties in graph transformation systems. In fact, the Ph.D. thesis by Lam-

bers, Ehrig and Orejas (2008) provides certification and refutation procedures based on

static analysis, many of which use conflict detection. The use of initial conflicts instead

of critical pairs could greatly simplify the certification of certain properties. When certi-

fying that a model has functional behaviour, for example, every potential conflict must be

inspected to determine if it is locally confluent. Since searching for local confluence is an

expensive analysis, reducing the number of potential conflicts can be highly beneficial.

Dependency detection can also play a role when proving termination of a trans-

formation system. Plump (2018) has shown that this can be done in a modular fashion,

by partitioning the transformation rules of the system in way such that rules of different

partitions have no potential dependencies. In this case, showing that each partition of the

system terminates implies that the complete system also terminates.

There are numerous applications of conflict and dependency detection in the field

of Model-Driven Software Engineering. Conflict detection was used by Mens, Taentzer

and Runge (2007) to understand interactions between refactorings of UML models and

propose guidelines for their application. Conflict and dependency detection was also used

by Mehner, Monga and Taentzer (2009) and Whittle et al. (2009) to analyse interactions

between aspects in Aspect-Oriented software development. Jayaraman et al. (2007) have

proposed the modelling of features in Software Product Lines as transformation rules over

UML models, and then using conflict and dependency detection to automatically detect

mutually exclusive features. Mens and Straeten (2006) have developed transformations

rules for detecting and resolving UML model inconsistencies, then used dependency de-

tection to understand situations where resolving an inconsistency might introduce another,

125

and even detect potential cycles of resolution rules.

Taentzer et al. (2010) proposed conflict detection as a theoretical basis for the

versioning of models that are concurrently modified by multiple members of a team. In

this setting, conflicts indicate whether these concurrent modifications can be merged, or

if different members have made mutually inconsistent changes.

Self-repairing systems, which monitor their own behaviour and adapt to situations

where their requirements are not met, where modelled as Dynamic Software Architectures

and formalised as graph transformation systems by Bucchiarone et al. (2009). Depen-

dency detection was then used to that the usual execution of the system, external changes

and the self-repairing rules interact in desirable ways.

There are also several approaches to validate models of functional requirements

with conflict and dependency analysis. Hausmann, Heckel and Taentzer (2002) proposed

modelling the pre- and post-conditions of each use-case from an UML use-case model

as a transformation rule, then detecting potential conflicts and dependencies between

use-cases. Deckwerth (2017) has provided conflict and dependency detection techniques

for attributed graphs, applying them to the requirements analysis of enterprise software.

Oliveira Jr. et al. (2014) proposed a methodology for constructing graph transformation

systems from textual documents and later validate them, applying it to textual use-case

models. The same methodology was employed by Cota et al. (2017) to detect several is-

sues in medical guidelines for a therapeutic intervention, producing an improved version

of the document.

8.4 Verification Techniques for Graph Transformation

Static analysis techniques for graph transformation systems were thoroughly stud-

ied by Lambers (2009), including not only conflict and dependency detection, but also

termination, confluence, applicability of certain sequences of rules and the preservation

of invariants expressed as graphical constraints. These were further developed for at-

tributed graphs by Deckwerth (2017), who combined traditional techniques for conflict

detection with off-the-shelf SMT solvers. The former handle the graphical part of the

model, while the latter perform reasoning about the attributes.

In order to ensure that invariants of the systems are preserved by all transformation

rules, theorem proving can also be applied. One of the main approaches for theorem prov-

ing is based on the language of nested constraints and application conditions proposed by

126

Habel and Pennemann (2005). It allows the specification of invariants in a graphical way,

as well as pre- and post-conditions, with the same expressive power of first-order logic.

Habel and Pennemann (2005) also developed a technique for calculating weakest pre-

conditions necessary for a rule to ensure a particular nested constraint. It then must be

proven that this pre-condition holds in any context where the application conditions are

satisfied, which can be done with many approaches. The whole problem can be translated

into first-order logic, and then delegated to theorem provers and satisfiability solvers, as

proposed by Habel and Pennemann (2005). Alternatively, one may directly use the proof

systems for nested constraints proposed by Pennemann (2008b) and Orejas and Lambers

(2010), or the satisfiability solver developed by Pennemann (2008a).

Another approach to theorem proving, proposed by Cavalheiro (2010), is based on

a representation of graph grammars as relational structures. This allows their embedding

in Event-B, a formal methods developed by Abrial (2010). Invariants can the be formu-

lated in first-order logic, with some specification patterns provided by Cavalheiro, Foss

and Ribeiro (2012). This technique was extended for negative application conditions by

Cavalheiro, Foss and Ribeiro (2017).

Besides static analysis and theorem proving, model checking techniques have been

applied to graph transformation. Csertán et al. (2002) proposed a translation of transfor-

mation rules over UML models to the Promela language, which is supported by the SPIN

model checker. Moreover, the GROOVE model checker was developed by Kastenberg

and Rensink (2006), specifically for graph transformation systems.

