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Abstract. This paper presents a theoretical approach to fracture propagation in viscoelastic 

media, which combines a micromechanical reasoning and macroscopic thermodynamics 

arguments. Unlike cracks, fractures can be viewed as interfaces that are able to transfer 

efforts. Their specific behavior under shear and normal stresses is a fundamental component 

of the deformation and fracture in brittle materials such as geomaterials. Based on the 

implementation of the Mori-Tanaka linear homogenization scheme and correspondence 

principle, the first part of the paper is dedicated to assess the exact homogenized behavior of 

fractured viscoelastic materials. An approximate model for effective viscoelastic properties is 

also formulated in the framework of Burger model. Based on macroscopic thermodynamics 

principles, the free energy at macroscopic scale is then formulated, allowing for the analysis 

of damage propagation.  It is shown that the thermodynamic force associated with damage 

propagation can be computed from the derivative of macroscopic free energy density with 

respect to fracture density parameter. Expression for the propagation criterion is therefore 

formulated based on the closed form expression previously obtained for the homogenized 

viscoleastic relaxation tensor. 
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1  INTRODUCTION 

It is well-known that material engineering, such as rocks or geomaterials, frequently 

exhibit at different scales discontinuities of various sizes and orientations. The term 

discontinuity (crack or fracture) refers to a zone of small thickness along which the 

mechanical and physical properties of the matrix material are degraded. From a macroscopic 

viewpoint, discontinuities represent a fundamental component of the overall deformation, 

strength and fluid transport properties (e.g. Barton et al., 1985; Maghous et al., 2008). 

Discontinuities present in a medium are geometrically modeled as interfaces whose 

mechanical behavior is expressed by means of relationships linking the stress vector to 

displacement jump.   

While the instantaneous behavior of fractured media has been widely investigated in the 

literature, few works have been dedicated to analyze the time-dependent behavior of such 

media. Recently, Nguyen et al. (2010) and Nguyen and Dormieux (2014) addressed the 

problem of crack propagation within a viscoelastic material by means of an approximate 

micromechanics-based approach. The latter relies upon the assumptions that the cracked 

medium can be modeled by an approximate homogenized Burger model and that the residual 

part of macroscopic free energy density can be disregarded. The present contribution is 

viewed as an extension of the model developed in Nguyen et al. (2013) to formulate a more 

comprehensive model that addresses either crack (discontinuity without stress transfer) or 

fracture (discontinuity without stress transfer) propagation in the context of viscoelasticity. 

The analysis of damage propagation in the viscoelastic fractured medium, which is regarded 

as a homogenized material, is based on energy dissipation concepts combining macroscopic 

thermodynamics arguments and a micromechanics reasoning, Unlike the Nguyen´s approach, 

the present modeling considers both recoverable and residual parts of the  macroscopic free 

energy density. 

2  HOMOGENIZED VISCOELASTIC BEHAVIOR OF FRACTURED 

MATERIALS 

Prior to the analysis of damage propagation, the overall properties of the viscoelastic 

medium should first be formulated from those of its constituents, namely the intact matrix and 

the fractures. Indeed, the approach developed for the damage propagation requires to be able 

compute the macroscopic free energy, which explicitly depends on the homogenized 

viscoelastic relaxation tensor. 

In the context of non-ageing linear viscoelasticity, the homogenized viscoelastic behavior 

can be determined combining elastic homogenization and the correspondence principle (Le et 

al., 2008).  The correspondence principle expresses the equivalence between the viscoelastic 

problem in time domain and the associated elastic problem in the Laplace domain (Bland, 

1960; Salençon, 2009). It is recalled that the Carson-Laplace transform  *up p  of a time-

dependent function  ut t  is defined by: 

   *u   ptp u t e dt







    (1) 
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The starting point is the elastic homogenization developed in Maghous et al. (2014) for 

elastic fracture media. Assuming isotropy at micro-scale, the homogenized elastic tensor 
hom  has been determined from the elastic properties of the matrix and those of the fractures. 

