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Síntese lógica para lógica de implicação sequencial usando dispositivos com 

resistência variável  
 

Dispositivos de resistência variável (RSD) são alternativas promissoras para a criação 

de memórias não voláteis (NVM). Estas memórias também podem influenciar o projeto de 

circuitos digitais através de “lógica em memória”. Dentre tais paradigmas lógicos está a 

lógica de implicação material (RSD-IMP). A principal diferença entre RSD-IMP e lógica 

convencional é que em RSD-IMP as funções Booleanas são computadas através de uma 

sequência de operações de implicação material (IMP). Tais operações também são chamadas 

de instruções. Neste sentido, o paralelismo de circuitos digitais convencionais não é 

observado em RSD-IMP porque uma única instrução é feita por ciclo. Esta tese propõe 

métodos de síntese lógica para RSD-IMP. Dada uma representação de uma função Booleana, 

o objetivo é obter uma sequência de operações em RSD-IMP que corresponda a esta função. 

As métricas para avaliar a qualidade de uma solução são o número de instruções e o número 

de RSD. Um ponto interessante de RSD-IMP é que, para qualquer função Booleana de n 

variáveis, existe uma sequência de instruções para esta função que necessita de apenas n+2 

RSD. A principal maneira de se obter tal sequência é através de uma forma Booleana 

recursiva (RBF) correspondente à função alvo. A primeira contribuição deste trabalho é a 

proposta de um método mais eficiente para sintetizar RBF a partir de soma-de-produtos 

(SOP). Então, o conceito de RBF é generalizado para soma-de-RBF (SRBF). É demonstrado 

que SRBF também podem ser diretamente transformadas em uma sequência de instruções que 

pode ser computada com n+2 RSD. Relaxando a restrição de n+2 RSD para n+k RSD, com 

𝑘 ≥ 2, é possível explorar a classe de RBF fatorada (FRSBR). Finalmente, é discutido o 

projeto lógico de somadores binários baseados em RSD-IMP. 

 

Palavras-chave: Síntese lógica, lógica de implicação material, memristors, dispositivos com 

resistância variável, circuitos digitais, funções Booleanas. 



 

 

Logic synthesis for sequential material implication logic based on resistance 

switching devices 
 

Resistance switch devices (RSD) are promising alternatives to implement nonvolatile 

memories (NVM). These memories can also influence the design of digital circuits through 

logic-in-memory. Among these novel logic paradigms is the material implication (RSD-IMP) 

logic. The main difference between RSD-IMP logic from conventional digital circuit design is 

that Boolean functions are evaluated in RSD-IMP logic as a sequence of material implication 

(IMP) operations, known as instructions. In this sense, the parallelism observed in standard 

digital design is not obtained because a single IMP operation is performed per cycle. This 

thesis focuses on logic synthesis methods for RSD-IMP logic. Given a standard description of 

a Boolean function, the goal is to obtain a sequence of operations in RSD-IMP logic to 

evaluate the target function. The standard cost metrics are the number of instructions and the 

number of RSD required. An interesting aspect of RSD-IMP logic is that, for any n-input 

Boolean function f, there is a sequence of instructions in RSD-IMP that evaluates f using n+2 

RSD. The main method to obtain such a sequence of instructions is to synthesize a recursive 

Boolean form (RBF) for f. The first contribution of this thesis is a more efficient method to 

synthesize RBF from a sum-of-products (SOP). Moreover, the concept of RBF is generalized 

to obtain a broader class of expressions that can be transformed into sequence of operations 

requiring only n+2 RSD. This new class of expressions is named sum-of-RBF (SRBF). 

Furthermore, the constraint of n+2 RSD is relaxed to allow n+k RSD, where 𝑘 ≥ 2 is an 

arbitrary integer. By relaxing this constraint, the class of factored SRBF (FSRBF) is obtained. 

The number of additional RSD can be controlled by considering the logic depth of FSRBF 

during the logic synthesis process. Finally, the logic design of binary adders in RSD-IMP 

logic is discussed. 

 

Keywords: Logic synthesis, material implication logic, memristors, resistance switching 

devices, digital circuits, Boolean functions.  
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1. INTRODUCTION 

Advances on nanotechnologies processes have enabled the development of novel 

beyond CMOS devices that may be exploited in future computing systems. Among such 

devices, resistance switching devices (RSD), also known as memristors or memristive devices 

(STRUJOV, 2008), (CHUA, 2011), have great potential to be exploited in nonvolatile 

memories (NVM) (AKINAGA, 2010), (KENT, 2015). Moreover, RSD can also lead to novel 

alternatives to perform logic. In particular, RSD is suitable to logic-in-memory paradigms 

where logic is performed directly at the memory bits without the need to transfer data to a 

processing unit (ZHU, 2013), (WONG, 2015). In this sense, logic-in-memory may contribute 

to reduce the memory bottleneck. 

RSD have been investigated since the 1960’s (HICKMOTT, 1962), 

(GIBBSONS,1964), (SIMMONS, 1967). The state of a RSD can be toggled between a low-

resistance state (LRS) and a high-resistance state (HRS). Therefore, the resistance state can be 

used to encode binary information, where the LRS represents the logic level ‘1’ whereas the 

HRS represents the logic level ‘0’.  

The basic structure of a RSD is a capacitor like metal-insulator-metal (MIM) structure, 

(KENT, 2015), (MEENA, 2014), (PAN, 2014), (VALOV, 2013), (WONG, 2012), 

(WOUTERS, 2015). However, by applying a voltage bias, the insulator can be modified to 

become a conductor. The transition between the insulator and conductor states corresponds to 

the transitions between the HRS and LRS. This transformation can occur due to different 

physical phenomena, including the creation/rupture of a conductive filament connecting the 

metallic terminals and a phase change from a highly resistive amorphous phase to a 

conductive crystalline phase. Since these transformations require a minimum electrical field 

to occur, it is possible to apply small voltage bias without modifying the device state. Fig. 1.1 

illustrates the electrical symbol of a RSD. 

 

Figure 1.1 – Symbol of a RSD. The output terminal is marked by a thick black line. A positive voltage 

bias reduces the resistance value, whereas a negative voltage bias increases the resistance value. 

 

Source: The author. 
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The main application of RSD is on the implementation of NVM. The basic structure of 

a NVM based on RSD is a matrix comprising horizontal and vertical wires, also known as 

crossbar. The basic structure, known as passive crossbar, is illustrated in Fig. 1.2 (MEENA, 

2014). The sets of vertical and horizontal wires are at different plans. At the intersection 

between a row and a column, there is a RSD connecting the wires. In Fig. 1.2, the black dots 

represent the RSD. The passive crossbar structure is interesting due to the possible high 

density. Each bit requires an area of 4𝐿2, where L is the minimum feature size. 

 

Figure 1.2 – Basic crossbar structure, a RSD is placed at each intersection. 

 

Source: (MEENA, 2014). 

 

A RSD within the crossbar can be accessed by applying a voltage bias between the 

row and column where the device is placed and measuring the current through the RSD. The 

process is illustrated in Fig. 1.3, where the state of device b1 is read by applying a voltage bias 

V1 to the device. The state of the device can be defined by sensing either the current or a 

voltage across a load resistor RL. If current iread across RL is measured, then a high value of 

iread indicates that b1 is in the LRS. Conversely, a low value of iread means that b1 is in the 

HRS.  

 

Figure 1.3 – Basic reading scheme in a RSD crossbar. 

 

SOURCE: The author. 
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The main problem with this approach is the existence of sneak paths. A sneak path is 

an undesirable path for the current, as illustrated in Fig. 1.4. In Fig. 1.4, the solid green line 

represents the desired path for the current whereas the dotted red line represents one of many 

possible sneak paths. Sneak paths can make iread to increase such that a device in the HRS is 

wrongly identified as being in the LRS. The sneak path current can be reduced by connecting 

the RSD to a selector which can be either a transistor or a diode, by using two RSD in an anti-

serial connection or by applying an intermediate voltage bias to unselected lines and rows. It 

has been shown that a single RSD can behave as a RSD connected to a diode or as two RSD 

in anti-serial connection. 

 

Figure 1.4 – Sneak path problem in RSD crossbar. 

 

SOURCE: The author. 

 

RSDs have also been used in other applications in addition to NVM such as the design 

of field-programmable gate array architectures (FPGA) (GUO, 2017), neuromorphic systems 

(INDIVERI, 2015) and digital integrated circuit design. In the following, we focus on 

applications of RSD in digital design. 

1.1 LOGIC STYLES FOR RESISTANCE SWITCHING DEVICES 

RSD can be exploited in several manners to perform logic. RSD can be combined with 

CMOS transistors to create high fanin NOR and NAND gates, as illustrated in Fig. 1.5 

(KVATINSKY, 2012). In order to understand the behavior of the circuit, let all 𝑉𝑥𝑖
= 0 and 

all Xi be in the HRS. If 𝑉𝑥0
 rises to the power supply voltage (Vdd), then voltage Vin remains 

close to 0 until X0 switches to the LRS. After this point, Vin rises to Vdd. As Vin rises, the 

remaining devices become negatively biased, as illustrated in Fig. 1.1 and enter the HRS. The 

resulting voltage divider allows Vin to reach a value near close to Vdd. The reverse current 

through the other RSD can be further reduced by using self-rectifying RSD. 
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Figure 1.5 – High fanin NOR gate using a hybrid RSD/CMOS structure. 

 

Source: (KVATINSKY, 2012). 

 

Hybrid RSD/CMOS gates can also be used to implement threshold logic (GAO, 2013), 

(FAN, 2014), (JAMES, 2014). One example of a hybrid RSD/CMOS gate is shown in Fig. 

1.6 (JAMES, 2014). The basic structure is similar to the one shown in Fig. 1.5 with the 

inclusion of a load RSD that represents the threshold value of the function. The basic idea of 

this approach is that voltage Vin only rises to Vdd if there are enough inputs in Vdd. In order 

to fully benefit from these novel gates, logic synthesis methods focusing on threshold logic 

are important (NEUTZLING, 2014), (PALANISWAMY, 2014), (NEUTZLING, 2015), 

(KULKARNI, 2016). Notice that such hybrid approaches are increments on standard cell 

based design and are not suitable for logic-in-memory applications. 

 

Figure 1.6 – Hybrid RSD/CMOS threshold logic gate. 

 

Source: (JAMES, 2014). 

 

Logic circuit topologies for logic-in-memory using RSD can be broadly classified into 

switch based, instruction based and hybrid. In switch based approaches, the memory is 

configured as a switch network (LEEVY, 2014), (ALAMGIR, 2016), 

(PAPANDROULIDAKIS, 2017). A voltage is applied to a certain row and a target RSD is 
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driven to the LRS only if the function represented by the given structure evaluates to 1. Fig. 

1.7 shows an example of a crossbar structure configured as switch network, where RSD are 

placed in the intersections between the rows and columns. The missing RSD is fixed to the 

HRS. Voltage V1 only propagates to RSD t when the following function f evaluates to true: 

 

𝑓 = 𝑎𝑏 + 𝑐𝑑 (1.1.1) 

 

Figure 1.7 – Switch network like implementation for 𝑓 = 𝑎𝑏 + 𝑐𝑑 in RSD crossbar (the missing RSD 

is tied to the HRS). 

 

Source: The author. 

 

Switch based methods can benefit from standard algorithms for switch network 

generation (POSSANI, 2016), (KAGARIS, 2016), even though modifications may be 

required in order to consider the topology constraints of RSD-NVM. Notice that, even though 

the evaluation of the functions requires a single cycle, the time required to configure the 

crossbar in the desirable manner must be accounted for. 

In instruction based approaches, the computation is performed as a sequence of basic 

instructions. The basic instruction can be either the material implication (IMP) 

(BORGHETTI, 2010), (ADAM, 2016), which is referred to as RSD-IMP, or the 3-input 

majority function (LINN, 2012), (GAILLARDON, 2016). The sequential behavior of these 

approaches represents a major difference to usual digital circuit design. Therefore, exploiting 

standard logic synthesis algorithms is not straightforward. This has motivated the 

development of novel logic synthesis algorithms focusing both majority logic 

(SHIRINZADEH, 2016), (SOEKEN, 2016) and RSD-IMP logic (LEHTONEN, 2010), 

(MARRANGHELLO, 2015a), (MARRANGHELLO, 2015b), (POIKONEN, 2012), 

(RAGHUVANSHI, 2014), (TEODOROVIC, 2013). The basic idea in IMP logic is to 

consider a structure as shown in Fig. 1.8(a), where two RSD P and Q are connected to a load 

resistor Rg through a common node. By applying appropriate voltages V1 and V2 to P and Q, 
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respectively, the final state of Q, denoted by q’, becomes a function of the state of P, denoted 

by p. More specifically, the final state of Q is the LRS if the initial state of Q is the LRS or if 

P is in the HRS. This behavior can be translated into an IMP operation (BORGHETTI, 2010), 

as shown in Fig. 1.8(b). In Chapter 3, the behavior of IMP logic is detailed. 

 

Figure 1.8 – Basic structure for RSD-IMP logic: (a) basic structure and (b) corresponding truth table. 

 

 

p q q’ 

0 0 1 

0 1 1 

1 0 0 

1 1 1 
 

(a)        (b) 

Source: (BORGHETTI, 2010). 

 

The idea for the RSD majority logic is to consider a single RSD P with voltages V1 

and V2 applied to its terminal, as shown in Fig. 1.9(a). Let p and p’ denote the initial and final 

states of P, respectively. Fig. 1.9(b) shows the value of p’ as function of p, V1 and V2. The 

logic behavior corresponds to the following expression: (LINN, 2012): 

 

𝑝′ = 𝑉2̅̅̅̅ (𝑝 + 𝑉1) + 𝑝𝑉1 (1.1.1) 

 

Figure 1.9 – RSD based majority logic: (a) basic structure and (b) corresponding truth table. 

 

p  1 V2 p’ 

0 0 0 0 

0 0 1 0 

0 1 0 1 

0 1 1 0 

1 0 0 1 

1 0 1 0 

1 1 0 1 

1 1 1 1 
 

(a)       (b) 

Source: (LINN, 2012). 
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Hybrid approaches configure the crossbar as a switch network but control the data 

flow through instructions (KVATINSKY, 2014), (XIE, 2017). Fig. 1.10 presents an example 

of such hybrid methods based on the work described in (KVATINSKY, 2014), where a, b, c 

and d are the inputs while r, s and t are auxiliary RSD. Missing RSD are tied to the HRS. By 

applying an adequate voltage V1 to the columns where the inputs are placed, r can be 

programmed to store 𝑎̅ + 𝑏̅ while s stores 𝑐̅ + 𝑑̅, as shown in Fig. 1.10(a). Then, in a second 

step, t is programed to store 𝑎𝑏 + 𝑐𝑑, as shown in Fig 1.10(b). Notice that the topology shown 

in Fig. 1.10 is similar to the shown in Fig. 1.8. The difference is the utilization of auxiliary 

RSD r and s to store intermediate values. 

Overall, all approaches suffer from the need of a control block to either configure the 

crossbar, as in the case of switch based approaches, or to provide the correct control signals, 

as in the case of instruction based approaches. Hybrid approaches may fit into both cases. In 

this sense, reducing the number of RSD and the number of instructions should also reduce the 

size of the control block. 

 

Figure 1.10 – Example of a hybrid approach for logic-in-memory using RSD: (a) first cycle to 

compute intermediate values, and (b) final cycle to evaluate the final value of the function. 

 

(a) 

 

(b) 

Source: The author. 

 

This thesis focuses on RSD-IMP logic. RSD-IMP appears to provide a good trade-off 

between the number of cycles and the number of RSD. However, it is not the goal to 

determine the best approach. It is worth noticing that, even though we have the RSD-IMP 

logic as motivation, this thesis mostly discusses synthesis and optimizations of different types 

of Boolean expressions. In this sense, the discussion presented herein may be useful to 

different logic topologies.  
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1.2 OVERVIEW OF RSD-IMP LOGIC 

This Section presents an overview of RSD-IMP logic. A more detailed explanation is 

presented in Section 3.2. In RSD-IMP logic, binary values are represented through the 

resistance of a RSD. A RSD in the LRS represents the logic value ‘1’, whereas a RSD in the 

HRS represents the logic value ‘0’. 

The basic structure of RSD-IMP logic comprises several RSD connected to a common 

node and to a load resistor Rg. There are n RSD that store the primary input variables and 𝑘 ≥

2 auxiliary RSD. These auxiliary RSD correspond to auxiliary variables and are used to 

perform computation. Fig. 1.11 presents a simple example of a RSD-IMP block with two 

input variables and two auxiliary RSD. Computation is performed as a sequence of 

instructions. Each instruction is obtained by applying a voltage bias to different RSD. Due to 

the common node, the voltage bias across a RSD depends on the bias applied to others RSD. 

This dependence allows logic to be performed. 

 

Figure 1.11 – Basic RSD-IMP logic block with two inputs and two auxiliary RSD. 

 

Source: The author. 

 

When performing an operation, each RSD can either be set to a high-impedance state 

or be biased by one of the three different control voltages. These three control voltages are 

𝑉𝑂𝐹𝐹, 𝑉𝑂𝑁 and 𝑉𝐶𝑂𝑁𝐷. 𝑉𝑂𝐹𝐹 corresponds to a voltage value that forces the RSD to the HRS, 

𝑉𝑂𝑁 sets the RSD to the LRS and 𝑉𝐶𝑂𝑁𝐷 does not change the state of the RSD. 

The operations that can be performed in RSD-IMP logic are the reset, single-input 

implication and multi-input implication. The reset operation sets one or more RSD to the 

HRS. The reset operation is performed by applying 𝑉𝑂𝐹𝐹 to the target RSD.  

A single-input implication between two variables 𝑥0 and 𝑦0 (𝑥0 → 𝑦0) is performed by 

applying 𝑉𝐶𝑂𝑁𝐷 to X0 and 𝑉𝑂𝑁 to Y0. If 𝑥0 = 0, then 𝑉𝑂𝑁 sets Y0 to the LRS and 𝑦0 = 1. 
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Otherwise, 𝑥0 = 1, 𝑉𝐶𝑂𝑁𝐷 reduces the voltage across Y0 such that 𝑉𝑂𝑁 does not suffice to 

cause a transition from the HRS to the LRS. In this case, the value y0 is not changed. 

Therefore, the final value of y0 is 1 if the initial value of y0 is 1 or if 𝑥0 is equal to 0. This 

behavior can be interpreted as the material implication operation (IMP), as follows: 

 

𝑦0
′ ≔ 𝑥0 → 𝑦0 = 𝑥0̅̅ ̅ + 𝑦0 (1.2.1) 

 

where 𝑦0
′  is the next state of 𝑦0. Since the result of the IMP operation is always stored at 𝑦0, 

we write (1.2.1) simply as 𝑥0 → 𝑦0. 

To perform a multi-input implication, 𝑉𝐶𝑂𝑁𝐷 is applied to several devices X1,…, Xn 

while 𝑉𝑂𝑁 is applied to a target device Y0 (SHIN, 2011). If all devices to which 𝑉𝐶𝑂𝑁𝐷 is 

applied are in the HRS, then the target device switches to the LRS. Otherwise, the state of the 

target device does not change. Therefore, the final value of 𝑦0 is 1 if the initial value of 𝑦0 is 1 

or if all 𝑥1, … , 𝑥𝑛 are equal to 0. A multi-input implication can be written as follows: 

 

(𝑥1 + ⋯ + 𝑥𝑛) → 𝑦0 =  𝑥1̅̅̅ … 𝑥𝑛̅̅ ̅ + 𝑦0 (1.2.2) 

 

Notice that the correct behavior of the circuit depends on defining adequate values for 

𝑉𝑂𝐹𝐹, 𝑉𝑂𝑁, 𝑉𝐶𝑂𝑁𝐷 and Rg. Several works have proposed methodologies to define such values. 

In Section 3.2, we detail how these values can be defined. 

 

Example 1.2.1: A sequence of operations for the 2-input AND (AND2), 𝑥0𝑥1, using 

two auxiliary variables 𝑦0 and 𝑦1, is given in Table 1.2.1.  

 

Table 1.2.1 – Evaluation of AND2 in RSD-IMP logic. 

 Instruction Result 

1. 𝑦0 = 0, 𝑦1 = 0  

2. 𝑥0 → 𝑦0 𝑦0 = 𝑥0̅̅ ̅ 

3. 𝑥1 → 𝑦0 𝑦0 = 𝑥0̅̅ ̅ + 𝑥1̅̅̅ 

4. 𝑦0 → 𝑦1 𝑦1 = 𝑥0̅̅ ̅ + 𝑥1̅̅̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 𝑥0𝑥1 

Source: (BORGHETTI, 2010). 
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1.3 CHALLENGES AND MOTIVATION 

In RSD-IMP logic, there can have different sequence of instructions for the same 

target function. The quality of the solution can be measured in terms of number of instructions 

and number of RSDs required. For instance, the solution for AND2 operation presented in 

Table 1.2.1 takes four instructions and four RSDs. 

 

Example 1.2.2: In this example, we compare different solutions for the 2-input OR 

(OR2), 𝑥0 + 𝑥1. The first solution, shown in Table 1.2.2, comprises six cycles and uses five 

RSDs. By adding a RSD 𝑦2 , the reset operation in cycle 4 can be skipped. The resulting 

sequence of operations becomes as shown in Table 1.2.3. 

 

Table 1.2.2 – Evaluation of OR2 in six cycles using four RSDs. 

 Instruction Result 

1. 𝑦0 = 0, 𝑦1 = 0  

2. 𝑥0 → 𝑦0 𝑦0 = 𝑥0̅̅ ̅ 

3. 𝑦0 → 𝑦1 𝑦1 = 𝑥0 

4. 𝑦0 = 0 𝑦0 = 0 

5. 𝑥1 → 𝑦0 𝑦0 = 𝑥1 

6. 𝑦0 → 𝑦1 𝑦1 = 𝑥0 + 𝑥1 

Source: The author. 

 

Table 1.2.3 – Evaluation of OR2 in five cycles using five RSDs. 

 Instruction Result 

1. 𝑦0 = 0, 𝑦1 = 0, 𝑦2 = 0  

2. 𝑥0 → 𝑦0 𝑦0 = 𝑥0̅̅ ̅ 

3. 𝑦0 → 𝑦1 𝑦1 = 𝑥0 

5. 𝑥1 → 𝑦2 𝑦2 = 𝑥1 

6. 𝑦2 → 𝑦1 𝑦1 = 𝑥0 + 𝑥1 

 

Source: The author. 
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Both solutions, shown in Table 1.2.2 and in Table 1.2.3, use only reset and single-

input operations. The solution can be improved by using multi-input implications, as shown in 

Table 1.2.4. The solution shown in Table 1.2.4 takes only three cycles and uses four RSDs. 

 

Table 1.2.4 – Evaluation of OR2 in three cycles using four RSD. 

 Instruction Result 

1. 𝑦0 = 0, 𝑦1 = 0  

2. (𝑥0 + 𝑥1) → 𝑦0 𝑦0 = 𝑥0̅̅ ̅ 𝑥1̅̅̅ 

3. 𝑦0 → 𝑦1 𝑦1 = 𝑥0 + 𝑥1 

Source: The author. 

 

It has been shown that for any n-input Boolean function, there is a sequence of 

operations that requires 𝑛 + 2 RSD (LEHTONEN, 2010). In this sense, three logic synthesis 

challenges, regarding RSD-IMP logic, are the following:  

1) Find the smallest sequence of operations that can be computed with 𝑛 + 2 RSD. 

2) Find the smallest sequence of operations that require at most 𝑛 + 𝑘 RSD, where 

𝑘 ≥ 2 is an arbitrary value. 

3) Find the smallest sequence of operations with no upper bound on the number of 

RSD used. 

Most works in the literature targeting RSD-IMP logic focuses on the first challenge 

(POIKONEN, 2012), (TEODOROVIC, 2013), (RAGHUVANSHI, 2014). In (LEHTONEN, 

2010), it is proposed the use of recursive Boolean forms (RBF). A RBF can be defined as 

follows: 

 

𝑓 = 𝑓0 + (𝑓1 + (𝑓2 + … + (𝑓𝜙−2 + 𝑓𝜙−1
̅̅ ̅̅ ̅̅ )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

 
(1.2.3) 

 

where each 𝑓𝑖 is a negative unate SOP and 𝜙 is the number of levels in 𝑓. The interest on RBF 

arises because such a kind of forms can always be directly translated to a sequence of 

instructions that can be evaluated with 𝑛 + 2 RSD. Moreover, each cube in the RBF 

corresponds to an instruction. Therefore, methods to optimize RBF have been proposed. The 

methods described in (RAGHUVANSHI, 2014) and in (POIKONEN, 2012) are based on 

finding a cover for the function through Karnaugh maps. In (TEODOROVIC, 2013), a graph 

based method, where each vertex is a minterm, is presented. Such a method is similar to the 
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cover based methods. All these approaches work over representations that always use 2𝑛 

elements for an n-input Boolean function, being restricted to somewhat simple functions. In 

(WANG, 2016), a genetic algorithm to optimize RBF is proposed. 

The works discussed in (CHAKRABORTI, 2014) and in (CHATTOPADHYAY, 

2011), propose a BDD-based and an AIG-based method, respectively. In both cases, each 

node of the graph is directly transformed into a sequence of instructions. In order to evaluate 

only once the nodes with fanout greater than one, more than 𝑛 + 2 RSD are used.  

1.4 THESIS PROPOSAL 

This thesis focuses on defining and synthesizing classes of Boolean expressions such 

that: (1) the size of the expression is directly related to the number of instructions; and (2) the 

number of required RSD can be derived in linear time with respect to the size of the 

expression. From such expressions, we proposes logic synthesis methods for RSD-IMP logic 

considering the challenges previously described.  

We consider RBF as the base form and then generalize RBF to other forms. For each 

new form, we investigate how this form can be transformed into a sequence of instructions, as 

well as the resulting number of instructions and RSD. Then, we derive algorithms to 

synthesize such forms while optimizing the resulting sequence of instructions. 

We begin by developing algorithms related to the first challenge, i.e., to find the 

smallest sequence of operations that can be computed with 𝑛 + 2 RSDs. Our first contribution 

is related to the synthesis of RBF. In order to improve the scalability of RBF synthesis 

methods, we develop a RBF synthesis method that can be applied over different 

representation such as sum-of-products and BDD. Therefore, we discuss how RBF can be 

optimized by removing redundant cubes. 

Our second contribution related to the first challenge is the proposal of sum-of-RBF 

(SRBF). By generalizing RBF into SRBF, we are able to reduce the number of instructions 

while respecting the lower bound of 𝑛 + 2 RSDs. We also propose a SOP-based algorithm for 

the synthesis of SRBF. 

In order to exploit an arbitrary number 𝑛 + 𝑘 of RSDs, where 𝑘 ≥ 2, related to the 

second challenge (i.e., to find the smallest sequence of operations that require at most 𝑛 + 𝑘 

RSD), we propose the use of factored SRBF (FSRBF). More specifically, we focus on single-

cube FSRBF (SC-FSBRF). We show that the number of levels in the SC-FSRBF is directly 

related to the number of RSDs required to evaluate the resulting sequence of operations. The 

SOP-based algorithm for SRBF synthesis is expanded to SC-FSRBF. 



24 

 

Regarding the third challenge, i.e., to find the smallest sequence of operations with no 

upper bound on the number of RSDs applied, we propose a SOP-based approach to minimize 

the sequence of instructions when there is no maximum bound in the number of RSDs. This 

last approach takes into account the benefits of having all variables in both direct and 

complementary forms while considers the extra cost to obtain the complement of a variable. 

This problem has been addressed in (XIE, 2017), which evaluates any Boolean function in 

seven cycles. In this sense, we obtain a different trade-off between the number of RSDs and 

the number of instructions. 

We finish our contributions by discussing the logic design of binary adders. In contrast 

to previous contributions, the design of binary adders takes into account the matrix structure 

of the RSD memory. The sequence of instructions to implement a full-adder (FA) circuit is 

obtained from a SRBF. Thus, we explore adders designs based on the proposed FA. 

1.5 TEXT ORGANIZATION 

In Chapter 2, we provide a background on logic synthesis field. We discuss terms and 

definitions useful for the overall understanding of the thesis. 

Chapter 3 focuses on RSD and RSD-IMP logic. Section 3.1 describes the basic 

physical behavior of RSD. Section 3.2 details the behavior of RSD-IMP logic, and Section 3.3 

discusses existing logic synthesis methods for RSD-IMP logic.  

Chapter 4 focuses on recursive Boolean forms (RBF). RBFs are the most studied 

forms for RSD-IMP because these ones can always be translated into a sequence of 

instructions computable with 𝑛 + 2 RSDs in linear time with respect to the size of the RBF. 

We propose a more efficient method to evaluate RBF as well as two algorithms to synthesize 

RBF. The first algorithm provides optimal RBF that is well suited for simple functions with at 

most four inputs. The second algorithm aims to handle more complex functions at the cost of 

suboptimal solutions. The proposed methods show significant improvements over existing 

approaches. 

In Chapter 5, we propose the concept of sum-of-RBF (SRBF). We demonstrate that 

SRBF can be transformed into a sequence of instructions that requires 𝑛 + 2 RSDs. In Section 

5.1, we present a SOP based algorithm to synthesize SRBF. In Section 5.2 we propose the use 

of factored SRBF (FSRBF) which can benefit from more than 𝑛 + 2 RSD. 

In Chapter 6, we present two other contributions. In Section 6.1, we evaluate the 

benefits of having the variables available in both polarities as a method to reduce the number 

of cycles (instructions) in RSD-IMP logic. In Section 6.2, we propose a novel logic design for 
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a binary adder in RSD-IMP logic. The basic full-adder block is obtained from the developed 

methods. Then, we propose new implementations of binary adders that take into account 

different trade-offs between the number of instructions and the number of RSDs. Finally, 

Chapter 7 presents the conclusions and future works. 
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2 LOGIC SYNTHESIS BACKGROUND 

This chapter presents some fundamentals on different concepts that are related to this 

work. Some helpful references for such a background  are (BRAYTON, 1982), (BRAYTON, 

1984) and (DE MICHELLI, 1994). 

2.1 DEFINITIONS 

An n-input Boolean function F(X) defined over the variable set X with 𝑚 ≥ 1 outputs 

is a relation 𝐹(𝑋)  =  {0,1}𝑛  ↦  {0,1, −}𝑚, where ‘−’  denotes don’t care. When 𝑚 =  1, the 

function is a single output function. For m larger than 1, the function corresponds to a multi-

output function. Constant functions false and true are denoted by 0 and 1, respectively. The 

on-set of F is denoted by FON and consists of all input assignments x such that 𝐹(𝒙) = 1. 

Similarly, the off-set of F (FOFF) and the don’t care set of F (FDC) are all input assignments x 

for which 𝐹(𝒙) = 0 and 𝐹(𝒙) = −, respectively. If 𝐹𝐷𝐶 = {}, F corresponds to a completely 

specified function (CSF). Otherwise, F is an incompletely specified function (ISF). A given 

function 𝐹 contains (or dominates) a function 𝐺 if (𝐺𝑂𝑁 ∪ 𝐺𝐷𝐶) ⊆ (𝐹𝑂𝑁 ∪ 𝐹𝐷𝐶).  