127

9 CONCLUSIONS

Graph transformation is a useful framework for the specification, analysis and de-

velopment of software, particularly within Model-Driven methodologies. It combines an

intuitive visual representation with a rich theory and several verification techniques. Static

analysis techniques have been applied with particular success, but the technique of con-

flict detection still faces issues related to scalability. One of these issues is the running

time of existing algorithms for enumerating potential conflicts. But a more fundamen-

tal problem is the amount of potential conflicts that are detected, and particularly their

redundancy.

In this thesis, we have taken a step to improving the techniques of conflict de-

tection by developing a theory that describes the root causes of conflicts. We have also

provided algorithms for enumerating the potential causes of conflicts, as well as experi-

mental evidence that the concepts we introduce allow a significant reduction in the number

of potential conflicts detected, without loss of information.

In the following, we will summarise the main contributions of this thesis, then

describe further directions of research that could improve conflict detection for a wider

variety of applications.

9.1 Contributions

This thesis has provided a theoretical framework for reasoning about potential

conflicts and disablings that a pair of rules may cause. The main theoretical contributions

were:

Set-valued functors as generalised graphs. Categories of set-valued functors

were shown in Chapter 3 to provide a good context for graph transformation, generalising

graphs and graph structures while still providing a notion of element. This allows some

proofs to be carried out set-theoretically, and yet apply to a wide variety of graph-like

structures.

Conflict and disabling essences as a formal characterisation of root causes.

In Chapter 5, we have studied both the essences for concrete pairs of transformations, as

well as the sets of potential essences for a pair of rules. These concepts were shown to

have important properties: they are directly related to the definition of parallel indepen-

dence, that is, absence of conflicts; they are empty if and only if there is no conflict or

128

disabling; they are preserved and reflected by extension into larger contexts, in many cate-

gories of interest. We have shown that the latter property holds in categories of set-valued

functors, and provided a sufficient condition for it to hold in other adhesive categories.

A generalised notion of subobject. In order to apply lattice-theoretical tech-

niques to conflict and disabling essences, we have proposed in Chapter 4 a generalised

notion of subobject that applies to pairs of matches or left-hand side objects. We have

shown that, in adhesive categories, the pairs of left-hand sides or matches have lattices of

subobjects. This provides natural ways to compose and decompose these subobjects and,

in particular, conflict and disabling essences.

Irreducible essences. We have noted that conflict or disabling essences may be

unions of other essences, bringing no additional information for some applications of

conflict detection. Using lattice-theoretical techniques, we have identified irreducible

essences as a subset of all essences, such that every essence is a union of irreducibles.

Irreducible essences are appropriate, for example, when potential conflicts are to be man-

ually inspected.

A categorical construction for initial conflicts. We have shown in Chapter 5 that

initial conflicts are closely related to conflict essences. In fact, a categorical construction

of initial conflicts from the conflict essences was provided, for many adhesive categories

of interest. In particular, we have shown that this construction is correct in categories of

set-valued functors. Moreover, we have provided sufficient conditions for this to hold in

other adhesive categories.

Besides the theoretical contributions described above, we have provided algo-

rithms for enumerating conflict, disabling and irreducible essences in Chapter 6.

These algorithms are generic with respect to the underlying category, and can be instanti-

ated for different kinds of transformed objects. We have also discussed their main perfor-

mance bottleneck, and provided a prototype implementation in the Verigraph system.

Finally, we have performed an experimental evaluation of these concepts and al-

gorithms in Chapter 7. When comparing initial conflicts to the previous notion of critical

pairs, we have evidence that the former are a significantly smaller subset of the latter, and

that the difference in sizes increases with number of critical pairs. Moreover, irreducible

essences seem to bring another significant reduction, since their number is highly corre-

lated to the logarithm of the number of essences. The time spent enumerating and filtering

conflict essences was appropriate for practical cases. Nevertheless, the scalability of the

enumeration algorithms, particularly for disabling essences, remains a concern.

129

9.2 Future Work

This dissertation provides a significant step towards improving conflict detec-

tion for algebraic graph transformation. Nevertheless, the integration of certain concepts

would be necessary for a wider applicability of our main results.

Another important extension of the theory is the inclusion of application condi-

tions and graph constraints. Since they were proposed by Habel, Heckel and Taentzer

(1996), the use of negative application conditions became quite widespread. They were

integrated into the theory of critical pairs by Lambers, Ehrig and Orejas (2006). Moreover,

Lambers (2009) has proposed using graph constraints that encode invariants of the system

to reduce the number of critical pairs, invalidating those where some invariant is violated.

Both of these concepts have been generalised by Habel and Pennemann (2005) as nested

constraints and application conditions, which have the same expressive power as first-

order logic. The theory of conflict and disabling essences must still be adapted to allow

application conditions and graph constraints. In particular, it remains to be seen whether

initial conflicts would still be available, since they could violate certain constraints that

hold in some of their extensions.