Assuming elastic isotropy for the individual constituents of the fractured medium, together 

with a spatially isotropic distribution of fracture, it results that the homogenized material is 

described by an isotropic viscoelastic behavior. Denoting by 
hom

 the homogenized 

relaxation tensor, it follows from the correspondence principle that: 

* * * *3  2 hom hom hom homk      (2) 

where the fourth-order tensors and are defined as  1
3
1 1  and   . Parameters 

*

homk  and *

hom  are the Carson-Laplace transform of the homogenized bulk and shear moduli, 

respectively : 

*
* * 1

*

2

* *
* * 1 3

*

4

3   

45

hom s

hom s

k k




 
 







  (3) 

where *k s  and *

s  are respectively the bulk and shear moduli of matrix material in the 

operational space. We also 
*k j  and 

*

j  that represent respectively the bulk and shear moduli of 

the fractures. Coefficients 
*

j  dependent on the rheological model adopted for the viscoelastic 

behavior of matrix and fracture material, and on the crack density parameter 3r  ( is 

the crack density expressed by volume unity and r  is mean radius of fractures): 

* * * * * * * * * * * *2

1

* *2 * * *2 * * * * * * * * * *

2

* * * *

3

9      9     k 12     k 12      16      3   

12    16        3    9      12     k 9     k 16      12     

9      12   

s s s j s j s j s j s

s s s s s s s j s j s j s j

s s s

k k r r k r r

k k k r k r r k r

k k r

        
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     

       

 

  
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16
    3  4  2  5   

3
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 

   

  (4) 

It is observed that *k s  and *

s  are respectively the bulk and shear moduli of matrix 

material in the operational space. Their values are dependent on the rheological model utilized 

adopted for the viscoelastic behavior of matrix material. If the Kelvin-Voigt rheological 

model (represented in the Fig. 1) is adopted for instance, moduli *k s  and *

s  take the 

fallowing form: 

 

 

, , ,*

, , ,

, , ,*

, , ,

 

 

 

 

e v e

m s K s K s

s v e e

K s K s m s

e v e

m s K s K s

s v e e

K s K s m s

k p k k
k

p k k k

p

p

  


  




 




 

  (5) 
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and similar expressions for 
*

jk  and 
*

j  associated with the behavior of fractures. 

 

Figure 1: Rheological model of Kelvin-Voigt. 

2.1 Inverse of Carson-Laplace transform 

Aguiar (2016) presented a procedure to obtain the inverse Carson-Laplace transform that 

is valid for a wide range of rheological models. The approach has been developed in order to 

cover a large number of individual rheological models adopted for matrix material and 

fracture material, including Spring elastic model, Maxwell model, three-element standard 

model, Burger model or Generalized Maxwell model. For sake of simplicity, rheological 

models which do not exhibit instantaneous elasticity, such as the two-element Kelvin model, 

shall not be considered in the present analysis. It may be perceived from the analysis of Eq. 

(3) and Eq. (4) that the expressions of the bulk and shear moduli can always be written as a 

ratio of two polynomial functions of variable . Referring either to *

homk  or *

hom  by the 

generic relaxation function  *Rhom , it follows that: 

 

 
*Rhom

A p

B p
   (6) 

where polynomials  A p  and  B p  can be generally expressed as  

 

   

0

0 1

A p  

B p        ;      1

k

k

n
k

n

k

kk

k

n

n

k

a p

b p p R b



 



   



 

  (7) 

where 
ka  and 

kb  are real coefficients depending on the rheological models of the matrix and 

fractures, and scalar 
kR  is the kth roots of  B p . It should be noted that for usual rheological 

models, the polynomial ( )B p  admits only simple roots and 
0b  is non null (i.e., 

0 0b  ). After 

mathematical developments aiming to compute the inverse of the Carson-Laplace transform 

of *Rhom , it has been shown in Aguiar (2016) that the expression of  the relaxation function 
 

homR  in the time domain expresses as: 
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    0

10

 kR t
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k

n
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a
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b 

 
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   (8) 

where 
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  
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
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
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   
            
  

   (9) 

The above procedure can be developed separately for the moduli *

homk  and *

hom , provided 

that the polynomials ( )A p  and B( )p  that are associated with each one of these moduli are 

considered. 

2.2 Exact rheological model of homogenized viscoelastic-fractured 

materials 

A classical model to represent non-ageing linear viscoelastic materials is the generalized 

Maxwell model showed in Fig. 2: 

 

Figure 2: Generalized rheological model of Maxwell 

The relaxation function 
G MaxR 

associated with the generalized Maxwell model reads: 

   
   

G max 0

1

 

k

k

E
t

k

n

kR t E E e Y t


 
 
 





 
  
 
 

   (10) 

which is formally identical to the homogenized relaxation of the fractured medium expressed 

by Eq. (8) medium, with:   

0
0

0

     ;           ;         k k
k k k k

k k

a E D
E E D R

b R



         (11) 
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This correlation implies that the proposed model can represents exactly the homogenized 

material whenever the restrictions applied to the Inverse of Carson-Laplace transform are met. 