A cofactor of F with respect to a variable 𝑥𝑖 is a function obtained by assigning 𝑥𝑖 to 1 

or 0 in 𝐹. If 𝑥𝑖 = 0, we obtain the negative cofactor. If 𝑥𝑖 = 1, we obtain the positive 

cofactor. If the negative and positive cofactors of 𝐹 with respect to 𝑥𝑖 are equal, then 𝑥𝑖 

corresponds to a don’t care variable. In other words, the value of 𝐹 does not depend on 𝑥𝑖. 

The support of a given function 𝐹 is the set of variables that are not don’t care in 𝐹. 

A Boolean function F is said to be positive unate on a variable xi if F(x1,…,1,…,xn) ≥ 

F(x1,…, 0,…,xn) for all possible input assignments. In other words, switching xi from 0 to 1 

cannot make F change from 1 to 0. A Boolean function F is said to be negative unate on 

variable xi if F(x1,…,0,…,xn) ≥ F(x1,…,1,…,xn) for all possible input assignments. A variable 

in the support of F that is neither positive unate nor negative unate is a binate variable. A 

function F is unate if all of its variables are unate. A function F is a positive (negative) unate 

function if all its variables are positive (negative) unate. If there is at least one binate variable 

in the support of F, then F is a binate function. 

In this work, ∙, +, 𝑏𝑎𝑟̅̅ ̅̅ ̅ and → denote logical conjunction (AND), disjunction (OR), 

complementation (NOT) and material implication (IMP) operations. In several cases the ‘∙’ 

operator is just omitted for  better text format so that (𝑥1 ∙ 𝑥2)  = ( 𝑥1𝑥2). 

A literal is a variable (positive literal) or a complemented variable (negative literal). 

The conjunction of literals is a cube. A cube comprising only positive literals is a positive 

cubes, whereas a cube comprising only negative literals is a negative cube and a cube 
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comprising both positive and negative literals is a binate cube. A minterm is a cube 

comprising all input variables of F. A cube c is an implicant cube (or simply implicant) of F if 

c = 1 implies F ≠ 0. An implicant c is an implicant prime (or simply a prime) of F if removing 

any literal from c produces a cube that is not an implicant. Equivalently, a prime is a maximal 

implicant. A prime is an essential prime if there is at least one minterm that is only covered by 

this prime. 

2.2 BOOLEAN FUNCTION REPRESENTATION AND OPTIMIZATIONS 

2.2.1Truth Table and Karnaugh Map 

A truth table is the most straightforward way to represent a Boolean function where 

the values for all possible input assignments x are displayed. A Karnaugh map, in turn, is 

similar to a truth table with the difference that the data is displayed over a matrix. The main 

problem of both representations is related to scalability. Both truth tables and Karnaugh map 

always require 2n positions, regardless of the function itself. A truth table can be represented 

as a hexadecimal integer where the most significant bit of such an integer is defined by 

minterm 𝑥0𝑥1 … 𝑥𝑛−1. 

2.2.2 Sum-of-products (and two-level minimization) 

A disjunction of implicant cubes of F corresponds to a sum-of-products (SOP) f for F 

such that 𝐹𝑂𝑁 ⊆ 𝑓𝑂𝑁 ⊆ (𝐹𝑂𝑁⋃𝐹𝐷𝐶). The set of cubes in f represents a cover 𝜁 for 𝐹. If 

removing any element from 𝜁 leads to 𝐹𝑂𝑁 ⊈ 𝑓𝑂𝑁 then 𝜁 is an irredundant cover. If all cubes 

in 𝜁 are prime, then 𝜁 is a prime cover. A prime and irredundant cover is an irredundant sum-

of-products (ISOP). In other words, if any cube or literal is removed from 𝑓, then s 𝑓 is not a 

cover for 𝐹, then 𝑓 is an ISOP. The cardinality of a SOP is the number of cubes in it. A 

minimum SOP presents the smallest cardinality among all covers for F. A minimal SOP is not 

a proper superset of any other SOP. Notice that a SOP always represents a CSF. If the target 

function F is an ISF, a SOP covering F represents a CSF F2 such that F2(x) = 1 implies F(x) ≠ 

0 and F2(x) = 0 implies F(x) ≠ 1. A function F can also be written in a product-of-sums (POS) 

form. Similarly to an ISOP, a POS is irredundant (IPOS) if any sum and any literal can be 

removed from the expression without modifying the target function. 

A usual question is to determine which of the SOP or POS expressions is the most 

compact for representing a given function. Equivalently, the question could be which of 𝐹 and 

𝐹̅ have the smallest SOP representation. Notice that, if there is a POS with k sums 

representing a given function 𝐹, then there is a SOP representation for 𝐹̅ containing k cubes, 
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through De Morgan’s theorem. The decision to represent 𝐹 or 𝐹̅ is important because, if the 

optimal SOP for 𝐹 has k cubes with m literals each, then the optimal SOP for 𝐹̅ can have up to 

𝑚𝑘cubes (SASAO, 2001). However,  given a SOP f , there is not a simple way to decide 

whether the SOP 𝑓 ̅comprises more or less cubes than f. 

Even though the number of cubes in the list grows theoretically as 2n
, in practice this 

number is much smaller. For instance, an n-input AND function requires only one cube with n 

literals. In this sense, a SOP representation for a 50-input AND is perfectly reasonable, 

whereas a truth table (or Karnaugh map) representation is unfeasible.  

Two-level minimization is the process of optimizing a SOP expression. The goal is to 

obtain a SOP comprising the smallest number of cubes (i.e., a minimum SOP). There are both 

exact and heuristic minimization procedures. In this work, we are mostly interested in the 

heuristic approaches because these ones present a good trade-off between the solution quality 

and the execution time. A minimum solution comprises the smallest number of cubes among 

all possible solutions. Notice that a minimal solution is not a proper superset of any other 

solution. In other words, a minimal solution cannot be improved by simply removing a literal 

or a cube from it. 

Typical tasks in heuristic two level minimization algorithms are the expansion and 

reduction of cubes. The goal of a cube expansion is to transform implicants into primes. 

Moreover, as an implicant is expanded it may cover other implicants that may be discarded. 

During the expansion process it is necessary to check if the expanded cube still represents an 

implicant. The cube reduction transforms primes into implicants. As a cube is reduced, this 

cube can become dominated by another cube and so be removed from the SOP. During a cube 

reduction, it is necessary to check if the resulting SOP still covers the target function. 

Typically, two-level minimizers usually perform a loop based on expansion and reduction 

processes. The loop execution stops when the solution cannot be no more improved. 

To illustrate the process of two-level minimization, consider a function F described by 

the Karnaugh map shown in Fig. 2.1(a). Assume an initial cover for the function 

corresponding to the highlighted cubes being written as follows: 

 

𝑓∗ = 𝑥0̅̅ ̅ 𝑥2̅̅ ̅ + 𝑥0̅̅ ̅ 𝑥1 + 𝑥0𝑥2 + 𝑥0 𝑥1̅̅̅ (2.2.1) 

 

Notice that (2.2.1) comprises only primes because no cube from it can be expanded 

without modifying the described function. Moreover, no prime can be removed from (2.2.1) 
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without modifying the function. One can obtain another solution by reducing cube 𝑥0̅̅ ̅𝑥1 to 

𝑥0̅̅ ̅𝑥1𝑥2, as illustrate in Fig. 2.1(b). Furthermore, it can be verified that replacing 𝑥0̅̅ ̅ 𝑥1 by 

𝑥0̅̅ ̅𝑥1𝑥2 leads to a valid solution because 𝑥0̅̅ ̅𝑥1𝑥2̅̅ ̅ is dominated by 𝑥0̅̅ ̅ 𝑥2̅̅ ̅. The new cover can be 

written as follows: 

 

𝑓∗ = 𝑥0̅̅ ̅ 𝑥2̅̅ ̅ + 𝑥0̅̅ ̅ 𝑥1𝑥2 + 𝑥0𝑥2 + 𝑥0 𝑥1̅̅̅ (2.2.2) 

 

Even though (2.2.2) comprises one more literal than (2.2.1), the cardinality of both 

coverings is the same. The next step is to expand cube 𝑥0̅̅ ̅𝑥1 𝑥2 to cube 𝑥1 𝑥2, as illustrate in 

Fig. 2.1(c), giving the following expression: 

 

𝑓∗ = 𝑥0̅̅ ̅ 𝑥2̅̅ ̅ +  𝑥1𝑥2 + 𝑥0𝑥2 + 𝑥0 𝑥1̅̅̅ (2.2.3) 

 

In (2.2.3), the cube 𝑥0𝑥2 is redundant and so can be removed. After this removal, the 

covering comprises one less cube than the original solution (2.2.1). The final covering is 

illustrated in Fig. 2.1(d), and is written as follows: 

 

𝑓∗ = 𝑥0̅̅ ̅ 𝑥2̅̅ ̅ +  𝑥1𝑥2 + 𝑥0 𝑥1̅̅̅ (2.2.4) 

 

Figure 2.1 – Different coverings 𝑓∗ = 𝑥0̅̅ ̅ 𝑥2̅̅ ̅ +  𝑥1𝑥2 + 𝑥0 𝑥1̅̅ ̅: (a) initial, (b) after reduction of cube 

𝑥0̅̅ ̅𝑥1 to 𝑥0̅̅ ̅𝑥1 𝑥2, (c) after expanding 𝑥0̅̅ ̅𝑥1𝑥2 to 𝑥1𝑥2, and (d) final minimum covering. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Source: The author. 
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2.2.2.1 SOP of Unate Functions 

Unate functions are very interesting for two level minimizations because if F is a unate 

function, then all primes are essential and the ISOP is unique. In other words, the ISOP 

comprises all primes of F and only the primes of F. Therefore, given a unate covering for a 

unate function F, the ISOP for F can be obtained by simply removing cubes that are not 

prime. This process is known as single cube containment. For instance, consider a function 

defined by the following expression: 

 

𝑓∗ = 𝑥1 𝑥2 + 𝑥3̅̅ ̅ 𝑥4 + 𝑥1𝑥2𝑥3̅̅ ̅ (2.2.5) 

 

In (2.2.5), x1 and x2 are positive unate variables whereas x3 and x4 are negative unate 

variables. It follows that F is a unate function. To verify if (2.2.5) is an ISOP, we check for 

cubes that are redundant. In this case, cube 𝑥1𝑥2𝑥3̅̅ ̅ is redundant because it is covered by 

𝑥1 𝑥2. Therefore, 𝑥1𝑥2𝑥3̅̅ ̅ can be removed, leading to the following unique ISOP: 

 

𝑓∗ = 𝑥1 𝑥2 + 𝑥3̅̅ ̅ 𝑥4 (2.2.6) 

 

2.2.3 Binary Decision Diagram 

Boolean functions can also be represented through binary decision diagram (BDD) 

(LEE,1959), (AKERS, 1978). A BDD is a rooted, directed, acyclic graph. A node of a BDD 

can be either a decision node or a terminal node. Each decision node represents a Boolean 

variable and each terminal node is either 1 or 0. Each non-terminal node has a high and a low 

child. A BDD node is redundant if the low and high children are the same or if there is 

another node that represents the same function. Moreover, a BDD is reduced (RBDD) if there 

are no redundant nodes. Furthermore, a BDD is ordered (OBDD) if, for all pairs of variables 

𝑥𝑖 and 𝑥𝑗, 𝑥𝑖 and 𝑥𝑗 appear in the same order for any path comprising both 𝑥𝑖 and 𝑥𝑗. A 

reduced and ordered BDD (ROBDD) is a canonical representation of the corresponding 

Boolean function (BRYANT, 1986). 

 

2.2.4 Factored forms, factoring and division 

A factored form can be recursively defined as a literal (i.e., 𝑥𝑖 or 𝑥𝑖̅), as well as a 

conjunction of factored forms or a disjunction of factored forms (BRAYTON, 1982). In other 

words, a factored form is a Boolean expression where only literals can be complemented. 



31 

 

Hence, 𝑥1(𝑥2̅̅ ̅ + 𝑥3) is a factored form whereas 𝑥1(𝑥2̅̅ ̅ + 𝑥3)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  is not. Similarly, (𝑥1̅̅̅ + 𝑥2̅̅ ̅) is a 

factored form whereas 𝑥1𝑥2̅̅ ̅̅ ̅̅  is not, both representing the 2-input NAND. 

Factoring is the process of obtaining a factored form representing a Boolean function. 

The main goal of factoring algorithms is to reduce the number of literals in the resulting 

factored form. Factoring algorithms can be classified as algebraic or Boolean. An algebraic 

factoring algorithm considers Boolean variables as integers and applies standard algebra. The 

main limitation of algebraic factoring is that the notion of complement does not exist. 

Therefore, literals 𝑥0 and 𝑥0̅̅ ̅ are treated as independent variables. Boolean factoring uses 

properties that are specific to Boolean algebra. Such properties include the following 

relations: 𝑥0𝑥0̅̅ ̅ = 0, 𝑥0 + 𝑥0̅̅ ̅ = 1 and 𝑥0 + 𝑥0𝑥1 = 𝑥0. 

Boolean methods tend to yield better results but are usually more complex than 

algebraic methods. To illustrate the differences between these methods, we take a function F 

written as follows: 

 

𝑓∗ = 𝑥1𝑥2 + 𝑥2𝑥3 + 𝑥1̅̅̅𝑥3 (2.2.7) 

 

An algebraic factoring method can obtain one of the following expressions: 

 

𝑓∗ = 𝑥2(𝑥1 + 𝑥3) + 𝑥1̅̅̅𝑥3 (2.2.8) 

𝑓∗ = 𝑥1𝑥2 + 𝑥3(𝑥2 + 𝑥1̅̅̅) (2.2.9) 

 

Both (2.2.8) and (2.2.9) comprise five literals. A Boolean factoring method, on the 

other hand, may return the following expression: 

 

𝑓∗ = (𝑥1 + 𝑥3)(𝑥2 + 𝑥1̅̅̅) (2.2.10) 

 

which comprises four literals. Notice that, in order to obtain (2.2.10), the property 𝑥0𝑥0̅̅ ̅ = 0 is 

applied. Therefore, an algebraic method is not able to obtain (2.2.10) as solution. 

The factoring process can also be understood as a division operation over a given SOP 𝑓. If 𝑓 

is divided by a SOP d, then 𝑓 is written as follows: 

 

𝑓 = 𝑞𝑑 + 𝑟 (2.2.11) 
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where 𝑞, 𝑑 and 𝑟 are SOP. 𝑞 is the quotient, 𝑑 is the divider and 𝑟 is the remainder. If 𝑑 is a 

cube, then 𝑑 is a single cube divisor. Otherwise, 𝑑 is a multiple cubes divisor. If 𝑑 is a cube 

and 𝑟 is empty, then 𝑑 is a factor of 𝑓. If 𝑓 has no factors, then 𝑓 is a cube-free expression. If 

𝑑 is a cube and 𝑞 is a cube-free expression, then 𝑑 is a co-kernel of 𝑓 and 𝑞 is a kernel of 𝑓 

(BRAYTON, 1982). 

Obtaining single cube divisors can be done using a matrix structure where each 

column is a literal, and each row is a cube in the input SOP. If cube 𝑐𝑖 comprises the literal 𝑥𝑗, 

a ‘1’ is placed on the corresponding matrix position. A rectangle in the matrix is a set of 

columns and rows such that all matrix entries corresponding to the intersections of these 

columns and rows contain a ‘1’. Neither the columns nor the rows have to be continuous. The 

weight of a rectangle is the improvement obtained (usually measured in terms of reduction on 

the number of literals) by selecting that rectangle to perform the division operation. A prime 

rectangle is a rectangle for which the weight can be increased by adding a row or a column. It 

has been shown that the good divisors for an expression can be identified from the prime 

rectangles (RUDELL, 1989). For instance, consider an expression 𝑓, as follows: 

 

𝑓 = 𝑥0𝑥1𝑥2𝑥3 + 𝑥0𝑥1𝑥4 + 𝑥3𝑥6𝑥7 + 𝑥3𝑥6𝑥8 (2.2.12) 

 

The resulting matrix is shown in Table 2.1. There are two prime rectangles in the 

Table 2.1. The first is given by the intersections of columns {𝑥0, 𝑥1} and lines 

{𝑥0𝑥1𝑥2𝑥3, 𝑥0𝑥1𝑥4}. The second is given by the intersection of {𝑥3, 𝑥6} and lines 

{𝑥3𝑥6𝑥7, 𝑥3𝑥6𝑥8}. Hence, the single cube divisors for (2.2.12) are 𝑥0𝑥1 and 𝑥3𝑥6. The 

resulting expression is as follows: 

 

𝑓 = 𝑥0𝑥1(𝑥2𝑥3 + 𝑥4) + 𝑥3𝑥6(𝑥7 + 𝑥8) (2.2.13) 

 

Table 2.1 – Matrix for single cube divisor extraction for (2.2.12). 

 𝑥0 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 𝑥8 

𝑥0𝑥1𝑥2𝑥3 1 1 1 1      

𝑥0𝑥1𝑥4 1 1   1 1    

𝑥3𝑥6𝑥7    1   1 1  

𝑥3𝑥6𝑥8    1   1  1 

Source: The author. 
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Identifying good divisors using this matrix structure resembles a covering algorithm 

over a Karnaugh map in the sense that prime rectangles are analogous to prime implicants. 

However, the prime rectangle size does not need to be a power of 2 and the matrix positions 

do not need to be adjacent. 

The process for identifying good multiple cubes divisors uses the same matrix 

structure. However, the columns and rows have different meanings. Each column is a cube in 

a kernel of 𝑓 while each row is a co-kernel of 𝑓. The candidates co-kernels to be adopted in 

the division process can be obtained from the intersection of the pairs of cubes in f. This 

process is illustrated in the following:  

 

𝑓 = 𝑥0𝑥1𝑥2𝑥3 + 𝑥0𝑥1𝑥4 + 𝑥0𝑥1𝑥5 + 𝑥2𝑥3𝑥7 + 𝑥4𝑥7 (2.2.14) 

 

The first pair of cubes {𝑥0𝑥1𝑥2𝑥3, 𝑥0𝑥1𝑥4} leads to the co-kernel 𝑥0𝑥1 and the kernel 

𝑥2𝑥3 + 𝑥4. Hence, there is a line 𝑥0𝑥1 and two columns 𝑥2𝑥3 and 𝑥4 in the matrix. On the 

other hand, there is no intersection of literals regarding cubes 𝑥0𝑥1𝑥2𝑥3 and 𝑥4𝑥7. Therefore, 

this pair does not generate any candidate divisors.  The resulting matrix is shown in Table 2.2. 

A prime rectangle consists of the intersection of columns {𝑥2𝑥3, 𝑥4} and rows {𝑥0𝑥1, 𝑥7}. 

When 𝑓 is divided by 𝑥2𝑥3 + 𝑥4, we obtain the following expression: 

 

𝑓 = (𝑥2𝑥3 + 𝑥4)(𝑥0𝑥1 + 𝑥7) + 𝑥0𝑥1𝑥5 (2.2.15) 

 

Table 2.2 – Matrix for multiple cubes divisor extraction for (2.2.14). 

 𝑥2𝑥3 𝑥4 𝑥5 𝑥0𝑥1 𝑥7 

𝑥0𝑥1 1 1 1   

𝑥2𝑥3    1 1 

𝑥4    1 1 

𝑥7 1 1    

Source: The author. 

 

Notice that, even though there are two prime rectangles presented in Table 2.2, only 

one of them is selected because both rectangles lead to the same cubes. The rectangles are 

transpositions of each other. However, if rectangles overlay, there are cases where it can be 

useful to allow redundancies. In order to illustrate possible benefits of redundancy, consider 

the matrix shown in Table 2.3. 
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Table 2.3 – Matrix to exemplify the need for redundancy. 

 𝑥3 𝑥4 𝑥5 𝑥6 

𝑥0 1 1 1 1 

𝑥1 1 1 1  

𝑥2 1   1 

Source: The author. 

The first prime rectangle is given by the intersection of lines {𝑥0, 𝑥1} and columns 

{𝑥3, 𝑥4, 𝑥5}. The second prime rectangle is given by the intersection of lines {𝑥0, 𝑥2} and 

columns {𝑥3, 𝑥6}. Hence, the rectangles overlap. If redundancy is not allowed, then only one 

of the rectangles can be selected. Let the first rectangle be selected, then the resulting 

expression contains 10 literals, as follows:  

 

𝑓 = (𝑥0 + 𝑥1)(𝑥3 + 𝑥4 + 𝑥5) + 𝑥6(𝑥0 + 𝑥2) + 𝑥2𝑥6 (2.2.16) 

 

On the other hand, if redundancy is allowed, we obtain an expression with nine 

literals, as follows: 

𝑓 = (𝑥0 + 𝑥1)(𝑥3 + 𝑥4 + 𝑥5) + (𝑥3 + 𝑥6)(𝑥0 + 𝑥2) (2.2.17) 

 

Even though cube 𝑥0𝑥3 appears in both terms of (2.2.17), the resulting factored form 

comprises one less literal than one represented by (2.2.16). 

One limitation of such matrix based method is that the number of rows and columns in 

the matrix are quadratic functions on the number of cubes. Different works have proposed 

methods to reduce the set of candidate divisors. One criteria applied is to set a maximum 

bound on the number of literals that a divisor can have (MODI, 2004).  

2.3 FUNCTIONAL COMPOSITION 

Functional composition (FC) is a bottom-up approach to logic synthesis (MARTINS, 

2012). The main idea of FC is to obtain expressions for complex functions by combining 

known solutions for simpler functions. For this reason, a set of basic functions for which 

optimal solutions are known must be defined. FC was proposed to perform factoring of 

Boolean functions and has also been applied to different emerging logic paradigms that are 

not necessarily based on AND and OR operations (MARTINS, 2014), (MARTINS, 2015), 

(NEUTZLING, 2014).  
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When FC is used to perform factoring, the basic functions correspond to the literals 

and complemented ones. These basic functions are combined through AND and OR 

operators, yielding functions for which the optimal factored form comprises two literals. 

Since expressions with 𝑚 literals are created before expressions with 𝑚 + 1 literals, the first 

expression found for a function is also the optimal solution. In order to check whether an 

expression in the first solution for a function, a functional representation, such as a truth table, 

is stored together with each created expression. To illustrate the idea of FC, we consider the 

synthesis of a three input function given by the following SOP: 

𝑓 = 𝑥0𝑥1 + 𝑥0𝑥2 (2.3.1) 

 

The truth table for (2.3.1) is shown in Table 2.4. The equivalent integer is E0. 

 

Table 2.4 – Truth table for 𝑓 = 𝑥0𝑥1 + 𝑥0𝑥2. 

𝑥0 𝑥1 𝑥2 𝑓 

0 0 0 0 

0 0 1 0 

0 1 0 0 

0 1 1 0 

1 0 0 0 

1 0 1 1 

1 1 0 1 

1 1 1 1 

Source: The author. 

 

Since 𝐹 is a three input function, the set of basic functions is as shown in Table 2.5. 

None of the expressions in Table 2.5 is a solution to (2.3.1). Therefore, we associate all pairs 

of expressions in Table 2.5 through AND and OR operators. The resulting expressions are 

shown in Table 2.6 together with the respective integer representation of the truth table. 

Since none of the expressions in Table 2.6 represents the target function, expressions 

with three literals have to be generated. For this, each expression in Table 2.5 is combined 

with an expression in Table 2.6 through AND and OR operations. When expressions 𝑥0 and 

(𝑥1 + 𝑥2) are combined through an AND operation, we obtain the following expression: 
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𝑓 = 𝑥0(𝑥1 + 𝑥2) (2.3.2) 

 

The truth table of (2.3.2) is E0. Therefore, (2.3.2) is an expression for the target 

function. Since (2.3.2) is the first solution found, it is also an optimal solution. 

The FC process can be improved by considering properties of Boolean functions. In 

particular, let 𝐹1 and 𝐹2 be two functions such that 𝐹1 ⊆ 𝐹 and 𝐹2 ⊆ 𝐹, then (𝐹1𝐹2) ⊆ 𝐹. 

Therefore, performing an AND operation between two functions that are dominated by 𝐹 

does not help the FC to approach to a solution. A similar argument is valid for OR operation. 

In the previous example, function 𝑥0 dominates the target function. Hence, only AND 

operations using 𝑥0 are useful. 

 

Table 2.5 – Basic functions for FC using three input variables. 

𝑥0 𝑥1 𝑥2 𝑓1 𝑓2 𝑓2 𝑓3 𝑓4 𝑓5 

0 0 0 0 1 0 1 0 1 

0 0 1 0 1 0 1 1 0 

0 1 0 0 1 1 0 0 1 

0 1 1 0 1 1 0 1 0 

1 0 0 1 0 0 1 0 1 

1 0 1 1 0 0 1 1 0 

1 1 0 1 0 1 0 0 1 

1 1 1 1 0 1 0 1 0 

Integer F0 0F CC 33 AA 55 

Boolean expression 𝑥0 𝑥0̅̅ ̅ 𝑥1 𝑥1̅̅̅ 𝑥2 𝑥2̅̅ ̅ 

Source: The author. 
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Table 2.6 – Expressions with two literals and the respective truth table represented as integer. 

Expression Truth table  Expression Truth table 

𝑥0 + 𝑥1 FC  𝑥0𝑥2 A0 

𝑥0 + 𝑥1̅̅̅ F3  𝑥0𝑥2̅̅ ̅ 50 

𝑥0̅̅ ̅ + 𝑥1 CF  𝑥0̅̅ ̅𝑥2 0A 

𝑥0̅̅ ̅ + 𝑥1̅̅̅ F3  𝑥0̅̅ ̅ 𝑥2̅̅ ̅ 05 

𝑥0𝑥1 C0  𝑥1 + 𝑥2 EE 

𝑥0𝑥1̅̅̅ 30  𝑥1 + 𝑥2̅̅ ̅ DD 

𝑥0̅̅ ̅𝑥1 0C  𝑥1̅̅̅ + 𝑥2 BB 

𝑥0̅̅ ̅ 𝑥1̅̅̅ 03  𝑥1̅̅̅ + 𝑥2̅̅ ̅ 77 

𝑥0 + 𝑥2 FA  𝑥1𝑥2 88 

𝑥0 + 𝑥2̅̅ ̅ F5  𝑥1𝑥2̅̅ ̅ 44 

𝑥0̅̅ ̅ + 𝑥2 AF  𝑥1̅̅̅𝑥2 22 

𝑥0̅̅ ̅ + 𝑥2̅̅ ̅ 5F  𝑥1̅̅̅ 𝑥2̅̅ ̅ 11 

Source: The author. 

 

2.4 PROBABILITY OF BOOLEAN FUNCTIONS 

The probability of a CSF F (𝑝(𝐹)) is the probability that a random input assignment x 

satisfies 𝐹(𝑥) = 1. By definition, 𝑃(1) = 1 and 𝑃(0) = 0. If F is represented as a BDD with 

𝑥𝑖 as root node, then 𝑝(𝐹) can be defined as: 

 

𝑝(𝐹) = 𝑝(𝑥𝑖)𝑃(𝐹ℎ𝑖𝑔ℎ) + (1 − 𝑝(𝑥𝑖))𝑃(𝐹𝑙𝑜𝑤) (2.4.1) 

 

To other representations, computing the probability is not always as straightforward. 

Since the probability of a function does not depend on the representation used, we can 

consider the probability of a SOP. For instance, consider a SOP 𝑓 with |𝑓| cubes. Let 𝑓𝑗 

denote the sum of the first 𝑗 cubes in 𝑓 such that 𝑓|𝑓| = 𝑓. The probability of a 𝑓𝑖 is given by: 

 

𝑝(𝑓𝑖) = 𝑃(𝑓𝑖−1) + 𝑃(𝑐𝑖) − 𝑃(𝑐𝑖𝑓𝑖−1) (2.4.2) 

 

To evaluate (2.4.2), term 𝑃(𝑐𝑖𝑓𝑖−1) must be computed. Notice that 𝑐𝑖𝑓𝑖−1 is a SOP that 

can comprises up to |𝑓| − 1 cubes. The evaluation of 𝑃(𝑐𝑖𝐹𝑖−1) is also done using (2.4.2) and 
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may lead to the need of evaluating the probability 𝑃(𝑐𝑖𝑐𝑗𝐹𝑖−1) of a SOP with  |𝑓| − 2 cubes. 

The process continues until a SOP with a single cube is reached. Overall, the total number of 

cubes visited to evaluate 𝑝(𝑓) grows exponentially with |𝑓|. In this sense, the most promising 

approach is to transform the SOP into a BDD. Even though the resulting number of nodes in a 

BDD can be an exponential function on the number of cubes of the SOP, BDD tends to be a 

more compact representation than SOP.  
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3 RESISTIVE SWITCHING DEVICES 

In this Chapter, we discuss the electrical behavior of RSD as well as applications of 

RSD to perform logic. 

3.1 ELECTRICAL BEHAVIOR OF RESISTANCE SWITCHING DEVICES 

The most common type of RSD presents two resistive states. The device can be either 

in a low resistance state (LRS), with a resistance RON, or in the high resistance state (HRS), 

with a resistance ROFF. 

RSD can be classified as bipolar or unipolar device (PAN, 2014). In a unipolar device 

the resistance state depends only on the magnitude of the applied voltage. In this case, the 

effect related to the resistance state is expected to be dominated by some thermal effect like 

Joule heating (WOUTERS, 2015). In contrast, in a bipolar device, the transitions from the 

HRS to LRS and on the opposite sense occur with voltage biasing on different polarities. 

Therefore, the RS mechanism should be field driven (WOUTERS, 2015). The idealized I-V 

curves for quasi-static operation are shown in Fig. 3.1(a) and in Fig. 3.1(b) for unipolar and 

bipolar RSD, respectively. A unipolar device, initially in the LRS, switches to the HRS when 

the voltage bias reaches VRESET. Then, the device remains in this state until the voltage bias 

reaches VSET, when the device switches back to a LRS. Finally, if the voltage biasing is 

removed, the device stays in the LRS. A compliance current (Icc) is taken into account in 

order to avoid a destructive transition from HRS to LRS. A bipolar device, initially in the 

HRS, switches to LRS when a voltage bias of VSET is reached. Transition from the LRS to 

HRS is only observable when a voltage VRESET with opposite polarity is applied. Even though, 

a positive biasing causes the transition from HRS to LRS, as depicted in Fig. 3.1(b), several 

devices require a negative bias to transition from HRS to LRS. 

Figure 3.1 – Ideal I-V curves for different types of RSD: (a) unipolar and (b) bipolar. 
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Source: (WOUTERS, 2015). 
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The resistance switching effect can occur due to several physical mechanisms, which can 

be used to classify the devices. The main variations of RSD are electrochemical metallization 

cell (ECM), valence change (VC), phase change (WOUTERS, 2015), (PAN, 2014) and 

magnetic devices (KENT, 2015). 

The basic structure of ECM cells consists of one electrode made from an active metal 

(e.g. Ni, Ag or Cu), one electrode made from an inert metal (e.g. W, Au or Ir) and an ion-

conducting insulating solid electrolyte (WOUTERS, 2015), (PAN, 2014).  