Supporting other kinds of transformed objects would also be important for prac-

tical applications, particularly within the object-oriented approach to Model-Driven de-

velopment. This includes allowing inheritance of types as formalised by Taentzer and

Rensink (2005), that is, enriching type graphs with a subtype relation for nodes. Also

important is adapting the theory for attributed graphs, which might require considerable

effort. Both cases would involve the generalisation of this theory to the variations of

adhesivity, which we have presented in Section 8.2.1.

Providing more efficient algorithms for conflict detection is also an important line

of research. Born et al. (2017) proposed detecting “building blocks” for conflict reasons

and checking which of their combinations are actually causes for conflicts, when studying

conflicts at different levels of granularity. Comparing this study to the lattice-theoretical

approach taken in this thesis could be a starting point to develop better algorithms.

An important open problem of a more theoretical nature is determining whether

proto-essence inheritance and PO-PB decomposition via proto-essences hold in all ad-

hesive categories. This would ensure that the main results of this thesis hold in a wider

variety of categories.

The main definitions and results of this thesis could also be adapted for the related

130

problem of dependency detection. This should be relatively straightforward, since depen-

dency of a rule ρ1 on a rule ρ2 = L←K→R corresponds to a conflict between ρ1 and the

inverse rule ρ
−1
2 = R←K→L.

Finally, it should be possible to adapt this theory for other algebraic approaches of

graph transformation that allow cloning. These were reviewed in Section 8.1, and most

notably they include Sesqui-Pushout and AGREE.

131

REFERENCES

ABRIAL, J. Modeling in Event-B - System and Software Engineering. Cambridge
University Press, 2010. ISBN 978-0-521-89556-9. Available from Internet:
<http://www.cambridge.org/uk/catalogue/catalogue.asp?isbn=9780521895569>.

ADÁMEK, J.; HERRLICH, H.; STRECKER, G. E. Abstract and Concrete Categories
- The Joy of Cats. Dover Publications, 2009. ISBN 978-0-486-46934-8. Available from
Internet: <http://store.doverpublications.com/0486469344.html>.

ARENDT, T. et al. Henshin: Advanced concepts and tools for in-place EMF model
transformations. In: PETRIU, D. C.; ROUQUETTE, N.; HAUGEN, Ø. (Ed.). Model
Driven Engineering Languages and Systems - 13th International Conference,
MODELS 2010, Oslo, Norway, October 3-8, 2010, Proceedings, Part I. Springer,
2010. (Lecture Notes in Computer Science, v. 6394), p. 121–135. Available from
Internet: <https://doi.org/10.1007/978-3-642-16145-2_9>.

AZZI, G. G. et al. The verigraph system for graph transformation. In: Graph
Transformation, Specifications, and Nets. Springer, 2018. (LNCS, v. 10800), p.
160–178. Available from Internet: <https://doi.org/10.1007/978-3-319-75396-6_9>.

AZZI, G. G.; CORRADINI, A.; RIBEIRO, L. On the essence and initiality of conflicts.
In: LAMBERS, L.; WEBER, J. H. (Ed.). Graph Transformation - 11th International
Conference, ICGT 2018, Held as Part of STAF 2018, Toulouse, France, June 25-26,
2018, Proceedings. Springer, 2018. (Lecture Notes in Computer Science, v. 10887), p.
99–117. Available from Internet: <https://doi.org/10.1007/978-3-319-92991-0_7>.

BALDAN, P. et al. A lattice-theoretical perspective on adhesive categories.
J. Symb. Comput., v. 46, n. 3, p. 222–245, 2011. Available from Internet:
<https://doi.org/10.1016/j.jsc.2010.09.006>.

BEZERRA, J. S. et al. Verites/verigraph 1.1.1: Fix ‘findCospanCommuter‘. 2017.
Available from Internet: <https://doi.org/10.5281/zenodo.579644>.

BORN, K. et al. Granularity of conflicts and dependencies in graph transformation
systems. In: ICGT. Springer, 2017. (LNCS, v. 10373), p. 125–141. Available from
Internet: <https://doi.org/10.1007/978-3-319-61470-0_8>.

BUCCHIARONE, A. et al. Self-repairing systems modeling and verification using
AGG. In: WICSA/ECSA. IEEE, 2009. p. 181–190. Available from Internet:
<https://doi.org/10.1109/WICSA.2009.5290804>.

CAVALHEIRO, S. A. da C. Relational Approach of Graph Grammars. Thesis (PhD)
— Universidade Federal do Rio Grande do Sul, Brazil, 2010.