As observed previously, this model can represents a three dimensional solid through its 

moduli  

homk  and  

hom , adopting the generalized Maxwell model for them. The following 

expressions are found: 

       
       

0 0

1 1

       ;      

e e
k

k
v

k
v

kk
t t

ke e e e

hom ho

n

m

k

n

k k

k

k t k k e Y t t e Y t




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   
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   
   

 

   
      
   
   

    (12) 

Correlating with the Eq. (8) is obtained: 
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  (13) 

where the parameters 0a , 0b , kD  and kR   refer to expressions of  the moduli  

homk  and  

hom . 

2.3 Approximate rheological model for the homogenized viscoelastic 

behavior of fractured material 

The exact model requires to be able computing the roots 
kR  of  polynomial ( )B p . This 

task reveals rather complex when the degree of the polynomial ( )B p  is larger than four. In 

order to circumvent this difficulty, Aguiar (2016) proposed an approximate model that 

extends that proposed by Nguyen et al. (2011) for crack to deal with the situation of fractures 

. The approach is applicable to isotropic materials under isotropic or deviatoric loading. For 

sake of simplicity, the approximate model shall be only detailed for the bulk modulus. The 

results regarding the shear modulus are summarized in Appendix once that the procedure to 

the shear module is similar. Figure 3 shows the Burger model for the bulk modulus. 

 

Figure 3: Rheological model of Burger applied to bulk module. 

The moduli ,hom

e

Mk , ,hom

e

Kk , ,hom

v

Mk , and ,hom

v
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, , , , , , , ,

1   1   1   1  1 1 1 1
     ;           ;          ;     

e e v v

M K M K

e e e e v v v v

M hom M s K hom K s M hom M s K hom K s

Q Q Q Q
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   
      (14) 
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where the coefficients e

MQ , e

KQ , v

MQ  and v

KQ  are dependent on the rheological models 

adopted for the matrix and fractures materials. Their values are given in appendix A for the 

particular situation where a Burger model is considered to represent the viscoelastic behavior 

in bulk of the matrix, together with a Maxwell model to describe that of fractures. In this case, 

the Carson-Laplace transform of the homogenized bulk modulus reads: 

* e v e v

, , , ,

1 1 1 1

   hom M hom M hom K hom K homk k pk k pk
  


  (15) 

Similarly, the Carson-Laplace transform of the homogenized shear modulus expresses as: 

* e v e v

, , , ,

1 1 1 1

   hom M hom M hom K hom K homp p    
  


  (16) 

where  

, , , , , , , ,

1   1   1   1  1 1 1 1
     ;           ;          ;     

e e v v

M K M K

e e e e v v v v

M hom M s K hom K s M hom M s K hom K s

M M M M

       

   
      (17) 

The expressions of the above coefficients are given in appendix B. It is observed that the 

approximate Burger model is only formulated herein for the situation where the matrix 

material is also described by a Burger model. 

3  FRACTURE PROPAGATION  IN VISCOELASTIC MEDIA 

Let us consider now a representative elementary volume of the fractured material 

(regarded as a homogenized medium) occupying a geometry domain  Ω  .  We consider in 

the subsequent analysis that the family of embedded plane fractures with crack (fracture) 

density parameter  is propagating under the loading defined by evolving macroscopic 

strain . Propagation of fractures is accounted for at macroscopic scale by considering 

evolving crack density   0 .  In the context of elasticity, the dissipation associated with the 

fracture (damage) propagation takes the form: 

 
D

,  
Ω

elW






 


  (18) 

Thus, the energy release rate / elW    appears to be the driving force of the 

propagation. Therefore, the criterion for propagation takes form of a threshold on . For 

elastic materials, the elastic energy elW  stored is represented by a quadratic function of  : 

 
1

2

el

homW   ∶ ∶   (19) 

where  hom  is the elastic stiffness of the material, so the driving force of fracture 

propagation reads: 
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 1

2

hom 





∶ ∶   (20) 

In the viscoelastic case, the elastic energy stored in the system W  is obtained as the sum 

of the elastic energy stored in each spring of the system. This definition demands on the 

determination of the viscoelastic model utilized to represent the material. Nguyen (2010) 

demonstrates that the elastic energy stored in the viscoelastic system can be viewed as a 

function of the current values of macroscopic deformation   , crack density parameter   and 

of viscous strain field   ε
v

. Hence, 

   
 

  
 

˙
˙ ˙

 
 ,   ε .0 , ε .    ,  

D W W
Σ :   :   : ε

Ω   ε . v
v

v

v

W







  
   

 
  (21) 

Considering first a reversible evolution in which   ε 0
v
  and 0 , one obtains: 

 

     
 

0

 

, ε .