During the transition from the HRS to the LRS, a high voltage biasing is applied to the 

device. The resulting electrical field makes cations from the active electrode move into the 

insulator. The metal cations drift through the insulator and are reduced near to the inert 

electrode by electrons injected through the inert electrode. This process continues, creating a 

conductive filament (CF) and connecting both electrodes, as illustrated in Fig. 3.2(a). The 

subsequent resistive switching behavior is a consequence of dissolution (RESET process), 

illustrated in Fig. 3.2(b), or formation (SET process) of the CF. In most cases, only one CF is 

formed. Hence, the ON resistance becomes nearly independent from the device area since the 

CF size is very small compared to the total area. This is an interesting property for scaling 

since the ratio ROFF/RON should increase as the device shrinks. 

 

Figure 3.2 – Electrochemical memristive device: (a) RSD in LRS with a CF, and (b) RSD in HRS with 

ruptured CF. 
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Source: (PAN, 2014). 

 

In valence change devices, the main cause of resistive switching is the transport of 

oxygen vacancies (Vo) (WOUTERS, 2015), (PAN, 2014). The main structure for this kind of 

devices consists on an insulator layer made of a transition metal oxide (e.g., TiO2-x), where x 

is used to denote the existence of Vo, and two electrodes. Under a voltage biasing, Vo drifts 

through the insulator and accumulates near to the negatively biased electrode. Eventually, a 
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bridge of Vo contacting both electrodes is formed. The high concentration of Vo causes the 

transition to a conducting state.  

Resistive switching on phase change devices is based on the transition of a phase 

change material from an amorphous phase, which presents a high resistance value, to a 

crystalline phase with low resistance (WOUTERS, 2015), (PAN, 2014). The amorphous and 

crystalline phases are shown, respectively, in Fig. 3.3(a) and in Fig. 3.3(b). The RESET 

process is obtained by applying a high electric current for a short time, so quickly removing 

the current. The electric current melts the crystalline phase and, when the electric current is 

quenched, the material transitions to the amorphous phase. For the SET process, a smaller 

current is applied during a longer time. The current anneals the phase change material to a 

temperature between the crystallization and the melting temperatures. Since Joule heating 

plays a major role on the resistive switching, phase change devices are unipolar. 

 

Figure 3.3 – Phase change memristive device: (a) highly resistive amorphous state, and (b) crystalline 

state with small resistance. 
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The basic element in magnetic RSD is the spin-transfer-torque magnetic tunnel 

junction (STT-MTJ). A STT-MTJ comprises two ferromagnetic layers and an insulator layer 

(tunnel barrier), as depicted in Fig. 3.4. One of the ferromagnetic layers is a free layer (FL), 

meaning that its magnetization can be modified. The other ferromagnetic layer is a reference 

layer (RL), meaning that its magnetization is constant. The FL can be either in a parallel (PP) 

or antiparallel (AP) state with respect to the RL. In the PP (AP) state, the MTJ resistance is 

small (large). This effect is known as tunnel magnetoresistance (TMR).  
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Figure 3.4 – Basic structure of STT-MTJ. 

 

Source: (KENT, 2015). 

 

The state of a given STT-MTJ can be modified through the spin-transfer-torque (STT) 

effect spin injection. By applying a positive voltage to the FL (+V) electrons flow from the 

RL to the FL, electrons with opposite spin with respect to the reference layer are reflected 

while electrons with spin aligned to the RL tunnel to the FL. As shown in Fig. 3.5(a), 

tunneled electrons cause a spin accumulation in the FL so causing its magnetization to switch 

to PP state,. When a negative biasing is applied to the FL (-V), electrons flow from the FL to 

the RL. Electrons with spin aligned to the RL pass through the device while electrons with 

opposite spin are reflected back to the FL. Thus, the FL magnetization switches to AP state, 

as depicted in Fig. 3.5(b). 

 

Figure 3.5 – Spin-transfer-torque effect in a magnetic tunnel junction: (a) from anti-parallel to parallel, 

and (b) from parallel to anti-parallel. 

  

              (a)                (b) 

Source: The author. 
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3.2 MATERIAL IMPLICATION LOGIC 

3.2.1 Overview 

The RSD-IMP logic structure was firstly described in (BORGHETTI, 2010) and is one 

of the most studied approaches to perform logic-in-memory using RSD. The basic circuit 

topology is illustrated in Fig. 3.6, where several RSD are connected to a load resistor Rg, with 

resistance value 𝑅𝑔. The devices X1 to Xn are input RSDs whereas the devices Y1 and Y2 are 

work RSDs. Notice that there may be more than two work RSDs. An input RSD stores an 

input variable, and the work RSDs are used to save intermediate computation values. For each 

RSD Xk (Yk), its control voltage is denoted by Vxk (Vyk) and its state, which represents a 

Boolean variable, is denoted by xk (yk). We adopt the convention that RON represents the logic 

value 1 whereas ROFF represents the logic value 0. In the following, we consider the RSD as 

bipolar device with very high ROFF/RON ratio. Notice that part of this discussion can be 

extrapolated to other devices (SUN, 2011), (MAHMOUDI, 2013). 

 

Figure 3.6 – Basic topology for RSD-IMP logic structure. 

 

Source: (BORGHETTI, 2010). 

 

The RSD state represents a binary value and logic computation is performed by setting 

the control voltages to appropriate levels. In particular, the possible values are VON, VCOND and 

VOFF. VON is a voltage larger than the positive threshold VSET, VOFF is a voltage smaller than 

the negative voltage VRESET and VCOND is a positive voltage smaller than VSET that has 

negligible impact on the resistance value. Considering a stand-alone RSD connected to Rg, 

VON drives the device into the LRS and VOFF resets the device to the HRS.  

The correct behavior of the circuit depends on choosing adequate values for 

parameters Rg, VOFF, VON and VCOND (KVATINSKY, 2014), (ZHU, 2013). A typical value for 

Rg is an intermediate value between RON and ROFF, as the following: 

 

𝑅𝑔 = √𝑅𝑂𝑁𝑅𝑂𝐹𝐹 (3.2.1) 



44 

 

From the previous definitions of 𝑉𝐶𝑂𝑁𝐷, 𝑉𝑂𝑁 and 𝑉𝑂𝐹𝐹, we can derive a set of basic 

constraints for 𝑉𝐶𝑂𝑁𝐷, 𝑉𝑂𝑁 and 𝑉𝑂𝐹𝐹. For sake of simplicity, we refer to a device RSD Xi 

whereas the same analysis holds for a RSD Yi. The basic constraints are the following: 

1) If 𝑉𝐶𝑂𝑁𝐷 is applied to a single RSD Xi, with the remaining RSD left at high 

impedance, then the resulting voltage biasing across Xi is smaller than VSET. 

Since 𝑉𝐶𝑂𝑁𝐷 is a positive voltage defined to be smaller than 𝑉𝑆𝐸𝑇, this 

constraint is already respected. Any positive voltage bias smaller than 𝑉𝑆𝐸𝑇 

has no impact on the state of the RSD. 

2) If 𝑉𝑂𝑁 is applied to a single RSD Xi at the HRS, the resulting voltage biasing 

across Xi must be larger than 𝑉𝑆𝐸𝑇, as given by the following equation: 

 

𝑉𝑂𝑁 (1 −
𝑅𝑔

𝑅𝑔 + 𝑅𝑂𝐹𝐹
) ≥ 𝑉𝑆𝐸𝑇 

(3.2.2) 

 

3)  If 𝑉𝑂𝐹𝐹 is applied to a single RSD Xi at the LRS, the resulting voltage 

biasing across Xi must be smaller than 𝑉𝑅𝐸𝑆𝐸𝑇, as given by the following 

equation: 

 

𝑉𝑂𝐹𝐹 (1 −
𝑅𝑔

𝑅𝑔 + 𝑅𝑂𝐹𝐹
) < 𝑉𝑅𝐸𝑆𝐸𝑇 

(3.2.3) 

 

3.2.2 Logic and electrical behavior 

The existence of a common node means that the bias voltage applied to a RSD also 

depends on the state of other RSDs as well as on the voltages applied to these devices 

(BORGHETTI, 2010). The basic behavior of this topology is described in the following. If X1 

is in the HRS (𝑥1 = 0), then Vx1 has negligible influence on the circuit, and VON is able to set 

Y1 to the LRS (y1=1). On the other hand, if X1 is in the LRS (𝑥1 = 1), then 𝑉𝑥1
 increases the 

voltage across resistor Rg, so resulting in a voltage drop in Y1 insufficient to cause a change 

of state. Hence, y1 remains with the previous value. Table 3.1 shows the final values of y1 

(‘next y1’ column) as function of the initial values x1 and y1. The logic behavior shown in 

Table 3.1 corresponds to the material implication (IMPLY) function (𝑥1 → 𝑦1 = 𝑥1̅̅̅ + 𝑦1). In 

RSD-IMP logic structure, this operation is known as single input implication because there is 

only one term at the left hand side. Every time an operation 𝑥1 → 𝑦1is performed, the 

resulting value is stored in Y1, overwriting the initial value y1.  
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Table 3.1 – Truth table for material implication function (𝑥1 → 𝑦1 = 𝑥1̅̅ ̅ + 𝑦1). 

x1 y1 next y1 

0 0 1 

0 1 1 

1 0 0 

1 1 1 

Source: The author. 

 

The expected logic behavior imposes more constraints on the possible values of 

𝑉𝐶𝑂𝑁𝐷, 𝑉𝑂𝐹𝐹 and 𝑉𝑂𝑁, in addition to those previously described. Consider that VCOND is 

applied to X1 while VON is applied to Y1 , with the remaining devices at the high impedance 

state. The equivalent circuit is shown in Fig. 3.7, where Rx1 and Ry1 are the equivalent 

resistance of RSD X1 and Y1, respectively. The resistance values of Rx1 and Ry1 are given, 

respectively, by 𝑅𝑥1 and 𝑅𝑦1. The voltage across resistor Rg is denoted by 𝑉𝑟𝑔
. 

 

Figure 3.7 – Equivalent resistive circuit for IMP operation. 

 

Source: The author. 

 

To understand how the two RSD interact, we use superposition to write 𝑉𝑟𝑔
 as a 

function of voltage VCOND. An expression for the equivalent resistive voltage divider is the 

following: 

 

𝑉𝑟𝑔
= 𝑉𝐶𝑂𝑁𝐷

𝑅𝑥1 + 𝑅𝑔//𝑅𝑦1

𝑅𝑔//𝑅𝑦1
 

(3.2.4) 

 

where 𝑅𝑔//𝑅𝑦1 is the equivalent resistance of the parallel association of resistors Rg and 

Ry1. Each of 𝑅𝑥1 and 𝑅𝑦1 can be either 𝑅𝑂𝑁 or 𝑅𝑂𝐹𝐹, leading to four possible cases. 
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However, since voltage VON can only cause a transition from HRS to LRS, we only need to 

evaluate the case when 𝑅𝑦1 = 𝑅𝑂𝐹𝐹. Hence, (3.2.4) becomes the following: 

 

𝑉𝑟𝑔
= 𝑉𝐶𝑂𝑁𝐷

𝑅𝑔//𝑅𝑂𝐹𝐹

𝑅𝑥1 + 𝑅𝑔//𝑅𝑂𝐹𝐹
 

(3.2.5) 

 

If 𝑅𝑥1
= 𝑅𝑂𝐹𝐹, then Y1 should switch to the LRS. Since 𝑉𝐶𝑂𝑁𝐷 < 𝑉𝑂𝑁, this constraint 

is already included in (3.2.2). Conversely, if 𝑅𝑥1
= 𝑅𝑂𝑁, then Y1 should remain in the HRS. 

In this case, the following relationship must be valid: 

 

𝑉𝑂𝑁 − 𝑉𝑟𝑔
< 𝑉𝑆𝐸𝑇 (3.2.6) 

 

By combining (3.2.5) and (3.2.6), and replacing 𝑅𝑥1
 by 𝑅𝑂𝑁, we obtain the following 

constraint:  

 

𝑉𝑂𝑁 − 𝑉𝐶𝑂𝑁𝐷 (
𝑅𝑔//𝑅𝑂𝐹𝐹

𝑅𝑂𝑁 + 𝑅𝑔//𝑅𝑂𝐹𝐹
) < 𝑉𝑆𝐸𝑇 

(3.2.7) 

 

The IMP operation can be expanded to include several terms at the left-hand side such 

that it is possible to compute the following operation in a single cycle: 

 

(𝑥𝑖1 + ⋯ + 𝑥𝑖𝑘) → 𝑦1 (3.2.8) 

 

An operation in the form of (3.2.8) is a multi-input implication operation (SHIN, 

2011).  A multi-input implication is performed by applying VCOND to all Xi1,…, Xik while VON 

is applied to Y1. If at least one of Xi1,…, Xik, is in the LRS, then the voltage across Rg 

increases, as given by (3.2.7) such that Y1 does not switch from the HRS to the LRS. Notice 

that as the number of terms in (3.2.8) increases, the equivalent resistance seen by each RSD 

decreases and the influence of 𝑉𝐶𝑂𝑁𝐷 on 𝑉𝑟𝑔
 is reduced. Therefore, if we want to use k RSD in 

a multi-input implication, (3.2.7) must be rewritten as: 

 

𝑉𝑂𝑁 − 𝑉𝐶𝑂𝑁𝐷 (
𝑅𝑔//𝑅𝑂𝐹𝐹𝑘

𝑅𝑂𝑁 + 𝑅𝑔//𝑅𝑂𝐹𝐹𝑘

) < 𝑉𝑆𝐸𝑇 
(3.2.9) 
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where 𝑅𝑂𝐹𝐹𝑘
 is the equivalent resistance of k parallel RSD in the HRS and 𝑅𝑔//𝑅𝑂𝐹𝐹𝑘

 is the 

equivalent resistance of the parallel association of 𝑅𝑔 and 𝑅𝑂𝐹𝐹𝑘
. Even though (3.2.9) 

depends on the number of RSDs used in a multi-input implication, this is not a major concern 

for RSD with a sufficiently large 𝑅𝑂𝐹𝐹/𝑅𝑂𝑁 resistance ratio because 𝑅𝑂𝐹𝐹𝑘
//𝑅𝑔 ≈ 𝑅𝑔. 

In the following, we illustrate the behavior of RSD-IMP logic structure using the 

sequence of instructions for the AND2 function shown in Table 1.2.1.  

 

Example 3.2.1: In Fig. 3.8 it is summarized the cycles to perform the AND operation, 

where Z denotes that a device is left in the high impedance state. The first cycle resets both Y0 

and Y1 to the HRS by applying 𝑉𝑂𝐹𝐹 to both Y0 and Y1, while the remaining RSD are left in 

the high impedance state, as illustrated in Fig. 3.8(a). In the second cycle, shown in Fig. 

3.8(b), 𝑉𝐶𝑂𝑁𝐷 is applied to X0 while 𝑉𝑂𝑁 is applied to Y0. If 𝑥0 = 0, then the impact of 𝑉𝐶𝑂𝑁𝐷 

on the 𝑉𝑅𝑔 is small. Therefore, 𝑉𝑂𝑁 causes Y0 to switch to the LRS. Otherwise, 𝑉𝐶𝑂𝑁𝐷 makes 

𝑉𝑅𝑔 to increase, such that 𝑉𝑂𝑁 − 𝑉𝑅𝑔 < 𝑉𝑆𝐸𝑇. In this case, Y0 remains in the HRS. During the 

third cycle, 𝑉𝐶𝑂𝑁𝐷 is applied to X1 while 𝑉𝑂𝑁 is applied to Y0, as depicted in Fig. 3.8(b). The 

circuit behavior is similar to the one observed during the second cycle. Notice that if Y0 was 

driven to the LRS during the second cycle, the third cycle does not change the state of Y0. 

After the third cycle, Y1 is in the LRS if at least one of 𝑥0 and 𝑥1 is 0. Hence, the value in 𝑦0 

is given by 𝑦0 = 𝑥0̅̅ ̅ + 𝑥1̅̅̅ = 𝑥0𝑥1̅̅ ̅̅ ̅̅ . Finally, in the last cycle, 𝑉𝐶𝑂𝑁𝐷 is applied to Y0 while 𝑉𝑂𝑁 

is applied to Y1. Y1 changes to the LRS only if Y0 is in the HRS, as illustrated in Fig. 3.8(d). 

After this cycle, the values of 𝑦1 and 𝑦0 are the complement of each other. Therefore, the final 

value of 𝑦1 is given by the AND of 𝑥0 and 𝑥1. When desired, the state of Y1, which represents 

the final value of 𝑥0𝑥1, can be read by applying a voltage biasing to Y1 and measuring the 

voltage or the current across Rg. 
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Figure 3.8 – Voltages for each instruction to evaluate the AND2 function: (a) reset cycle; (b) 

instructions to compute 𝑦0 = 𝑥0̅̅ ̅; (c) instructions to compute 𝑦0 = 𝑥0𝑥1̅̅ ̅̅ ̅̅ ; (d) last instructions to 

compute 𝑦1 = 𝑥0𝑥1. 

 

(a) 
 

(b) 

 

(c) 
 

(d) 

Source: The author. 

 

Similarly, to all RSD-based approaches for logic-in-memory structure, RSD-IMP 

requires a control block which is illustrated in Fig. 3.9 (RAHMAN, 2016). Voltage regulators 

generate the voltages VOFF, VON and VCOND . A instruction memory stores the sequence of 

instructions to evaluate a target function. The instructions serve as control for CMOS 

transmission gate based multiplexers such that the different control voltages 𝑉𝐶𝑂𝑁𝐷, 𝑉𝑂𝑁 and 

𝑉𝑂𝐹𝐹 are applied as data inputs of the multiplexers. Hence, the instructions select which 

voltage is applied to each device or if the device should be left in the high impedance state. 

The main memory block is the RSD-NVM where the logic computation is performed and the 

program counter is used to access the following instructions. Given that the use of a RSD-

NVM as standard memory (i.e., without logic capability) requires voltage regulators and 

multiplexers, it appears that the overhead caused by adding the memory capability is the extra 

RSD-NVM required to store the instructions and the program counter. 
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Figure 3.9 – Schematic of the architecture for RSD-IMP logic structure. 

 

Source: The author. 

 

3.2.3 Logic synthesis for RSD-IMP logic structure 

In RSD-IMP logic structure, the computation of a given Boolean function is 

performed as a sequence of multi-input implication and reset operations. In this sense, the 

main task of the logic synthesis for RSD-IMP logic structure is to find a sequence of 

operations to evaluate the behavior of the function from an initial representation form. At the 

same time, there is an optimization challenging related to find the smallest sequence of 

operations that can be computed using a maximum of 𝑛 + 𝑚 devices. 

To aid the synthesis process, it is important to define classes of expressions which 

have a direct relationship to a sequence of instructions. In particular, we aim to define a set of 

expressions ℱ such that, given an expression 𝑓 ∈ ℱ for some function F, f can be directly 

translated to a sequence of instructions S for F. The size of S should also be directly related to 

the size of f. In this sense, optimizing the size of f, also optimizes S. Finally, if S requires 𝑛 +

𝑚 RSD to be evaluated, then we say that f can be evaluated with 𝑛 + 𝑚 RSD. An example of 

such class is the recursive Boolean form (RBF), discussed in the following. 

 

3.2.3.1 Recursive Boolean forms 

The most studied class of expressions for RSD-IMP logic structure is the class of 

recursive Boolean forms. A RBF f can be defined as follows: 

 

𝑓 = 𝑓0 + (𝑓1 + (𝑓2 + … + (𝑓𝜙−2 + 𝑓𝜙−1
̅̅ ̅̅ ̅̅ )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

 
(3.2.10) 
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where each 𝑓𝑖 is a SOP and 𝜙 is the number of levels in 𝑓. In RSD-IMP logic structure, each 

𝑓𝑖 is a unate function. Since we are considering multi-input implications, it is useful to restrict 

each 𝑓𝑖 to be a negative unate SOP. In this manner, each cube in a 𝑓𝑖 can be computed as a 

single multi-input implication operation. Notice that some previous works consider that an 

input RSD stores the complement of variable (i.e., Xi contains 𝑥𝑖̅ instead of 𝑥𝑖) (POIKONEN, 

2012), (TEODOROVIC, 2013). In this case, each 𝑓𝑖 is a positive unate SOP. In this sense, we 

find more straightforward to consider that an input Xi RSD stores 𝑥𝑖 and we restrict the cubes 

in 𝑓𝑖 to be negative unate. We also write a RBF in the expanded form. Considering an odd 

value for 𝜙, (3.2.10) can be expanded as follows: 

 

𝑓 = 𝑓0 + 𝑓1̅𝑓2 + 𝑓1̅𝑓3̅𝑓4 + ⋯ + 𝑓1̅𝑓3̅ … 𝑓𝜙−2
̅̅ ̅̅ ̅̅ 𝑓𝜙−1 (3.2.111) 

 

The negative unate restriction reduces the number of functions that (3.2.10) can 

represent. Equation (3.2.10) only represents functions for which the minterm 𝑥0̅̅ ̅ 𝑥1̅̅̅ … 𝑥𝑛−1̅̅ ̅̅ ̅̅  is 

not part of the offset. Otherwise, the complement of the function is applied, as follows: 

 

𝑓̅ = 𝑓0̅𝑓1 + 𝑓0̅𝑓2̅𝑓3 + 𝑓0̅𝑓2̅ … 𝑓𝜙−3 
̅̅ ̅̅ ̅̅ 𝑓𝜙−2 + 𝑓0̅𝑓2̅ … 𝑓𝜙−3 

̅̅ ̅̅ ̅̅ 𝑓𝜙−1
̅̅ ̅̅ ̅̅  (3.2.12) 

Example 3.2.2: Consider the 3-input exclusive-NOR (XNOR3) function, written as 

follows: 

 

𝑓 = 𝑥0̅̅ ̅ 𝑥1̅̅̅ 𝑥2̅̅ ̅ + 𝑥0̅̅ ̅𝑥1𝑥2 + 𝑥0𝑥1̅̅̅𝑥2 + 𝑥0𝑥1𝑥2̅̅ ̅ (3.2.13) 

 

An RBF for the XNOR3 is the following: 

 

𝑓 = 𝑓0 + 𝑓1̅𝑓2 (3.2.14a) 

𝑓0 = 𝑥0̅̅ ̅ 𝑥1̅̅̅ 𝑥2̅̅ ̅ (3.2.14b) 

𝑓1 = 𝑥0̅̅ ̅ 𝑥1̅̅̅ + 𝑥0̅̅ ̅ 𝑥2̅̅ ̅ + 𝑥1̅̅̅ 𝑥2̅̅ ̅ (3.2.14c) 

𝑓2 = 𝑥0̅̅ ̅ + 𝑥1̅̅̅ +  𝑥2̅̅ ̅ (3.2.14d) 

 

If the target function is the 2-input exclusive-OR (XOR3), the aforementioned 

challenges arises because the minterm 𝑥0̅̅ ̅ 𝑥1̅̅̅ 𝑥2̅̅ ̅ is part of the offset. Therefore, the RBF for 

the XOR3 is the complement of the XNOR3 RBF, as given by the following: 
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𝑓 = 𝑓0̅𝑓1 + 𝑓0̅𝑓2̅ (3.2.15a) 

𝑓0 = 𝑥0̅̅ ̅ 𝑥1̅̅̅ 𝑥2̅̅ ̅ (3.2.15b) 

𝑓1 = 𝑥0̅̅ ̅ 𝑥1̅̅̅ + 𝑥0̅̅ ̅ 𝑥2̅̅ ̅ + 𝑥1̅̅̅ 𝑥2̅̅ ̅ (3.2.15c) 

𝑓2 = 𝑥0̅̅ ̅ + 𝑥1̅̅̅ +  𝑥2̅̅ ̅ (3.2.15d) 

 

Notice that all 𝑓𝑖 are the same for the XNOR3 and XOR3 cases. In order to 

differentiate both RBFs, we say that the XNOR3 RBF has a positive phase whereas the XOR3 

RBF has a negative phase, meaning that the XOR3 RBF must be complemented to yield the 

correct result. 

A sequence of operations to evaluate 𝐹 in RSD-IMP logic structure can be directly 

obtained from a RBF, as described in (TEODOROVIC, 2013). Each cube in the RBF 

becomes a multi-input implication while reset and complement operations are added between 

levels. For instance, a sequence of operations derived from (3.2.14) for the XNOR3 function 

is shown in Table 3.2. Steps 2 to 4 evaluate 𝑓2, steps 6 to 8 are obtained from 𝑓1, and step 11 

is used for 𝑓0. Notice that the evaluation is performed from 𝑓2 to 𝑓0. In Section 4.1, we 

propose a scheme to evaluate the RBF from 𝑓0 to 𝑓2 and show the benefits of using this order. 

 

Table 3.2 - Sequence of operations to evaluate the XNOR3 function. 

1. RESET(𝑦1, 𝑦2) 𝑦1 = 0, 𝑦2 = 0 

2. 𝑥0 → 𝑦2 𝑦2 = 𝑥0̅̅ ̅ 

3. 𝑥1 → 𝑦2 𝑦2 = 𝑥0̅̅ ̅ + 𝑥1̅̅̅ 

4. 𝑥2 → 𝑦2 𝑦2 = 𝑥0̅̅ ̅ + 𝑥1̅̅̅ + 𝑥2̅̅ ̅ 

5. 𝑦2 → 𝑦1 𝑦1 = 𝑥0𝑥1𝑥2 

6. (𝑥0 + 𝑥1) → 𝑦1 𝑦1 = 𝑥0𝑥1𝑥2 + 𝑥0̅̅ ̅ 𝑥1̅̅̅ 

7. (𝑥0 + 𝑥2) → 𝑦1 𝑦1 = 𝑥0𝑥1𝑥2 + 𝑥0̅̅ ̅ 𝑥1̅̅̅ + 𝑥0̅̅ ̅ 𝑥2̅̅ ̅ 

8. (𝑥1 + 𝑥2) → 𝑦1 𝑦1 = 𝑥0𝑥1𝑥2 + 𝑥0̅̅ ̅ 𝑥1̅̅̅ + 𝑥0̅̅ ̅ 𝑥2̅̅ ̅ + 𝑥1̅̅̅ 𝑥2̅̅ ̅ 

9. RESET(𝑦2) 𝑦2 = 0 

10. 𝑦1 → 𝑦2 𝑦2 = 𝑥0̅̅ ̅𝑥1𝑥2 + 𝑥0 𝑥1 ̅̅̅̅ 𝑥2 + 𝑥0𝑥1 𝑥2̅̅ ̅ 

11. (𝑥0 + 𝑥1 + 𝑥2) → 𝑦2 𝑦2 = 𝑥0̅̅ ̅  𝑥1̅̅̅̅  𝑥2̅̅ ̅ + 𝑥0̅̅ ̅𝑥1𝑥2 + 𝑥0 𝑥1 ̅̅̅̅ 𝑥2 + 𝑥0𝑥1 𝑥2̅̅ ̅ 

Source: (TEODOROVIC, 2013). 
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For sake of simplicity, in Table 3.2 it is shown the equivalence between the sequence 

of instructions and the target function through the obtained expression. However, we have 

verified all sequence of operations shown herein using an ROBDD-based approach. A 

multiple-output ROBDD is used to store the state of all RSDs used, where the BDD outputs 

are the states of the RSDs. After all operations are performed, the ROBDD of the output RSD 

is compared to the ROBDD of the target function. Hereafter, this approach is used regardless 

of the method used to obtain the sequence of instructions. 

 

3.2.4.2 Logic synthesis methods for RSD-IMP logic 

Different logic synthesis methods have been proposed to minimize RBF. In the 

following, we discuss some of these methods. Two cover based methods are presented in 

(POIKONEN, 2012) and in (RAGHUVANSHI, 2014). Both algorithms try to find a covering 

using primes containing only negative literals. Since a traditional covering is not always 

possible with this restriction, both methods switch between covering FON and FOFF until a 

constant function is obtained. Since the methods are similar, we consider a single example for 

both. 

 

Example 3.2.3: In the following, we consider the synthesis of the XOR2 function 

based on the Karnaugh map representation, as shown in Fig. 3.10(a). 

The only primes for FON are 𝑥0̅̅ ̅𝑥1 and 𝑥0𝑥1̅̅̅. Since neither of these cubes are negative, 

the algorithms search for a covering for 𝐹̅, represented in Fig. 3.10(b). The two primes for 𝐹̅ 

are 𝑥0𝑥1 and 𝑥0̅̅ ̅ 𝑥1̅̅̅. Therefore, the cube 𝑥0̅̅ ̅ 𝑥1̅̅̅ is added to 𝑓0 and the minterms covered by 

𝑥0̅̅ ̅ 𝑥1̅̅̅ are set to don’t care value, as illustrated in Fig. 3.10(c). Notice that this process results 

in a new function 𝐹1. Since there are no more negative cubes that can cover 𝐹1, the algorithm 

searches for a covering for 𝐹1̅̅̅̅ , illustrated in Fig. 3.10(d). Both cubes 𝑥0̅̅ ̅ and 𝑥1̅̅̅ are added to 

𝑓1 and the covered minterms are set to don’t care, as shown in Fig. 3.10(e). The execution of 

the algorithm terminates since the resulting function is a constant. The final RBF is the 

following: 

 

𝑓 = 𝑓0̅𝑓1 (3.2.16a) 

𝑓0 = 𝑥0̅̅ ̅ 𝑥1̅̅̅  (3.2.16b) 

𝑓1 = 𝑥0̅̅ ̅  + 𝑥1̅̅̅ (3.2.16c) 
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Figure 3.10: Synthesis process for the XOR2 function: (a) original function representation, (b) 

complemented function, (c) resulting function F1 after selecting the cube 𝑥0𝑥1, (d) function 𝐹1̅̅̅̅ , and 

(e) final map after selecting the cubes 𝑥0 and x1. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

Source: The author. 

 

The algorithms presented in (POIKONEN, 2012) and in (RAGHUVANSHI, 2014) 

differ on the manner that they decide to go from FON to FOFF (and vice-versa). The algorithm 

presented in (POIKONEN, 2012) always chooses the largest positive prime to add to the 

target expression, regardless of whether the prime covers FON or FOFF. In contrast, the 

algorithm presented in (RAGHUVANSHI, 2014) only changes between FON and FOFF when 

all possible positive primes are selected. 

The method proposed in (TEODOROVIC, 2013) begins by creating a directed graph 

where each vertex corresponds to a minterm. For a minterm ci, πi represents the product of 

negative literals in ci. A directed edge from cj to ck is created if all literals πk are in πj and there 

is exactly one literal that appears in πj but not in πk. Then, the graph is colored according to 

the function value for each minterm. The initial graph for 𝑓 = 𝑥0̅̅ ̅ 𝑥1 is shown in Fig. 3.11, 

where white and orange nodes represent, respectively, minterms resulting in 0 and 1. 
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Figure 3.11 – Graph for function 𝑓 = 𝑥0̅̅ ̅ 𝑥1. 

 

Source: The author. 

 

The next step is to partition the graph which is done by a greedy algorithm. Each 

partition corresponds to a level of the RBF. The root of the graph is set to partition p0 and is 

set as the partition root. The algorithm then visits the other nodes of the graph using breadth-

first search (BFS). A node ci is placed in pk if it has the same color of the partition root and if 

there is no path to ci from any other node cj that is not in any partition. Once all nodes are 

visited, the algorithm traverses the tree, using BFS, until a node with a different color from 

the partition root that is not allocated to any partition is found. This node becomes the root of 

a new partition and the process is repeated. When all vertices have been assigned to a 

partition, the algorithm execution stops.  