CAVALHEIRO, S. A. da C.; FOSS, L.; RIBEIRO, L. Specification patterns for properties
over reachable states of graph grammars. In: GHEYI, R.; NAUMANN, D. A. (Ed.).
Formal Methods: Foundations and Applications - 15th Brazilian Symposium,
SBMF 2012, Natal, Brazil, September 23-28, 2012. Proceedings. Springer, 2012.
(Lecture Notes in Computer Science, v. 7498), p. 83–98. Available from Internet:
<https://doi.org/10.1007/978-3-642-33296-8_8>.

http://www.cambridge.org/uk/catalogue/catalogue.asp?isbn=9780521895569
http://store.doverpublications.com/0486469344.html
https://doi.org/10.1007/978-3-642-16145-2_9
https://doi.org/10.1007/978-3-319-75396-6_9
https://doi.org/10.1007/978-3-319-92991-0_7
https://doi.org/10.1016/j.jsc.2010.09.006
https://doi.org/10.5281/zenodo.579644
https://doi.org/10.1007/978-3-319-61470-0_8
https://doi.org/10.1109/WICSA.2009.5290804
https://doi.org/10.1007/978-3-642-33296-8_8

132

CAVALHEIRO, S. A. da C.; FOSS, L.; RIBEIRO, L. Theorem proving graph grammars
with attributes and negative application conditions. Theor. Comput. Sci., v. 686, p.
25–77, 2017. Available from Internet: <https://doi.org/10.1016/j.tcs.2017.04.010>.

CORRADINI, A. et al. AGREE - algebraic graph rewriting with controlled embedding.
In: ICGT. Springer, 2015. (LNCS, v. 9151), p. 35–51. Available from Internet:
<https://doi.org/10.1007/978-3-319-21145-9_3>.

CORRADINI, A. et al. The pullback-pushout approach to algebraic graph
transformation. In: ICGT. Springer, 2017. (LNCS, v. 10373), p. 3–19. Available from
Internet: <https://doi.org/10.1007/978-3-319-61470-0_1>.

CORRADINI, A. et al. On the essence of parallel independence for the double-
pushout and sesqui-pushout approaches. In: Graph Transformation, Specifications,
and Nets. Springer, 2018. (LNCS, v. 10800), p. 1–18. Available from Internet:
<https://doi.org/10.1007/978-3-319-75396-6_1>.

CORRADINI, A. et al. Parallelism in AGREE transformations. In: ICGT.
Springer, 2016. (LNCS, v. 9761), p. 37–53. Available from Internet: <https:
//doi.org/10.1007/978-3-319-40530-8_3>.

CORRADINI, A. et al. Sesqui-pushout rewriting. In: ICGT. Springer, 2006. (LNCS,
v. 4178), p. 30–45. Available from Internet: <https://doi.org/10.1007/11841883_4>.

CORRADINI, A. et al. Algebraic approaches to graph transformation - part I: basic
concepts and double pushout approach. In: Handbook of Graph Grammars and
Computing by Graph Transformations, Volume 1: Foundations. [S.l.]: World
Scientific, 1997. p. 163–246.

COSTA, A. et al. Verigraph: A system for specification and analysis of graph
grammars. In: RIBEIRO, L.; LECOMTE, T. (Ed.). Formal Methods: Foundations and
Applications - 19th Brazilian Symposium, SBMF 2016, Natal, Brazil, November
23-25, 2016, Proceedings. [s.n.], 2016. (Lecture Notes in Computer Science, v. 10090),
p. 78–94. Available from Internet: <https://doi.org/10.1007/978-3-319-49815-7_5>.

COTA, É. F. et al. Using formal methods for content validation of medical procedure
documents. I. J. Medical Informatics, v. 104, p. 10–25, 2017. Available from Internet:
<https://doi.org/10.1016/j.ijmedinf.2017.04.012>.

CSERTÁN, G. et al. VIATRA - visual automated transformations for formal verification
and validation of UML models. In: 17th IEEE International Conference on
Automated Software Engineering (ASE 2002), 23-27 September 2002, Edinburgh,
Scotland, UK. IEEE Computer Society, 2002. p. 267–270. Available from Internet:
<https://doi.org/10.1109/ASE.2002.1115027>.

DAVEY, B. A.; PRIESTLEY, H. A. Introduction to Lattices and Order (2. ed.). [S.l.]:
Cambridge University Press, 2002. ISBN 978-0-521-78451-1.

DECKWERTH, F. Static Verification Techniques for Attributed Graph
Transformations. Thesis (PhD) — Darmstadt University of Technology, Germany,
2017. Available from Internet: <http://tuprints.ulb.tu-darmstadt.de/6150/>.

https://doi.org/10.1016/j.tcs.2017.04.010
https://doi.org/10.1007/978-3-319-21145-9_3
https://doi.org/10.1007/978-3-319-61470-0_1
https://doi.org/10.1007/978-3-319-75396-6_1
https://doi.org/10.1007/978-3-319-40530-8_3
https://doi.org/10.1007/978-3-319-40530-8_3
https://doi.org/10.1007/11841883_4
https://doi.org/10.1007/978-3-319-49815-7_5
https://doi.org/10.1016/j.ijmedinf.2017.04.012
https://doi.org/10.1109/ASE.2002.1115027
http://tuprints.ulb.tu-darmstadt.de/6150/

133

DUVAL, D. et al. Transformation of attributed structures with cloning. In:
GNESI, S.; RENSINK, A. (Ed.). Fundamental Approaches to Software
Engineering - 17th International Conference, FASE 2014, Held as Part of
the European Joint Conferences on Theory and Practice of Software, ETAPS
2014, Grenoble, France, April 5-13, 2014, Proceedings. Springer, 2014. (Lecture
Notes in Computer Science, v. 8411), p. 310–324. Available from Internet:
<https://doi.org/10.1007/978-3-642-54804-8_22>.