σ    , ε
  v

v v

hom

W
 




  


∶   (22) 

where σ  is the macroscopic stress, 
 

ε
v
 is the macroscopic viscous deformation and  0

hom  

is the instantaneous homogenized relaxation tensor at 0t  . In the Eq. (21), the term 

involving the viscous strain rate   ε
v

 represents the viscous dissipation Dvis
. Hence, the 

propagation term can be written as: 

  
 ,   ε .0

D D

Ω v

vis W



 
 


  (23) 

The energy release rate takes so the following form: 

 
  

 

 
 ,   ε

, ,   ε
v

vW






 


  (24) 

Again, the energy release rate can be used to formulate a propagation criterion, the 

difference with respect to elasticity is lying in the dependency on the viscous strain field. To 

deal with this issue, Nguyen et al. (2010) suggested reasoning similar to the energy analysis 

performed in microelastoplasticity, where the elastic energy can be put in the form: 

      0

 

1
, ε

2

v v v

hom resW W      ∶ ∶   (25) 

The first term represents the energy that is recoverable in an instantaneous unloading, 

while the second term can be interpreted as the residual elastic energy that is stored in the 

viscous system immediately after this unloading. The Propagation criterion stems from the 

assumption that the non viscous dissipation is proportional to the propagation rate : 
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0

D D
 

Ω

vis

c


    (26) 

where 
c
 is termed the critical energy. Comparing this equation with the Eq. (23) and (24), 

the propagation criterion is written on  by: 

0     ;       0c c        (27) 

However, 
c
 is not a material property because it depends on . Introducing the critical 

energy 
t
 associated with the propagation of a single fracture, it follows that (see Aguiar, 

2016): 

 

1

32

3
c t

  
  

 
  (28) 

It is observed that, unlike 
c
 which depends on , the critical energy 

t
 is a material 

property characterizing the energy per unit surface area that is dissipated due to the  creation 

of a new interface.  The equality    
, ,   ε

v

c   allows to derive the fracture propagation 

induced by the loading history ε( )t , Even if it is assumed that 
t
 is a material constant, it is 

emphasized that the viscous strain field explicitly appears in this equation. Therefore, the 

loading rate is expected to affect the damage propagation. 

Two approaches will be presented in the following analysis to deal with the problem of 

damage propagation in the homogenized viscoelastic medium. 

 

3.1 A first simplified approach to damage propagation  

Basically, the approach developed in this section consists in neglecting the residual 

elastic energy in the expression of the driving force of the propagation. Combining Eq. (24) 

and (25) yields: 

     
  

  

0
 0

 ,   ε

, ε1 1

2 2 v

vv
resv v vhom

hom

W




     


      

  
∶ ∶ ∶ ∶   (29) 

The main difficulty that raises from the above expression lies in the fact that the driving 

force  is strongly coupled to the viscoelastic strain field through 
resW  and 

v



, which are 

not a priori known. The driving force must generally be determined numerically. However, 

Nguyen et al. (2010) showed that the derivatives of the residual energy and of the 

macroscopic viscous strain can be neglected in some situations. Adopting such a 

simplification, the energy release rate then reduces to: 
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   
0

1
 

2

v vhom   


   


∶ ∶   (30) 

Computation of  requires to know the expression of 
 

ε
v
, which is a rather complex task 

for a general viscoelastic behavior. The idea is to rewrite the above expression in terms of 

macroscopic stresses: 

0
1
σ σ

2

hom



∶ ∶   (31) 

where 0

hom  is the instantaneous creep tensor. It follows from the assumption of isotropy that : 

0

0 0

1 1

3  2 
hom

hom homk 
    (32) 

Substituting into equation (31) leads to 

0 0
2 2(1/ (1/1 1) )

2 4

hom hom
v d

k 
 

 
 

 
 (33) 

Where 1
3
trv   and  ( 1) : ( 1)d v v       . In the case of uniaxial tensile stress 

1 111 e e  , the energy release rate reduces to: 

0 0
2

11

(1/ () )

1

1/1 1

8 6

hom homk 


  
  

  
 (34) 

 