The root of the first partition 𝑝0 is vertex 𝑥0̅̅ ̅ 𝑥1̅̅̅. Vertex 𝑥0𝑥1̅̅̅ is added to the same 

partition because it is also black, and all arriving edges at 𝑥0𝑥1̅̅̅ come from a vertex that is 

already assigned to a partition. The next node visited is 𝑥0̅̅ ̅𝑥1, which is not added to the 

current partition because it has a different color from the root node. Finally, the vertex 𝑥0𝑥1 is 

visited. Even though this node has the same color as the root, 𝑥0𝑥1 is not assigned to the 

current partition because there is a path from 𝑥0̅̅ ̅𝑥1, that is a node that does not belong to any 

partition, to 𝑥0𝑥1. The next partition has 𝑥0̅̅ ̅𝑥1 as root. Node 𝑥0𝑥1 is not added to this new 

partition because it is from a different color. Finally, a third partition for node 𝑥0𝑥1 is created. 

The resulting partitions are as follows: 

 

𝑝0 = {𝑥0̅̅ ̅ 𝑥1̅̅̅, 𝑥0𝑥1̅̅̅} (3.2.17a) 

𝑝1 = {𝑥0̅̅ ̅𝑥1} (3.2.17b) 

𝑝2 = {𝑥0𝑥1} (3.2.17c) 
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Once the partitions are created, the algorithm removes unnecessary nodes. These 

removed nodes are the nodes that have a successor within the partition. For the given 

example, the vertex 𝑥0̅̅ ̅ 𝑥1̅̅̅ is removed because 𝑥0𝑥1̅̅̅ is a successor in the same partition. Each 

partition pi  corresponds to a level fi  in the RBF. Moreover, for each cj in pi, πj is a cube in fi. 

Finally, if the nodes in p0 are orange (i.e., represent a 1), the RBF phase is positive. 

Otherwise, the RBF phase is negative. Therefore, the resulting RBF for 𝑓 = 𝑥0̅̅ ̅ 𝑥1 is the 

following: 

 

𝑓 = 𝑓0̅𝑓1 (3.2.18a) 

𝑓0 =  𝑥1̅̅̅  (3.2.18b) 

𝑓1 = 𝑥0̅̅ ̅  (3.2.18c) 

 

3.2.5 Alternative structures 

One of the main constraints in RSD-IMP logic structure is that, in its original form, a 

single instruction can be executed per cycle. In this sense, one approach to improve the 

performance of RSD-IMP logic structure is to modify the standard topology shown in Fig. 

3.6, to allow for operations to occur in parallel. Usually, such modification consists of adding 

transistors between different RSD-IMP blocks (KIM, 2011), (KVATINSKY, 2014). When the 

transistors are off, the RSD-IMP blocks are electrically isolated from each other, and so can 

perform operations in parallel. When the transistors are on, the different blocks can interact 

with each other. The topology is illustrated in Fig. 3.12, where each RSD-IMP block presents 

the internal topology as the one shown in Fig. 3.6. 

 

 

Figure 3.12 – Parallel structure for RSD-IMP logic structure. 

 

Source: (KIM, 2011). 

 

The method described in (KIM, 2011) receives a SOP as input. The variables in the 

input SOP are copied to the different blocks. Then, all cubes are evaluated in parallel by 

letting the transistors in the off state. Finally, the cubes are summed. For the last step, all 
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transistors are set to the on state. If f has |𝑓| cubes and the maximum number of positive 

literals in a cube is 𝜌, then the number of cycles to evaluate the SOP (𝜆𝑓) and the number of 

RSDs used (𝑚𝑓) are, respectively: 

 

𝜆𝑓 = 5 + 2𝑛 + 𝜌 (3.2.19) 

 

and 

𝑚𝑓 = |𝑓|(𝑛 + 2) + 2 (3.2.20) 

 

An improvement to the work described in (KIM, 2011) is presented in (XIE, 2017) 

where it is noticed that, in some cases, the transistor that isolate the blocks are not required. In 

(XIE, 2017), the minterms of the function are evaluated in parallel and summed afterwards. 

To obtain the parallelism, each minterm is evaluated in a different line of the RSD crossbar. 

This approach allows any single-output Boolean function to be evaluated using only seven 

cycles. However, the number of RSD (𝑚𝑓) used to evaluate a function with M minterms is the 

following: 

 

𝑚𝑓 = (2𝑛 + 1)(𝑀 + 1) (3.2.21) 

 

Another logic synthesis approach targeting parallel architectures is a BDD-based 

method described in (CHAKRABORTI, 2014). The method configures the different blocks 

such that all nodes in a BDD level are evaluated in parallel. Hence, if 𝐿𝑚 is the maximum 

number of nodes in any level, then 𝐿𝑚 RSD-IMP blocks are used. The number of cycles to 

evaluate the BDD (𝜆𝑓) and the number of RSDs used (𝑚𝑓) are, respectively, the following: 

 

𝜆𝑓 = 6𝑛 + 𝐶𝑒𝑑𝑔𝑒𝑠 (3.2.22) 

 

and 

 

𝑚𝑓 = 5𝐿𝑚 + 𝐹𝑚𝑎𝑥 + 𝐶𝑒𝑑𝑔𝑒𝑠 (3.2.23) 

 

where 𝐶𝑒𝑑𝑔𝑒𝑠 is the maximum number of complemented edges in any level of the BDD, and 

𝐹𝑚𝑎𝑥 is the maximum total fanout of any level in the BDD. 
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Other variations are presented in (ZHU, 2013) and in (ZHANG, 2015). In these works, 

the goal is to increase the set of basic operations by adding one control voltage. In particular, 

a control voltage 𝑉𝐶𝑂𝑁𝐷𝑁𝐸𝐺
 is added such that if 𝑉𝐶𝑂𝑁𝐷𝑁𝐸𝐺

 is applied to X0 while 𝑉𝑂𝐹𝐹 is 

applied to Y0, then the next state of Y0 (𝑦0
′ ) is 1 only if both 𝑥0 and 𝑦0 are 1. Hence, 𝑦0

′
 is 

given by the AND operation of 𝑥0 and 𝑦0: 

 

𝑦0
′ = 𝑥0𝑦0 (3.2.24) 

 

However, both references (ZHU, 2013) and (ZHANG, 2015) do not present an 

algorithm to exploit the AND operation. 

It may be worth to notice that several works present logic computation techniques and 

topologies using RSDs but without describing a clear logic synthesis procedure to attain the 

expected solution (AMIRSOLEIMANI, 2017), (ALAMGIR, 2016), (LEEVY, 2014), 

(TALATI, 2016). As a consequence, in the context of this work, this fact makes difficult the 

comparison between different approaches presented in the literature.. 
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4 SYNTHESIS AND EVALUATION OF RECURSIVE BOOLEAN FORMS 

As discussed in Chapter 3, RBF is a usual form to represent Boolean functions when 

targeting RSD-IMP logic structure because RBF can always be translated into a sequence of 

operations computable with two work RSDs. In this chapter, we propose two novel 

approaches to synthesize RBF and present improvements regarding the evaluation of such 

forms in RSD-IMP logic structure. 

4.1 EVALUATION OF RECURSIVE BOOLEAN FORMS 

We discuss two contributions regarding the evaluation of RBF in RSD-IMP logic. 

Initially, we discuss a more efficient method to obtain a sequence of operations from a given 

RBF. This novel sequence of operations allows us to perform short circuit evaluation (SCE) 

over RBF. 

4.1.1 Reverse Evaluation of Recursive Boolean Forms 

The conventional evaluation of an RBF 𝑓 with 𝜙 levels begins from level 𝑓𝜙−1, as 

discussed in Section 3.2.4. In this work, we propose an evaluation method that begins from 

level 𝑓0. In order to derive the proposed scheme, we write a positive phase RBF 𝑓 as follows: 

 

𝑓 = 𝑓0 + 𝑓1̅𝑓2 + 𝑓1̅ ∙ 𝑓3̅𝑓4 + ⋯ + 𝑓1̅ ∙ 𝑓3̅ … ∙ 𝑓𝜙−2
̅̅ ̅̅ ̅̅ 𝑓ϕ−1 = 𝜏0 + 𝜏1 + ⋯ + 𝜏𝜙−1 2⁄  (4.1.1) 

 

where 𝜙 is an odd integer and every term 𝜏𝑖 is in the form: 

 

𝜏𝑖 = 𝑓𝑝𝑖 ∙ 𝑓𝑛𝑖 = 𝑓2𝑖 ∙ ∏ 𝑓2j+1
̅̅ ̅̅ ̅̅

⌈
𝑖
2

⌉

𝑗=0

= 𝑓2𝑖 ∙ 𝑓
1̅

∙ 𝑓
3̅

∙ … 𝑓
2𝑖−1

̅̅ ̅̅ ̅̅  

 
 

(4.1.2) 

 

For each term 𝜏𝑖, 𝑓𝑝𝑖 is the positive part of the term and 𝑓𝑛𝑖 is the negative part of 𝜏𝑖. 

Notice that, for all 𝜏𝑖, 𝑓𝑛𝑖 comprises all 𝑓𝑘 such that k is an odd integer, and 𝑘 < 𝑗. Moreover, 

𝑓𝑛𝑖 consists of 𝑓𝑛𝑖−1 with the inclusion of 𝑓2𝑖−1
̅̅ ̅̅ ̅̅ . For instance, consider the following RBF f: 

𝑓 = 𝑓0 + 𝑓1̅𝑓2 + 𝑓1̅ ∙ 𝑓3̅𝑓4 (4.1.3a) 

𝑓0 = 𝑥0̅̅ ̅ (4.1.3b) 

𝑓1 = 𝑥1̅̅̅ + 𝑥2̅̅ ̅ (4.1.3c) 

𝑓2 = 𝑥3̅̅ ̅ (4.1.3d) 

𝑓3 = 𝑥4̅̅ ̅ + 𝑥5̅̅ ̅ (4.1.3e) 
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𝑓4 = 𝑥6̅̅ ̅ (4.1.3f) 

There are three 𝜏𝑖 in (4.1.3), namely 𝜏1, 𝜏2 and 𝜏3. These terms are given as follows: 

 

𝜏0 = 𝑓0 = 𝑥0̅̅ ̅ (4.1.4a) 

𝜏1 = 𝑓1̅𝑓2 = (𝑥1̅̅̅ + 𝑥2̅̅ ̅)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  𝑥3̅̅ ̅ (4.1.4b) 

𝜏2 = (𝑥1̅̅̅ + 𝑥2̅̅ ̅)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅   (𝑥4̅̅ ̅ + 𝑥5̅̅ ̅)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  𝑥6̅̅ ̅  (4.1.4c) 

 

If we take the term 𝜏2 in (4.1.4c), the respective 𝑓𝑛2 and 𝑓𝑝2 are given as follows: 

 

𝑓𝑝2 =  𝑥6̅̅ ̅ (4.1.5a) 

𝑓𝑛2 = (𝑥1̅̅̅ + 𝑥2̅̅ ̅)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅   (𝑥4̅̅ ̅ + 𝑥5̅̅ ̅)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅    (4.1.5b) 

 

When evaluating a term 𝜏𝑖, the first step is to store the complement of 𝑓𝑛𝑖  (𝑓𝑛𝑖
̅̅ ̅̅̅) into 

Y1. The term 𝑓𝑛𝑖
̅̅ ̅̅̅ is given by: 

 

𝑓𝑛𝑖
̅̅ ̅̅̅ = 𝑓1 + 𝑓3 + ⋯ + 𝑓2𝑖−1 (4.1.6) 

 

Since 𝑓𝑛𝑖 comprises 𝑓𝑛𝑖−1 when evaluating 𝜏𝑖, the state of Y1, given by 𝑦1, can be 

written as follows: 

 

𝑦1 = 𝑓1 + 𝑓3 + ⋯ + 𝑓2𝑖−1 (4.1.7) 

 

Therefore, only 𝑓2𝑖−1 must be added to Y1. The second step is to compute each cube in 

𝜏𝑖. Let 𝑓2𝑖 be written in SOP form, as follows: 

 

𝑓2𝑖 = 𝑐1 + 𝑐2 + ⋯ + 𝑐𝑚 (4.1.8) 

 

where each 𝑐𝑗 is a negative cube, given by: 

 

𝑐𝑗 = 𝑥𝑗1̅̅ ̅̅  𝑥𝑗2̅̅ ̅̅ … 𝑥𝑗𝛾̅̅ ̅̅  (4.1.9) 

 

A multi-input implication can be used to evaluate each (𝑓𝑛𝑖𝑐𝑗), as follows: 

(𝑐11 + 𝑐12 + ⋯ + 𝑐1𝛾 + 𝑦1) → 𝑦0 (4.1.10) 
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where 𝑦1 is the complement of 𝑓𝑛𝑖 , as given by (4.1.7).  

Example 4.1.1: The proposed sequence of instructions to compute the XNOR3 

function, given by (3.2.14), is shown in Table 4.1. In line 2, the term 𝜏0 is evaluated. Then, 

lines 3 to 5 store the complement of 𝑓𝑛1 into 𝑦2, as given by (4.1.6). Finally, lines 6 to 8 are 

used to evaluate the term 𝑓𝑛1𝑓𝑝1. 

 

Table 4.1 - Proposed sequence of instructions to evaluate the XNOR3 function. 
 Operation y1 y2 

1. y1=0, y2=0 0 0 

2. (𝑥0 + 𝑥1 + 𝑥2) → 𝑦1 𝑥0̅̅ ̅ 𝑥1̅̅̅ 𝑥2̅̅ ̅  

3. (𝑥0 + 𝑥1) → 𝑦2  𝑥0̅̅ ̅ 𝑥1̅̅̅ 

4. (𝑥0 + 𝑥2) → 𝑦2  𝑥0̅̅ ̅ 𝑥1̅̅̅ + 𝑥0̅̅ ̅ 𝑥2̅̅ ̅ 

5. (𝑥1 + 𝑥2) → 𝑦2  𝑥0̅̅ ̅ 𝑥1̅̅̅ + 𝑥0̅̅ ̅ 𝑥2̅̅ ̅ + 𝑥1̅̅̅ 𝑥2̅̅ ̅ 

6. (𝑥0 + 𝑦2) → 𝑦1 𝑥0̅̅ ̅ 𝑥1̅̅̅ 𝑥2̅̅ ̅ + 𝑥0̅̅ ̅ 𝑥1 𝑥2  

7. (𝑥1 + 𝑦2) → 𝑦1 𝑥0̅̅ ̅ 𝑥1̅̅̅ 𝑥2̅̅ ̅ + 𝑥0̅̅ ̅ 𝑥1 𝑥2 + 𝑥0 𝑥1̅̅̅ 𝑥2  

8. (𝑥2 + 𝑦2) → 𝑦1 𝑥0̅̅ ̅ 𝑥1̅̅̅ 𝑥2̅̅ ̅ + 𝑥0̅̅ ̅ 𝑥1 𝑥2 + 𝑥0 𝑥1̅̅̅ 𝑥2 + 𝑥0 𝑥1 𝑥2̅̅ ̅  

Source: The author. 

 

When comparing the proposed technique with the conventional recursive computation, 

the number of steps is reduced in three. The reason for this improvement is the elimination of 

several complement operations. In the conventional method, before the computation of the 𝑖th 

recursion level can begin, a complement operation is performed to the result of the (𝑖 + 1)th 

level. Complement operations are costly in IMP RSD logic structure since two cycles are 

required. 

If 𝜙 is even, then the RBF becomes as follows: 

 

𝑓 = 𝑓0 + 𝑓1̅𝑓2 + 𝑓1̅ ∙ 𝑓3̅𝑓4 + ⋯ + 𝑓1̅ ∙ 𝑓3̅ … 𝑓𝜙−1
̅̅ ̅̅ ̅̅ = 𝜏0 + 𝜏1 + ⋯ + 𝜏𝜙 2⁄  (4.1.11) 

 

where the last term 𝜏𝜙 2⁄  comprises only negative literals, as follows: 

𝜏𝜙 2⁄ = 𝑓1̅ ∙ 𝑓3̅ … 𝑓𝜙−1
̅̅ ̅̅ ̅̅  (4.1.12) 

 

In order to evaluate (4.1.11), we consider that the positive part of the last term 𝜏𝜙 2⁄  

equals 1 (i.e.,𝑓𝑝𝜏𝜙/2
= 1). In this case, (4.1.10) becomes: 

 

𝑦1 → 𝑦0 (4.1.13) 
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Example 4.1.2: Consider an RBF f, as follows: 

 

𝑓 = 𝑓0 + 𝑓1̅ (4.1.14a) 

𝑓0 = 𝑥0̅̅ ̅ (4.1.14b) 

𝑓1 = 𝑥1̅̅̅ + 𝑥2̅̅ ̅ (4.1.14c) 

 

The sequence of instructions for f is shown in Table 4.2. After the reset operation, the 

value of 𝑓0 is stored into 𝑦1. Then, in lines 3 and 4, the complement of 𝑓𝑛1, which is equal to 

𝑓1, is stored into 𝑦2. Since the number of levels in the RBF is even, we consider that 𝑓2 = 1 

and perform the last operation, as given by (4.1.13). 

 

Table 4.2 – Proposed sequence of instructions to evaluate equation (4.1.14). 
 Operation 𝑦1 y2 

1. y1=0, y2=0 0 0 

2. 𝑥0 → 𝑦1 𝑥0̅̅ ̅   

3. 𝑥1 → 𝑦2   𝑥1̅̅̅ 

4. 𝑥2 → 𝑦2   𝑥2̅̅ ̅ 

5. 𝑦2 → 𝑦1 𝑥0̅̅ ̅ + 𝑥1𝑥2  

Source: The author. 

 

A negative phase RBF can be written as one of the following forms, depending on 

whether the number of levels is even or odd: 

 

𝑓 = {
𝑓0̅𝑓1 + 𝑓0̅ 𝑓2̅𝑓3 + ⋯ + 𝑓0̅ 𝑓2̅ … 𝑓𝜙−1, if 𝜙 is even

𝑓0̅𝑓1 + 𝑓0̅ 𝑓2̅𝑓3 + ⋯ + 𝑓0̅ 𝑓2̅ … 𝑓𝜙−1
̅̅ ̅̅ ̅̅ , otherwise

 
(4.1.15) 

 

The evaluation of a negative phase RBF is similar to a positive phase RBF. However, 

the negative part of each term in (4.1.15) consists of all 𝑓2𝑖. 

 

Example 4.1.3: The sequence of instructions to evaluate the XOR3 function is given in 

Table 4.3. The RBF for the XOR3 is given in (3.2.15). Notice that the even levels 𝑓0 and 𝑓2 

are stored into auxiliary variable 𝑦2. Moreover, the last operation is given by (4.1.13) since 

we are evaluating a negative phase RBF with odd number of levels. 
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Table 4.3 – Proposed sequence of instructions to evaluate the XOR3 function. 
 Operation y1 y2 

1. y1=0, y2=0 0 0 

2. (𝑥0 + 𝑥1 + 𝑥2) → 𝑦2  𝑥0̅̅ ̅ 𝑥1̅̅̅ 𝑥2̅̅ ̅ 

3. (𝑥0 + 𝑥1 + 𝑦2) → 𝑦1 𝑥0̅̅ ̅ 𝑥1̅̅̅ 𝑥2  

4. (𝑥0 + 𝑥2 + 𝑦2) → 𝑦1 𝑥0̅̅ ̅ 𝑥1̅̅̅𝑥2 + 𝑥0̅̅ ̅𝑥1 𝑥2̅̅ ̅  

5. (𝑥1 + 𝑥2 + 𝑦2) → 𝑦1 𝑥0̅̅ ̅ 𝑥1̅̅̅𝑥2 + 𝑥0̅̅ ̅𝑥1 𝑥2̅̅ ̅ + 𝑥0𝑥1̅̅̅ 𝑥2̅̅ ̅  

6. 𝑥0 → 𝑦2  𝑥0̅̅ ̅  

7. 𝑥1 → 𝑦2  𝑥0̅̅ ̅ +  𝑥1̅̅̅ 

8. 𝑥2 → 𝑦2  𝑥0̅̅ ̅ + 𝑥1̅̅̅ + 𝑥2̅̅ ̅ 

9. 𝑦2 → 𝑦1 𝑥0̅̅ ̅ 𝑥1̅̅̅𝑥2 + 𝑥0̅̅ ̅𝑥1 𝑥2̅̅ ̅ + 𝑥0𝑥1̅̅̅ 𝑥2̅̅ ̅ + 𝑥0𝑥1𝑥2  

Source: The author. 

 

The proposed algorithm to obtain the sequence of operations from a RBF is shown in 

Algorithm 4.1.1. We use variable p to store whether the RBF is positive or negative. In line 5 

the negative terms are stored into an RSD. In line 7, the positive terms are evaluated. Line 10 

is used to handle the case of positive phase RBF with even number of levels, or negative 

phase RBF with odd number of levels. After the evaluation, 𝑦0 contains the final result. 

 

Algorithm 4.1.1 – Proposed algorithm to obtain a sequence of operations for a RBF. 

1. 𝑦0 = 0, 𝑦2 = 1 

2. if RBF phase is positive then 𝑝 = 1 else 𝑝 = 0 

3. for 𝑓𝑖 from 𝑓0 to 𝑓𝜙−1 

4.    if (i is even and 𝑝 = 1) or (i is odd and 𝑝 = 0) then 

5.       (𝑥𝑖0 + 𝑥𝑖1 + ⋯ + 𝑥𝑖𝑘) → 𝑦1, ∀ 𝑥𝑖0̅̅ ̅̅  𝑥𝑖1̅̅ ̅̅ … 𝑥𝑖𝑘̅̅ ̅̅ ∈ 𝑓𝑖 

6.    else 

7.       (𝑥𝑖0 + 𝑥𝑖1 + ⋯ + 𝑥𝑖𝑘 + 𝑦1) → 𝑦0, ∀ 𝑥𝑖0̅̅ ̅̅  𝑥𝑖1̅̅ ̅̅ … 𝑥𝑖𝑘̅̅ ̅̅ ∈ 𝑓𝑖 

8. end for 

9. if (𝑝 = 0 and 𝜙 − 1 is even) or (𝑝 = 1 and 𝜙 − 1 is odd) then 

10.    𝑦1 → 𝑦0 

11. end if 

 

Even though the improvement in terms of cycles is interesting, we do not expect larger 

gains for more complex functions. Overall, the total number of cubes in an RBF grows faster 

than the number of complement operations. In this sense, the main advantage of the proposed 

evaluation scheme is that  we can generalize the RBF class to SRBF using the novel scheme, 

while respecting the lower bound of 𝑛 + 2 RSD, as detailed in Chapter 5. Moreover, the 

proposed evaluation can be used to exploit SCE, as detailed in the following.  
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4.1.2 Short Circuit Evaluation of Recursive Boolean Forms 

In this section, we demonstrate that our novel evaluation scheme of RBF can greatly 

benefit from SCE to reduce the average number of cycles to evaluate a given Boolean 

function. In contrast, the standard evaluation scheme cannot exploit SCE. 

From (4.1.1), it can be seen that if 𝑓0 = 1 then 𝑓 = 1, regardless the evaluation of the 

other levels. In turn, if 𝑓0 = 0 and 𝑓1 = 1, then 𝑓 = 0. Therefore, any level 𝑓𝑖 only needs to be 

evaluated when all 𝑓𝑘 = 0, where 𝑘 < 𝑖. Therefore, the final result of the evaluation is known 

as soon as any cube evaluates to 1. In opposite, this argument does not hold for the standard 

evaluation scheme because 𝑓𝑖 is evaluated before 𝑓𝑖−1.  

SCE can be done by reading the state of Y0 or Y1 and deciding whether the 

computation must proceed. The number of cycles to perform this test dependents on the 

physical implementation of the circuit, being denoted by λ. Herein, we only allow SCE after 

the evaluation of a 𝑓𝑖. The average number of cycles to compute f starting at fi is denoted by 

𝑘𝑖, and is given by the following formula: 

 

𝑘𝑖 = {
|𝑓𝑖| + 𝜆 + (1 − 𝑝𝑖)𝑘𝑖+1, if SCE test at 𝑓𝑖

|𝑓𝑖| + 𝑘𝑖+1, otherwise
 

(4.1.16a) 

(4.1.16b) 

 

where 𝑝𝑖 is the probability that 𝑓𝑖 evaluates to 1. Adding a test at 𝑓𝑖 reduces the average 

number of cycles if the following relationship holds: 

 

𝜆 < (1 − 𝑝𝑖)𝑘𝑖+1 (4.1.17) 

 

Herein, we adopt a greedy approach to determine at which level to perform SCE. At 

each iteration, we decide the level that leads to the greatest reduction in terms of the number 

of cycles. The method is shown in Algorithm 4.1.2.  

 

Example 4.1.4: In this example, we evaluate the inclusion of SCE at the sequence of 

operations for the XNOR3, given in Table 4.1. In the following, we assume 𝜆 = 1. The initial 

probabilities for 𝑓0 and 𝑓1 are given, respectively, by p0=1/8 and p1=1/2. 
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Algorithm 4.1.2 – Insertion of SCE. 

1. compute pi and ci for each fi , 0 ≤ 𝑖 < 𝜙 − 1 

2. while there is a fi that satisfies (4.1.17), 0≤ 𝑖 < 𝜙 − 1 

3.    for each fi that satisfies (4.1.17) 

4.       𝑘𝑖′=result from (4.1.16a) 

5.       𝑘𝑖=result from (4.1.16b) 

6.       Δ𝑘𝑖 = 𝑘𝑖 − 𝑘𝑖′ 

7.    end for 

8.    add the SCE test at the fi with largest Δ𝑘𝑖 

9.    update pi and ki for each fi 

10. end while 

 

In turn, the initial average number of cycles to evaluate the XNOR3 starting at f0 , f1 

and f2 are, respectively, k0 =7, k1=6 and k2=3. Notice that we need k2 to evaluate the benefit of 

performing SCE at f1. From (4.1.9), adding SCE f0 and f1 changes the average number of 

cycles to 𝑘0
′ = 7.25 and 𝑘1

′ = 5.5, respectively. Therefore, adding SCE to f1 is the only 

option to reduce the average number of cycles. 

4.2 SYNTHESIS OF RECURSIVE BOOLEAN FORMS 

We propose two methods to synthesize RBF along with an optimization procedure for 

these recursive forms. The first method, described in Section 4.2.1, is based on functional 

composition (FC) (MARTINS, 2012). FC is a bottom-up strategy that combines solutions for 

simple functions in order to obtain a solution for a more complex function. 

The second method, described in Section 4.2.2, is a decomposition based approach 

where a RBF ℎ is written as follows: 

 

ℎ = 𝑓 ∘ 𝑔 (4.2.1) 

 

where ∘ can be an AND, OR or XOR operator. The proposed method obtains a RBF for ℎ 

from the RBF for 𝑓 and 𝑔. 

In Section 4.2.3, we propose an optimization procedure for RBF. This method aims to 

reduce the length of the RBF either by removing redundant cubes from the RBF or by moving 

cubes to different levels. After a cube is moved, it can either become redundant or make 

another cube redundant. Moreover, if all cubes from hi are moved to some other level, the 

levels hi-1 and hi+1 can be merged. 
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4.2.1 Functional Composition Based Synthesis 

In this section, we apply the concept of FC to synthesize positive phase RBF (FC-

RBF). Overall, FC-RBF yields optimal RBF, however, being limited to 4-input functions 

(MARRANGHELLO, 2015a).  

The input  of the method is a Boolean description of the target function, such as a truth 

table. Since the method synthesizes only positive phase RBF, if the minterm 𝑥0̅̅ ̅  𝑥1̅̅̅ … 𝑥𝑛−1̅̅ ̅̅ ̅̅  is 

not part of 𝐹𝑂𝑁, the method obtains an RBF for 𝐹̅. 

As explained in Section 2.2.5, the FC method requires both a cost function to order the 

found implementations and a set of basic functions. The cost function is the number of cubes 

in the RBF. The set of base functions consists of all negative unate cubes. In the following, 𝑓𝑖 

refers to an RBF with i cubes and ℱ𝑖 is the set of all 𝑓𝑖 RBF. Set ℱ1 comprises all base 

functions. The rules to obtain more complex RBF are the following: 

 

𝑓𝑘 = {
𝑓1 + 𝑓𝑘−1

𝑓1 + 𝑓𝑘−1̅̅ ̅̅ ̅̅  
(4.2.2a) 

(4.2.2b) 

 

where (4.2.2a) adds a cube to a level in the RBF, and (4.2.2b) creates a new level in the RBF.  

 

Example 4.2.1: Consider the synthesis of a 2-to-1 multiplexer, given by the truth table 

shown in Table 4.4. 

Table 4.4 – Truth table of 2-to-1 multiplexer. 

x0 x1 x2 F F̅ 

0 0 0 0 1 

0 0 1 0 1 

0 1 0 1 0 

0 1 1 1 0 

1 0 0 0 1 

1 0 1 1 0 

1 1 0 0 1 

1 1 1 1 0 

Source: The author. 