EHRIG, H. Introduction to the algebraic theory of graph grammars (A survey). In:
CLAUS, V.; EHRIG, H.; ROZENBERG, G. (Ed.). Graph-Grammars and Their
Application to Computer Science and Biology, International Workshop, Bad
Honnef, October 30 - November 3, 1978. Springer, 1978. (Lecture Notes in Computer
Science, v. 73), p. 1–69. Available from Internet: <https://doi.org/10.1007/BFb0025714>.

EHRIG, H. et al. Constraints and application conditions: From graphs to high-level
structures. In: ICGT. [S.l.]: Springer, 2004. (LNCS, v. 3256), p. 287–303.

EHRIG, H. et al. Fundamentals of Algebraic Graph Transformation. Springer, 2006.
(Monographs in Theoretical Computer Science. An EATCS Series). Available from
Internet: <https://doi.org/10.1007/3-540-31188-2>.

EHRIG, H. et al. M -adhesive transformation systems with nested application conditions.
part 2: Embedding, critical pairs and local confluence. Fundam. Inform., v. 118, n. 1-2,
p. 35–63, 2012. Available from Internet: <https://doi.org/10.3233/FI-2012-705>.

EHRIG, H.; GOLAS, U.; HERMANN, F. Categorical frameworks for graph
transformation and HLR systems based on the DPO approach. Bulletin of the EATCS,
v. 102, p. 111–121, 2010. Available from Internet: <http://eatcs.org/beatcs/index.php/
beatcs/article/view/158>.

EHRIG, H. et al. Adhesive high-level replacement categories and systems. In:
ICGT. Springer, 2004. (LNCS, v. 3256), p. 144–160. Available from Internet:
<https://doi.org/10.1007/978-3-540-30203-2_12>.

EHRIG, H. et al. Algebraic approaches to graph transformation - part II: single pushout
approach and comparison with double pushout approach. In: Handbook of Graph
Grammars. [S.l.]: World Scientific, 1997. p. 247–312.

EHRIG, H.; PFENDER, M.; SCHNEIDER, H. J. Graph-grammars: An algebraic
approach. In: 14th Annual Symposium on Switching and Automata Theory, Iowa
City, Iowa, USA, October 15-17, 1973. IEEE Computer Society, 1973. p. 167–180.
Available from Internet: <https://doi.org/10.1109/SWAT.1973.11>.

ERMEL, C. et al. Modeling with plausibility checking: Inspecting favorable and
critical signs for consistency between control flow and functional behavior. In:
FASE. Springer, 2011. (LNCS, v. 6603), p. 156–170. Available from Internet:
<https://doi.org/10.1007/978-3-642-19811-3_12>.

GABRIEL, K. et al. Finitary M -adhesive categories. Mathematical Structures
in Computer Science, v. 24, n. 4, 2014. Available from Internet: <https:
//doi.org/10.1017/S0960129512000321>.

https://doi.org/10.1007/978-3-642-54804-8_22
https://doi.org/10.1007/BFb0025714
https://doi.org/10.1007/3-540-31188-2
https://doi.org/10.3233/FI-2012-705
http://eatcs.org/beatcs/index.php/beatcs/article/view/158
http://eatcs.org/beatcs/index.php/beatcs/article/view/158
https://doi.org/10.1007/978-3-540-30203-2_12
https://doi.org/10.1109/SWAT.1973.11
https://doi.org/10.1007/978-3-642-19811-3_12
https://doi.org/10.1017/S0960129512000321
https://doi.org/10.1017/S0960129512000321

134

GRIES, D. et al. An algorithm for transitive reduction of an acyclic graph. Sci.
Comput. Program., v. 12, n. 2, p. 151–155, 1989. Available from Internet:
<https://doi.org/10.1016/0167-6423(89)90039-7>.

HABEL, A.; HECKEL, R.; TAENTZER, G. Graph grammars with negative application
conditions. Fundam. Inform., v. 26, n. 3/4, p. 287–313, 1996. Available from Internet:
<https://doi.org/10.3233/FI-1996-263404>.

HABEL, A.; MÜLLER, J.; PLUMP, D. Double-pushout approach with injective
matching. In: EHRIG, H. et al. (Ed.). Theory and Application of Graph
Transformations, 6th International Workshop, TAGT’98, Paderborn, Germany,
November 16-20, 1998, Selected Papers. Springer, 1998. (Lecture Notes in
Computer Science, v. 1764), p. 103–116. Available from Internet: <https:
//doi.org/10.1007/978-3-540-46464-8_8>.