3.2 An alternative approach to damage propagation 

The main idea of this approach consists in preserving the complete expression (29) of the 

energy release rate, and to adopt the approximate homogenized viscoelastic behavior 

formulated in section 2.3,   to compute the terms related to viscous contribution. As 

previously mentioned, the elastic energy stored into a viscoelastic system is obtained by the 

sum of the elastic energy stored in each spring of the system. Considering that the material is 

homogeneous, this definition writes the following equation to the elastic energy: 

0

1

2

n
e ee

kk k
k

W  


  ∶ ∶   (35) 

Where 
e

k
  is the elastic deformation acting in the kth spring of the system, e

k  is the 

elastic stiffness of the kth spring of the system and n  is the total number of sprigs in the 

system. 
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The first step consists in identify the rheological model that represents the behavior of the 

material. Based on the model represented previously, the Burger model was adopted to 

represent the material in this application. Accordingly, Eq. (35) may be rewritten as: 

 , ,

1

2

e e e ee e

M hom K homM M K K
W  ∶ ∶ ∶ ∶   (36) 

where 
e

M
,

e

K
, ,

e

M hom  and ,

e

K hom  are presented in the Fig. 4. 

 

Figure 4: Burger’s rheological model 

For sake of simplicity, the following procedure will be described in the one-dimensional 

setting. Thus, the Eq. (36) takes the form: 

 2 2

, ,

1

2

e e e e

M M hom K K homW C C     (37) 

Referring to the Burger model, the unique element with instantaneous behavior is ,

e

M hom . 

It is therefore possible to separate an instantaneous behavior from the total elastic energy: 

2

,

1

2

e e

inst M M homW C   (38) 

In this context, the instantaneous relaxation function takes the value of ,

e

M homC  at 0t  . It 

follows from comparison with Eq. (25) that: 

2

,

1

2

e e

res K K homW C   (39) 

It follows that the instantaneous and the residual energy are clearly defined. However, it 

is necessary to determine a relation between the total strain   and the strains e

M  and e

K  

associated with the springs of the Burger model. In the particular case of Burger rheological 

mode, this relation is derived from the following equations: 
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The total strain as well as the strains in the springs are then computed as: 
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,homhom
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where   denotes the boltzmanian product defined 

0

0
0 0 0
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Although the approach could be developed in the general case of prescribed macroscopic 

strain history, it will be now illustrated in the particular case ( ) ( )t Y t  , where   is a 

constant and ( )Y t  is the Heaviside distribution. Eq. (41) reduces therefore to: 

hom
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,homhom

,hom ,hom

e

M e

M

e

Ke e

K Kv v

K K

R

C

CR

C C

 

  



 

  (43) 

Solving the above ordinary differential equation with respect to e

K , it comes: 
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hom
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,
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  (44) 

Once the strains in the springs are calculated from the total strain, it is possible to express 

the elastic energy as a function of the total strain solely: 

 
, ,

, ,

2

2 2
,2 2hom

,hom ,

2

( )1 1

2 2

e e
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where 
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Figure 5 represents the instantaneous and residual parts of the total free energy. 

 

Figure 5: Elastic energy stored in the springs of a Burger model  
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Equation (29) of the energy release rate takes the following form: 
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   (47) 

It is recalled that this equation was obtained using the approximate Burger model. The 

above expression of  is computed analytically. Figure 6 represents the evolution in time of 
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the energy release rate  for a fixed model data and a fixed value of crack density parameter 

: 

 

Figure 6: Temporal evolution of energy release rate keeping 0,1  constant. 
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Figure 6 indicates that the energy release rate evolves in time even when the crack 

(fracture) density parameter keeps a constant value. If it is assumed that the critical energy 
c
 

is constant in time, it is therefore possible to define the time when the damage propagation 

starts from condition 
c . Curves in red, green and yellow refer respectively the 

instantaneous, residual and elastic (total) contributions to energy release rate corresponding to 

the alternative model, while the blue curve corresponds to the energy release rate computed in 

the simplified model disregarding the contribution of residual energy terms. 

4  CONCLUSIONS 

Taking advantage of the correspondence principle and an Eshelby-based elastic 

homogenization (Mori-Tanaka) scheme, the exact homogenized viscoelastic behavior of 

fractured materials was presented. The specific inverse Carson-Laplace transform developed 

in this paper allows for the analytical derivation of the homogenized relaxation tensor of 
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fractured medium. It can easily be applied for a large class of rheological models used to 

describe the individual viscoelastic behavior of matrix material or fracture material. An 

approximate model that would be more suitable for practical implementation in structural 

analyses has been formulated in the Burger framework.  