66 

 

Since the minterm 𝑥0̅̅ ̅  𝑥1̅̅̅ … 𝑥2̅̅ ̅ is not part of 𝐹𝑂𝑁, we consider an RBF for 𝐹̅. In the 

following, for sake of simplicity, we show only the structural representation for each 

generated function. Since 𝐹 is a 3-input function, the base functions are the following:  

 

ℱ1 = {𝑥0̅̅ ̅, 𝑥1̅̅̅, 𝑥2̅̅ ̅, 𝑥0 + 𝑥1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 𝑥0 + 𝑥2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 𝑥1 + 𝑥2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 𝑥0 +  𝑥1 + 𝑥2 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅} (4.2.3) 

 

To generate ℱ2
 we can apply either (4.2.2a) or (4.2.2b) to the elements of ℱ1. The set 

of RBF obtained from (4.2.2a) is denoted by ℱ2𝑎 and is given by the following: 

 

ℱ2𝑎 = {𝑥0̅̅ ̅ + 𝑥1̅̅̅,  𝑥0̅̅ ̅̅ + 𝑥2̅̅ ̅,  𝑥0̅̅ ̅̅ + 𝑥1̅̅̅ 𝑥2̅̅ ̅,  𝑥1̅̅̅̅ + 𝑥2̅̅ ̅,  𝑥1̅̅̅̅ + 𝑥0̅̅ ̅ 𝑥2̅̅ ̅,  𝑥2̅̅ ̅̅ + 𝑥0̅̅ ̅ 𝑥1̅̅̅,  𝑥0̅̅ ̅̅  𝑥1̅̅̅

+ 𝑥0̅̅ ̅ 𝑥2̅̅ ̅,  𝑥0̅̅ ̅̅  𝑥1̅̅̅ + 𝑥1̅̅̅ 𝑥2,̅̅ ̅̅  𝑥1̅̅̅̅  𝑥2̅̅ ̅ + 𝑥0̅̅ ̅ 𝑥2̅̅ ̅} 

(4.2.4) 

 

where redundant RBFs, such as 𝑥0̅̅ ̅ + 𝑥0̅̅ ̅ 𝑥2̅̅ ̅, have been removed. In turn, by applying (4.2.2b), 

we obtain the set ℱ2𝑏 that comprises the following RBF: 

 

ℱ2𝑏 = {𝑥0̅̅ ̅ + 𝑥1, 𝑥0̅̅ ̅ + 𝑥2,  𝑥0̅̅ ̅̅ + 𝑥1 + 𝑥2, 𝑥1̅̅̅ + 𝑥0,  𝑥1̅̅̅̅ + 𝑥2, 𝑥1̅̅̅ + 𝑥0 + 𝑥2, 𝑥2̅̅ ̅ + 𝑥0,  𝑥2̅̅ ̅̅

+ 𝑥1, 𝑥2̅̅ ̅ + 𝑥0 + 𝑥1, 𝑥0̅̅ ̅ 𝑥1̅̅̅ + 𝑥2, 𝑥0̅̅ ̅ 𝑥2̅̅ ̅ + 𝑥1, 𝑥1̅̅̅ 𝑥2̅̅ ̅ + 𝑥0} 

(4.2.5) 

 

Since no expression in ℱ2 = (ℱ2𝑎 ∪ ℱ2𝑏) represents 𝐹̅, the algorithm proceeds to 

generate ℱ3. Each expression of ℱ2 is combined with an expressions of ℱ1 through (4.2.2a) 

and (4.2.2b). A solution is obtained by using (4.2b) to combine the following expressions: 

 

𝑓2 = 𝑥0̅̅ ̅ + 𝑥2 (4.2.6a) 

𝑓1 = 𝑥0̅̅ ̅ 𝑥1̅̅̅ (4.2.6.b) 

 

from which follows that an RBF for 𝐹̅ is the following: 

 

𝑓̅ = 𝑓0 + 𝑓1̅𝑓2 (4.2.7a) 

𝑓0 = 𝑥0̅̅ ̅ 𝑥1̅̅̅ (4.2.7b) 

𝑓1 = 𝑥0̅̅ ̅  (4.2.7c) 

𝑓2 = 𝑥2̅̅ ̅ (4.2.7d) 
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4.2.2 Decomposition Based Synthesis 

In this section, we propose a decomposition based approach for the synthesis of RBF 

(DEC-RBF). Compared to FC-RBF, DEC-RBF presents a compromise between the solution 

quality and scalability. In this sense, DEC-RBF can be used to synthesize functions with 

larger number of inputs than FC-RBF. Moreover, DEC-RBF can be applied to several 

representations of Boolean functions such as SOP, BDD and AIG. 

Let ℎ be a Boolean function that can be decomposed into functions 𝑓 and 𝑔, as 

follows: 

 

ℎ = 𝑓°𝑔 (4.2.8) 

 

where ° can be and AND, OR or XOR operator. In this section, we develop the rules for each 

decomposition type. Instead of using primary variables, we write ℎ as a function of the levels 

of 𝑓 (𝑓𝑖) and 𝑔 (𝑔𝑖). Moreover, all RBFs have positive phase. A negative phase RBF is written 

as the complement of a positive phase RBF. The method has time complexity 𝑂(|𝑓||𝑔|), 

where |𝑓| and |𝑔| are the number of cubes in 𝑓 and 𝑔, respectively. 

 

4.2.2.1 AND Decomposition 

In this section, we consider the case where f and g are an AND decomposition for h 

(i.e., ℎ = 𝑓 ∙ 𝑔). In the following, we denote the number of levels in 𝑓  and 𝑔 by φ and γ, 

respectively. For sake of simplicity, we analyze the case when both φ and γ are odd integers. 

Moreover, a level is added to both 𝑓 and 𝑔 such that 𝑓𝜑 = 𝑔𝛾 = 1. 

The method constructs a matrix, where each 𝑓𝑖 and 𝑔𝑗 is placed into a row and a 

column, respectively, and each matrix input is a product (𝑓𝑖𝑔𝑗). Fig. 4.1 illustrates the matrix 

for the case when φ = γ = 3. The process that selects to each level hk each product is placed 

is as follows. Level h0 comprises only the term f0g0. Level h1 comprises the three neighbors of 

f0g0. Namely, h1 comprises f1g0, f0g1 and f1g1. To obtain h2, we move two positions into the 

matrix from f0g0 in the right and down directions. This leads to h2 comprising f0g2 and f2g0. 

Then, the neighbors of  f0g2 and f2g0 are added to h3. The process continues until all entries are 

visited. 

In the following, we provide a more mathematical view of the algorithm. A Boolean 

expression ℎ∗ that represents ℎ is the following: 
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ℎ∗ = 𝑓0𝑔0 + 𝑓0𝑔1̅̅ ̅𝑔2 + ⋯ + 𝑓0𝑔1̅̅ ̅ … 𝑔𝛾−2̅̅ ̅̅ ̅̅  𝑔𝛾−1 + ⋯ + 𝑓1̅𝑓2𝑔0 + ⋯

+ 𝑓1̅ … 𝑓𝜑−2
̅̅ ̅̅ ̅̅  𝑓𝜑−1𝑔0 

(4.2.9) 

 

Figure 4.1 – Example of matrix for AND decomposition. 

 

Source: The author. 

 

Each term in (4.2.9) comprises two positive literals. From (4.1.1), positive literals 

should arise from the even levels of ℎ. For this reason, the following relationship holds: 

 

ℎ0 + ℎ2 + ⋯ + ℎ𝜑+𝛾 = 𝑓0𝑔0 + 𝑓0𝑔2 + ⋯ + 𝑓0𝑔𝛾−1 + ⋯ + 𝑓2𝑔0 + ⋯ + 𝑓𝜑−1𝑔0  (4.2.10) 

 

We define that each level ℎ2𝑖 comprises all pairs 𝑓𝑘𝑔𝑚 such that both 𝑘 and 𝑚 are 

even and 𝑘 + 𝑚 = 2𝑖, we obtain the following expressions: 

 

ℎ0 = 𝑓0𝑔0 (4.2.11a) 

ℎ2 = 𝑓2𝑔0 + 𝑓0𝑔2 (4.2.11b) 

ℎ4 = 𝑓4𝑔0 + 𝑓2𝑔2 + 𝑓0𝑔4 (4.2.11c) 

ℎ2𝑖 = 𝑓2𝑖𝑔0 + 𝑓2𝑖−2𝑔2 + ⋯ + 𝑓2𝑔2𝑖−2 + 𝑓0𝑔2𝑖  (4.2.11d) 

 

The next step is to determine the odd levels ℎ2𝑖+1. The odd levels should lead to all 

negative literals in (4.2.9). An odd level ℎ2𝑖+1 can be derived from its antecessor level ℎ2𝑖. 

For each term 𝑓𝑝𝑔𝑟 in ℎ2𝑖, the terms 𝑓𝑝+1𝑔𝑟, 𝑓𝑝𝑔𝑟+1 and 𝑓𝑝+1𝑔𝑟+1 are added to ℎ2𝑖+1. 

Therefore, the odd levels are as follows: 

 

ℎ1 = 𝑓1𝑔0 + 𝑓0𝑔1 + 𝑓1𝑔1 (4.2.12a) 

ℎ3 = 𝑓3𝑔0 + 𝑓2𝑔1 + 𝑓3𝑔1 + 𝑓1𝑔2 + 𝑓0𝑔3 + 𝑓1𝑔3 (4.2.12b) 

ℎ5 = 𝑓5𝑔0 + 𝑓4𝑔1 + 𝑓5𝑔1 + 𝑓3𝑔2 + 𝑓2𝑔3 + 𝑓3𝑔3 + 𝑓1𝑔4 + 𝑓0𝑔5 + 𝑓1𝑔5 (4.2.12c) 
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ℎ2𝑖+1 = 𝑓2𝑖+1𝑔0 + 𝑓2𝑖𝑔1 + 𝑓2𝑖+1𝑔1 + 𝑓2𝑖−1𝑔2 + 𝑓2𝑖−2𝑔3 + 𝑓2𝑖−1𝑔3 + ⋯

+ 𝑓3𝑔2𝑖−2 + 𝑓2𝑔2𝑖−1 + 𝑓3𝑔2𝑖−1 + 𝑓1𝑔2𝑖 + 𝑓0𝑔2𝑖+1 + 𝑓1𝑔2𝑖+1 
(4.2.12d) 

 

The method computes all 𝑓𝑖 ⋅ 𝑔𝑗 where 𝑖 ≤ 𝜑 and 𝑗 ≤ 𝛾, and chooses for each product 

the target level ℎ𝑘. From (9) and (10), 𝑘 can be obtained from 𝑖 and 𝑗, as follows: 

 

𝑘 = {
𝑖 + 𝑗 − 1,   if both 𝑖 and 𝑗 are odd

𝑖 + 𝑗,   otherwise
 

(4.2.13) 

 

Notice that this procedure is also valid to perform a NAND operation between two 

positive phase RBFs. In such a case, the resulting RBF ℎ has negative phase. 

 

Example 4.2.2: Let ℎ∗ be given by: 

 

ℎ∗ = (𝑥0̅̅ ̅ + 𝑥1)(𝑥2̅̅ ̅ + 𝑥3) (4.2.14) 

 

Notice that ℎ∗ is an AND decomposition of 𝑓∗ and 𝑔∗ which are given by the 

following equations:  

 

𝑓∗ = 𝑥0̅̅ ̅ + 𝑥1 (4.2.15a) 

𝑔∗ = 𝑥2̅̅ ̅ + 𝑥3 (4.2.15b) 

 

The RBF 𝑓 and 𝑔 for 𝑓∗ and 𝑔∗ are, respectively: 

 

𝑓 = 𝑓0 + 𝑓1̅ (4.2.16a) 

𝑓0 = 𝑥0̅̅ ̅ (4.2.16b) 

𝑓1 = 𝑥1̅̅̅ (4.2.16c) 

and 

 

𝑔 = 𝑔0 + 𝑔1̅̅ ̅ (4.2.17a) 

𝑔0 = 𝑥2̅̅ ̅ (4.2.17b) 

𝑔1 = 𝑥3̅̅ ̅ (4.2.17c) 
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where φ = γ = 2. All products 𝑓𝑖𝑔𝑗 are given by the following: 

𝑓0𝑔0 = 𝑥0̅̅ ̅ 𝑥2̅̅ ̅  (4.2.18a) 

𝑓1𝑔0 = 𝑥1̅̅̅ 𝑥2̅̅ ̅ (4.2.18b) 

𝑓2𝑔0 = 𝑥1̅̅̅  (4.2.18c) 

𝑓0𝑔1 = 𝑥0̅̅ ̅ 𝑥3̅̅ ̅ (4.2.18d) 

𝑓1𝑔1 = 𝑥1̅̅̅ 𝑥3̅̅ ̅ (4.2.18e) 

𝑓2𝑔1 =  𝑥3̅̅ ̅ (4.2.18f) 

𝑓0𝑔2 = 𝑥0̅̅ ̅  (4.2.18g) 

𝑓1𝑔2 = 𝑥1̅̅̅  (4.2.18h) 

𝑓2𝑔2 = 1  (4.2.18i) 

 

By applying (4.2.13) to each product 𝑓𝑖𝑔𝑗 in (4.2.18), we obtain the resulting RBF ℎ, 

as follows: 

 

ℎ = ℎ0 + ℎ1
̅̅ ̅ℎ2 + ℎ1

̅̅ ̅ ℎ3
̅̅ ̅  (4.2.19a) 

ℎ0 = 𝑓0𝑔0 = 𝑥0̅̅ ̅ 𝑥2̅̅ ̅

 

(4.2.19b) 

ℎ1 = 𝑓0𝑔1 + 𝑓1𝑔0 + 𝑓1𝑔1 = 𝑥0̅̅ ̅ 𝑥3̅̅ ̅ + 𝑥1̅̅̅ 𝑥2̅̅ ̅ + 𝑥1̅̅̅ 𝑥3̅̅ ̅

 

(4.2.19c) 

ℎ2 = 𝑓0 + 𝑔0 = 𝑥0̅̅ ̅ + 𝑥2̅̅ ̅

 

(4.2.19d) 

ℎ3 = 𝑓1 + 𝑔1 = 𝑥1̅̅̅ + 𝑥3̅̅ ̅

 

(4.2.19e) 

 

where the level ℎ4 = 1 was removed. Alternatively, we can draw the matrix and obtain the 

levels, as illustrated in Fig. 4.2. 

 

Figure 4.2 – Matrix view for Example 4.2.2. 

 

Source: The author. 

 

In the following, we demonstrate that the proposed method is correct. Initially, we 

show that the method is correct when only the initial terms from (4.2.9) are considered, this is 
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the base case. Then, we show that if the sum of the first 𝑖 terms in (4.2.9) is equivalent to the 

sum of the first 𝑗 terms in the resulting RBF, obtained from (4.2.11) and (4.2.12), then the 

sum of the first 𝑖 + 1 terms in (4.2.9) is equivalent to the RBF given by (4.2.11) and (4.2.12), 

this is the induction step. 

Base case : We can rewrite (4.2.9) as follows: 

 

ℎ∗ = ℎ0
∗ + ℎ1

∗ + ⋯ + ℎ|𝑓|+|𝑔|
∗  (4.2.20) 

 

where each ℎ𝑖
∗ in (4.2.20) corresponds to the sum of all terms in (4.2.9) containing i negative 

literals, as follows: 

 

ℎ0
∗ = 𝑓0𝑔0 (4.2.21a) 

ℎ1
∗ = 𝑓0𝑔1̅̅ ̅𝑔2 + 𝑓1̅𝑓2𝑔0 (4.2.21b) 

ℎ2
∗ = 𝑓0𝑔1̅̅ ̅ 𝑔3̅̅ ̅𝑔4 + 𝑓1̅𝑓2 𝑔1̅̅ ̅𝑔2 + 𝑓1̅𝑓3̅𝑓4𝑔0 (4.2.21c) 

ℎ𝑖
∗ = 𝑓0𝑔1̅̅ ̅ 𝑔3̅̅ ̅ … 𝑔2𝑖−1̅̅ ̅̅ ̅̅ ̅𝑔2𝑖 + 𝑓1̅𝑓2 𝑔1̅̅ ̅ … 𝑔2𝑖−3̅̅ ̅̅ ̅̅ ̅𝑔2𝑖−2 + ⋯ +  𝑓1̅ … 𝑓2𝑖−3

̅̅ ̅̅ ̅̅ 𝑓2𝑖−2𝑔1̅̅ ̅𝑔2

+ 𝑓1̅ 𝑓3̅ … 𝑓2𝑖−1
̅̅ ̅̅ ̅̅ 𝑓2𝑖𝑔0 

(4.2.21d) 

 

For the base case, we consider only the two first terms of (4.2.21), denoted by ℎ0:1
∗ , as 

follows: 

 

ℎ0:1
∗ = 𝑓0𝑔0 + 𝑓1̅𝑓2𝑔0 + 𝑓0𝑔0𝑔1̅̅ ̅ (4.2.22) 

 

Equation (4.2.22) equals the first terms of the RBF given by (4.2.11) and (4.2.12), as 

follows: 

 

ℎ0:2 = ℎ0 + ℎ1
̅̅ ̅ℎ2 (4.2.23) 

 

By replacing the values for ℎ0, ℎ1 and ℎ2 in (4.2.23), we obtain: 

 

ℎ0:2 = 𝑓0𝑔0 + (𝑓1𝑔0 + 𝑓0𝑔1 + 𝑓1𝑔1)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ (𝑓2𝑔0 + 𝑓0𝑔2) = 

𝑓0𝑔0 + 𝑓0̅ 𝑓1̅𝑓2𝑔0 + 𝑓0𝑔0̅̅ ̅ 𝑔1𝑔2 = 𝑓0𝑔0 +  𝑓1̅𝑓2𝑔0 + 𝑓0 𝑔1̅̅ ̅𝑔2 
(4.2.24) 

 

Since (4.2.22) and (4.2.24) are equivalent, the base case holds. 
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Inductive step: The inductive hypothesis is that the sum of the first 𝑖 terms in (4.2.20) 

(denoted by ℎ0:𝑖
∗ ) is equivalent to the RBF obtained from (4.2.11) and (4.2.12) truncated at 

level ℎ2𝑖 (denoted by ℎ0:2𝑖), as follows: 

ℎ0:𝑖
∗ = ℎ0−2𝑖 (4.2.25) 

 

where ℎ0:𝑖
∗  and ℎ0:2𝑖 are given, respectively, by: 

 

ℎ0:𝑖
∗ = ℎ0

∗ + ℎ1
∗ + ⋯ + ℎ𝑖

∗
 (4.2.26) 

 

and 

 

ℎ0:2𝑖 = ℎ0 + ℎ1
̅̅ ̅ℎ2 + ⋯ + ℎ1

̅̅ ̅ … ℎ2𝑖−1
̅̅ ̅̅ ̅̅ ̅ℎ2𝑖 (4.2.27) 

 

We show that if (4.2.25) holds, then the sum of the first 𝑖 + 1 terms in (4.2.20), 

denoted by h0:i+1
∗ , is equivalent to RBF obtained from (4.2.11) and (4.2.12) truncated at level 

ℎ2𝑖+2, denoted by ℎ0:2𝑖+2, as given by: 

 

ℎ0:𝑖+1
∗ = ℎ0:2𝑖+2 (4.2.28) 

 

where the expressions ℎ0:𝑖+1
∗  and ℎ0:2𝑖+2 are given by: 

 

ℎ0:𝑖+1
∗ = ℎ0:1

∗ + ℎ𝑖+1
∗  (4.2.29) 

 

and 

ℎ0:2𝑖+2 = ℎ0:2𝑖 + ℎ1
̅̅ ̅ … ℎ2𝑖+1

̅̅ ̅̅ ̅̅ ̅ℎ2𝑖+2 (4.2.30) 

 

From (4.2.21), ℎ𝑖+1
∗  is defined in a manner such that, for any term in ℎ𝑖+1

∗ , summing 

the indexes of the positive literals yields 2i+2. From (4.2.11), the same analysis is valid for 

ℎ2𝑖+2 . Therefore, for each term τ in ℎ𝑖+1
∗ , there is a term ψ in ℎ2𝑖+2 such that τ and ψ have the 

same positive literals.  We want to check if, for all such pairs (τ,ψ), the following relationship 

holds: 
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ℎ0:𝑖
∗ + 𝜏 = ℎ0:2𝑖 + ℎ1

̅̅ ̅ ℎ3
̅̅ ̅ ℎ2𝑖+1

̅̅ ̅̅ ̅̅ ̅Ψ (4.2.31) 

 

In the following, we analyze the case for a single pair (τ, Ψ). The analysis for the other 

cases is similar. Let τ and Ψ be given, respectively, by: 

 

𝜏 = 𝑓0𝑔1̅̅ ̅ 𝑔3̅̅ ̅ … 𝑔2𝑖+1̅̅ ̅̅ ̅̅ ̅ 𝑔2𝑖+2    (4.2.32) 

 

And: 

 

Ψ = 𝑓0 𝑔2𝑖+2    (4.2.33) 

 

By replacing (4.2.32) and (4.2.33) into (4.2.31) yields: 

 

ℎ0:𝑖
∗ + 𝑓0𝑔1̅̅ ̅ 𝑔3̅̅ ̅ … 𝑔2𝑖+1̅̅ ̅̅ ̅̅ ̅ 𝑔2𝑖+2 = ℎ0−2𝑖 + ℎ1

̅̅ ̅ ℎ3
̅̅ ̅ ℎ2𝑖+1

̅̅ ̅̅ ̅̅ ̅𝑓0 𝑔2𝑖+2 (4.2.34) 

 

To show that (4.2.34) holds, we make the following observations: 

1) If any of 𝑓0 and 𝑔2𝑖+1 is 0, then both (4.2.32) and (4.2.33) are 0 and (4.2.34) holds. 

2) If both 𝑓0 and 𝑔2𝑖+1 are 1 and there is a q ∈ {1,3,5,..,2i-1} such that 𝑔𝑞 = 1, then 

both 𝑓0𝑔1̅̅ ̅ 𝑔3̅̅ ̅ … 𝑔2𝑖+1̅̅ ̅̅ ̅̅ ̅ 𝑔2𝑖+2 and  ℎ1
̅̅ ̅ ℎ3

̅̅ ̅ ℎ2𝑖+1
̅̅ ̅̅ ̅̅ ̅𝑓0 𝑔2𝑖+2 are equal to 0. Notice that in each ℎ𝑖 

with odd i there is a term of the form 𝑓0𝑔𝑖. Therefore, (4.2.34) is reduced to (4.2.25) and, due 

to the inductive hypothesis, (4.2.34) holds.  

3) If all 𝑔𝑞 = 0 for all q ∈ {1,3,5,..,2i-1}, and there is a 𝑔𝑘 = 1, where k ∈ 

{2,4,6,..,2i}, then both ℎ0:𝑖
∗  and  ℎ0:2𝑖 are 1. This happens because for any 𝑔𝑘 with even k there 

is a term in ℎ𝑘/2
∗  given by 𝑓0𝑔1̅̅ ̅ 𝑔3̅̅ ̅ … 𝑔𝑘−1̅̅ ̅̅ ̅̅ 𝑔𝑘. 

4) The last case left to consider is 𝑓0 = 𝑔2𝑖+2 = 1 and 𝑔𝑞 = 0, being 1 ≤ 𝑞 ≤ 2𝑖. In 

this case, (4.2.34) is reduced to the following: 

 

𝑔2𝑖+1̅̅ ̅̅ ̅̅ ̅ = ℎ2𝑖+2
̅̅ ̅̅ ̅̅ ̅  (4.2.35) 

 

We show that, under these conditions, ℎ2𝑖+1 = 𝑔2𝑖+1. The expression for ℎ2𝑖+1 is 

given by (4.2.12d). Since 𝑓0 = 1 and all 𝑔𝑞 = 0 for q in {1,2,3,..,2i}, only the last two terms 

in (4.2.12d) are not equal to 0. Therefore, ℎ2𝑖+1 becomes: 

 

ℎ2𝑖+1 = 𝑔21+1 + 𝑓1𝑔2𝑖+1 = 𝑔2𝑖+1  (4.2.36) 
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Since (4.2.35) holds, we can conclude that if the RBF for the first ℎ𝑖
∗ terms is correct, 

then the RBF including the term ℎ𝑖+1
∗  is also correct. Since the base case guarantees that the 

RBF considering only terms ℎ0
∗  and ℎ1

∗ is correct, the final RBF is also correct.  

 

4.2.2.2 Sharp, NOR and OR decompositions 

The method can also be applied to negative phase RBF. Let ℎ = 𝑓 ∙ 𝑔̅ (𝑓 ∙ 𝑔̅ is also 

known as the sharp operation (BRAYTON, 1984)). RBF 𝑔̅ can be written as follows: 

 

𝑔̅ = 𝑔0̅̅ ̅𝑔1 + 𝑔0̅̅ ̅ 𝑔2̅̅ ̅𝑔3 + ⋯ + 𝑔0̅̅ ̅ 𝑔2̅̅ ̅ … 𝑔|𝑔|−1̅̅ ̅̅ ̅̅ ̅̅  (4.2.37) 

 

A Boolean expression ℎ∗for ℎ is the following:  

 

ℎ∗ = 𝑔0̅̅ ̅ 𝑓 𝑔\𝑔0
= 𝑔0̅̅ ̅ ℎ′ (4.2.38) 

 

where ℎ′ = 𝑓 𝑔\𝑔0
, and 𝑔\𝑔0

 is obtained by removing the term 𝑔0̅̅ ̅ from 𝑔̅, as follows: 

 

𝑔\𝑔0
= 𝑔1 +  𝑔2̅̅ ̅𝑔3 + ⋯ +  𝑔2̅̅ ̅ … 𝑔|𝑔|−1̅̅ ̅̅ ̅̅ ̅̅

 
(4.2.39) 

 

Notice that (4.2.38) is a positive phase RBF. Therefore, an RBF for ℎ’ is obtained 

through the AND decomposition. The RBF for ℎ is a negative phase RBF where the levels are 

given by: 

 

ℎ0 = 𝑔0 (4.2.40a) 

ℎ𝑖+1 = ℎ𝑖
′ (4.2.40b) 

 

In summary, 𝑔0 equals ℎ0. The other levels of ℎ are obtained through the AND 

decomposition between 𝑓 and  𝑔\𝑔0
. 

In the following, we discuss the case when h is an h as an AND decomposition of two 

negative phase RBF, such as ℎ = 𝑓̅ ∙ 𝑔̅. This case also applies to consider an OR 

decomposition where ℎ = 𝑓 + 𝑔. Similarly to (4.2.38), we write an expression ℎ∗ for h as 

follows: 
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ℎ∗ = 𝑓0̅ 𝑔0̅̅ ̅ 𝑓\𝑓0
 𝑔\𝑔0

= 𝑓0̅𝑔0̅̅ ̅ ℎ′ (4.2.41) 

 

where ℎ′ = 𝑓\𝑓0
 𝑔\𝑔0

, being 𝑓\𝑓0
 and 𝑔\𝑔0

 obtained by removing the term 𝑓0̅ from 𝑓 and the 

term 𝑔0̅̅ ̅ from 𝑔, respectively, resulting in an expression similar to (4.2.38). The RBF ℎ′ is 

obtained through the AND decomposition between 𝑓\𝑓0
 and 𝑔\𝑔0

. The resulting negative 

phase RBF ℎ is the following: 

ℎ = ℎ0 + ℎ1
̅̅ ̅ℎ2 + ⋯ (4.2.42) 

where 

ℎ0 = 𝑓0 + 𝑔0 (4.2.43a) 

ℎ𝑖+1 = ℎ𝑖
′ (4.2.43b) 

 

4.2.2.3 XOR and XNOR decompositions 

By combining the previous strategies, we can derive a method to consider XNOR 

decompositions. 

 

ℎ = 𝑓 ⊕ 𝑔̅̅ ̅̅ ̅̅ ̅̅ = 𝑓𝑔 + 𝑓 ̅𝑔̅ = 𝑡 + 𝑢 (4.2.44a) 

𝑡 = 𝑓𝑔 (4.2.44b) 

𝑢 = 𝑓𝑔̅̅ (4.2.44c) 

 

where ⊕ is the XOR operator. A positive phase RBF ℎ can be obtained through the already 

described decompositions. The levels for RBF ℎ are the following:  

 

ℎ0 = 𝑓0𝑔0 (4.2.45a) 

ℎ1 = 𝑓1𝑔0 + 𝑓0𝑔1 (4.2.45b) 

ℎ2 = 𝑓2𝑔0 + 𝑓0𝑔2 + 𝑓1𝑔1 (4.2.45c) 

ℎ2𝑖−1 = 𝑓2𝑖−1𝑔0 + 𝑓2𝑖−2𝑔1 + 𝑓2𝑖−3𝑔2 + 𝑓2𝑖−4𝑔3 + + ⋯ + 𝑓3𝑔2𝑖−4 + 𝑓2𝑔2𝑖−3

+ 𝑓1𝑔2𝑖−2 + 𝑓0𝑔2𝑖−1 

(4.2.45d) 

ℎ2𝑖 = 𝑓2𝑖𝑔0 + 𝑓2𝑖−2𝑔2 + ⋯ + 𝑓2𝑔2𝑖−2 + 𝑓0𝑔2𝑖  + 𝑓2𝑖−1𝑔1 + 𝑓2𝑖−3𝑔3 + ⋯

+ 𝑓1𝑔2𝑖−1 

(4.2.46e) 

 

The XNOR decomposition is similar to the AND decomposition. However, the term 

𝑓𝑖𝑔𝑖 is inserted at ℎ2𝑖 instead of ℎ2𝑖−1. Therefore, each level ℎ𝑘 is composed by the sum of all 

𝑓𝑖𝑔𝑗, which satisfy: 
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𝑖 + 𝑗 = 𝑘 (4.2.47) 

 

Notice that (4.2.47) is valid for both even and odd levels. The matrix view for XNOR 

decompositions is illustrated in Fig. 4.3, which shows that the levels can be defined by 

drawing diagonal lines on the matrix. 

Figure 4.3 – Matrix view for XNOR decompositions. 

 

Source: The author. 

 

Example 4.2.3: Consider an expression ℎ∗ given by: 

 

ℎ∗ = (𝑥0̅̅ ̅𝑥1) ⊕ (𝑥2̅̅ ̅𝑥3) (4.2.48) 

 

Expression ℎ∗ is the XOR between two negative phase RBF 𝑓 ̅and 𝑔̅ which are given 

by the following expressions: 

 

𝑓̅ = 𝑓0 + 𝑓1̅ (4.2.49a) 

𝑓0 = 𝑥1̅̅̅ (4.2.49b) 

𝑓1 = 𝑥0̅̅ ̅ (4.2.49c) 

and 

 

𝑔̅ = 𝑔0 + 𝑔1̅̅ ̅ (4.2.50a) 

𝑔0 = 𝑥3̅̅ ̅ (4.2.50b) 

𝑔1 = 𝑥2̅̅ ̅ (4.2.50c) 

 

By replacing the values of 𝑓 and 𝑔 into (4.2.48), an expression for ℎ∗ is obtained: 
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ℎ∗ = (𝑥0 + 𝑥1̅̅̅) ⊕ (𝑥2 + 𝑥3̅̅ ̅) (4.2.51) 

 

By applying (4.2.47) to the products 𝑓𝑖𝑔𝑗 obtained from (4.2.49) and (4.2.50), we 

obtain the resulting negative phase RBF ℎ̅.  Notice that the phase is negative because the top 

operator is an XOR. RBF ℎ̅ is given by the following: 

 

ℎ̅ = ℎ0 + ℎ1
̅̅ ̅ℎ2 (4.2.51a) 

ℎ0 = 𝑥1̅̅̅ 𝑥3̅̅ ̅ (4.2.51b) 

ℎ0 = 𝑥1̅̅̅ 𝑥2̅̅ ̅ + 𝑥0̅̅ ̅ 𝑥3̅̅ ̅ (4.2.51c) 

ℎ2 = 𝑥1̅̅̅ + 𝑥3̅̅ ̅ + 𝑥0̅̅ ̅ 𝑥2̅̅ ̅ (4.2.51d) 

 

Alternatively, we can draw the corresponding matrix and the corresponding diagonal 

lines, as shown in Fig. 4.4. As expected, the same result given by (4.2.51) is obtained. 

 

Figure 4.4 – Matrix view for Example 4.2.3. 

 

Source: The author. 

 

4.3 SIMPLIFICATION OF RBF 

In this section, we discuss methods to simplify an RBF by either removing a cube 

from a certain level or by moving a cube to another level. Clearly, a cube that is dominated by 

another cube at the same level ℎ𝑖 can be removed from the RBF. Since all ℎ𝑖 are negative 

unate, a single cube containment (SCC) algorithm can be used to identify such cubes 

(BRAYTON, 1984). 

A cube 𝑐1, in a level ℎ𝑖, is also redundant if it is dominated by a cube 𝑐2 in a level ℎ𝑗  

with 𝑗 ≤ 𝑖. The rationale for this is the following. Since the evaluation of ℎ𝑖 is only important 

when all levels ℎ𝑘, with 𝑘 < 𝑖, are equal to 0, if 𝑐1 is dominated by 𝑐2, then 𝑐1 can only be 1 

when some level ℎ𝑘 is 1. However, in this case, the value of 𝑐1 does not matter. 
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Two different possibilities to move a cube from ℎ𝑖 to either ℎ𝑖+2 or ℎ𝑖−2 are presented. 