HABEL, A.; PENNEMANN, K. Nested constraints and application conditions for
high-level structures. In: KREOWSKI, H. et al. (Ed.). Formal Methods in Software
and Systems Modeling, Essays Dedicated to Hartmut Ehrig, on the Occasion of
His 60th Birthday. Springer, 2005. (Lecture Notes in Computer Science, v. 3393), p.
293–308. Available from Internet: <https://doi.org/10.1007/978-3-540-31847-7_17>.

HABEL, A.; PLUMP, D. M ,N -adhesive transformation systems. In: EHRIG,
H. et al. (Ed.). Graph Transformations - 6th International Conference, ICGT
2012, Bremen, Germany, September 24-29, 2012. Proceedings. Springer, 2012.
(Lecture Notes in Computer Science, v. 7562), p. 218–233. Available from Internet:
<https://doi.org/10.1007/978-3-642-33654-6_15>.

HAUSMANN, J. H.; HECKEL, R.; TAENTZER, G. Detection of conflicting functional
requirements in a use case-driven approach: a static analysis technique based on
graph transformation. In: ICSE. ACM, 2002. p. 105–115. Available from Internet:
<http://doi.acm.org/10.1145/581339.581355>.

JAYARAMAN, P. K. et al. Model composition in product lines and feature interaction
detection using critical pair analysis. In: MoDELS. Springer, 2007. (LNCS, v. 4735), p.
151–165. Available from Internet: <https://doi.org/10.1007/978-3-540-75209-7_11>.

JOHNSTONE, P. T. Sketches of an elephant: A topos theory compendium. [S.l.]:
Oxford University Press, 2002.

KASTENBERG, H.; RENSINK, A. Model checking dynamic states in GROOVE.
In: VALMARI, A. (Ed.). Model Checking Software, 13th International SPIN
Workshop, Vienna, Austria, March 30 - April 1, 2006, Proceedings. Springer, 2006.
(Lecture Notes in Computer Science, v. 3925), p. 299–305. Available from Internet:
<https://doi.org/10.1007/11691617_19>.

KLAR, F. et al. Extended triple graph grammars with efficient and compatible graph
translators. In: ENGELS, G. et al. (Ed.). Graph Transformations and Model-Driven
Engineering - Essays Dedicated to Manfred Nagl on the Occasion of his 65th
Birthday. Springer, 2010. (Lecture Notes in Computer Science, v. 5765), p. 141–174.
Available from Internet: <https://doi.org/10.1007/978-3-642-17322-6_8>.

https://doi.org/10.1016/0167-6423(89)90039-7
https://doi.org/10.3233/FI-1996-263404
https://doi.org/10.1007/978-3-540-46464-8_8
https://doi.org/10.1007/978-3-540-46464-8_8
https://doi.org/10.1007/978-3-540-31847-7_17
https://doi.org/10.1007/978-3-642-33654-6_15
http://doi.acm.org/10.1145/581339.581355
https://doi.org/10.1007/978-3-540-75209-7_11
https://doi.org/10.1007/11691617_19
https://doi.org/10.1007/978-3-642-17322-6_8

135

KNUTH, D. E.; BENDIX, P. B. Simple word problems in universal algebras. In:
Computational Problems in Abstract Algebra. Pergamon, 1970. p. 263–297. ISBN
978-0-08-012975-4. Available from Internet: <http://www.sciencedirect.com/science/
article/pii/B978008012975450028X>.

LACK, S.; SOBOCINSKI, P. Adhesive and quasiadhesive categories. ITA, v. 39, n. 3, p.
511–545, 2005. Available from Internet: <https://doi.org/10.1051/ita:2005028>.

LAMBERS, L. Certifying rule-based models using graph transformation.
Thesis (PhD) — Berlin Institute of Technology, 2009. Available from Internet:
<http://opus.kobv.de/tuberlin/volltexte/2010/2522/>.

LAMBERS, L. et al. Initial conflicts and dependencies: Critical pairs revisited. In:
Graph Transformation, Specifications, and Nets. Springer, 2018. (LNCS, v. 10800),
p. 105–123. Available from Internet: <https://doi.org/10.1007/978-3-319-75396-6_6>.

LAMBERS, L.; EHRIG, H.; OREJAS, F. Conflict detection for graph transformation
with negative application conditions. In: CORRADINI, A. et al. (Ed.). Graph
Transformations, Third International Conference, ICGT 2006, Natal, Rio
Grande do Norte, Brazil, September 17-23, 2006, Proceedings. Springer, 2006.
(Lecture Notes in Computer Science, v. 4178), p. 61–76. Available from Internet:
<https://doi.org/10.1007/11841883_6>.

LAMBERS, L.; EHRIG, H.; OREJAS, F. Efficient conflict detection in graph
transformation systems by essential critical pairs. ENTCS, v. 211, p. 17–26, 2008.
Available from Internet: <https://doi.org/10.1016/j.entcs.2008.04.026>.

LÖWE, M. Extended algebraic graph transformation. Thesis (PhD) —
Technical University of Berlin, Germany, 1991. Available from Internet: <http:
//d-nb.info/910935696>.