Based on energy dissipation concepts, it has been shown that the derivative of the elastic 

energy with respect to the fracture density parameter represents the thermodynamic force 

responsible for the damage propagation. Similarly to damage analysis in elasticity, a 

propagation criterion has been formulated. The main difference with respect to elasticity lies 

in the fact that the expression of energy release rate depends on the viscous strain field, which 

are a priori unknown. A main consequence is that the loading rate is expected to affect the 

damage propagation. 

Two distinct approaches have been developed to evaluate the expression of elastic energy 

considering separately the instantaneous and residual parts. The first approach disregards the 

viscous contribution to the expression of energy release rate, while the second approach 

makes use of the approximate Burger model to derive analytically the expressions of  

derivatives of the residual energy and of the macroscopic viscous strain. 
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APPENDIX A: APPROXIMATE HOMOGENIZED BURGER MODEL: 

BULK MODULUS 

Expression of the relaxation function in shear associated with the approximate model is 

provided herein. The principle of determination is quite to that followed for the bulk 

relaxation modulus. 
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APPENDIX B: APPROXIMATE HOMOGENIZED BURGER MODEL: 

SHEAR MODULUS  

Expression of the relaxation function in shear associated with the approximate model is 

provided herein. The principle of determination is quite to that followed for the bulk 

relaxation modulus. 

, , , ,

, , , ,

1   1  1 1
     ;     

1   1  1 1
     ;     

e e

M K

e e e e

M hom M s K hom K s

v v

M K

v v v v

M hom M s K hom K s

M M

M M

   

   

 
 

 
 

 (B.1) 

with 

 

 

, ,0 0 0

0 0 1 0 0

, ,

, ,0 0

0 0 1 0 0

, ,

     ; 

     ;   

    

   

e e

K s K se e

M K v e

M s M s

v v

K s K sv v

M K e v

M s M s

M M M M M M M

M M M M M M M

 

 

 

 

 

  



    

    

 (B.2) 

and 



Cássio B. Aguiar, Samir Maghous 

CILAMCE 2016 

Proceedings of the XXXVII Iberian Latin-American Congress on Computational Methods in Engineering 

Suzana Moreira Ávila (Editor), ABMEC, Brasília, DF, Brazil, November 6-9, 2016 

 

 

, , , 3 , 50 0

0 1 2 2

1 2 , , , , , , 4 2

, , , 3 , 5

0 1 2 2

1 2 , , , , , , 4 2

3 416 16
     ;     

5 5

3 416 16
     ;     

5 5

v v v v
M s M s M s M s

e e e e e e

K s M s K s M s M j M j

e e e e
M s M s M s M s

v v v v v v

K s M s K s M s M j M j

k P P
M M

PP k k k P P

k Q Q
M M

Q Q k k k Q Q

  

  

  

  

 




  


 

 (B.3) 

where 

   

   

 

3 2 3 2

5 3 2 2 2 1 2 0 5 3 2 2 2 1 2 0

1 , , , , , , , , , , ,

2 , , , , , ,

3 , , ,

     ;  

3 3 12

 

12 1

 

6

3 3 2 4 3 4

  9 4 2

 

3

v v v v v v v v v v v

M s M s M s M j M s M j M s M s M j M s M j

v v v v v v

M s M s M s M j M s M s

v v v

M s M s M s

P U P U P U P U Q V Q V Q V Q V

P k r k k k

P k r k

P k r k

      

   

 

       

     

   

     

    

   

   

, , , ,

4 , , , , , , ,

1 , , , , , , , , , , ,

2 , , , , , ,

3 ,

4 2

 3 3 3 4 2

3 3 12 12 16

3 3 2 4 3 4

 

v v v v

M s M s M j M j

v v v v v v v

M s M s M s M s M s M j M j

e e e e e e e e e e e

M s M s M s M j M s M j M s M s M j M s M j

e e e e e e

M s M s M s M j M s M s

e

M s

k

P k r k k

Q k r k k k

Q k r k

Q

 

   

      

   



 

    

     

   

     

    

, , , , , ,

4 , , , , , , ,

9 4 2 3 4 2

 3 3 3 4 2

e e e e e e

M s M s M s M s M j M j

e e e e e e e

M s M s M s M s M s M j M j

k r k k

Q k r k k

  

   

   

    

 
(B.4) 

Finally, the value of 
iU  and 
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