After the cube is moved, it can either become redundant or make another cube redundant. 

Moreover, if all cubes from ℎ𝑖 are moved, such that ℎ𝑖 becomes empty, we can merge the 

levels ℎ𝑖−1 and ℎ𝑖+1. 

Case 1: A cube 𝑐𝑖 can be moved from level ℎ𝑗  to ℎ𝑗+2 if 𝑐𝑖 = 1 leads to ℎ𝑗+1 ⊆ ℎ𝑗−1. 

To illustrate this simplification, consider an RBF 𝑓 as follows: 

 

𝑓 = 𝑓0 + 𝑓1̅𝑓2 + 𝑓1̅𝑓3̅𝑓4 (4.3.1a) 

𝑓 = 𝑓0 + 𝑓1̅(𝑐0 + ⋯ + 𝑐𝑖 + ⋯ + 𝑐𝑘) + 𝑓1̅𝑓3̅𝑓4 (4.3.1b) 

 

If the cube 𝑐𝑖 in 𝑓2 is moved to 𝑓4, the resulting expression is the following: 

 

𝑓 = 𝑓0 + 𝑓1̅(𝑐0 + ⋯ + 𝑐𝑘) + 𝑓1̅𝑓3̅(𝑓4 + 𝑐𝑖) (4.3.2) 

 

Equations (4.3.1b) and (4.3.2) can only differ when 𝑓0 = 𝑓1 = 0 and  𝑐2 = 𝑓3 = 1. 

However, if 𝑐𝑖 = 1 leads to 𝑓3 ⊆ 𝑓1, then such a condition cannot occur and the equations are 

equivalent. 

Case2: A cube 𝑐𝑖 can be moved from level ℎ𝑗  to ℎ𝑗−2 if 𝑐𝑖 = 1 leads to ℎ𝑗−1 ⊆ ℎ𝑗−2. 

Consider the same RBF as in (4.3.1). When the cube 𝑐𝑖 in 𝑓2 is moved to 𝑓0, the 

resulting expression is the following: 

 

𝑓 = 𝑓0 + 𝑐𝑖 + 𝑓1̅(𝑐0 + ⋯ + 𝑐𝑘) + 𝑓1̅𝑓3̅𝑓4 (4.3.3) 

 

Equations (4.3.1b) and (4.3.3) can only differ when 𝑓0 = 0 and 𝑓1 = 1. However, if 

𝑐𝑖 = 1 leads to 𝑓0 ⊆ 𝑓1, then such a condition never occurs and the equations are equivalent. 

 

Example 4.3.1: Consider an RBF given as follows: 

𝑓 = 𝑓0 + 𝑓1̅𝑓2 + 𝑓1̅𝑓3̅𝑓4 (4.3.4a) 

𝑓0 = 𝑥0̅̅ ̅ 𝑥1̅̅̅ 𝑥2̅̅ ̅ (4.3.4b) 

𝑓1 = 𝑥0̅̅ ̅ 𝑥1̅̅̅ + 𝑥0̅̅ ̅ 𝑥2̅̅ ̅ (4.3.4c) 

𝑓2 = 𝑥0̅̅ ̅ (4.3.4d) 

𝑓3 = 𝑥1̅̅̅ 𝑥2̅̅ ̅ (4.3.4e) 

𝑓4 = 𝑥1̅̅̅ +  𝑥2̅̅ ̅ (4.3.4f) 
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Consider the cube  𝑥1̅̅̅ 𝑥2̅̅ ̅  in 𝑓3. When  𝑥1̅̅̅ 𝑥2̅̅ ̅ = 1, 𝑓1 becomes 𝑓1
′, as follows: 

 

𝑓1′ = 𝑥0̅̅ ̅ (4.3.5) 

Since 𝑓1
′ = 𝑓2, the condition ℎ𝑗−1 ⊆ ℎ𝑗−2 of the Case 2 is satisfied. Therefore, we can 

move the cube 𝑥1̅̅̅ 𝑥2̅̅ ̅  from 𝑓3 to 𝑓1. The resulting expression is the following:  

 

𝑓 = 𝑓0 + 𝑓1̅𝑓2 (4.3.6a) 

𝑓0 = 𝑥0̅̅ ̅ 𝑥1̅̅̅ 𝑥2̅̅ ̅ (4.3.6b) 

𝑓1 = 𝑥0̅̅ ̅ 𝑥1̅̅̅ + 𝑥0̅̅ ̅ 𝑥2̅̅ ̅ + 𝑥1̅̅̅ 𝑥2̅̅ ̅ (4.3.6c) 

𝑓2 = 𝑥0̅̅ ̅ + 𝑥1̅̅̅ + 𝑥2̅̅ ̅ (4.3.6d) 

 

Equation (4.3.6) is the standard RBF for the XNOR3. Also notice that, since 𝑥1̅̅̅ 𝑥2̅̅ ̅ was 

the only cube in 𝑓3, the levels 𝑓4 and 𝑓2 are merged. 

The proposed simplifications can improve the quality of RBF in several cases. 

However, there are solutions which cannot be improved through the proposed methods. For 

instance, the methods described in (RAGHUVANSHI, 2014) and in (TEODOROVIC, 2013) 

provide the following RBF for the 2-to-1 multiplexer, for which the truth table is shown in 

Table 4.4: 

 

𝑓 = 𝑓0̅𝑓1 + 𝑓0̅𝑓2̅ (4.3.7a) 

𝑓0 = 𝑥1̅̅̅ 𝑥2̅̅ ̅ +  𝑥0̅̅ ̅ 𝑥2̅̅ ̅ (4.3.7b) 

𝑓1 = 𝑥0̅̅ ̅  (4.3.7c) 

𝑓2 = 𝑥1̅̅̅ (4.3.7d) 

 

Using the cases previously described, no cube can be moved or removed. However, 

the cube 𝑥1̅̅̅ 𝑥2̅̅ ̅ can be removed from (4.3.7) without modifying the described function. 

Defining an efficient method to identify these cases remains an open problem. 

4.4 EXPERIMENTAL RESULTS 

We begin by evaluating all functions with at most four inputs. We use the methods 

described in (RAGHUVANSHI, 2014), which is named COVER method, and in 

(TEODOROVIC, 2013), which is named PARTITION method, as references. We evaluate 

both the results obtained from the algorithm described in the corresponding work as well as 

the results obtained by applying our optimization algorithm over the initial results. All results 
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consider our own implementation of the methods. In Table 4.5, it is presented the results for 

the different methods considering the average and the worst case scenarios. We observed that 

the solutions provided by the COVER and the PATITION methods are the same. Hence, they 

are grouped into the same line in Table 4.5. It can be seen that the methods have similar 

solution quality for these simple functions. For all cases, the worst cases are the XOR4 and 

XNOR4 functions which require 16 cycles. 

 

Table 4.5 – Comparison of RBF synthesis methods for 4-input functions. 

Method Average Worst case 

COVER/PARTITION 

(Original) 

8.24 16 

COVER/PARTITION 

(Optimized) 

7.84 16 

DEC-RBF 7.78 16 

FC-RBF 7.49 16 

Source: The author. 

 

The second set of experiments considers more complex functions for which we cannot 

use the FC-RBF method. These functions have been taken from the ESPRESSO book 

literature (BRAYTON, 1984). The main characteristics of these functions are shown in Table 

4.6, which also presents the design name, the corresponding output index, the total number of 

inputs of the design, the number of care inputs for the target output, and the number of cubes 

for the target output. The data in Table 4.6 serves as reference for other experiments 

performed herein. 

Due to the limitations on the representation format used by the COVER and 

PARTITION methods, only functions with at most 20 inputs have been taken into account. 

Results are summarized in Table 4.7 for the 15 functions that the COVER method yields the 

largest RBF. The first column depicts the design name and, inside the parenthesis, the output 

index of the design. The same results for the COVER and PARTITION methods are obtained.  

When compared to previous approaches, the proposed DEC-RBF method reduces the 

average number of cycles by 30% when considering the 15 largest RBF. In turn, the average 

runtime is reduced by 95%. The runtime improvement is a direct consequence of the data 

structure. For instance, output (5) of design ‘table5’ is a 17-input function which has an ISOP 

with 74 cubes. Therefore, the input size for the COVER method is 217, whereas the input size 
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for DEC-RBF is 1258. Nevertheless, for some cases such as output (7) of ‘alu4’, the COVER 

method is significantly faster than DEC-RBF. Moreover, by applying the proposed 

optimization procedure to the COVER method reduces the average number of cycles by about 

10% while having negligible impact on the runtime. 
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Table 4.6 – Main characteristics of SOP used to evaluate the methods. 

Design Output 

index 

Inputs Care 

inputs 

Cubes  Design Output 

index 

Inputs Care 

inputs 

Cubes 

alu4 

2 14 12 50 
 

table3 
0 14 14 51 

4 14 14 181 
 

4 14 14 70 

7 14 14 182 
 

table5 

1 17 17 41 

apex1 
22 45 39 79 

 
3 17 17 54 

34 45 28 37 
 

5 17 17 74 

apex2 
0 39 36 278 

 
6 17 17 55 

2 39 35 523 
 

10 17 17 21 

bca 31 26 16 20 
 

11 17 17 61 

bcb 
16 26 15 22 

 
13 17 17 71 

30 26 16 20 
 

14 17 17 55 

bcd 33 26 15 7 
 

test2 

0 11 11 164 

cordic 
0 23 23 143 

 
8 11 11 171 

1 23 23 771 
 

14 11 11 170 

intb 
1 15 12 50 

 
14 11 11 160 

6 15 15 230 
 

15 11 11 163 

max1024 5 10 10 121 
 

18 11 11 158 

max512 5 9 9 62 
 

19 11 11 160 

misex3 

7 14 14 141 
 

22 11 11 155 

9 14 14 113 
 

24 11 11 177 

13 14 14 116 
 

29 11 11 163 

prom1 

13 9 9 55 
 

ti 4 47 21 27 

15 9 9 55 
 

vg2 
4 25 16 30 

20 9 9 52 
 

5 25 18 40 

rd84 1 8 8 128 
 

vtx1 1 27 18 40 

seq 5 41 38 105 
 

x1dn 1 27 18 40 

signet 

0 39 28 46 
 

x6dn 1 39 34 34 

1 39 32 39 
 

x9dn 2 27 18 40 

2 39 28 44 
 

xparc 37 41 30 60 

t481 0 16 16 481 
      

Source: The author. 
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Table 4.7 – Comparison among different RBF synthesis methods for functions with at most 20 inputs 

taken from ESPRESSO literature (BRAYTON, 1984). 
Design (out) DEC-RBF COVER 

 
PARTITION 

Original Optimized 
 

Original Optimized 
 

Cycles Runtime 

(s) 

Cycles Runtime 

(s) 

Cubes Runtime 

(s) 

Cycles Runtime 

(s) 

Cubes Runtime 

(s) 

alu4 (7) 1094 11.94 
 

1275 2.25 1191 2.36 
 

1275 12.40 1191 12.50 

alu4 (4) 761 3.68 
 

994 1.79 872 1.84 
 

994 12.10 872 12.20 

misex3c (13) 717 2.27 
 

990 1.50 822 1.58 
 

990 11.90 822 12.00 

table5 (5) 448 0.65 
 

928 85.40 859 85.40 
 

928 926.90 859 926.90 

table5 (13) 314 0.38 
 

631 80.50 571 80.50 
 

631 918.80 571 918.80 

misex3 (7) 435 1.58 
 

618 1.17 527 1.23 
 

618 11.300 527 11.30 

table3 (4) 448 0.44 
 

603 1.22 558 1.25 
 

603 12.00 558 12.00 

table5 (6) 397 0.3 
 

603 64.50 543 64.50 
 

603 911.80 543 911.60 

table5 (14) 392 0.42 
 

517 57.40 495 57.40 
 

517 898.10 495 899.40 

misex3 (3) 303 1.56 
 

513 1.00 405 1.02 
 

513 11.20 405 11.20 

table5 (11) 394 0.44 
 

507 74.40 437 74.40 
 

507 924.10 437 923.00 

misex3 (9) 443 1.03 
 

499 0.93 439 0.96 
 

499 11.20 439 11.20 

table3 (0) 334 0.15 
 

485 1.10 421 1.10 
 

485 11.70 421 11.70 

table5 (3) 267 0.19 
 

484 69.20 454 69.20 
 

484 928.30 454 928.20 

table5 (1) 323 0.16 
 

472 66.10 433 66.20 
 

472 909.60 433 909.10 

AVG. 471 1.67 
 

674 33.90 601 33.90 
 

674 434.10 601 434.10 

Source: The author. 
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5 SYNTHESIS AND EVALUATION OF SUM-OF-RECURSIVE-BOOLEAN-FORMS 

In this chapter, we propose the use of diverse multilevel forms in RSD-IMP logic 

structure. In Section 5.1, we propose the use of sum-of-RBF (SRBF). A SRBF is given by: 

 

𝑓 = 𝑓1 + ⋯ + 𝑓𝜙 (5.1) 

 

where each 𝑓𝑖 is an RBF. We also investigate the consequences of setting an upper bound m 

on the number of levels of each RBF 𝑓𝑖 in (5.1). In particular, when 𝑚 = 2, the resulting 

expression is a four-level form (FLF), that can be written as follows: 

 

𝑓 = 𝑓𝑛1𝑓𝑝1
̅̅ ̅̅ ̅ + ⋯ + 𝑓𝑛𝛽𝑓𝑝𝛽

̅̅ ̅̅ ̅ = 𝜏1 + ⋯ + 𝜏𝛽 (5.2) 

 

where all 𝑓𝑝𝑖 and 𝑓𝑛𝑖  are SOPs containing only negative cubes. Each term 𝜏𝑖 is defined as 

follows: 

 

𝜏𝑖 = 𝑓𝑛1𝑓𝑝1
̅̅ ̅̅ ̅ (5.3) 

 

Notice that each term 𝜏𝑖 is a negative phase RBF comprising two levels. The sequence 

of operations to evaluate an SRBF, with two work RSDs, is directly obtained from the 

operations to evaluate each RBF 𝑓𝑖 individually. 

In Section 5.2, we consider a class of expressions named single-cube factor RBF (SC-

FSRBF) which are written in the following form: 

 

𝑓 = 𝜋1𝑓1 + ⋯ + 𝜋𝑚𝑓𝑚 (5.4) 

 

where each 𝜋𝑖 is a positive cube and each 𝑓𝑖 is an SRBF or an SC-FSRBF. SC-FSRBF 

requires extra RSDs to be evaluated. In Section 5.2, we show that the number of RSDs is 

easily derived from the expression such that this information can be included into a logic 

synthesis algorithm. 

5.1 SUM-OF-RECURSIVE-BOOLEAN-FORMS 

We propose an SOP based method to obtain SRBF. The goal is to minimize the 

number of cycles to evaluate the resulting SRBF, which is directly related to the number of 

cubes in SRBF. Any SOP can be directly written as an SRBF. More specifically, an SOP can 
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be transformed into an FLF in linear time with respect to the number of literals in the SOP. 

Consider a binate cube 𝑐 with 𝜂 negative literals and 𝜌 positive literals, as follows: 

𝑐 = 𝑥𝑛1̅̅ ̅̅ ̅ … 𝑥𝑛𝜂̅̅ ̅̅ ̅𝑥𝑝1 … 𝑥𝑝𝜌 (5.1.1) 

 

The cube 𝑐 can be written in the form of (5.1), as follows:  

 

𝑓𝑛 = 𝑥𝑛1̅̅ ̅̅ ̅ … 𝑥𝑛𝜂̅̅ ̅̅ ̅ (5.1.2a) 

𝑓𝑝 = 𝑥𝑝1̅̅ ̅̅ ̅ + ⋯ + 𝑥𝑝𝜌̅̅ ̅̅ ̅ (5.1.2b) 

 

Positive and negative cubes are written by making 𝑓𝑛𝑖 = 1 and 𝑓𝑝𝑖
̅̅ ̅̅ = 1, respectively. 

Notice that each positive literal in the SOP becomes a negative cube with a single literal in the 

SRBF. A cube with 𝜌 ≥ 1 positive literals requires 2 + 𝜌  cycles to be evaluated. 

We propose a heuristic greedy algorithm to synthesize SRBF from SOP. The proposed 

algorithm aims to group a set of cubes {𝑐𝑖1, 𝑐𝑖2, … , 𝑐𝑖𝑘} of the SOP into a single term 𝜏𝑖. Then, 

an RBF is created for each 𝜏𝑖. In this manner, the number of cubes in the SRBF can be 

reduced when compared to the original FLF obtained from the initial SOP representation. 

The first step to obtain an SRBF is to evaluate which combinations of two cubes lead 

to improvements. This analysis generates a graph where each vertex represents a cube and 

edges connect cubes that improve the quality solution when combined. The edge weight 

represents how much the quality solution is improved. The graph generation algorithm is 

depicted in Algorithm 5.1.1. Each cube is transformed into a term 𝜏𝑖, given by (5.1.2), and 

each 𝜏𝑖 becomes a vertex in the graph. For each pair of terms τi and 𝜏𝑗, the algorithm 

generates an RBF for 𝜏𝑖,𝑗 = 𝜏𝑖 + 𝜏𝑗, using the method described in Chapter 4. Let |𝜏𝑦| 

represent the number of cubes in some term 𝜏𝑦, and 𝜔𝑖,𝑗 = |𝜏𝑖| + |𝜏𝑗| − |𝜏𝑖,𝑗|. If 𝜔𝑖,𝑗 ≥ 0, 

then an edge 𝑒𝑖,𝑗 with weight 𝜔𝑖,𝑗 connecting 𝜏𝑖 and 𝜏𝑗 is created. 

 

Algorithm 5.1.1 –  Graph generation algorithm. 

 Input: SOP 𝑓 

 Output: Graph depicting the possible two cube combinations 

1. transform each cube 𝑐𝑖 into a 𝜏𝑖 given by (5.1.2) 

2. for each pair 𝜏𝑖, 𝜏𝑗 

3.    create a RBF for 𝜏𝑖,𝑗 = 𝜏𝑖 + 𝜏𝑗 

5.    𝜔𝑖,𝑗 = 1 + |𝜏𝑖| + |𝜏𝑗| − |𝜏𝑖,𝑗| 

6.    if 𝜔𝑖,𝑗 ≥ 0, then create edge 𝑒𝑖,𝑗 with weight 𝜔𝑖,𝑗 

7. end for 
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The second step of the algorithm is to merge groups given the graph obtained from 

Algorithm 5.1.1. We consider three different variations for this step which are described in 

Algorithm 5.1.2, in Algorithm 5.1.3 and in Algorithm 5.1.4. Algorithm 5.1.2 aims on the best 

possible solution. On the other hand, Algorithm 5.1.3 and Algorithm 5.1.4 explore a trade-off 

between the solution quality and execution time.  

 

Algorithm 5.1.2 – SOP Based Synthesis of SRBF. 

 Input: SOP 𝑓 

 Output: SRBF 

1. Create graph using Algorithm 5.1.1 

2. sort edges from the heaviest to the lightest 

3. while there is an unvisited edge 𝑒𝑖,𝑗 

4.    𝜏𝑖,𝑗 = 𝜏𝑖 ∪ 𝜏𝑗 

5.    replace 𝜏𝑖 and 𝜏𝑗 by 𝜏𝑖,𝑗 

6.    create edges for 𝜏𝑖,𝑗 (as in lines Algorithm 5.1.1) 

7. end for 

8. return all 𝜏 

 

After the graph is created, Algorithm 5.1.2 sorts the edges from the heaviest to the 

lightest and selects the heaviest edge 𝑒𝑖,𝑗, which connects 𝜏𝑖 and 𝜏𝑗. Then, all edges from 𝜏𝑖 

and 𝜏𝑗 are removed. 𝜏𝑖 and 𝜏𝑗 are replaced by 𝜏𝑖,𝑗 and the edges for 𝜏𝑖,𝑗 are created, as 

described previously. After all edges are processed, the execution of the algorithm stops. 

 

Example 5.1.1: Consider the function given by the following ISOP: 

 

𝑓 = 𝑥1̅̅̅ 𝑥2̅̅ ̅ 𝑥3𝑥4𝑥5 + 𝑥1̅̅̅ 𝑥2̅̅ ̅𝑥6𝑥7𝑥8 + 𝑥1𝑥3̅̅ ̅ 𝑥9̅̅̅ + 𝑥1𝑥6̅̅ ̅ 𝑥7̅̅ ̅ (5.1.3) 

 

If 𝑓 is directly transformed into a FLF, 16 cycles are used. In the following, let: 

 

𝑐1 = 𝑥1̅̅̅ 𝑥2̅̅ ̅ 𝑥3𝑥4𝑥5 (5.1.4a) 

𝑐2 = 𝑥1̅̅̅ 𝑥2̅̅ ̅𝑥6𝑥7𝑥8 (5.1.4b) 

𝑐3 = 𝑥1𝑥3̅̅ ̅ 𝑥9̅̅̅ (5.1.4c) 

𝑐4 = 𝑥1𝑥6̅̅ ̅ 𝑥7̅̅ ̅ (5.1.4d) 

 



87 

 

For each pair of cubes in the SOP, we obtain an RBF representing the sum of such 

cubes. If the number of cycles to evaluate the cubes as an RBF is smaller than the initial 

number of cycles, then an edge is created connecting the corresponding vertices. Fig. 5.1 

depicts the resulting graph. It can be seen that merging 𝑐1 and 𝑐3 reduces the number of cycles 

by two. In turn, merging 𝑐1 with either 𝑐2 or 𝑐4 increases the number of cycles. 

 

Figure 5.1 - Graph for Example 5.1.1. 

 

Source: The author. 

 

The first edge to visited can be either 𝑒1,3 or 𝑒3,4. For sake of simplicity, we assume 

that 𝑒1,3 is the first edge. When this edge is visited, the cubes 𝑐1 and 𝑐3 are combined into a 

group 𝜏5. The expression for 𝜏5 is the following: 

 

𝜏5 = 𝜏50
̅̅ ̅̅ 𝜏51

 (5.1.5a) 

𝜏50
= 𝑥1̅̅̅ 𝑥3̅̅ ̅ + 𝑥1̅̅̅ 𝑥4̅̅ ̅ + 𝑥1̅̅̅ 𝑥5̅̅ ̅ (5.1.5b) 

𝜏51
= 𝑥1̅̅̅ 𝑥2̅̅ ̅ + 𝑥3̅̅ ̅𝑥9̅̅̅ (5.1.5b) 

 

The next step is to create the edges for 𝜏5. The RBF to compute  𝜏5 + 𝑐2, comprises 

15 cubes, being a worse solution than evaluating  𝜏5 and 𝑐2 individually. Therefore, no edge 

exists between 𝜏5 and 𝑐2. On the other hand, the RBF for 𝜏5 + 𝑐4 comprises eight cubes. In 

this case, using such an RBF yields the same number of cycles when compared to the 

evaluation of 𝜏5 and 𝑐4 independently. 

The next visited edge is 𝑒2,4 which has a weight of 1. Therefore, the algorithm merges 

𝑐2 and 𝑐4 into 𝜏6. The RBF 𝜏6 is given by the following: 

 

𝜏6 = 𝜏60
̅̅ ̅̅ 𝜏61

 (5.1.6a) 

𝜏50
= 𝑥1̅̅̅ 𝑥6̅̅ ̅ + 𝑥1̅̅̅ 𝑥7̅̅ ̅ + 𝑥1̅̅̅ 𝑥8̅̅ ̅ (5.1.6b) 

𝜏51
= 𝑥1̅̅̅ 𝑥2̅̅ ̅ + 𝑥6̅̅ ̅ 𝑥7̅̅ ̅ (5.1.6b) 
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If 𝜏5 and 𝜏6 are combined into a single RBF, the resulting expression comprises 14 

cubes, being a worse solution than evaluating 𝜏5 and 𝜏6 individually. Therefore, the final 

SRBF is as follows: 

 

𝑓 = 𝜏5 + 𝜏6 (5.1.7) 

 

where 𝜏5 and 𝜏6 are given by (5.1.5) and (5.1.6), respectively. The evaluation of the FLF 

requires 12 cycles. The sequence of operations is shown in Table 5.1. Therefore, a reduction 

of four with respect to the original solution has been obtained. 

Table 5.1 – Sequence of operations to evaluate (5.1.6). 

  𝑦0 𝑦1 

1. 𝑦1 = 0, 𝑦0 = 0 0 0 

2. (𝑥1 + 𝑥3) → 𝑦1  𝑥1̅̅̅ 𝑥3̅̅ ̅ 

3. (𝑥1 + 𝑥4) → 𝑦1  𝑥1̅̅̅ 𝑥3̅̅ ̅ + 𝑥1̅̅̅ 𝑥4̅̅ ̅ 

4. (𝑥1 + 𝑥5) → 𝑦1  𝑥1̅̅̅ 𝑥3̅̅ ̅ + 𝑥1̅̅̅ 𝑥4̅̅ ̅ + 𝑥1̅̅̅ 𝑥5̅̅ ̅ 

5. (𝑥1 + 𝑥2 + 𝑦1) → 𝑦0 𝑥1̅̅̅ 𝑥2̅̅ ̅ 𝑥3𝑥4𝑥5  

6. (𝑥3 + 𝑥9 + 𝑦1) → 𝑦0 𝜏5  

7. 𝑦1 = 0  0 

8. (𝑥1 + 𝑥6) → 𝑦1  𝑥1̅̅̅ 𝑥6̅̅ ̅ 

9. (𝑥1 + 𝑥7) → 𝑦1  𝑥1̅̅̅ 𝑥6̅̅ ̅ + 𝑥1̅̅̅ 𝑥7̅̅ ̅ 

10. (𝑥1 + 𝑥8) → 𝑦1  𝑥1̅̅̅ 𝑥6̅̅ ̅ + 𝑥1̅̅̅ 𝑥7̅̅ ̅ + 𝑥1̅̅̅ 𝑥8̅̅ ̅ 

11. (𝑥1 + 𝑥2 + 𝑦1) → 𝑦0 𝜏5 + 𝑥1̅̅̅ 𝑥2̅̅ ̅𝑥6𝑥7𝑥8  

12. (𝑥6 + 𝑥7 + 𝑦1) → 𝑦0 𝜏5 + 𝜏6  

Source: The author. 

 

In Algorithm 5.1.2, when that two vertices are merged into a 𝜏𝑖, new RBFs are 

generated for all possible pairs involving the new term 𝜏𝑖. However, most of these RBFs are 

not used in the final solution. Hence, the execution time can be improved if only the RBFs 

that are used in the final solution are generated. However, it is only possible to know which 

RBFs are needed after generating and testing them. In Algorithm 5.1.3, we consider a 

different approach to generate the edges for the new created terms in order the trade-off 

runtime for solution quality. We modify the procedure used to create the edges for a node 𝜏𝑘 

resulting from the combination of groups 𝜏𝑖 and 𝜏𝑗. Instead of reevaluating all vertices to 
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compute new edges, 𝜏𝑘 has only edges 𝑒𝑘,𝑚  for nodes 𝜏𝑚 that have a connection to both 𝜏𝑖 

and 𝜏𝑗. The weight of 𝑒𝑘,𝑚 corresponds to the largest one between 𝜔𝑖,𝑚 and 𝜔𝑗,𝑘. In this sense, 

runtime is reduced because RBFs are only generated when creating the graph and after all 

groupings have been performed. 

 

Algorithm 5.1.3 – Clique-based synthesis of SRBF. 

 Input: SOP 𝑓 

 Output: SRBF 

1. Create graph using Algorithm 5.1.1 

2. sort edges from the heaviest to the lightest 

3. for each edge 𝑒𝑖,𝑗 

4.    create vertex 𝜏𝑘 = 𝜏𝑖 ∪ 𝜏𝑗 

5.    for each vertex 𝜏𝑚 

6.    if there are edges 𝑒𝑖,𝑚  and 𝑒𝑗,𝑚  

7.       create edge 𝑒𝑘,𝑚 

8.       𝑤𝑘,𝑚 = max (𝑤𝑖,𝑚, 𝑤𝑗,𝑚) 

9.    Remove 𝜏𝑖 and 𝜏𝑗 

10. end for 

11. return all 𝜏 

 

Example 5.1.2: Consider the SOP given by (5.1.3). The graph generation step is 

performed as previously described, resulting in the graph shown in Fig. 5.1. Furthermore, the 

merging of 𝑐1 and 𝑐3 into 𝜏5, given by (5.1.5), is also performed as previously described. The 

difference lies on the manner the edges for 𝜏5 are generated. Since neither 𝑐1 nor 𝑐3 has an 

edge to 𝑐2, 𝜏5 does not have an edge to 𝑐2. There is also no edge between 𝜏5 and 𝑐4 because 

there is no edge connecting 𝑐1 and 𝑐4, even though there is an edge connecting 𝑐3 and 𝑐2. 

Therefore, the algorithm merges 𝑐2 and 𝑐4 into 𝜏6, given by (5.1.6), and the execution stops. 

The resulting SRBF is given by (5.1.7). 

Example 5.1.2 illustrates a case when the simplified algorithm provides the same 

result as the original algorithm. However, in several cases, the solution quality is reduced. 

One reason is that the weight of edges may decrease as vertices are combined. 

 

Example 5.1.3: This example illustrates a case when the simplified algorithm leads to 

a worse solution. Consider the following ISOP: 

 

𝑓 = 𝑥0̅̅ ̅ 𝑥1̅̅̅𝑥2𝑥3 + 𝑥0𝑥2̅̅ ̅𝑥4𝑥5̅̅ ̅ + 𝑥1𝑥2̅̅ ̅ 𝑥5̅̅ ̅𝑥6 (5.1.8) 
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Figure 5.2 – Graph for Example 5.1.3. 

 

Source: The author. 

 

In the following, we use: 

 

𝑐1 = 𝑥0̅̅ ̅ 𝑥1̅̅̅𝑥2𝑥3 (5.1.9a) 

c2 = 𝑥0𝑥2̅̅ ̅𝑥4𝑥5̅̅ ̅ (5.1.9b) 

𝑐3 = 𝑥1𝑥2̅̅ ̅ 𝑥5̅̅ ̅𝑥6 (5.1.9c) 

 

The initial graph is shown in Fig. 5.2. Notice that the edges 𝑒1,2 and 𝑒1,3 exist because 

these combinations lead to one less reset operation. Since the graph is a clique, the version of 

the algorithm that does not update the edges weights returns a single RBF. The resulting RBF 

is as follows: 

 

𝑓 = 𝑓0̅𝑓1 (5.1.10a) 

𝑓0 = 𝑥0̅̅ ̅ 𝑥1̅̅̅ 𝑥2̅̅ ̅ + 𝑥0̅̅ ̅ 𝑥1̅̅̅ 𝑥4̅̅ ̅ + 𝑥0̅̅ ̅  𝑥2̅̅ ̅ 𝑥6̅̅ ̅ + 𝑥0̅̅ ̅  𝑥3̅̅ ̅ 𝑥6̅̅ ̅ + 𝑥1̅̅̅ 𝑥2̅̅ ̅ 𝑥4̅̅ ̅ + 𝑥1̅̅̅ 𝑥3̅̅ ̅ 𝑥4̅̅ ̅

+  𝑥2̅̅ ̅ 𝑥4̅̅ ̅ 𝑥6̅̅ ̅ + 𝑥2̅̅ ̅ 𝑥3̅̅ ̅ 𝑥6̅̅ ̅ 

(5.1.10b) 

𝑓1 = 𝑥0̅̅ ̅ 𝑥1̅̅̅ + 𝑥2̅̅ ̅ 𝑥5̅̅ ̅ (5.1.10c) 

where 

𝑓0̅ = (𝑥2𝑥3 + 𝑥0𝑥4 + 𝑥1𝑥6)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ (5.1.11) 

 

There are 10 cubes in (5.1.10). Therefore, the evaluation of (5.1.10) takes 11 cycles, 

including the initial reset operation. 