MACHADO, R.; RIBEIRO, L.; HECKEL, R. Rule-based transformation of graph
rewriting rules: Towards higher-order graph grammars. Theor. Comput. Sci., v. 594, p.
1–23, 2015. Available from Internet: <https://doi.org/10.1016/j.tcs.2015.01.034>.

MACLANE, S.; MOERDIJK, I. Sheaves in geometry and logic: A first introduction
to topos theory. [S.l.]: Springer, 2012.

MEHNER, K.; MONGA, M.; TAENTZER, G. Analysis of aspect-oriented model
weaving. Trans. Aspect-Oriented Software Development, v. 5, p. 235–263, 2009.
Available from Internet: <https://doi.org/10.1007/978-3-642-02059-9_7>.

MENS, T.; STRAETEN, R. V. D. Incremental resolution of model inconsistencies.
In: WADT. Springer, 2006. (LNCS, v. 4409), p. 111–126. Available from Internet:
<https://doi.org/10.1007/978-3-540-71998-4_7>.

MENS, T.; TAENTZER, G.; RUNGE, O. Analysing refactoring dependencies using
graph transformation. Software and System Modeling, v. 6, n. 3, p. 269–285, 2007.
Available from Internet: <https://doi.org/10.1007/s10270-006-0044-6>.

MONTSERRAT, M. et al. Single-Pushout Rewriting in Categories of Spans I: The
General Setting. [S.l.], 1997.

http://www.sciencedirect.com/science/article/pii/B978008012975450028X
http://www.sciencedirect.com/science/article/pii/B978008012975450028X
https://doi.org/10.1051/ita:2005028
http://opus.kobv.de/tuberlin/volltexte/2010/2522/
https://doi.org/10.1007/978-3-319-75396-6_6
https://doi.org/10.1007/11841883_6
https://doi.org/10.1016/j.entcs.2008.04.026
http://d-nb.info/910935696
http://d-nb.info/910935696
https://doi.org/10.1016/j.tcs.2015.01.034
https://doi.org/10.1007/978-3-642-02059-9_7
https://doi.org/10.1007/978-3-540-71998-4_7
https://doi.org/10.1007/s10270-006-0044-6

136

OBJECT MANAGEMENT GROUP. Unified modelling language version 2.5.1. 2017.
Available from Internet: <http://www.omg.org/spec/UML/2.5.1>.

OLIVEIRA JR., M. et al. Use case analysis based on formal methods: An empirical
study. In: WADT. Springer, 2014. (LNCS, v. 9463), p. 110–130. Available from Internet:
<https://doi.org/10.1007/978-3-319-28114-8_7>.

OREJAS, F.; LAMBERS, L. Symbolic attributed graphs for attributed graph
transformation. ECEASST, v. 30, 2010.

PENNEMANN, K. An algorithm for approximating the satisfiability problem of
high-level conditions. Electr. Notes Theor. Comput. Sci., v. 213, n. 1, p. 75–94, 2008.
Available from Internet: <https://doi.org/10.1016/j.entcs.2008.04.075>.

PENNEMANN, K. Resolution-like theorem proving for high-level conditions. In:
EHRIG, H. et al. (Ed.). Graph Transformations, 4th International Conference, ICGT
2008, Leicester, United Kingdom, September 7-13, 2008. Proceedings. Springer,
2008. (Lecture Notes in Computer Science, v. 5214), p. 289–304. Available from
Internet: <https://doi.org/10.1007/978-3-540-87405-8_20>.

PLUMP, D. Evaluation of functional expressions by hypergraph rewriting.
Thesis (PhD) — University of Bremen, Germany, 1993. Available from Internet:
<http://d-nb.info/940423774>.

PLUMP, D. Modular termination of graph transformation. In: HECKEL, R.;
TAENTZER, G. (Ed.). Graph Transformation, Specifications, and Nets - In Memory
of Hartmut Ehrig. Springer, 2018. (Lecture Notes in Computer Science, v. 10800), p.
231–244. Available from Internet: <https://doi.org/10.1007/978-3-319-75396-6_13>.

RAOULT, J. On graph rewritings. Theor. Comput. Sci., v. 32, p. 1–24, 1984. Available
from Internet: <https://doi.org/10.1016/0304-3975(84)90021-5>.

RIEHL, E. Category Theory in Context. [S.l.]: Dover Publications, 2017. ISBN
9780486809038.

ROZENBERG, G. (Ed.). Handbook of Graph Grammars and Computing by Graph
Transformations, Volume 1: Foundations. [S.l.]: World Scientific, 1997. ISBN
9810228848.

SCHMIDT, D. C. Guest editor’s introduction: Model-driven engineering. IEEE
Computer, v. 39, n. 2, p. 25–31, 2006. Available from Internet: <https://doi.org/10.
1109/MC.2006.58>.