When the edges weights are updated, the behavior is different, as shown in the 

following. The first cubes to be merged are 𝑐2 and 𝑐3. The resulting term 𝜏4 = 𝑐2 + 𝑐3 is the 

following: 
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𝜏4 = 𝜏40
̅̅ ̅̅ 𝜏41

 (5.1.12a) 

𝜏40
= 𝑥0̅̅ ̅ 𝑥1̅̅̅ + 𝑥0̅̅ ̅ 𝑥6̅̅ ̅ + 𝑥1̅̅̅ 𝑥4̅̅ ̅ + 𝑥4̅̅ ̅ 𝑥6̅̅ ̅ (5.1.12b) 

𝜏41
= 𝑥2̅̅ ̅ 𝑥5̅̅ ̅ (5.1.12c) 

 

Equation (5.1.12) takes six cycles to be evaluated. Therefore, if the target function is 

evaluated as 𝜏4 + 𝑐1, 10 cycles are used, being one less than the single RBF solution given by 

(5.1.10). In this sense, the weight of edge 𝑒1,4 is −1. The clique based algorithm is unable to 

detect this variation on edge weight, leading to a worse result. In order to improve the quality 

of the clique based method, we add a verification step to ensure that the solution quality does 

not decrease whenever two groups are combined, as shown in Algorithm 5.1.4.  

 

Algorithm 5.1.4 – Clique-based approach for SRBF synthesis which ensures monotonicity of 

solution quality. 

 Input: SOP 𝑓 

 Output: SRBF 

1. Create graph using Algorithm 5.1.1 

2. sort edges from the heaviest to the lightest 

3. for each edge 𝑒𝑖,𝑗 

4.    create vertex 𝜏𝑘 = 𝜏𝑖 ∪ 𝜏𝑗 

5.    if |𝜏𝑘| ≤ 1 + |𝜏𝑖| + |𝜏𝑗|  

6.       for each vertex 𝜏𝑚 

7.       if there are edges 𝑒𝑖,𝑚  and 𝑒𝑗,𝑚  

8.          create edge 𝑒𝑘,𝑚 

9.          𝑤𝑘,𝑚 = max (𝑤𝑖,𝑚, 𝑤𝑗,𝑚) 

10.       Remove 𝜏𝑖 and 𝜏𝑗 

11. end for 

12. return all 𝜏 

 

 5.2 SINGLE-CUBE FACTORED SUM-OF-RECURSIVE-BOOLEAN-FORMS 

The methods discussed previously provide a sequence of instruction that can be 

evaluated using 𝑛 + 2 RSD. In this section, we propose a form that leads to smaller sequence 

of instructions than those obtained from SRBF at the cost of extra RSDs. In particular, we 

consider single-cube factor SRBF (SC-FSRBF). A SC-FSRBF is given by:  

 

𝑓 = 𝜋1𝑓1 + ⋯ + 𝜋𝑚𝑓𝑚 (5.2.1) 
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where each 𝜋𝑖 is a product of positive literals and each 𝑓𝑖 is an SRBF. The sequence of 

operations to compute a term 𝜋𝑖𝑓𝑖 is similar to the evaluation of an SRBF with inclusions of a 

third work RSD which stores the complement of the 𝜋𝑖. An SC-FSRBF that requires 𝑛 + 𝑘 

RSD, where 𝑘 ≥ 2, is a 𝑘-SC-FSRBF. 

 

Example 5.2.1: Consider an ISOP given by: 

 

𝑓 = 𝑥0𝑥1𝑥2̅̅ ̅𝑥3𝑥4 + 𝑥0𝑥1𝑥5̅̅ ̅𝑥6 + 𝑥0𝑥1𝑥5̅̅ ̅𝑥7 (5.2.2) 

 

Equation (30) can be written in the form (29), with a single term, as follows: 

 

𝑓 = 𝑥0𝑥1(𝑥2̅̅ ̅(𝑥3̅̅ ̅ + 𝑥4̅̅ ̅)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ + 𝑥5̅̅ ̅(𝑥6̅̅ ̅ 𝑥7̅̅ ̅)̅̅ ̅̅ ̅̅ ̅̅ ̅) (5.2.3) 

 

The resulting sequence of operations is shown in Table 5.2.  

 

Table 5.2 – Sequence of operations to evaluate (5.2.3). 

Operation 𝑦1 𝑦2 𝑦3 

𝑦1 = 0, 𝑦2 = 0, 𝑦3 = 0 0 0 0 

𝑦3+= 𝑥0̅̅ ̅   𝑥0̅̅ ̅ 

𝑦3+= 𝑥1̅̅̅   𝑥0̅̅ ̅ + 𝑥1̅̅̅ 

𝑦2+= 𝑥3̅̅ ̅  𝑥3̅̅ ̅  

𝑦2+= 𝑥4̅̅ ̅  𝑥3̅̅ ̅ + 𝑥4̅̅ ̅  

𝑦1+= 𝑥2̅̅ ̅ 𝑦2̅̅ ̅ 𝑦3̅̅ ̅ 𝑥0𝑥1𝑥2̅̅ ̅𝑥3𝑥4   

𝑦2 = 0  0  

𝑦2+= 𝑥6̅̅ ̅ 𝑥7̅̅ ̅  𝑥6̅̅ ̅ 𝑥7̅̅ ̅  

𝑦1+= 𝑥5̅̅ ̅ 𝑦2̅̅ ̅ 𝑦3̅̅ ̅ 𝑥0𝑥1𝑥2̅̅ ̅𝑥3𝑥4 + 𝑥0𝑥1𝑥5̅̅ ̅𝑥6 + 𝑥0𝑥1𝑥5̅̅ ̅𝑥7   

Source: The author. 

 

In fact, (5.2.1) can be used to arbitrary number of 𝑘 ≥ 2 work RSDs. In such cases, 

each 𝜋𝑖 is a product of positive literals and each 𝑓𝑖 is either an SRBF or a (𝑘 − 1)-SC-FSRBF, 

given by (5.2.1). 

We extend the SOP-based algorithm for SRBF synthesis to consider SC-FSRBF. The 

extended algorithm is given in Algorithm 5.2.1. When cubes are combined, they can form 

either an SRBF or an SC-FSRBF. A group that represents an SRBF is a Τ-group. In turn, a 

group that represents an SC-FSRBF is a Φ-group. Finally, a group of a single cube is a σ-

group. The type of a group τ is denoted by 𝜏𝑡. Moreover, 𝜏𝑐𝑝 denotes the set of all positive 
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literals that are common to all cubes in τ. The edges have also different types. A Τ-edge 

creates a Τ-group and a Φ-edge creates a Φ-group. The type of an edge 𝑒 is denoted by 𝑒𝑡. 

During the graph generation stage, in addition to the evaluation of the RBF for each 

pair of cubes, we also check if there are positive literals in common to 𝑐𝑖 and 𝑐𝑗. This step 

creates a Φ-edge. There is a Φ-edge connecting two groups 𝜏𝑖 and 𝜏𝑗 if there is at least one 

positive literal that appears on all cubes of  𝜏𝑖 ∪ 𝜏𝑗. Notice that there may be both a Φ-edge 

and a Τ-edge connecting two vertices. The graph creation algorithm is given in Algorithm 

5.2.1. 

Similarly to the synthesis of SRBF, we consider two approaches to synthesize SC-

FSRBF. The first approach updates all edges for each grouping performed. The second 

approach combines the groups by evaluating whether the resulting group forms a clique. We 

use the edge type to determine whether two groups can be merged. In particular, we do not 

allow a Τ-group (i.e., a SRBF) to be merged with any group through a Φ-edge. We observed 

that allowing a Τ-group to become a Φ-group negatively impacts the solution quality. 

However, transforming a Φ-group into a Τ-group does not reduces the solution quality. 

 

Algorithm 5.2.1 – Graph generation for SC-FSRBF synthesis. 

 Input: SOP 𝑓, extra number of devices 𝑘 

 Output: Graph 

1. Create graph using Algorithm 5.1.1 

2. Mark all edges in the graph as Τ-edges 

3. for each pair of cubes 𝑐𝑖, 𝑐𝑗 in 𝑓 

4.    if 𝑘 > 0 and 𝑐𝑝𝑖 ∩ 𝑐𝑝𝑗 ≠ { } then 

5.       𝜔𝑖,𝑗 = |𝑐𝑝𝑖 ∩ 𝑐𝑝𝑗| 

6.       create a Φ-edge 𝑒𝑖,𝑗 with weight 𝜔𝑖,𝑗 

7.    end if 

8. end for 
 

The update edges approach, shown in Algorithm 5.2.2, uses the same strategy to 

combine groups as performed in Algorithm 5.1.1. The main difference lies on the graph 

generation stage. Moreover, Algorithm 5.2.2 is recursively run for each Φ-group. In this 

second run, 𝑘 − 1 extra devices are used. 

 

Example 5.2.2: Consider an SOP given by the following expression: 

 



94 

 

𝑓 = 𝑥0𝑥1𝑥2𝑥3̅̅ ̅ + 𝑥0𝑥1𝑥2𝑥4̅̅ ̅ + 𝑥0𝑥5𝑥6𝑥7̅̅ ̅ (5.2.4) 

 

Let 𝑘 = 1 be the number of extra RSD. The graph obtained through Algorithm 5.2.1 is 

shown in Fig. 5.3, where 𝑐1, 𝑐2 and 𝑐3 are, respectively: 

 

𝑐1 = 𝑥0𝑥1𝑥2𝑥3̅̅ ̅ (5.2.5a) 

𝑐2 = 𝑥0𝑥1𝑥2𝑥4̅̅ ̅ (5.2.5b) 

𝑐3 = 𝑥0𝑥5𝑥6𝑥7̅̅ ̅ (5.2.5c) 

 

Figure 5.3 – Graph corresponding to Example 5.2.2. 

 

Source: The author. 

 

Algorithm 5.2.2 – SC-FSRBF synthesis using the update edges approach. 

 Input: SOP 𝑓, extra number of devices 𝑘 

 Output: FSRBF 

1. generate graph using algorithm 5.2.1 

2. sort edges from the heaviest to the lightest 

3. while there is an unvisited edge 𝑒𝑖,𝑗 

4.    if (𝑒𝑖,𝑗𝑡
= Φ and (𝜏𝑖𝑡

= Τ or 𝜏𝑗𝑡
= Τ) ) 

5.       go to next edge 

6.    𝜏𝑖,𝑗 = 𝜏𝑖 ∪ 𝜏𝑗 

7.    replace 𝜏𝑖 and 𝜏𝑗 by 𝜏𝑖,𝑗 

8.    create edges for 𝜏𝑖,𝑗 (as in lines Algorithm 5.2.1) 

9.    set type of 𝜏𝑖,𝑗 accordingly to 𝑒𝑖,𝑗𝑡
 

10. end while 

11. if (𝑘 > 0) 

12.    for each Φ-group 𝜏 = 𝑐𝜏𝜏′ (𝑐𝜏 is the cube common to all cubes in 𝜏) 

13.       call Algorithm 5.2.2 with 𝑘′ = 𝑘 − 1 for 𝜏′ 

14. return all 𝜏 
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The first pair of cubes to merged is 𝑐1 and 𝑐2. The resulting Τ-group is 𝜏4. Since literal 

𝑥0 appears in all cubes of 𝜏4 and 𝑐3, there is a Φ-edge connecting 𝜏4 and 𝑐3. Therefore, a Φ-

group 𝜏5 is created comprising 𝑐1, 𝑐2 and 𝑐3. Since 𝑘 > 0 and 𝜏5 is a Φ-group, group 𝜏5
′  is 

obtained by factoring the common literal 𝑥0 from 𝜏5. The resulting group 𝜏5′ is the following: 

 

𝜏5
′ = 𝑐1

′ + 𝑐2
′ + 𝑐3

′  (5.2.6a) 

𝑐1
′ = 𝑥1𝑥2𝑥3̅̅ ̅ (5.2.6b) 

𝑐2
′ = 𝑥1𝑥2𝑥4̅̅ ̅ (5.2.6c) 

𝑐3
′ = 𝑥5𝑥6𝑥7̅̅ ̅ (5.2.6d) 

 

The next step is to run Algorithm 5.2.2 for 𝜏5
′  with 𝑘′ = 0. The resulting graph is 

shown in Fig. 5.4. 

 

Figure 5.4 – Graph corresponding to (5.2.6). 

 

Source: The author. 

The only combination to be performed is merging 𝑐1
′  and 𝑐2

′  into 𝜏6. Hence, the final 

SC-FSRBF is as follows: 

 

𝑓 = 𝑥0 ((𝑥3̅̅ ̅ + 𝑥4̅̅ ̅)(𝑥1̅̅̅ + 𝑥2̅̅ ̅)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ + 𝑥7̅̅ ̅(𝑥5̅̅ ̅ + 𝑥6̅̅ ̅)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) (5.2.7) 

 

The resulting sequence of operations is shown in Table 5.3. 

We also consider a clique-based algorithm for the synthesis of SC-FSRBF which is 

similar to Algorithm 5.1.3 and Algorithm 5.1.4. When an edge e with type 𝑒𝑡 is selected, the 

algorithm evaluates whether the resulting group is a clique considering only the edges with 

same type 𝑒𝑡. Moreover, if e is a Φ-edge, then the clique is only valid if there is a positive 

cube 𝑐 that is common to all vertices in the clique. In other words, whenever a Φ-edge is 

created there is a cube that is a factor of the corresponding expression. 
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Table 5.3 – Sequence of operations to evaluate the SC-FSRBF given by (5.2.7) 

1. 𝑅𝐸𝑆𝐸𝑇 (𝑌)  

2. 𝑥0 → 𝑦0 𝑦0 = 𝑥0̅̅ ̅ 

3. 𝑥1 → 𝑦1 𝑦1 = 𝑥1̅̅̅ 

4. 𝑥2 → 𝑦1 𝑦1 = 𝑥1̅̅̅ + 𝑥2̅̅ ̅ 

5. (𝑦0 + 𝑥3 + 𝑦1) → 𝑦2 𝑦2 = 𝑥0𝑥1𝑥2𝑥3̅̅ ̅ 

6. (𝑦0 + 𝑥4 + 𝑦1) → 𝑦2 𝑦2 = 𝑥0𝑥1𝑥2𝑥3̅̅ ̅ + 𝑥0𝑥1𝑥2𝑥4̅̅ ̅ 

7. 𝑅𝐸𝑆𝐸𝑇 𝑦1 𝑦1 = 0 

8. 𝑥5 → 𝑦1 𝑦1 = 𝑥5̅̅ ̅ 

9. 𝑥6 → 𝑦1 𝑦1 = 𝑥5̅̅ ̅ + 𝑥6̅̅ ̅ 

10. (𝑦0 + 𝑥7 + 𝑦1) → 𝑦2 𝑦2 = 𝑥0𝑥1𝑥2𝑥3̅̅ ̅ + 𝑥0𝑥1𝑥2𝑥4̅̅ ̅ + 𝑥0𝑥5𝑥6𝑥7̅̅ ̅ 

Source: The author. 

 

Algorithm 5.2.3 – Synthesis of SC-FSRBF using the clique based approach. 

 Input: SOP 𝑓, extra number of devices 𝑘 

 Output: SC-FSRBF that can be evaluated with 𝑛 + 𝑘 RSD. 

1. Create graph using Algorithm 5.2.1 

2. sort edges from the heaviest to the lightest 

3. for each edge 𝑒𝑖,𝑗 

4.    if (𝑒𝑖,𝑗 . 𝑡 = Φ and (𝜏𝑖. 𝑡 = Τ or 𝜏2. 𝑡 = Τ) ) 

5.       go to next edge 

6.    if 𝑒𝑖,𝑗 . 𝑡 = Τ 

7.       𝜏𝑘 = 𝜏𝑖 ∪ 𝜏𝑗 

8        if 𝜏𝑘 is a clique, considering only Τ-edges, then  

9.          merge 𝜏𝑖 and 𝜏𝑗 into a Τ-group 𝜏𝑘 

10.       end if 

11.    else  

12.       if 𝜏𝑖𝑐𝑝
∩ 𝜏𝑗𝑐𝑝

≠ { } then 

13.          merge 𝜏𝑖 and 𝜏𝑗 into a Φ-group 𝜏𝑘 

14.       end if 

15.    end if  

16. end for 

17. for each Φ-group 𝜏 = 𝑐𝜏𝜏′ (𝑐𝜏 is the cube common to all cubes in 𝜏) 

18       call Algorithm 5.2.2 with 𝑘′ = 𝑘 − 1 for 𝜏′ 

19. return all 𝜏 
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Example 5.2.3: Consider the following ISOP: 

 

𝑓 = 𝑥0𝑥1𝑥2𝑥3𝑥4̅̅ ̅ + 𝑥0𝑥1𝑥2̅̅ ̅𝑥4𝑥5 + 𝑥0̅̅ ̅𝑥2𝑥4𝑥5𝑥6 + 𝑥6𝑥7𝑥8̅̅ ̅ (5.2.8) 

 

In the following:  

 

𝑐1 = 𝑥0𝑥1𝑥2𝑥3𝑥4̅̅ ̅ (5.2.9a) 

𝑐2 = 𝑥1𝑥2̅̅ ̅𝑥4𝑥5 (5.2.9b) 

𝑐3 = 𝑥0̅̅ ̅𝑥2𝑥4𝑥5𝑥6 (5.2.9c) 

 

Figure 5.5 – Graph for Example 5.2.3. 

 

Source: The author. 

 

The resulting graph is shown in Fig. 5.5. Let 𝑒1,2 be the first visited edge, resulting in 

the merging of 𝑐1 and 𝑐2. The next edge is 𝑒2,3. However, vertices 𝑐2 and 𝑐3 cannot be merged 

because the resulting group {𝑐1, 𝑐2, 𝑐3} does not form a clique considering only Τ-edges. 

Notice that there is only a Φ-edge connecting 𝑐1 and 𝑐2. The next edge to be visited is 𝑒1,3. 

However, 𝑐1 and 𝑐3 are not combined because no positive literal appears in all 𝑐1, 𝑐2 and 𝑐3. 

Finally, the vertices 𝑐3 and 𝑐4 are merged through edge 𝑒3,4 and the algorithm execution 

stops. The final expression is shown in the following and it can be evaluated in 18 cycles. 

 

𝑓 = 𝜏1 + 𝜏2 (5.2.10) 

 

where τ1 is an RBF and τ2 is an SC-FSRBF, which are given, respectively, by: 

 

𝜏1 = 𝑥0𝑥1𝑥2𝑥3𝑥4̅̅ ̅ + 𝑥0𝑥1𝑥2̅̅ ̅𝑥4𝑥5 = 

(𝑥4̅̅ ̅ + 𝑥2̅̅ ̅)(𝑥0̅̅ ̅ + 𝑥1̅̅̅ + 𝑥2̅̅ ̅ 𝑥4̅̅ ̅ + 𝑥2̅̅ ̅ 𝑥5̅̅ ̅ + 𝑥3̅̅ ̅ 𝑥4̅̅ ̅ + 𝑥3̅̅ ̅ 𝑥5̅̅ ̅ )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 
(5.2.11) 
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and 

𝜏2 = 𝑥0̅̅ ̅𝑥2𝑥4𝑥5𝑥6 + 𝑥6𝑥7𝑥8̅̅ ̅ = 

𝑥6(𝑥0̅̅ ̅𝑥2𝑥4𝑥5 + 𝑥7𝑥8̅̅ ̅) 
(5.2.12) 

5.3 EXPERIMENTAL RESULTS 

We begin by comparing the different variations of SRBF synthesis. The results for the 

15 functions which require more cycles are summarized in Table 5.4. When the clique-based 

variations, described in Algorithm 5.13 and Algorithm 5.14, are compared to Algorithm 5.1.2, 

the average number of cycles increases 40% and 23%, respectively. In turn, the average 

runtime is reduced by 75% and 70%, respectively. Information on the benchmark is presented 

in Table 4.6. 

 

Table 5.4 – Comparison among different algorithms proposed for SRBF synthesis. 

 Algorithm 5.1.2 Algorithm 5.1.3 Algorithm 5.1.4 

 Cycles Runtime 

(s) 

Cycles Runtime 

(s) 

Cycles Runtime 

(s) 

pla (1) 1310 37.3 1782 9.07 1543 10.28 

t481 (0) 994 7.58 1520 2.12 1355 2.17 

intb (6) 542 1.65 750 0.48 687 0.48 

alu4 (7) 477 0.72 689 0.27 570 0.28 

test2 (24) 440 0.82 609 0.21 547 0.22 

test2 (13) 428 0.76 586 0.19 525 0.21 

apex2 (2) 419 9.91 701 2.39 558 5.47 

test2 (8) 417 0.75 567 0.19 527 0.21 

test2 (15) 413 0.67 546 0.17 475 0.18 

test2 (0) 412 0.66 565 0.17 493 0.2 

test2 (22) 405 0.57 499 0.16 471 0.17 

test2 (18) 397 0.58 517 0.15 476 0.17 

test2 (14) 396 0.64 507 0.17 477 0.17 

test2 (19) 395 0.63 513 0.17 462 0.18 

test2 (29) 395 0.64 560 0.16 473 0.18 

AVERAGE 522 4.25 727 1.07 642 1.37 

Source: The author. 
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The next comparison is between RBF and SRBF. In Table 5.5, we compare the DEC-

RBF synthesis, discussed in Chapter 4, to the SRBF synthesis, given by Algorithm 5.1.2. The 

results are summarized in Table 5.5. The use of SRBF leads to huge improvements in terms of 

the number of cycles and execution time. 

The justification for the runtime reduction is based on the size of RBF obtained. When 

the SOP is transformed into an RBF, each cube added to the RBF can make the size of the 

RBF to increase by a factor of 𝑛. Hence, the total number of cycles to evaluate 𝑚 cubes as a 

single RBF is 𝑛𝑚. On the other hand, the initial cost for the SRBF takes into account each 

cube individually. Each cube needs at most 2 + 𝑛 cycles to be evaluated. Hence, when 𝑚 

cubes are merged into a RBF, the resulting RBF requires at most 𝑚(2 + 𝑛) cycles to be 

evaluated. Therefore, the size of each RBF within an SRBF is linear with respect to the 

number of cubes the RBF represents. This prevents the exponential growth of RBF and leads 

to the observed improvements regarding the synthesis time. 

 

Table 5.5 – RBF and SRBF comparison for the 15 largest functions in the benchmark set. 

Design (output) RBF SRBF 

Cycles Runtime (s) Cycles Runtime (s) 

cordic (1) 35367 1717.68 1310 37.30 

signet (1) 34601 3076.90 100 0.01 

cordic (0) 29448 4650.32 126 0.22 

signet (2) 14677 344.18 81 0.01 

signet (0) 8484 186.40 90 0.01 

t481 (0) 5067 86.05 994 7.58 

apex2 (0) 3486 283.79 340 1.94 

x6dn (1) 2508 21.79 91 0.04 

vg2 (4) 2291 8.01 105 0.02 

vg2 (5) 2255 7.43 105 0.02 

vtx1 (1) 2206 7.34 105 0.02 

x1dn (1) 2206 7.33 105 0.02 

x9dn (2) 2206 7.32 105 0.02 

apex1 (22) 1929 12.39 169 0.09 

apex2 (2) 1753 147.21 419 9.91 

Source: The author. 
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We also analyze simpler functions for which the number of cycles is limited to 150. 

The results are summarized in Table 5.6. Again, the use of SRBF leads to significant 

improvements in terms of the number of cycles while preserving the algorithm execution 

time. 

Table 5.7 summarizes the results obtained for SC-FSRBF. The number of extra RSD k 

ranges from 0 to 4. Notice that, when k=0, the SC-FSRBF becomes an SRBF. We can observe 

that the improvements obtained by increasing k are mostly limited to k=1. We can also 

observe some anomalies where increasing k reduces the solution quality. For instance, the 

number of cycles to evaluate the output (6) of the design ‘intb’ increases from 542 to 555 

when k goes from 0 to 1. Nevertheless, changing k from 1 to 2, improves the solution to 508 

cycles. Another interesting case is the output (29) of the ‘test2’ design where the solution 

quality only decreases from the initial solution. 

 

Table 5.6 – RBF and SRBF comparison for the 15 largest functions in the benchmark set limited to 

150 cycles. 

Design (output) RBF SRBF 

cycles Runtime (s) cycles Runtime (s) 

table5 (10) 150 0.01 62 < 0.01 

prom1 (15) 150 0.03 120 0.05 

ti (4) 149 0.11 71 0.01 

bcd (23) 147 0.02 85 < 0.01 

prom1 (13) 146 0.03 120 0.05 

apex1 (34) 144 0.08 88 0.01 

intb (1) 144 0.07 99 0.02 

prom (19) 144 0.03 107 0.05 

alu4 (2) 143 0.07 99 0.02 

bca (31) 143 0.01 76 < 0.01 

bcb (16) 143 0.01 74 < 0.01 

bcb (30) 143 0.01 76 < 0.01 

max512 (5) 143 0.06 132 0.05 

xparc (37) 142 0.04 92 0.06 

prom1 (20) 139 0.03 124 0.05 

Source: The author. 
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Table 5.7 – FC-SRBF solutions for the 15 most complex functions.  
k=0 k=1 k=2 k=3 k=4 

Design (out) Cycles Runtime 

(s) 

Cycles Runtime 

(s) 

Cycles Runtime 

(s) 

Cycles Runtime 

(s) 

Cycles Runtime 

(s) 

cordic (1) 1310 37.57 1274 89.41 1236 93.32 1237 93.68 1237 94.03 

t481 (0) 994 7.53 979 21.3 972 21.32 972 21.33 972 21.35 

intb (6) 542 1.64 555 9.47 508 11.17 504 11.21 512 11.23 

alu4 (7) 477 0.72 464 1.48 455 1.52 452 1.52 452 1.53 

test2 (24) 440 0.83 441 1.27 437 1.29 434 1.28 434 1.29 

test2 (13) 428 0.76 422 1.31 430 1.36 428 1.3 428 1.31 

apex2 (2) 419 9.91 421 26.11 423 27.53 422 27.72 422 27.43 

test2 (8) 417 0.75 404 1.33 406 1.34 406 1.34 406 1.33 

test2 (15) 413 0.67 407 1.17 404 1.16 405 1.16 405 1.16 

test2 (0) 412 0.66 419 1.19 416 1.14 416 1.13 416 1.14 

test2 (22) 405 0.57 392 0.89 388 0.88 388 0.89 388 0.88 

test2 (18) 397 0.58 393 0.98 392 0.99 392 0.99 392 0.99 

test2 (14) 396 0.64 411 1.12 408 1.12 408 1.13 408 1.12 

test2 (19) 395 0.64 399 0.97 395 0.99 395 0.98 395 0.99 

test2 (29) 395 0.64 407 0.98 412 0.98 411 0.99 411 0.99 

Source: The author. 
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6 OTHER CONTRIBUTIONS 

In this chapter, we present two other contributions regarding the logic synthesis for 

RSD-IMP logic structure. In Section 6.1, we explore the benefits of having the variables 

available in an input RSD in both negative and complemented forms. In Section 6.2, we 

discuss the logic design of a full-adder (FA) and ripple-carry adder (RCA) in RSD-IMP logic. 

 6.1 COMPLEMENTED INPUTS APPROACH 

In this section, we consider that each variable is available in an input RSD in both 

direct and complemented forms. Therefore, each cube in the SOP can be evaluated in a single 

cycle. For each variable 𝑥𝑖 that is represented by at least one direct literal in the SOP, an 

operation of the form 𝑥𝑖 → 𝑦𝑘 is performed. Therefore, an SOP with 𝑚 cubes can be 

evaluated in at most 1 + 𝑚 + 𝑛 cycles. In contrast to the methods previously discussed, does 

not depend directly on the number of positive literals. Therefore, we expect this approach to 

reduce the average length of the sequence of instructions. However, in some cases, SRBF and 

FSRBF can lead to better solutions. 

 

Example 6.1.1: Consider the following SOP f: 

 

𝑓 = 𝑥0𝑥1 + 𝑥1𝑥2 + 𝑥0𝑥2 (6.1.1) 

 

Using the complemented inputs approach, the sequence of instructions described in 

Table 6.1 is obtained, and seven instructions are required. Instructions 2 through 4 are used to 

complement the input variables while each one of the final three instructions evaluates a cube 

in (6.1.1). However, if (6.1.1) is written as a negative phase RBF, only five instructions are 

used, as shown in Table 6. 2. 

Table 6.1 – Sequence of operations to evaluate (6.1.1) using the complemented inputs method. 

𝑅𝐸𝑆𝐸𝑇(𝑌)  

𝑥0 → 𝑦0 𝑦0 = 𝑥0̅̅ ̅ 

𝑥1 → 𝑦1 𝑦1 = 𝑥1̅̅̅ 

𝑥2 → 𝑦2 𝑦2 = 𝑥2̅̅ ̅ 

(𝑦0 + 𝑦1) → 𝑦3 𝑦3 = 𝑥0𝑥1 

(𝑦0 + 𝑦2) → 𝑦3 𝑦3 = 𝑥0𝑥1 + 𝑥0𝑥2 

(𝑦1 + 𝑦2) → 𝑦3 𝑦3 = 𝑥0𝑥1 + 𝑥0𝑥2 + 𝑥1𝑥2 

Source: The author. 
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Table 6.2 – Sequence of operations to evaluate (6.1.1) as an RBF. 

𝑅𝐸𝑆𝐸𝑇(𝑌)  

(𝑥0 + 𝑥1) → 𝑦0 𝑦0 = 𝑥0̅̅ ̅ 𝑥1̅̅̅ 

(𝑥0 + 𝑥2) → 𝑦0 𝑦0 = 𝑥0̅̅ ̅ 𝑥1̅̅̅ + 𝑥0̅̅ ̅ 𝑥2̅̅ ̅ 

(𝑥1 + 𝑥2) → 𝑦0 𝑦0 = 𝑥0̅̅ ̅ 𝑥1̅̅̅ + 𝑥0̅̅ ̅ 𝑥2̅̅ ̅ + 𝑥1̅̅̅ 𝑥2̅̅ ̅ 

𝑦0 → 𝑦1 𝑦1 = 𝑥0𝑥1 + 𝑥0𝑥2 + 𝑥1𝑥2 

Source: The author. 

The number of cycles to evaluate an SOP 𝑓 through the complemented inputs 

approach can be reduced through a factoring process, aiming to reduce the total number of 

cubes. 

Example 6.1.2: Consider the following SOP f: 

 

𝑓 = 𝑥0𝑥1𝑥6 + 𝑥0𝑥1𝑥7 + 𝑥0𝑥1𝑥8 + 𝑥2𝑥3𝑥6 + 𝑥2𝑥3𝑥7 + 𝑥2𝑥3𝑥8 + 𝑥4𝑥5𝑥6 + 𝑥4𝑥5𝑥7

+ 𝑥4𝑥5𝑥8 

(6.1.2) 

 

Since (6.1.2) comprises nine cubes and nine variables represented by a positive literal, 

the resulting number of cycles to evaluate (6.1.2) is 19. The number of cycles can be reduced 

by factoring (6.1.2), as follows: 

 

𝑓 = (𝑥0𝑥1 + 𝑥2𝑥3 + 𝑥4𝑥5)(𝑥6 + 𝑥7 + 𝑥8) (6.1.3) 

 

Equation (6.1.3) comprises six cubes. The resulting sequence of instructions to 

evaluate (6.1.3) is shown in Table 6.3. For sake of simplicity, we skip the initial 10 

instructions that correspond to the reset operations and to the negation of inputs. Hence, the 

total number of instructions to evaluate (6.1.3) is 16. The main idea is to rewrite (6.1.3) as 

follows: 

 

𝑓 = 𝑓1̅(𝑥6 + 𝑥7 + 𝑥8) (6.1.4) 

where 

 

𝑓1̅ = (𝑥0𝑥1 + 𝑥2𝑥3 + 𝑥4𝑥5)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ (6.1.5) 
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The first three steps shown in Table 6.3 store f1 at y0, and then f1̅ is stored at y1. 

Finally, for each cube in x6 + x7 + x8, one operation is performed to store f1x6,  f1x7 and f1x8 

into y2. 

 

Table 6.3 – Sequence of operations to evaluate (6.1.3). 

(𝑥0̅̅ ̅ + 𝑥1̅̅̅) → 𝑦0 𝑦0 = 𝑥0𝑥1 

(𝑥2̅̅ ̅ + 𝑥3̅̅ ̅) → 𝑦0 𝑦0 = 𝑥0𝑥1 + 𝑥2𝑥3 

(𝑥4̅̅ ̅ + 𝑥5̅̅ ̅) → 𝑦0 𝑦0 = 𝑥0𝑥1 + 𝑥2𝑥3 + 𝑥4𝑥5 

𝑦0 → 𝑦1 𝑦1 = 𝑥0𝑥1 + 𝑥2𝑥3 + 𝑥4𝑥5̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 

(𝑥6̅̅ ̅ + 𝑦1) → 𝑦2 𝑦2 = (𝑥0𝑥1 + 𝑥2𝑥3 + 𝑥4𝑥5)𝑥6 

(𝑥7̅̅ ̅ + 𝑦1) → 𝑦2 𝑦2 = (𝑥0𝑥1 + 𝑥2𝑥3 + 𝑥4𝑥5)(𝑥6 + 𝑥7) 

(𝑥8̅̅ ̅ + 𝑦1) → 𝑦2 𝑦2 = (𝑥0𝑥1 + 𝑥2𝑥3 + 𝑥4𝑥5)(𝑥6 + 𝑥7 + 𝑥8) 

Source: The author. 

 

We apply a standard double-cube divisor technique and modify the method to evaluate 

the solution improvement. Instead of counting the reduction on the number of literals, we 

count the reduction on the number of cubes. As a consequence, we only consider divisions 

where both the divisor and the quotient have at least two cubes. 

 

Example 6.1.3: To illustrate the difference between the standard literal oriented 

division and a cube oriented division, consider the following SOP 𝑓 with seven cubes: 

 

𝑓 = 𝑥0𝑥1𝑥2𝑥3𝑥4 + 𝑥0𝑥1𝑥2𝑥3𝑥5 + 𝑥0𝑥1𝑥2𝑥3𝑥6 + 𝑥4𝑥7 + 𝑥5𝑥7 + 𝑥4𝑥8 + 𝑥5𝑥8 (6.1.6) 

 

An optimal factored form for (6.1.6), in terms of literal count, comprises literals, as 

follows: 

𝑓 = 𝑥0𝑥1𝑥2𝑥3(𝑥4 + 𝑥5 + 𝑥6) + (𝑥4 + 𝑥5)(𝑥7 + 𝑥8) (6.1.7) 

 

Notice that (6.1.7) comprises eight cubes, being one more than (6.1.6). Therefore, 

reducing the number of literals is not always a good strategy to minimize the number of 

cubes. A cube oriented division could yield the following expression: 

 

𝑓 = (𝑥4 + 𝑥5)(𝑥0𝑥1𝑥2𝑥3 + 𝑥7 + 𝑥8) + 𝑥0𝑥1𝑥2𝑥3𝑥6 (6.1.8) 
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Equation (6.1.8) comprises 13 literals, two more than (6.1.7), but six cubes. In this 

sense, a cube oriented division reduced the number of cubes by one when compared to the 

original SOP given by (6.1.6).  

Algorithm 6.1.1 describes the division process. The algorithm selects the lines with 

most number of ‘1’. This line represents a rectangle. Then, the algorithm searches for the line 

that maximizes the gain when added to a rectangle and adds this line to the rectangle. When 

there are no lines to be added, the rectangle is a prime rectangle that represents a divisor and a 

quotient for f. The process repeats until no good divisors are found. 

 

Algorithm 6.1.1 – Division algorithm. 

1. Create matrix from the cube intersections 

2. L1=all lines in the table 

3. L2=all lines in the table 

4. C={} 

5. while (L1 is not empty and C does not contain all cubes in f ) 

6.    select l in L1 with most number of columns in ‘1’ that corresponds to cubes not in C 

7.    start a rectangle R with l 

8.    while there is a l2 in L2 that improves the solution 

9.       add the line lmax in L2 that maximizes the gain to R 

10.    end while 

11.    if R contains more than one line and one column 

12.       perform the division 

13.       add all cubes impacted by the division to C 

14.       remove from L1 all lines that do not have a ‘1’ in at least one position 

corresponding to a cube not in C 

15.    Else 

16.       remove l from L1 

17.    end if 

18. end while 

19. Run the algorithm recursively for each divisor and quotient found 

20. Return 

 

Table 6.4 presents the comparison among SC-FSRBF, the complemented inputs method 

(COMP), the division method (DIV) and the method described in (XIE, 2017). The COMP 

column presents the results obtained without the division process, and the DIV column 

presents the results after the division process. The solutions from the SC-FSRBF are those 

that lead to the smallest number of cycles. As can be observed, even though the number of 

RSDs used by the complemented inputs approach is much higher compared to the SC-
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FSRBF, the reduction on the number of cycles is also significant. Clearly, Algorithm 6.1.1 

has a huge drawback related to the execution time. Compared to the method proposed in 

(XIE, 2017), we obtain a good trade-off between the number of cycles and the number of 

RSDs. See Table 4.6 for more information on the benchmark set. 

Table 6.4 – Comparison of the complemented inputs approach to SC-FCSRBF. 
Design 

(out) 

SC-FSRBF COMP DIV (XIE. 2017) 

Cycles RSD Runtime 

(s) 

Cycles RSD Cycles RSD Runtime 

(s) 

Cycles RSD 

cordic (1) 1236 26 93.32 792 44 62 66 8315 7 36284 

apex2 (2) 419 41 9.91 548 64 166 121 2364 7 37204 

t481 (0) 972 20 21.32 498 33 100 77 565.7 7 15906 

apex2 (0) 331 43 3.53 296 57 161 118 566.0 7 20367 

apex2 (1) 270 43 4.6 279 54 133 106 667.7 7 19345 

alu4 (7) 452 19 1.52 197 29 165 54 9497 7 5307 

alu4 (4) 332 17 1.25 196 29 174 63 257.8 7 5278 

cordic (0) 122 26 1 167 47 111 63 0.72 7 6768 

misex3 (7) 274 19 1.6 156 29 116 51 94.63 7 4118 

misex3 (3) 263 17 0.83 147 29 109 48 117.5 7 3857 

rd84 (1) 199 10 0.35 137 17 59 36 4.82 7 2193 

misex3 (2) 239 16 0.29 135 29 117 60 52.17 7 3509 

max1024 (5) 252 13 0.31 132 21 132 22 494.9 7 2562 

misex3 (13) 219 16 0.27 131 29 128 36 27.7 7 3393 

seq (5) 155 46 0.89 129 65 116 71 18.95 7 8162 

Source: The author. 

6.2 LOGIC DESIGN OF BINARY ADDER 

In this section, we discuss the logic design of a full-adder (FA) and a ripple-carry 

adder (RCA) in RSD-IMP logic structure. Initially, we focus on the standard IMP gate, as 

previously detailed. Then, we discuss improvements to the RCA design by exploring the 

memory matrix. Finally, we evaluate the possibility to perform several independent sums 

simultaneously in the memory matrix. 

Hereafter, we consider the task of adding two n-bit positive integers A and B. We use 

𝑎𝑖 and 𝑏𝑖 to refer to the ith bit of A and B, respectively. 

Our first contribution is a novel scheme for a FA design which fully exploits multi-

input implication. This FA implementation is used as basis for the variations of RCA 

proposed herein. 
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6.2.1 Full-adder design 

In the following, devices 𝑎, 𝑏 and 𝑐 are the three inputs for the FA. The sum and the 

carry-out outputs are stored at 𝑠𝑢𝑚 and 𝑐𝑜𝑢𝑡, respectively. We also use an auxiliary device 

𝑡𝑚𝑝. The FA implementation is based on writing the XOR3 as follows: 

 

𝑎⨁𝑏⨁𝑐 = 𝑎𝑏𝑐 + (𝑎𝑏 + 𝑎𝑐 + 𝑏𝑐)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅(𝑎 + 𝑏 + 𝑐) 6.2.1 

 

Since the term 𝑎𝑏 + 𝑎𝑐 + 𝑏𝑐 corresponds to the majority function that represents the 

carry-out output, a key idea in FA design is to exploit the logic sharing between the sum and 

carry outputs. Since both the XOR3 and the majority functions are self-dual functions, we can 

rewrite (6.2.1) as follows: 

 

𝑎⨁𝑏⨁𝑐 = 𝑎̅ 𝑏̅ 𝑐̅ + (𝑎̅ 𝑏̅ + 𝑎̅ 𝑐̅ + 𝑏̅ 𝑐̅)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ (𝑎̅ + 𝑏̅ + 𝑐̅)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

 6.2.2 

 

Equation (6.2.2) can be computed as shown in Table 6.5. The first step is to reset the 

state of devices sum, 𝑐𝑜𝑢𝑡 and 𝑡𝑚𝑝. Then, the term 𝑎̅ 𝑏̅ + 𝑎̅ 𝑐̅ + 𝑏̅ 𝑐̅, that is the complement 

of the carry out output, is stored into 𝑡𝑚𝑝. The following steps perform the AND operation 

between (𝑎̅ 𝑏̅ + 𝑎̅ 𝑐̅ + 𝑏̅ 𝑐̅) and (𝑎̅ + 𝑏̅ + 𝑐̅), and store the result into cout. Then, cube 𝑎̅ 𝑏̅ 𝑐 ̅is 

added to 𝑐𝑜𝑢𝑡. Then, the complement of cout is stored into the sum device which holds the 

final value for the sum output. Finally, the value of tmp is complemented and stored into cout 

such that cout contains the final value for the carry-out. 

 

Table 6.5 – Cycles to evaluate a FA based on (6.2.2) 

1. 𝑠𝑢𝑚 = 0, 𝑐𝑜𝑢𝑡 = 0, 𝑡𝑚𝑝 = 0  

2. (𝑎 + 𝑏) → 𝑡𝑚𝑝 𝑡𝑚𝑝 = 𝑎̅𝑏̅ 

3. (𝑎 + 𝑐) → 𝑡𝑚𝑝 𝑡𝑚𝑝 = 𝑎̅𝑏̅ + 𝑎̅𝑐̅ 
4. (𝑏 + 𝑐) → 𝑡𝑚𝑝 𝑡𝑚𝑝 = 𝑎̅𝑏̅ + 𝑎̅𝑐̅ + 𝑏̅𝑐̅ 
5. (𝑎 + 𝑡𝑚𝑝) → 𝑐𝑜𝑢𝑡 𝑐𝑜𝑢𝑡 = 𝑎̅𝑏𝑐 

6. (𝑏 + 𝑡𝑚𝑝) → 𝑐𝑜𝑢𝑡 𝑐𝑜𝑢𝑡 = 𝑎̅𝑏𝑐 + 𝑎𝑏̅𝑐 

7. (𝑐 + 𝑡𝑚𝑝) → 𝑐𝑜𝑢𝑡 𝑐𝑜𝑢𝑡 = 𝑎̅𝑏𝑐 + 𝑎𝑏̅𝑐 + 𝑎𝑏𝑐̅ 
8. (𝑎 + 𝑏 + 𝑐) → 𝑐𝑜𝑢𝑡 𝑐𝑜𝑢𝑡 = 𝑎̅𝑏𝑐 + 𝑎𝑏̅𝑐 + 𝑎𝑏𝑐̅ + 𝑎̅𝑏̅𝑐̅ 
9. 𝑐𝑜𝑢𝑡 → 𝑠𝑢𝑚 𝑠𝑢𝑚 = 𝑎𝑏̅𝑐̅ + 𝑎̅𝑏𝑐̅ + 𝑎̅𝑏̅𝑐 + 𝑎𝑏𝑐 

10. 𝑅𝐸𝑆𝐸𝑇(𝑐𝑜𝑢𝑡) 𝑐𝑜𝑢𝑡 = 0 

11. 𝑡𝑚𝑝 → 𝑐𝑜𝑢𝑡 𝑐𝑜𝑢𝑡 = 𝑎𝑏 + 𝑎𝑐 + 𝑏𝑐 

Source: The author. 
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The total number of cycles to compute both outputs of the FA is 11, and six devices 

are used. The benefits obtained from using more devices appear to be limited. In particular, an 

extra device can be used to skip the reset operation at line 10 in Table 6.2. 

6.2.2 Single-line RCA  

In this section, we consider two RCA implementations where all RSDs are placed into 

a single memory line. The first implementation obtains the minimum number of devices 

whereas the second implementation improves the delay by adding more devices. In the 

following, A and B are the two numbers to be summed, with n bits each. The i-th bit of A and 

B are represented by 𝑎𝑖 and 𝑏𝑖, respectively.  

Considering that the first stage of the RCA is a FA, there are 2n+1 input devices to 

store A, B and the carry-in for the first stage. The sum bits and the carry-out signal of the last 

stage add 𝑛 + 1 devices. Therefore, there are 3𝑛 + 2 devices, representing all primary inputs 

and primary outputs, used in all implementations. 

In order to minimize the number of RSDs, we use the same device to store all carry 

signals. Moreover, two auxiliary devices (𝑡𝑚𝑝0 and 𝑡𝑚𝑝1) are used for all bits of the RCA. 

Therefore, this implementation uses 3𝑛 + 4 devices. The computation scheme is the same as 

for the FA described in Table 6.5. The cycles are shown in Table 6.6. The number of 

operations is 11𝑛. 

 

Table 6.6 – Cycles to evaluate a FA in the single line RCA. 

1. 𝑡𝑚𝑝0 = 0,𝑡𝑚𝑝1 = 0, 
𝑠𝑢𝑚𝑖 = 0 

 

2. (𝑎𝑖 + 𝑏𝑖) → 𝑡𝑚𝑝0 𝑡𝑚𝑝0 = 𝑎̅𝑖𝑏̅𝑖 

3. (𝑎𝑖 + 𝑐𝑎𝑟𝑟𝑦) → 𝑡𝑚𝑝0 𝑡𝑚𝑝0 = 𝑎𝑖̅𝑏𝑖̅ + 𝑎𝑖̅𝑐𝑖̅ 

4. (𝑏𝑖 + 𝑐𝑎𝑟𝑟𝑦) → 𝑡𝑚𝑝0 𝑡𝑚𝑝0 = 𝑎𝑖̅𝑏𝑖̅ + 𝑎𝑖̅𝑐𝑖̅ + 𝑏𝑖̅𝑐𝑖̅ 

5. (𝑎𝑖 + 𝑡𝑚𝑝0) → 𝑡𝑚𝑝1 𝑡𝑚𝑝1 = 𝑎̅𝑖𝑏𝑖𝑐𝑖 

6. (𝑏𝑖 + 𝑡𝑚𝑝0) → 𝑡𝑚𝑝1 𝑡𝑚𝑝1 = 𝑎̅𝑖𝑏𝑖𝑐𝑖 + 𝑎𝑖𝑏̅𝑖𝑐𝑖 

7. (𝑐 + 𝑡𝑚𝑝0) → 𝑡𝑚𝑝1 𝑡𝑚𝑝1 = 𝑎̅𝑖𝑏𝑖𝑐𝑖 + 𝑎𝑖𝑏̅𝑖𝑐𝑖 + 𝑎𝑖𝑏𝑖𝑐𝑖̅ 

8. (𝑎𝑖 + 𝑏𝑖 + 𝑐𝑎𝑟𝑟𝑦) → 𝑡𝑚𝑝1 𝑡𝑚𝑝1 = 𝑎̅𝑖𝑏𝑖𝑐𝑖 + 𝑎𝑖𝑏̅𝑖𝑐𝑖 + 𝑎𝑖𝑏𝑖𝑐𝑖̅ + 𝑎̅𝑖𝑏̅𝑖𝑐𝑖̅ 

9. 𝑡𝑚𝑝1 → 𝑠𝑢𝑚𝑖 𝑠𝑢𝑚𝑖 = 𝑎𝑖𝑏̅𝑖𝑐𝑖̅ + 𝑎̅𝑖𝑏𝑖𝑐𝑖̅ + 𝑎̅𝑖𝑏𝑖̅𝑐𝑖 + 𝑎𝑖𝑏𝑖𝑐𝑖 

10. 𝑐𝑎𝑟𝑟𝑦 = 0 𝑐𝑎𝑟𝑟𝑦 = 0 

11. 𝑡𝑚𝑝0 → 𝑐𝑎𝑟𝑟𝑦 𝑐𝑎𝑟𝑟𝑦 = 𝑎𝑖𝑏𝑖 + 𝑎𝑖𝑐𝑖 + 𝑏𝑖𝑐𝑖 

Source: The author. 

 

The delay can be improved by considering that each FA contains an independent 

auxiliary device. In this case, the reset operations are not required at each stage since a single 
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reset can be performed for all devices at the beginning of the computation. If each FA 

contains a single auxiliary device, the number of operations is reduced to 10𝑛 + 1 while the 

number of devices is 5𝑛. In turn, if each FA contains two auxiliary devices, the number of 

cycles can be further reduced to 9𝑛 + 1 while the number of devices increases to 6𝑛. 

From the logic design perspective, expanding the single line RCA to perform several 

independent sums is straightforward. Each pair of sums is placed at a line and all the sums can 

occur in parallel. However, there are some electrical challenges related to sneak paths that 

have to be addressed. 

 

6.2.3 Multiple-lines RCA 

In this section, we aim to reduce the latency of the RCA by exploiting both dimensions 

of the crossbar structure. In contrast to the previous RCA implementation, we consider that 

each line corresponds to a FA such that 𝑎𝑖 and 𝑏𝑖 are stored in line 𝑖, as shown in Fig. 6.1. By 

placing each FA into a different line, some operations may occur in parallel. Despite such a 

parallelism, the adder still represents an RCA architecture because the carry signal propagates 

sequentially through the whole FA chain. The main steps of the multiple-lines RCA are as 

follows: 

1) to compute the carry values sequentially; 

2) to compute all sums of odd index in parallel; and 

3) to compute all sums of even index in parallel. 

 

6.2.3.1 Carry computation 

Each carry signal is computed as described previously. As explained in the following, 

we use devices 𝑑𝑖 and 𝑐𝑖 to store the carry signals. If 𝑖 is even, then 𝑐𝑖 is the carry-in whereas 

for odd 𝑖, 𝑑𝑖 is the carry-in, as illustrate in Fig 6.1. The sequence of operations to compute the 

carry for an even index is shown in Table 6.7. Notice that the operations performed in line 4 

propagates the carry to the next line of the matrix.  
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Figure 6.1 – Carry-in configuration for the multiple-lines RCA. 

 

Source: The author. 

 

Table 6.7 – Carry computation for even index. 

1. (𝑎𝑖 + 𝑏𝑖) → 𝑑𝑖 

2. (𝑎𝑖 + 𝑐𝑖) → 𝑑𝑖 

3. (𝑎𝑖 + 𝑐𝑖) → 𝑑𝑖 

4. 𝑑𝑖 → 𝑑𝑖+1 

Source: The author. 

 

Since the carry-in for odd i is stored at di, the carry-out computation for odd indexes is 

slightly different, as shown in Table 6.8. 

 

Table 6.8 Carry computation for even index. 

1. (𝑎𝑖 + 𝑏𝑖) → 𝑐𝑖 

2. (𝑎𝑖 + 𝑑𝑖) → 𝑐𝑖 

3. (𝑎𝑖 + 𝑑𝑖) → 𝑐𝑖 

4. 𝑐𝑖+1 → 𝑐𝑖+2 

Source: The author. 

 

The pattern of alternating c and d columns to store the carry signals continues 

throughout the chain. As a consequence, the carry signals are aligned such that all carry-in are 

stored in 𝑐𝑖 for all even indexes i and in 𝑑𝑗 for all odd indexes j. Since the first operation to 

compute the carry depends only on 𝑎𝑖 and bi, this operation can be performed in parallel for 

all indexes. Hence, the number of operations to compute all carry signals is 3𝑛 + 1. 

 

6.2.3.2 Sum output evaluation 

After all carry values are computed, the sums are evaluated. It would be desirable to 

perform all such operations in parallel. However, the column of the carry value depends on 

whether the FA index is odd or even. Therefore, we begin by considering that all even bits are 
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processed in parallel followed by the evaluation of all odd index. This procedure uses 10 

cycles (five cycles for the even indexes and other five cycles for the odd indexes). The cycles 

for the even indexes and odd indexes are shown in Table 6.9. 

Table 6.9 – Sum evaluation for even and odd indexes. 

 Even indexes Odd indexes 

1. (𝑎𝑖 + 𝑑𝑖) → 𝑒𝑖 (𝑎𝑖 + 𝑐𝑖) → 𝑒𝑖 

2. (𝑏𝑖 + 𝑑𝑖) → 𝑒𝑖 (𝑏𝑖 + 𝑐𝑖) → 𝑒𝑖 

3. (𝑐𝑖 + 𝑑𝑖) → 𝑒𝑖 (𝑑𝑖 + 𝑐𝑖) → 𝑒𝑖 

4. (𝑎𝑖 + 𝑏𝑖 + 𝑐𝑖) → 𝑒𝑖 (𝑎𝑖 + 𝑏𝑖 + 𝑑𝑖) → 𝑒𝑖 

5, 𝑒𝑖 → 𝑓𝑖 𝑒𝑖 → 𝑓𝑖 

Source: The author. 

The number of devices used is 6𝑛. In turn, the total number of cycles to perform the 

sum of A and B comprises the initial reset, 3𝑛 + 1 cycles to evaluate all carry-out signals, 

five cycles to evaluate the sum of even indexes and more five cycles to evaluate the sum of 

odd indexes. Therefore, the number of cycles for 𝑛 ≥ 2 is: 

 

12 + 3𝑛 (6.2.3) 

 

We consider two approaches to expand this idea to m independent sums in parallel. 

The first approach considers that all operands are aligned as shown in Fig. 6.2, which 

represents the structure used to perform the sums A+B and C+D, where each operand has two 

bits. Devices ri, si, ti and ui are the auxiliary devices. In particular, r0 and r2 store the carry-in 

for the first FA of each sum. 

 

Figure 6.2 – Crossbar structure to implement sums A+B and C+D in parallel using the multiple-lines 

RCA. 

 

Source: The author. 
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The structure shown in Fig. 6.2 allows most of the operations needed to compute A+B 

to be performed in parallel to the operations for C+D. However, the last cycle of the carry 

evaluation (line 4 in Table 6.7 and in Table 6.8) cannot be performed in parallel for both 

sums. Considering the case shown in Fig. 6.2, it is not possible to transfer s0 to s1 at the cycle 

that s2 is sent to s3. Hence, this step is performed sequentially for all sums. The carry 

computation phase uses 2n+1 cycles that correspond to the first three cycles in Table 6.7 and 

in Table 6.8, plus mn cycles to propagate the carry signals for the next line. The sum 

evaluation phase requires more 10 cycles, as in the single-line RCA version. Therefore, the 

total number of cycles to perform m sums, where each operand is n-bits wide is as follows: 

 

12 + 2𝑛 + 𝑚𝑛 (6.2.4) 

 

Notice that, the number of cycles increases with the number of operands. In contrast, 

the number of cycles for the single-line implementation is independent from m. Therefore, for 

a fixed number of bits n, there is a maximum number of sums m (mmax) such that the multiple-

line implementation is more efficient than the single-line one. For 𝑛 ≥ 2, 𝑚𝑚𝑎𝑥 is given by: 

 

𝑚𝑚𝑎𝑥 =
7𝑛 − 11

𝑛
 

(6.2.4) 

As 𝑛 increases, 𝑚𝑚𝑎𝑥 approaches 7: 

 

lim
𝑛→∞

𝑚𝑚𝑎𝑥 = 7 (6.2.5) 

 

The second variation aims to overcome the limitation of the previous strategy by 

placing the sums in a diagonal, as illustrated in Fig. 6.3. In this approach, the sums are 

independent from each other. Hence, the number of cycles is independent from 𝑚, being 

given by (5.3.1). In turn, the number of devices increases from 6𝑛𝑚 to 6𝑛𝑚2. 

 

Figure 6.3 – Alternative crossbar structure to implement sums A+B and C+D in parallel using the 

multiple-lines RCA. 
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Source: The author. 

 

The RCA design is compared to different implementations of RCA based on RSD-

NVM. The results are summarized in Table 6.10. We only consider the case of a single sum 

since this is the data presented in related works. Moreover, we also exclude implementations 

that modify the crossbar structure by adding transistors (SIEMON, 2015). Some works only 

discuss FA design. For these cases, we assume that the RCA consists of n copies of FA 

without considering optimizations that may exist. Overall, the proposed implementations 

obtain a good trade-off between the number of cycles and the number of RSDs. Moreover, the 

adder described in (YANG, 2016) also considers AND operations, as given by (3.2.24). 

 

Table 6.10 – Comparison of the proposed adders to previous works. 

 Style Number of cycles Number of RSD 

Single line RCA IMP 11n 3n+4 

Multiple line RCA IMP 12+3n 6n 

(TALATI,2016)  Hybrid 5n+18 9n 

(YANG, 2016) IMP 14n 8n 

(ALAMGIR, 2016) Switch 20n 17n 

(XIE, 2017) Hybrid 7n/2 216n 

Source: The author. 
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7 CONCLUSIONS AND FUTURE WORK 

Advances of nanotechnologies bring new logic paradigms which do not always 

correspond to the standard switch based logic of standard MOSFET devices. In this sense, 

novel logic algorithms are being developed for a better understanding of these new 

paradigms. One among these paradigms is based on evaluating a given Boolean function as a 

sequence of basic instructions. Two of such instruction based approaches rely on majority 

logic and material implication logic. 

This thesis focuses on developing algorithms for RSD-IMP logic structure. The overall 

approach consists on defining classes of Boolean expressions that have a direct translation to 

a sequence of instructions. In this way, it is possible to analyze how the number of 

instructions and the number of RSD depend on the size of such expressions. Consequently, 

logic synthesis algorithms can be tailored to optimized said expressions while taking into 

account the characteristics of RSD-IMP logic structure.  

The first class of expressions considered, proposed in (LEHTONEN, 2010), is the 

class of RBF. The interesting property of this class is that such expressions can be translated 

into a sequence of operations that require only n+2 RSD to be evaluated. Our main 

contribution regarding RBF is a novel decomposition based method that, given a 

decomposition of ℎ into 𝑓 and 𝑔 as ℎ = 𝑓 ∘ 𝑔, where ∘ can be and AND or an XOR operator, 

combines the RBF for f and g to obtain RBF h. 

We have expanded the RBF class to SRBF. SRBF can also be evaluated using the 

minimum number of n+2 RSDs and greatly reduces the number of instructions required to 

evaluate diverse Boolean functions. Then, we have further expanded SRBF to SC-FSRBF. In 

contrast to SRBF, SC-FSRBF requires more devices to be evaluated but can lead to smaller 

sequences of operations. 

We continue our contributions by considering a different approach which is based on 

having all variables in both positive and negative polarities in the input RSD. Then, each cube 

in a given SOP can be evaluated in a single cycle. We also apply a division process over the 

input SOP to further reduce the length of instructions. Our last contributions regard the logic 

design of adders in RSD-IMP logic structure. 

7.1 FUTURE WORK 

About future work, it is worth to make some remarks related to logic synthesis for 

RSD-IMP logic structure. 
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In Section 5.2, we proposed the use of SC-FSRBF. This class of expressions is a 

subcase of a more general class, which is the factored SRBF (FSRBF). An FSRBF can be 

recursively defined as an RBF, a sum or a product of FSRBF. Notice that this definition is 

similar to a factored form where the literals are RBFs. The use of FSBRF should greatly 

reduce the number of cycles. 

The algorithms can be expanded to handle multiple output functions. If the input is a 

multiple output SOP, an extraction algorithm, similar to the division procedure show in 

Algorithm 6.1.1 can be used to transform the SOP into a multilevel network. Then, each node 

in the network can be synthesized using any of the methods described herein. 

Another option to take into account multiple output functions is to perform a LUT-

based technology mapping over an AIG. In this case, for each cut enumerated, a sequence of 

instructions is generated using any of the methods described herein. This sequence of 

instructions is used to evaluate the cost of the cut in terms of the number of RSDs and the 

number of cycles. During the covering phase, the technology mapping chooses the best 

covering for the target AIG. We notice that the covering phase should differ from the applied 

one in standard LUT-based designs due to the following reasons: 

1) The methods used to estimate the delay in conventional logic styles cannot be used 

to estimate the delay on the RSD-IMP logic structure. The reason for this is that in 

conventional combinational logic, the delay is determined by the worst case 

analysis whereas in RSD the delay is the sum of the delay of all cuts in the cover. 

2) The area in conventional logic style is approximate by the number of LUTs in the 

design. In RSD-IMP logic structure, since RSD can be shared by many different 

LUTs, the area evaluation can be performed using the worst case analysis. 

In this sense, the methods to estimate delay and area are somewhat reversed when 

comparing the conventional logic to the RSD-IMP logic structure. 

The methods described herein can also be combined with f other works. For instance, 

in (XIE, 2017), each minterm of the target function is placed in a line. Then, all minterms are 

evaluated in parallel and summed. One possible approach to combine these methods is to 

obtain an SC-FSRBF. Then, the terms of the SC-FSRBF are placed into different lines such 

that the evaluation can be performed in parallel. This combination can provide a different 

trade-off in terms of the number of cycles and the number of RSDs. 
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