STRÜBER, D. et al. Scalability of model transformations: Position paper and benchmark
set. In: KOLOVOS, D. S. et al. (Ed.). Proceedings of the 4rd Workshop on Scalable
Model Driven Engineering part of the Software Technologies: Applications and
Foundations (STAF 2016) federation of conferences, Vienna, Austria, July 8, 2016.
CEUR-WS.org, 2016. (CEUR Workshop Proceedings, v. 1652), p. 21–30. Available
from Internet: <http://ceur-ws.org/Vol-1652/paper3.pdf>.

TAENTZER, G. AGG: A graph transformation environment for modeling and validation
of software. In: AGTIVE. Springer, 2003. (LNCS, v. 3062), p. 446–453. Available from
Internet: <https://doi.org/10.1007/978-3-540-25959-6_35>.

http://www.omg.org/spec/UML/2.5.1
https://doi.org/10.1007/978-3-319-28114-8_7
https://doi.org/10.1016/j.entcs.2008.04.075
https://doi.org/10.1007/978-3-540-87405-8_20
http://d-nb.info/940423774
https://doi.org/10.1007/978-3-319-75396-6_13
https://doi.org/10.1016/0304-3975(84)90021-5
https://doi.org/10.1109/MC.2006.58
https://doi.org/10.1109/MC.2006.58
http://ceur-ws.org/Vol-1652/paper3.pdf
https://doi.org/10.1007/978-3-540-25959-6_35

137

TAENTZER, G. et al. Conflict detection for model versioning based on graph
modifications. In: ICGT. Springer, 2010. (LNCS, v. 6372), p. 171–186. Available from
Internet: <https://doi.org/10.1007/978-3-642-15928-2_12>.

TAENTZER, G.; RENSINK, A. Ensuring structural constraints in graph-based
models with type inheritance. In: CERIOLI, M. (Ed.). Fundamental Approaches
to Software Engineering, 8th International Conference, FASE 2005, Held as
Part of the Joint European Conferences on Theory and Practice of Software,
ETAPS 2005, Edinburgh, UK, April 4-8, 2005, Proceedings. Springer, 2005.
(Lecture Notes in Computer Science, v. 3442), p. 64–79. Available from Internet:
<https://doi.org/10.1007/978-3-540-31984-9_6>.

VARRÓ, G.; SCHÜRR, A.; VARRÓ, D. Benchmarking for graph transformation. In:
2005 IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC 2005), 21-24 September 2005, Dallas, TX, USA. IEEE Computer Society,
2005. p. 79–88. Available from Internet: <https://doi.org/10.1109/VLHCC.2005.23>.

WHITTLE, J. et al. MATA: A unified approach for composing UML aspect models based
on graph transformation. Trans. Aspect-Oriented Software Development, v. 6, p. 191–
237, 2009. Available from Internet: <https://doi.org/10.1007/978-3-642-03764-1_6>.

https://doi.org/10.1007/978-3-642-15928-2_12
https://doi.org/10.1007/978-3-540-31984-9_6
https://doi.org/10.1109/VLHCC.2005.23
https://doi.org/10.1007/978-3-642-03764-1_6

	Acknowledgements
	Abstract
	Resumo
	List of Abbreviations and Acronyms
	List of Symbols
	List of Figures
	List of Tables
	Contents
	1 Introduction
	1.1 Problem
	1.2 Goals
	1.3 Outline

	2 Algebraic Graph Transformation
	2.1 Modelling an Elevator System
	2.2 Categories of Graphs and Adhesive Categories
	2.3 Rules, Matches and Transformations
	2.4 Conflicts and Parallel Independence
	2.5 Conflict Detection
	2.5.1 Critical Pairs
	2.5.2 Initial Conflicts

	2.6 Initial Pushouts

	3 Functor Categories as Generalized Graphs
	4 Generalized Subobjects
	4.1 Lattice Theory
	4.2 Generalised Subobjects
	4.2.1 Subobjects for Monic Spans
	4.2.2 Subobjects for Pairs of Objects

	5 Characterizing Conflicts
	5.1 Disabling and Conflict Essences
	5.1.1 Conflict Essence and Extension
	5.1.2 Comparing with Previous Work

	5.2 Potential Essences
	5.2.1 Potential Essences and Initial Conflicts
	5.2.2 Irreducible Conflict Essences

	6 Enumerating Potential Conflicts
	6.1 Enumerating Conflict Essences and Initial Conflicts
	6.1.1 Performance Bottleneck

	6.2 Enumerating Disabling Essences
	6.3 Finding Irreducible Essences

	7 Experimental Evaluation
	7.1 Methods
	7.2 Results

	8 Related Work
	8.1 Algebraic Approaches to Graph Transformation
	8.2 Categories for Algebraic Graph Transformation
	8.2.1 Variations of Adhesivity
	8.2.2 Attributed Graphs and Structures

	8.3 Conflict Detection in the Double-Pushout Approach
	8.3.1 Applications of Conflict Detection

	8.4 Verification Techniques for Graph Transformation

	9 Conclusions
	9.1 Contributions
	9.2 Future Work

	References

